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Abstract.We present theory and numerical simulations of strong nonlinear effects 
in standing shear Alfv6n waves (SAWs) in the Earth's magnetosphere, which is 
modeled as a finite size box with straight magnetic lines and (partially) reflecting 
boundaries. In a low/• plasma it is shown that the ponderomotive force can lead 
to large-amplitude SAW spatial harmonic generation due to nonlinear coupling 
between the SAW and a slow magnetosonic wave. The nonlinear coupling leads 
to secularly growing frequency shifts, and in the case of driven systems, nonlinear 
dephasing can lead to saturation of the driven wave fields. The results are discussed 
in the context of their possible relevance to the theory of standing ionospheric cavity 
wave modes and field line resonances in the high-latitude magnetosphere. 

1. Introduction 

Shear Alfv6n waves (SAW) form an important part 
of the dynamics of the Earth's magnetosphere where 
they provide an energy transfer process for damping of 
large scale solar wind perturbations and magnetopause 
generated compressional waves. The decay processes 
for these waves can produce small scale magnetic field 
disturbances in the polar magnetosphere which ener- 
gize particles and lead to a variety of auroral phenom- 
ena. In space physics the study of the effects produced 
by Alfv•n waves has a long history, largely due to the 
fact that there have been a great many observations 
of these waves in the solar wind, and in the Earth's 
magnetosphere and ionosphere. Observations of large- 
amplitude waves in the solar wind [Belcher and Davis, 
1971] have stimulated a number of theoretical studies 
of the nonlinear evolution of Alfv6n waves [Barnes and 
Hollweg, 1974; Cohen and Kulsrud, 1974; Granik 1981], 
a•d have resulted in the study of related effects such as 
parametric instabilities, including the modulation and 
decay instabilities [Lashmore-Davies, 1976; Sakai and 
$onnerup, 1983; Wong and Goldstein, 1986]. 

Boehm et al. [1990] have observed very large am- 
plitude Alfv6n waves at altitudes of 1000 km or so in 
the auroral ionosphere. The observed frequencies of the 
waves are typically greater than 1 Hz, and their electric 
fields correspond to roughly 200 mV/m. These Alfv•n 
waves may be a manifestation of the standing iono- 

•On leave from P. N. Lebedev Physics Institute, Russian 
Academy of Sciences, Moscow. 

Copyright 1994 by the American Geophysical Union. 

Paper number 94JA01629. 
0148-0227/94/94JA-01629505.00 

spheric cavity wave modes proposed by Trakhtengertz 
and Feldstein [1984] and Lysak [1991], who suggested 
that the wave modes might reach large enough ampli- 
tudes for nonlinear effects to become important. Li and 
Ternerin [1993] and Boehm et al. [1990] have suggested 
that spatial gradients in the envelopes of the wave fields 
can lead to ponderomotive forces that produce density 
enhancements and depletions that are large enough to 
account for those seen in the magnetosphere. 

ULF (1-5 mHz) shear Alfv•n field line resonances 
(FLRs) are also commonly observed in the Earth's mag- 
netosphere and in the auroral ionosphere [Ruohoniemi 
et al., 1991; Samson et al., 1992]. The equatorial ve- 
locity fields of these FLRs can be as large as 200 km/s 
[,V[itchell et al., 1990]. Samson et al. [1992] and Rankin 
et al. [1993a] have shown that these large amplitude 
FLRs should be nonlinearly unstable to the Kelvin- 
Helmholtz instability in the equatorial plane. The im- 
portance of ponderomotive forces in standing Alfv•n 
waves has recently been recognized by Allan [1993] and 
Li and Ternerin [1993], who attributed them to a mech- 
anism for the differential acceleration of auroral parti- 
cles and species redistribution. 

Alfv•n waves can show manifestations of two distinct 

nonlinear phenomena, harmonic generation and insta- 
bilities, which may distort the wave fields and lead to 
saturation of the amplitudes of the waves. The first 
of these effects is generally much stronger in stand- 
ing Alfv•n waves than in propagating waves because 
of larger spatial gradients in the direction of the am- 
bient magnetic field. The second class of nonlinearity 
includes instabilities such as the Kelvin-Helmholtz in- 

stability [Samson et al., 1992, Rankin et al., 1993a] and 
the nonlinear tearing instability [Samson et al., 1992; 
$eyler, 1990], which might also play a major role in 
the nonlinear evolution of standing shear Alfv•n wave 
resonances in the Earth's magnetosphere. Instabilities 
generally require very large amplitude wave fields and 
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must evolve from initially small amplitude disturbances. 
However, harmonic generation may evolve faster ini- 
tially, and the question to be addressed is whether non- 
linear harmonic generation can prevent the wave fields 
from reaching amplitudes that are large enough to ex- 
ceed instabilty criteria. 

In this paper we would like to address the effect 
of ponderomotive forces on the nonlinear dynamics of 
shear Alfv•n waves, which manifests itself through high 
spatial harmonic generation and large amplitude plasma 
density perturbations. In a finite /3 plasma these ef- 
fects can be described in terms of the nonlinear cou- 

pling of shear Alfv•n waves to slow magnetosonic waves 
(SMW), and it will be shown that they become espe- 
cially important when the standing Alfv•n waves are 
driven by an external source. In order to develop an 
analytical framework for the various processes to be de- 
scribed, we shall consider a simplified model of nonlin- 
ear effects in standing shear Alfv•n waves in a uniform 
plasma. Though the derivative nonlinear Schroedinger 
equation (DNLS) is often used for the study of prop- 
agating, large amplitude Alfv•n waves [Mjolhus, 1976; 
Kennel et al., 1988], it cannot be applied directly to 
standing waves and so we have chosen to develop the- 
oretical and computational models by beginning with 
the full set of MHD equations. Our theoretical models 
are based on perturbation expansions of the fields while 
the computer simulations use the full set of nonlinear 
ideal MHD equations. 

It is well known that second-order terms in the ideal 

MHD equations do not modify the shear Alfv•n com- 
ponent of the waves [Hollweg, 1971]. The inclusion of 
second-order terms does, however, lead to strong pon- 
deromotive forces in standing waves in a low f/plasma, 
with secularly growing densities in the region of the 
maxima in the electric fields of the waves [Allan, 1993]. 
We shall discuss how finite f/can inhibit second-order 
ponderomotive forces through coupling to the SMW. 
Finite/3 effects might also play a role in determining 
the maximum amplitude of FLRs on field lines thread- 
ing the finite/• region of the inner plasma sheet. Figure 
1 shows the approximate locations of these FLRs in the 
equatorial plane (see the examples in the work by Sam- 
son et al. [1992]). If ionospheric dissipation is not too 
large, FLRs in the inner edge of the plasma sheet can 
grow to large enough amplitudes to drive nonlinear in- 
stabilities such as the Kelvin-Helmholtz instability in 
the equatorial plane of the resonances. In particular, 
Rankin et al. [1993b] have shown that with a plasma 
/3 of 0.5 and realistic ionospheric conductivities, driven 
FLRs can grow to amplitudes large enough to allow the 
nonlinear Kelvin-Helmholtz instability to occur. In the 
lower/3 plasma closer to the Earth the results of the 
present study suggest that ponderomotive forces and 
the accompanying nonlinear phase shift of the SAWs 
might lead to earlier saturation of FLRs. 

In this paper we shall consider two configurations: 
the temporal evolution of an initialized, large-amplitude 
standing Alfv•n wave, which we shall refer to as the 
initial value problem, and the evolution of a standing 
Alfv•n wave excited by a spatially distributed driver. 

Figure 1. Position of field line resonances in the night- 
side of the Earth's magnetosphere. Pressure distur- 
bances in the solar wind can couple to high-latitude 
shear Alfv•n resonances at radial distance of approxi- 
mately 10RE in the equatorial. plane. 

The latter model is appropriate for the driven FLRs 
and iononospheric cavity modes discussed above. We 
also consider the effects of finite /3 on the two basic 
configurations, although we defer for future study a de- 
tailed discussion of the effects of finite/3 on the driven 
system, as well as a consideration of different models 
for the driver. 

2. Ponderomotive Force in the Cold 

Plasma Limit 

In this section we shall consider a magnetohydrody- 
namic (MHD) model in which the plasma is described 
using the ideal MHD equations: 

p +V.V V = -VP+JxB, 

0B 
VxE = - 

Ot ' 

V x B = p0J, 
E+VxB = 0, 

Op 
+ v. (fv) = 0. 

(1) 

In the system (1) above, p represents the plasma den- 
sity, V the fluid velocity, B the magnetic field, E the 
electric field, J the current density, and P is the pres- 
sure in the plasma. It is possible to eliminate the elec- 
tric field from the system (1) above by using the Ohm's 
law in the Faraday equation, and correspondingly the 
current density can be eliminated from the momentum 
equation using Ampere's law. 

In the discussion that follows, we will examine the 
nonlinear evolution of shear Alfv•n waves in the plasma 
by constructing a perturbation expansion of the fields 
in (1) of the form, A = Ao+eA (•) +e2A (2) +eSA (s) +...; 
e is a small expansion parameter that will be propor- 
tional to the amplitude of the excited Alfv•n wave or 
driver. It is assumed that the plasma is immersed in a 
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constant applied magnetic field B0 directed along the 
z-axis. For the moment, we consider the situation of 
a cold homogeneous plasma, f/ -- 2#oP/Bo 2 --, O, in 
which a shear Alfv•n wave is propagating in the x, z 
plane. This means that only the y-components of the 
wave magnetic field and velocity are nonzero and in the 
linear approximation they satisfy the well known MHD 
wave equations: 

Bo = O, 
Ot Oz Ot po#o Oz 

In looking for nonlinear effects within the framework 
of the ideM MHD equations, it can be shown that such 
effects are weak for traveling she• Alfv•n waves; the 
efistence of standing waves Mong the field lines pro- 
duces much stronger nonlinear effects through pondero- 
motive forces which expel pl•ma away from m•ma 
in the wave magnetic field intensity. In the magneto- 
sphere, pl•ma is redistributed Mong geomagnetic field 
lines and this effect contributes nonlinear terms to the 
Alfv•n wave equations discussed above. 

To show the effect of the ponderomotive force on 
standing Alfv•n waves, we consider a simple c•e in 
which the initiM fields are represented • sinusoidM 
plane waves: 

B? ) = B•o = -bBo sin(•t - k•z)sin(k,z), 
V• 1) = Vyo = bVA cos(•t- •z2)cos(•zZ). (3) 

Here VA = Bo/•popo is the Alfv•n velocity, b (( 1 is the 
dimensionless amplitude, and it can e•ily be demon- 
strated that the wave frequency satisfies the dispersion 
equation for shear Alfv•n waves w 2 = k•V•. The ex- 
pressions (3) are exact first-order solutions of the ideM 
MHD equations, that is, corresponding to the system 
(2). Proceeding to the evMuation of second order non- 
linear terms, it can be determined that the ideM MHD 
equations can be written in terms of three groups of 
equations corresponding to the three b•ic wave modes 
of the pl•ma. 

The first set corresponds to a shear Alfv•n wave with 
second-order wave amplitudes B? ) and V? ) , which sat- 
isfy equations of exactly the same form • the system 
(2). Therefore this mode is not driven for the c•e con- 
sidered here and we can set B? ) = V? ) = 0. This ex- 
plains perhaps why some authors •sume that the shear 
Alfv•n wave fields of the system (3) are proper solutions 
to the full set of nonlinear ideM MHD equations. 

The second set of second-order equations corresponds 
to the compressionM Alfv•n mode, 

These three equations can be combined into the follow- 
ing form: 

02rz © ( c92Vz(2) c92Vz (2)) 102 B•o Ot • VA2 Ox • + Oz • =--2p0#00tOx (5) 
and although the compressional mode is driven by the 
fields of the incident shear Alfv•n wave, it can be shown 
that the driving terms are not resonant (there is also a 
resonance with the compressional mode for the special 
case kz = kx, but this will not be discussed here) and 
consequently the coupling between the modes is weak. 
The solutions to (4), with zero initial conditions, corre- 
spond to second-order expressions (proportional to b •) 
for constant amplitude field components which oscillate 
at second harmonic frequencies in space and time. It 
is easily shown that these components have a negligible 
feedback effect on the dynamics of the SAW. 

The third set of equations corresponds to driven den- 
sity perturbations (the cold plasma limit of the slow 
magnetosonic wave), 

OV? ) I OBv•o 
Ot 2p0#00z ' 

05p(2) ( øv?) + Ot = -po Oz (6) 

and as will be shown below, this mode can be reso- 
nantly driven by the fields of shear Alfv•n waves. An 
analysis of the equations described above shows that the 
components Vz (2) and 5p (2) both have secularly growing 
in time components and therefore provide the domi- 
nant nonlinear response of the plasma to shear Alfv•n 
waves. Substituting the expression for Bvo in (3) into 
the system (6), neglecting Vx, and considering only the 
dominant secular terms, we obtain 

Vz(2) ~ -b 2 = 4 VACOt sin(2kzz), 
b 2 

_= ¾fo(t) cogan, z). (7) 

It can be verified that it is just standing Alfv•n waves 
that generate this secular response. In the case of 
oblique traveling waves, there is only an oscillatory Vz (2) 
component and no density perturbation. Because of 
their secular temporal behavior, it is expected that ef- 
fects due to 5p (2) and Vz (2) should dominate the nonlin- 
ear behavior of the initial Alfv•n wave fields. Therefore, 
in order to avoid a large amount of unnecessary alge- 
bra, we account for only these terms when constructing 
third order equations describing modifications to the 
shear Alfv•n wave fields (3) which occur on the time 
scale satisfying cot >> 1. The third-order system 

Ot Oz Oz ' 

0g? r00r? ) ()r00r0 ot foo =- Oz (s) 
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is identical to the system (2) with the exception of the 
nonlinear driving terms appearing on the right-hand 
side of the equations; these are related to the secularly 
growing plasma density perturbations. Substitution of 
the expressions (7) and (3) into the nonlinear system (8) 
reveals two major nonlinear effects on the initial Alfv•n 
wave: higher harmonic generation and a frequency shift 
of the fundamental wave. Indeed, according to (8) the 
interaction of the Alfv•n wave (3) with the density per- 
turbation (7) produces additional terms which corre- 
spond to oscillations in By at wave numbers (kx,3kz) 
and frequency w. These terms do not satisfy the lin- 
ear dispersion equation for the shear Alfv•n wave, and 
therefore they grow with time like (a•t) 2, that is, at 
the same rate as the density perturbations in (7) which 
drive them' 

3 BobS(wt) • sin(cot - kxz) sin(3kzz), 

The nonlinear terms in (8) •so produce corrections to 
the shear Alfv•n wave which correspond to oscillations 
at wave numbers (k•,kz) and frequency w and these 
have a strong effect on the initi• shear Alfv•n fields 
because they satisfy the linear shear Alfv•n wave dis- 
persion equation. Adding these corrections to the initi• 
fields of the system (3), we obt•n equations describing 
modifications to the shear Al•n waves, 

_ •-• (wt) 2) sin(cot- k,x)sin(kzz) By '" - bBo (1- b2 
b a 

+ •B0(wt) s cos(cot- k,x)sin(k,z), 

( ) + co(t- 
b s 

+ •VA(wt) s sin(wt -- k•x)cos(k,z). (10) 
The first term on the right-hand side of the above equa- 
tions describes the decre•e in amplitude of the initi• 
fields of the shear Alfv6n wave. It can •so be seen that 

the dominant terms in (10) grow like t a, and that they 
produce a shift in the frequency of the shear Alfv•n 
wave. Comparison of the dominant nonlinear terms in 
(10) with the initiM linear terms shows that the pertur- 
bationM approach f•ls at a time given by 

wtNL = (48)1/3b -2/3 (11) 
when all other nonlinear terms are still relatively small. 
We can therefore consider tNL as a characteristic time 
for which strong nonlinear effects are to be expected. 
For example, with b = 1%, the nonlinear time cor- 
responds to 12 wave periods, whereas with b = 10% 
the timescale is less than 3 wave periods. The domi- 
nant secular term in (10) for By is changing the phase 
of the initial field from sin(wt- 
and therefore we can interpret this effect as a nonlinear 
phase shift. Indeed, (10) can be rewritten as 

By -• -bBo 1 - •w2t • sin(cot- kxx + q•)sin(kzz), 

362 2 V'y •- bVA 1- •-w t • cos(cot 

4(t) = - asin(4b--•wata). 
+ 0) cos(k, z), 

(12) 

In the small time limit the phase shift can be approxi- 
mated by 

4(t) • -b2(wt)s/48 (13) 
and it can be seen that the temporally growing phase •b 
results in a negative frequency shift of the fundamental 
Alfv6n wave of the form, 

5w = d•b(t) = _ b2wst2 (14) dt 16 ' 

Strictly speaking, (13)is valid only for qb(t) << 1 but 
the numerical results to be discussed later indicate a 

much broader region of validity. One can see that 
at the nonlinear time given by (11) the relative fre- 
quency shift and amplitude variation are of the order 
of b 2/3 and therefore are small compared to the ini- 
tial values (the frequency shifts are still experimentally 
observable; for example, 5w/w • 0.04 for b = 1%, 
5w/• • 0.18 for b = 10%). Correspondingly, at the 
time t = tNL, the magnitude of the density perturba- 
tions is also small,that is, they are also of order b 2/3. 

The temporal behavior for t • t NL depends strongly 
on the plasma parameters. As will be shown later, nu- 
merical simulations of the full MHD equations demon- 
strate that in the case of cold plasmas the absence 
of thermal pressure fails to prevent the contraction of 
plasma into the nodes of the Alfv•n wave magnetic 
field. Therefore the density inhomogeneities grow to 
very large amplitudes (5œ • œo) and totally destroy the 
initial periodic Alfv6n wave. Presumably, kinetic effects 
such as wave breaking can come into play in such a sit- 
uation. However, the inclusion of finite temperature 
may have a dramatic effect on the nonlinear evolution, 
even in the case of small f/. It will be shown in section 
4 that in this case the secular behavior of the density 
perturbations is inhibited due to the slow reaction of 
the plasma to the thermal pressure force. 

3. Temporal Evolution of Driven Shear 
Alfv4n Waves 

In the Earth's magnetosphere, large-amplitude shear 
Alfv6n waves presumably do not exist as initial condi- 
tions under normal magnetospheric conditions but are 
more likely to be driven by some external source. In 
particular, it is well known that global magnetospheric 
resonance modes [Allan and Poulter, 1989], which are 
trapped compressional Alfv•n waves in an inhomoge- 
neous plasma, experience collisionless damping when 
they encounter a local resonance with shear Alfv•n 
waves. From the point of view of the fields of shear 
Alfv6n waves, the global resonances constitute an ex- 
ternal driving force that can be represented by a spec- 
ified source in our model equations describing coupling 
between SAWs and density perturbations in a homo- 
geneous plasma. Formally, this driving force can be 
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represented through the addition of the terms 

- coo RBo sin(coot - kz)sin(kz), 
cogot- (15) 

to the right-hand sides of the equations for B• and 
V•, respectively, of the first-order system (2). In this 
case the dimensionless parameter R describes the rela- 
tive strength of the driver. For example, in the case of 
shear Alfv•n waves excited by a compressional driver, 
R • 5P/Po where 5P is the amplitude of the pressure 
wave. The solutions to the driven linear equations can 
be written as, 

B•d = -woRBot sin(wot - k•z) sin(k•z), 
V•d = woRVAtcos(o/ot- k•z)cos(k•z). (16) 

It can be seen that the system (16) describes linear 
growth of the fields of the shear Alfv•n waves due to the 
external driver. This situation is in accord with a field 

line resonance which is being driven to large amplitude 
by a global excitation source, To proceed, we repeat 
the calculation of section 2 in which we determined the 

dominant secular terms driving the density and field- 
aligned velocity component associated with the density 
perturbations. In the secend-order approximation we 
again account for only the fastest growing components 
of Vz (2) and 5p (2). Under the same assumptions as be- 
fore we solve (6) with the source term B•0 replaced by 
B•d of system (16). The solution for l/z (2) can be written 

Vz 2) _- 
I 2 

- •¾aR (•v0t) a sin(2kzz) 
1 • 

- •-•VaR sin(2kzz)sin(2k•z) (17) 
1 

+ õVaR2•otsin(2kzz)cos(2•0t - 2kzz) 

1 )VAR 2 _ - 
Note that along with the fastest growing term t 3 in the 
above equation, which is similar to the secular term in 
(7), there are also smaller amplitude second harmonic 
components in the x direction. In similar fashion it 
can also be shown that the compressional component 
Vz (2) has nonresonant terms with wave numbers (2kz, 0) 
and (2kz, 2kz), respectively, and with corresponding fre- 
quencies 2k•VA and 2v/k•2 + kz2VA. The relative ampli- 
tudes of these terms are proportional to j•2, and since 
their growth is proportional to t 2, which is slower than 
for Vz (2), they can again be neglected. Therefore, in the 
case where shear Alfv•n waves are driven by an external 
source, the dominant secular behavior can be described 
using the equations, 

V? ) = -.1-•VaR2(•ot)S sin(2k•z), 
5p(2) _ 1 - 2•0a•(•0t) • co•(2•). (•S) 

The long-term effect of the second-order density per- 
turbations on the fields of the main harmonic driven 

shear Alfv6n wave may again be expressed using (8). 
On substituting (18) and (15) into the right-hand sides 
of the third-order system (8), and solving the resulting 
equations for lgy (s) we obtain, 

V=VA -- 4a0t')cos(z)cog0t- 
q-•-•¾A (RCVot) R2 •voS t 5 cos(k,z) sin(w0t - 

1 

+•-•VA(R•Vot) R2•v•t 4 cos(3k,z)cos(wot- k•x) (19) 
where we have added the third-order terms to the fields 

of the main harmonic wave. In (19) we have also in- 
cluded the third spatial harmonic term (k•, 3k•) corre- 
sponding to (9) in the undriven case. It can be seen 
that the form of (19)is similar to (10)if we replace 
the parameter b in the former by R•ot. Only the nu- 
merical coefficients are different and it is expected that 
very similar behavior will therefore occur. The first ef- 
fect that can be considered is an apparent slowing of 
the growth of the driven shear Alfv•n wave due to the 
interaction between the driver fields and the pondero- 
motive density perturbations. The effective amplitude 
of the driver is now given by 

bNL -- RVZot 1- •-•R 

and the phase shift between the specified driver, (16), 
and the main harmonic fields now results in a frequency 
shift given by 

5 w0 576 ' 

From (19) it may be concluded that when the coeffi- 
cient multiplying the term sin(w0t-k•x) is comparable 
to the amplitude of the driver, Rwot, the latter will 
be out of phase with the driver. When this occurs, it 
is expected that the main harmonic field Vy will sat- 
urate. This defines a saturation timescale for driven 
shear Alfv•n waves of the form 

t•vL • 3.5w• -1R -2/s. (22) 

At the nonlinear timescale given by (22) the amplitude 
of the excited SAW corresponds to 

b•vL = P•0tNL • 3.5R 3/s. (23) 
Notice that at the time of saturation the nonlinear cor- 

rections to the effective wave amplitude •ven by (20) 
are still smM1. They are of the order of R 2/•, which is 
much sraMlet than unity. 

It may be concluded that the m•n differences be- 
tween the driven and initiM vMue (undriven) problem 
is that in the latter c•e nonlinear processes decrede 
the amplitude of the shear Alfv•n waves and produce 
a continuous frequency shift of the wave. In the driven 
c•e, nonlinear effects have a more rapid secular de- 
pendence, and in addition the nonlinear frequency shift 
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of the main harmonic fields can lead to a decoupling 
between the wave fields and the source. The latter re- 

sult leads us to conclude that saturation of the fields 

of the shear Alfv•n waves should occur at a timescale 

determined by (22). However, the effect of nonlinear 
saturation is out of the limits of applicability of the 
perturbative approach used in this paper, and the ver- 
ification of this result must be deduced from numerical 

solutions to the full set of nonlinear equations. As will 
be shown later, when we discuss solutions to the full set 
of nonlinear MttD equations, the saturation timescale 
in the driven case can be as short as a few wave peri- 
ods and the wave amplitude of the excited shear Alfv•n 
wave no longer shows significant growth after the time 
(•). 

4. Effect of Finite/• on Nonlinear 
Standing Alfv•n Waves 

The analysis presented in sections 2 and 3 shows that 
the components V•, B•, and Bz do not exhibit secu- 
lar behavior and therefore the main nonlinear effects 

are due to longitudinal plasma motion, which can be 
described using equations for Vz (2) and 5p(2). In or- 
der to account for the effects of finite temperature, it 
is sufficient to consider only the z-component of the 
equation of motion, in which the term -p•lOsP/Oz 
must be added to the right hand side of the first equa- 
tion in the system (6). Assuming the standard relation 
5P/Sp = C•, where Cs is the ion acoustic velocity, we 
can express (6) in the form of a second order differen- 
tial equation which describes slow magnetosonic waves 
(SMW) driven by the ponderomotive force: 

026p 026p_ 02 (B•> (24) Ot; Oz; - Oz; 
The angular brackets in (24) refer to the time averaging 
of the shear Alfv•n wave intensity over its period 2•r/w. 
This is appropriate because we are assuming here that 
/• • I and therefore the acoustic velocity Cs is much 
less than VA. 

To evaluate qualitatively the effect of plasma pres- 
sure on the nonlinear behavior of shear Alfv•n waves, 
we again make use of the perturbational approach dis- 
cussed earlier and substitute into the right hand side 
of (24) the field of an initial undisturbed shear Alfv•n 
wave of the form of (3). The solution of (24) with zero 
initial conditions corresponds to a driven acoustic wave 
whose frequency is f2 = 2kzCs, 

•__• _ b 2 •2 
- 2 - cos(m)] cos(2z). 

In the limit of a cold plasma, Cs -• 0, this expres- 
sion recovers the previous one, (7), and it can be seen 
that secular growth corresponds in fact to the initial 
stage of excitation of a standing SMW with an ampli- 

• b 2 •v rude ~ • /f]•, where 7 is the ratio of specific heats. 
We can conclude therefore that the small amplitude 
expansion approach should be valid for all times pro- 

vided b • •/•, in order that the relative amplitude of 
the density perturbations remains small. In that case, 
(25) shows that finite plasma pressure prevents the for- 
mation of strong density perturbations and higher har- 
monic generation. Equation (25) corresponds to pe- 
riodic density pulsations that are related to a standing 
SMW that is driven through nonlinear coupling to shear 
Alfv•n waves. The amplitude of these pulsations will 
be a decreasing function of time if Landau damping of 
the slow mode is accounted for. This is especially im- 
portant if the ions and electrons have comparable tem- 
peratures. However, we consider here a nonresonant 
SMW driven by the ponderomotive force and therefore 
Landau damping should not change qualitatively the 
estimate of the density perturbations given by (25) be- 
cause the damping coefficient is presumably less than 
the SMW frequency and, in particular, our results in- 
dicate that strong nonlinear effects can occur within a 
fraction of an acoustic wave period provided/• is suffi- 
ciently small. 

From (25) we can distinguish two qualitatively dif- 
ferent regimes for the nonlinear evolution of standing 
SAWs which depend upon the relationship between the 
wave amplitude and the plasma pressure. The case cor- 
responding to relatively cold plasma,/• • b 2, results in 
strongly nonlinear behavior: after the time t • w-lb-•, 
large-amplitude density perturbations (Sp • P0) are 
produced, and it is expected that many odd shear 
Alfv•n wave harmonics will be generated. Presumably, 
these features manifest themselves through wave break- 
ing and a resulting dissipation of the Alfv•n wave energy 
by plasma particles. The regime corresponding to warm 
plasma, for which/• • b •, is quite different. It c•)rre- 
sponds to much smoother periodic nonlinear behavior 
of SAWs. These periodic pulsations will ultimately be 
damped out and a constant nonlinear frequency shift of 
the SAW will result. 

The same separation between strongly nonlinear non- 
periodic behavior, and mildly nonlinear periodic behav- 
ior, can be translated onto the driven case if we notice 
the relation (23) between the saturated amplitude and 
the strength of the driver. We can expect strongly non- 
linear plasma evolution, and large amplitude density 
perturbations if R • (?f•/2) 5/•. This regime will be 
discussed in the next section when we consider numer- 

ical solutions to the full set of MHD equations. Quasi- 
periodic behavior of SAWs is expected in the case of 
a warm plasma for which ?/•/2 > R 6/5. This param- 
eter range needs a more detailed analysis than can be 
presented here, because the density perturbations asso- 
ciated with SMWs will affect the energy exchange be- 
tween the excited SAWs and the driving source. 

5. Numerical Results and Discussion 

In order to test the validity of some of the results 
presented in sections 2, 3 and 4 above and investigate 
the long-term evolution of nonlinear SAWs, we will now 
consider numerical solutions to the full set of nonlin- 

ear ideal MHD equations described by the system (1). 
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The algorithm and numerical techniques that are used 
to solve (1) are described in the papers by Rankin et 
al. [1993a, b]. We only note here that the ideal MHD 
equations are finite differenced for a Cartesian geome- 
try, with the assumption of straight magnetic field lines 
in the z direction. We will first of all describe results 
obtained for/• = 0, corresponding to the initial value 
problem. Then we consider the situation in which the 
shear Alfv6n wave field is driven by an external source. 
Finally, we investigate the effects of finite/• on the ini- 
tial value problem. 

The first simulation that we consider corresponds to 
the initial value problem in which a shear Alfv6n wave 
field is imposed on the system. Periodic boundary con- 
ditions are used in the x direction, which corresponds 
to the propagating direction of the wave, and the fields 
are chosen to form a standing wave pattern along the 
z direction, in accordance with (3). The amplitude of 
the By component of the initial wave field corresponds 
to ten percent of the ambient magnetic field, and the 
plasma is cold, fi = 0. Figure 2 shows the evolution of 
the density in the plasma. Initially, the density is uni- 
form and after some time it can be seen that the pon- 
deromotive force causes plasma to accumulate in the 
valley's of the wave magnetic field intensity B•. The 
density accumulates to very large amplitude, and the 
behavior for 6p/po > 1 presumably signifies the end of 
the validity of ideal MHD for this cold plasma case. It is 
readily verified that the above process conserves energy 
exactly, and thus the saturated amplitude of the den- 
sity perturbations must be related to effects occurring 
outside of ideal MHD. 

In Figure 3 we show the spatial Fourier transform 
of the density. At the time indicated in Figure 3a the 
ponderomotively driven second harmonic density per- 
turbation is dominant. However, at later times, Figure 
3b indicates that a large number of even numbered spa- 
tial harmonics 2nkz are generated, corresponding to a 
highly nonlinear stage of evolution of the initial shear 
Alfv•n wave field. The high harmonics in Figure 3 corre- 
spond to the excitation of large-amplitude density per- 
turbations which form standing waves along the field 
lines. 

The theory of section 2 deals with the second har- 
monic density perturbation, and we can therefore ex- 
pect a comparison of the numerical results and theory 
to agree only during the early stage of evolution of the 
waves. Such a comparison is made in Figure 4b, which 
shows the growth of the (0, 2kz) component of the den- 
sity with time. The dashed line corresponds to the ana- 
lytic expression of (7) and the solid line corresponds to 
the numerical results. It can be seen that the agreement 
between the theory and numerical results is excellent, 
and only at later times does the growth of the (0, 2kz) 
harmonic start to slow as a result of higher spatial har- 
monics being excited. Figure 4a shows the numerical 
results over the full time simulated. There is evidence 

of a tendency of the second harmonic to begin satu- 
rating, but the validity of the ideal MHD equations is 
questionable at this stage because the density pertur- 
bations are of order one and the corresponding density 
gradients are very steep. 

2 
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1 

1. 

x / L 0•••.75 j 
O. z/L z 
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x / L x 0.5 •.75 
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Figure 2. Temporal evolution of density perturbations 
driven by the ponderomotive force in the initial value 
problem. The data are shown at three times: (a) t = 
0.67t,•, (b) t = 1.40t,o•, (c) t = 2.13t,o•. The time 
unit tsar. corresponds to the period of the shear Alfv•n 
wave (SAW.) 

An inspection of the time dependence of the higher • 
spatial harmonics in the density shows that they grow 
very precisely like t« "+1, where n is even. This time de- 
pendence corresponds to a cascade process in which sub- 
sequent harmonics are produced mainly through beat- 
ing between the fundamental wave and the previously 
generated harmonic. The growth of high harmonics to 
finite amplitude appears delayed because the coupling is 
initially very weak. After they have grown to finite am- 
plitude their growth is extremely rapid, reflecting the 
highly nonlinear coupling that is taking place at that 
stage. 
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Figure 3. Spatial Fourier transform of the density 
at a time corresponding to (a) t = 2.13tsaw, (b) t = 
3.94tsaw. The figure shows a large number of even spa- 
tial harmonics 2nkz, corresponding to the excitation of 
large-amplitude density perturbations. 

The temporal behavior of the amplitude of the main 
harmonic shear Alfv6n wave is shown in Figure 5. It 
can be seen that the effect on the main harmonic fields 

is not too severe. In particular, according to (11), for 
b = 0.1 the timescale for strong nonlinear effects to 
become important corresponds to t•vL •. 1.Stsaw, where 
tsaw = 27r/w is the period of the SAWs. At this time, 
the amplitude depletion of the initial fields is roughly 
10%, even though large-amplitude fluctuations in the 
density are being produced. 

The next effect that can be investigated is the phase 
change of the main harmonic field due to beating be- 
tween the ponderomotive density perturbations and the 
incident wave field. Figure 6 shows a comparison be- 
tween the analytic expression (the third equation in the 
system (12)), its small time limit, (13), and the numer- 
ical results. The lower curve in Figure 6 is the analytic 
result (12) and indicates that saturation should occur 
when the phase shift is 7r/2. This is all that can be 
expected of the perturbation theory used here. The up- 
per curve corresponds to the analytic expression in the 
small time limit, (13), and it can be seen that it agrees 

with the numerical results (the middle curve) well be- 
yond its strict region of validity. This behavior is com- 
mon in perturbation treatments of nonlinear systems. 
The differences between the analytic and numerical re- 
suits become important at timescales for which high 
harmonics are generated. It can be seen from Figure 
6 that the agreement with the theory is initially very 
good. For the time interval over which growth is shown, 
the phase shift of the initial wave field is greater than 
To investigate the longer time behavior of the system 
a nonperturbative treatment must be used and this is 
currently under investigation. However, from Figure 6 
it can be deduced that at later times the frequency shift 
demonstrates a tendency toward stabilization. 

Having established the :validity of the analytic results 
presented in section 2, we will now move on-and con- 
sider the situation in which the shear Alfv•n wave field 
is driven by an external source. To model this in the 
simulations, we apply an excitation field of the form 
of (15) at each point on the finite difference simulation 
grid. The main effect that we are interested in study- 
ing is the possible saturation of the linearly growing 
excited shear Alfv6n waves due to dephasing from the 
externally applied driver. This effect is directly related 
to field line resonances driven by global compressional 
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Figure 4. Temporal evolution of the amplitude of the 
(kx = 0, 2kz) spatial harmonic in density. (a) Numerical 
results are shown; (b) the dashed line is the theoretical 
result, and the solid line corresponds to the numerical 
results. The time unit t•aw corresponds to the period 
of the SAW. 
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Figure 5. Temporal evolution of the amplitude of the 
main harmonic shear Alfv•n wave field. The amplitude 
starts to deplete when high harmonics are generated. 
The time unit tsaw corresponds to the period of the 
SAW. 

magnetospheric waves and may also be related to large- 
amplitude shear Alfv•n waves formed in the cavity be- 
tween the ionosphere and the high-altitude peak in the 
Alfv•n velocity profile. 

In the driven case we have confirmed the analytic 
estimates of the rates of growth of the (0, 2kz) spatial 
harmonic density perturbation and have verified the fre- 
quency shift of the fundamental wave as determined by 
(18) and (21) above. For the simulation described be- 
low we impose a driver with an amplitude correspond- 
ing to R = 0.005 in (15). The evolution with time 
of the V v component of the excited shear Alfv•n wave 
field is shown in Figure 7. The initial stage corresponds 
to linear growth with time in accord with expression 
(16) above. Thereafter, alephasing accumulates at a rate 
which is large enough to slow the growth of the excited 
wave. At the time of saturation in Figure 7, the phase 
shift from the driver is 7r/2, and the driver is essentially 
alecoupled from the excited wave fields. It is interesting 
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Figure 6. TemporM evolution of the phase of the main 
harmonic shear Alfv•n wave field. The lower curve is 

the analytic phase shift of (12). The upper curve is the 
small time limit phase shift, (13), and the middle curve 
indicates the numerical result. The small time limit 

phase shift follows the numerical results well beyond its 
region of validity. The time unit tsa• corresponds to 
the period of the SAW. 
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Figure 7. Temporal growth of Vv corresponding to the 
main harmonic shear Alfv•n wave field for the driven 

case. The fields initially grow linearly with time and 
saturate at later times due to dephasing from the ex- 
ternally applied driver. The time unit tsaw corresponds 
to the period of the SAW. 

to compare the saturation timescale in the simulations 
with the analytic result given by (22). On substituting 
the value R = 0.005 into expression (22) we estimate 
a saturation time corresponding to approximately four 
periods of the shear Alfv•n driver fields. This value 
compares well to the saturation time observed in the 
simulations. The saturated amplitude also compares 
well to the analytic estimate given by Eq. (23). A direct 
comparison of the numerical results with the estimate 
in (22) is valid provided that high spatial harmonics 
are not excited. However, at the late stages in Figure 7 
the wave fields are highly nonlinear, and the agreement 
with the theory is therefore rather gratifying. 

In the driven case, (19) also indicates that there 
should be a secularly growing third spatial harmonic 
component (kx, 3kz) of the SAW field. Figure 8 com- 
pares the predicted analytic growth of this component 
with the results of the simulations. From (19) the 
(kx, 3kz) driven component of the SAW grows rapidly 

0.0005 

0.0003 

0.0002 
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Figure 8. Temporal growth of the nonlinear (k=, 3kz) 
third spatial harmonic component of the SAW for the 
driven case. The dashed line is the theoretical result, 
and the solid line corresponds to the numerical results. 
The time unit tsaw corresponds to the period of the 
SAW. 



21,300 RANKIN ET AL.: NONLINEAR STANDING SHEAR ALFVI•N WAVES 

0.2 

0.15 

•P/Po o.1 

0.05 

0 

fitsa w 

0.03 

õP/Po 0.02 

6pip o 

0.01 

0 

0.02 

0.015 

0.01 

0.005 

0 

0 2 4 6 8 10 

fitsa w 

0 2 4 6 8 lO 

t/tsa w 

6pip o 

0.015 

0.0125 

0.01 

0.0075 

0.005 

0.0025 

0 
0 2 4 6 8 10 

fitsa w 
Figure 9. Temporal evolution of the amplitudes of 
(0,2nk•) spatial harmonics in the density for a finite 
temperature plasma,/• -- 0.013, corresponding to the 
excitation of SMWs; (a) n=l, (b) n•2, (c) n=3, (a) 
n=4. The time unit tsaw corresponds to the period of 
the SAW. Note the initial time delays before harmonics 
have had time to grow and the different scale of the 
amplitudes of the harmonics. 

with time like R3t 5, and this is the dependence that 
can be seen in Figure 8. However, the coefficients mul- 
tiplying the secular term in (19) are sm•11, and thus the 
effects of this wave are negligible. 

The final situation that we consider corresponds to 
the case where the plasma has a finite temperature. For 
example, in Figure 9 we show the temporal evolution of 
the 2nk• spatial harmonics of the SMW for the range 
n = i to n = 4. According to the discussion of sec- 
tion 4, the second spatial harmonic of the $MW should 
saturate at an amplitude «b2//•7. Taking b = 0.1, and 
/• = 0.013, the saturation amplitude according to this 
formula corresponds to 6p/po = 0.23. Comparing this 
estimate to the maximum amplitude of the 2k• SMW 
in Figure' 9, it can be seen that saturation occurs at 
a v•lue that is close to the theoretical prediction. The 
higher spatial harmonics in Figure 9 begin to saturate at 
much smaller amplitudes than the (0, 2k•) slow mode, 
and thus in a warm plasma coupling to the fundamental 
slow mode component provides the dominant nonlinear 
behavior. Note that in contrast to the spatial harmon- 
ics of the SAW the frequencies of higher magnetosonic 
harmonics grow in proportion to their wave number, as 
is expected for the case of impulse excitation. 

6. Conclusions 

The theory and numerical simulations presented above 
suggest that nonlinear effects on standing shear Alfv•n 
waves can be very strong in a low /• plasma regime, 
which in the present study is appropriate for ionospheric 
cavity modes and for FLRs excited in the vicinity of 
the central plasma sheet. It has been shown that the 
ponderomotive force can lead to high harmonic gener- 
ation, secularly growing frequency shifts of the funda- 
mental waves, and in the case of driven systems, can 
result in nonlinear saturation and dephasing of driven 
shear Alfv6n wave fields. In the driven case, one im- 
portant aspect of the estimates of saturation is that 
nonlinear effects can take place on a timescale of the 
order of a few wave periods, when large ponderomo- 
tive density enhancements occur. These timescales are 
compatible with observations [Samson et al., 1992] of 
large-amplitude field line resonances in the Earth's mag- 
netosphere, which indicate that the wave packets that 
are responsible for exciting the waves have durations of 
only a few wave cycles. 

Processes which determine the saturation amplitudes 
of field line resonances include Joule heating losses at 
the ionosphere and nonlinear processes such as the 
Kelvin-Helmholtz instability [Rankin et al.,1993a] and 
the tearing mode instability [Se•ller, 1990]. The results 
of the present work suggest that the ponderomotive 
force should be added to the list of possible saturation 
mechanisms. In order to demonstrate this fact we have 

repeated the simulation of field line resonances reported 
by Rankin et al. [1993b], in which a large-amplitude 
shear Alfv•n resonance was excited by a compressional 
mode driver in a plasma with • = 0.5 (see, for ex- 
ample, Rankin et a/.,1993b, Figure 5). The simulation 
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was rerun for the cold plasma case, and it was found 
that nonlinear harmonic generation prevented the field 
line resonance from growing to large amplitude. Thus 
harmonic generation may constitute an effective satu- 
ration mechanism if the plasma is sufficiently cold. The 
FLits observed by $arnson et al. [1992] are seen only at 
high latitudes on field lines threading the inner edge of 
the plasma sheet, particularly during substorm growth 
phases. Pu et al. [1992] have also shown that •3 can be 
greater than one at geosynchronous orbit at the time of 
substorm onset. Thus the observed FLits are excited in 

a region of high/3, where according to the theory pre- 
sented above harmonic generation is unlikely to provide 
a mechanism for strong nonlinear saturation. Outside 
of this high/3 plasma, excited FLits should saturate at 
relatively low amplitudes and this may explain why cer- 
tain FLits are consistently observed over a narrow range 
of latitudes. A more detailed analysis of ponderomotive 
effects on driven field line resonances at finite •3 is cur- 
rently under investigation. 

The theory of sections 2 and 3 is also relevant to 
observations of large amplitude shear Alfv6n waves in 
the high-latitude Alfv6n wave resonator, for which the 
condition •3 << 1 is satisfied. In such circumstances we 
can expect strong nonlinear saturation of shear Alfv•n 
waves, together with strong density perturbations and 
the accumulation of plasma in the vicinity of minima 
in the wave magnetic field. Ion acceleration along the 
magnetic field lines should also accompany this process 
[cf. Li and Ternerin, 1993; Allan, 1993]. This accel- 
eration should occur over small distances of the order 

of a fraction of a wavelength, in the region where pon- 
deromotive density accumulation takes place (i.e., at 
the B v field minires). Because of the secular nature of 
the field-aligned velocity component, it is expected that 
the accelerated ions will form a pulse in which different 
ion species will have approximately the same velocity 
but will have different energies due to their different 
masses (ei = {mi(V•2)). A more accurate analysis of 
ion acceleration must take into account geometrical ef- 
fects, the temporal behavior of SAWs •n the nonfinear 
regime, and the effect of inhomogeneity in the ambient 
plasma. This will be addressed in a future work. 
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