This is a decommissioned version of ERA which is running to enable completion of migration processes. All new collections and items and all edits to existing items should go to our new ERA instance at https://ualberta.scholaris.ca - Please contact us at erahelp@ualberta.ca for assistance!
Search
Skip to Search Results- 4Remote Sensing
- 3Deep Learning
- 2Computer Vision
- 2Image Processing
- 2Image Restoration
- 2InSAR Coherence Estimation
-
Advancing Forest Health Monitoring: Harnessing the Power of Deep Learning Computer Vision for Remote Sensing Applications
DownloadFall 2023
Forests provide immense economic, ecological, and societal values, making forest health monitoring (FHM) a crucial task for guiding conservation and management of these essential ecosystems. Drones have seen increased popularity in this domain due to their ability to collect high-resolution,...
-
Fall 2022
The objective of signal decomposition is to extract and separate distinct signal components from a composite signal. Signal decomposition has been studied in many applications, such as image, video, audio, and speech signals. This thesis focuses on the category of signal decomposition on...
-
Scalable Solutions to Image Abnormality Detection and Restoration using Limited Contextual Information
DownloadFall 2020
Detecting and interpreting image abnormalities and restoring images are essential to many processing pipelines in diverse fields. Challenges involved include randomness and unstructured nature of image artefacts (from signal processing perspective) and performance constraints imposed by...
-
Spring 2024
Pattern recognition aims to differentiate patterns and regularities across diverse data types. Pattern recognition can identify unfamiliar objects, localize objects from various perspectives or resolutions, and infer patterns even when they are partially occluded. The ubiquity of sensors in...