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Shear flow instability in the dipolar magnetosphere 
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Abstract. The three-dimensional, nonlinear evolution of a shear flow (or Kelvin- 
Helmholtz (KH)) instability driven by a large-amplitude shear Alfvdn wave (SAW) 
in the Earth's magnetosphere is studied by using numerical solutions to the 
complete set of ideal magnetohydrodynamic equations. An initial setup is chosen to 
simulate a standing SAW associated with field line resonances (FLRs) in a dipolar 
magnetosphere. It is shown that KH vortices grow most rapidly in the equatorial 
plane. In this region, the growth rate is reduced by the ratio of the KH and SAW 
frequencies when compared to the growth rate predicted by a two-dimensional 
theory for transient magnetic field lines. For typical parameters of FLRs, this ratio 
is small. Field-aligned gradients of the KH mode vorticity and azimuthal phase 
velocity initiate Alfv•n waves, which carry energy toward the ionosphere. This 
results in partial restructuring of field-aligned currents with scale size of •10 km 
above the ionosphere. After one period of the SAW, energy in the KH mode returns 
to the SAW flow. This suggests that vortex formation might be largely periodic in 
evolution, reconfiguring after each period of the FLR. Finally, we show •hat this 
restructuring of field-aligned currents does no• depend on the initial phase of the 
SAW. For example, the model predicts that a ground-based observer in the Northern 
Hemisphere (looking an•iparallel to the Earth's magnetic field) will see that the 
downward current wraps clockwise and the upward current wraps counterclockwise, 
•hough the poskions of the currents change latitudes for different phases. 

1. Introduction 

A commonly observed feature of enhanced auroral ac- 
tivity is the formation of vortical structures. HallJuan 
[19701 classified these forms as spirals (• 50 km), folds 
(• 20 km), and curls (• 5 km). Recently, similar vor- 
tical structures were also observed for fine-structured 

discrete arcs of the thickness of 0.1-1 km [Trondsen and 
Cogget, 1998] and for black auroras [ Trondsen and Cog- 
get, 1997]. According to Miura [1996, p.764] an "auro- 
ral vortex street (curl) often seen in association with 
discrete auroral arcs is visible evidence of the K-H in- 

stability driven by the shear of the E x B drift velocity," 
where K-H refers to Kelvin-Helmholtz. 

Recently, Samson et al. [1996, 1998] showed that 
some discrete auroral arcs are modulated with frequen- 
cies corresponding to field line resonances (FLRs) and 
have topology compatible with the upward currents 
expected in FLRs. This implies that large-amplitude 
FLRs may lead to the formation of some arcs. The ve- 
locity field of standing SAWs have nodes in a highly con- 
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ductive ionosphere and antinodes in the equatorial mag- 
netosphere. In a dipolar magnetic field, FLRs evolve 
into a radially structured channel in the vicinity of the 
resonant magnetic L shell [Streltsov and Lotko 1996, 
1997; Voronkov et al., 1997a]. The velocity gradients in- 
crease with time and eventually the FLR may become 
unstable with respect to the Kelvin-Helmholtz mode 
[Rankin et al., 1993; Samson et al., 1996, 1998]. The 
KH mode is expected to develop first near the equato- 
rial plane, driving shear Alfv6n waves and field-aligned 
currents that interact with the ionosphere. In order to 
find the three-dimensional dynamics of the instability in 
the magnetosphere, we have studied the evolution of the 
shear flow within a SAW using a dipolar geometry on 
a magnetic shell with L •10, where active discrete arcs 
are observed in the evening and midnight ionosphere. 

It is well known that if the ambient rnagnetic field has 
a component directed parallel (or antiparallel) to the 
wave vector, the growth rate decreases and such a mag- 
netic field can eventually stabilize KH modes [Miura 
and Pritchett, 1982; Tajima et al., 1991]. The KH 
instability growth rate also depends on conditions at 
the ionospheric ends of the magnetic field lines. The 
influence of ionospheric line tying on the KH insta- 
bility was studied by Miura and Kan [1992], Galin- 
sky and Sonnerup [19941, and Miura [19961. It was 
shown that for a sufficiently large ionospheric conduc- 
tivity, the line-tying effect suppresses the instability 
whenever 7 < klIVA. Here 7 is the local instability 
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growth rate without line-tying effects, kll is the wave- 
length parallel to the ambient magnetic field, and V`4 is 
a characteristic Alfv•n velocity. Miura [1996] found a 
critical value of height-integrated Pedersen conductiv- 
ity 52p• • 1/(47rV`4), which makes the KIt mode com- 
pletely stable at time larger than transient Alfv•n time. 
However, if '7 > kllV`4, the KH mode dynamics in the 
equatorial magnetosphere is much less affected by the 
ionosphere because the instability develops faster than 
the Alfv•nic transit time. Some observations show that 

the characteristic time for the auroral vortex formation 

is of the order of tens of seconds for folds and curls 

with a length scale of the order of 10 km [Hallinan and 
Davis, 1970; Davis and Hallinan, 1976; Hallinan, 1976; 
Haerendel et al., 1996; Trondsen and Cogget, 1997, 
1998]. This time scale is shorter than the field-aligned 
Alfv•n transit time (which is of the order of one hundred 
seconds for L •10). Therefore one can expect that for 
these structures, the KH instability in the equatorial 
magnetosphere could initially develop without signifi- 
cant ionospheric effect. The effects associated with the 
curvilinear topology of the magnetic field lines and iono- 
spheric line tying may become important in a further 
stage of the KH instability evolution when Alfv•n waves 
have carried vortices associated with the KH instability 
to the ionosphere. A three-dimensionM model of the in- 
stability that accounts for the curvilinear topology and 
finite length of the magnetic field lines is required to 
describe these vortex dynamics in the magnetosphere 
and to predict its signatures above the ionosphere. 

In this paper, we present the results of computer 
modeling of a three-dimensional (3-D) KH mode in- 
stability within FLRs in a dipolar magnetosphere with 
plasma parameters compatible with those found on field 
lines threading the auroral ionosphere. We assume that 
the shear flow produced by the FLR has a thickness 
much smaller than the field-aligned length. Our pri- 
mary goal is to study the nonlinear 3-D dynamics of 
the KH instability initiated by standing SAWs on dipo- 
lar magnetic field lines, to identify mechanisms that can 
transport energy toward the ionosphere, and to compare 
results with those obtained by using a simplified ana- 
lytical model. In this paper, we address the following 
questions: (1) How does the vortex evolve? (2) What 
are the effects of the curvature and nonuniform ambient 

magnetic field that appear owing to the dipolar topol- 
ogy? (3) How does the KH vortex in the equatorial 
magnetosphere drive field-aligned currents above the 
ionosphere, and what is the time delay between these 
structures? (4) What are the processes saturating the 
instability? 

The paper is constructed as follows. In section 2, 
we describe the magnetohydrodynamic (MHD) dipolar 
model and the initial setup used for simulations. The 
analysis of the instability is presented in the third sec- 
tion. A simplified analytical model has been developed 
to explain the field-aligned interaction between vortices 
at different altitudes. We consider excitation and dy- 
namics of field-aligned currents, which provide energy 
transport toward the ionosphere. In the fourth section 

we discuss applicability of the model in describing au- 
roral structures and show simplified schematics of field- 
aligned current dynamics that follow from the model. 
In the final section, we summarize the results of this 
study. 

2. SAWs in a Dipolar Geometry 

The SAW and KH mode dynamics are modeled by 
using the following set of MHD equations: 

- vx(VxB) = 0, (1) Ot 

o(pv) 
Ot 

1 

= -v+(vxn)xn, (2) 

op 
0-; + v.(pv) = 0, (a) 

d P 

d--• (•-ff) - 0. (4) 
In these equations, V is the fluid velocity, B is the mag- 
netic field, p is the plasma density, P is the thermody- 
namic pressure, and F is the adiabatic constant. In the 
flux equation, A stands for a dyadic product. 

For this study, we use dipolaf coordinates (/•,u, 
where /• = cosO/• 2, u = sin20/•, and ½ is azimuthal. 
The corresponding metrics describe the transform be- 
tween spherical (œ, 0, ½) and dipolar coordinate systems: 

= + 3cos0) - /[sin0(1 + 
and h• - • sin0. The ambient magnetic field is defined 
as Bo = M/h•, with M = 8.02 x 10 •5 Gcm a. 

In the simulations, we consider a region extended ra- 
dially from 9.25 to 10.75 RE in the equatorial plane and 
from i RE above the Earth's surface (later referred to 
as the low altitude boundary (LAB)) to the equatorial 
plane of the magnetosphere. The boundary above the 
Earth's surface is assumed at i RE instead of realistic 
ionospheric altitudes in order to avoid computational 
problems associated with a sharp gradient of Alfv•n ve- 
locity near the ionosphere. We shall discuss the valid- 
ity of this assumption in section 4. Reflection of the 
Alfv•n wave electric field from the ionosphere is defined 
by the reflection coefficient R [Southwood and Hughes, 
1983]. Assuming that V`4 is uniform in the ionosphere, 
this coefficient is R = (52A -- 52p)/(E`4 + 52p), where 
52,4 = c2/(4•rV`4) is the wave conductivity and 52•, is 
the height-integrated Pedersen conductivity in the iono- 
sphere. If 52•, >> 52`4, which means that the ionosphere 
is highly conductive, R • -1 and incident and reflected 
electric fields cancel each other. This corresponds to the 
perfect reflection of Alfv•n waves from the ionosphere. 
Finite ionospheric conductivity 521o > 52`4 results in the 
partial absorption of the wave energy and a broader 
FLR. The case 521o = 52`4 corresponds to total absorp- 
tion. In the auroral ionosphere, 52`4 is of the order of 1-3 
S whereas 521o > 10 S. For these parameters, R < -0.7 
and therefore, the ionospheric boundary is highly re- 
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fiecting. Detailed study of the ionospheric conductiv- 
ity influence on FLRs was presented by Rankin et al. 
[1999] who showed that a typical damping time is larger 
than 50 min for Ep > 10 S. This corresponds to -,•10 
periods of typically observed FLRs. In this study, we 
consider processes that occur within one period of the 
FLR. Therefore we assumed the LAB to be perfectly 
reflecting for shear Alfv•n waves. This boundary con- 
dition leads to a fundamental mode FLR that has an 

antinode of the magnetic field at the LAB and a node 
in the equatorial plane of the magnetosphere. Corre- 
sponding velocity fields have a node at the LAB and an 
antinode in the equatorial plane. In this study, we con- 
centrate on a fundamental field-aligned standing FLR 
mode and its instability with respect to KH modes. In 
the azimuthal direction, we assume FLR amplitude to 
be uniform, which corresponds to small-rn (large az- 
imuthal wavelength) FLRs. Azimuthal boundary con- 
ditions are periodic. The azimuthal length corresponds 
to one wavelength of the KH mode. The radial bound- 
aries are positioned far away from the perturbed area 
in order to minimize their influence on wave dynamics. 
We assume fields at radial boundaries to be evanescent. 

The initial geometry is illustrated by Figure la, which 
shows a magnetic L shell from the Earth's surface to the 

equatorial plane of the magnetosphere. The dipolar co- 
ordinates (It, v, ½) are directed as follows: It is directed 
along magnetic field lines, v is perpendicular to mag- 
netic field lines and positive Earthward in the equatorial 
magnetosphere, and ½ is positive westward. 

The background density distribution is P0 = p,q(1- 
cos 2 o)-q, with p,q = 1.044 x 10 -24 gcm -3 and q = 
4. This density distribution models large-scale den- 
sity variations along the field lines and is often used 
for FLR models [Allan and Knox, 1979; Taylor and 
Walker, 1984]. The eigenvalue analysis shows that the 
eigenstructure of the FLR depends mainly on the den- 
sity in the equatorial plane, whereas the dependence 
on the field-aligned distribution, particularly near the 
ionosphere, is minimal. For the chosen parameters, the 
period T of the first fundamental FLR mode at L = 10 
is 248 s. The plasma pressure P0 is 0.1 nPa, and it 
is uniform in the computational volume. This pressure 
corresponds to/• - 8•rPo/Bo 2 - 0.28 at L - 10 in the 
equatorial plane. 

The azimuthal magnetic field of the FLR is defined 
as 

Bq3 -- B; q hqs'eq b(//)S(It) cos odt, (5) 
h½ 

a 

b 9.25 R E 
-4 

7.2 x 10 G 

Be 

equatorial plane 

10.75 R e 

ec•uatorial plane 

Figure 1. Schematic of the dipolar model geometry illustrating (a) a magnetic L shell and 
(b) the initial shear Alfv•n wave (SAW) magnetic field distribution along magnetic field lines (l 
direction) and in the radial direction (r direction). The transform between the Cartesian l, r and 
dipolar It, v coordinates is described in the text. LAB is low-latitude boundary. 
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where B• is the azimuthal component of magnetic field, 
B• q is the ambient magnetic field in the equatorial 
plane, h•,eq is a value of h• in the equatorial plane, 
b(y) describes the radial structure of the SAW, and S(p) 
and co are the field-aligned eigenfunction and eigenfre- 
quency of the fundamental FLR harmonic, respectively. 
These eigenfunction and eigenfrequency are defined by 
the eigenvalue equation [Taylor and Walker, 1984]' 

h•O( h,,OS) , 
where V• - Bo •/47rpo is the square of the background 
Alfv•n speed, I is the distance along the magnetic field 
line, dl - h•,dp, and I varies from the lower boundary to 
the equatorial plane along the magnetic field line. The 
boundary conditions for the fundamental SAW mode 
are $(leq) - 0 and 0S(ILAT)/0/ = 0. S(l)is normalized 
as f dl(h•/h½)S 2 = L2R}. Our initial conditions for 
the FLR correspond to the phase when the SAW mag- 
netic field has its maximum value and the azimuthal 
velocity is zero. 

Dealing with a narrow region near the resonance shell 
L - 10, it is convenient to introduce the radial coor- 
dinate r = 1/•0- i/y, where •0 = 1/(10RE). The 
initial radial distribution of the azimuthal magnetic 
field was chosen to be a Gaussian function, b(r) = 
bo exp(-r2/62), with a half width 6 = 0.0425 RE. The 
radial width of a SAW corresponds to the width of the 
shear flow in the FLR region according to the calcu- 
lations by Voronkov et al. [1997a] and Samson et al. 
[1998]. The amplitude of the SAW magnetic field is 
b0 - 0.18, which gives B• - 72 nT at the LAB. The 
initial distribution of B• in the meridional cross sec- 
tion is shown in Figure lb. Note that the initial B• 
according to (1) does not depend on ½. 

This azimuthal magnetic field perturbation corre- 
sponds to the SAW azimuthal flow 

V• - V• b h•, OS co h-•,• -• - sin cot' (7) 
with the maximum velocity V•0 -• 180 km s -1 in the 
equatorial magnetosphere, which is in agreement with 
observations of FLRs. According to the 2-D theory of 
the KH instability, the chosen width and amplitude of 
the shear flow provide e-folding time of the vortex for- 
mation in the equatorial plane of the order of 10 s, which 
is smaller than the half period of the SAW. 

Beside the toroidal SAW, we also initiate a small per- 
turbation of the radial velocity, which is used as a "seed" 
for the KH instability. This perturbation was defined 
as V• ø = V•o[h•Bo]•q/(h•Bo)exp(-r2/62)sin(mc))with 
the azimuthal wavenumber m = LRr/6 > 1, the am- 
plitude V•0 = 3 km/s (which is appro•mately 1.7% 
of the maffimum SAW azimuthal shear flow velocity), 
and the same Gaussian distribution of V• in the radial 
direction • for the SAW amplitude. The choice of the 
azimuthal wavenumber m was made using the simplified 
KH theory for the transverse magnetic field [Miura and 
Pritchett, 1982], which predicts the fastest growth rate 
for this mode in the equatorial plane. The field-aligned 

profile of V2(I) was designed to minimize coupling to 
the poloidal SAW modes. Namely, h•V2Bo is con- 
stant along the magnetic field line. In linear approxima- 
tion, (1) for B• reads OB•/Ot = (1/h•)(O/Ol)h•V•Bo. 
Therefore our choice of V• ø (1) does not excite the linear 
poloidal SAW mode in the dipolar topology. This pro- 
file of V•ø(l) is equivalent to the uniform field-aligned 
distribution of the radial velocity in box models. 

We continue our simulations for approximately one 
SAW period. As we show later, the KH mode grows 
and saturates during the first half period of the SAW. 
This time interval corresponds to the growth and decay 
of the SAW azimuthal velocity. After one period of 
the SAW, the radial perturbation becomes small and 
the saturated KH mode does not significantly affect the 
SAW. 

3. Excitation and Growth of the Shear 

Flow Instability of a SAW 
The width of shear flows associated with discrete arcs 

is much smaller than the length of the field lines and 
-/ >> kliVA. Therefore we can expect that, initially, 
the shear flow instability in the equatorial plane evolves 
without significant effects related to the finite magnetic 
field line length. This allows us to apply a 2-D theory 
of the KH instability and account for the 3-D evolution 
of vortices and their field-aligned interaction as a per- 
turbation. Therefore we begin with comparisons of the 
results of 3-D simulations with predictions of the 2-D 
theory and simulations. 

The distribution of V• in (v, ½) planes (perpendicular 
to the field line) is shown in Figure 2 for different dis- 
tances along the field line at t = 20 s corresponding to 
the initial growth of the KH mode. An eigenfunction of 
the KH V• predicted by the 2-D linear theory for pa- 
rameters corresponding to the equatorial plane is shown 
in Figure 2d. Figure 2 suggests that the 2-D theory of 
the KH instability provides an appropriate prediction 
for the initial KH mode excitation in the dipolar 3-D 
geometry. 

In Figure 3, the effective growth of the 3-D KH mode 
is compared with the predictions of the 2-D theory. For 
Figure 3, the growth of V• is averaged over the time 

interval [0;T/4] as 1/(T/4)fo TM 7dt. which corresponds 
to the growth of the azimuthal shear flow. Here '7 is a 
local growth rate computed as d(lnV•,max)/dt. As seen 
from Figure 3, the growth rate of the 3-D KH instabil- 
ity is smaller in the equatorial region and larger near 
the LAB than the growth rate computed using the the- 
ory that neglects the effect associated with the finite 
field line length (2-D theory). As we show later, this 
occurs owing to the energy exchange between vortices 
at different altitudes provided by the 3-D KH current 
system. In spite of quantitative difference, Figure 3 
demonstrates that the field-aligned distribution of the 
3-D KH mode growth rate is in qualitative agreement 
with the linear 2-D theory predictions. 

These results show that for chosen parameters, the 
3-D KH instability initially evolves in a fashion similar 
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Figure 2. Radial (v) and azimuthal (05) distribution of the radial flow velocity V. at t =20 s 
at altitudes (a) 1 RE, (b) 6 RE, and (c) 12 RE above the LAB along the field line and (d) a 
Kelvin-Helmholtz (KH) eigenmode V•(r, q5) predicted by the 2-D theory at 12 RE for q6 -- 1 
(arbitrary units). Arrows indicate the radial scales of Figures 2a - 2c, and azimuthal scales are 
shown below. 

to the 2-D KH instability. However, in the 3-D case, 
there is a field-aligned interaction (or energy exchange) 
between vortices at different altitude levels. This inter- 
action should be accounted for in order to obtain more 

accurate growth rates of the 3-D instability. Below, we 
develop a simplified analytical model of the KH insta- 
bility in the dipolar coordinates; which can explain the 
field-aligned vortex coupling in terms of currents pro- 
duced by the instability. 

Owing to the fact that the radial scale of the SAW 
is smaller than field-aligned scale sizes, the governing 
equations for the SAW can be reduced from the general 
form (1)-(4) to equations for the electrostatic potential 
(I) and the parallel component of the vector potential A: 

d (b =- v- 
IdA 

= -(b. 
c dt 

where d/dr is the full (including the convective term) 
time derivative and b is the unit vector in the direction 

of the total magnetic field. Equation (8) describes the 
current continuity in the system, and (9) is the con- 
dition for the zero parallel electric field [Strauss, 1976; 
Petviashvili and Pokhotelov, 1985]. 

Assuming fields independent of the azimuthal coor- 
dinate, linearized equations (8)-(9) describe a standing 
SAW: 

1/s 

0.10 
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0.04' 

0.02- 

0 

0 

ß 

i I i i 
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/,R E 

Figure 3. Field-aligned distribution of the KH instability growth rate (averaged over 1/4 of the 
SAW period) obtained from the 3-D simulations (solid line) and as predicted by the 2-D linear 
theory (dashed line). Here I varies from the LAB to the equatorial plane along the magnetic field 
line. 
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o o - -v] ca, ot ' 
10Ao 0•o 

= (11) c Ot O1 ' 

with B 0 = -(1/h,,)(aAo/aV)and V,/, = (c/Boh•) 
x(O•o/aV) defined by (5)and (7). 

We consider stability of the SAW shear flow with re- 
spect to azimuthal perturbations. Let us assume that 
A0 and •0 depend on 1 and t slowly compared to the 
local KH growth rate - >> w. In this case, the electric 
and magnetic potentials can be presented in the form 
A = Ao + 5A and ß = •0 + 5•, where 5A and 5• 
are small corrections due to the KH mode excitation. 

We can also assume that 5A and 5• are proportional 
to exp(-i f •dt + ira0), where • is the instantaneous 
KH mode frequency and 7 = ImF•. Because of a slow 
variation of SAW potentials •0 and A0 along the mag- 
netic field line, we can adopt a perturbation theory ap- 
proach. For the zeroth-order approximation, we neglect 
all derivatives along the magnetic field line and con- 
struct a 2-D KH mode solution 5• ©, 6A ©, and F• (ø). 
Then we shall find 5• (•), 5A (•), and F• (•) corrections 
due to the field-aligned inhomogeneity. 

Neglecting the right-hand side of (8), which contains 
the derivative along the magnetic field line, one can 
obtain a zero-order eigenmode equation for the KH in- 
stability: 

d 2 

dv 2 •5,•(o) _ q2 h2• _ •(o) _ qV• 5• (ø) , (12) 

where V•'- d2V•/d, 2, q- (m/h•) is the azimuthal 
wave number and V• is the SAW azimuthal velocity 
described by (7). This equation defines a complex fre- 
quency of KH mode Ft(ø)(/,t) in dipolar coordinates. 
This frequency is a slow function of I and t because 
the shear flow velocity and q vary along the magnetic 
field lines and change in time. Equation (12) describes 
a local 2-D KH instability. It has an unstable solu- 
tion Im• (ø) > 0 for q5 ..•< 1.9. Its eigenfunction for 
V• = -imcS(I)(ø)/Boh• is shown in Figure 2d for q5 = 1, 
which corresponds to the highest KH growth rate. 

In the next order, (9) defines a vector potential asso- 
ciated with the KH instability 

5A(•) _ _ c5• (ø) __0 / •(O)dt, (13) - fi(o) _ qV, Ol 
and the radial component of the magnetic field B• - 
(im/h,)6A (•). Note that the magnetic potential and 
B,exhibit a secular growth in time and might have a 
significant effect on the KH instability after the Alfv•n 
transit time. 

Substituting (13) into (8), one can find an equation 
for the KH instability that accounts for the energy ex- 
change along magnetic field lines. In particular, it pro- 
vides for the following correction to the KH mode eigen- 
frequency: 

•(•)_ VA2 [ih. 0 h•O dt) 
O (14) 

Here the coefficient a accounts for the radial structure 

of the KH mode eigenfunction: 

f + 

where 

5•(0) 

a - •(o) _ qV 0 ß (16) 
For our parameters q5 = 1, the coefficient c• = 0.19- 
0.51i. 

As seen from (14), the correction to the KH growth 
rate arises owing to field-aligned variations of •(0). 
These variations produce field-aligned currents and 
Alfv•n waves that transfer the KH mode energy from 
the equatorial plane toward the ionosphere. Let us esti- 
mate the frequency correction (14) near the equatorial 
plane where the KH growth rate has a maximum. Be- 
cause •(0) is an even function of I with respect to the 
equator, O•(ø)/O1 goes to zero in this region, the first 
term in the square brackets dominates, and •(1) can be 
estimated as 

•(1) •,. O• VA2 ,-,, w. (17) 
L2R•w 

For our set of parameters, this estimate gives a correc- 
tion to the growth rate of the order of 25%, which is 
in agreement with the numerical result shown in Figure 
3. As seen from (16), the frequency correction in the 
equatorial plane is small whenever the KH frequency is 
larger than the SAW frequency, which is consistent with 
the original assumption made for this derivation. 

It is interesting to note that the field-aligned propa- 
gation of the KH perturbation occurs in the form of the 
oblique wave as shown in Figure 4. This happens ow- 
ing to the field-aligned inhomogeneity of the KH mode 
phase velocity because of the nonuniform field-aligned 
distribution of the KH mode frequency and wavelength. 
As a result, vortices at different altitudes move in az- 
imuthal direction with respect to each other, which 
eventually leads to a significant azimuthal shift between 
perturbations at different altitudes. 

The nonuniform distribution of the velocity perturba- 
tion along the magnetic field line causes perturbations 
in the radial and azimuthal magnetic field components 
owing to restructuring of the current system. These 
magnetic field perturbations reflect the field-aligned 
current structure above the ionosphere, which may be of 
a particular interest with respect to comparisons with 
observations of auroral arcs. According to (13), the 
amplitude of the radial magnetic field exhibits secular 
growth in time. After t •- T/4, the magnetic energy 
of the KH vortex becomes comparable with its kinetic 
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Figure 4. Field-aligned (l) and azimuthal (•b) distri- 
bution of the radial flow velocity V• at t = 25 s on L 
shell 10. 

energy. Then the field-aligned currents associated with 
the KH vortex become comparable with the eigenmode 
FLR current: 

- 4•r h• 0y 2 h-• 5A(•) ~Jl10 
c 0 • 

-- 4•rh• 0y 2 A0. (18) 
Temporal variations of the field-aligned current am- 

plitude above the ionosphere are illustrated in Figure 5 
for the SAW (independent of •b) and KH vortex compo- 
nents of jl I. Initially (t • T/q), the field-aligned current 
associated with the KH vortex grows secularly (linearly 

in time), as discussed above. Then the growth of the 
KH field-aligned current is defined by the field-aligned 
gradient of the vortex amplitude. Owing to the oblique 
propagation of the KH vortex energy, this gradient also 
contributes to the current exchange between the SAW 
and KH modes. After t ~ T/2, the KH mode field- 
aligned current saturates. For our parameters, the ini- 
tial amplitude of the SAW field-aligned current is 3.8 
•uA m -2, and approximately half of this current trans- 
forms into the azimuthally structured KH mode cur- 
rent. These currents are compatible with those observed 
above auroral structures. 

The spatial distribution of field-aligned currents above 
the ionosphere is shown in Figure 6 for different mo- 
ments of time: t - 50, 75, 100, 125, and 235 s. Initial 
distribution consists of a system of upward and down- 
ward current sheets Jl10 produced by the SAW, which do 
not have azimuthal modulation. The instability leads 
to the formation of the wave-like structure (t- 75 and 
100 s), which moves in the azimuthal direction. Later, 
this structure grows (t - 125 s) and disappears (t - 
235 s). 

Figure 7 shows the evolution of the vorticity (• x 
V)i I in the equatorial plane. As seen from Figure 7, 
initially, the vortex dynamics are similar to those in 
the two-dimensional instability of the shear flow in the 
transient magnetic field [e.g., Voronkov et al., 1997b, 
Figure 7b]. After the first 1[4 period, Vo achieves its 
maximum and then decreases to zero at t - 124 s. At 

this time, the growth of the radial velocity amplitude 
ceases, the vortex extends in the radial direction, and 
its amplitude gradually decreases. 

Comparing Figures 6 and 7, one can see that the field- 
aligned current structure above the ionosphere is a re- 
sponse to the vortex dynamics in the equatorial mag- 
netosphere. The time delay of this response is approx- 
imately equal to the the AlfvSn propagation time from 
the equatorial plane to the ionosphere. In our model, 
this time is ~ 60 s for toroidally polarized waves and 
~ 50 s for the poloidally polarized waves. Therefore 
the field-aligned current distribution at t -125 s is a 
response to the (• x V)l I structure at t =75 s. Sat- 

J par, 

A/m 2 

50 100 150 200 250 

time, s 

Figure 5. Temporal evolution of the field-aligned current amplitude associated with the field 
line resonance (FLR) mode (solid line) and KH mode (dashed line). 
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l*igure 6. Time slices of the field-aligned current distribution above the ionosphere at t = •0, 
75,. 100, 125, and 235 s. 

uration and azimuthal stretching of vortical structure 
in •he equatorial plane shown in Figure 7 for t-175 s 
lead to the radial narrowing and azimuthal stretching 
of field-aligned currents as shown in Figure 6 for t - 
235 s. 

Temporal evolution of the KH mode energy normal- 
ized by the total energy of the initial SAW is shown 
in Figure 8. Initially, the growth of the KH mode en- 
ergy is provided by the vortical structure development 
in the equatorial magnetosphere. After • T/4, the vor- 
tex saturates and stored kinetic energy transforms into 
the magnetic energy of the KH mode, which reaches 
its maximum after ~ T/2 and then decreases because 
the shear flow changes its direction and the KH vortex 
energy transforms back into the SAW shear flow. This 
energy exchange obtained numerically is in agreement 
with analytical predictions discussed above. The sec- 

ond maximum of the kinetic energy appears owing to 
the excitation of new KH instability with the reverse 
direction of the shear flow. This new KH vortex has an 

opposite direction with respect to the initial KH mode. 
Therefore its kinetic energy grows to the lower level 
with almos• no contribution to the magnetic energy of 
the system. 

The energy exchange between the SAW and vortices 
causes the broadening and partial dissipation of the 
shear flow within SAW. Figure 9 shows time evolution 
of the radial distribution of •he value f•V• dO in the 
equatorial plane, which characterizes an average mass 
transport by the FLR azimuthal shear flow. The broad- 
ening of the shear flow is similar to the result found by 
Rankin et al. [1997] using the box model. This broad- 
ening and partial dissipation of the flow is principally a 
3-D KH effect, which occurs owing to the spatial local- 

5.5-9.0 9.0 -2.5 2.5 -2.2 2.2 
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l*igure ?. Time slices of the field-aligned component of the vorticity (• x V)i I in the equatorial 
plane at t = 50, 75, 100, and 175 s. Gray scale numbers are normalized by 108 s. 
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Figure 8. Temporal evolution of the kinetic energy (solid line), magnetic energy (dashed line), 
and total energy (dotted line) of the KH mode. All values are normalized by the total energy of 
the initial SAW. 

ization of the shear flow along the magnetic field lines. 
In the 2-D case, the flow periodically widens and nar- 
rows with a period equal to the KH instability growth 
time [Rankin et al., 1997]. 

4. Discussion 

In this paper, we have presented a three-dimensional, 
nonlinear model of the shear flow instability, which may 
occur in the some types of auroral arcs that are asso- 
ciated with FLRs. This model was constructed using 
a dipolar coordinate system. It takes into account the 
curvilinear magnetic field in the magnetosphere and al- 
lows for nonuniform Alfv•n velocity distribution along 
field lines and across magnetic L shells. 

Our study is devoted to the KH modes with radial 
and azimuthal characteristic scale sizes much smaller 

than magnetic field line lengths. Radially narrow flow 
channel of high velocity in FLRs can provide 7 > kll VA. 
Qualitatively, we have used the characteristic struc- 
ture of FLRs that appear in the evening and midnight 
regions. In this case, the stabilizing effect of finite 
field line length bounded by the ionosphere with finite 
Pedersen conductivity [Miura and Kan, 1992; Galinsky 
and Sonnerup, 1994; Miura, 1996] is small, and large- 
amplitude 3-D KH modes can be excited. The maxi- 
mum amplitude of the KIt vortex is defined by the am- 
plitude and duration of unidirectional SAW flow, and 
we observe periodic energy exchange between KH and 
SAW modes. 

Some physical effects have been neglected in this 
study. In this modeling, we have adopted an MHD 
model that does not account for kinetic or finite Lar- 

mor radius effects. For the chosen SAW and density 
distribution, the ion Larmor radius and electron inertia 
length are smaller than the scale size of the KH mode. 
However, for smaller structures, kinetic effects should 
be taken into account. Kinetic and fluid-kinetic hybrid 
models of the KH instability have been presented by 
Gangull et al. [1988], Thomas and Winske [1993], and 
Huba [1996]. These studies showed the importance of 
small-scale effects and their influence on the growth rate 

and frequency of the KH instability. Ultimately, the 
electron inertia results in small-scale restructuring of 
large-amplitude SAWs in FLRs and leads to the energy 
dissipation from the SAW [Wei et al., 1994; $treltsov 
and Lotko, 1996; Rankin et al., 1999]. These effects 
may be valid for the auroral arc fine structure dynam- 
ics and may be considered as an important direction 
toward a comprehensive auroral arc model. We have ne- 

250 

t, s 

o r, RE 1.5 
Figure 9. Temporal evolution of the azimuthal shear 
flow produced by the SAW in the equatorial plane as 
obtained from the 3-D simulations. 
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glected strong gradients of Alfv•n speed near the iono- 
sphere [Lysak and Carlson, 1981; Trakhtengerts and 
Feldstein, 1984, 1991; Lysak, 1988, 1991]. Although 
this strong inhomogeneity may affect the longitudinal 
structure and long-term dynamics of standing SAWs, 
they cannot have any significant influence on the KH 
mode evolution, which occurs in the time interval less 
or comparable to the Alfv•n transit time. 

Our model based on the MHD approach predicts the 
generation and restructuring of field-aligned currents 
above the ionosphere. Partial transforming of these 
field-aligned currents into particle fluxes due to kinetic 
wave-particle interactions lies beyond the scope of our 
model. Recent studies by Lysak and Lotko [1996] have 
suggested that acceleration mechanisms such as Landau 
damping cannot significantly modify or saturate SAWs 
with a transverse width larger than the ion Larmor ra- 
dius during a timescale that is smaller than the ion 
acoustic wave period, which is justified for our model. 
Namely, the structure should be of the order of kilome- 
ters or larger at the ionospheric level. 

In the framework of our model, we can assume that 
a field-aligned potential drop that accelerates particles 
is directed in such a way that a bright auroral struc- 
ture corresponds to upward field-aligned currents (or 
the dark aurora would appear in the region of the down- 
ward current) with current densities above an estab- 
lished threshold (..•1 /•A m -2 or greater). Following 
the model, let us consider the arc dynamics during one 
period of the FLR. These dynamics are schematically 
illustrated in Figure 10, which shows two half periods 
of the SAW when the flow in the equatorial magneto- 

sphere (top panels)is westward (Figure 10a)and east- 
ward (Figure 10b). The corresponding ionospheric cur- 
rent structure response (bottom panels), which occurs 
with a time delay equal to a quarter of the SAW period, 
is shown for the Northern Hemisphere footprint of the 
magnetic field lines. The westward shear flow in the 
equatorial plane drives an azimuthally stretched field- 
aligned current structure in which the upward current 
maps poleward from the downward current. Ionospheric 
footprints of upward and downward field-aligned cur- 
rents are shown in Figure 10 as open and solid bands, 
respectively. The unstable KH mode causes restructur- 
ing of the vorticity in the equatorial plane. The tail- 
ward part of the shear flow wraps clockwise, whereas 
the earthward part of the shear flow wraps counter- 
clockwise viewed in the direction of the magnetic field. 
This causes the corresponding wrapping of the field- 
aligned current structure. In the Northern Hemisphere, 
a ground-based observer looking upward will see that 
the upward field-aligned current wraps counterclockwise 
and the downward field-aligned current wraps clock- 
wise. After half a period of the SAW, this structure 
changes in the equatorial magnetosphere and a chan- 
nel of eastward flow in the FLR starts growing. This 
flow drives a new field-aligned current system with the 
downward current lying poleward from the upward cur- 
rent, as shown in Figure 10b. The wrapping of the SAW 
in the equatorial plane is opposite to what it was for the 
first half period. However, owing to the change of the 
field-aligned current system, the ground-based observer 
will find that when correlated with visible aurora, this 
wrapping is directed in the same fashion as for the first 

a b 

So South B South 
ionosphere 

Figure 10. Schematic illustrating field-aligned current dynamics above the northern ionosphere 
due to the FLR and KH modes. During the first half of the FLR period when the FLR channel 
flow in the equatorial plane is (a) westward, this flow drives azimuthally stretched field-aligned 
currents upward where V4 increases earthward and downward where VO decreases earthward. 
During the second half of period when the flow is (b) eastward, these field-aligned currents 
change positions. The KH mode wraps these regions as shown by circles with open arrows. Note 
that a ground-based observer will find that downward currents always wrap clockwise whereas 
upward currents wrap counterclockwise. 
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half period; namely, the upward field-aligned current 
wraps counterclockwise and the downward field-aligned 
current wraps clockwise. This schematic shows that vis- 
ible ionospheric response does not depend on the SAW 
phase when the KH mode is activated. 

One final point that we would like to emphasize 
is that the ionospheric electric field associated with 
FLRs cannot be geometrically mapped to the equatorial 
plane. This geometric mapping is only valid for pro- 
cesses with timescales much larger than Alfv6n transit 
timescales along magnetic field lines. For example, typi- 
cal FLRs can have field-aligned currents of the order of 5 
/•A m -2 near the ionosphere. For the height-integrated 
conductivities, we have assumed above (Ee > 10 S), 
the ionospheric electric field would be of the order of 5 
mV m -1 for the transverse scale of the order of 10 km 

(Eion '"' Jlla/Ee, where a is a transverse size of the Jll 
region). A geometric mapping of this field to the equa- 
torial plane gives an electric field of the order of 0.1 
mV m -1, which is smaller than the actual electric field 
associated with the equatorial plane of the FLR. These 
fields must be computed from the eigenmode solutions 
for the FLRs [see, i.g., Taylor and Walker, 1984]. 

5. Summary 
The scenario of the vortex formation and evolution 

in the large-amplitude FLR on the dipolar magnetic 
field lines can be summarized as follows: The large- 
amplitude FLR, which is a linearly stable toroidal SAW, 
can be nonlinearly unstable with respect to the excita- 
tion of the KH mode in the equatorial magnetosphere. 
Initially, the full 3-D KH instability evolves in a fash- 
ion similar to the 2-D KH instability. However, the 
3-D KH instability has a lower growth rate and a lower 
frequency at the equatorial plane. This difference oc- 
curs because of the field-aligned coupling and energy ex- 
change between vortices at different altitudes along the 
field line. The analytical model predicts that the KH 
mode frequency correction is of the order of the FLR 
frequency. This result is in agreement with numerical 
modeling. Growth of the KH mode initiates perturba- 
tions in both azimuthal and radial components of the 
magnetic field. The exponential growth of magnetic 
field components starts at •,, T/4 when the KH vortex 
at the equator saturates. The magnetic perturbation 
achieves its maximum at T/2. At this time, ampli- 
tudes of field-aligned currents due to the KH and FLR 
modes become approximately of the same magnitude. 
For our parameters, the maximum of the azimuthally 
structured KH mode field-aligned current is •,, 1.6 
m -2 at the LAB, which is I RE above the ionosphere, in 
this model. This value approximately equals to one half 
of the initial field-aligned current in the FLR. The field- 
aligned currents associated with the KH mode lead to 
wrapping of the field-aligned structure above the iono- 
sphere. Time delay between the maxima of the KH 
mode velocity field and field-aligned currents above the 
ionosphere is close to T/4, which corresponds to the 
Alfv•n transit time from the equatorial plane. In our 
model, the KH mode extracts •,, 10% of the FLR initial 

energy during the first half of the SAW period. Dur- 
ing the second half of the SAW period, a new vortex 
forms in a similar fashion as a primary vortex. How- 
ever, this vortex is of the opposite direction to the initial 
one, and therefore it grows to lower amplitude. Finally, 
these two vortices cancel one another, which brings the 
kinetic energy from the KH mode back to the main 
SAW flow. This scenario implies that appearance and 
decay of vortices in the FLR may occur periodically, 
which corresponds to a periodical excitation and fading 
of auroral structures. 

Finally, we have shown that the ionospheric foot- 
print of field-aligned current dynamics predicted by 
the model does not depend on the initial phase of the 
SAW when the KH mode starts growing. Namely, 
the ground-based observer in the Northern Hemisphere 
(looking antiparallel to the Earth's magnetic field) will 
see the clockwise wrapping of the downward current and 
counterclockwise wrapping of the upward current. 
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