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Abstract

Pattern recognition aims to differentiate patterns and regularities across diverse data
types. Pattern recognition can identify unfamiliar objects, localize objects from var-
ious perspectives or resolutions, and infer patterns even when they are partially oc-
cluded. The ubiquity of sensors in various applications has made this topic a vital
component of modern technology. Challenges encompass spatial variability, partial
occlusion, data heterogeneity, dynamic environments, limited training data, noise and
uncertainty, generalization issues, and performance constraints. Addressing these
challenges is crucial for advancing the effectiveness of pattern recognition. Thais
thesis focuses on exploring different data modalities and proposing solu-
trons, with experimental validations, to solve pattern recognition problem
for visual analysis, positioning, and pose estimation, particularly within
the context of spatial and geospatial data. Real-world scenarios, ranging from
local-area in-situ sensing to wide area monitoring (WAM) remote sensing, serve as
the testing grounds for this research. The proposed novel solutions tackle unique
challenges posed by these domains.

In the first scenario, we focus on 3D object recognition and 6D pose estimation
of texture-less objects. These are crucial and fundamental endeavors for industrial
assembly line automation. While the problem of textured objects has been exten-
sively studied, there is still an open research topic for texture-less industrial parts,
which are symmetric, causing ambiguity. In this scenario, we propose a novel ob-
ject localization and pose estimation technique using RGB images and depth maps

of industrial assembly parts. The proposed segmentation model is fully morphologi-
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cal and unsupervised for localizing the region of interest containing the target object
extracted from the depth map. For object classification and pose estimation, we com-
bine descriptors with dynamic time warping. We demonstrate how synthetic training
images generated from Computer-Aided Design (CAD) models can facilitate pattern
recognition.

In the second scenario, this thesis focuses on pattern recognition from 2D videos.
The proposed approach is designed for the study of vehicles, with a primary focus on
enhancing the assessment of goods and their value. Traditional approaches for vehicle
classification often have relied on manual observation and limited sensor data, which
have posed challenges in accuracy and scalability. Our proposed closed-loop system
integrates deep learning and computer vision to detect, track, count, timestamp, and
estimate the direction of vehicles, laying the groundwork for in-depth traffic flow
analysis. The framework incorporates a unique data processing mechanism within a
crowdsourcing environment, enhancing the scalability of our system. Experimental
results demonstrate the effectiveness, efficiency, and robustness of the proposed sys-
tem on challenging scenes, and adaptability with active learning for vehicular analysis,
where the model will improve over time based on new data.

In the third scenario within the scope of WAM, our primary focus is to extract
linear features from aerial images acquired by Unmanned Aerial Vehicle (UAV) for
land surveying (LS). We observe that aerial photography can provide more precise
geospatial and rich semantic information over large areas than conventional on-site
surveying methods. However, drone captured data inherits imperfections when it
is used to build and create 2D/3D maps of a physical scene. In particular, linear
features are often affected in the pixel domain by factors such as complex backgrounds,
different levels of occlusion, and lighting changes. In this scenario, we propose a
framework for automatic surveying of road markings using drone imagery. We propose
a semantic segmentation technique and a refining stage to enhance predicted masks

for line connectivity.

11



In the fourth and fifth scenarios under wide-area remote sensing, the thesis focuses
on pattern recognition of LIDAR. We introduce a novel 3D benchmark, “LiSurveying”,
which is a large-scale point-cloud dataset with over a billion points and uncommon
urban object categories in complex outdoor environments. We propose an automatic
and effective object detection and key-point feature detection pipeline on dense point-
cloud scenes. The proposed method consists of a multiscale voxelization strategy to
reduce the computational load and complexity of dense point clouds. Hierarchical fea-
tures are then extracted to localize the objects of interest. Consequently, we propose
an automatic strategy to locate the object’s centroid point using a learning-based
method with a space-partitioning data structure stage.

The contributions of this thesis encompass algorithm formulation. Whereas con-
ventional pattern recognition techniques exhibit limitations preventing them from
adequately addressing the aforementioned challenges, we introduce methodologies

applicable in diverse scenarios.
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Chapter 1

Introduction

Pattern recognition is a discipline with significant importance across diverse domains,
encompassing computer vision, speech recognition, natural language processing, and
more. In computer vision, two distinct but interconnected tasks, object detection
and semantic segmentation, stand out as examples of pattern recognition. Object
detection involves the identification and precise localization of objects within visual
data, offering applications such as autonomous driving, object tracking, and image
analysis. In contrast, semantic segmentation refines pattern recognition to a pixel or
point level, assigning detailed class labels to individual elements. Expanding on this
foundation, the research focus of this thesis explores the field of pattern recognition
across a diverse range of scales and applications. We explore five scenarios in both the
local-area and wide-area domains, encompassing in-situ and remote sensing. While
remote sensing entails the collection of data or information pertaining to an object,
area, or phenomenon from a considerable distance, typically utilizing satellites, air-
craft, drones, or other remote sensors, in-situ sensing, conversely, involves direct data
collection from within the immediate proximity at specific interest locations. This
fundamental distinction between these two approaches highlights the contrast, with
remote sensing relying on remote data collection and in-situ sensing emphasizing di-
rect, on-site data acquisition. Within the local-area context, stationary instances of
pattern recognition in natural images are explored. Our examination encompasses
tasks such as texture-less object detection and 6D pose estimation, and data analyt-
ics for comprehensive traffic pattern analysis in challenging scenarios. In respect of
the wide-area domain, the research takes on the challenge of automating land sur-
vey processes, a task demanding the extraction of point and linear patterns from
dense LiDAR and UAV imagery. The expansive geographical regions and broader
spatial scales inherent to wide-area scenarios present unique challenges and opportu-

nities for pattern recognition. This exploration seeks to advance our understanding



of pattern recognition techniques in the context of both fine-grained local analysis
and large-scale, wide-area applications, ultimately contributing to the broader land-
scape of pattern recognition and its practical utility in terrestrial and remote sensing

domains.

1.1 Motivation

Sensor signals can be captured in diverse dimensions and multimedia formats, rang-
ing from trajectories and natural images to comprehensive frame collections and vast
point clouds. Different sensor acquisition systems deliver real-time data with varying
resolutions and complexities. Time-series signal typically refers to a sequence of data
points displayed over a period of time. An image is an array of square pixels ar-
ranged in columns and rows that can appeal to visual perception in binary, grayscale
or RGB. Video, as a dynamic sequence of 2D images, gains depth through additional
temporal metadata. Vision sensors can provide other types of images such as depth
maps, thermograms, multispectral, and hyperspectral. LiDAR emits thousands of
laser pulses per second. By continuously emitting pulses and measuring their return
time, LIDAR can create a detailed 3D map of the target area. However, 1D and 3D
data can gather noise signals. Images are vulnerable to distortion, viewpoint varia-
tion, irrelevant background clutter, and illumination changes. Similarly, point clouds
are affected by occlusion, missing points, dynamic environments, object reflectivity,
and uneven point distribution. Public datasets often used in research are curated and
balanced, but these ideal conditions are not always present in real-world scenarios.
Processing real-world datasets poses several challenges in machine learning, especially
for tasks like object detection and pose estimation. Therefore, pattern recognition
plays an important role in many sensor modalities processing pipelines. Addressing
these factors in pattern recognition involves a combination of preprocessing tech-

niques, advanced algorithms for feature extraction, and recognition.

1.2 Challenges

1.2.1 Object detection and 6D pose estimation in-situ

The first problem we investigate deals with 3D object recognition and 6D pose estima-
tion of texture-less objects in industrial scenarios. Texture-less objects in industrial
scenarios are physical objects or components that lack distinctive surface textures,

patterns, or color variations that are typically used for visual differentiation. Unlike



objects with clear textures, such as a striped shirt or a checkered pattern, texture-
less objects have surfaces that are uniform or lack discernible features. These objects
often appear smooth and monochromatic, making it challenging for computer vision
systems to identify or distinguish them based on traditional texture-based methods.
In industrial contexts, machines, tools, or parts used in manufacturing processes
can sometimes be texture-less. Recognizing texture-less objects is a complex task in
computer vision, especially in robotic automation or quality control scenarios, where
precise identification and handling of industrial components are crucial. To tackle
this challenge, advanced computer vision techniques often rely on shape-based recog-
nition and depth information or employ advanced machine learning algorithms that
can learn subtle geometric features to differentiate between similar-looking, texture-
less objects. These methods are essential in ensuring the accuracy and efficiency
of industrial automation systems. However, existing approaches normally require
manual data acquisition with multiple camera view perspectives. Subsequently, they
require the manual annotation of each object in each frame. This can be a rather
long and tedious process when replicating in real scenarios with various texture-less
objects. Apart from these obstacles, challenges arise from the object’s size, shape,

and material scanning, etc., which affect computer vision approaches.

Qur research contributions

In this work, we have a number of new contributions compared to our previous study

published in [1]:

1. We introduce a strategy for automatically generating multiple viewpoint syn-

thetic training images from a CAD model.

2. We introduce a non-supervised clustering method for object segmentation and

detection based on a depth map that does not require a training stage.

3. We demonstrate how different HOG feature parameters can be tuned to achieve

better prediction and performance.

4. We develop a method for object pose estimation using Dynamic Time Warping
(DTW) on natural images using the target object contour pattern and best

prior candidates.

5. We show that our method achieves better time performance than other works

for pose estimation.



1.2.2 Video analysis for local-area in-situ contexts

The field of traffic analysis includes challenges from the complexities of vehicular traf-
fic dynamics in urban areas to the need for accurate assessment of goods and their
value during transit. The complexities of varying lighting conditions, occlusions, and
diverse vehicle shapes demand advanced algorithms, such as the integration of deep
learning and computer vision techniques. Addressing challenges such as real-time
vehicle detection, crowded scenarios, multiple camera views, and direction estimation
requires the development of robust closed-loop systems in order to generalize models.
Existing approaches for traffic analysis employing computer vision and deep learn-
ing, while promising, often grapple with limitations in generalization and scalability.
These constraints are primarily revealed by the inadequacy of training data, which
fails to encompass the diverse array of real-world scenarios and the absence of a con-
tinuous learning loop. Without a mechanism for ongoing learning, these models face
challenges in adapting to new scenes and environments. The lack of generalization
affects their usability in varying contexts. In this sense, the robustness and gener-
alization of detection and tracking models heavily depend on the inclusivity of the
training dataset, ensuring that the algorithms can adapt to the multitude of real-
world scenarios encountered. A continuous learning mechanism not only refines the
accuracy of vehicle detection and tracking but also equips the system to effectively

navigate the challenges posed by crowded scenes and multiple camera views.

Qur research contributions

e We develop a robust, closed-loop system integrating deep learning, conventional
image processing, and computer vision techniques. This system enables the de-
tection, tracking, counting, timestamping, and direction estimation of vehicles,

laying the foundation for in-depth traffic flow analysis and optimization.

e We incorporate a unique data processing mechanism within a crowdsourcing

environment, enhancing the scalability and adaptability of the system.

e We implement a tracking stage that computes cumulative average confidence
scores per estimated class over a vehicle’s lifespan, enhancing the robustness of

class predictions.

e Our model can adapt through active learning techniques, indicating the sys-
tem’s ability to learn and improve over time, particularly in real-world vehicular

analysis contexts. We achieved a 0.891 mAP score through the application of



data augmentation strategies, demonstrating the effectiveness, efficiency, and

robustness of the proposed system in challenging scenarios.

1.2.3 LiDAR feature extraction for WAM

LiDAR feature extraction challenges appear due to the influence of multiple outdoor
factors during 3D scanning, such as infrastructure surface characteristics (glass and
mirrors), data acquisition geometry (emitted pulse energy range and angle of inci-
dence), instrumental effects (configuration parameters such as bit depth, aperture
size, amplifier, and gain control), and environmental effects (humidity, temperature,
pressure, aerosol scattering, wet surfaces, and other physical variables). As a result,
algorithms are widely affected by the missing point-cloud patches and interference
in the data, which can easily occur in an outdoor, uncontrolled environment. Ro-
bust 3D object detection is necessary for real-world applications, such as autonomous
driving and robotics. Existing LiDAR datasets include object classes such as trees,
vehicles, city blocks, and a few others, which are objects mainly used in autonomous
driving and urban city visualization types of applications. However, in this scenario,
our research focus is land surveying and site analysis. The target object classes are
very different, e.g., fire hydrants, poles, catch-basins and water-main valves. Our
objective is to supplement existing datasets with these uncommon dataset objects,
and support land surveying applications. It is a challenge to assess the urban assets,
where they are located, and their physical condition. Therefore, we aim to obtain the
spatial location information of specific urban objects on the ground, which is often
composed of point and linear features. A suitable dataset is needed for land survey
and engineering in order to train and validate appropriate detection and classification
methods.

Qur research contributions

In order to facilitate the technological advancement of LS, we introduce the high-
resolution LiSurveying dataset as a benchmark, which can help to evaluate the per-
formance of classification, segmentation, and detection algorithms. Our main contri-

butions are summarized below.

1. We present the first large-scale hybrid (point-wise and 3D bounding box) TLS-
LiDAR dataset for LS. Our dataset provides 360 degrees of sensor coverage in
multiple locations of the scene, where multiple scans are integrated to obtain

a massive, point-cloud representation. The representation is validated with



accurate CAD drawings, surface models, and latitude and longitude metadata

information of each scene collected by the surveyors.

2. LiSurveying provides rich data for research on object classification, semantic

segmentation, and object detection for complex outdoor scenes.

3. We compare the performance of our model using hand-crafted features against

deep learning models for 3D object classification.

4. We implement a multiscale dynamic voxelization pipeline to split the raw input

point-cloud into fixed voxels based on prior information from the training data.

5. We propose an object detection model that learns hierarchical features with

increasing scales at each interest spatial voxel.

6. We extend our model with a fast key-point detection based on hierarchical

features extracted from KD-trees for centroid point estimation.

1.2.4 UAV feature extraction for WAM

The land surveying and planning communities are interested in the accurate sur-
veying of road paint line features from aerial images because these systems provide
more precise geospatial and rich semantic information over a large rural area than
conventional on-site surveying methods. The essential role of surveying is to build
and create 2D/3D maps of a physical scene. Nevertheless, linear features are often
affected in the pixel domain by factors such as complex backgrounds, different lev-
els of occlusion, missing pixel information, and lighting changes. In addition, roads
and painted lines represent a small portion of the pixels with respect to the exten-
sion of the image, and this usually leads to the imbalance problem associated with
these classes. Furthermore, many challenges still exist for robust, fast, and accurate
vision-based linear feature extraction, despite the fact that several SOTA methods
have proven successful in scene understanding and remote sensing. These methods
continue to have insufficient capabilities for retrieving local contextual features, which

affects segmentation accuracy.
Qur research contributions
QOur main contributions are summarized below.

e We present a framework for automatic surveying of painted traffic lines on ru-

ral scenarios for two classes “center-line” and “edge-line,” from high resolution



aerial images. Our proposed method is mainly based on semantic segmen-
tation models to locate the patterns of lines embodied in the road surface.
Subsequently, the predicted masks with the different per pixel classes are post-
processed in a cascading module to remove irrelevant artifacts in neighboring
pixels. Finally, a refinement and connectivity stage is used to generate smooth

lines along the patterns of the segmented masks.

e We compare our framework’s performance with several semantic segmentation

methods using our dataset to demonstrate our superior performance.

e We create a research dataset for land surveying of painted traffic lines. The
dataset is suitable for deep learning feature semantic segmentation and line

fitting studies.

1.3 Thesis Outline

The rest of the thesis further motivates and describes our developed algorithms,
datasets, and validations results, and is organized as follows. Chapter 2 discusses
background research and related works, setting the foundation for our study across five
distinct research scenarios. Chapter 3 presents our published algorithm for texture-
less object detection and 6D pose estimation using natural images and depth maps
data. Chapter 4 describes our proposed video traffic analysis system for local-area,
in-situ contexts and its adaptability for new scenes. Chapters 5 and 6 demonstrate
our published method for automatic land survey using multiscale voxelization and
learning hierarchical features on LiDAR. Chapter 7 describes how to extract linear
patterns from UAV imagery for road surveys. Finally, Chapter 8 summarizes our

research findings and directions for future research.



Chapter 2

Background and Related Work

2.1 Object visual perception, positioning and pose

In this chapter, we embark on a review of the literature, delving into various ap-
proaches of computer vision and image analysis. Simultaneous recognition of an
object and the estimation of its 6D pose have garnered significant attention in recent
years. Object recognition involves categorizing real-world objects within a scene by
extracting distinct features from the Region of Interest (Rol) and using these features
to classify the object’s category through a pre-trained model. Pose estimation, on the
other hand, focuses on determining the position and orientation (pose) of a known
3D object in relation to the camera within the scene. Typically, a rigid object pose
is represented by a 6 Degree of Freedom (6DOF) transformation matrix, compris-
ing three translation and three rotation parameters, thus earning it the name “6D
pose estimation.” Existing techniques can be categorized as feature/template-based
and learning-based approaches. The traditional approach for 3D object recognition
is through template matching. Although the time performance of template match-
ing is not suitable for real-time applications, it does not need a lot of samples and
can recognize new objects by comparing them with a database [2]. The methods
proposed in [3] and [2] are based on efficient template matching. They used optical
images to detect objects. The authors in [2] also showed that occlusion could be
less problematic by adding depth information. Their feature set contained surface
normal gradients and orientations of the contours. These techniques worked best for
texture-less objects of heterogeneous shapes. However, as we have pointed out be-
fore, industrial parts are usually symmetrical and have simple homogeneous shapes.
Region-based approaches are used extensively in object recognition and pose estima-
tion for 2D images. The author in [4] used active contouring to segment an image

into background and foreground. They estimated the object’s pose by using multiple



local appearance models. These models can capture spatial variations and therefore
work well for heterogeneous objects. In [5], the authors proposed a framework to es-
timate the 6D pose of an object from a single RGB image. Their method iteratively
reduced the uncertainty in object coordinates and object prediction. In order to deal
with missing depth information, they computed an approximation of the 3D object
coordinate distribution over depth maps. Another region-based approach proposed
in [6] estimated the pose of an object using the local color histogram of a single
RGB image. This approach fails to produce reliable results if the objects do not
have color or textural information. More recently, Artificial Neural Networks (ANN)
have gained popularity in solving computer vision problems [7]. Current approaches
for object detection are based on bounding boxes, reconstruction of features in each
detected bounding box, and high accuracy classifiers. These approaches are driven
by the success of “region proposal” methods and region-based convolutional neural
networks (RCNNs) [8]. Fast R-CNN [9] and Region Proposal Network (RPN) + Fast
R-CNN [10] are more effective and accurate than the original region-based CNNs.
Despite their strengths, these methods are computationally expensive. Recent ap-
proaches use pre-trained networks that accelerate convergence, achieving noticeably
better time performance during object detection. These methods are often built upon
the SOTA architectures for 2D object detection, such as Inception or ResNet [11, 12].
Using robust baseline systems, Fully Convolutional Network (FCN) has improved the
outcome of object detection and semantic segmentation. These methods are concep-
tually intuitive and offer flexibility and robustness. They also provide fast training
and inference time. A novel method, Mask R-CNN [13], extends Faster R-CNN by
adding a branch for predicting segmentation masks on each Rol, parallel to the exist-
ing branch for classification and bounding box regression. The mask branch is a small
FCN applied to each Rol, that predicts a segmentation mask in a pixel-to-pixel man-
ner. Mask R-CNN is simple to implement and train, by extending the Faster R-CNN
platform, which facilitates a wide range of flexible architecture designs. Although the
mask branch offers a fast system and practical experimentation, a major limitation of
these deep learning-based approaches is the need for a large volume of representative
training samples for highly accurate performance [14]. In [1], we introduced an auto-
matic approach for recognizing texture-less objects in industrial applications. In this
approach, after localizing the objects in the 2D images, we extracted HOG features to
train an object recognition algorithm. The object pose was obtained based on a point
cloud matching process that used Fast Point Feature Histogram (FPFH). Despite our
accurate results, the performance time of FPFH can be affected significantly by the

number of points. A high number of points involves more operations to compute the



features, while a low number of points might not retain enough information, thereby
affecting the final pose. We introduce several improvements on our latest approach
[1]. More recently, there have been number of approaches using Artificial Neural Net-
works (ANN) for 3D object recognition and 6D pose estimation. In [15], the authors
used RGB-D features to train a Convolutional Neural Network (CNN) model. The
depth features added information about the horizontal disparity, height above the
ground, and angle with gravity for each pixel. Data augmentation is a useful process
for learning-based models to create a comprehensive and rich training set. For in-
stance, authors in [16] augmented the data to create a training set for autonomous
navigation. But, even with training samples, the adjustment for 6D pose estimation
applications can be very time-consuming. [17] proposed a robust and scalable object
detection technique that combines CNN with a region-based proposal to localize and
detect objects. Many researchers modified and used this network to recognize and
detect objects for autonomous driving and object localization [18-22]. However, al-
most all of these networks rely heavily on the textural information of the objects.
The network proposed by [22] can handle irregular-shaped, texture-less objects. But
this is not suitable for industrial parts where different parts can be very similar in
shape. [21] proposed that a CNN regression framework is more suitable than a CNN
classifier framework for 6D pose estimation because the pose space is continuous and
therefore the pose estimation problem is also a continuous problem in nature. [23]
predicts the poses of objects using only RGB images. They first segmented the 2D
images to localize the objects of interest and then used a CNN model to predict the
6D poses of the objects. However, since they did not use any depth information or
depth cues, they could not accurately predict the full 6D pose. More recently, a
Rao—Blackwellized particle filter for tracking 6-D object poses has been proposed [24]
and achieved promising results; however, it can be affected by heavy occlusion and

each object requires a single autoencoder.

2.2 Temporal object detection and tracking

Real-time object identification has emerged as a vital component in a wide range of
video applications. Numerous approaches have been proposed for object detection
and tracking in recent decades. Traditional object detection methods were based on
descriptors. Several descriptors have been proposed by researchers. They can be
categorized into two groups: region-based and contour-based descriptors, depending
on pixel values or curvature information [25]. Shape matrix [26], Zernike moments

[27], convex hull [28], moment-based descriptors [29], and media axis features [30]
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are some region-based shape descriptors that have been proposed in the literature.
Moment based descriptors are very popular. Studies have shown that they are usu-
ally concise, computationally cost effective, robust, and easy to compute, as well
as invariant to scaling, rotation, and translation of the object. However, it is diffi-
cult to correlate higher order moments with the shape’s salient features due to the
global nature of these methods [27]. The media axis features are robust to noise but
are computationally expensive due to their capability of reducing information redun-
dancy. Some of the proposed contour based shape descriptors are harmonic shape
representations [31], Fourier descriptors [32], Wavelet descriptors [33], chain code [34],
curvature scale space (CSC) descriptors [35], spectral descriptors [36] and boundary
moments [37]. Fourier and Wavelet descriptors are stable over noise in the spectral
domain, while chain code is sensitive to noise. CSC descriptors capture the maximal
contour known as the object’s CSC contour. This approach is robust to noise and
to changes in scale and orientation of objects but does not always produce results
consistent with the human visual system [38, 39]. Visual recognition is another key
factor used to improve the accuracy of object detection and recognition. Techniques
such as histogram of oriented gradient (HOG) [40], local ternary patterns (LTP) [41],
local binary patterns (LBP) [42], scale invariant feature transform (SIFT) [43], bi-
nary robust independent elementary features (BRIEF') [44], speed-up robust features
(SURF) [45], and oriented fast and rotated brief (ORB) [46] have been proposed over
the years. However, these techniques still have insufficiencies. For example, various
images of a specific object may appear profoundly different due to changes in the
orientation of the object and the lighting conditions [47]. SIFT and ORB are robust
descriptors that facilitate the object recognition. Although SIFT is slower than ORB,
it is more stable. Both SIF'T and ORB are suitable for real-time applications. How-
ever, these methods rely on textural patterns, and if the objects do not have enough
textural information, like most of the industrial robotic automation and machine shop
applications, they will fail to detect objects accurately.

In order to improve the accuracy of traditional object detection methods, re-
searchers later combined machine learning techniques with shape descriptors [17, 48].
Many machine learning algorithms, such as support vector machine (SVM) [49], deci-
sion trees (DT) [50], linear discriminant analysis (LDA) [51], Naive Bayes (NB) [52],
random forest (RF) [53], learning vector quantization (LVQ) [54], k-means [55] and k-
medians [56] have been tested and have shown their efficiencies in solving classification
problems.

Other object recognition approaches like LINE2D [2] and its variants, examine a

template of sparse points across a gradient map. These approaches capture the target
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shape directly without extracting the edges. The trade-off is a high false positive rate
due to the lack of edge connectivity information in the object recognition process.

The YOLO (You Only Look Once) framework has distinguished itself for its excep-
tional balance of speed and precision. YOLO architecture has gone through multiple
iterations, each improving on the strengths of its predecessors. In 2016, YOLOv1[59]
was the first to deliver real-time object detection by predicting classes and bound-
ing boxes in a single pass. In 2017, YOLOv2 (YOLO9000)[58] and YOLOv3[60]
enhanced accuracy with refined designs, anchor boxes, and multi-scale detection.
CSPDarknet53 and PANet were introduced in YOLOv4[61] (2020), while PyTorch in-
tegration and AutoAnchor optimizations were included in YOLOv5[62]. YOLOv6[63]
by Meituan Vision Al Department continued the series’ advancement in 2022. It in-
cluded a PAN neck, an efficient backbone with RepVGG or CSPStackRep blocks, and
a hybrid-channel method in the head. Better quantization approaches increased speed
and accuracy, outperforming previous versions and competitive models. YOLOv8[64],
introduced in early 2023, improved the series with scalable versions, enhanced feature
fusion via a Coarse-To-Fine (C2F) module, an anchor-free model with a decoupled
head for accuracy, and a YOLOv8-Seg for semantic segmentation.

Detection Transformers (DETR)[65], introduced in 2020 by researchers at Face-
book AI Research (FAIR), revolutionized object detection by exploiting transformer
designs, eliminating anchor boxes, and enabling end-to-end training. Set prediction
loss was incorporated in the original DETR. for comprehensive learning. Deformable
DETR and Context Transformer variants improved efficiency and accuracy, while
Deformable DETR+ and Progressive Transformer refined spatial modelling and ob-
ject handling. Real-Time Detection Transformer (RT-DETR)[66] addressed compu-
tational issues by maintaining multi-scale features effectively, introducing [oU-aware
query selection, and allowing for adjustable speed modifications. This evolution ex-
emplifies DETR and RT-DETR’s transformative impact in making object detection
accurate and efficient.

On the other hand, robust and efficient multi-object tracking algorithms are the
pillars of a good traffic analysis system. Their significance resides in their capacity to
associate vehicle instances across time, allowing for traffic dynamics such as conges-
tion patterns, vehicle counts, and near-miss occurrences to be extracted from video
data. Most tracking algorithms are detection-based, where objects of interest are first
detected within the frame using an object detection algorithm like YOLO or SSD,
and then object track initialization and association are done using those detection
hypotheses. Several approaches use a Kalman filter [67] estimator for object track-

ing. The Kalman filter is efficient in estimating the state of a dynamic system based
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on noisy measurements over time, and it is known for its optimal performance under
certain assumptions. Intersection over Union (IoU) tracker algorithm [68] uses the de-
tection hypothesis from the previous and current frames, and associates vehicle tracks
with detections based on IoU calculations. In scenarios where the system dynamics are
highly nonlinear or the noise characteristics are not well-modeled by a Gaussian dis-
tribution, researchers adopted alternative filtering techniques such as the Unscented
Kalman Filter (UKF)[69] or Particle Filter [70]. These filters are designed to han-
dle nonlinearities and non-Gaussian noise better than the standard Kalman filter.
Traditional algorithms, such as Mean Shift[71], KLT Tracker (Kanade-Lucas-Tomasi
Tracker)[72], and TLD (Tracking-Learning-Detection)[73], have long been the foun-
dation of tracking systems, relying on handcrafted features and heuristic methods.
Mean Shift algorithm tracks an object by finding the mode of the color distribution
in the target region. Camshift[74], an extension of Mean Shift, enhanced performance
by adapting the window size during tracking. KLT Tracker consists of a feature-based
tracker that tracks keypoints in the image. MOSSE|75] is a correlation filter-based
tracker that uses a pre-learned filter for tracking. In contrast, modern algorithms
leverage the power of deep learning, incorporating neural networks and sophisticated
architectures to enhance tracking accuracy and robustness. Examples of modern al-
gorithms include SORT, DeepSORT, YOLO-based trackers, and MOTNeRF. SORT
(Simple, Online, and Real-Time) [76] uses a Kalman Filter [77] and the Hungarian
Algorithm [78] for future state prediction and object association. Researchers have
combined neural nets and traditional feature extraction methods to achieve SOTA
results. The researchers behind DeepSORT [79] pioneered the inclusion of deep learn-
ing for appearance embeddings. They replaced the association metric in SORT with
one that combined both motion and appearance information, improving robustness
against misses and occlusion. StrongSORT [80] updated DeepSORT with more re-
cent deep learning techniques in object detection and appearance embedding; they
also added an appearance-free linking algorithm to address missing associations, and
Gaussian-smoothed interpolation to address missing detections, ultimately achieving
SOTA results. Other modern trackers are MOTSA (Multiple Object Tracking with Si-
multaneous Association)[81], Fantrack[82], CenterNet[83], GOTURN (Generic Object
Tracking Using Regression Networks)[84], and SiamRPN (Tracking Objects without
Labeled Data) [85]. These algorithms vary in terms of their complexity, performance
under different scenarios, and computational requirements. The choice of an algo-
rithm depends on the specific requirements of the tracking task and the available

computational resources.
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2.3 Point cloud object localization

Moving on to the challenges of object detection and classification in wide area moni-
toring, noticeable research efforts led to the rapid evolution of successful object detec-
tion algorithms for images. This success is also attributed to the promises of CNNs
and the development of graphics processing units (GPUs). Initial approaches for ob-
ject classification relied on hand-crafted features to recognize a pattern in an image or
point-cloud. The latest approaches are based on deep learning algorithms with notice-
able advantages over hand-crafted features methods, provided that a sufficiently large
volume of representative training data is available. Unlike hand-crafted features that
are defined on the basis of application requirements and domain knowledge, deep
learning distinguishes itself by the ability of automatic feature learning from the
training data. Nevertheless, due to the irregular nature and unordered data format
of point-cloud, image classification algorithms, cannot directly take point-cloud data
as input. As a result, one approach is to convert 3D point-clouds to regular 2D image
representations and then apply a CNN to the converted or rasterized point-cloud.
This is categorized as a multi-view-based method. MVCNN [86] is a pioneering work,
which performs max-pooling multi-view to synthesize features from the views into a
global shape descriptor. However, max-pooling cannot retain smaller feature elements
from a specific view, resulting in information loss. Some researchers have proposed the
GVCNN architecture [87], that better discriminates among views by using a complex
view-pooling module (with view grouping and fusion) instead of the max view-pooling
layer to more effectively aggregate views. The author in [88] proposed a Multi-view
harmonized bilinear network (MHBN), which integrates local convolutional features
by using harmonized bilinear pooling and a polynomial kernel to produce a compact
global representation. In addition, several other methods have also been proposed to
improve recognition accuracy. Some methods voxelize the point-cloud into 3D grids
and then apply a 3D CNN. These are called “volumetric-based methods.” The authors
of Voxnet [89] proposed a volumetric occupancy architecture for 3D object classifica-
tion. This method demonstrates as quite robust to the different representations. Also,
3D ShapeNets [90] learn the distribution of the point sets from various 3D shapes.
However, the memory and computational cost of these methods are adversely affected
by the high resolution of point-clouds. More recently, researchers introduced methods
that directly work on raw point-clouds without any voxelization or projection to 2D
images. These point-based methods do not introduce explicit information loss and
have become increasingly popular. A pioneer in this category is PointNet [91], which

directly takes a point-cloud as input. Then, a multi-layer perceptron (MLP) learns
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point-wise features and finally extracts global features with a final max-pooling layer.
The features are learned on each point, which causes information loss between points.
Later, PointNet++ [92] overcomes this problem by using a sampling layer, a grouping
layer, and the PointNet-based learning layer. This setup can capture the geometric

features in the neighborhood of each point.

2.4 UAYV imagery linear features extraction

The evolution and noticeable progress in remote sensing technologies has led many
researchers develop algorithms for efficient semantic segmentation. This success is en-
abled by Deep Learning (DL), massive sensoring data, and the development of high
computational performance systems with GPUs. DL algorithms, in particular, have
been applied with outstanding results in object classification, semantic segmentation,
object detection, and a variety of machine vision tasks. Various architectures rep-
resent promising avenues for the automatic extraction of street-line features painted
on roads in aerial images, e.g., the center and edge-lines on highways. However, the
extraction of painted lines can fail because of the complex backgrounds of aerial im-
ages, such as the impact of moving objects, animals, and occlusion caused by trees,
power lines, cloud shadows, air pollution, and static or dynamic objects. Addition-
ally, many land areas, e.g., bare ground, parking lots, rooftops, parcels, and rivers,
typically share similar textures and structures as markings painted on the road, which
makes them difficult to discriminate in many scenarios. All these factors represent
a challenge for the automatic extraction of pavement painted lines in aerial images.
Recent methods are widely available for road segmentation. Ma et al.[93] applied
support vector machines (SVMs) to classify roads in high-resolution satellite images
and extract their shapes from the binary representation using a mathematical mor-
phology stage. Bond et al.[94] proposed a multistage simple color (luminance, satu-
ration, and hue) space segmentation and Laplacian edge detection pipeline to extract
roads automatically from satellite-taken images. For center-line and edge-line estima-
tion, researchers have applied transform-based line detector [95], perceptual grouping
theory with global optimization [96], and shape features and multivariate adaptive
regression splines [97]. Yuan et al.[98] combined spectral and texture features using
local spectral histograms with subspace projection for feature reduction. Similarly,
Chaudhuri et al.[99] exploited both the spectral and spatial properties of roads using
a multi-step approach which includes enhancement, segmentation, hole filling, small
region filtering, noise removal method, and a linking stage. Liu et al.[100] proposed a

road extraction method based on the shear transform, directional segmentation, road
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probability, shape features, and a skeletonization stage. Anil et al.[101] introduced
a statistical region-merging method for road segmentation, followed by a skeleton
pruning by a discrete curve evolution process to extract road networks. Center-line
extraction algorithms have been proposed in the past using SAR images. Cheng et
al.[102] proposed a semi-automatic road center-line extraction method based on cir-
cular template matching. However, this method is not suitable for complex scenarios.
Cheng et al.[103] later proposed a two-stage tracking method for extracting center
points and center-lines iteratively. The algorithm consists of a local detection and
global tracing strategy. In the study by Saati et al.[104], hand-crafted features were
obtained for potential road area extraction through fuzzy inference. After that, a
morphology skeletonization operation formed the road center-lines, and interest seed
points were connected. Similarly, Cheng et al.[105] extracted road networks using a
valley-finding method with multiple parallel particle filters and seed points. Other
works [106-108] proposed morphological feature- based methods to find paths in ur-
ban roads. While these methods had acceptable performance, they usually suffered
from a lack of robustness to occlusions, light, and contrast variations. Handcrafted
feature-based methods suffer from the challenges of occlusions, limited adaptability
for different data sources, and exhaustive data preparation and parameter selections.

More recently, algorithms based on CNNs have become popular in semantic seg-
mentation of high-resolution aerial images. The current approaches achieve road seg-
mentation using CNN encoder-decoder structured models, which are able to capture
large spatial context, mainly for remote sensing applications. A variety of networks
for semantic segmentation [109-111] exist, which have been widely adopted for line
features extraction. These architectures have also shown acceptable performance in
different applications such as autonomous vehicles for snow environments, ship iden-
tification, and water body extraction [112-114]. Road and center-lines are active
research topics due to the high demand on remote sensing applications. Cheng et
al.[115] proposed a cascaded CNN (CasNet) method to simultaneously cope with
roads and determine center-lines; finally, a thinning algorithm was applied to obtain
smooth, complete, and single-pixel width lines. Zhong et al.proposed a pipeline using
FCN for road extraction from high spatial resolution imagery. The authors combined
shallow fine-grained pooling layer outputs with a deep final-score layer to improve
accuracy. Ventura et al.[116] proposed a CNN-based pipeline that predicted relation-
ships between the central pixel and border pixels of an input patch. Then, they gath-
ered the global topology of the road by iterating around the local connectivity. More
recent methods combined the advantages of residual learning and skip connections

to improve accuracy and performance. Bastani et al.proposed a CNN-based iterative
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search to construct road network graphs. Zhang et al.[117] introduced a method with
multi-scale features and enlarged the receptive field in the residual blocks for the road
segmentation task. Lu et al.[118] proposed a globally aware network, CoANet, that
learnt the segmentation and pair-wise dependencies to improve the road extraction
performance. CoANet alleviates the occlusion problem with a connectivity attention
module (CoA) to explore the relationship between neighboring pixels. Lu et al.[119]
proposed a global-local adversarial learning pipeline for cross-domain road detection
in high resolution satellite imagery. Similarly, Zhu et al.presented a framework for
road extraction using a Global Context-aware and Batch-independent network. Lu et
al.[120] exploited symbiotic relationships between the road and traffic lines to boost
the road connections and enhance road completeness. Although previous methods can
automatically learn contextual features, they only focus on extracting roads and not
specifically painted traffic lanes. Some more recent methods used road center-lines to
establish relationships with highways, benefiting the completion of the resulting road
networks. However, as in our case study, these methods do not automatically extract
classes like the center-line and road edge-lines. Most existing algorithms focus on
high-resolution satellite images, which tend to lose the attributes of traffic lines on
the roads due to lower resolution. Survey Automation is an emerging topic because it
is required not only to segment patterns of an image, but also to map these pixel-level
predictions to standard forms such as 2D /3D lines with geospatial information. The
resulting lines must compare with the existing ground truth data (2D and 3D design
data and metadata) for the same scenes previously extracted with conventional tech-
niques. Since the existing databases ignore the lines painted on the roads, we created
our database to evaluate the proposed method. In this thesis, we propose a system
based on CNNs and a cascade of filters to refine and connect the traffic lines painted

on long-distance rural roads in drone images.
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Chapter 3

Object detection and 6D pose
estimation in-situ

3.1 Introduction

Object localization and pose estimation are challenging but often essential processes
in the field of computer vision. Many applications, such as robotic controlled pick-
and-place, virtual reality (VR), augmented reality (AR), and autonomous driving,
depend heavily on the accuracy of object recognition and pose estimation. These
applications require a robust, accurate, fast, and efficient system that can handle a
dynamic scene and learn new object instances. The system should also be adaptable
and scalable to different environmental settings. In general, object recognition refers
to classifying multiple instances of real-world objects in an image. Object recognition
techniques rely on extracting a set of discriminative features from the Region of
Interest (Rol) and feeding them into a previously trained model or computational
formulation to recognize the object’s class. On the other hand, pose estimation
algorithms determine the position of a target object within a scene with respect
to either the camera perspective or a designated reference point. The Six Degree of
Freedom (6DoF) transformation matrix describes the pose of a rigid object, which
is composed of three translation and three rotation parameters. Hence, it is called
“6D pose estimation.” Although object detection has been studied extensively for
textured objects, where the objects can be represented by a sparse set of discriminative
material pattern and color features , it is still an open research topic for industrial
objects, which are texture-less, often symmetric, and made from the same material.
There is an increasing demand for accurate detection of these types of objects, which
are commonly found in industrial manufacturing and production processes, e.g., a

robotic vision system requires pick-and-place, parts navigation, and object inspection
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routines. Knowing the pose of the target object (e.g., spark plugs, nuts, or gears) can
facilitate the end effector to precisely pick up the object. Texture-less objects can only
be described by their global shape features, such as edges and depth cues [2, 3, 121].
The detection methods based on photometric local color and material patterns fail
for these objects [17, 18]. [122] extends the method of [2], using color information into
the dominant orientation templates (DOT) to avoid false detections. This method
outperforms the original DOT combining the color and shape matching scores with
logistic regression and improves the runtime. However, a limitation is that it cannot
distinguish between colors with the same hues but different saturations, failing in
scenarios where multiple objects have similar colors.

Some previous works used homography to determine the pose of an object. Note
that these methods work only on piece-wise planar objects, which are common for
image rectification, image registration, or computation of camera motion. However,
when a variety of objects are close together, occluded, or lacking texture, the homogra-
phy approach does not deliver satisfactory results. Other researchers proposed object
detection and pose estimation methods using both RGB and depth map data [2, 3, 15,
16]. Although these methods usually outperform the optical-based approaches, depth
sensors have a limited capturing range and are more sensitive to illumination condi-
tions and reflective surfaces. They are more suitable for indoor environments. As a
result, other researchers estimated a 6D pose from 2D images [5, 23, 123, 124]. Many
of their works did not use depth sensors for outdoor environments, as they believed
that depth sensors can be affected by the changing lighting conditions. However,
even optical data can be affected by changing lighting, as well as by the presence of
noise. Our system is based primarily on RGB-D data because most current robotic
systems already have this capturing capability in place. Besides, most commercial
and modern RGB-D sensors can achieve a range from 0.2 to 20 m in depth, match-
ing the requirement of commercial robotic arms, which normally reach less than 20
m in length. Given these scenarios, our system achieves more accurate and reliable
outcomes in detecting texture-less objects. We take advantage of the depth maps to
segment the objects and use the RGB images to determine the optimal poses. Exper-
imental results demonstrate that our approach is efficient and suitable for recognizing
texture-less industrial objects. Our processing pipeline, shown in Fig. 3.1, consists
of the following major components: RGB-D image segmentation and localization,

feature analysis, and object class prediction and pose estimation.
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Figure 3.1: Our proposed object recognition processing pipeline. The Rol from the
RGB-D input image is segmented, and then the minimum bounding box of each
object is generated for feature extraction and object class prediction (top). Images
of each object’s CAD model are generated in x,y, and z axes for training purposes
(bottom).

3.1.1 Texture-less object datasets

Different datasets for 3D object recognition and pose estimation have been introduced
in recent years. Hodan et al. [125] introduced the public T-LESS dataset for estimat-
ing the 6D pose of texture-less rigid industrial parts. The dataset contains 30 objects
with similarities in shape and size. Some of the objects are parts of other objects in
the dataset. Many authors have shown that recognizing these objects is challenging.
Even the SOTA techniques may fail in different scenarios. We focus mainly on this

dataset as it fits our application for recognizing texture-less industrial parts.
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Figure 3.2: First column: rendered images of different input objects from the T-LESS
dataset. Second column: Watershed segmentation technique applied on rendered
images. Third column: regions of interest are detected in each segmented region.
Last column: cropped region of interest. The output images are used for training to
recognize objects and estimate poses at a later stage.

3.2 Proposed method

We introduce a new approach to address the problem of object detection and 6D
pose estimation for texture-less objects. A major issue with texture-less objects is
the lack of many visual identifications, such as color and texture, which increases
the difficulty of the problem. Furthermore, industrial objects are often symmetric,
causing perspective ambiguity. Therefore, we propose an approach combining RGB-
D data and a number of robust techniques, which contributes to a more effective
refinement of the final target object pose. Our method is trained using rendered
images from different perspectives of each CAD model. We first detect the 2D Rol
in the input image using a clustering-based segmentation method. For the object
recognition stage, we apply HOG algorithm with invariant moments to predict the
object class in the input image. The pose estimation of the object is performed on
each Rol;, and we implement the DTW algorithm to find the optimal candidate pose
of the object from a database. In this section, we explain the processing pipeline of
our proposed approach and show the different stages involved to achieve our goal.
Manual labeling of different poses of an object is labor intensive and requires pre-

cise equipment to get accurate measurements. Training on rendered images of each
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Figure 3.3: A spherical space view used to automatically render a 3D model of an ar-
bitrary object from the T-LESS dataset. The object is rotated by an angle s, € [0, 27]
along each of the x, y, and z axes with a step s; = 10 degrees in our implementation.

DT 00/00/00
) CO0000

Figure 3.4: Left: Examples of the rendered images from five CAD 3D models of
the T-LESS dataset. Right: Comparison of Gaussian blur filter with different kernel
matrix size, i.e., 3x3, 5xb, 7x7, 9x9, and 11x11, for the same object. Top row:
original image from the PrimeSense sensor and the resulting images with different
kernel sizes. Middle row: images from the Kinect sensor. Bottom row represents our
filtered images, which look more realistic.

CAD model object potentially benefits the pose estimation results. This process can
generate a wide range of synthetic images, a confusion matrix of each view as a pose
label, and object class label.

We first created a virtual scene with an empty white background and ambient light
with uniform intensity and shadows. Then, we placed each CAD model at the center
of the scene for further processing. The 3D model was rotated by a step sq € [0, 27]
along the x, y, and z axes respectively, as shown in Fig. 3.3, with s; = 10 degrees in
our implementation. The distance of the object from the camera was kept constant at
400 mm. The output image size is 640x480 in color space. To obtain each rotation,
we computed R,R,R, - (2,9, 2)T. The Euler angle 6,, 6,, 6., and the corresponding
rendered images were stored for future pose estimation. Examples of training views
for different objects are shown in Fig. 3.4 (Left).
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Gaussian filter to boost synthetic images

In this section, we briefly discuss how applying a Gaussian filter on the rendered
images increases the similitude of the synthetic image to real image. In image pro-
cessing, the Gaussian blur filter is commonly used to smooth a given image 4. Using
the filtering as a pre-processing step improves the qualitative representation of the
2D image. Synthetic images generated from a 3D model are often semantically differ-
ent from the real RGB images. For this reason, we transform the rendered image to
another similar representation using the Gaussian filter. Theoretically, we can apply
a Gaussian blur to J analogous to the convolution of a 2D image with a Gaussian
function as shown in Fig. 3.4. Based on our experiments with different kernel sizes,
k = 3 generates the best result compared to bigger kernel sizes, which tend to blur
the image.

In this context, 2D Gaussian is defined by the product of two such Gaussian func-
tions as shown in (3.1):

—1 2242

e 207 (3.1)

G(z,y) =

2mo?
where z represents the distance from the origin in the horizontal direction, y is the

distance from the origin in the vertical direction, and o is the standard deviation of
the data. These functions average the center of the pixel (which is the center of a
kernel matrix) to generate a smooth visual effect in the image. However, Gaussian
blur uses the weight concept in averaging the pixels. These weights are assigned to

all the pixels according to normal distribution. The equation of the Gaussian blur is

defined in (3.2).

GB[I, =) Gullp —dl Iy (3.2)

qesS
where, k is the size of kernel matrix. Typically, kernel matrices have the size of
(2r +1) x (2r +1). The integer r is the radius of the filter and is a parameter that
controls the size of the neighborhood that is being averaged. If kK = 2r + 1, the kernel

Gy, is computed as shown in (3.3).

(Gars1)is = 4_1"‘ (?, ?:r) (j 2: r) (3:3)

Pixels near the center have the highest weights, and the weights decrease when moving
toward the edges. It can be seen from Fig. 3.4 that after applying the Gaussian filter

our image (Bottom row) is more realistic than the sensor captured synthetic ones

(Rows 1 and 2).
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Segmentation in the filtered images of 3D models

To prepare the training data, we apply the Watershed transformation technique [126]
to segment the target object in the RGB image Jp. Watershed is a morphological
technique for image segmentation that groups the pixels in g based on their similar-
ity of intensity. It uses gray tone values of Jg, which is interpreted as a topographic
surface. During the sequential “flooding” of the surface minima of the gray val-
ues, the technique partitions the gradient image into watershed lines and catchment
basins. The result of the Watershed transform produces closed object contours at
low computational cost compared to other more sophisticated vision-based segmen-
tation techniques. After segmentation, edges features in each segmented region are
extracted to uniquely characterize each object.

In practice, this traditional transform often leads to over-segmentation due to noise
in the data. In order to deal with over-segmentation, we use the marker-based Wa-
tershed approach. The Watershed transform floods an image of elevation, starting
from the markers. However, it is necessary to pre-process the optical image to deter-
mine the catchment basins of these markers. The marker regions are pixels that we
can label unambiguously as either object or background; found at the two extreme
parts of the gray value histogram. The identified markers are used in the watershed
segmentation method. We apply the fast and simple morphology Sobel operator to
compute the amplitude of the gradient in an optical image. The Sobel filter uses
two 3 x 3 kernels: one for changes in the horizontal direction, and one for changes
in the vertical direction. The two kernels are convolved with the original image to
measure an approximation of the derivatives. Even if the markers in the background
are not well distributed, the barriers in the elevation map are high enough for these
markers to flood the entire background. After that, we remove the small holes with
mathematical morphology. Using these regions, we apply the classical marker-based
Watershed transform to detect the objects in the image. As shown in Fig. 3.2, this
approach provides good quality object segmentation with a low computational cost.

After segmentation, features in each segmented region are extracted to uniquely
characterize each object. Edges are basic attributes of texture-less objects which make
them simple to distinguish with human visual perception. In Fig. 3.2, all objects have
same color but different shapes, resulting in different edges. For example, object 7 has
three holes on top, while object 5 and object 12 have only 1 hole. Object 5 has rounded
edges while object 12 has sharp edges. These variations on edges are prominent
features that can be used to distinguish between different objects and perspectives.

For this reason, HOG features are extracted in each Rol after segmentation. The HOG
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method provides acceptable performance under different scenarios and applications.
The HOG method extracts the local histograms of orientations and magnitudes of
edges in an image or pattern in order to represent the shape of the target. Section

3.2.2 describes more about HOG features for object recognition.

3.2.1 Real scene images: initial segmentation and refinement

In this section, we explain the steps to segment objects in real input images where
the scene can be cluttered. Image segmentation represents a fundamental and impor-
tant step in image processing to understand content composition. A segmentation
algorithm helps to split an image into semantically separated partitions, or clusters,
belonging to specific pixel distribution in an image. While segmenting an RGB image
can provide useful semantics, we observed that including depth maps can achieve a
higher detection accuracy of the regions of interest when dealing with partially oc-
cluded texture-less objects. Many CNN-based architectures can perform well for this
specific task but require a large number of training images.

Since the depth images do not contain texture information, segmentation is chal-
lenging, especially for cluttered scenes. We need to explore characteristics other than
texture. Depth maps contain points, each having a 2D location that is associated with
a distance value from the sensor. On the depth maps, a drastic change represents an
edge or border that can distinguish the surface using morphological operations. Thus,
we used a Sobel operator to detect the edges in the image. Sobel is a 2D operator that
measures the spatial gradient on the input image using two convolutional masks of
size 3x 3, representing the gradient’s estimation in the x-axis and y-axis. Each mask
passes through the depth image @, performing operations on a rectangular region of
pixels one at a time.

We performed the segmentation stage using the depth map image . We obtained
an initial binary mask 771;. The lines of high contrast represent the regions where
drastic changes occurred on . However, 111; contained linear gaps surrounding the
Rol. Thus, we applied a dilation operation to fill the holes in the binary mask;
nm, & N, = {z | (?’f’tb)z NM; # @}, The structuring element, 171;, is a matrix that
identifies the pixel in 771; and defines the neighborhood used in the processing of each
pixel. M, is the reflection of the structuring element 71,. It removed all minima
which were not connected to the image border. A final mask, 11;, and Rol;, were
obtained during the initial segmentation process, as shown in Fig. 3.6. To refine
the results of the initial segmentation on depth images, we used K-means clustering,

which is an iterative unsupervised learning approach. Given the initial Rol; on image
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Figure 3.5: Left: Input depth image. Right: Resulted clusters computed from the
depth map using our cluster-based segmentation step.

0, we could find clusters by minimizing the sum of the square distance between the
data and the correlated centroid of each cluster in the initialization step. In our
case, the K-means algorithm classified a given set of depth map pixels into & sets
of separate clusters. The K-means algorithm can distinguish the data in two steps.
First, it measures £ centroids in different locations of the image. Then, each point
that is nearest to the cluster will be taken as part of it. Iteratively, the algorithm
stops when no variation of the centroid occurs in the subsequent step, which indicates
that the depth map points assigned to each cluster have become stable. These steps
are described as follows: First, cluster £ and its centroid C are initialized. Then,
Euclidean distance d = ||D(z,y) — CK|| is estimated for each depth map. The pixels
closest to the center are assigned based on d. In every iteration, pixels are assigned to
clusters and the new centroid for each cluster is recalculated. This process is repeated
until the maximum number of iterations is reached, or every cluster center moves less
than a tolerable error value. Finally, the clusters in the depth maps are projected
onto a 2D image (Fig. 3.5). The K-means algorithm is very robust on depth maps,
especially for scenes with cluttered backgrounds, because it does not rely on the color,
texture, or pixel intensity but on the distance. It is also robust to indoor changing
lighting conditions. Using this method, we do not rely on the learning approach for
image segmentation like the CNNs. However, if we apply K-means on the whole depth
map @, post-processing is needed, because depth pixels that do not correspond to
the target object can also be assigned to the cluster, generating a noisy region. Noise
can be caused by external factors like the properties of the object and the physical
environment. We therefore use a morphological technique to decompose the whole @
image into multiple Rols, which can remove some noise. Then, K-means is applied

as a subsequent segmentation process to improve the detection of occluded objects.
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Figure 3.6: Comparisons of scenes ID 3, 11, 14, and 17 in the object segmentation
process. Morphological operations are applied on the depth image to find Rol;. First
row: the input depth image of each scene containing multiple objects. Second row:
the initial binary mask 1M; after applying the Sobel filter in the x-axis and y-axis,
respectively. Third row: the final mask obtained with multiple Rol;. Bottom row:
the original color image overlapped with the final mask 771, on each scene

Each detected cluster is processed as an individual patch, where the objective is to

distinguish sub-regions inside every Rol; € @.

3.2.2 Object detection

After segmentation, in the object recognition task, we consider grids of HOG as
a feature descriptor. The technique behind HOG features was first proposed by
McConnel [127]. This method has shown good results in applications that require
object recognition, e.g., pedestrian detection. HOG provides a higher performance
relative to other existing descriptors for the mentioned purpose. It measures the
occurrences of the gradients in a dense grid that corresponds to a 2D image. Then,
a histogram of gradients is generated. The dominant features of texture-less objects

are edges or gradients. Dividing the image into a finite number of local cells (sub-
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Figure 3.7: Left: Visualization results of HOG image on Object 4. Top row: resulting
images with initial HOG parameters of cell size s = [2 x 2,4 x 4,6 x 6,8 x 8] and
number of bins b = [2,4, 6, 8|, respectively. Middle row: s = [10 x 10,12 x 12,14 x
14,16 x 16], b = [10, 12, 14, 16]. Bottom row: s = [18 x 18,20 x 20,22 x 22,24 x 24],
b = [18,20,22,24]. Right: Performance time (x-axis) vs HOG descriptor parameters:
(cell size [2-20] (Left y-axis) and bins=[2-20] (Right y-axis)), applied on a 120*120px
image sample (Object 4). Feature vector size (x-axis) vs HOG descriptor parameters:
(cell size [2-20] (Left y-axis) and bins=[2-20] (Right y-axis)) applied on Object 4.

blocks) is a suitable approach to detect gradient directions and edge orientations for
texture-less objects. The HOG method applies two fundamental filters, denoted by
w, = [-1,0,1] and w, = [-1,0,1]7, on J to measure the horizontal and vertical
gradients, which are g, = J * w, and g, = J * w,, respectively. The magnitude of the
gradient o(z,y) in the local region of  is computed and the corresponding gradient

angle value at each pixel of I is estimated in (3.4).

B(z,y) = tan™ (gy(x’y)) (3.4)

9=(z,y)
In each sub-block, the histogram feature stored at H(p, ) based on the gradient
strength and the direction of every pixel is determined by the number of cells and
blocks. We describe the function of these parameters as follows.
Cells: the input image is initially divided into rectangular regions of pixels sets ¢

called cell size. Each cell has a fixed size defined by the initial parameters. For g €

6x180 6+1x180
6 b 7

where 6 = 0, ..., 6, — 1. The histogram of oriented gradient A results from determining

[0, 180], this range is divided into 6 gradient orientation bins denoted by

cell-wise weighted voting. For each pixel, the ¢ and 8 are divided into two values
based on the ratio to the two nearest bins. The same process is performed by adding
o for each bin that contains the corresponding 3 of the pixel intensity.

Block: Another important parameter is the block size. Each block contains a set
of cells ¢. All blocks are overlapped and normalized ¢y, in order to ensure tolerable
contrast of normalization and robustness to illumination changes and noise. This

process of histogram calculation is then repeated for each cell of the image. We apply
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the HOG method on each rendered image in gray-scale space. The input image is
the smallest rectangle containing the labeled region detected during the segmentation
stage, denoted by the vector [cx, cy, u, h], where cz and cy are the coordinates of the
center of mass of the labelled region, and u and h are the width and height of the
bounding box respectively. Then, the Rol; contained in the bounding box is resized.
We evaluate this method using different sizes, from 60 x 60 pixels to 150 x 150, to
determine the best value for the HOG algorithm. An example of the evaluation for
an image is shown in Fig. 3.7. This step reduces the computational cost of object
recognition. In our experiment, we compared different cell size ¢s of dimension n x n
€ [2,16] to find the best cell size that maintains a discriminative HOG (Fig. 3.7),
while reducing the computational complexity. Based on the performance evaluation,
we use the following settings for our final HOG detector: cell size 10 z 10 pixels,
eight orientation bins, and one block normalization. Other features that we use are
invariant moments, which have been a classical approach for object recognition. These
invariant moments were first presented in the pattern recognition community by Hu
[29], who deployed the results of the theory of algebraic invariants and derived the
seven important invariant moments to object rotation in 2D space.

A two-dimensional (p + ¢q)th order moment is described in (3.5).

mpq:f / 2Pyl (z,y)dzdy (3.5)

For corresponding image J(z, y) in Rol;, the moments of all orders exist if the image
is represented by a piecewise continuous bounded function. The moment sequence
Mypq is uniquely determined by J(z, y); conversely, d(z, y) is also uniquely determined
by the moment sequence my,. These features can be found using central moments,

which are defined as follows:

= [ [ (@2 - 5)'9e.)dody (3.6)

where T = ™ and y = 2% | represent the centroid of J(z,y). The centroid
moo moo

moment fi,, is computed using the centroid of the image, which is equivalent to my,,

whose center has been shifted to coincide with its centroid. The normalized central

moments are defined as follows:
_ Hpg _
npq—m}7—@+Q+2)/2,p+q—2,3,---,) (3.7)
00

Based on normalized central moments, the seven invariant moments are:
@1 = 120 + 702
d2 = (120 — M02)* + 4777,
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¢3 = (130 — 3m2)? + (3n21 — po3)?

b4 = (30 + 3m12)* + (3721 + po3)?

¢5 = (m30 — 3m2)(m30 + m2)[(130 + 1m2)* — 3(121 + 703)*] + 3(M21 — 703) (M21 + 703) [3(1130 +
'-'?12)2 — (21 + '-'?03)2]

b6 = (120 — M02)[(M30 + m2)? — (M21 + M03)?] + 4m1 (30 + M12) (21 + 703)

¢7 = (3121 — 103) (ms0 + m2)[(n30 + m2)® — 3(121 + 103)?] — (30 — 3m2)(n21 + M03)[3(m30 +

m2)? — (21 + M03)?]
These invariant moments have useful properties, including robustness under image

scaling, translation, and rotation. The combination of HOG features and invariant
moments forms the feature vector that we used for object classification. This combi-
nation allowed us to extract the inner and outer information of Rol;. Hu moments
capture the external shape features of Rol; which partially help to overcome the
problem of different perspective on object recognition. These invariant moments are
unaffected by transformations. For example, assume that Object 4 in Fig. 3.7 ro-
tates clockwise or counter-clockwise 10, 45, or 90 degrees on one axis, then for these
transformations to correspond to very similar moments values. In another case, two
objects of different classes may look similar, such as object 1 and object 2, both
having similarities from a top perspective. In this scenario, Hu moments values for
these two objects can also be similar, which might not help the training stage. That
is why these moments are combined with HOG features; the HOG method describes
the information within the shape of the object so that the final characteristic vec-
tors for training are different between objects and perspectives. After calculating the
Hu moments on target regions, these values are concatenated with the HOG feature
vector (with parameters of cell size 10 z 10 pixels, 8 orientation bins, and block nor-
malization) into a final composite feature vector for each Rol;. These vectors are

obtained off-line for later use during the training of model classification.
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3.2.3 Object class prediction

In this section, we discuss the training of the classification approach in our system.
We used mini-batch gradient descent to train different models for classification. In
our case, a feature vector containing HOG + invariant moments provides the samples
for training. In mini-batch gradient descent, T = # /A iterations are computed per
training epoch. A represents the size of the mini-batch and @ is the total number of
training data. The weight parameters v are therefore obtained through optimization

of the approximated values of the error function f, defined as:

tA
B0 =% Y fviz) (39)
i=(t—1)A+1

where t € 1,...,T is the iteration index and z; is the ith training sample. At each
iteration the weights are adjusted using the gradient descent update rule vt =
vi— VL E[f(v?)], with ¢ being the learning rate and V E; representing the gradient
of the loss function. The output of these models gives a vector of probability estimate
per Rol; features, and the index with the maximum value corresponds to the class
prediction. This class prediction is used to compute the pose estimation of the object.
Estimating the pose of the object is quite challenging because the camera can
capture thousands of perspectives of the object. It becomes even more challenging
when the object presents symmetries in some of its axes or when different objects

show equal perspectives that do not allow differentiation between them.

3.2.4 3D pose estimation

Our goal is to estimate the 3D pose of an object by using the contour of its binary
mask with respect to the camera. We assume that for each orientation of the object,
a contour representing the pose of the object can be obtained starting from a refer-
ence point in the image, such as the centroid of the segmented region of the object.
Determining the object’s binary mask is important for estimating the closest pose
more accurately. However, another essential factor that defines the final estimation
is the matching algorithm.

We created a database consisting of the outlines of the binary masks of the images
with different perspectives of each object, labeled with their respective degrees of
orientation on the x, y, and z axes. We generated perspectives from 0 to 360 degrees
around each axis with a variation step of 10 degrees instead of every degree between
consecutive perspectives to reduce the total number of samples. This strategy covers

a large part of the different orientations that an object can have in 3D space. We also
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Figure 3.9: We determine the perpendicular line C'i Pi to the line formed by points C'i
and Ri. The intersection between the resulting line C'iPi and a point on the contour
represents the initial index. All other points are numbered clockwise. Finally, the
distance between the center Ci and each point of the contour is obtained for the
matching process.

identified specific ranges for objects that show symmetries on the same axis, to avoid
having equal contours for different rotational angles. The spatial similarity between
two shapes, f1 and f2, can be defined as the minimum cost of feature matching from
f1 to f2 or vice versa. The matching cost is related to the degree of dissimilarity in
appearance, slope, corner, and spatial location. Normally, a shape-matching tech-
nique and distance measure, e.g., structural similarity index measure (SSIM), peak
signal-to-noise ratio (PSNR), or iterative minimum mean square error (IMMSE), re-
quires the computation of minimal cost correspondences between sets of features on
two shapes.

Our objective is to detect the orientation of the object. Therefore, the technique
must be variant to rotation, but invariant to scaling. For that goal, we implemented
a modification of the marching cubes algorithm that is often used for displaying
triangulated surface models from 3D medical data. We used the two-dimensional
technique of this algorithm that approximates the structure of the industrial object
by generating sets of voxels. Initially, squares are created to represent grids over the
image. Then, the point of intersection of the straight lines with each other represents
the structure at this specific location. This allows us to determine which points
belong to the region. After performing this process for all the points, the algorithm’s
marching squares generate a boundary representation of a complex 2D structure, as

shown in Fig. 3.9 (left). We assume that the starting point of the object’s contour in
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each of its orientations is located in a specific direction and position directly related to
its bounding box and the extreme pixels of the segmented region. Our goal is to find
matches in our database of the contours obtained from the rendered images. Using
the centroid of the bounding box, as a reference, we proceed to determine the outline
of the object. The starting pixel of the contour is automatically found at the top of
the bounding box as shown in Fig. 3.9. The centroid and this starting pixel represent
a line perpendicular to the horizontal axis of the bounding box. All other contour
points are found clockwise until the region that delimits the binary mask object is
closed. After obtaining all the contour points, these points are normalized to pass
through the contour matching stage using a DTW algorithm to find the optimal
matching contour, as shown in Fig. 3.10 and Fig. 3.11.

Finding similarities with DTW

DTW is suitable for measuring similarities in temporal signals and classifying multi-
variate temporal sequences of data that have different phases or lengths over time. An
example is comparing and aligning gait signals to predict falls using wearable sensor
devices. The DTW algorithm has been adopted to various real-world applications
such as speech recognition, handwriting, gait analysis, and data mining. Two given
temporal signals with equivalent features arranged in the same order can appear very
different, due to the durations of feature patterns. DTW reconciles these durations
by comparing the corresponding features at the same location on a common time
axis, which helps to highlight the similarities between the signals. We use the DTW
algorithm to find the optimal match in the database and estimate the 3D pose of
industrial objects. The time-series signal that passes through the DTW algorithm
is the normalized difference between the centroid of the bounding box and the 2D
location of each pixel of the external contour of the object. We compare the input
denoted by X := (z1,29,...,2;,...,zy) of length N € N, and each candidate in our
database denoted by Y := (y1,¥2,...,%i,...,ym) of length M € N. Despite the fact
that X and Y can have different sizes, the DT'W algorithm stretches both vectors to
the same length. Then, it compares locally point-by-point with some warping within

a small neighborhood along the time axis. The DTW distance is calculated as follows:
D(i,j—1)

D(i,j) = dist(x;,y;) + min{ D(i — 1,7 — 1) (3.9)
D(i—1,5)

When applying DTW, one needs a local cost measure, which is also called the “local

distance measure.” It is used to compare the different features of the times series.
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Figure 3.10: (a)Pipeline of our pose estimation process. The RGB-D input image is
initially segmented into multiple Rols in the localization stage. We use the bounding
box of the object to predict the object class. Then, the contour of the binary mask
is extracted to compute the distance between the centroid of the bounding box and
each pixel along the contour. (b) Matching with our database objects is performed
using the DTW algorithm to find an optimal match.

Typically, ¢(z, y) is small (low cost) if z and y are similar to each other, and otherwise

c(z,y) is large (high cost). Evaluating a local cost measure (such as Ly, Euclidean
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distance, or Manhattan distance) for each pair of elements of the sequences X and Y’
results in a cost matrix C € RV M defined by C(n,m) := ¢(zp, ¥m). Then, the goal
is to find an alignment between X and Y with a minimal cost as, shown in Fig. 3.10.
We define the notion of an alignment as follows. An (N, M)-warping path (or, simply,
a “warping path” if N and M are clear from the context) is a sequence p = (py, ..., pr)
with p; = (n,my) € [1: N| x [1 : M] for | € [1 : L] satisfying the following three
conditions: (i) Boundary condition: p; = (1,1) and p, = (N, M), (ii) Monotonicity
condition: n; < nyg < --- < np and m; < my < --- < my, and (iii) Step size
condition: p11 —pr € {(1,0),(0,1),(1,1)} for I € [1 : L—1]. All matching elements i
with a minimal cost lower than a threshold are considered candidate matches. Then,
a structural similarity (SSIM) metric is applied to find the candidate with the best
index, and finally retrieve the optimal pose in the database. The problem of template

matching using the contour can be formulated as:

T =argmin D(T;,Q),T; € 7 (3.10)

where 7 =T, ..., Ty is a gallery of N template contours, and D is a distance metric.
Our pose estimation strategy using DTW can still handle situations with partial oc-
clusion, depending on the object. As long as the object of interest does not present
occlusion in its upper part from the camera’s perspective, our strategy remains effec-

tive, as shown in Fig. 3.15.

Optimal pose candidate

Once the initial matching stage has been completed, all selected candidates according
to their DT'W scores must go through another refinement process. The bounding box
of each candidate pose is extracted. Both bounding boxes of the Rol in the input
image and database are normalized and resized to 130x130 pixels. Both images
are filtered by a linear differential operator, approximating the second derivative,
which is also known as the “Laplacian operator.” This filter discriminates the regions
with intense changes, leaving only the edges of the images. Then, we compute the
SSIM between the two images. SSIM compares the structural information of two
images based on the luminance, contrast, and structural attributes of the images.
The maximum score of 1 indicates that the two images are structurally the same,
while a value of 0 indicates no structural similarity. The same process is repeated on
each of the selected candidates. We take the highest similarity score to represent the
optimal pose. The optimal pose computation pipeline is shown in Fig. 3.10.
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Figure 3.11: Contour generation to predict the poses of seven objects from the T-
LESS dataset. Top row: Rol after object detection for objects 9, 3, 5, 21, 18, 7,
and 6 in different orientations. The middle row shows the contour (green line) of the
object and distance (yellow lines) of each pixel relative to the centroid pixel of the
bounding box. The bottom row shows the distance signal after normalization that
will be compared in our database to find the optimal match.

(b)

Figure 3.12: Example of symmetries. (a) shows Objy5 (left) and Obj; (right), having
symmetries around the y axes. Rotation from 0 to 180 degrees will generate the same
images, which will cause ambiguities. (b) shows asymmetrical objects Obj, (left) and
Objs (right), which generate different views while rotating horizontally.

Addressing object symmetry issues

Most T-LESS dataset objects have multiple symmetries that make pose estimation
difficult. Likewise, other objects present certain details in their physical structures,
such as small holes or markers, that make an object not completely symmetrical.
However, these details can only be observed through a camera from a limited range
of perspectives, which can easily be hidden by external occlusions or self-occlusions.

These object symmetries or details are critical for industrial applications because
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they are often used for certain specific actions, e.g., fitting a hole into its correct
final position, either manually by an operator or automatically by a robotic arm.
Therefore, it is necessary to identify the poses of these symmetries. To handle this
problem during neural net training, we first define an initial orientation [¢z, ¢y, ¢:]
for each object in order to control the ranges of its 3D orientation from a reference
during the rendering process. Then, we perform a visual perception analysis to find
the symmetries along the axes of each object. An important step is to avoid symmetry
on an axis for each object. For example, an object may have a reflection symmetry on
the z-axis in an interval 7 = [0, ]. This can be constrained entirely by assigning zero
to this axis [0, ¢y, ¢.]. As shown in Fig. 3.12a, both objects have symmetries around
the y-axis, and therefore we stop rotation on that axis by assigning [¢., 0, ¢,], where
¢, and ¢, can denote a rotation in a range [0, 7|. In this case, n ranges 71, 7o, ..., T
can be assigned to each object. Another example is rotational symmetry, where the
object has isometries that preserve orientation in the Euclidean space. Avoiding
symmetrical images will reduce the number of elements in our database, as well as
the contour matching time. The rotational angles of the object are defined from 0
to 2w on all three axes. Therefore, when there is symmetry in a respective axis, we

assign this angle a zero value, which means that no rotation is performed on this axis.

3D Location estimation

We measure the 3D translation of the object by using the center pixel of the object’s
bounding box. This box is represented by the smallest rectangle containing the Rol
after the segmentation stage, denoted by the vector [z,y,w, h], where z and y are
the coordinates of the center of mass in the labeled region, and w and h are width
and height of the bounding box, respectively. Every pixel of an object defined by its
bounding box has a depth value corresponding to its 2D location. The distance of the
object from the camera is estimated using intrinsic and extrinsic camera parameters.
The location of a projected 3D point is obtained by correlating the 2D and the depth
data of a pixel, as described below.

Firstly, the points of interest associated with 2D and depth information are ex-
tracted from the bounding box. Pixels of no interest are assigned zero values, while
each important pixel is kept and assigned an index value to iterate over the columns
and rows, which are the outer loop in the vertical axis dy and the inner loop in
the horizontal axis dz, respectively. Inside the inner-loop, we compute the iteration
and linearize the address space for . An independent depth value is extracted by
applying @D [u,v] as a pointer to indicate the value.

We assume the 2D coordinate space of the image as a continuous 2D space, where
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a real-value (float) representation of the projected @, , is constructed by considering
both dz and dy. The result in meters is computed from the above-mentioned depth
value and a previously extracted scale value scales,,,. We estimate the translation
T ¢z, of the object in 3D with all the pixels that segment the object. The formulation

is given below:
CD[U’: U]centrm:d € ROIobj

T, = scale/um (3.11)

Te, — (D[u] —dz)Tz, (3.12)
ftength

Te, = (Dlv] = dy)T v (3.13)
flength

3.3 Validation database and metrics

In this section we describe the public T-LESS dataset and our 3D printed T-LESS
dataset used in the experiments, as well as the evaluation metrics used to validate

our results.

Public T-LESS dataset

We evaluate our method on the T-LESS dataset [125], which provides a challenging
and very realistic industrial scenario. This dataset contains 20 scenes (video sequences
having a total of 504 frames) with multiple configurations of 30 objects captured on
an electric turntable from different camera perspectives.

The authors have made available training and testing sequences, and a non-textured
3D CAD model for each object. They captured the scenes with three different sensors:
Kinect (RGB-D), PrimeSense (RGB-D), and Canon (RGB). The T-LESS objects have
no texture or color, and they are very similar to each other. Furthermore, all these
objects show symmetries in specific axes, which causes pose ambiguity and often fails
even SOTA approaches.

We tested our method on the images captured by the Kinect sensor, but images
captured with the PrimeSense or Canon sensor can also be used. The scenes con-
tain four or more object in a simple configuration. However, they are challenging for
vision-based methods due to occlusion, uniform background, lack of texture, and the
symmetry problem. The complex scenes can contain more than 15 objects, includ-
ing duplicate objects, heavy occlusion, symmetry, shape similarity, and objects not

usually seen. We tested on all sequences to evaluate the effectiveness of our method.
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(i)

Figure 3.13: Estimated bounding box obtained from our object detection method.
(a) and (b) show white bounding boxes precisely overlapping each object. (d) shows
objects of different sizes with their respective Rol. (c), (e), and (f) demonstrate
challenging configurations, where clustered objects are difficult to detect. (g), (h),
and (i) show estimated bounding boxes in the test scenes using our own 3D-printed

T-LESS objects.

Our 3D printed T-LESS objects

For the experiments, we acquired 30 scenes of our 3D-printed objects with different
backgrounds and lighting conditions. Our objects have complex designs and are suit-
able for evaluating our pipeline’s reliability. Some objects were partially occluded Fig.
3.13(g) as well as separated Fig. 3.13(h) and Fig. 3.13(i). In these cases, depth images
were not available during testing. Therefore, we used a different segmentation stage,

but later the same recognition process using HOG features and invariant moments
was applied. A color deconvolution, called Haematoxylin-Eosin-DAB (HED) [128]
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color space, is applied on the RGB image. The transformation is achieved by using a
standard 3x3 matrix Mg that separates three-channel and two-channel images. The
row vectors H  (Haematoxylin), Dr (DAB), and E (Eosin) are the vectors for three
color channels. Color deconvolution is able to segment shiny material objects in a
specific HED component by using a cut-off value. Furthermore, we convert the input
image to CIE-LAB color space to detect translucent parts. L describes lightness,
and A and B are the chromaticity coordinates. The histograms in both HED and
CIE-LAB indicate a cut-off point to segment target objects from the background.
We proceed to normalize each Rol to 60x60 and recognize the objects using HOG

features (cell size 6 x 6 and histograms with 4 bins) and invariant moments.

3.3.1 Validation metrics

We follow the standard quantitative metrics to validate our algorithms on object
detection and pose estimation. The system’s performance for object detection is
measured in terms of intersection over union (IoU). This metric describes the inter-
section between the predicted bounding box of the target object and the ground truth
bounding box. Objects are considered properly detected in the image if IoU > 0.7.
We also measure the Precision, Recall, and Specificity. For the 6D pose, we evaluate
the visible surface discrepancy (VSD) score. This metric represents an ambiguity-
invariant function to determine the error over the visible part of the model’s surface.
More specifically, the distance of the visible depth surface between the estimated
and ground truth is calculated. The following equation defines the visible surface

discrepancy:

evsp(P,P; M, 1,6,7) = ayg_c(p,D,D,T), (3.14)
peVuVv

where V and V are 2D masks of the visible surfaces of 711 = PM and M = PMmM,
respectively. D and D are distance images that we get by rendering M and M. A
distance image stores at each pixel p the distance from the camera center to the closest
3D point x, on the model’s surface that projects to p. d is defined as a tolerance score
used for estimating the visibility masks. ¢(p, D,D, 7) € [0, 1] is the matching cost at
pixel p.

3.4 Results

In this section, we report the validation results of our object detection, class recogni-

tion and 3D pose estimation methods.
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Figure 3.14: Estimated bounding boxes in the test scenes using our own 3D-printed

T-LESS objects

3.4.1 Object detection

We introduce a method for locating objects based on optical images and depth maps to
predict the object location in an image. Our method is different from other approaches
used, in particular CNN architecture such as SSD or Fast-RCNN, which needs to go
through training before applying the trained model to locate the object. In contrast,
our segmentation and localization technique is unsupervised, based on clustering and
morphological operations. As will be discussed in the next section, supervised learning
begins at the object recognition stage. We validate our object detection accuracy by
computing the intersection over the union of the ground truth bounding box and our
predicted bounding box of the target object. We can segment objects quickly without
relying on learning to perform this task. However, in high occlusion situations, the
accuracy can be affected. We performed various tests to determine the reliability
of our object localization method for different scenes. We found that it is generally
easier to localize objects in scenes with uniformly distributed objects, even when
there are partial occlusions between the objects, e.g., Object A overlaps Object B by
10%. This is because our method performs clustering that allows us to distinguish
two objects using their depth maps. The IoU metric describes the intersection of the
predicted bounding box of the target object (Rol) and the ground truth bounding
box. Objects are considered detected correctly in the image if IoU > 0.7. After that,
object recognition is performed using histograms and invariant moments. We tested
our object detection method in different scenarios, as shown in Table 3.1. Once the
bounding box is detected, we determine the class of the object. The bounding area
is passed to the recognition stage. We use two different parameters to extract the
HOG characteristics: 10x10, and 15x 15 pixels per cell, in addition to the invariant
moments. In the next section, we analyze how different HOG parameters contribute

to object recognition.
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Table 3.1: Detection accuracy comparison using T-LESS test scenes: Secy, Ses, Sey,
Ses, Scg, Scr, Ses, Seir, and Seyy. Objects are considered properly detected in the
image if IoU > 0.7. The last column reports the detection accuracy of each scene.
The last row reports the average detection accuracy of all scenes.

Scene ID: Ob_] ID HOG:5;15+HU HOG9z10+HU  Acc. (%)

02: 5 54.3 92.5 92.5
03: 5 17.8 29.0
03: 9 11.2 17.5
03: 12 18.9 27.7
03: 18 15.1 26.5 25.2
04: 5 223 40.1 40.1
05: 9 55.6 77.8 77.8
06: 12 31.2 52.5 52.5
07: 18 47.8 67.5 67.5
08: 21 294 55.3
08: 22 32.7 53.2
08: 23 421 69.5 59.3
11: 5 41.8 66.0
11: 9 43.6 67.5 66.7
14: 23 51.9 70.2 70.2
Avg. 34.38 54.16 61.3
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3.4.2 Class recognition

Our object recognition method is not CNN based. Nevertheless, we can demonstrate
that our results for object recognition are comparable with other methods. We gen-
erated training images of each object through a random rendering process, which
does not require tedious manual labelling. Our approach provides a more convenient
process for industrial applications. For example, if a new industrial part is added into
the pipeline, the system only needs to render the CAD model of the new part from
different perspectives to revise the trained model and there is no need to manually
capture and collect an exhaustive training set of the new part.

Our method is not computationally expensive. However, calculating HOG features
of an image can be an expensive operation, especially for high resolution images. To
address this issue, we first extract the Rol and then normalize the region to an
acceptable scale suitable for real-time tasks. We conducted a study on the effect
of different parameters, such as image resolution and the initial HOG parameters
(like the number of orientation bins and the number of pixels per cells), on the
execution time and accuracy (Fig. 3.8). We observed that the final concatenated
feature vector depends on the initial parameter to obtain relevant information. Also,
the number of orientation bins and number of pixels per cell define the size of the
feature vector, which may contribute to the computational time. We carried out
several experiments with the 30 objects to determine the ideal values that allow us to
maintain an accuracy above 90% and the shortest possible processing time, as shown
in Fig. 3.8. We trained four different classifiers (SGD, PERCEPTRON, PASSIVE-I
and PASSIVE-II) to compare their performances with different HOG parameters.

3.4.3 Object pose estimation

Once the class of the object is obtained in the recognition stage, it is sent to the
pose estimation stage to perform the matching process. To validate the object pose
estimation, a contour matching strategy is incorporated into the pipeline. All the
contours from different views are extracted individually to create our database. We
3D printed 30 T-LESS objects and created 30 datasets, one for each object. Once the
contours are extracted, the distance from the origin of the Rol centroid to each pixel
on the edge is calculated, starting the measurement from a reference pixel on the edge.
The same process is applied to the input images. Similarities are measured in the
matching process to detect the best pose candidates. The matching process is through
DTW, which is a scale invariant method. This algorithm allows for the finding of

similarities between multivariate temporal sequences. During object detection, it
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Figure 3.15: Qualitative results of our pipeline on T-LESS scene. Left top: Input
image with multiple objects, including partially occluded cases. Right: segmented
mask and contour generation for each mask. Left bottom: Qualitative pose estimation
results using our pipeline. Candidate poses (blue color) for each detected object
overlap the input image.

may happen that the size of the Rol is different for the same object with the same
orientation but in different positions, which would cause scaling variations, e.g., the
object is nearer or farther from the camera. In such cases, the contour measurement
will be made longer or shorter depending on the position of the object. At the same
time, the signal will be of different lengths in our database. However, D'T'W guarantees
that our strategy is invariant to object scaling, because this method synchronizes the
durations of both signals by matching features over time. Our results are shown in

Table 3.2, which shows that our method outperforms other approaches.

45



Figure 3.16: Failure cases: Our object segmentation pipeline fails for both cases. Top:
it cannot separate Obj ID 26 and Obj ID 8; the pose can be reasonable for Obj 8
but not for Obj 26 since its contour area is limited. Bottom: despite Obj 5 and Obj
28 sharing the same mask, DTW can still provide an acceptable result for Obj 5 but
not for Obj 28.

3.5 Result analysis and comparison with related
work

In this section, we analyze how recognition is influenced by different initial parame-
ters of the HOG algorithm, and the effectiveness of including invariant moments as
features. We then discuss the influence of the rotation step criteria during training

to obtain the final optimal pose.

3.5.1 Recognition results on T-LESS dataset

Our method demonstrates successful object recognition on scenes of the public T-
LESS dataset. Although our model is trained with synthetic images, it can also
predict the classes of real images, as shown in Fig. 3.13. In most scenes, our method
worked reasonably well in detecting objects in uniform and irregular backgrounds.
Moreover, specific camera angles yielded better results. This is because the improved

lighting in these angles affects the depth maps, sharpening the features that the
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image contains. Regarding object recognition, some objects were poorly recognized
due to their similarity to others, e.g., Objects 1 and 2. The trained model could not
distinguish these classes correctly because the HOG features and invariant moments
for both objects are very similar. Object 5 was recognized in most of the different
scenes, despite its similarity to Object 6. It was poorly detected happened when there
was a significant occlusion, which sharpened its shape and features. These occlusions
hide relevant information, and the only visible part of the object does not provide
discriminative information. On the other hand, different objects that show the same

symmetry from different perspectives can be misclassified.

3.5.2 Recognition results on our 3D printed T-LESS dataset

When using our 3D printed T-LESS dataset, the recognition results are shown in
Table 3.5. We evaluated the performance of our algorithm in 30 scenes with different
background and lighting settings compared to the public T-less settings. However,
it should be mentioned that while our scenes contained fewer frames than the public
T-LESS dataset, the objects have different colors and perspectives. This diversity
of configurations in both datasets allows us to better validate the performance of
our algorithm in different configurations for the same 30 different objects. Table 3.5
reports an average accuracy of 70.10% for our own printed T-LESS scenes. For these
scenes, our algorithm demonstrates variable behavior in the detection of each object.
Some objects are detected with high reliability, such as objects 4, 24, and 25 (accuracy
above 80%), while others are detected with low accuracy, such as objects 3, 16, 6,
29, and 30 (accuracy under 70%). This can be due to various factors such as the
color of objects, changes in lighting, or occlusion of important features. For example,
Fig.3.13(g) Object 29 and Object 30 are black objects lacking visual attributes such
as sharp edges and corners and are less noticeable if the lighting projected onto them
is weak. In this case, the HOG features do not work effectively due to poor edge
quality in the Rol. Poor detection performance can also occur on shiny material
objects (Fig.3.13(g), Object 23 and Object 28) objects due to the incorporation of
visual noise during image acquisition. In some cases, the segmentation stage can be
affected by the poor quality of the depth image, consequently affecting the contour
estimation and pose, as shown in Fig 3.16. The results also show that our model
can handle partial occlusion in many cases. However, excessive occlusion continues

to pose challenges and remains an open research problem.
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3.5.3 Comparison with other approaches

We compare our method with other SOTA methods, specifically Sundermeyer [121]
and Hajari [1]. [121] introduced a self-supervised training strategy based on autoen-
coders to estimate a 3D pose on RGB images, using synthetic views from a 3D CAD
model. [121] first used a CNN architecture + SSD for object detection, obtaining
14.67% accuracy. Then, their results were improved to an average accuracy of 18.35%
using RetinaNet architecture. [1] proposed a model adapting a global approach that
recognizes an initial region of interest from an RGB image. The pose is obtained
from the corresponding depth information by using a template-matching strategy on
the point cloud based on surface normal and Fast Point Feature Histograms, which
achieves an accuracy of 12.16%. Our method is comparable with approaches that
perform pose estimation from optical images (Table 3.2). In our pipeline, the depth
maps are only used for object segmentation at the initial stage. Our method outper-
forms most SOTA approaches, obtaining 24.23% on object recall with erry,sq < 0.3
on the T-LESS dataset. A comparison of results for pose estimation (Object 5 and
Object 11) is shown in Table 3.3. There are some differences between authors with
respect to the experimental settings used to obtain the final results. For example, in
[123] and [1] the authors showed their results after using the ground truth bounding
box (GT BBOX), meaning that the detection and recognition stages were not per-
formed. In [121] the authors showed a comparison using Retina and SSD algorithms
on RGB images with a basic ICP algorithm (optional) for refining depth data, which
increases the computational time. In contrast, our reported statistics include all the
stages of our pipeline from detecting to obtaining a final pose.

In Table 3, our method has a better average score than the others except Kehl
et al., and ours has comparable scores of 26.7 and 24.23 respectively. However, we
observed that Kehl et al.’s method has better scores mainly from Obj ID 20 to 30, but
its performance is reduced for the remaining objects. Our method performs better
than Kehl et al. from Obj ID 1 to 20, scoring 27% and 16%, respectively. This means
that our method performs better for a specific group of T-less objects. It should
be noted that Obj ID 1 to 20 cover a large number of industrial objects with small
shapes (ID 1-4, 13-15), medium with similar shapes (ID 5-6), and very similar shapes
but different sizes (Obj 11 and Obj 12). On the contrary, objects from ID 20-30 are
usually bigger than the previous ones, and have flat and square features. When we
compare the computational time in Table 5, the enhanced version of Kehl et al., and
our method have a comparative fps rate of 12 and 8, respectively. Some approaches

are very fast, e.g., Sundermeyer et al., shows 42 fps, but their accuracy is very low
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Figure 3.17: Manufacturing applicacion setup.

(14.67 and 18.35 on 6D SSD and 6D Retina algorithms respectively). As explained
in Section 6.3, the processing pipeline is composed of many stages. Certain reported
results do not include all the stages, e.g., Crivellaro et al., Hajari et al., and Pix2Pose
(26.79%) reported their results after using the ground truth bounding box, which

means that the detection and recognition stages were not included.

3.6 Parts manufacturing application

Our pipeline for object recognition and pose estimation was designed with a particular
focus on an industrial robotic-arm pick-and-place application. The application aims
to automate manual tasks in an automotive metal parts company. Typically, in
these industrial environments, computer numerical control (CNC) often requires that
drilling machines be loaded with heavy materials to produce a manufactured part.
In our prototype, we used an AUBO robot manipulator and two RealSense sensors
to capture images, as shown in Fig.3.17. All objects captured in our RGB-D scene
were detected and recognized by our pipeline. The final pose of each object was
recognized. The object was grabbed by the robotic arm and positioned in the final
position. The current implementation runs on a desktop with an Intel Core i7-7000
CPU 2.80 GHz 4 Core. The execution time for a single object is 8 fps, surpassing our
previous approach [1] and others, as shown in Table 3.4. The frame rate might vary

when more instances are present in the scene.
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3.7 Conclusion

We propose a semi-supervised strategy to obtain the pose of a texture-less object
placed in a complex scene. Our system is partially trained on synthetic images us-
ing the 3D CAD model of the target object. We locate the Rol that delimits the
object’s structure through an unsupervised segmentation technique. An intelligent
neural net is trained to recognize objects in different perspectives using features of
Histogram Oriented Gradient (HOG) and invariant moments. The estimation of the
object’s pose is based on a matching technique using the Dynamic Time Warping
method to compare vectors of different sizes without losing representative charac-
teristics of the features. Our pipeline, integrating vision-based and learning-based
approaches, demonstrates competitive performance when compared to existing meth-
ods on texture-less objects, and is suitable for real-time applications. In future work,
we will explore optimization to further improve the method’s time and accuracy per-

formance.
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Table 3.2: Comparing the accuracy of our method with the baseline methods on
T-LESS dataset. We use the object recall for err,s; < 0.3 metric on all test scenes.

[121] 1] [5] [129] Pix2Pose Ours

Id 6D SSD 6D Retina FPFH +GT 2D BBs DTW
1 5.65 8.87 4.16 8.00 T.00 12.67 16.33
2 5.46 13.22 5.55 10.00 10.00 16.01 14.41
3 7.05 12.47 4.86  21.00 18.00 22.84 17.64
4 4.61 6.56 3.47 4.00 24.00 6.70 22.24
5 36.45 34.8 16.20 46.00 23.00 38.93 51.60
6 23.15 20.24 13.88 19.00 10.00 28.26 40.96
7 15.97 16.21 19.44 52.00 0.00 26.56 18.93
8 10.86 19.74 15.27 22.00 2.00 18.01 25.53
9 19.59 36.21 12,50 12.00 11.00 33.36 54.32
10 10.47 11.55 7222 7.00 17.00 33.15 27.73
11 4.35 6.31 11.12  3.00 5.00 17.64 21.84
12 7.8 8.15 9.72 3.00 1.00 18.38 40.86
13 3.3 491 6.94 0.00 0.00 16.20 15.46
14 2.85 4.61 5.55 0.00 9.00 10.58 27.47
15 7.9 26.71 9.72 0.00 12.00 40.50 17.80
16 13.06 21.73 8.33 5.00 56.00 35.67 19.63
17 41.7 64.84 5.55 3.00 52.00 50.47 38.07
18 47.17 14.3 3.70  54.00 22.00 33.63 42.10
19 15.95 22.46 2,77 38.00 35.00 23.03 19.35
20 217 5.27 4.16 1.00 5.00 5.35 8.15
21 19.77 17.93 555  39.00 26.00 19.82 24.87
22 11.01 18.63 9.72 19.00 27.00 20.25 17.40
23 7.98 18.63 48.61 61.00 71.00 19.15 20.25
24 4.74 4.23 15.97 1.00 36.00 27.94 10.38
25 21.91 18.76 2,77 16.00 28.00 51.01 18.62
26 10.04 12.62 4.16  27.00 51.00 33.00 12.44
27 7.42 21.13 8.33 17.00 34.00 33.61 12.41
28 21.78 23.07 555 13.00 54.00 30.88 14.87
29 15.33 26.65 11.11  6.00 86.00 35.57 30.68
30 34.63 29.58 18.05 5.00 69.00 44.33 24.56
Ave. 1467 1835 1216 1707 2670  26.79 24.23
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Table 3.3: Pose estimation comparison results on T-less dataset, using Object 5 and
Object 11 as examples.

Approach T-Less
Obj. 5 Obj. 11
[123] + GT BBOX 0.19 0.21
[130] 0.69 0.69
[121] SSD - RGB 0.36 0.04
[121] SSD - RGB + Depth(ICP) 0.69 0.32
[121] Retina - RGB 0.34 0.06

[121] Retina - RGB + Depth(ICP) 0.76 0.35
[1] GT BBOX + FPFH (12 templates)  0.68 0.58
[1] FPFH (12 templates) 0.53 0.45

Ours 0.51 0.22

Table 3.4: Computational time comparison for single object pose estimation ap-
proaches

Approach fps
[130] 0.2
[5] 2
[129] 2
[23] 4
[1] 5
Ours 8
[123] 10
[124] 12
[121] 42
[131] 50
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Table 3.5: Object recognition results from our own 3D printed T-LESS dataset test
scenes. Objects are considered correctly detected in the image if [oU > 0.7. Last row
reports the average recognition accuracy of all objects.

1-10 1 2 3 4 5 6 7 8 9 10

% Ace. 6250 66.67 42.86 80.10 5833 55.56 7143 7500 62.50 66.67

11-20 11 12 13 14 15 16 17 18 19 20

% Ace. T7.78 87.50 76.92 7500 7T1.43 46.15 83.33 75.00 62.50

21-30 21 22 23 24 25 26 27 28 20 30
%Acc. 7143 87.50 7143 83.33 8571 70.05 75.00 71.43 66.67 55.56

Avg. 1-30 70.10
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Chapter 4

Video analysis for local-area in-situ
contexts

4.1 Introduction

The efficient classification of vehicles and the comprehensive analysis of their cargo
have a significant role in modern transportation systems. Accurate insights into vehic-
ular traffic, cargo distribution, and value assessment are crucial for effective highway
management, route planning, and safety inspections. Through the examination of
freight data, organizations can track the ongoing movement of goods, allocate these
flows within the transportation infrastructure, and predict future freight patterns.
These invaluable insights empower federal, provincial, and local authorities with the
information necessary for informed planning and policy making.

According to Canada’s transportation statistics [132], the trucking sector is a cor-
nerstone of transportation within the supply chain. Due to the extensive network of
roadways in Canada, trucks assume the foremost role in transporting goods across
the nation. Additionally, the trucking sector serves as a pivotal mechanism for trade
with the United States — Canada’s primary trade partner. Road transportation over-
whelmingly dominates the movement of freight and passengers in Canada [133]. The
country boasts registration of over 25 million road vehicles and a comprehensive net-
work spanning more than 1.1 million two-lane equivalent kilometers of public roads.
In 2020, authorities revealed that within Canada’s GDP sector related to transporta-
tion and warehousing, truck transportation emerged as the most commonly utilized
mode for goods transport, constituting over 28.0% of the sector’s activities [134].
Rail transportation followed at 11.4%, succeeded by air transportation and water
transportation, both accounting for a combined 2.6%. Five leading commodities

transported via trucks include machinery, manufactured goods, automotive products,
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agri-food products, and chemical products. Concerning exports, a remarkable 97.3%
of goods transported by trucks found their way to the United States, with 1.4% sent
to Mexico and an equivalent percentage to other countries. Consequently, compre-
hending and vigilantly monitoring truck and vehicle activities is pivotal for gaining
crucial insights into traffic dynamics. To address these imperatives, we introduce a
novel analytics framework tailored to support vehicle classification and traffic analy-
sis. Our framework combines advanced detection techniques, metadata exploitation,
and validation strategies to offer precision and reliability in the classification of trucks
and vehicles.

The fundamental premise of our framework centers on the need for real-time and
historical understanding of traffic dynamics. By harnessing the power of machine
learning and data analytics, we endeavor to decode the complexities of vehicular
movements on highways, thereby enabling informed decision-making and streamlined
operations. The ability to promptly access detailed information about detected vehi-
cles empowers authorities to swiftly respond to potential incidents, ensuring height-
ened safety and security on the roads. Our framework goes beyond mere vehicle
identification and enables us to ascertain the direction in which each truck or vehicle
is traveling. This granular insight proves invaluable in optimizing traffic management
strategies and resource allocation. We adopt a multi-tiered approach, encompassing
automated validation during model training and on-site manual validation performed
by certified agents. This validation strategy ensures that the framework’s classifi-
cation results are consistently accurate and dependable, even in dynamic and chal-
lenging scenarios. To ensure the sustained relevance and efficacy of our framework,
we have engineered it for adaptability. Regular updates and refinements to the un-
derlying models are integral to the framework’s design philosophy. These iterative
improvements are driven by a commitment to aligning with emerging data patterns
and maintaining peak performance levels using an active learning stage.

In the subsequent sections, we provide details of our proposed framework, dataset,
methodology, and validation processes. Through rigorous analysis and empirical ev-
idence, we demonstrate the framework’s effectiveness in enhancing vehicle classifica-
tion accuracy and advancing the field of traffic analysis for improved highway man-

agement.

4.2 Literature Review

The effective management of highway systems and the accurate classification of vehi-

cles are integral components of modern transportation infrastructure. Over the years,
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researchers and practitioners have recognized the importance of harnessing advanced
technologies to enhance the understanding of vehicular traffic dynamics and optimize
resource allocation. In this section, we review relevant literature that underscores the
significance of vehicle classification, traffic analysis, and the utilization of metadata

in highway management.

4.2.1 Vehicle classification and traffic analysis

Vehicle classification is a foundational element in traffic engineering and manage-
ment. The ability to categorize vehicles based on various attributes such as size,
weight, and purpose is essential for optimizing road infrastructure, route planning,
and safety inspections. Traditional approaches to vehicle classification often relied on
manual observation and limited sensor data, which posed challenges in accuracy and
scalability. Sensor networks have been used to achieve traffic intelligence and optimize
road infrastructure [135]. Technologies are typically categorized into intrusive sensors,
non-intrusive sensors, and off-roadway sensors. Intrusive sensors encompass various
technologies like magnetic detectors, pneumatic road tubes, piezoelectric devices, and
inductive loop systems [136-138]. These are embedded into the road surface using
techniques like saw-cutting or hole installation. However, intrusive sensors might be
susceptible to external magnetic interference, while also being less suitable for cap-
turing information over larger areas. Non-intrusive sensors, on the other hand, offer
alternatives like vision systems, microwave radar systems, and detectors based on
infrared and ultrasonic technologies [139]. These sensors are installed overhead on
roadways or roadsides, proving advantageous for covering significant traffic areas due
to their non-invasive nature. This characteristic makes non-intrusive sensors a pre-
ferred choice for monitoring expansive traffic regions [140-144]. Recent advancements
in machine learning and computer vision have spurred a paradigm shift in vehicle clas-
sification. Automated methods, such as deep learning techniques, have demonstrated
remarkable proficiency in accurately identifying and categorizing vehicles in real-time
[145-149]. These methods not only alleviate the limitations of manual classification
but also enable a more comprehensive analysis of traffic patterns, leading to informed

decision-making and improved highway management.

4.2.2 Active learning strategies

Active learning can be a crucial strategy for machine learning, particularly in the do-
main of object detection, due to its capacity to optimize model performance with only

a small amount of ground truth data. Annotated object detection datasets are labor-
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intensive to curate, and active learning is a powerful technique used to intelligently
select the most informative data samples for annotation. By selecting examples that
the model finds challenging, active learning ensures that the training process focuses
on refining areas of uncertainty, thereby enhancing model generalization.

The authors of [150] define active learning as a core-set selection problem in which
a subset of examples from a dataset are chosen for training a model such that the
model will give competitive results on the remaining examples. They utilize the ge-
ometry of the dataset to provide a bound on the average core-set loss over any subset
of the dataset and select the subset that minimizes the bound for image acquisition.
A hybrid entropy-based sampling approach based on class imbalance metrics was pro-
posed in [151], where oversampling of minority classes and undersampling of majority
classes was dynamically accomplished via the class imbalance metric. A deep-learning
method considering the training set loss was implemented in [152], where a training
set loss-based weighting algorithm was used to balance Average Precision (AP) be-
tween object categories to improve the mean Average Precision (mAP). The authors
of [153] addressed the issue of global instance-level redundancy by proposing a hybrid
framework combining both instance-level and image-level redundancy removal, while
simultaneously ensuring class balancing to increase diversity across images. They

managed to achieve SOTA results on widely used research datasets.

4.3 Data

4.3.1 Data overview

The traffic videos were recorded at various locations across British Columbia, Canada.
The videos encompass a diverse range of traffic scenarios and vehicle types, contribut-
ing to the comprehensiveness and reliability of our analysis framework. Camera view
configuration was carried out strategically in such a way that vehicles can be viewed
towards one or more directions of interest for each location. Note that the camera
position and camera view are stationary for each study. The recordings were pro-
duced during the day and night, capturing multiple weather conditions. The input
data typically includes 24-hour videos recorded for 1-3 days, and the frame rate varies
from 25-30 fps with multiple camera resolution. An overview of the different camera

locations and classes is shown in Table 4.1 and Table 4.2, respectively.
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Figure 4.1: Images from our dataset with ground truth bounding boxes.
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Table 4.1: Vehicle Classification Labels and Descriptions

ID | Label Vehicle Type Description

1 It Light Truck Single rear-axle light trucks used for various commer-
cial and utility applications.

2 | tronly Tractor Only Tractor unit without an attached trailer or payload,
often used for hauling larger trailers.

3 | trchass Tractor + Chassis Tractor unit coupled with a chassis for versatile
transport applications.

4 trflat Tractor + Flatbed Tractor unit paired with a flatbed trailer for trans-
porting bulky or oversized cargo.

5 | trtrail Tractor + Trailer Tractor unit hauling a standard trailer, common in
long-haul transportation.

6 | trcont Tractor + Container Trucks designed for transporting shipping containers
in intermodal freight transport.

7 | trtank Tractor + Tanker Trucks equipped for transporting liquids or gases in
specialized tanker trailers.

8 const Construction Trucks Trucks for construction tasks, including dump trucks,
cement mixers, and more.

9 | waste Waste Vehicles used for waste management, garbage collec-
tion, and recycling operations.

10 o Other/Single Unit 3 Axle Miscellaneous single-unit vehicles with three axles.

11 vp Van/Pickup + DG Placard | Vans and pickups carrying Dangerous Goods (DG)
placards for hazardous materials.

12 | trreefer | Truck with Refrigeration Unit | Trucks equipped with refrigeration units for trans-
porting temperature-sensitive goods.

13 rve RVs and Campers Recreational vehicles (RVs) and campers for leisure
travel and camping.

14 bus Buses Various types of buses, including public transporta-
tion, school buses, and long-distance coaches.

15 sV Small Vehicle Cars, motorcycles, sedans, SUVs, and other personal
vehicles.

4.4 Proposed framework

4.4.1 Data preprocessing

Manual sampling videos with significant frames

Initially, we tested using pre-existing models that can detect cars and trucks. These
models are often pre-trained on public large datasets like COCO (Common Objects
in Context) and show acceptable performance in detecting vehicles in many cases.
However, our study noted that these existing models often misclassified trucks or
did not detect them efficiently because of the diversity of the cameras’ field of view
and the scene complexity. Many scenes can present challenging cases such as low,
moderate, or high occlusions, as well as crowds of vehicles grouped in close proximity.

These difficulties necessitate building a more robust system to obtain much better
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Table 4.2: Highway Camera Locations for Vehicle Analysis Videos

Site Directions Resolution FPS
1900 Blk Capilano Rd NE/SW 0960x540 15
Hope Truck Stop Hwy 1 Ramp E T20x480 30
Cole Rd Hwy 1 Ramp NE/SW 720x480 30
Hwy 1 at Peterson Creek E/W 720x480 30
Kamloops Break Check E T20x480 30
Kamloops CVSE W 720x480 30
Knutsford Rest Area N/S 960540 15
Main St and Cotton Rd E/W 0960x540 15
Marshall Rd and Peardonville Rd E/W 960540 15
Queen St and Wheel Ave N/S 720x480 30

performance in the detection, classification, counting, and directional estimation of
vehicles. Therefore, we consider selecting frames from multiple videos showing repre-
sentative and diverse data for annotation purposes. We noticed a greater frequency
of small vehicles (class 15) and Vans/Pickups (class 11) than the remaining classes.
Consequently, we primarily focused on frames containing instances from classes 1-10
and 12, which correspond to truck vehicles. Within these frames, we proceeded to an-
notate all other vehicles from the remaining classes (classes 11 and 13-15) if they were
present. The selected frames were separated into n batches per each video location

for data labeling.

Data annotation

We utilize a crowdsourcing environment to distribute the annotation task among mul-
tiple labelers and reviewers. Proper quality control mechanisms and clear annotation
guidelines are essential. To achieve this, n batches are divided among multiple an-
notators to work simultaneously. At this stage, labelers followed clear guidelines and
consistent quality control to ensure uniform annotation. We started by annotating
a smaller subset of the dataset and gradually expanded as needed. Our approach
involved distributing annotation tasks among six annotators and leveraging four spe-
cialized reviewers with expertise in vehicle domains for approval for two weeks. Anno-
tations rejected by reviewers prompted refining by the assigned reviewer. This process
ensures data accuracy and domain-relevant insights. Following the annotation stage,
we built our baseline dataset with a diverse collection of 2,867 images. Within this

dataset, 93 images were categorized as null (devoid of any discernible objects of in-
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terest), and 5,995 annotations were meticulously curated. With an average of 2.1
annotations per image, the dataset spanned 15 distinct classes. The images in the
dataset exhibit an average size of 0.35 megapixels, with the median image resolution
being 720x480 pixels. Notably, the most prevalent class is the sedan (sv) with 2,011
instances, followed closely by the van/pickup (vp) with 932 instances, then the trailer
with a trail (trtrail) with 900 instances. The remaining classes contain the following
annotations: trflat (489), const (351), trreefer (280), 1t (251), trtank (235), rve (128),
trcont (117), bus (111), tronly (94), o (59), and waste (37). The dataset offers a rich
variety of traffic scenarios, providing an ideal foundation for in-depth traffic analysis
and research endeavors, as shown in Fig.4.1.

Our approach’s active learning aspect enhances efficiency. The framework is partic-
ularly beneficial for processing extensive video datasets, as exemplified by our input
data of up to 72-hours-long MP4 videos. Collaborative annotation efficiently man-
ages large-scale data, ensuring accurate model training. Furthermore, our proposed
pipeline is specifically designed to effectively handle continuous input data, making

it well-suited for real-world scenarios.

4.4.2 Data augmentation

Data augmentation is a prevalent technique within Computer Vision that aims to
expand both the size and variety of the training dataset. This practice becomes
particularly pertinent in the context of object detection tasks, as encountered in
our ongoing investigation, given the complexities introduced by issues like occlusion
and shifts in viewpoint. To address the intricate matters of occlusion and viewpoint
variability, this study has implemented the following data augmentation operations:
hue -25° to +25°, brightness -30% to +30% , exposure -20% to +20%, noise up to

5%, random cutout, and horizontal flip.

4.4.3 Coarse level model selection

This scenario studies the assessment of four distinct object detection models: YOLOV5,
YOLOv6, YOLOvS8, and RT-DETR-L. All these models are tailored for the single-
stage detection of objects. To comprehensively evaluate their performance, multiple
variations of each model were employed. Subsequently, the study explored the effi-
cacy of a two-stage approach using YOLOvS8. In this approach, an initial YOLOv8
detector determined whether a given vehicle was categorized as a ‘truck’ or ‘other,’
where ‘truck’ maps the classes 1 to 10 and 12, and ‘other’ maps the classes 11,13,14,

and 15. Then, we trained a subsequent classifier model to precisely decide a final cat-
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egory. We describe below the different models that we compared during our selection

process.

YOLOv5

Developed as an upgrade to YOLOv4, YOLOv5 has a couple of new features in-
cluding the PyTorch framework and AutoAnchor algorithm. Its architecture makes
use of technologies including the SPPF layer and several augmentations for increased
stability, as well as a modified CSPDarknet53 backbone.

YOLOv6

The Meituan Vision Al Department unveiled YOLOv6, a cutting-edge object iden-
tification model. A PAN topology neck, a creative decoupled head using a hybrid-
channel technique, an effective backbone made of RepVGG or CSPStackRep blocks,
and a decoupled head are all included in YOLOv6. Improved quantization methods,
such as post-training quantization and channel-wise distillation, outperform YOLOvV5,
YOLOX, and PP-YOLOE in terms of speed and accuracy. The EfficientRep back-
bone, Task alignment label assignment, creative losses, self-distillation, and quanti-

zation technique are notable components.

YOLOvS

YOLOvVS8 was introduced by Ultralytics in January 2023. It offers five scaled variants
to support various eyesight activities. By combining features and context, the C2F
module, which replaces the CSPLayer, increases accuracy. To increase accuracy,
YOLOvVS uses an anchor-free model with a decoupled head for separate objectness,
classification, and regression tasks. Bounding boxes are improved by CloU and DFL
losses, and small objects benefit from binary cross-entropy. In terms of semantic

segmentation, YOLOv8-Seg excels. It is significantly more user-friendly because it

supports CLI/PIP use.

RT-DETR

Impressive results have recently been obtained using DETRs, or end-to-end transformer-
based object detectors. However, their high computational cost makes them impracti-
cal to employ and prohibits post-processing techniques like non-maximum suppression
(NMS) from being fully utilized. Real-Time Detection Transformer (RT-DETR) was
proposed as a remedy to this problem. In addition to improving query quality and

enabling adjustable speed modifications without the need for retraining, RT-DETR
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Figure 4.2: High-level overview of the closed-loop vehicle analysis pipeline

effectively manages multi-scale characteristics. It is also very user-friendly because it

supports CLI/PIP use.

4.4.4 Metadata extraction from predictions

Metadata extraction provides the foundation for a robust traffic analysis system. We
engineered a vehicle-tracking algorithm, illustrated in Fig. 4.2, capable of capturing
per-vehicle class and class confidence estimations as well as entry and exit direction
estimations. These are essential pieces of information that can provide pivotal insights
into goods flow and route planning optimization. Our methods for obtaining these

pieces of data are described below:

Vehicle tracking

We created both a single-stage and a two-stage pipeline for vehicle tracking. The
single-stage pipeline utilizes a single YOLOvS8 object detector trained on all vehicle
classes. The two-stage pipeline utilizes a YOLOvS8 detector trained with all vehicle
classes merged into one vehicle class, and then a downstream YOLOv8-classifier model

to get the fine-grained classification results. Both pipelines make use of the Norfair
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tracking algorithm [154] to track detections across time. Each unique object track
is associated with a vehicle instance, and once the object track is unregistered from
the tracker it is counted as an instance of that vehicle’s class. However, tracking
failures showed in scenarios where multiple vehicles appear simultaneously. In such
situations, the tracker’s performance can be adversely affected, leading to difficulties
in accurately identifying, distinguishing, and tracking individual vehicles, especially
when occlusions, overlapping objects, or complex interactions occur among multiple
vehicles. Because of the potential classification uncertainty in complex conditions,
we adapted this tracker to enhance the accuracy of vehicle class prediction. Our
approach involves calculating the cumulative average of confidence scores associated
with each estimated class over a vehicle’s lifespan. The final class is computed as
arg max,.c nic > e Pie, where C' is the set of vehicle classes being tracked, n, is the
number of occurrences of class ¢ € C, and p;. is the confidence value of the it
occurrence of class e¢. This enables us to make a more informed and robust final class
prediction, especially in scenarios with multiple vehicles, by considering the historical
confidence information. We recognize that different camera placements and streets
may present unique challenges and variations in traffic patterns. In conjunction with
the previously described algorithm, our system incorporates a user-defined region-of-
interest polygon to filter out regions of the camera view that do not contain useful
information for traffic flow analysis (such as faraway regions and side streets). We
decided upon a polygon region of interest instead of user-defined lines across the road,
such as those used in [155, 156], to specify where vehicle counting occurs as it can

handle more complex scenes, such as intersections, to be analyzed.

Vehicle direction estimation

While vehicle counting is a common topic, vehicle flow direction analysis has not
been sufficiently studied. We estimate vehicle entry and exit directions using the
initial and final centroids (¢; and c¢) of the vehicle, as well as user-defined direction
coordinate points (). We first bucket each image pixel p into direction zones via the
following equation: zone(p) = argmin o|/p — q|l2. We then build an image mask
from these buckets, where its pixel values correspond to the index of the direction
coordinate bucket they fell into. When a vehicle is unregistered from the tracker, we
fit a straight line y = m -z + b through ¢; and c; and then compute the points where
that line intersects the image boundaries. We then do a one-to-one association of the
centroids to intersection points based on shortest relative distances. Finally, the pixel
value of the image mask at each intersection point denotes the directions associated
with the centroids, and thus the vehicle itself.
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2023-07-12 11:43:07 AM|

(c) frame 58 (d) direction

Figure 4.3: Example of direction estimation for a vehicle that was tracked. The
purple points in (d) correspond to the initial and final centroid estimations, and the
blue points correspond to the intersection of the fit line with the image boundaries.
The red lines depict the direction zones. This vehicle would be classified as entering
westbound and exiting eastbound
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The mask is only computed once at the start, and then the intersection and di-
rection association steps are computed each time a vehicle is unregistered. These
calculations can be performed quickly, and we bypass the need to store all centroids
across the lifespan of a vehicle, thus making it both computationally and memory

efficient. Fig. 4.3 displays what this may look like during a processing run.

Algorithm 1 Active Learning Image Acquisition

Input: video frames {/;}icp
classes C
image budget b
instance similarity thresh Tp,ms
intra-class redundancy thresh Ti;ra
inter-class balancing thresh T, er
video frame rate fps
seconds between samples s
Output: selected images AS for oracle label corrections
// simplifying {1,...,n} to [n] for readability
1: initialize candidate images S < (), class predictions ) < 0, confidence scores
P + (), image entropies E < (), prototypes T < (), and sampling rate r < 0
2: for iin [n] do
3: r+=1
4:  Detect objects o in the image I;, obtaining the bounding boxes {b; s }xe[o], classes
{4k }refo, and confidences {p; i} ke[
if o A0 and r > fps- s then
update S < SU{L;}, Q < QU {qir}rep], P < PU{pir}rep), and 7 <0
for k in [0] do
extract single-object image I} from [; using b;
compute feature embedding f; ;, from Ir using the CLIP zero-shot model
10: end for
11: U—pda‘te E«<~EU {ENMS(QM Pi: {.fz',k}ke[o]: Tenms)}

12: compute prototypes T; using equation 4.1 and update T « T U {T;}
13:  end if
14: end for

// function call holds lines 2-13 of Algorithm 2 in [153]
15: set AS < DiversePrototype(S, T, b, Tintras Tinter)
16: return the most informative images AS, where |AS| < b

4.4.5 Active learning and label assist

We developed an active learning algorithm for object detection inspired by the diverse
prototype algorithm described in [153], with pseudocode shown in Algorithm 1. We

first sample frames ezplicitly containing detections every n seconds from the video.
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This ensures all initial candidate images are detected, and the sampling rate can be
changed depending on the expected speed of traffic flow. After candidate images have
been sampled, we iterate over them, computing the feature vector of each detected
object utilizing OpenAl’s CLIP zero-shot image classification model [157]. CLIP takes
a different approach to learning visual representations by utilizing natural language
supervision and has shown respectable generalization capabilities. At this point, we
have all we need to begin the diverse prototype algorithm.

The algorithm begins with Entropy-based Non-Maximum Suppression (ENMS),
where the entropy of each image is computed using per-object-instance entropy cal-
culations and cosine similarity metrics to reduce redundancy and to ultimately find
a better representation of the information in the image. Then, prototypes are com-
puted for each detected class in each image. The prototype for class ¢ detected in

image i is formulated as [153]:

Ykepg L(e,cip) - H (L, k) - fip
> ke L (e eipe) - H (L, k)

where 1 (¢, ¢;x) equals 1 if ¢ = ¢; and 0 otherwise, and H(I;, k) = —p;log(pix) —

(4.1)

proto; . =

(1 —pix)log(1 — p;y) is the entropy of the k™ object instance, computed based on its
confidence score. These prototypes significantly reduce the computational complexity
when computing diversity metrics across multiple images.

Images are then sorted in decreasing order according to their entropy and are
successively selected based on their intra-class and inter-class diversity across pre-
viously selected candidate images. The algorithm ensures that the most optimal,
information-dense frames are extracted within the specified image budget, allowing
for massive time savings in comparison to manual dataset annotation. Our appli-
cation outputs the images and annotations in the YOLOvS.txt annotation format,
allowing for quick drag-and-drop into most annotation software. This active learning
framework automates almost all the manual labor usually required for annotating
object detection datasets. Users no longer have to manually sift through hours of
videos to find optimal frames and annotate thousands of bounding boxes afterwards.
Only slight bounding box touch-ups and misclassification corrections are necessary,

which require much less time to complete.

4.4.6 Model training

All models were trained using the hyperparameters in Table 4.3. Also, all the models
were trained for up to 200 epochs with a batch size of 8 and an image size of 640x640.

In order to compare the effectiveness of the models, we use precision, recall, and mean
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Table 4.3: Training Hyperparameters

Hyperparameter YOLOv5 YOLOv6 YOLOv8 RT-DETR-L
Initial Learning Rate 0.01 0.01 0.01 0.0001
Optimizer Adam Adam Adam Adam
Momentum 0.937 0.937 0.937 0.937
Weight Decay 0.0005 0.0005 0.0005 0.0005
Warmup Epochs 3.0 3.0 3.0 3.0

Table 4.4: Experimental results on validation baseline dataset

Model Precision Recall mAP@0.5 mAP0.5-0.95 Inf.

(ms)
YOLOvEn 0.839 0.796 0.882 0.788 3.8
YOLOv8m 0.875 0.825 0.886 0.798 6.3
YOLOvE1 0.887 0.808 0.881 0.795 16.8
YOLOvS8s 0.898 0.805 0.876 0.793 259
YOLOv8x 0.874 0.793 0.875 0.791 46.6
YOLOv6n 0.656 0.587 0.633 0.549 2.0
YOLOv6m 0.654 0.672 0.710 0.614 14.3
YOLOv61 0.603 0.591 0.595 0.513 27.7
YOLOv6s 0.757 0.637 0.726 0.627 4.6
YOLOv5n 0.876 0.787 0.880 0.786 1.9
YOLOv5m 0.878 0.807 0.881 0.793 5.2
YOLOv51 0.846 0.802 0.884 0.800 7.7
YOLOv5s 0.844 0.818 0.885 0.793 2.6
YOLOv5x 0.876 0.828 0.890 0.800 15.3
RT-DETR-L.  0.850 0.829 0.820 0.734 17.7
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Table 4.5: Experimental results on validation baseline dataset after data augmenta-
tion

Model Precision Recall mAP@0.5 mAP0.5-0.95 Inf.
(ms)
YOLOvEn 0.830 0.828 0.881 0.788 3.2
YOLOv8m 0.865 0.816 0.875 0.796 176
YOLOvE1 0.858 0.837 0.885 0.807 274
YOLOvS8s 0.881 0.786 0.877 0.789 6.3
YOLOv8x 0.882 0.811 0.891 0.812 41
YOLOv6n 0.792 0.756 0.820 0.727 1.1
YOLOv6m 0.843 0.810 0.865 0.774 7.7
YOLOv6s 0.850 0.808 0.877 0.786 24
YOLOv5n 0.86 0.787 0.872 0.774 1.6
YOLOv5m 0.862 0.838 0.880 0.798 3.2
YOLOv51 0.863 0.822 0.890 0.805 4.7
YOLOv5s 0.881 0.816 0.875 0.787 1.7
YOLOv5x 0.885 0.831 0.891 0.805 15.2
RT-DETR-L.  0.876 0.831 0.842 0.754 16.9

average precision as metrics. For training and evaluation, we divide the workload
into two machines. Both workstations have NVIDIA GeForce RTX 2080 SUPER,
processor Intel Core 17-10700KF CPU with 3.80GHzx 16, and 64GB of RAM.

4.5 Experimental Results

4.5.1 Single-stage object detection results on baseline dataset

We conducted a comparative analysis of the models in Table 4.4. Among the evaluated
object detection models, YOLOv8s demonstrates remarkable performance in terms
of precision, achieving a value of 0.898. This indicates the model’s proficiency in
making accurate positive predictions. YOLOvSI follows closely as the second-highest
performing model in terms of precision, with a precision value of 0.887. On the other
hand, RT-DETR-L and YOLOv5x showcase a recall of 0.829 and 0.828. YOLOv8m
also performs acceptably in terms of recall, with a recall value of 0.825. Notably,
YOLOv5x also excels in mAP@0.5 and mAP@0.5-0.95, exhibiting values of 0.890
and 0.80, respectively. YOLOv8m emerges as the second-best model for mAP@O0.5,
showing a mAP@Q0.5 value of 0.886. Additionally, in terms of mAP0.5-0.95, both
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YOLOvSI] and YOLOvV5I share the lead with a value of 0.800, further emphasizing

their strong performance in detecting objects under varying overlap conditions.

4.5.2 Single-stage object detection results on augmented base-
line dataset

In the realm of object detection, a rigorous examination of diverse models was un-
dertaken encompassing an augmented version of our baseline dataset, shown in Table
4.5. YOLOv5x underscored its proficiency by attaining a precision score of 0.885.
YOLOv5m achieved 0.838 in recall metric followed by YOLOvSI with a recall score of
0.837 (refer to Fig. 4.9 ). RT-DETR-L and YOLOv5x achieved both 0.381. The per-
formance of the models was further accentuated by their mAP@0.5. Here, YOLOv8x
and YOLOv5x shared a mAP@O0.5 score of 0.891, showing their capability to harmo-
niously balance precision and recall at an IoU threshold of 0.5. Extended across the
broader IoU of 0.5 to 0.95, YOLOv8x remained resolute with a mAP0.5-0.95 score
of 0.812, a crucial factor with contextual significance depending on the application’s
exigencies. This factor underscores the trade-off between accuracy and efficiency.
Notably, YOLOv6n provides faster predictions, showing an inference time of 1.1 ms,
rendering it adept for applications requiring real-time object detection. YOLOv5n
showcases swift object detection deployment with an inference time of 1.6 ms. Con-
versely, certain models reflect a relatively higher inference time, encapsulating the in-
tricacies of their architectures. Noteworthy among these models is YOLOv8x, which,
while attaining commendable recall and precision, is characterized by a comparatively
longer inference time of 41 ms. Please refer to Figs. 4.4, 4.5, 4.6, 4.7, and 4.8 for
quantitative and qualitative results of YOLOVS8x.
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Figure 4.4: Top left subfigure shows the label distribution of the baseline train set,
with each color representing a class. SV class contains most objects, followed by VP
and TRTRAIL. The top right subfigure shows the size of the object bounding boxes
in the dataset, and the coordinates of the centers of all object boxes are fixed at one
point. The bottom left subfigure shows the distribution of the coordinates of the
center points of the object’s bounding boxes. The bottom right subfigure is a scatter
plot of the corresponding width and height of the object’s bounding box.
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Figure 4.5: Quantitative results of YOLOVS8x in our baseline dataset using non-
normalized and normalized confusion matrices.
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4.5.3 Two-stage object detection results

Object detection for the two-classes dataset

On the experimental validation augmented dataset, YOLOv8x outperformed all other
versions in terms of both mAP@0.5 and mAP@0.5-0.95, 0.968, and 0.855 respectively.

However, a major constraint is its inference time of 27.6 for real-time traffic analysis.

Object Classification Results

Our dataset for object classification derived from our baseline dataset for object
detection; we extracted all the bounding boxes’ annotations as images and trained
a YOLOVSI classifier. We performed comparative experiments when training with
image inputs sized 128x 128 and 192x192. The results show that the accuracy of top-
1 and top-5 after fine-tuning with 128 x 128 are 0.83 and 0.98, respectively. However,
the performance improves when using an image size of 192x 192, with top-1 and top-5
accuracy of 0.84 and 0.99.

4.5.4 Truck analytics interface (UI)

We feel that a simple user interface (UI) can bridge the gap between complex machine
learning models and non-technical users. It has higher accessibility and allows more
people to learn about computer vision projects in a straightforward way. It simpli-
fies the process of training models and classifying vehicles in general. Users do not
need to understand the complexity of machine learning and can more easily utilize
the project’s functionality by simply interacting with the Ul in order to overcome
problems such as detecting and identifying complex vehicles, which greatly improves
productivity. In the main display of our UI, the user can input a batch of videos into
the system in a simple way and the results can be presented to the user in a way
that is more visual, easier to understand, and easier to save and export. Users can
click different buttons on the main page to further organize and analyze the data in
a convenient manner. Furthermore, we also support users to select the appropriate
models they need. In the model-selection page of our Ul, we sort the different models
according to their speed of recognizing objects, confidence level, etc. Users can use
this information to effectively select the model they want to apply.

For better model training in the future, we added an active-learning button. This
button allows for quick access to more labeled data of added value in a more time-
efficient way. This greatly reduces the time and labor costs required to obtain labeled

samples for future model training. In summary, the development of user-friendly
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interfaces can greatly improve the accessibility and usability of machine learning-
based vehicle recognition and classification projects, which not only expedites the
adoption of such technologies but also reduces barriers in user training, enabling more
people to take advantage of the application capabilities. As a result, a wider range
of applications becomes attainable, leading to increased efficiency and productivity

in the field of computer vision.

4.6 Conclusion

In this study, we have successfully developed an effective system for multi-class traffic
analysis that exhibits a wide range of capabilities. This system excels in detecting,
classifying, tracking, counting, timestamping, and estimating the direction of vehicles
in diverse urban scenarios under varying conditions such as lighting and shadow. Our
approach involves a carefully designed, two-stage process, starting with significant
frame extraction, followed by the fusion of single-stage object detection with conven-
tional algorithms for object post-processing and data analysis. Our comprehensive
experimentation has yielded compelling results, showcasing the effectiveness and ro-
bustness of our system in vehicle analysis. We achieved high mean Average Precision
(mAP) scores and recall rates when tested against our dataset. Moreover, our system
is designed with adaptability in mind, as it incorporates a continuous learning loop.
This adaptive approach ensures that our models evolve and improve over time as they
receive continuous input data. In conclusion, our developed system not only excels
in its current performance but also holds the promise of continuous enhancement,

making it a valuable asset in the domain of traffic analysis and management.

76



Figure 4.9: Rows 1-3: Multi-class object detection and tracking examples using
YOLOVSI and BoT-SORT tracker (one-stage approach). Rows 4-11: Object clas-

sification on predicted bounding boxes (two-stage approach).
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Chapter 5

LiDAR feature extraction for
WAM

5.1 Introduction

Urban city development depends on accurate collection of geomatics data with suffi-
cient precision, resolution, and extent appropriate for engineering design. The term
“geomatics” is defined by the International Organization for Standardization TC211
series as the tasks of gathering, transferring, storing, analyzing, processing, and pre-
senting geographic information. It encompasses multiple disciplines such as geodesy,
hydrography, mapping, navigation, photogrammetry, remote sensing, geographic in-
formation systems, and surveying.

Currently, ground-based and aerial-based geomatics, such as terrain modeling and
land surveying (LS), are active research topics resulting from the rapid expansion
of LiDAR (Light Detection and Ranging) sensing technologies, which creates more
opportunities for the geomatics disciplines, including automation. Companies across
the globe are engaging to advance this remote sensing technology and making use of
its capabilities to retrieve useful data from the earth’s surface. LiDAR technology
benefits many applications such as agriculture, astronomy, atmosphere, autonomous
vehicles (AV), forestry, biology, green energy, geology and soil, mining, and transport.
LiDAR devices apply light in the form of a pulsed laser to measure ranges projected
over natural and man-made environments to acquire information about surfaces, e.g.,
terrain, vegetation, and physical objects. Moreover, the light pulses combined with
imagery data recorded by an airborne or terrestrial optical camera system provide
useful clues with high-resolution, colorful, and three-dimensional information about
the shape of the target’s surface.

LS requires measuring the relative positions of natural and man-made features,
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Figure 5.1: Top: CAD drawing generated from a conventional surveying routine,
including accurate spatial information of urban assets. Bottom: point-cloud scene for
the same location.

e.g., infrastructure, traffic signs, and utilities on or under the earth’s surface. Tradi-
tional LS techniques involve manual operations to measure, calculate, and plan, in
order to determine an accurate position of an urban object. For example, in a typical
LS routine, a geomatics company sends a ground survey crew to the geographical
area under study with accuracy devices such as a Global Navigation Satellite Sys-
tem (GNSS) receiver, prismatic compasses, clinometer, among others. The crew then
localizes the target objects e.g., manholes, catch-basins, water-valves, and linear fea-
tures that stand out in the urban environment, such as paint lines, stop bar paint
lines, side walks, or curbs (top and bottom). The surveyor also determines heights
and distances; identifies buildings, bridges, and roadways; determines areas and vol-
umes; and draws plans at a predetermined scale. Although these conventional surveys
and assessments can provide accurate geomatic data, they are predominantly manual
tasks that require a high level of expertise to execute. Furthermore, the presentation
of the geomatic information must be either by an engineering drawing as shown in
Fig. 5.1, or by numerical values in the form of tables relying on expensive software
tools. In view of the rapid expansion of cities and towns, the manual process becomes

time-consuming, restricted, and limited to skilled labor. Therefore, automation with

79



the support of LS software is the current trend for increasing productivity. A prelim-
inary, but necessary step is to automatically extract urban features from point-cloud
data.

80



estmuiod/xoqq (Jg  uoljRjuLITeg 23 UOHORlA( - STL € aev'e - - 24 BpeuE) 1g0g  (|nQ) Buideamgig
xoqq (I¢/qz uorels( - STN - - 007 WP'T €2 D ‘nosog 6102 [£21] seusognu
xoqq (1¢/dz wor13698(] - STN - - 1002 Wt ¥ VSN *¢ 6102 [9L1] wed(y ourdep
x0qq 4¢/azs uor3289a(] - STN - - 166 q6e L DS 6102 [eL1] ag«V
xoqq (g/de wory3a(] - STN - - A9% qeTE 6 oY o[8d  610T [P21] T WAT
xoqq q¢/qz uonela( - STN - - A 6y <1 Id ‘e 6108 [eLT] esa@031y
x0qq 4¢/ds noeta] - STN - - ALe €8 8 AS 610 [zL1] asH
xoqq (g/de wory3a(] - STN - - AeT 6T 8 aUIS[IEY  ZT0T (127 ILLIM
astquiod uonejuewEey unzg 6 STN - a¢v  fog/MeT - 8% - 6102 [021] ILIIMonuemag
esum-juiod OB ULEey - AV ¥ WLFRZ - - £1 M0 0202 [691] mqinIBsULg
astm-jutod uoyejuswgag - AVD T NTLE6 - - 4 arodedulg  0Z0E [s01] aesndnyD
astauiod noneIR wEeg - IV 1 wo9e - - e1 wqng - 6102 [291] &Ounqng
sstmuiod togeywuEey - SIV ¥ ware - - 9 Bu) ‘SYRH 0202 [o01] nASVT
astm-utod uorjeewEag - IV 0F weos - - 8 0g 'fermng  0Z08 [eo1] sATVA
astqurod uonejuewEey - IV ¢ wWetr - - 6 - Z10g [vo1] SudSI
astm-quiod tonewBUEey - STN 08 woee - - g - 0202 [¢91] agweng
astm-juiod uorjejusmdeg wWFG T STN € WTErT - - 0g AV - suBg  0g0T [zo1] ag-enrTseg
astm-qutod noneIR wEeg weoOT STN ¥ wesL - - 8 NO ‘ojuore], 020 [1o1] ag-omoay,
sst-quiod OB ULEey wrg STN 1 «INOOE - - 73 souslq ‘sted G0 [091] snuudy
astm-utod uoryeuewdag u O1eT STN LT WIgT - - i qamasind ‘puepE0 6008 [681] puepreQ
sstm-qutod noneIR wEeg - 1L 0¢ qar - - 8 adomy  L102 [8e1] ggonuemeg
uorjejoun Yy =R, amg [eyedg  spowr Yy seusdg sjutog  semer]  sHwy  sessel) Uoryed0T  IBBL jesele(]

‘sjeseyep YVAIT (¢ weqin Sunsxe jo uostreduwo)) :1°G 9[qe],

81



Figure 5.2: Top: New Westminster (NW) raw point-cloud scene. Middle: NW point-
cloud with point-wise points. Bottom: NW point-cloud with 3D bounding boxe
annotations.

5.1.1 LiDAR sensing modalities

Current 3D datasets in urban scenarios are mainly differentiated by their applications
and gathering modalities. The existing datasets are divided into three main categories
of LiDAR modes: airborne laser scanning (ALS), mobile laser scanning (MLS), and
terrestrial laser scanning (TLS).

Algorithms designed to work with ALS differ considerably from those developed for
MLS and TLS. One difference between terrestrial and mobile laser scanning devices
is that TLS acquires data from the ground on a stationary platform or fixed location
on the ground, while MLS data is acquired from a non-stationary platform, normally
on the top of a vehicle. In contrast, ALS collects point-cloud data from the air with
the sensor field of view pointing straight down at the ground (also known as “nadir”).
Another important difference in these modalities is the point-cloud acquisition res-
olution. The point-cloud resolution dictates the information detail on the surfaces,
which might vary depending on the application and device specifications. For sur-
veying and engineering, high-resolution point-clouds are required to obtain accurate
information about urban objects. These remote sensing modalities aim to capture
point-clouds and use algorithms to automatically process the raw scanned data, and
later produce a suitable output, e.g., 3D bounding boxes, semantic segmentation, or

pose of the object.
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Figure 5.3: Top: Google Street View image of 71 Merivale St New Westminster,
British Columbia. Bottom: point-cloud for the same location with some examples of
ground truth bounding boxes in our LiSurveying dataset.
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5.1.2 Urban LiDAR datasets

The KITTI [171] is a pioneer multimodal dataset that includes point-clouds from a
LiDAR sensor as well as front-facing stereo images and GPS/IMU data. This dataset
with 8 classes is useful for AV applications using MLS point-clouds and front-facing
stereo images. This dataset contains about 15k point-cloud frames with 200k 3D
bounding boxes on 22 different scenes. However, due to the low resolution of points
per frame, fine urban features are lost from the scene. Waymo Open [176] provides
significantly more annotations, mostly due to the higher annotation frequency and
system setup. Five LiDAR sensors and five high-resolution pinhole cameras were
used for data collection. Like KITTI, this dataset enables tasks such as 3D object
detection and tracking, but it only annotates four classes. NuScenes [177] is a recent
dataset for AV with more annotations than KITTI and Waymo Open. Scenes include
high traffic densities, potentially dangerous traffic situations, and situations that may
be difficult for an AV. Despite this dataset including 23 classes, it contains only low
density of points per frame and most of the classes are not related to LS tasks. Pre-
vious datasets allowed for the evaluation of a limited number of different classes for
autonomous systems. Comparably, H3D [172], Argoverse [173], Lyft’s L5 [174], and
A*3D [175] are useful for the development of reliable self-driving vehicles, including
trajectory predictions of agents such as pedestrians, vehicles, or bicyclist on urban
roads. However, employing these datasets for surveying and engineering, is impracti-
cal due to the lack of classes relevant to land surveying applications.

Other datasets contain dense point-cloud scenes but are created for semantic seg-
mentation. For example, Semantic-3d [158] is a TLS dataset that contains dense data
(4 billion points). Different viewpoints captured using a static sensor are registered.
However, this dataset contains only eight classes. Toronto-3D [161] was acquired
with a vehicle-mounted MLS system on Avenue Road in Toronto, Canada. It poses
challenges due to noise and the variations of point densities at different distances.
It has eight classes (+1 unclassified points), including labels such as road, natural,
building, and fence. Paris-Lille-3D[162] is one of the largest (2 km) and popular
MLS point-cloud dataset for semantic segmentation. It contains 50 classes where
nine classes from four difference scenes are used as benchmark. Oakland dataset
[159] introduced 17 scenes with 44 urban classes similar to [162]. Despite these two
datasets containing many surface utilities (pole, lamp, meter, traffic signs) which are
essential for land surveying,they both lack linear features and flat objects. There are
other datasets for 3D semantic segmentation such as IQmulus [160], Street3D [163],
ISPRS [164], DALES [165], LASDU [166], DublinCity [167], CAMPUS3D [168], Sen-
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Figure 5.4: Top: MW raw point-cloud scene (left side) and MW with point-wise
annotation from top view (right side). Bottom: MW point-wise annotation from side
view.

satUrban [169], and Semantic-KITTY [170], but the number of object classes is very
limited for our application domain. In conclusion, these datasets need more object
classes, as listed in Table 5.1, to perform a complete surveying task on urban scenes.
Therefore, there is a need to introduce a suitable dataset for surveying and engineer-
ing in order to train and validate appropriate detection and classification methods.
We introduce the LiSurveying dataset, which contains three dense point-clouds of
urban scenes located in Vancouver, Canada. While other datasets contain thousands
of point-cloud frames, LiSurveying needs only three high-resolution point-clouds, one
for each scene captured by multiple scanners during acquisition. The unique charac-
teristics of our LiSurveying dataset include: a diverse range of object sizes, shapes,
and details, and a large number of uncommon urban object classes valuable for land
surveying. An additional aspect that distinguishes our dataset from existing urban

datasets is that our ground truth data extraction is based not only on 3D bounding
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boxes and point-wise annotations, but also on a validation of the annotation with
object information in the physical world. This validation is conducted by compar-
ing the annotated points with the CAD engineering drawings provided by domain
experts, which represent the real, precise, and reliable spatial locations of the point
features and linear features in the ground coordinates system. Ground coordinates
are measurements that are taken on the actual surface of the earth. In this way,
the data obtained by algorithms can be analyzed and compared more rigorously with
real-world assets. A challenging objective is to be able to process the point-cloud
in an outdoor scenario at different scales so that points and lines of interest can be
extracted automatically to generate visualization, as shown in Fig. 5.1. In the land
surveying application domain, algorithm precision is more important than time per-
formance. However, generating a huge volume of data for numerous classes of objects

in dense point-clouds is still a challenge in the research community.
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5.1.3 Challenges of constructing LiSurveying

There are classes that are similar in terms of shape and size. In order to avoid incorrect
labeling, the annotation of our dataset requires high precision, and thus is time-
consuming. So far, we have performed annotation of around 5.3 million out of 2.45
billion points. We prioritized point-cloud objects not already covered or insufficiently
present in current datasets, and we selected urban assets that are important for land
surveying and engineering applications. Since big objects or large surfaces, such as
buildings, bridges, pavement, or natural low/high vegetation terrain, are not our
application focus, we left out those points from the 2.45 billion raw data. Labeling
large objects can easily increase the total number of labeled points but is not crucial
for our application domain.

In a point-cloud scene, we annotate urban objects, e.g., lamp stand, electrical
transformer, or a valve on the ground. From a surveying perspective, it is important
for a surveyor to localize the spatial locations of a variety of urban assets, such as
gulleys, parapets, pipes, fuel drains, and small features. The unannotated points can
be labeled as an “unknown” class for scene segmentation and modelling purposes,
but they are not needed for object detection or recognition in our application.

While we provide a benchmark dataset for research and development (R & D),
we leave the data imbalance issue to be handled at the R & D stage. For example,
objects like trees and vegetation, as well as vehicles and pedestrians, are commonly
found in LiDAR captured, outdoor point-clouds. On the other hand, urban utility
objects like those we collected are typically uncommon and scarce. When a learning-
based process requires a combination of both types of assets, either the overfitting
samples are downsized, or data augmentation techniques are adopted to address the
data imbalance issue. This is a separate research problem for machine learning model
training and is discussed in Section 5.2.4.

Existing datasets lack the uncommon object classes that we have contributed.
Different approaches, e.g., computer vision, machine learning, and deep learning, can
be adopted by researchers based on the application requirements, volume of point-
cloud available, and the object features to be detected. Regardless of which approach
is selected, our dataset can be useful as it contains uncommon urban assets not

covered, or inadequately covered, in existing datasets.
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5.2 LiSurveying dataset description

This dataset was acquired with an ultra high-speed time-of-flight device enhanced by
Waveform Digitizing (WFD) technology Leica ScanStation P20 sensor. Point-clouds
were acquired in multiple locations using 360 degrees horizontal and 270 degrees
vertical. The sensor’s scan wavelength was 808 nm (invisible) / 658 (visible) with a
range of 120 m; there was 18% reflectivity (minimum range 0.4 m) and a scan time and
resolution of 12.5mm @ 10m. The dataset consists of three dense point-cloud scenes
in British Columbia, Canada defined as follows: New Westminster (NW), Marine
Way (MW), and Nanaimo (NN). We worked on these scenes due to their diversity
across locations in terms of surface utilities, roadworks, catch-basins, manholes, street
intersections, different vegetations, multiple buildings, pavement markings, hydro and
electricity utilities, and a variety of traffic signs. NW covers the area of the city of
New Westminster (see Fig. 5.2 and Fig. 5.3), specifically Agnes St. and FS Elliot
St., Westminster (1.901 km). NW contains a high number of urban points and linear
features along Agnes St. making this point-cloud scene very challenging to process but
reliable for automatic urban surveying. It includes a variety of objects that experts
in LS target to locate, e.g., valves, posts, culverts, or sidewalks. MW point-cloud
is larger than NW, covering a selected area of Burnaby, specifically Marine Way St.
(see Fig. 5.4). MW includes many curves and irregular terrains that make it a very
complex scene. The urban objects in MW are more dispersed than those in NW. In
contrast, the NN scene is captured over a large area (3.460 km) over Nanaimo St. This
is the largest scene, including more instances than NW and MW. A challenge of NN
is that there are many occlusions due to terrain variations and dense vegetation along
the streets. Each scene is divided into multiple subsets for efficient processing. NW,
MW and NN are divided into 18, 7, and 30 subsets respectively. We distinguished each

subset with a unique number and color for reference during the annotation process.

5.2.1 Point cloud annotation

Object annotation is a labor-intensive task across disciplines, whether it is medical
data or land surveying data. The object categories are defined by geomatics experts
for applications relating to surveying and engineering design. In geodatabases, physi-
cal objects, surfaces, or terrains are classified mainly into seven groups: points, lines,
polygons, annotations, dimensions, multipoints, and multipatches. Point features re-
fer to permanent physical objects (typically man-made objects) that are located along
the street, curb, or road that cannot be represented as lines or polygons, e.g., a fire

hydrant or catch-basin. In contrast, lines or linear features generally refer to flat and
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Figure 5.7: Top: A subset of NW scene with point-wise labels. Bottom: A subset of
MW scene with point-wise labels

Figure 5.8: 3D bounding box annotation examples for hydrant and catch-basin ob-
jects.
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long geographic objects or surfaces such as street center-lines or traffic paint lines.
This means that linear features are very narrow compared to areas or volumes. The
polygon category represents the structure and spatial location of homogeneous fea-
ture types, e.g., parcels or land-use zones. Annotation generally refers to adding text
data to provide the description, information, layer, or property of another feature.
The dimension category represents a type of annotation that contains specific lengths
or distances. Multipoints and multipatches, respectively, are used to manage arrays
of very large point collections or represent the outer surface of features that occupy
a discrete area or volume in 3D space.

In LiSurveying, there are 54 categories containing point features and linear fea-
tures. Categories are segmented and annotated manually with 3D bounding boxes,
as shown in Fig 5.7 and Fig 5.8, respectively. Each bounding box contains the fol-
lowing parameters: center coordinates (cz, cy, cz), height, width, and length of box
(h,w,l), box corners coordinates (m-by-n matrix, with m=8 and n=3), maximum
bounds for geometry coordinates (mazz, mazry, mazz), minimum bounds for geome-
try coordinates (minz, miny, minz), and unique ID. It also contains object coordinate
points (0bjy, 0bjy, 0bj.), rgb color for each point, and intensity value of each point.

The object classes are divided into 7 main types:

e Roadworks: These include different paint lines on the road, intersections, and

traffic paint lines.

e Surface utilities: These are different small surface utilities such meters, access

hatches, boxes, and vaults.

e Hydro/tel: These are electricity and telephone utilities such as utility poles,

different types of lamps, and anchors.

e Sto/san/water/misc: This type includes a variety of flat utilities like manhole

covers, and catch-basins.

e Signs: This includes all traffic signs that can be found in the streets, e.g., bus

stops, school zones, information signs, etc.
e Vegetation: This type includes trees with trunks in different sizes and shapes.

e Transportation: This covers all vehicles on the scene.

A summary of class labels and description of labels is shown in Table 5.2.
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Table 5.2: Class labels and description in LiSurveying

Class Description Category Class Description Category

PLY#+# Paintline-Yellow Roadworks MHS  Manhole-San sto/san /water /misc
CL## Center-line Roadworks CBT  Catchbasin (Top Inlet) sto/san/water/misc
PV## Pavement Roadworks MHCB Catchbasin Manhole sto/san/water/misc
PLWH4 Paintline-White Roadworks STDF  Standpipe sto/san /water /misc
PLXW##  Paintline-Xwalk Roadworks FH Fire Hydrant sto/san/water/misc
PLSB## Paintline-Stop bar Roadworks COT  CleanOut sto/san/water/misc
LDN## Letdown Roadworks VLW  Watermain Valve sto/san/water/misc
PLXW244 patinted xwalk Roadworks MHD  Manhole-Sto sto/san/water/misc
PLA## Paintline Arrow Roadworks SBS Bus Stop Signs

PLBK## patiend bike Roadworks SZ School Zone Signs

SVB Service Box Surface utilities | SGW  Warning Sign Signs

VLG Gas Valve Surface utilities | IRS Information Signs

BOX Box Surface utilities | SI Speed Indicator Signs

VLT Vault Surface utilities | SSS Stop Sign Signs

ACH Access Hatch Surface utilities | SNP No Parking Signs

MT Meter Surface utilities | SP Sign Post Signs

KSK Kiosk Surface utilities | MRS Mandatory Signs

LPS Lamp Standard Hydro/Tel PRS Prohibitory Signs

POLHT Hydro,Tel Pole Hydro/Tel PGZ Play Ground Zone Signs

MHE Manhole-Electrical Hydro/Tel BUSH Bush Vegetation

MHT Manhole-Telephone Hydro/Tel TREC Tree-Coniferous Vegetation

JB Junetion Box Hydro/Tel TRED Tree-Deciduous Vegetation

POLEL Power Pole L Hydro/Tel TR Trees Vegetation

ANC Guy Anchor Hydro/Tel VHCL  Vehicles Transportation
POLHY Hydro Pole Hydro/Tel GPO  Guy Pole Hydro/Tel

PWT Pole with transformer Hydro/Tel HV Hydro Marker Hydro/Tel

TLS Traffic Light Standard Hydro/Tel PWL  Pole With Light Hydro/Tel

5.2.2 Source files

Each scene of the dataset is managed in a separate folder, and each subset point-

cloud is saved as a .pts file. For NW, each .

(float) values and intensity (uint8). Depending on the scene, additional source files
are included, as shown in Table 5.3. These are ALS data (.pts format), orthoimage
(.tiff), LS CAD drawing (.dwg), demographic location (.kmz), Digital surface model

(.xml), and Codelist (.xlsx).

pts file includes z, y, z (float) values, RGB
values (0-255), and intensity (uint8). In MW and NN, each .pts file includes z,y, 2

Table 5.3: Summary comparison of our LiSurveying scenes

Scene Points TLS TLS TLS ALS Orthoimage CAD drawing Longitudinal Location Digital Surface Codelist
Intensity RGB color

New Westminster 226444508 v v v v v v v v

Marine Way 622,144987 ' X X X v ' ' '

Nanaimo 1,602,623,087 ' X X X v ' ' '
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5.2.3 Dataset statistics

This section describes the statistics on the LiSurveying dataset generally, as well as
individual aspects of them. The comprehensive number of points is 2.45 billion, with
around 5.3 millions have been labeled. Trees and bushes are the most prominent
categories due to their frequent appearance on the different scenes. These vegetation
categories represent around 3 million points. These are followed by tall objects such as
Guy Poles “GPO,” Pole with transformer “PWT,” and Power pole objects “POLEL,”
with 245k, 213k, and 210k points, respectively. Information Road Sign objects are
very frequently found in the different scenes, representing 90k points, followed by
standard lamps with 88k points. The number of objects per class and distribution of
points per object class in the LiSurveying dataset are shown in Fig. 5.5 and Fig. 5.6,
respectively.

In the NW scene, the longest category in terms of points is located at “PLW;”
however, it should be noted that this category corresponds to the type of roadworks
which are quite extensive throughout the scene for being linear features. “GPO” and
“PWT” are the categories of physical objects with the highest number of points in
this scene, with both adding up to around 450k points. These are followed by the
“LPS,” “POLHT,” “POLHY,” and “TR” classes, which are represented by a number
of points ranging from 60k to 90k. The categories “VLT”, “VLG”, and “ANC” have
the least points with less than 10k. The latter in real-life are small objects located
along roads or sidewalks, and therefore the number of points in each object depends
on both the parameters of the acquisition system and the structure of the object.
Note that certain objects might not exist in the NW dataset but exist in the MW
or NN dataset. In the MW scene, the “TLS” class stands out, as there is a high
occurrence of vegetation in this location, leading to a high number of points close to
800k. Unlike NW, in MW some classes such as “VLG,” “ACH,” “MT,” or “COT”
are not found. However, classes related to traffic signs exhibit similar occurrences in
both scenes. In the NN scene, the class with the highest number of points is “TR,”
which contains different types of tall trees, while the classes with the fewest points
are “ANC”, “SZ” and “FH”. Fig. 5.5 shows a comparison of the number of objects in
each class. Overall “TR” is the class with the highest number of objects with around
500 samples. It should be noted that this class is not included in Fig. 5.5 so that the
other classes can be more clearly visualized. “IRS” has the second-highest number
of object (106 samples), followed by “SNP” and “POLEL” with 100 and 95 objects,
respectively. The class with the lowest number of objects is “MHCB” with 1 sample.

Classes that have a low number of objects are not discarded, because more samples
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can be obtained from even a single object with high point density and quality by

using data augmentation techniques.

Variation of point density and shape

Unlike other datasets such as KITTI [171], Paris-Lille-3D [162] or Toronto-3D [161],
LiSurveying has a greater variation in object shapes, dimensions, and point densi-
ties. The variation of point density stands out due to the complete configuration in
360-degree scanning in terrestrial static mode, in which multiple scans of the same
scene are acquired and subsequently registered. Depending on the longitudinal and
latitudinal positions of the sensor with respect to the scene or streets, certain objects
reveal a greater number of points than other objects that are farther away from the
source of acquisition. The scans were performed mostly at the corners of intersec-
tions and at spots between the edge of the road and the sidewalk, because most of the
urban objects of interest are on the sidewalks. There are also variations in the regu-
larity of points of some objects. This is because the objects far from the sensor were
not scanned from all the surrounding angles. Therefore, some objects are partially
scanned and others are completely scanned. Various shapes and dimensions of the
objects are shown in Fig. 5.9. The classes called “tall objects” include poles, trees,
lamps, kiosks, and fire hydrants. These have dimensions that range from 0.5 m to 14
m in height, 0.5 m to 2 m in width and length. Classes with flat objects are those
embedded in the ground, such as manholes, catch-basins, and valves. These classes
of flat objects can have circular, square, rectangular, or irregular shapes, but the
dimensions are limited in the vertical axis with respect to the ground, and therefore
they are called “flat objects.”

5.2.4 Dataset partition

LiSurveying includes object classes with a variety of shapes including flat and non-
flat, uniform and non-uniform, and big and small for classification tasks as shown in
Fig. 5.10. We derived seven subsets from the LiSurveying dataset, as shown in Table
5.4. These were used in the experiments for training different models. The subsets
are: Flat-9, Flat-10*, Tall-16, Tall-14*, Tall-25*, Merged-39, and Merged-39*. The
Tall datasets normally include tall objects that have a dimension higher than 30 cm
relative to the ground surface, e.g., fire hydrants, trees, poles, traffic signs with poles,
and standard lamps. In contrast, the Flat datasets mainly contain objects that are
parallel to the ground surface, e.g., catch-basins, manholes, valves, and flat boxes.

These objects typically do not vary along the vertical axis. Note that the symbol *
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Figure 5.9: Comparison of flat objects (Top) vs tall objects (Bottom) in LiSurveying.
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Figure 5.10: Point density comparison of three different objects for five classes. Ob-
jects are sorted from lowest to highest number of points (top to bottom). Left column:
PLW objects with number of points: 6099, 153394, and 409278. Second column: FH
objects: 2923, 3676, and 21134. Third column: Box objects with number of points
equal to 13843, 56000, and 96459. Fourth column: CBT objects with 1541, 22741,
and 37032 points. Right column: MHD objects with 2270, 5717 and 59755 points.

on specific datasets means that data augmentation was performed.

Data augmentation

Despite our LiSurveying dataset containing high-resolution samples per class, the
number of samples in each class is not the same. Data augmentation is a common
method used to address data imbalance. This solution aims to avoid overfitting,
alleviate class imbalance problems, and achieve better generalization when training
learning-based models. Therefore, we adopt this technique and in our data augmen-
tation procedure, each point-cloud sample within its class has N points denoted by
S = {s; € R3|;—1..n}, and the N points for each sample are passed through our
data augmentation pipeline’s operations to generate more data samples. There are
five main operations including random rotation Ry, random translation 7;., random
down-sampling, random down-sampling with random rotation, and jitter. The pro-
cess starts by randomly rotating the interior points of S with a matrix Ry following

a uniform distribution Ay € [0, 27| along the z-axis (up-axis). We also apply ran-
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Figure 5.11: Example of a hydrant asset with 20895 points from New Westminster
scene before (left) and after random downsampling to 4096 points (middle), and 2048
points (right).

dom translation (A, Ay, A;) along the x-axis and y-axis. Then, we randomly down-
sample each original point-cloud to 2,048 points. We also randomly down-sample
each rotated-translated version and generate combinations of these versions. Down-
sampling helps reduce memory consumption and efficiently reduces the size of our
samples to as little as 1k, 10k, or more than 100k points depending on the class type,
as shown in Fig. 5.11. Random jitter is also applied to the individual points, followed
by random down-sampling. In our experiments, data augmentation was done system-
atically in all classes except for the TR (Trees/vegetation) class, which already had
the desired sample size, which is 375 samples per class. For point-cloud classification
tasks, we performed data augmentation in local coordinates. Different operations

were applied to the points inside the 3D ground truth boxes.

5.3 Method Overview

5.3.1 Hand-crafted features

Since our application focus is land surveying and site analysis targeting specific urban
assets, the selection of hand-crafted features is also based on the shape characteristics

of these specific urban assets, e.g., points and lines. These shape characteristics are
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also used by other researchers [178]. Covariance features are very popular for the
extraction of representative information on 3D data. We select a set of local features
using the covariance matrix of the points. The selection is based on object type:
tall or flat. In this study, the covariance matrix (3 x 3) is calculated for each point-
cloud object. Then, the resulting matrix is factorized into a canonical form using
eigen decomposition in order to obtain the three eigenvalues (75, 71, 73), and the
three corresponding eigenvectors (vg, v1, v2). These eigenvalues are used to calculate
geometric features such as L linearity, P planarity, S scattering, V verticality, C,
curvature change, Fg eigenentrophy, Omn omnivariance, and An anisotropy. For tall
objects, most changes occur in the vertical axis but there are small changes on the
horizontal plane. The range on the z axis is selected as the height feature; different
tall objects can have different heights from the ground. For example, a pole is taller
than a road sign pole, but a fire hydrant is smaller than the latter. The standard
deviation is also included as a feature in each of the axes to measure the dispersion
relative to the mean of the points. For shape representation, the characteristics of
verticality, curvature, linearity, planarity, scattering, omnivariance, anisotropy and
eigentrophy are used. On the other hand, different features are selected for flat
objects. However, these vary mostly on the horizontal axes (x and y) relative to
the ground surface. Thus, the ranges in the x and y axes, standard deviation of
the points, eigen feature entropy of x extremes, and eigen feature of y extremes are
measured. As observed in our experimental analysis, L, P, S, V , and C,, e.g.,
Eigenentrophy, Omn omnivariance, and Anisotropy, describe very well the features
of our application’s urban assets listed in Table 5.2. For commonly seen objects, e.g.,
trees, vehicles, and city blocks, they may need other specific hand-crafted features.

Some of the equations are described as follows:

L=""T ¢, (5.1)
To

P="""co,1] (5.2)
To
T2

s="c0,1] (5.3)
To

Ll

Omn = (H T@) (5.4)
Eg=— Z 7i In(7;) (5.5)

An=10""T (5.6)

To

where 7y, 7, and 7, are the eigenvalues.
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5.3.2 Machine learning classifiers

We used different individual and ensemble machine learning models in our exper-
iments with the above-mentioned hand-crafted features. The algorithms Decision
Trees, Logistic Regression, Random Forest, Multilayer Perceptron, Extra Tree(s),
Gradient Boost, Support Vector Classification (SVC), Linear SVC, Passive Aggres-
sive, Gaussian Naive Bayes, and Stochastic Gradient Descent (SGD) were used to
perform classification tasks on LiSurveying.

Decision Tree algorithm is represented by a tree-like model of decisions along with
possible predictions in a diagram.

Random Forest is represented by a combination of multiple classification decision
trees, where each decision tree is generated using a random vector sampled indepen-
dently from the input vector. Then, each tree provides a unit vote, and the majority
votes determine the class.

Logistic Regression algorithm evaluates the input feature vector and provides a
prediction of the probability that an event will occur. This algorithm maps each data
point using a sigmoid function.

Gradient boost is known as an ensemble learner that builds an additive model in
a forward stage-wise way based on a series of individual models. This method allows
the optimization of arbitrary differentiable loss functions.

KNN method finds a group of p samples that are nearest to the unknown sample
(e.g., based on distance functions). From these p samples,; the label (class) of the
unknown sample is determined by calculating the average of the response variables
(i.e., the class attributes of the p’s nearest neighbours).

SVM method’s basic concept is to build a hyperplane in every transformed feature
area, splitting the full margin.

Gaussian Naive Bayes (NB) is a supervised learning algorithm which applies Bayes’
theorem with the naive assumption of strong conditional independence between every
pair of features. This method makes use of all the variables in the feature vector X and
analyzes them independently as they are uniformly independent of each other. The
Gaussian Naive Bayes method is the easiest to work with as it only needs to estimate
the mean p and the standard deviation ¢ from the training vector. This method
assumes that features follow a normal distribution. Before training this model, feature
normalization is applied to normalize the range of variables, reduce over-fitting, and
accelerate the training time.

Passive Aggressive are maximum margin based algorithms, which have been mainly

used in online learning.
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SGD has been widely used for training linear classifiers in many applications. This
algorithm demonstrates high performance in computation time with no loss in clas-
sification on large-scale machine learning problems. SGD minimizes an objective
function by approximating the gradient for a randomly selected batch from the train-
ing data. In each iteration, SGD considers one sample and updates the weight vector
using a time-dependent weighting factor until it converges.

MLP is a linear classifier algorithm similar to SGD. It predicts based on a linear
function combining a set of weights with the input feature vector. It has shown high
performance for large datasets and can be used in online learning. MLP classifiers are
faster in training. The algorithm is not regularized or penalized and converges to an
optimal solution for linearly separable patterns with no upper bound on the learning
rate parameter. For a large amount of data classification, this type of learning is
preferable.

Soft voting classifier is a popular meta-classifier for merging conceptually differ-
ent machine learning algorithms for prediction through a majority voting strategy.
Soft voting performs majority voting by using the argmax of the sum of the pre-
dicted probabilities of the class labels and generates an output label. In the proposed
methodology, seven of the previously mentioned classifiers have been ensembled for
training.

LDGCNN [179] method is an improved version of DGCNN [180]. The authors
removed the transformation network and linked the hierarchical features learned from
different layers in the DGCNN. This modification showed a better performance on
classification and decreased the model size of the network.

PointNet method learns the spatial encoding of each point in the input point-cloud.
Then, the extracted individual point features are aggregated to a global signature. A
major limitation is this method’s lack of ability to capture local context at different
scales, which is later overcome by PointNet++.

PointNet++ method has shown acceptable results in applications that require 3D
point-cloud object classification or segmentation. It leverages small neighborhood
sets of points at multiple scales to extract local and high-level features. This process
is robust and captures details embedded in the point-cloud data. The hierarchical
structure consists of a set of abstraction (SA) levels. Each abstraction level has three
key stages (sampling, grouping, and MLP layer) that extract multiple scales of local
patterns and combine them logically according to local point densities. At each level,
a set of points is processed and abstracted to output a set with fewer elements. Given
the points within S = {s; € R*|,_; _x}, these are subsampled using an iterative

farthest point sampling method to obtain query points. At the grouping stage, a ball

101



query method is used to localize an upper limit k& neighbors of each query within a
radius r; each group corresponds to a local region. Each local region is abstracted
by its centroid and local feature that encodes the centroid’s neighborhood. The
process is repeated until the features are obtained. Finally, the obtained features
are transformed by a multi-layer perceptron (MLP) network, followed by three fully

connected layers and a softmax function to obtain a probability class score.
5.4 Experimental results

Table 5.4: Datasets setup derived from LiSurveying

Dataset Classes name

Tall-16 LPS, SGW, SNP, IRS, Combined sings (PGZ, SP, SZ, PRS, MRS, SI,
SBS, SNP), SSS, FH, BUSH, KSK, TLS, BOX, SVB, ANC, TR, STDP,
and POL C (GPO, POLHT, POLHY, PWL, and PWT)

Flat-9 CBT, JB, HV, VLT, ACH, MT COT, VL ¢ (VLW and VLG), and MH ¢
(MHCB, MHD, MHT, MHE and MHS)

Tall-25* SSS, SGW, SI, SVB, POLHT, PWT, FH, GPO, LPS, IRS, SZ, TLS,
POLEL, SBS, SNP, PRS, MRS, KSK, PGZ, BOX, STDP, SP, PWL, ANC,
and POLHY

Tall-14* SVB, PWT, FH, GPO, LPS, TLS, KSK, PGZ, BOX, STDP, PWL, ANC,

SIGNS (SSS, SGW, SI, IRS, SZ, SBS, SNP, PRS, MRS, SP), and poles
(POLHT, POLHY, and POLEL)

Flat-10* VLW, VLG, MT, JB, COT, ACH, VLT, HV, CBT, and MH (MHCB,
MHD, MHT, MHE, and MHS)
Merged-39 VLW, VLG, SSS, SGW, SI, SVB, MHS, MHT, POLHT, MT, PWT, FH,

CGPO, MHE, JB, LPS, IRS, MHCB, COT, SZ, ACH, TLS, POLEL, SBS,
SNP, PRS, MRS, MHD, KSK, PGZ, BOX, STDP, SP, PWL, ANC, VLT,
POLHY, HV, CBT

Merged-39* Merged-39 dataset after augmentation

We performed a classification on the seven subsets of the LiSurveying dataset:
“Flat-9, Flat-10*, Tall-16, Tall-14*, Tall-25*%, Merged-39, and Merged-39*” with
conventional classifiers with hand-crafted features, LDGCNN, PointNet, and Point-
Net++. The previous datasets were used to investigate the impacts of different

algorithms on the classification results. For training and evaluation, we used an Intel

Core 15-9400 CPU (2.90GHz x 6), a TB hard disk, and a NVIDIA TU117 GeForce
GTX 1650 with 16 GB on Ubuntu 20.04.4 LTS.
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Table 5.5: Results on the different setups of LiSurveying using different learning based
approaches.

Dataset — Tall-16 Flat-9 Tall-25 | Tall-14 | Flat-10 | Merged-39 | Merged-39
+aug +aug +aug +aug
Feature Scaled Min Max Scaled Min Max
Scaling — None Scaled Min Max PCA PCA None Scaled Min Max PCA PCA
Model

Decizion Tree 0.7419 0.7298 0.7460 0.6855 0.7298 | 0.5536 0.5714 0.5536 0.5179 0.6786 | 0.5423 | 0.7732 | 0.7319

Logistic Reg. 0.7379 0.6895 05806 0.7056 0.5605 | 04643 0.5803 0.4107  0.6607 0.5536 | 0.4983 | 0.7244 | 0.5T65
Random Forest 08185 0.8226 0.8306 08145 0.7 0.7143 06964 0.6786 0.6786 0.6071 | D.6421 | 08403 | 0.8476
MLP 08105 0.7782 0.7944  0.7500 0.7823 | 06964 0.6786 0.6607  0.6964 0.6964 | 0.7353 | 09138 [ 0.7851
Exira trees 08185 0.8024 0.8306 0.7944 0.7984 | 0.7500 0.7679 0.7679 0.7321 0.6964 | 0.5847 | 08311 [ 08184
Exira tree 06371 0.6089 06371 05927 0.6734 | 05357 0.5536 0.5714  0.5357 0.5893
Gradient boost 0.7742  0.7702 0.7742 0.7339 0.7218 | 06786 0.6607 0.6786 0.6786 0.6607 | D.6311 0.8069
KNN 0.7903  0.6774 06653 0.6492 07177 | 06071 0.6429 0.6964  0.6429 0.6786 | 0.5522 | 0.7833 | 0.6531
sve 05484 06815 06694 0.7016 0.6935 | 04821 0.6429 0.6429  0.6964 0.6964
lingar SVC 06976  0.6734 06210 0.6895 0.6290 | 04821 05357 0.5357 0.7143 0.6429
Nearest cent. 05403 04919 04718 04919 0.5000 | 05357 0.4286 0.4643 05179 0.5714
Passiwe A. 04960 05927 05645 06371 0.5282 | 03214 (0.5536 0.5714  0.6250 0.5893
Ridge 05726  0.5565 05645  0.5685 0.5685 | 03571 04821 0.4464 05714 0.5893
SGD 0.5806 0.6815 0.6532 0.6815 0.5565 | 04286 0.3750 04464 06607 0.5179
Gaussian 0.7984 0.6855 06290 0.6774 0.5605 | 0.5000 06071 0.3750  0.6607 0.4643

Gaussian NB 0.7863 0.7863 0.7863 0.7581 0.7581 | 04821 04821 0.4821 05179 0.5179 | 0.3877

Voting 0.9602 0.9352 0.680% | 08917 | 0.8522
Random Search 0.6521 0.6641 0.6411 0.7732
Random Search L2 0.7396 0.7411 0.5041 0.5821
Hyperband 0.9473 0.9138 0.6847 | 08548 | 0.8133
Hyperband L2 0.7669 0.7236 0.7003 | 0.5481
PointNet 0.4137 0.1721 0.1798 0.3759 0.2231 0.3501
PomtNet++ 0.B376 0.7358 0.9858
LDGCNN 0.7633 0.6011

5.4.1 Implementation details

For the baseline classifiers, the datasets for Tall objects contain 13 covariance features
extracted from each sample along all the axes. Datasets including Flat objects also
contain 13 covariance features but are only extracted from the x- and y- axes. All
features are extracted on the fly and concatenated as a feature vector. Note that we
used 70% for training and 30% for testing. Then, for each classifier, we performed
a random search on the hyperparameters with four cross-validation strategies, and
fine-tuned feature scaling with PCA. To evaluate baseline classifiers, we use precision,
recall, and fl-score. We evaluate the different models by considering their respective
confusion matrices on both non-augmented and augmented datasets. The PointNet
architecture used in our experiments has two essential components: multi-layer per-
ceptron (MLP) networks and Transformer Nets (T-Net). The model pipeline receives
a point-cloud object at the input layer. The first T-Net then learns an affine transfor-
mation matrix by its own internal network. This initial T-Net transforms the input
points into a canonical representation. Afterwards, feature extraction is performed by

two convolutional layers with 32 channels. Consecutively, a second T-Net is used to
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Table 5.6: Hyperparameters setup for PointNet++.

Hyperparameter Values Description
Nioints A[128 — 2048] Number of the training points
Biize 32 Batch size
Netasses [9, 10, 14, 16, 25, 39] Number of classes
Ly 0.001 Initial learning rate
Decayrae 0.0001 Initial learning decay
Epoches o, 250 Number of training epoches
StePaize 20 StepLR step size
Stepy 0.7 StepLR gamma
Optimizer Adam Optimization algorithm with L2

perform affine transformation for alignment in feature space (N, 3), to obtain (Nx32)
dimensional point features. Three convolutional layers with 32, 64, and 512 channels
are applied to the previous features, respectively. The resulting Nx512 dimensional
features are converted to dimensional global features by a max-pooling layer. Finally,
the global feature vector is reduced layer by layer through MLP with nodes 256 and
128, and a dropout layer between each pair of fully connected layers. The classifica-
tion occurs in the last layer with a softmax activation function. For training, we used
an Adam optimizer with an initial learning rate of 0.001, and a decay learning rate of
0.9. The model is trained for 200 epochs with a mini-batch size of 32, and 2,048 input
points per training sample. The PointNet++ classification network receives a point-
cloud with spatial coordinates and face normals at the Set Abstraction (SA) stage.
The SA stage consists of three SA layers. In the first SA layer, 512 sample points are
selected from the input. Local regions are delimited by using 32 nearest neighbors of
each point within a 0.2 radius. From these local regions, features are extracted using
MLPs (64,64,128). Then, the extracted features are summarized for 512 regions with
max pooling. Similarly, in the second SA layer, features are extracted from 128 differ-
ent local regions with MLPs (128,128,128). The third SA layer receives the remaining
points for feature extraction. After generating the local features from the first and
second SA layers, the global features in the third SA layer are extracted using MLPs
(256,512,1024) with max pooling summarization. The final 1024 dimensional global
features are linked to the labeled classes through MLPs (1024, 512, 256) and a set
of neurons, the size of which depends on the number of input classes. In all layers
except the last one, ReLU, batch normalization, and 0.5 dropout are applied. The

hyperparameters used in our experiments are shown in Table 5.6.
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5.4.2 Quantitative results

In this section, we conduct a quantitative comparison of the classifiers using hand-
crafted features. Seven subsets of the LiSurveying dataset were used in the experimen-
tal stage: Flat-9, Flat-10*, Tall-16, Tall-14*, Tall-25*, Merged-39, and Merged-39*.
This diversity of configurations in the seven subsets allows us to better validate the
performance of the algorithms based on the variety of classes in LiSurveying. To com-
pare the effectiveness of the models, we use Precision (P), Recall (R) or sensitivity,
Specificity (S), and F1 Score. The experimental results are showed in Table 5.5. We
also provide confusion matrices, which are plotted to intuitively show the strengths
and weaknesses of the methods. Finally, we compare the performance of conventional
classifiers with PointNet and PointNet++. We also evaluate the robustness of Point-
Net++ method with different input point size parameters during training, and at
different SA layers.

5.4.3 Classification on Tall-16

Regarding our Tall-16 dataset, the ensemble soft voting classifier achieved the maxi-
mum accuracy value of 96.02% as compared to other classifiers using scaled PCA for
feature scaling. The Hyperband algorithm showed the second-best performance value
of 94.73%. Random Forest and Extra Trees both showed the highest accuracy value
of 83.06% when applying min-max normalization.

Extra Trees showed the lowest accuracy value of 79.84% for all feature scaling
configurations. We noticed that the algorithms Nearest Centroid, Extra Tree, Pas-
sive Aggressive, Ridge, SGD, and SVC showed low performance of 54.03%, 63.71%,
49.60%, 57.26%, 58.06%, and 54.84%, respectively. Even after data normalization,
these algorithms did not improve in performance. Note that other classifiers such as
Decision Tree, Logistic Regression, Gradient Boost, KNN, and Gaussian NB demon-
strated acceptable performances higher than 70% in specific cases. The confusion
matrices for MLP and Extra Trees are shown in Fig. 5.12. It can be observed that
these classifiers with hand-crafted features can discriminate some classes better than
other. The LPS class was predicted well for both models. This class has very discrim-
inative covariance and geometric features. Regarding the FH and TR classes, MLP
predicts better than Extra Trees. MLP showed a better performance than Extra
trees in terms of precision, recall, and accuracy. However, for classes related to traffic
signs (SNP, IRS, SGW, and combined signs) both models showed low performance
on the classification. This is mainly due to the similarities between classes, missing

points and noise during scanning. Also, the covariance features extracted might not
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Figure 5.12: Confusion matrices for Extra Trees (Top) and MLP (bottom) classifiers
on Tall-16 dataset. The x-axis denotes the predicted labels while the y-axis denotes
the groundtruth labels.
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be sufficient to distinguish these classes using the previous classifiers.

5.4.4 Classification on Flat-9

The classifiers demonstrated good performance for both tall objects and flat objects,
as shown in Table 5.5 using the Flat-9 dataset. Notice that the ensemble soft voting
classifier again achieved the maximum accuracy value of 93.52% as compared to other
classifiers using the scaled PCA for feature scaling, which was 3% less than in the
Tall-16 dataset. Like its previous behavior in Tall-16, the Hyperband algorithm again
showed the second-best performance value of 81.33% using the scaled-PCA. The Extra
Trees algorithm demonstrated better performance than the rest of the classifiers in
the classification of Flat-9 when applied scaled, min-max, or min-max PCA as feature

scaling.

5.4.5 Classification on Tall-25

This dataset is derived from applying data augmentation to 25 different Tall classes
from LiSurveying. We balanced this dataset proportionally by increasing each class
with a value of 375 samples. The classifiers showed a decreasing performance when
applied to Tall-25. This can be due to similarities between object classes and occlusion
of important features. The MLP classifier has achieved a maximum accuracy of
73.53% on this dataset, followed by the ensemble soft voting classifier and Hyperband
L2 classifier with 68.09% and 68.47%, respectively. The rest of the classifiers showed

poor performance at less than 68%.

5.4.6 Classification on Tall-14 and Flat-10

In Tall-14, after data augmentation we aim to overcome the problem of similar object
classes presented in Tall-25. In this experiment, we merged all traffic sign classes
and pole classes into two unique classes: Signs and Poles. This helps to reduce
the computational complexity and increases the performance of the models. The
confusion matrices in Fig. 5.13 demonstrate that by balancing the datasets with data
augmentation operations on the existing dataset, models can significantly improve
the classification task. Again, the MLP classifier showed the highest performance,
achieving an accuracy of 91.38% on this dataset, followed by the ensemble soft voting
classifier, Hyperband classifier, and Random Forest with 89.17%, 85.48%, and 84.03%,
respectively. The confusion matrices for the voting classifier and MLP classifier in
the Flat-10 dataset are shown in Fig. 5.13. It can be seen from the diagonal that data

augmentation benefits the model’s classification performance. Since our hand-crafted

107



Voting

Reference
Reference

- Predm{ed e T oraiciad

MLP MLP

Reference
Reference

Predicted Predicted

Figure 5.13: Rows 1-2: Confusion matrices for Voting classifier and MLP classifiers on
Tall-14 dataset. Rows 3-4: Confusion matrices for same classifiers on Flat-10 dataset.

feature extraction modules are defined specifically for tall objects or flat objects but
not both object types, conventional machine learning methods were not tested on
Merged-39 and Merged-39* datasets.

5.4.7 Classification using PointNet and PointNet++

Experimental results on our datasets using PointNet and PointNet++ are summa-
rized at the bottom of Table 5.5. In our experiments, the PointNet model achieved a
classification accuracy of 41.37% on the Tall-16 dataset, which shows low performance
compared to other classifiers. This is because PointNet took the point input directly
instead of using hand-crafted features. When using the Flat-9 dataset, PointNet ob-

tained a performance of 17.21%, demonstrating very low classification performance on
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Figure 5.14: Tall-16 and Flat-9 classification using PointNet++ with different number
of inputs points during training.

object classes with flat shapes. After applying data augmentation, PointNet showed
an improvement on Flat-10 and Merged-39. However, the performance is still inad-
equate for object classification. Several factors affect the performance of PointNet.
First, its architecture, designed to operate on each point independently, limits its
capability to capture local features at different scales. Second, the artifacts, such as
noise, present in the samples cannot be discriminated effectively and are learned by
PointNet as valid features, causing confusing at the classification step.

We further evaluated PointNet++ in some subsets of LiSurveying. It can be ob-
served from Table 5.5 that our setup of PointNet++ outperforms PointNet by a large
margin on both the Tall-16 dataset and the Flat-9 dataset, achieving 83.76% and
73.58%, respectively. We evaluated this model using different SA layer parameters
during training to better investigate the performance. We also conducted a compre-
hensive ablation experiment with PointNet++ to examine its behavioral performance

with different input point sizes during the training of Tall-16 and Flat-9 datasets.

Effect of reducing points during training

We investigated the effect of downsampling the input points on the classification per-
formance. We tested different Npyines values (128, 256, 512, 1024, and 2048) and
trained each model for a maximum of 250 epochs as shown in Fig. 5.14. As expected,
reducing the number of points during training can gradually affect the classification
of PointNet++. It can be observed that when evaluating PointNet++ on Tall-16,
the model revealed an increase in performance and ability in generalization by re-
ceiving a greater number of points in the input layer. We observed that the models
trained with Nppinis = 2048, 1024, and 512 showed a similarly good performance,
which demonstrates the robustness of PointNet++ using these values. This method

can preserve important points with previous parameters to distinguish the classes in
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Tall-16. When the Nppin:s parameter was reduced to 256, the performance of the
model dropped by around 5%, and continued to drop when the value was reduced
to 128 points. The accuracy of PointNet++ also dropped and it showed unstable
behavior in Flat-9, which contains classes with flat object point-clouds. Important
information is lost when flat objects are downsampled randomly. This is because
the distribution of points is represented along the horizontal axis with respect to the
ground. Using 2048 points, PointNet++ can obtain an accuracy close to 73%-74% in
Flat-9 and has slightly similar classification performance with 1024 and 512 points.
When downsampling the points less than 512, the classification network drops in ac-
curacy by around 20%, which shows the sensitivity of this network when classifying

flat objects with a low number of points.

Effect of SA layer dimensions and Dropout

PointNet++ architecture has three SA (set abstraction) layers, and we investigated
the effect of MLPs dimensionality within the first and middle SA layers on the clas-
sification. Also, we investigated the effect of the dropout layer (the fraction of the
input units to drop) between each pair of fully connected layers as it is important
when performing classification with this architecture. Both effects are reported in
Table 5.7, We trained PointNet++ with different configurations on Tall-16 dataset.
In all the experiments we used a radius of 0.2 in the first SA layer, and 0.4 in the
second SA layer. We can observe in Table 5.7 that PointNet++ achieved 83.75%
accuracy in the first experiment. Second experiment has the same configuration on
SA layers and MLPs as the previous experiment, but with a different dropout pa-
rameter of 0.3 on each layer. The classification accuracy increased to 84.19% when
we reduced the number of input units between layers. In the third experiment, we
observed that with a dropout factor of 0.5, when the dimensionality of the MLPs
in the first SA layer was changed from (642642128) to (12821282128), PointNet++
showed a better performance of 85.47%. However, the last experiment showed that
modifying the second SA layer results in better classification performance (86.75%)

than the previous ones.

Table 5.7: Effect of SA layer dimensions for PointNet++ on Tall-16 dataset.

Exp SA1 SA2 SA3 dp Ace
1 642642128 12821282256 256x512x1024 (0.5, 0.5) 0.8376
2 642642128 12821282256 256x512x1024 (0.3, 0.3) 0.8419
3 1282128x128 1282128z256 256x512x1024 (0.5, 0.5) 0.8547
14 642642128 12822562256 256x512x1024 (0.5, 0.5) 0.8675
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5.5 Conclusion

We introduced a 3D urban asset dataset for point-cloud classification and detection.
The dataset includes different dense scenes with millions of points and uncommon
urban object classes. Our LiSurveying dataset is designed for land surveying and site
analysis applications, and can be used to supplement other 3D point-cloud datasets
to provide richer scene contents. LiSurveying can support the evaluation of different
algorithms because of the diverse characteristics, such as number of points, number
of objects, number of classes, as well as object shapes and sizes in complex outdoor
environments.

Preliminary baseline experiments were conducted for point-cloud classification on
seven subsets of the LiSurveying dataset using hand-crafted features with several
classifiers, PointNet and PointNet++. Existing datasets lack the uncommon object
classes that we contributed. Different approaches, e.g., computer vision, machine
learning, and deep learning, can be adopted by researchers based on their application
requirements, volume of point-cloud available, and the object features to be detected.
No matter which approach is selected, our dataset can be useful as it contains un-
common urban assets not covered, or inadequately covered, in existing datasets.

In future work, we will annotate more object classes in LiSurveying, and compare
and analyze different 3D object detection, semantic segmentation, and urban asset

classification algorithms.
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Chapter 6

LiDAR object detection and
key-points for WAM

6.1 Introduction

Conventional surveying processes require accurate collection of geomatics for devel-
opment and planning of urban cities or towns. Highly skilled land surveyors seek out
different urban physical objects on the surface or under the ground in their typical
routines. Hydrants are one of the most significant and common objects due to their
usefulness and importance in daily life. They are typically installed with underlying
water networks in communities, streets, or avenues. This urban object serves an im-
portant function in providing secure and fast access to a water supply system, and
can assure steady water supply to firefighters in the event of a fire. Governments
and communities are spending increasing resources to train and educate the public
about the importance and value of this essential equipment. In a large fire outbreak
scenario, the difference between human loss and loss of essentials is determined by the
time firefighters localize and access water from an available hydrant in-situ. Land sur-
veying tasks include measuring the relative position of the fire hydrants along streets
and avenues. In British Columbia, NFPA-24 and NFPA-291 provide standards for fire
hydrants in terms of color (blue, green, orange, and red), class (AA, A, B, and C), and
flow (1500, 1000-1499, 500-999, and less than 500 gallons per minute (GPM)), respec-
tively. The traditional surveying techniques involve manual tasks such as calculations
and production of plans, to determine an accurate position of the objects. For exam-
ple, in a standard surveying procedure, a surveyor assists the geographical area under
study with accurate devices such as a Global Navigation Satellite System (GNSS)
receiver, prismatic compasses, clinometer, among others. The surveyor localizes the

hydrant and collects latitudinal /longitudinal coordinates of interest points (e.g., the
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stem nut, side outlet, or chain), height and size, and additional information such as
area, volume, type, color, etc. The collected information is used to generate CAD
drawings ensuring that every hydrant in a district performs properly and reliably
when an event occurs. Although these conventional surveys and proper assessments
can provide accurate geomatic data, they may involve manual tasks requiring a high
level of expertise to execute. Furthermore, the presentation of the geomatic infor-
mation should be rendered either graphically in the form of plans or numerically in
the form of tables, and this relies on expensive software tools. These factors, and
the rapid expansion of cities and towns, result in a time-consuming, restricted, and
expensive process. Therefore, automation strategies and surveying tools are needed
to increase productivity in detecting urban objects such as hydrants. The use of Li-
DAR in urban planning is currently an emerging alternative to automate conventional
processes and retrieve accurate information from the earth’s surface using Machine
Learning and Computer Vision algorithms on point-cloud data.

We propose two methods: first, a learning-based object localization method of fire
hydrant urban objects in dense TLS point-cloud outdoor scenes, and second, an outlet
key-point detection for centroid point estimation in order to automate CAD drawing
generation. The proposed methodology considers challenging scenarios where multi-
ple fire hydrant objects are present across extensive TLS point-cloud data acquired

with variate density of points.

Figure 6.1: Multiple hydrant objects from our FH-LiDAR dataset.
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6.2 Related Work

6.2.1 Object detection approaches on 3D

In the last decades, several 3D descriptors have been introduced to recognize objects
in 3D space. These are known as 3D descriptor-based recognition methods. These al-
gorithms are generally divided into two main categories, local descriptors, and global
descriptors. Local descriptors are mainly focused on characterizing the neighborhood
of a key point by extracting features such as curvatures, histograms, and gradients.
While local descriptors obtain relevant features on a specific area, global descrip-
tors extract features from the entire object space in a single feature vector. These
methods are directly associated with the quality and density of point-clouds. Local
descriptors included algorithms such as Spin Images, 3D Shape Context, Eigenval-
ues based descriptors, Distribution Histograms, Histogram of Normal Orientation,
Intrinsic Shape Signatures, Point Feature Histogram, Fast Point Feature Histogram,
Radius-based Surface Descriptor, Normal Aligned Radial Feature, Signature of His-
togram of Orientation, Unique Shape Context, Depth Kernel Descriptor, and Spectral
Histogram. Widely used global descriptors are Point Pair Feature, Viewpoint Feature
Histogram, Global Structure Histograms, Shape Distribution on Voxel Surfaces, and
Scale Invariant Point Feature. However, descriptors methods have some weaknesses,
such as sensitivity to occlusion, deformation, outliers, and point density variation,
which make them inconvenient for real-world applications.

Recently, several approaches have used Deep Learning methods to detect objects
directly from point-clouds or a combination of multiple sensors, including optical im-
ages and point-clouds. These object detector networks are divided into two main
categories: region proposal-based and single-shot algorithms. The main idea of these
approaches is to generate a 3D bounding box around each detected object from an in-
put point-cloud. Region proposal-based methods have demonstrate high performance
on the detection task, and are divided into three categories: multi-view based [181-
186], segmentation-based [187-192] and frustum-based methods. Single-shot methods
are also divided into three categories: bird’s eye view-based (BEV), discretization-
based and point-based methods. All of them are differentiated by performance time,
modality and accuracy.

MV3D [181] is a pioneer among the works in the multi-view based category by
combining multiple data sources (e.g., LIDAR, optical images, and BEV) and pro-
jecting them into a feature map to extract accurate 3D bounding boxes. Similarly,
Ku et al. [182] combined equally features vectors from both BEV and optical image

views computing cropping and scaling operations to be fused by using elementwise
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mean-pooling. Subsequently, Liang et al. [183] presented an approach that combines
images and LiDAR. points with different resolutions to find corresponding features.
They obtained dense BEV feature maps by associating 2D features from the image
into the BEV plane. Later, Liang et al. [184] introduced a multi-task framework to
exploit different tasks such as detection, ground estimation, and depth completion to
improve the learning of the network. These approaches demonstrate high accuracy
object detection experimental results, but a major limitation is the high computa-
tional cost of manipulating different multi-source data and fusion modalities.
Segmentation-based methods are supported by operations related semantic seg-
mentation to remove not interest points and reduce the computational cost. The
author in [187] introduced a method that first segments the objects from 2D images
and projects each pixel of a mask into point-clouds to subtract background points.
Then, they applied a criterion to reduce redundancies, and finally, the proposals were
extracted from the remaining points for bounding box inference. A similar approach
is PointRCNN [188], which fused semantic features and local spatial features for
bounding box inference. Subsequently, Li et al. [192] presented an improved version
of PointRCNN by proposing a three-branch backbone network to handle non-uniform
density points. Jesus et al. [189] introduced a two-module object detector. The first
module includes an R-GCN that gathers meaningful features between a point on each
proposal. The second module, namely per-frame C-GCN, obtains contextual informa-
tion between proposals on each PCD frame. These segmentation-based approaches
are suitable for complex point-cloud scenes that include challenging factors such as

high occlusion and crowded objects and are faster than multi-view based methods.

Figure 6.2: Manual annotation of urban objects with a 3D bounding box.

Likewise, frustum-based methods are frameworks that fuse candidates bounding

boxes from 2D object detector networks and extract 3D frustum proposals (set of
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points) from those candidates. Different methods are found in this category. For
example, F-PointNets generates a frustum region for every candidate on the image
and then learns point features on the frustum using 3D networks such as PointNet.
Point-SENet integrates the PointSIF'T module and scaling factors invariant to object
scaling. It demonstrates significant results in outdoor environments. PointNet++
[92] overcomes the problem of missing information in between points by using a
sampling layer, grouping layer, and the PointNet-based learning layer. This setup can
capture the geometric features of the neighborhood of each point. However, previous
approaches involved multiple step-by-step processes due to the incorporation of 2D

detectors and frustum generation, which limited their performance.

TOP

. /

SIDE

SIDE

RANDOM

Figure 6.3: Hydrant object from our dataset annotated with Top Outlet class (green),
Side Outlet class (blue), and Non Outlet class (red).

6.3 Methods

We implemented an end-to-end pipeline to address two problems, object detection
and key-point feature detection, directly from outdoor point-cloud scenes on hydrant
objects. Different than current object detection approaches, our pipeline not only
outputs a 3D bounding box with a class of the target object but also an interest key
point on the predicted object. When surveying a hydrant, a surveyor first localizes this
asset and then measures the centroid point closest to the ground surface with accurate
expensive tools. We demonstrate that our proposed strategy can handle complex 3D
point-cloud scenarios where hydrant object instances contain point-cloud variation,
noise, and partial to heavy occlusion. Therefore, we propose a pipeline with two stages

that relies solely on point-clouds and several robust techniques, contributing to a more
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Figure 6.4: Our proposed pipeline with different stages.

effective refinement of the final predictions. In the first stage, for object detection, we
introduce a dynamic voxelization approach to partition the raw point-cloud into fixed
voxels based on prior information from training data. Then, we adopt PointNet++
to train a model using point-clouds instances in order to distinguish between a fire
hydrant class and an unknown class. The predicted class and 3D bounding box with
the hydrant object are inputs for the second stage of our pipeline. In the second stage,
our goal is to localize key point features of the hydrant, such as the top outlet or side
outlet. Thus, we implement an algorithm to generate training data using an iteratively
searching strategy with KD-trees and previously annotated ground truth key points
on hydrant point-clouds. Then, we train a classifier to localize the key points, such

as top outlet or side outlet, that support the final centroid point estimation.

6.3.1 Object database preparation

Our dataset was acquired with an ultra high-speed time-of-flight device enhanced
by a Waveform Digitising (WFD) technology Leica ScanStation P20 sensor. Point-
clouds were acquired in multiple locations with 360 degrees horizontal and 270 de-
grees vertical in British Columbia, specifically in the areas of New Westminster
(NW), Marine Way (MW), and Nanaimo (NN). The sensor’s scan wavelength is
808 nm (invisible) / 658 (visible) with a range of 120 m; 18% reflectivity (mini-
mum range 0.4 m) and scan time and resolution (12.5mm @ 10m). A total of 41
hydrant objects were localized using a CAD file related to the point-cloud scene.

Then, each hydrant was annotated manually with a 3D bounding box and a class
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using CloudCompare software (Fig. 6.1). A bounding box contains the following pa-
rameters: center coordinates (czx, cy, cz), height, width, and length of box (h,w,1),
box corners coordinates (m-by-n matrix, with m=8 and n=3), maximum bounds for
geometry coordinates (mazz, mazy, mazz), minimum bounds for geometry coordi-
nates (minz, miny, minz), and unique ID. It also contains object coordinates points
(0bjy, 0bjy, 0bj), rgh color and the intensity value of each point as shown in Fig. 6.2.
For the key-point detection approach, we annotated ground truth coordinate points
(ug, uy, u,) on the hydrant’s outlets surface with a class 0.4ss Top Outlet (“TO”),
Side Outlet (“SO”), or Non-Outlet (“NO”), as shown in Fig. 6.3.

6.3.2 Scene voxelization preprocessing

A dense outdoor point-cloud scene represents a large volume of data with millions
of points that requires pre-processing to reduce the computational cost of processes.
Thus given an input large scale point-cloud with N points denoted by S = {s; € R3=v=|,_; _n}
we attempted to partition S into non-overlap voxels by a quantization parameter

d = [dw, di, dp], where w, [, and h define the width, length, and high parameters of each

voxel. The partition process is denoted as < 7; = ([m‘_jfvmi“J , [y‘_;mi“J , [z,-—ghmmJ )z’:l N}

, where v; is the voxel index integer used as key to access related subsets points
(subscenes) within each voxel. Based on our experiments with different [dy,, d, d)
parameters, [10,10,50] generates the best results and guarantees that each hydrant
is within one scene without loosing information. Then, within each v; we applied a

multiscale voxelization process for object detection.

Figure 6.5: Generate voxels over raw point-cloud scene with our multiscale voxeliza-
tion approach. We showed the generated voxels with an intersection over union (IoU)
threshold of 90% respect to the ground truth.
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6.3.3 Subscene multiscale voxelization

After scene voxelization, we consider a subscene multiscale voxelization in order
to obtain accurate bounding box predictions as, shown in Fig 6.5. Each H =
{h; € R3=v=|,_; N} € % is voxelized into overlapping voxels by a quantization pa-
rameter d' = [d,,,d},,d},]|, As, and ¢e, where w’, I, and h' correspond to the maximum
extend axis-aligned bounding box width value from each class in our training data.
Ay is the interval parameter applied on each axis and g, denotes the step size. The
smaller the ¢, is, the finer the voxelization but higher computational cost. On the
contrary, a higher g; reduce the processing time but might lead to high redundancy
voxel generation. An example of redundancy can be two neighbor voxels containing

half and half structure of the same object in the scene. The whole multiscale process
f '

N

= ([%}”“ASD d,=0,.w, ‘;_’ > , where *1;;' is the voxel index
l!

v =0,.., o

r r h'

L ht —O}...h?qs )
integer used as key to access related subsets points that need to be classify within

i=1,..

?

ﬁ-‘\-\.l

is denoted by <

each subvoxel.

6.3.4 Hydrant localization from raw scenes and centroid point
estimation

After the subscene multiscale voxelization stage, we adopted PointNet++ to classify
the point sets on each v} in hierarchical fashion as shown in Fig. 6.4. This method
has shown acceptable results in applications that require point-clouds 3D object clas-
sification or segmentation. It leverages small neighborhood sets of points at multiple
scales to extract local and high-level features. This process permits both robustness
and detail capture on point-cloud data. The hierarchical structure consists of a set of
abstraction (SA) levels. Each abstraction level has three key stages (sampling, group-
ing, and MLP layer) that extract multiple scales of local patterns and combine them
logically according to local point densities. At each level, a set of points is processed
and abstracted to output a set with fewer elements. Given the points h; € R3swv=
within 1;2, these are subsampled using an iterative farthest point sampling method to
obtain query points. For the grouping stage, a ball query method is used to localize
an upper limit k& neighbors of each query within a radius r; each group corresponds

to a local region. Each local region is abstracted by its centroid and local feature
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that encodes the centroid’s neighborhood. The process is repeated until obtaining
the features on *1;; Finally, the obtained features are transformed by a multi-layer
perceptron (MLP) network, followed by three fully connected layers and a softmax

function to obtain the probability class score.

P

Figure 6.6: Predicted bounding boxes with FH class.

6.3.5 Centroid point estimation

After predicting the FH class within a voxel as shown in Fig. 6.6, we use the K-
Dimensional Tree (KD-Tree) algorithm with k-nearest neighbors (KNN) search to
iterate over the set of points and extract neighbor subsets within a radius with respect
to a query point. Then, the subsets are input to the second PointNet++ model to
predict whether the points represent an outlet. After classifying voxels as “TO,”
“SO,” or “NO,” we wanted to select the best “T'O” and “SO” predictions to measure
the hydrant’s centroid accurately. Then we can measure the x, and y centroid by
averaging the points in the top outlet surface. In the case that the top outlet is not
presented or detected in the point-cloud, the side outlet predictions can also be used
to estimate the hydrant’s centroid point. Note that the top outlet part of a hydrant
is normally centered to itself. After conducting our experiments, we were able to
obtain accurate centroid results in many of the cases. Fig. 6.7 (a) and (b) show the
predicted top outlet by our model, and (¢) and (d) show the final estimated centroid
point (red color) after averaging the x and y coordinates. Note that we also tried
averaging the whole hydrant object or horizontal slices. However, none of these other
approaches were successful because different hydrant point-clouds might have missing

points, noise, or artifacts in between the points that cause averaging to fail.

6.3.6 Implementation details

The classification network based PointNet++ receives in the SA stage a point-cloud

with spatial coordinates and face normals associated to *1;; The SA stage consists
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Figure 6.7: Centroid point estimation. Hydrant’s points classified as top outlet points
(Top). Results of estimated final centroid point (Bottom).

of three SA layers. In the first SA layer, 512 sampling points are selected from the
input and local regions are delimited by determining 32 nearest neighbors of each
point within a 0.2 radius. From these local regions in the current SA layer, features
are extracted using MLPs (64,64,128). Then, the extracted features are summarized
for 512 regions with max-pooling. Similarly, in the subsequent SA layer, features
are extracted from 128 local regions with MLPs (128,128,128). The third SA layer,
received the remaining points for the extraction of features in a unique local region.
The global features in this SA layer are extracted with the MLPs (256,512,1024) with
max-pooling summarization. The final 1024 dimensional global feature is linked to
the two label classes (fire hydrant (FH) and non fire hydrant (NFH)) through MLPs
layer containing (1024, 512, 256) and two neurons. In all layers except last, ReLLU
(512, 256, ), batch normalization (512, 256, ) and dropout (0.5, 0.5, ) are applied.
Then, in the case that the previous model predicts an FH class object, the set of
points within the bounding box are passed through an additional trained model to
classify small patches on Top Outlet (TO), Side Outlet (SO), or Non-Outlet (NO).
The additional model has the same parameters as for FH and NFH classification.
However, the final 1024 dimensional global feature is linked to three classes through
MLPs layer containing (1024, 512, 256) and three neurons.
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Table 6.1: Comparison of 3D object classification results using PointNet++ on the
FH LiDAR dataset (2-classes) with different configurations

Model N Points Augmentation Accuracy

PointNet++ 256 No 46.15
PointNet++ 512 No 54.36
PointNet++ 1024 No 61.54
PointNet++ 2048 No 76.92
PointNet++ 4096 No 76.92
PointNet++ 256 Yes 53.64
PointNet++ 512 Yes 72.16
PointNet++ 1024 Yes 99.48
PointNet++ 2048 Yes 99.61
PointNet++ 4096 Yes 99.84

6.4 Experiments

In table 6.1 we demonstrate the results on the FH-LiDAR Dataset along with different
configurations in terms of training data, data augmentation, and the number of input
points. In the experiments, we evaluated PointNet++ on the FH-LiDAR dataset that
contains 41 hydrant point-clouds dispersed in three different urban outdoor scenes
from British Columbia. This diversity of configurations in the dataset allows us to
validate the performance of PointNet++. Using the original dataset, we observed
that the maximum accuracy obtained for classification is 76.92% with 4096 input
points. The model provides the same performance even by sampling the input points
to 2048. However, the performance decreases when sampling the input points from
1024 to 256 (61.54% and 46.15%, respectively). Compared to the original dataset,
the accuracy increases to a maximum value of 99.84% when training the model with
the augmented FH-LiDAR dataset. For key-point detection, we trained a model
with batch size 32, a learning rate of 0.001, and a maximum of 1024 points in each
object without augmentation. We got 99.10 % training accuracy and 98.42% testing

accuracy after training for 50 epochs.
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6.5 Conclusion

We propose a pipeline to achieve object detection and key-point estimation of hy-
drant objects on urban point-clouds scenes. Our object localization method consists
of a multiscale dynamic voxelization strategy to extract hierarchical features within
generated voxels. Our pipeline, integrating multiple modules of learning-based mod-
els, demonstrates robust detection and recognition accuracy on point-clouds. In fu-
ture work, we will explore optimization to further improve the time and accuracy

performance.
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Chapter 7
UAV feature extraction for WA M

7.1 Introduction

Route planning and mapping play important roles in maintaining the safety and con-
trol of major highways and avenues in rural areas. As-built surveys are typically
conducted during the construction process to ensure that procedures are carried out
according to the design and that roads are built exactly as planned. The subsequent
stage involves surveying completed roadways, where surveyors use a combination
of high-performance total stations and real-time kinematic (RTK) GPS systems to
obtain location and boundary information. In the past, surveying was typically a
manual process that involved using a theodolite and steel band to measure angles
and distances between points. A theodolite is a precision optical instrument used to
measure angles between visible points on horizontal and vertical planes. The total sta-
tion simplified many traversing procedures for surveyors by integrating an electronic
distance measurement device (EDM) into the theodolite. Later, the introduction of
satellite positioning systems (GPS, GLONASS, Galileo, BeiDou, NavIC, QZSS, and
SBAS) provided surveyors with a more accurate strategy for conducting survey ac-
tivities, which benefitted many industries. Currently, the combination of RTK+GPS
is widely used in the surveying industry due to great performance in providing cen-
timeter accuracy in the field. Although these conventional surveys and assessments
can provide accurate geomatic data, they are predominantly manual tasks that re-
quire domain-expertise and expensive specialized equipment. The completion time
and operation cost of a land survey is determined by the size of the area and different
features of interest; this is a repetitive task for surveyors, who have to pick points in
large areas covering kilometers. Moreover, environmental factors, e.g., tropospheric
activities, canopy covers, and buildings, can cause signal interference, affecting the

accuracy of the survey.
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In view of the rapid expansion of municipalities, this manual process becomes
time-consuming, restricted, and limited to skilled labor. Purpose-built tools have
emerged that allow survey tasks to be carried out using imagery or point cloud data.
Such popular commercial software suites include Quick Terrain Modeler, AutoCAD
Civil 3D (Autodesk), Mars 7, Ecopiatech, and TopoDOT. These suites allow users to
accurately extract a variety of lines and points features data, e.g., side walks, traffic
signs, or even lines on the road, as in our case study. However, these commercial tools
also show limitations that must be considered. First, they are licensed and dependent
on commands by the user, either through clicks or with touch screens, which limits
them to performing fully autonomous tasks. The user typically has to deal with
loading and then manipulating the data using rotate, zoom, and translate operations
until the target zone is found. Using sidewalk extraction as an example, the user
typically clicks near the sidewalk and then features in the area are extracted to find the
sections connected to the same sidewalk. Although the results are usually accurate,
they always require user intervention to continue extracting features in the rest of
the scene. Second, performance is impeded by increasing input data, which slows
down processing or even aborts commands due to excessive memory consumption.
And third, the resulting feature lines or points must be refined by the user at various
locations in the scene. More recently, drone mapping systems produce high-quality
data, allowing detailed map representation of the scene from a different perspective,
which can cover much larger areas of interest (AOIs) than conventional surveying.
Object detection and object classification are standard terms in Computer Vision
(CV) and have gained attention in remote sensing applications. These concepts aim
to determine whether data contains a target entity, match, feature, signal, pattern,
or activity. Related research has gained attention in the last decades and its studies
have generated large amounts of digital multimedia data, e.g., time series, images,
videos, or point clouds, in numerous industrial sectors and scientific fields. Object
recognition and object detection typically provide instances belonging to a given
category or class, returning the spatial and/or extent location of a target object,
e.g., object class, 2D bounding box, or both object class and location simultaneously.
Semantic segmentation as a further extension of object classification, labels every
pixel in the image with a corresponding object class label. Different techniques are
adopted depending on the applications. The integration of artificial intelligence (AI)
in land surveying using drone imagery has the potential to revolutionize the field.
By automating previously manual tasks, Al algorithms can quickly and accurately
extract important data points such as topography, elevation, and boundary lines. The

speed and efficiency of Al algorithms make them ideal for processing large amounts
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of data and identifying patterns and anomalies that may be difficult for humans to
detect. Moreover, drones are an efficient tool for land surveying, capable of covering
large areas in a short amount of time. This makes drones ideal for surveying large
projects such as construction sites or infrastructure developments. Al algorithms can
analyze the data collected by drones to detect changes in terrain, indicating potential
hazards such as landslides and erosion. Human expertise and knowledge are still
crucial for interpreting and analyzing the data generated by Al algorithms. Overall,
the integration of Al in land surveying using drone imagery has the potential to
greatly improve efficiency and accuracy, but it should be viewed as a tool to augment
the skills of human surveyors, rather than replace them. For our goal of extracting
linear features in an image, which may have slopes and be continuous in extent,
detecting lines with bounding boxes is not feasible. On the other hand, semantic
segmentation allows the classification of each pixel belonging to the line in the entire
extension of the image regardless of the trajectories or directions. In this sense,
aerial imagery with computer vision algorithms can offer an automatic workflow for
a variety of land surveying tasks. Our framework involves multiple stages that are
responsible for extracting and mapping target lines in high resolution drone images,
which results in a Computer-aided design (CAD) that surveyors require. A novelty is
the framework itself, where each stage is crucial to achieving accurate extraction of
lines, and the benefits are seen in the processing time and precision of lines in large
coverage areas without user intervention. In our method, we take advantage of the
quality of high-resolution images to extract pavement lines with greater precision,
less time, and less computational cost than current methods. We use a semantic
segmentation algorithm for the initial estimation of the lines, and consequently a
stage of numerous cascading optimized filters to clean, refine, and merge the target
lines. We performed experiments with different semantic segmentation algorithms

(and configurations) to evaluate the best one for this task.

7.2 Dataset creation for road marking surveying

We demonstrate the feasibility of DL semantic segmentation and image processing
for accurate road marking surveying using high resolution aerial images. The existing
datasets related to our problem domain lacked the additional information needed
to validate the tasks of road marking surveying. Our dataset is distinguished from
existing urban datasets in many important aspects. The ground truth data extraction
is based not only on pixel-wise annotations, but also on a validation of the annotation

with line information in the physical world. This validation can be conducted by
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comparing the resulting lines with the CAD engineering drawings provided by domain
experts in the area, which represent the real, precise, and reliable geospatial locations
of the point features and linear features in the ground coordinates system. Ground
coordinates are measurements within 1 cm accuracy that are taken using GNSS RTK
receivers on the actual surface of the earth. In this way, the data obtained in each
stage of our framework can be analyzed and compared more rigorously with real-world

assets, either image space or line space.

Glover Road dataset

The survey area selected was in Langley, specifically Rawlison Crescent and 240 St.,
British Columbia, Canada. The area used for the study covers 5.5 km? of land with
a diverse landscape composed of grass wetlands, forage grass, palmetto wet and dry
prairies, pine flatwoods, surrounding mountain and valley views, and interconnected
farms throughout, as shown in Fig.7.1. The area contains 2.7 km of two-way high-
way that has painted traffic signals that divide and delimit the edges of the road,
as illustrated in Fig.7.2. T'wo sets of solid double yellow lines that are two or more
feet apart sometimes appear as a road marking. Such lines indicate that passing is
not permitted. Edge-lines help drivers stay on the road during low visibility condi-
tions, such as fog, rain, and snow. The road marking along Rawlinson Crescent and
240 St. presents diverse conditions due to external factors, which include damages
generated by third parties, atmospheric effects (rain, pollution, dirt particles, and
gases, among others), vandalism, and/or road accidents. These factors that lead to
the deterioration of the signal are reflected in the reduction of retro-reflectivity and in
the partial or total destruction of these elements affecting the display of information
on the roads. The previously listed factors directly affect the patterns in 2D images,
representing challenges for semantic segmentation models. The dataset is comprised
of two high resolution images, LRS1 and LRS2, taken during a mapping mission in
the study area. The image LRS1 has 23022x55146 pixels in Tag Image File Format
(TIFF), containing 3 Bands (RGB) and 8 bits pixel depth. LRS2 shares similar image
and spatial information with LRS1 but has a size of 66520x26296. High resolution
imagery data (LRS1 and LSR2) was acquired in the spatial reference NAD (North
American Datum) 1983 CSRS (Canadian Spatial Reference System) UTM (Univer-
sal Transverse Mercator) Zone 10N with a PHANTOM 4 RTK (Real-time kinematic
positioning) as specified in Table 7.1).
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Figure 7.1: Example of different environments encountered in the Glover Road Area,
and respective CAD files.
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Figure 7.2: Longitudinal line types of interest in the Glover Road Area.
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Drone weight 1391 g

Max Ascent Speed | 6 m/s (automatic flight); 5 m/s (manual control)

Max Descent Speed | 3 m/s

Max Speed 31 mph (50 kph)(P-mode)

Max Flight Time Approx. 30 minutes

Gimbal Stabiliza- | 3-axis (tilt, roll, yaw)
tion

Pitch -90° to +30°

Max Controllable | 90° /s
Angular Speed

Angular Vibration | 0.02°
Range

GNSS Module GPS GLONASS Galileo

Mapping Accuracy | Mapping accuracy meets the requirements of the ASPRS Accuracy
Standards for Digital Orthophotos Class 117

Ground Sample | (H/36.5) cm/pixel where H is the aircraft altitude relative to shoot-

Distance(GSD) ing scene (unit: m)

Data  Acquisition | Max operating area of approx. 1 km? for a single flight(at an alti-

Efficiency tude of 182 m, i.e., GSD is approx. 5 cm/pixel, meeting the require-
ments of the ASPRS Accuracy Standards for Digital Orthophotos
Class III

Table 7.1: Drone hardware specifications during Glover Road Mapping Mission.

Classes and data preparation

The dataset considers two classes that describe commonly used traffic painted lines on
the road: center-line and edgeline. The image annotation was carried out manually
by experts with precision to obtain reliable ground truth data, as shown in Fig. 7.3.
Free-drawn polygons were used to label the pixels in the image. Annotations are
composed of n polygons of land categories inside a given grid cell. We assigned a
class to the pixels within each polygon, either center-line or edge-line. Then, all the
polygons are converted to raster. It should be noted that the annotation of the data
that occurred in the LRS1 dataset is for training and testing of the models. The LRS2
dataset was used only for testing experiments with the already trained models, This
means that the data being evaluated has never seen before. Likewise, in the labelling
tasks we focus on labelling representative data of the lines painted on rural roads.

In order to achieve a greater generalization performance, various road sections were
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Figure 7.4: Proposed framework for automatic road marking survey.
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chosen to obtain a diverse variability of data. The criteria for variability include the
orientation of the lines (whether vertical or horizontal), conditions of the lines, areas
with curves in the road, shadows that cause changes in intensity, occlusions of trees or
power cables, different conditions of pavements, among others. While augmentation
techniques can help in theory, when working with large-scale data, it is better to
leverage real data and assess the outcome before conducting augmentation. After
data labelling, a thorough visual inspection of the ground truth data was performed
to confirm that the annotations were correct for further use. The labelled data in
LRS1 was cropped and stored into a dataset of 1444 images and corresponding label
mask with size 256 x 256. All the images and label masks were divided into 70%
training set and 30% test set.

7.3 Methodology

We propose a Deep Learning-based framework for center-line and edge-line detection
for road surveying from high-resolution drone imagery. Our framework consists of
three consecutive stages: 1) semantic segmentation, 2) enhancing predicted pixels,
and 3) lines connection, as shown in Fig. 7.4. First, the input aerial image is passed
through a series of semantic segmentation algorithms to obtain initial predicted pixel
masks. We compared different SOTA semantic segmentation algorithms to achieve
this purpose. The models were selected based on their performances in different
applications. Second, the predicted masks are post-processed through a series of filters
to remove noise pixels in different region of the images and maintain only important
pixel regions. Third, from the masks output from the second stage, neighborhood
pixels are associated and evaluated trace center-lines and edge-lines of the road using

the whole content of the aerial image.

Initial semantic segmentation stage

Since our main objective is surveying lines, existing segmentation architectures were
tested for the initial segmentation. From the resulting masks, the next step is the
generation and plotting of useful lines for road marking surveying. These architectures
are able to provide a mask with segmented pixels but are insufficient to retrieve
suitable lines for survey applications. For this reason, we introduce our framework,
which allows us to extract fine center-lines and edge-lines accurately using aerial
images. The input aerial image J with size D x D is cropped by a set of patches of
size d x d with corresponding ground truth patches of the same size. In order to obtain

a better understanding of the algorithm performance, we evaluate patches with d =
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128 and 256 respectively. Note that patches with intersection-over-union less than
0.7 with respect to the ground truth are discarded so that our dataset maintains
class balance before training the models. The resulting patches are the input data in
our segmentation stage. We describe below the commonly adopted neural network
architectures evaluated in this work. These networks are selected based on their good
performances in other applications.

U-Net[110] is a network introduced by Ronneberger for biomedical image segmen-
tation and is composed of an encoder and a decoder. It has been successful in remote
sensing applications that require the processing of large scale data. In this sense, the
network is capable of producing highly precise semantic segmentation masks in high
resolution images. The segmented output is achieved by using a large number of skip
connections layers, and more specifically, the encoder stage extracts feature represen-
tations of the image at multiple levels. The decoder then projects the discriminative
lower resolution features learnt by the encoder onto the pixel space domain, and finally
produces a segmented mask. U-Net has blocks of repeated 3x3 convolutions followed
by a ReLLU (Rectified Linear Unit) activation function and a 2x2 max pooling layer
with stride 2 for downsampling. The reverse happens at the decoder, where a 2x2 up-
convolution takes place that reduces the number of channels by 2. Additionally, the
output at each level of the encoder block is concatenated with the decoder block. The
implemented U-Net architecture utilizes ResNet-34 and ResNet-50 models pretrained
with the with ImageNet[193] database.

PSPNet Pyramid Scene Parsing Network[194] was introduced for semantic segmen-
tation as U-Net, and it consists of for an encoder and decoder as well. The PSPNet
encoder contains the CNN backbone with dilated convolutions (which helps in in-
creasing the receptive field) along with the pyramid pooling module. The pyramid
pooling contributes capturing the global context semantically which helps it to clas-
sify the pixels based on the global information present in the image. After the encoder
has extracted the features of the image, the decoder generates predictions bases on
these features. Similar to U-Net, we evaluated PSPNet embedded with ResNet-34
and ResNet-50.

DeepLab[195] semantic image segmentation model uses a fully convolutional neural
network (FCN) to predict a dense classification map for each pixel in an image. The
model employs atrous convolution, also known as dilated convolution, to increase the
receptive field of the network without increasing the number of parameters. Addition-
ally, DeepLab uses an encoder-decoder architecture with skip connections to maintain
high-resolution features from earlier layers while also capturing context from later lay-

ers. The model has achieved SOTA performance on various benchmarks, including
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the PASCAL VOC and Cityscapes datasets, and has been widely adopted for various
computer vision applications.

CGNet[196] (Conjugate Gradient-based network) is a deep learning architecture
designed for efficient semantic segmentation of high-resolution images. It uses a con-
jugate gradient-based optimizer to train the network, which reduces memory require-
ment and speeds up the training process. The architecture is composed of an encoder
and decoder network, connected by a bottleneck layer. The encoder network consists
of multiple convolutional layers, which progressively reduce the spatial resolution of
the input image while increasing the number of channels. The decoder network, on
the other hand, consists of upsampling layers and skip connections that progressively
restore the spatial resolution of the feature map. In order to reduce the computational
complexity of the network, CGNet uses dilated convolutional layers with a large di-
lation rate, which increases the receptive field of the network without increasing the
number of parameters. Additionally, the network uses a depthwise separable convo-
lution, which factorizes a standard convolution into a depthwise convolution followed
by a pointwise convolution. This technique further reduces the number of parameters
and computation required by the network.

CCNet[197] Criss-Cross Network is a deep learning architecture designed for ac-
curate semantic segmentation of high-resolution images. It uses a novel criss-cross
attention module to capture long-range dependencies between different regions of the
image, improving the quality of the segmentation results. CCNet consists of an en-
coder network, a criss-cross attention module, and a decoder network. The encoder
network consists of multiple convolutional layers that extract features from the input
image. The criss-cross attention module is inserted between the encoder and decoder
networks, and it uses a criss-cross pattern to compute attention maps that capture
dependencies between different regions of the image. The decoder network then uses
these attention maps to generate the final segmentation mask. CCNet also incor-
porates other advanced techniques, such as dilated convolutional layers and batch
normalization, to improve the performance and efficiency of the network. It achieves
SOTA results on several semantic segmentation benchmarks, such as Cityscapes,
COCO, and ADE20K. Its use of criss-cross attention and other advanced techniques
makes it a powerful tool for accurate and efficient semantic segmentation of high-
resolution images.

APCNet[198] Adaptive Pyramid Context Network is a deep learning architecture
designed for semantic segmentation tasks in computer vision. It uses a multi-scale
feature pyramid approach to capture contextual information at different levels of

abstraction and adaptively adjusts the receptive field size of convolutional filters to
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improve accuracy and efficiency. APCNet has achieved SOTA performance on several
benchmark datasets, including Cityscapes and COCO-Stuff.

ANN][199] Artificial Neural Network is a machine learning model inspired by the
structure and function of biological neurons in the human brain. It consists of in-
terconnected layers of nodes that perform mathematical operations on input data to
produce output predictions. ANN can be used for a wide range of tasks, including
classification, regression, and pattern recognition. The effectiveness of ANN depends
on the architecture of the network, the choice of activation functions, and the opti-
mization algorithm used to train the model.

DMNet[200] Dual-channel Multi-scale Network is a deep learning architecture de-
signed for image dehazing, which is the task of removing haze and improving visibility
in outdoor images. DMNet uses a dual-channel approach to capture both global and
local information in the image and multi-scale features to handle different levels of
haze density. The global channel captures the overall scene information, while the
local channel focuses on the details of the image. DMNet also includes a novel fusion
module that combines the information from both channels to produce a clear image.
DMNet has achieved SOTA performance on several benchmark datasets, including
NTIRE 2018 and RESIDE.

All the above methods allow segmenting images through mask representations to
produce resulting pixel classes. However, they differ from each other in terms of the
number of parameters, local features, context-aware modules, pooling grids, compu-
tational efficiency and memory consumption. In this scenario, we quantitatively and
qualitatively evaluate all the mentioned methods in small patches of the proposed

dataset and select the best one for road marking extraction tasks.
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7.3.1 Pixel regions to polylines

After semantic segmentation of J , the predicted mask J; is stored in continuous
raster format for further processing. A raster consists of a matrix of cells (or pixels)
organized into rows and columns (or a grid) where each cell contains a value repre-
senting information. This format also allows access to other layers with geographic
information and spectral data of the area. Post-processing techniques are executed at
this point to enhance J;. The procedures allow for highlighting features and reduce
the amount of noise mixed in the data. In order to convert the pixel regions to 2D
lines at multiple scales, we design a module which employs convolution in cascade to
capture a more realistic center-line and edge-lines pixel class and remove counterfeit
regions in J,.

In our proposed module, the first convolution is applied on U, using a majority
filter. The majority filter induces corner smoothness of rectangular regions [201],
allowing for a reduction of the initial complexity of the lines. The majority filter
can be expressed mathematically as F'(i,j) = modef(z,y) : (z,y) € S(i, ), where
F(i, 7) is the filtered output at pixel (i, j), f(z,y) is the intensity value of the pixel at
position (z,y) in the input image, S(i, j) is the local neighborhood centered around
pixel (i, 7), and mode represents the mode of the set of intensity values within the
neighborhood S(i, 7). In simpler terms, the majority filter replaces the intensity value
of each pixel in J; with the most frequently occurring intensity value within a specified
neighborhood around that pixel. This helps to smooth out the image and reduce noise.
At this stage, the resulting raster mask J;¢ has less noise, and we can focus mainly
on processing the target road markings along the image. As previously mentioned,
center-lines and egde-lines can be affected by external factors that deteriorate them.
These effects are also demonstrated in the spectral data of the images and therefore
in the resulting segmentation masks. Therefore, our next step is to shrink the pixel
areas of the center-lines and edge-lines in U, taking into account that this shrinkage
is done towards the center of its extension and not towards its edges. This is because
when surveyors survey the road, they take the center of the mark line as a reference
so that maps can be generated accurately. Therefore, the following filter refers to the
shrinking of J,;.

To achieve this process, we converted our raster J; to a binary format, where each
pixel is assigned a binary value of either 0 or 1 based on a threshold value. Given
the binary raster dataset J, with pixel values of either 0 or 1, where 0 represents the
background and 1 represents the line features. We apply a shrink operation to this

dataset using a structuring element S. The steps for applying the shrink algorithm to
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Figure 7.6: Results of our proposed vectorized lines extraction algorithm.
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the binary raster dataset J;, are as follows. We define a structuring element S, which
is a binary matrix representing the neighborhood around each pixel that will be used
to probe the image. The structuring element S can be defined as a matrix of 1s of a
specified size, such as a 3x3 matrix or a 5x5 matrix. Let S;; denote the value of the
structuring element at position (i, 7). Then, we create a new binary raster dataset, ﬁb,
with the same extent, cell size, and projection as the input raster dataset. Initialize
all pixels in G, t0 0. A threshold is determined by examining the values in the input
raster dataset and selecting a threshold value that separates the line features from the
background. The, repeat the following steps until no more changes occur in the output
binary raster dataset, ﬁ},: a) For each pixel in the input binary raster dataset, J,. If
the pixel value is 0 (background), set the corresponding pixel in the output binary
raster dataset, ﬁb, to 0. If the pixel value is 1 (line), probe the neighborhood around
the pixel using the structuring element S. If the structuring element S is completely
contained within the line pixels in the neighborhood, set the corresponding pixel in
the output binary raster dataset, ﬁb, to 1. Otherwise, set it to 0. The process can be
0 ifG; =0

1 if Gpy=1and 3, Sk Toirk—1441-1 = D gy Sk

ﬁbﬁ is the value of the pixel at position (i,j) in the output binary raster dataset,

represented by ﬁ’bﬁ = where

Gy, is the value of the pixel at position (i, j) in the input binary raster dataset, and
Ek,t Skt - Ypiyk—14+1—1 1s the sum of the products of the corresponding elements in
S and ¥, within the neighborhood around pixel (i,j). Then, b) Replace the input
binary raster dataset, J,, with the output binary raster dataset, ﬁ},. Save the final
output binary raster dataset, Jy. The algorithm is repeated until convergence, which
occurs when the output image no longer changes. The convergence condition ensures
that the overall shape and connectivity of the objects in the image are preserved.
Note that the choice of structuring element can have a significant impact on the
output of the shrink algorithm. A larger structuring element will remove more pixels
from the boundaries of objects, resulting in greater shrinkage. Conversely, a smaller
structuring element will remove fewer pixels, resulting in less shrinkage. We applied
again a convolution filter in dy to remove noise, and finally convert from raster to
vectors lines. We added a thinning module for the conversion of raster lines into
vectors (skeletonization) following the proposed method in [202]. Let y be the
input binary image and Uy be the output thinned image. Let 9y (z,y) and ;(z, y)
denote the pixel values at position (z,y) in the input and output images, respectively.
The thinning algorithm can be described by the following steps. Initialize the output
image as ;(z,y) = Gy(z,y) for all (z,y). Then, repeat the following steps until
convergence. Traverse the boundary of the binary image: Let N(z,y) be the 3 x 3
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neighborhood centered at pixel (z,y). For each pixel (z,y) in the image, compute:

A(z,y) =2 Ip(z,y) — Ib(z — 1,y) — Ip(z + 1,7)

B(z,y) =2 Gy(z,y) — Gp(z,y — 1) — Gy (z,y + 1)

P1(z,y) = 9n(z — 1,9) - In(2,y) - Go(z + 1,y)

P2(z,y) = Gy(z,y — 1) - Gu (@, y) - Gp(,y + 1)

If A(z,y) ==1 and B(z,y) == 0 and P1(z,y) == 0, mark L(,f_y(a:,y) for removal.

If A(z,y) == 0 and B(z,y) == 1 and P2(z,y) == 0, mark J;(z,y) for removal.

Then, remove the marked pixels from the image denoted by L(fJ(a:, y) = dy (z,y) —
Qz\q(x,y) for all (z,y) in the image, where Q;v[(a:,y) is a binary mask that marks
the pixels for removal. Repeat steps (a) and (b) for all eight possible rotations of the
image. The process is repeated until convergence, which occurs when no further pixels
can be removed from the image. In the above equations, A(z,y) and B(z,y) represent
the two conditions for removing a pixel from the image, based on the connectivity
of the pixels in the 3 x 3 neighborhood around each pixel. P1(z,y) and P2(z,y)
are additional conditions that help to preserve the topology and connectivity of the
image. Note that the thinning algorithm is sensitive to the initial conditions and may
produce different results for different starting configurations. In this way, a line of N
pixels wide is converted to a line of 1 pixel wide, preserving its original shape.

Fig. 7.5 and Fig. 7.6, show examples of how the algorithm extracts vectorized
lines. While the majority filters help reducing inconsistencies due to path decay, our
skeletonization module provides a compact form of the target lines. The concatenate
modules collaborate reducing the dimensionality of the segmented masks but pre-
serving its topology. Skeletonization provides useful information for segmentation,
recognition, and registration, among others [203]. Later, we convert our resulted
raster 51\41 (z,y) to a 1-cell-wide raster line. This format is used to extract the points
(zk, yr) which are at a distance defined by R. Using the Bresenham algorithm [204],
the distance is calculated by dipwer — dupper = 2m(zr + 1) — 2y +2b — 1 to determine
the points that meet the distance R criteria, with m = Ay/Az. Thus, the sequence
of lines forming the original skeletonization topology is formed. Once the vectorized
lines are created, it is important to reduce their complexity, using algorithms such
as the conservation of critical points. This algorithm eliminates unnecessary points
for the primordial form of the line [205], eliminating abrupt changes in its trajectory.
Finally, the vectorized lines are ready for visualization in Computer-aided Design

software.
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Table 7.2: Quantitative Results for Glover Road with image size 256 x 256

Model Backbone Image Size Layers Precision Recall F1-Score
U-Net ResNet-34 256256 1,23,6] 0.89623 0.92382  0.90957
U-Net ResNet-50 256256 [1,23,6] 0.89661 0.91693  0.90657

PSPNet  ResNet-34 256256 1,23,6] 0.90518 0.92255  0.91370

DeepLab  ResNet-34 256256 1,23,6] 0.87560 0.91985  0.89644

PSPNet VGG-16 256256 1,23,6] 0.87329 0.92305  0.89700
U-Net ResNet-34 256256 [1,3,6] 0.88726  0.92853  0.90710
U-Net ResNet-34 256256 1,24,8]  0.88878 0.88547  0.88623
U-Net ResNet-34 256256 [1,2,3,6] 0.89080 0.90022  0.89542

PSPNet  ResNet-34 256256 [1,3,6] 0.89880 0.92225  0.91027

PSPNet  ResNet-50 256256 [1,3,6] 0.91263 091719 0.91489

PSPNet VGG-16 256256 [1,3,6] 0.90377 0.92047  0.91199

PSPNet VGG-16BN 256256 [1,3,6] 0.90907 0.91676  0.91285

DeepLab  ResNet-34 256256 [1,3,6] 0.87468 0.90942  0.89125
DeepLab  ResNet-50 256256 [1,3,6] 0.88792 0.90975  0.89851
DeepLab  VGG-16 256256 [1,3,6] 0.64707 0.41563  0.45411
DeepLab VGG-16BN 256256 [1,3,6] 0.73292 0.59792  0.64573
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Table 7.3: Quantitative Results for Glover Road with image size 128 x 128

Model Backbone Image Size Layers Precision Recall F1-Score
U-Net ResNet-34 128x128 [1,2,3,6] 0.93152 0.92358  0.92752
U-Net ResNet-50 128x128 [1,2,3,6] 0.93868 0.92549 0.93199
U-Net ResNet-34 128x128 [1,3,6] 0.93171 0.91981 0.92569
U-Net ResNet-50 128x128 [1,3,6] 0.93627 0.92628  0.93121

PSPNet ResNet-34 128x128 [1,2,3,6]  0.94443 0.89356  0.91778

PSPNet ResNet-50 128x128 [1,2,3,6] 0.92029 0.89502  0.90691

PSPNet VGG-16 128x128 [1,2,3,6] 0.94309 0.91165  0.92689

PSPNet VGG-16BN 128x128 [1,2,3,6] 0.94585 0.83539  0.88436

PSPNet DENSENET121 128x128 [1,2,3,6] 0.89407 0.88579 0.88903

PSPNet ResNet-34 128x128 [1,3,6] 0.92353 0.89895 0.91092
PSPNet ResNet-50 128x128 [1,3,6] 0.94215 0.88470 0.91188
PSPNet DENSENET121 128x128 [1,3,6] 0.89739 0.75605 0.81531
PSPNet VGG-16BN 128x128 [1,3,6] 0.93295 0.88124 0.90514
DeepLab ResNet-34 128x128 [1,2,3,6] 0.87253 0.92132 0.89572
DeepLab VGG-16 128x128 [1,2,3,6] 0.71851 0.56309 0.61787
CGNet 128x128 0.90037 0.91485 0.90749
CCNet 128x128 0.90409 0.89693 0.90048
APCNet 128x128 0.88789 0.92262 0.90430
ANN 128x128 0.89233 0.90994 0.90086
DMNet 128x128 0.89488 0.93368 0.91344
DNLNet 128x128 0.88441 0.92747 0.90506
EMANet 128x128 0.89655 0.91724 0.90649
FCN [206] 128x128 0.90034 0.93377 0.91653
GCNet 128x128 0.88264 0.92951 0.90468
HRNet 128x128 0.92351 0.91863 0.92106
OCRNet 128x128 0.91109 0.92073 0.91569
PSANet 128x128 0.86922 0.86558 0.86731
SEM_FPN 128x128 0.92532 0.90796 0.91647
UPERNet 128x128 0.93612 0.91071 0.92310
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7.3.2 Training and configuration details

In the model training process for semantic segmentation, models were trained from
scratch using preconfigured backbones such as ResNet-34, ResNet-50, VGG-16, and
VGG-16 with batch normalization. All models were trained with a maximum of 50
epochs with the training performance evaluated after each iteration in case additional
training was required. Other fixed values for training include a batch size of 4, input
image sizes (256 x 256 x 3 and 128 x 128 x 3), and a learning rate le-5. In order
to compare the effectiveness of the models, we use precision, recall, and F1 score
as metrics. For training and evaluation, we divided the workload of the different
architectures in a Linux system and a Windows machine. Both workstations have
a NVIDIA GeForce RTX 2080 SUPER, processor Intel Core i7-10700KF CPU with
3.80GHzx 16, and 64GB of RAM.

7.4 Experiment and analysis

7.4.1 Experimental results

In this section, we analyze and compare the performance of different models and
backbones in the application of semantic segmentation of painted traffic lines on
rural roads using aerial images. We also discuss our post-processing stage, where
predicted output masks are refined to project the labelled pixels to 2D lines. We
conduct quantitative and qualitative (Fig. 7.7 and Fig. 7.8) experiments for training
and evaluation in the Glover Road database (LRS1 area) without data augmenta-
tion. Only previous manually extracted data are used to verify the effectiveness of
the models against raw data. Table 7.2 and Table 7.3 show the results on the Glover
Road Dataset along with different model architectures and backbones. The accuracy,
dice, training Loss, and validation loss results of the proposed semantic segmenta-
tion methods are shown in Fig. 7.9. The diversity of configuration in this dataset
allows us to validate the performance of the model against different scene conditions.
PSPNet with VGG-16BN obtained the highest precision (94.45%) compared to the
others using input images with size 128x128. PSPNet maintains similar values using
backbones Resnet-34, VGG-16, and ResNet-50, with 94.44%, 94.30%, and 94.21%,
respectively. Regarding precision, the previous models are followed by U-Net Resnet-
50 and UperNet with 93.86% and 91.61%. This demonstrates the performance of
these models in predicting positive pixels in classification tasks but not how false
negatives can affect them. The CCNet, CGNet, and FCN models maintained preci-
sion values around 90% compared to the previous methods. Note that the PSPNet
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with VGG-16BN with an input image size of 256x256, the precision dropped off by
around 4% (90.90%) which shows how the performance can be affected when input
data is at various scales. DeepLab (with VGG-16) was the model that obtained the
lowest precision for both data input sizes, with 71.85% and 64.70%, respectively. Re-
garding sensitivity (Recall), FCN and DMNet reached 93.37%, followed by CGNet
with 92.95%. U-Net with ResNet-34 and ResNet-50 backbones is also one of the best
for recall at above 92%. We selected the Fl-score metric as the best to measure
the performance of all models since it uses both precision and recall in its measure-
ment. U-Net (with ResNet-50) proved to be the model with the best prediction in the
segmentation of traffic lines, with a score of 93.19%. Even U-Net, using fewer convo-
lution layers, performs at 93.12% with the same data (image size 128x128), followed
by PSPNet with VGG-16 (92.68%). FCN, SEM-FPN, OCRNet, and DMNet also
demonstrated acceptable performance, with recall values around 91%. We noticed
many of the algorithms can fail or ignore the classification of some pixels in regions
of our dataset. Even in more challenging scenarios as shown in Fig. 7.8, U-Net tends
to misclassify pixels in areas that have similar patterns to the lines marked on the
pavement. For example, in Fig. 7.8(a) the input image and predicted mask of the
pavement lines can be observed with great precision. However, it is also observed
that there are false classifications on and around the roof of the house, and near a
garage at the top of the image. Likewise, Fig. 7.8(b-c) and Fig. 7.8(f) a greater
misclassification is notable, because there are several objects in the area that share
similar color intensities as the pavement lines, and especially in patterns that contain
edges. In Fig. 7.8(h), a greater coverage can be seen in the segmentation of the image,
and this is due to the fact that the area has mostly pixels of vegetation and land.
Therefore, it can be concluded that these architectures can be largely affected by the
context of the image. However, our framework overcomes this problem by using our
cascading modules to mitigate these artifacts that affect line extraction. In our stage
of refinement and generation of lines, the convolutions applied in each step allowed
us to mitigate the noise associated with the segmentation stage. We experimented

with various parameters that allowed us to generate quite precise lines.

7.5 Conclusion

Considering the manual and labor-intensive road marking tasks in the land surveying
and engineering industries, we propose an automatic framework for road marking
surveying of center-line and edge-line using high resolution aerial images. We con-

struct our self-made benchmark dataset of a rural scene including annotated images
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and geospatial metadata of linear features. Our framework first performs an initial
segmentation of the imagery data using SOTA algorithms for semantic segmenta-
tion, which provides masks of target traffic lines on the road for the center-line and
edge-line classes. We compare the selected models with multiple configurations either
in the input data or model parameters to check the segmentation performance in
challenging cases. Then, the predicted masks are processed in a refinement stage to
extract thin and smooth connected lines without losing the pattern of their shape.
The refinement stage makes use of majority filters at different scales to generalize and
reduce single pixel misclassification, then the processed masks go through a dedicated
thinning stage and generate the skeletonization of the lines. Our quantitative and
qualitative experiments indicated that our proposed framework obtained satisfactory
results and can be an alternative for surveyors. This work demonstrates the feasi-
bility of autonomous survey tasks using high resolution drone imagery, which can be
used for pavement marking surveys over a wide rural area for rapid assessment. In
the future, we will focus on improving processing time as well as evaluating other

pavement marking lines.
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Chapter 8

Conclusion and Future work

In this thesis, we explored pattern recognition scenarios involving various sensors
modalities, where existing methodologies were insufficient to effectively tackle the
computational and pattern-related challenges, primarily due to scalability demands,
constrained contextual information, or the presence of dynamic environmental factors.
In this thesis we suggest potential future directions which interested researchers can
continue to explore in local-area and remote-sensing fields.

For local-area, in-situ object detection and pose estimation, we propose a semi-
supervised strategy to obtain the pose of texture-less objects placed in a complex
industrial scene. Our system is trained on synthetic images using the solid model of
the target object. We locate the Rol that delimits the object’s structure through an
unsupervised segmentation method which does not require learning stage reducing
computation. Then, a learning-based algorithm is trained to recognize objects in
different perspectives using HOG features and invariant moments. The estimation of
the object’s pose is based on a matching technique using a DTW method to compare
vectors of different sizes without losing representative characteristics of the features.
Our pipeline demonstrates better detection and recognition accuracy compared with
existing methods on texture-less objects. In future work, we will explore optimization
to further improve computational time and accuracy at different stages.

In video analysis for local-area, in-situ traffic surveys, this study presents a ro-
bust and adaptable multi-class traffic analysis system capable of accurate detection,
classification, and tracking in diverse urban environments. The results demonstrate
its effectiveness under varying conditions, making it a valuable asset in traffic anal-
ysis and management. Future research could focus on optimizing the system for
real-time applications, enhancing accuracy under challenging conditions, integrating
with smart city infrastructure for urban management, addressing privacy concerns,

and developing user-friendly interfaces. It could also investigate more active learn-
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ing techniques to prioritize samples that are diverse or dissimilar from the existing
labelled data. Collaborative efforts between researchers, urban planners, and gov-
ernment agencies can further advance the field, ensuring practical applications and
continuous improvements in traffic analysis systems.

In UAV feature extraction for WAM, we showed the advantage of CNN-based
supervised learning with signal processing to address the problem of linear feature
extraction from aerial photography for 3D footprint generation. We showed a method
that uses a CNN-based semantic segmentation model to extract interest feature lines
in the pixel domain and proposed an essential stage for refining and extruding the
pixels to 3D lines. However, a major limitation of this work is the demanding compu-
tational time for high-resolution images with thousands of pixels. The future direc-
tions of this research involve investigating the possibility of processing patches or tiles
simultaneously using parallel processing techniques. Another processing strategy can
be based on the level of detail (LOD). Closer objects may require higher-resolution
tiles, while distant objects can be represented with lower-resolution tiles. LOD tech-
niques help optimize processing power and memory usage, ensuring that resources
are allocated where they are most needed.

In LiDAR feature extraction for WAM, we introduced a new method and dataset
suitable for automatic land survey from TLS-LiDAR data. Our CNN-based method
addressed the point resolution variations and adaptability to different shapes and sizes
of objects, and the lack of training data. However, a major limitation of the current
study is the demanding computational time for dense point clouds with billions of
points. Future directions of this research involve investigate the possibility of using
multi-GPU clusters to accelerate pre-processing that currently works on only a single
GPU. Another potential direction is employing the use of AR/VR technology, on
the premise that the immersive experience might expedite and enhance attribute
annotation. Also, we will conduct research to render our urban features assets into
a simulation platform ,e.g., NVIDIA Omniverse or the Microsoft Mesh network, for
use in 3D visualization, and possibly for use as an asset management solution based
on the blockchain paradigm such as Metaverse.

As we reflect on this research, determining the most efficient approach for different
data dimensions poses a nuanced challenge, often leading to a reliance on learning-
based algorithms for their superior performance. However, the scarcity of data can
affect learning-based approaches, necessitating a careful consideration of factors such
as input data format, dataset availability, complexity, expected output, inference
time, and memory usage. Object recognition further emphasizes factors like robust-

ness against size variation, data resolution, occlusion, shape variation, texture, and
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color. Despite these considerations, no single architecture universally accommodates
all data dimensions due to the inherent complexity of diverse input data structures.
While certain 2D /3D fields offer alternatives such as synthetic data generation from
CAD models, the realism and variability of such approaches may constrain their
performance. Addressing the localization of multifold object sizes with 3D detec-
tor algorithms is feasible, but the trade-off involves adopting dense representative
discretization and incurring higher computational costs for real-time applications.
Finally, this thesis discloses innovative solutions to intricate pattern recognition
challenges across diverse sensor modalities, showing advancements in object detec-
tion, pose estimation, traffic analysis, and feature extraction from aerial imagery and
LiDAR data. The results demonstrate the effectiveness of the proposed methodolo-
gies, offering valuable insights for both current and future research in the fields of
local-area and remote-sensing contexts. As we reflect on the findings, the identified
limitations and future directions underscore the evolving nature of the field, inviting
researchers to build upon these contributions, refine existing techniques, and explore
new horizons in the domain of pattern recognition. This work not only contributes
to the academic discourse but also lays the foundation for continued progress and

innovation in the broader domain of spatial and geospatial data analysis.
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Along with our academic research and publications, our final aim is to employ

our algorithms to resolve practical challenges within real-world pattern recognition
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processing pipelines, ultimately enhancing efficiency and accelerating processes. In
collaboration with the Advanced Research and Innovation (ART) program at McEl-
hanney, we set up our proposed algorithms within McElhanney production pipelines
for algorithm validation and operationalization depending on the data and sensor
modality. The amount of data generated by real-world LiDAR can exceed 25 giga-
bytes per site, depending on the type of LiDAR. scanner, area of study, and sensor
parameters during acquisition. Video recording exceeds 20 GB per camera location
for a 24 hour period. An aerial image provided by the company is normally 2 to
4 gigabytes, depending the coverage area. As researchers, we typically begin with
a subset of data to explore, get insights, conduct proof-of-concept and validate our
methods. Later, we must adapt the proposed algorithms to integrate with McElhan-
ney’s processing pipelines and align with their specific requirements. This process is
the culmination of months of meticulous data preparation, annotation, and intensive
training using the comprehensive datasets provided by McElhanney. Our algorithms
have been refined and honed in the Multimedia Research Lab (MRC) at the Univer-
sity of Alberta. Its outputs are verified and evaluated by geospatial operators before
becoming a standard processing module for McElhanney. Through this collaborative
effort, we are not only advancing the frontiers of scientific knowledge but also deliver-
ing practical, cutting-edge solutions that drive innovation and efficiency in local-area

and wide-area remote sensing.
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