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Abstract

Forests provide immense economic, ecological, and societal values, making forest health

monitoring (FHM) a crucial task for guiding conservation and management of these

essential ecosystems. Drones have seen increased popularity in this domain due to

their ability to collect high-resolution, multi-modal images over a large area of interest

(AOI). Naturally, different sensors (e.g., thermal) can capture more information than

just RGB cameras and lead to a more comprehensive understanding of the AOI.

The processing and analysis of these images has largely been done manually or using

manually crafted indices, posing a severe bottleneck in terms of the size of the AOI and

generalizability of results to different locations with dissimilar tree species. Computer

vision techniques, particularly those relying on deep learning (DL), have the potential

to overcome these issues and yield more effective FHM, especially when information

from multiple sensors is combined. Therefore, the overarching goal of this thesis

is successfully applying DL and computer vision techniques to process and analyze

multi-modal drone images for FHM.

Towards achieving this goal, first, a new workflow to generate high-quality ther-

mal orthomosaics is proposed. Orthomosaicking removes distortions from nadir (i.e.,

downward-facing) images and stitches them together to produce one broader image

encompassing the entire AOI. Typical thermal-only orthomosaicking workflows suf-

fer from gaps and swirling artifacts due to the poor structure-from-motion (SfM)

performance on the low-contrast and low-resolution thermal images. Instead, the

proposed workflow leverages the superior SfM results from simultaneously acquired,

higher-quality RGB images and performs image co-registration using a learned affine
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transformation to generate thermal orthomosaics that are free from the mentioned

issues and precisely aligned with their RGB counterparts, without disturbing the

radiometric information of the original images. Second, the focus shifts to precisely

detecting individual tree crowns from the aligned RGB-thermal imagery. Shorter trees

hidden in RGB images by the shadows of neighbouring larger trees become apparent

in thermal images. Detecting these trees correctly is critical in many monitoring tasks,

e.g., bark beetles preferentially attack smaller, younger trees during their endemic pop-

ulation stages. To appropriately leverage both image modalities, a novel unsupervised

domain adaptation (UDA) strategy is proposed to adapt an existing state-of-the-art

RGB-only detection model to thermal data and fuse the features extracted from both

prior to detection. The proposed method outperforms existing UDA and image-level

fusion techniques without requiring any annotations for training. Finally, the vital

FHM task of bark beetle attack stage classification is considered. In sufficiently large

numbers, these insects pose a devastating threat to forest ecosystems by exacerbating

tree mortality. Infested trees gradually show crown discoloration in four separate

‘attack’ stages, and effectively distinguishing between these stages over a wide area

can drastically expedite the early detection of bark beetle outbreaks. Traditionally,

manual identification is done by experts using helicopter surveys or collected imagery,

both of which are arduous tasks. Instead, the proposed method in this thesis leverages

a transfer learning technique to train a deep attack-stage classification model that

distinguishes between all visible stages with a near-perfect accuracy in the presence of

limited training data.

Across all three objectives, the novel methods proposed in this thesis show sig-

nificant improvement over previous state-of-the-art techniques. These results are

derived through extensive experimentation on different datasets. For the first two

objectives, a newly collected RGB-thermal drone image dataset over a forested region

in central Alberta, Canada, is used. For the third, an existing bark beetle attack stage

classification dataset collected from a forested region in Northern Mexico is used.

iii



Preface

The central chapters of this thesis are based on papers that are either published or

currently under review. Chapters 2 and 4 are each written based on separate papers

that have previously been published [1, 3], while Chapter 3 is based on a paper that

is currently under review [2].

[1] Chapter 2: R. Kapil, G. Castilla, S. M. Marvasti-Zadeh, D. Goodsman, N.

Erbilgin, and N. Ray, “Orthomosaicking thermal drone images of forests via

simultaneously acquired RGB images,” Feature Paper in MDPI Journal of

Remote Sensing, vol. 15, no. 10, p. 2653, (2023). DOI: 10.3390/rs15102653.

[2] Chapter 3: R. Kapil, S. M. Marvasti-Zadeh, N. Erbilgin, and N. Ray, “Shad-

owSense: unsupervised domain adaptation and feature fusion for shadow-agnostic

tree crown detection from RGB-thermal drone imagery,” (2023). Under review

IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).

[3] Chapter 4: R. Kapil, S. M. Marvasti-Zadeh, D. Goodsman, N. Ray, and

N. Erbilgin, “Classification of bark beetle-induced forest tree mortality using

deep learning,” (2022). DOI: 10.48550/arXiv.2207.07241. Presented at Visual

observation and analysis of Vertebrate And Insect Behavior Workshop held at

the 26th International Conference on Pattern Recognition (ICPR 2022).

I am the primary contributor of all three papers, having handled the design,

implementation, experiments, analysis, and initial manuscript preparation. Profs.

Nilanjan Ray and Nadir Erbilgin co-supervised all papers and helped with revisions.

Dr. Seyed Mojtaba Marvasti-Zadeh contributed to the review and editing for all three

and is listed as an equal primary contributor for the third paper. Dr. Guillermo

Castilla contributed to the review and editing of the first paper. In addition, all listed

co-authors contributed to the ideation and revisions for each paper.

iv

https://doi.org/10.3390/rs15102653
https://doi.org/10.48550/arXiv.2207.07241


To my uncle Amit Sharma, in loving memory.

You were an ardent advocate for my higher education,

and I will always appreciate your encouragement.

v



Acknowledgements

First and foremost, I express my deepest gratitude to both of my co-supervisors, Prof.

Nilanjan Ray from the Department of Computing Science and Prof. Nadir Erbilgin

from the Department of Renewable Resources (REN R). Their unwavering support,

invaluable guidance, and constant belief in my ideas were an integral part of my degree,

and I will forever be grateful to them. I immensely thank my other collaborators

throughout this project as well – Dr. Seyed Mojtaba Marvasti-Zadeh of REN R, Dr.

Guillermo Castilla of Natural Resources Canada (NRCan), and Dr. Devin Goodsman

of NRCan. The publications resulting from this project would not have been possible

without their expertise and irreplaceable contributions.

This research project was funded by fRI Research-Mountain Pine Beetle Ecology

Program. In addition, I thank the Weyerhauser Company1, holder of the Forest

Management Agreement, for kindly granting access to the Cynthia cutblock area and

permission for collecting data. I also thank Michael Gartrell, Jim Weber, and Steven

Wagers of NRCan for contributing to drone mission planning and data acquisition.

Finally, I am eternally indebted to my amazing family: my parents for their

unwavering love, encouragement, and sacrifices throughout my lifelong educational

pursuits; my sister Vaishnavi for inspiring me and always guiding me down the right

path; and my partner Anam for her care, understanding, and optimism during what

has been the most challenging step of my academic journey so far. All of them have

been my fundamental pillars of support, being there for me no matter what. Without

them, I could not have achieved my goals and reached where I am today.

1https://www.weyerhaeuser.com/

vi



Table of Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 RGB-Thermal Orthomosaicking Pipeline 10

2.1 Introduction and Related Work . . . . . . . . . . . . . . . . . . . . . 10

2.2 Materials and Proposed Workflow . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Cynthia Cutblock Study Site . . . . . . . . . . . . . . . . . . 16

2.2.2 Proposed Integrated Orthomosaicking Workflow . . . . . . . . 17

2.2.3 Downstream ITCD Task . . . . . . . . . . . . . . . . . . . . . 29

2.2.4 Proposed Open-Source Tool . . . . . . . . . . . . . . . . . . . 30

2.2.5 Performance Assessment . . . . . . . . . . . . . . . . . . . . . 31

2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.3 Robustness of Transformation Matrix Computation . . . . . . 37

2.3.4 Radiometric Analysis . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.5 Downstream Task Performance . . . . . . . . . . . . . . . . . 40

2.3.6 Processing Time . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 45

3 Shadow-Agnostic Tree Crown Detection 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Proposed Method and Dataset . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Model Architecture and Training . . . . . . . . . . . . . . . . 53

vii



3.3.2 Feature Fusion during Inference . . . . . . . . . . . . . . . . . 56

3.3.3 Dataset for Shadowed Tree Crown Detection . . . . . . . . . . 58

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 60

3.4.2 Baseline Quantitative Comparison . . . . . . . . . . . . . . . . 61

3.4.3 State-of-the-art Quantitative Comparison . . . . . . . . . . . . 61

3.4.4 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.5 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Bark Beetle Visible Attack Stage Classification 68

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Empirical Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 74

4.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Conclusions 79

5.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Bibliography 86

Appendix A: RT-Trees Dataset Additional Information 100

Appendix B: ShadowSense Extended Ablation Study 107

viii



List of Tables

2.1 Summary of Cynthia Cutblock Data for each Flight Date.

Temperature and humidity values are taken from three weather stations

closest to the cutblock and averaged. . . . . . . . . . . . . . . . . . . 18

2.2 Average MI of Individual RGB and Thermal Images obtained

using different design choices in the proposed workflow for five flights

over the Cynthia cutblock. The best values are emboldened. . . . . . 35

2.3 Robustness of NGF-based Co-registration. Average, minimum,

and maximum observed values over all flights for each affine transfor-

mation M component are listed. The coefficient of variation (CoV) for

each component is reported in the final column. Mi,j denotes the value

in the ith row and jth column. M3,1 and M3,1 are always 0 for affine

transformation matrices and thus omitted. . . . . . . . . . . . . . . . 38

3.1 Categorization of Related Works according to training supervision

through RGB ground truth (GT) annotations. . . . . . . . . . . . . 52

3.2 Comparative Overview of RGB-Thermal Image Datasets. . . . . . 59

3.3 Quantitative Comparison of the proposed method with baseline

and SOTA methods using % AP50 (↑), % AR100 (↑), and % of shad-

owed trees correctly identified (↑). Best and second-best results are

emboldened in red (supervised) and blue (self-supervised). . . . . . . 62

4.1 Dataset Distribution for each flight according to attack stage label

and training/validation/testing split. . . . . . . . . . . . . . . . . . . 75

4.2 Classification Accuracy for various attack stage classification models.

The best result is emboldened. . . . . . . . . . . . . . . . . . . . . . . 77

ix



A.1 RT-Trees Dataset Information by Flight Date. All dates are

from the year 2022. Information about the flight, lighting and weather

conditions, and number of images is listed. Approximately 70% of the

raw image pairs captured for a given date are sampled for the training

set based on GPS location (see Fig. A.2), and then divided into six

500×500 patches. From the August 30 data, 63 images are taken for

testing and 10 for validation, hence the total number of image pairs in

RT-Trees is 49879. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B.1 Extended Ablation Study for different hyperparameter settings

in the proposed method based on AP50 and AP100 metrics, trained

without annotation on the RT-trees training set. Results on the RT-

Trees validation set are reported. While changing one hyperparameter,

all others are set to their best-performing values as described in the

implementation details for the proposed ShadowSense configuration

(also emboldened here). . . . . . . . . . . . . . . . . . . . . . . . . . . 108

x



List of Figures

1.1 Overview of Thesis Objectives that collectively constitute a com-

plete RS pipeline. Novel contributions are set forth for each objective

in this thesis, as presented in the central chapters. . . . . . . . . . . . 6

2.1 Comparison of (a) Existing Workflows for thermal orthomosaic gen-

eration and (b) The Proposed Workflow that leverages intermediate

outputs from RGB orthomosaic generation. Thermal-only processing

workflows are prone to gaps and swirling artifacts (shown in red), which

are tackled by the proposed workflow. . . . . . . . . . . . . . . . . . 12

2.2 Left: Location of Cynthia cutblock in Alberta, Canada. Right: A

close-up of the area including the village of Cynthia. . . . . . . . . . 18

2.3 Overview of the Integrated RGB-thermal Orthomosaicking

Workflow. Example images of each type of data are also included,

connected by dashed lines. Stage 3 is more detailed in Fig. 2.4. . . . 19

2.4 Detailed Steps of the Automated Intensity-based Image Co-

registration. After preprocessing the images, K RGB and thermal

image pairs are systematically sampled for batch processing. The

parameters of the Homography Module [92] represent the values in the

transformation matrix being computed and are learned during gradient

descent optimization [106] of the normalized gradient fields (NGF)

loss [60] between each transformed thermal Gaussian pyramid and its

corresponding RGB pyramid. . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Internal Mechanism of the Homography Module, which leverages

matrix exponential to compute the affine transformation matrix M

using 6 basis matrices B and learnable scalar parameters v. The same

3×3 matrix C is used to update A at each of the 10 substeps, which

are finally summed to yield M . The term eye(3) denotes the identity

matrix of size 3×3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xi



2.6 Graphical User Interface for the orthomosaicking tool showing the

various easily-configurable processing options. . . . . . . . . . . . . . 31

2.7 Mutual Information (MI) for August 30 Cynthia Flight. Box

(interquartile range, IQR) and whisker (within 1.5× IQR) plots are

shown for the MI between 814 RGB-thermal image pairs using different

co-registration techniques. NGF is normalized gradient fields [34], while

ECC is enhanced correlation coefficient [23]. The white circles denote

mean values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Visualization of Orthomosaics generated from August 30 Cynthia

cutblock data. (a) Georeferenced RGB orthomosaic. (b) Georeferenced

thermal orthomosaic from unregistered images. (c) Georeferenced ther-

mal orthomosaic from NGF-registered images. The improved quality

of the orthomosaic in (c) is especially evident from the circular inset

showing a straight path between the trees (similar to (a)) compared to

the jagged path in (b). . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.9 Checkerboard Visualization of two samples of undistorted RGB im-

ages interlaced with their corresponding thermal images (a) before and

(b) after performing image co-registration with the proposed workflow.

Coloured squares correspond to the RGB images, and grayscale ones to

the thermal images. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.10 Visual and Radiometric Similarity between thermal images and the

thermal orthomosaic. (a) A thermal image, (b) its corresponding patch

in the thermal orthomosaic generated from the proposed workflow, and

(c) temperature histograms for both in equally-spaced bins of 0.1◦C. 39

2.11 Visualization of Downstream ITCD Task Performance on Or-

thomosaics generated from the August 30 Cynthia data. (a) Detected

tree crowns from the RGB orthomosaic. The percentages represent

the detection model’s confidence score for each RGB crown. (b) Corre-

sponding patches extracted from the thermal orthomosaic at the same

pixel locations as in (a). . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Overview of Proposed Method. Undetected trees hidden in shadows

are indicated by dotted red boxes. Best viewed in color. . . . . . . . . 48

xii



3.2 (a) Detailed Workflow of Proposed Training Procedure consist-

ing of a thermal branch (in red) and an RGB branch (in blue). The

weights of both are initialized from [136], and the RGB branch is frozen

during training. The thermal feature extractor is trained to fool the

domain discriminators (in green), and vice versa, using gradient reversal

layers (GRL) at multiple levels. (b) Close-up of FPN feature align-

ment (in purple) at the M3 level that encourages foreground feature

map regions of the two branches for a given image pair to match. . . 53

3.3 Masked Fusion During Inference for the M2 level feature maps as

an example. Background features (purple) are obtained by weighted

averaging of the RGB (blue) and thermal (red) features. Foreground

features are assigned the original RGB values. Best viewed in colour. 57

3.4 t-SNE Visualization of RGB-thermal FPN features: (top row) before

training and (bottom row) after training. . . . . . . . . . . . . . . . . 65

3.5 Tree Crown Detection Results. Each column shows (a) RGB image,

(b) Thermal image, (c) Generated mask; and predictions by (d) Baseline

[136], (e) DAT-adapted thermal branch, (f) Proposed ShadowSense,

and (e) Ground truth. Best viewed in colour. . . . . . . . . . . . . . . 67

4.1 Typical Life Cycle of Bark Beetles and their effect on host tree

foliage over time. Beetle images have been adapted from [109]. . . . . 69

4.2 Brief Diagram of the desired classification model for this task. . . . 70

4.3 RGB Colour Space Distribution of Bark Beetle Dataset Images.

The borders of the highlighted challenging samples indicate their true

labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Histograms showing RGB colour space distribution of the different

attack stages with leaves. . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 An Overview of the Proposed Method. First, the ResNet-50 and

feature pyramid network (FPN) are initialized using the tree crown

detection pre-trained baseline weights [136]. Following that, the network

is modified and fine-tuned to classify the stages of bark beetle attack. 73

4.6 Data Processing Pipeline for the bark beetle attack stage classifica-

tion orthomosaics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Visualization of Data Augmentation Strategies considered to

produce minority class samples. . . . . . . . . . . . . . . . . . . . . . 75

4.8 Confusion Matrices for the best-performing proposed model. . . . 76

4.9 t-SNE Visualization of dataset with different augmentations. . . . 78

xiii



A.1 Kernel Density Estimation Plot for Average Brightness for

images in each flight date, mapped first to LAB color space. . . . . . 102

A.2 GPS-based Data Split. Each point represents the location where a

drone image was taken. The assigned cutoff line separates the testing

area from the training (and validation) area. . . . . . . . . . . . . . . 103

A.3 Splitting Training and Evaluation Images into patches. All train-

ing images are evenly split into six patches, whereas every third evalua-

tion image (testing & validation sets) is centre-cropped. . . . . . . . . 104

A.4 Distribution of Bounding Boxes per Image for all boxes (top)

and only difficult boxes (bottom) in the testing set. . . . . . . . . . . 104

A.5 Distribution of Bounding Boxes Areas for all boxes, difficult boxes

only, and non-difficult boxes (i.e., visible in RGB image) in the testing

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.6 Distribution of Bounding Boxes Dimensions for all boxes in the

testing set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.7 Example of Drone-collected Image Pairs for each flight date after

performing co-registration. . . . . . . . . . . . . . . . . . . . . . . . 106

xiv



Abbreviations

AOI Area of Interest.

BG Background.

CNN Convolutional Neural Network.

CoV Coefficient of Variation.

DAT Domain Adversarial Training.

DL Deep Learning.

DNN Deep Neural Network.

DSM Digital Surface Model.

ECC Enhanced Correlation Coefficient.

EXIF Exchangeable Image File Format (header).

FG Foreground.

FHM Forest Health Monitoring.

FOV Field of View.

FPN Feature Pyramid Network.

GIS Geographic Information System.

GRL Gradient Reversal Layer.

GSD Ground Sampling Distance.

GUI Graphical User Interface.

ITCD Individual Tree Crown Detection.

xv



JPEG Joint Photographic Experts Group (image format).

KNN K Nearest Neighbors.

MI Mutual Information.

ML Machine Learning.

MPB Mountain Pine Beetle.

NGF Normalized Gradient Fields.

ODM Open Drone Map.

RF Random Forest.

RJPEG Radiometric JPEG.

RS Remote Sensing.

SfM Structure from Motion.

SOTA State-of-the-art.

SVM Support Vector Machine.

TIFF Tag Image File Format.

UDA Unsupervised Domain Adaptation.

xvi



Glossary of Terms

Geographic Information System A program that can be used to display and

analyze georeferenced information like orthomosaics, using data corresponding

to a distinct location.

Georeferencing When the internal coordinate system of an orthomosaic can be

related to a ground system of geographic coordinates.

Image Registration The process of aligning and overlaying two or more images of

the same scene or object by estimating a transformation matrix that captures

the spatial relationship between the images.

Nadir Image An aerial photo of the Earth taken vertically downards (i.e., a drone

flying above an object taking pictures of it directly from above).

Orthomosaic Photogrammetrically ortho-rectified image product mosaicked from

an image collection, where the geometric distortion has been corrected and the

imagery has been color balanced to produce a seamless mosaic dataset.

Orthorectification The process of removing image distortions or displacements

caused by sensor tilt and topographic relief. The aim is to ensure that every

point on the image is represented as if it were captured directly below the sensor

(i.e., at nadir).

Photogrammetry The technique of extracting 3D measurements and geometric

information from 2D images.

Transfer Learning The process of utilizing knowledge gained from one task or

domain to improve the performance on a different but related task or domain.

Unsupervised Domain Adaptation The process of adapting a machine learning

model trained on a labeled source domain to perform well on an unlabeled target

domain.

xvii



Chapter 1

Introduction

1.1 Motivation

Drones can efficiently capture close-range, high-resolution imagery that can provide an

aerial view over a large area of interest (AOI). Given recent advancements in remote

sensing (RS) technologies, drone imagery has seen extensive utilization within various

application domains, including forestry RS, precision agriculture, and infrastructure

inspection [150]. Forestry RS, in particular, comprises numerous sub-areas [30], such

as estimating forest structural parameters like tree height and canopy area [24], tree

species classification [151], forest fire monitoring [91], and deforestation assessment

[98]. Among the sub-areas of forestry RS, forest health monitoring (FHM) is crucial

for conserving and managing these essential ecosystems [104]. Diseases and pest

infestations must be identified early to mitigate their spread through forests [83]. In

most FHM tasks, forest managers require an overhead view of AOIs for conducting

effective, large-scale analysis and often utilize drones for this purpose [21].

An alternative to drone-based RS for common FHM applications involves using

satellites. However, this is subpar for FHM at the individual tree level [30]. The

substantial altitude difference between orbiting satellites and AOIs on Earth’s surface

yields a lower spatial resolution in satellite imagery, making identifying individual trees

more difficult than when using drones. Moreover, satellites are more expensive yet less

flexible in operation and manoeuvrability due to their slow temporal resolutions [95].
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Modern drone systems, on the other hand, can be programmed with specific flight

paths according to the need of practitioners, thereby allowing for more flexibility in

applications [21]. Granted favourable weather conditions, drones can be easily flown

over AOIs whenever required, and their closer proximity to the AOI yields images of

higher resolution than with satellites [150]. Predetermined flight paths are especially

useful for standardized repeated acquisitions for the same AOI to track changes over

time [102]. Because of these advantages, drone-based RS was chosen for the studies

conducted as a part of this thesis.

By leveraging synchronized, multiple-sensor cameras mounted aboard drones, a

more comprehensive representation of an AOI can be acquired [21]. Commonly used

RGB sensors capture visible spectrum information, i.e., the part of the spectrum

that humans can also perceive, while thermal sensors are more versatile and can

capture near-infrared radiation (NIR) as well as short-, medium-, and long-wave

infrared radiation (IR) that is otherwise invisible to humans. Drones can carry various

other types of sensors, such as multispectral that capture several separated bands of

wavelengths (e.g., red, green, blue, NIR, panchromatic, etc.) or hyperspectral that

provide spectral information from thousands of sequential, narrow bands [1]. Working

with disparate data modalities poses significant challenges – the difference in sensor

specifications yields different image dimensions, resolutions, and fields of view that can

cause the same object to appear dissimilar between images captured by different sensors.

Despite these challenges, the complementary spectral information from multiple sensors

has benefited several drone-based FHM applications [30]. RGB-thermal imagery has

been particularly useful for forest fire monitoring [71] and detecting insect-induced

canopy temperature increases [118]. Still, there remains ample room for improvement

over existing techniques for preprocessing and analyzing multi-modal drone-collected

images. In this thesis, I have chosen to highlight this gap in the case of RGB-thermal

imagery and demonstrate the benefit of utilizing both of these modalities for the RS

tasks of orthomosaicking and individual tree crown detection (ITCD).
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During a single drone flight over an AOI, several hundreds or even thousands

of images are captured with a high degree of overlap between successive images

(∼ 80%). To reduce the redundancy in these images and provide a more comprehensive

representation of the area of interest, the images are typically ‘stitched’ together into

a larger image than can be viewed in Geographic Information Systems (GIS). This

is called orthomosaicking and is a common preprocessing step in many drone-based

RS applications. Orthomosaicking RGB images can be effectively accomplished using

existing techniques, such as Open Drone Map [97], since these images typically have

the high resolution and contrast that is required for the photogrammetry algorithms

performed during orthomosaicking. However, orthomosaicking thermal drone images

can pose a significant challenge, especially in forest environments [19, 44, 79, 105].

Thermal images have lower resolution and contrast, making them less suitable for

standard orthomosaicking workflows. Thus, existing workflows are typically only able

to generate low-quality orthomosaics with incomplete AOI coverage and significant

local distortions [138]. Because of these issues, previous FHM works either limit

themselves to the narrow visible slice of the EM spectrum captured in RGB imagery

(e.g., [96]) or forego orthomosaic generation when working with multi-modal imagery,

choosing instead to work with individual images directly (e.g., [80, 118]). The latter

can lead to complications when transferring the information to GIS (i.e., ArcGIS or

QGIS), which excel at visualizing spatial data with precise global positioning and are

thus heavily used for FHM applications [4].

Once drone imagery has been acquired and appropriately preprocessed (i.e., ortho-

mosaicked), further analysis has been typically done either through laborious manual

inspection or using manually-defined, rule-based analyses involving simple operations

(e.g., cellular automaton [113] and various spectral vegetation indices [6, 122]). The

former is prone to human subjectivity, while the latter may not generalize on a larger

scale and often needs to be devised using expert domain knowledge. Thus, there

is a clear need for more robust autonomous systems to mitigate such subjectivity,
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improve reliability, and facilitate deployment over larger AOIs. Existing works that

use automated computer vision and image processing analysis have often limited

themselves to classical machine learning (ML) algorithms (e.g., semantic segmentation

with support vector machines in [9] or a variant of k-nearest neighbours in [51]) that

are ill-suited to raw images and often require hand-crafted feature extraction using

prior domain knowledge. Deep learning (DL) methods bypass this problem by allowing

models to learn how to extract task-relevant feature representations by themselves

during training. DL has seen success in RS applications such as tree crown detection

[136] and pest detection [88, 93, 108]. Still, as I will demonstrate in the following

chapters, most of these works only consider one data modality or use sub-optimal

network architectures and training strategies for the available data.

Therefore, the motivation for this thesis is to highlight and overcome the issues

that have impeded operational FHM using multi-modal drone imagery, specifically

RGB and thermal modalities. This is achieved by proposing new methods for the

preprocessing and automated analysis of drone imagery using ML and DL-based

computer vision methods. Specifically, I propose (1) an orthomosaicking workflow

for RGB-thermal drone images of forests, which can potentially be used for other

modalities like RGB-multispectral or RGB-hyperspectral, (2) a DL-based ITCD model

that uses both RGB and thermal images for more precise detection results than using

either modality in isolation, and (3) a DL-based classification model for distinguishing

the severity levels of bark beetle-induced tree mortality without the need for a large-

scale dataset. Together, these works form a complete processing pipeline that forest

managers can employ for the FHM bark beetle infestation mapping task. Each of

the three works presented in this thesis can also be used independently of the others,

which can benefit several other forest monitoring applications. For instance, the

orthomosaicking workflow could be used for forest fire monitoring without the need to

extract individual tree crowns. On the other hand, the ITCD model can be applied to

individual drone images when orthomosaic generation is not required.
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1.2 Thesis Statement

This thesis is one of the first to build a comprehensive workflow pipeline comprising

ML/DL models for the specific FHM applications of thermal orthomosaicking, individ-

ual tree crown detection, and bark beetle attack stage classification using drone-based

multi-modal RS data. I support my arguments by conducting separate experiments for

these three applications, proposing a novel method for each that outperforms existing

techniques. The novelty of the thesis statement is embedded in the novelty of these

proposed methods. Three subsidiary statements based on each of the applications are

set forth with the aim of verifying them,

1. Orthomosaicking of thermal images of forests can be accomplished by leveraging

the intermediate SfM results of higher-resolution, simultaneously acquired RGB

images and co-registering image pairs using a learned transformation matrix.

2. Tree crowns, especially those of shorter trees hidden in shadows, can be effectively

identified by a combined RGB-thermal DL detection model that is initialized with

RGB pre-trained weights and fine-tuned for thermal images without annotations.

3. Visible stages of bark beetle attacks can be distinguished using a deep classifica-

tion model through transfer learning with limited training data.

1.3 Contributions

Within this thesis, I seek to validate my thesis statement and its subsidiaries by

making novel contributions in three different areas – orthomosaicking with image

registration, object detection, and image classification – as summarized in Fig. 1.1.

First, I propose a new workflow for generating high-quality thermal orthomosaics from

simultaneously acquired RGB-thermal drone images. Forest monitoring applications

often require georeferenced information in the form of large-scale orthomosaics, created

by undistorting and stitching overlapping nadir (i.e., downward facing) images captured
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Figure 1.1: Overview of Thesis Objectives that collectively constitute a complete
RS pipeline. Novel contributions are set forth for each objective in this thesis, as
presented in the central chapters.

by drones. RGB cameras are commonly fitted on drones for low-cost, high-resolution

imaging conducive to effective orthomosaicking, but only capture visible light. On

the other hand, thermal sensors capture long-wave infrared radiation, which is useful

for applications such as early pest detection or forest fire monitoring. However, these

lower-resolution images suffer from reduced contrast and lack of descriptive features

for successful orthomosaicking, leading to gaps or swirling artifacts in the orthomosaic

generated by existing workflows. The proposed integrated orthomosaicking workflow

overcomes these issues by using RGB images for producing a surface mesh via structure

from motion, while using thermal images only to texture this mesh and yield a thermal

orthomosaic. Before texturing, the RGB-thermal image pairs are co-registered using

an affine transformation derived from a machine learning (ML) technique. On average,

the individual RGB and thermal images achieve mutual information of 0.2787 on

average after co-registration using the proposed technique, compared to 0.0591 before

co-registration and 0.1934 using manual co-registration. In this thesis, I show that the

thermal orthomosaic generated from my workflow (1) is of better quality than other

existing methods, (2) is geometrically aligned with the RGB orthomosaic, (3) preserves

6



radiometric information (i.e., surface temperatures) from the original thermal imagery,

and (4) enables easy transfer of downstream tasks—such as tree crown detection from

the RGB to the thermal orthomosaic. Furthermore, I developed an open-source tool

that implements the proposed workflow to facilitate usage and further development1.

Following the orthomosaicking workflow, I present a novel deep learning (DL) model

that successfully detects individual tree crowns from overhead forest imagery. This

task poses a significant challenge due to the dense nature of forest canopies and diverse

environmental variations, e.g., overlapping crowns, occlusions, and varying lighting

conditions. The lack of data for training robust models also adds another limitation in

effectively studying complex forest conditions. To tackle these problems, I (1) propose

an entirely self-supervised method to effectively detect tree crowns despite challenging

lighting conditions, and (2) present a challenging dataset comprising over 52k paired

RGB-thermal images to facilitate future research for illumination-invariant detection.

The proposed method leverages domain adversarial training to adapt from the RGB

to the thermal data, using only the registered nature of image pairs as a supervision

signal and thus bypassing the need for arduous manual annotations. During inference,

extracted features from RGB and thermal modalities in poorly-illuminated areas are

fused to effectively improve upon the predictions of an RGB-only detector and boost

the overall precision and recall of detections. Through extensive experiments on the

collected dataset, I demonstrate the proposed method’s superiority over the baseline

RGB-trained detector and previous state-of-the-art (SOTA) techniques that rely on

unsupervised domain adaptation or early image fusion.

Finally, I propose a novel method to classify thermal tree crown patches into one

of four visible bark beetle attack stages. Bark beetle outbreaks can dramatically

impact forest ecosystems and services around the world. For the development of

effective forest policies and management plans, the early detection of infested trees is

essential. Over time, the crowns of infested pine trees turn from a healthy green to

1https://github.com/rudrakshkapil/Integrated-RGB-Thermal-orthomosaicing
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yellow, then red, and finally grey (i.e., needleless). These are referred to as the attack

stages. Despite the visual symptoms of bark beetle infestation, distinguishing between

attack stages remains challenging, considering overlapping tree crowns in dense forest

settings and non-homogeneity in crown foliage discoloration. The proposed method

overcomes these challenges by leveraging the pre-trained feature extractor of a deep

individual tree crown detector and using transfer learning to train a newly-introduced

shallow subnetwork for classification. The experiments are performed on an existing

bark beetle attack dataset originating in a forest stand in Northern Mexico. Various

data augmentation strategies are examined to address the class imbalance problem

in this dataset. Consequently, the affine transformation is selected to be the most

effective one for this transfer learning task. Experimental evaluations demonstrate

the effectiveness of the proposed method by achieving an average accuracy of 98.95%,

considerably outperforming the existing baseline method by approximately 10%. The

classification model along with code for training are publicly available2.

Though these contributions target different research areas within the computer

vision domain, together they encompass this thesis’ main goal of solving practical RS

problems for FHM. The works can be combined together into one RS pipeline that

takes raw RGB-thermal drone data, generates a pair of orthomosaics, uses them to

extract tree crowns, and classifies the bark beetle attack stage of these crowns.

1.4 Thesis Layout

This thesis is structured into five chapters, with the central chapters each comprising a

part of the bigger picture and covering one aspect of my overarching goal — effectively

applying computer vision techniques to advance FHM. Fitting all these parts together

results in a comprehensive pipeline for RS applications that leverages deep learning

during each substantial step. Following the introduction in Chapter 1, an improved

method for generating high-quality orthomosaics from thermal images is proposed in

2https://github.com/rudrakshkapil/BarkBeetle-Damage-Classification-DL
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Chapter 2. Orthomosaicking is typically one of the first preprocessing steps in drone-

based RS applications. Then, a novel self-supervised strategy to detect individual

tree crowns from overhead drone imagery is proposed in Chapter 3. In Chapter 4,

extracted tree crown patches are classified into one of four bark beetle attack stages

using a proposed transfer learning technique. Finally, a summary of the contributions

of this thesis followed by a holistic discussion on the main takeaways, limitations, and

future research directions is provided in Chapter 5.
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Chapter 2

RGB-Thermal Orthomosaicking
Pipeline

2.1 Introduction and Related Work

Forests are essential ecosystems that provide immense economic, social, and ecological

value. Monitoring forest health is critical to understanding these ecosystems’ challenges

and devising successful management strategies to foster healthy and resilient forests

[104]. For example, forest monitoring is important for detecting bark beetle attacks

[37, 83] and assessing tree losses due to deforestation [98]. In recent years, drones

have become increasingly popular for close-range monitoring of forests to capture

high-resolution images of focus areas [20, 21, 52, 81]. Drones can be fitted with

multiple-sensor instruments that take synchronized nadir images at regular intervals

as the drone flies over the area to be imaged [114]. Optical sensors that capture

information from various parts of the electromagnetic spectrum are common for

forest health monitoring applications [21]. Among them, RGB sensors take images

in the visible range of the spectrum (i.e., three channels – red, green, and blue) and

have been extensively used for many applications, owing to their low cost and high

resolution [30]. On the other hand, thermal sensors capture images that measure

surface temperatures, which is beneficial for numerous applications, e.g., forest fire

monitoring [87] or detection of insect-induced canopy temperature increases [118], for

instance, those created by bark beetle infestations of Norway spruce (Pinus abies)
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trees [147]. To facilitate monitoring in Geographic Information Systems (GIS) for

such applications, drone-collected images must be orthorectified and stitched together

to generate an orthomosaic. For instance, a GIS polygon layer with the location, size

and shape of the crowns of young trees can be automatically derived by a predictive

model from a drone RGB orthomosaic of a regenerating cut block [15].

Existing workflows typically generate orthomosaics for RGB and thermal data of

forests separately [48]. However, thermal images typically lack enough contrast and

salient features to enable smooth orthomosaicking [42], and temperature fluctuations

can create different salient features in overlapping images from adjacent flight lines

[79]; hence some practitioners prefer to skip the thermal orthomosaic entirely and

directly work with individual thermal images [80, 118], but this complicates the

transferal of information to GIS. Specifically, current standard methods that work well

for RGB images [30] cannot reliably generate orthomosaics when it comes to thermal

images of forests and crop fields [19, 44, 79, 105]. Thermal orthomosaics generated

with these standard workflows suffer from swirling artifacts and gaps, leading to

incomplete coverage of the entire area of interest (Fig. 2.1a). These artifacts are

caused by poor depth estimation during the structure from motion (SfM) [128] stage

of orthomosaicking [138].

Previous works have attempted to leverage simultaneously acquired RGB imagery

to overcome the drawbacks of thermal-only workflows. A technique to improve the

thermal orthomosaicking workflow by deriving the thermal image positions using RGB

image alignment was proposed in [79]. Once the RGB image alignment is optimized,

the external orientation parameters (xyz coordinates along with pitch, yaw, and roll

angles) of each image are transferred to its thermal counterpart, and these are used

as initial parameters in the SfM workflow for the set of thermal images. While a

viable option, the second SfM process may introduce artifacts due to the previously

mentioned issues inherent to thermal images. Likewise, [85] performed SfM for RGB

and thermal images separately before registering (aligning) the resulting point clouds
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Figure 2.1: Comparison of (a) Existing Workflows for thermal orthomosaic genera-
tion and (b) The Proposed Workflow that leverages intermediate outputs from
RGB orthomosaic generation. Thermal-only processing workflows are prone to gaps
and swirling artifacts (shown in red), which are tackled by the proposed workflow.

for multi-modal 3D reconstruction of buildings. However, the thermal SfM step can

introduce issues here as well. Similar to [79], [117] proposed a workflow in which the

external orientations of the RGB-thermal image pairs were aligned but without any

subsequent registration step. As the authors observed, using unregistered images leads

to errors in the mosaic, even for the urban setting they considered. Another combined

approach was proposed in [144], where each pair of RGB and thermal images was

stacked into a 4-channel image prior to orthomosaicking and separated afterwards.

However, this method requires an additional object-based geometric alignment stage

that relies on the manual selection of clearly visible objects in both types of images,

and that cannot fully resolve distortions due to different focal lengths in the lenses

of the thermal and RGB cameras. Similarly, [49] used a technique that relies on

manually-supplied pixel location correspondences between image pairs to fuse RGB

and thermal point clouds of 3D structures. As precursors of the proposed automated

co-registration (i.e., aligning the pixel-wise geometry of image pairs), the enhanced
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correlation coefficient (ECC) [23] was applied with varying levels of success to RGB

and thermal images of crop fields at different heights: [17] used ECC to register

images taken 1.6m above the crop canopy, [72] applied ECC-based registration to

drone imagery at a flight height of 30m, and more recently [73] used ECC to register

images of olive groves at 45-50m altitude for generating aligned point clouds. However,

these studies did not include the generation of orthomosaics. An edge feature-based

image registration technique relying on image metadata was proposed in [63], whereas

other works relied on point feature extraction [112, 126, 143]. Although these methods

perform well for urban/generic settings, their application to nadir forest images is

limited due to the lack of distinctive features in these scenarios, and moreover, they

did not include orthomosaicking.

I propose a new integrated RGB and thermal processing workflow to overcome the

mentioned challenges of thermal orthomosaicking of forest scenes. It is applicable

to drone instruments that can simultaneously capture RGB and thermal images.

The proposed workflow is summarized in Fig. 2.1b. It relies on an orthomosaicking

algorithm based on texture mapping, as implemented in [97]. Texturing is a crucial

step in this implementation of orthomosaicking, where rather than stitching together

the individual orthorectified drone photos, a 2.5D mesh representing the outer envelope

of the dense point cloud is created, and then the mesh is textured by projecting onto

each small triangular mesh surface a particular patch of a drone photo from which

it is best observed; the orthomosaic is then simply the orthographic projection of

that textured mesh. Following this process applied directly to the RGB images, an

orthomosaic is obtained along with important intermediate outputs – a surface mesh

of the study site, the estimated external camera orientations used for texturing, and

undistorted RGB images that have been corrected for radial and tangential distortions.

Next, the simultaneously acquired RGB-thermal image pairs are co-registered, and the

orthomosaicking process is rerun from the texturing step using the intermediate RGB

outputs. This involves re-texturing the previously constructed surface mesh with the
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thermal images based on the camera orientations estimated using the RGB images.

Thus, the workflow generates two geometrically-aligned orthomosaics, where the same

objects appear in the same pixel locations of both the RGB and thermal orthomosaics.

Because thermal images are not used for SfM, which would perform poorly due to the

low contrast and lack of features in these images, the gap and swirling issues present in

thermal-only orthomosaicing workflows are successfully avoided, as shown in Fig. 2.1b.

Before the RGB intermediate outputs can be reused with the thermal images

as described, the geometry of the individual thermal and RGB images needs to be

precisely aligned to ensure that objects appear in the same pixel locations in each

RGB-thermal pair. This is done through an intensity-based image co-registration

method using gradient descent, inspired by [92] and [34]. In particular, the precise

co-registration of RGB-thermal pairs is achieved through a multi-scale framework

utilizing the matrix exponential representation [2, 35] and the normalized gradient

fields (NGF) loss function [34]. According to [34] and confirmed by the results in

Section 2.3.1, this loss function is more suitable than ECC for multi-modal drone

imagery of forests. The co-registered thermal images replace the RGB undistorted

images before rerunning the orthomosaicking process.

Rather than relying on manually selected objects like in [49, 144], the geometric

alignment in the proposed workflow is automated and offers more degrees of freedom

than just displacement. In addition, bypassing the SfM process for the thermal

images helps overcome the issues of lower contrast and lower resolution and is thus

preferable to previous feature-based techniques [63, 112, 126, 143]. The proposed

workflow assumes that the RGB and thermal nadir images are captured simultaneously

during the same flight (i.e., using a multi-sensor setup), which is the case for many

commercially available drone cameras, for instance, the DJI Zenmuse H20T, DJI

Zenmuse XT2, DJI Mavic 3T, senseFly Duet T, FLIR Hadron RGB/Thermal Camera

Module, and Autel EVO II Dual 640T. A slight delay in the capture times of the two

sensors is not problematic so long as the delay is systematic and an equal number of
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RGB and thermal images are taken during the flight.

In this chapter, I demonstrate the effectiveness of my proposed orthomosaicking

workflow using drone data from multiple dates over a forest stand in central Alberta,

Canada. Aside from the high quality of the thermal orthomosaics generated (no gaps

or swirling artifacts), I also verify that the orthomosaicking process preserves the

radiometry of the images - both the individual thermal images and the corresponding

part of the generated orthomosaic have the same thermal information. To highlight the

utility of the proposed workflow that outputs geometrically-aligned RGB and thermal

orthomosaics, I use a pre-trained DL model for individual tree crown detection (ITCD)

from RGB images [136]. I show that the bounding boxes detected from the RGB

orthomosaic can be directly used to extract tree crowns from the thermal orthomosaic,

since they appear at the same pixel locations. As a further contribution, I provide a

tool with an extensive graphical user interface (GUI) that implements the proposed

RGB-thermal orthomosaic generation workflow. The developed tool is open-source

to facilitate modification for specific projects and encourage additional functionality

integration.

In summary, the contributions presented in this chapter are the following,

1. I propose an integrated RGB and thermal orthomosaic generation workflow

that bypasses the need for thermal SfM by leveraging intermediate RGB or-

thomosaicking outputs and co-registering RGB and thermal images through an

automated intensity-based technique.

2. I show that the proposed workflow overcomes common issues associated with

thermal-only orthomosaicking workflows while preserving the thermal imagery’s

radiometric information (absolute temperature values).

3. I demonstrate the effectiveness of the geometrically-aligned orthomosaics gener-

ated from the workflow by utilizing an existing DL-based tree crown detector,

showing how the RGB-detected bounding boxes can be directly applied to the
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thermal orthomosaic to extract thermal tree crowns.

4. I develop an open-source tool with a GUI that implements the workflow to aid

practitioners.

The rest of this chapter is organized as follows. Section 2.2 provides an overview

of the study site for this work, followed by a detailed description of the stages

comprising the proposed integrated RGB-thermal orthomosaicking workflow. That

section additionally contains a description of the developed GUI tool. Section 2.3

presents quantitative and qualitative results of the orthomosaic generation using drone

data from the study site, including the performance of the downstream ITCD task on

the generated orthomosaics from the proposed workflow. In Section 2.4, I present a

detailed discussion of the results and provide important recommendations for using

the proposed workflow. Finally, I discuss possibilities for future work and present

conclusions in Section 2.5.

2.2 Materials and Proposed Workflow

In this section, I first describe the dataset used for the experiments within this chapter.

Then, I provide an in-depth description of the proposed integrated orthomosaicking

workflow for thermal images. Following this, I explain how an example downstream

task can be used to highlight the utility of the workflow. Next, I outline the developed

GUI tool and provide recommendations for its effective use. In the end, I describe

how I empirically assessed the performance of the proposed workflow.

2.2.1 Cynthia Cutblock Study Site

Drone data was repeatedly collected from an 8-hectare forest stand approximately

3.5km northeast of Cynthia, Alberta (Canada), called the Cynthia cutblock. The

location is shown in Fig. 2.2. The region is at an elevation of around 950m above sea

level. Lodgepole pine (Pinus contorta ssp. latifolia) and aspen (Populus tremuloides)
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make up the majority of the tree species found within the cutblock. A Zenmuse H20T

instrument mounted on a DJI Matrice 300 RTK quadcopter was used to take nadir

RGB and thermal images of the cutblock. The H20T is fitted with three cameras.

The wide-angle RGB camera takes images of 3040×4056 pixels and covers the most

terrain (83° field of view (FOV)). The thermal images are 650×512 pixels and have a

FOV of 41°. The zoom camera (not used in this study) can go up to 4° FOV and has

dimensions of 5184×3888 pixels. The two RGB sensors are CMOS sensors, whereas

the thermal one is an uncooled VOx microbolometer that produces 16-bit radiometric

JPEGs (RJPEGs). This work considered five flights on different days in 2022 over

the Cynthia cutblock using the described camera setup (July 20, July 26, August 9,

August 17, and August 30). Each flight lasted approximately 30 minutes between

10 am and 1 pm. Weather conditions varied across all flights – air temperature was

between 20◦C and 25◦C, relative humidity was between 40% and 61%, and cloud

cover was limited. Specific air temperature and relative humidity values during each

flight are reported in Table 2.1, where the values are averages from the three weather

stations closest to the cutblock. The drone was flown 120 meters above the ground,

following the same flight path across all dates. The thermal and wide-angle RGB

images were taken simultaneously, such that thermal images had a 75% side overlap

and 80% front overlap. Approximately 800 image pairs were captured during all

flights. The EXIF header of each JPEG image contains the GPS coordinates of the

drone when that image was taken. This information is helpful for individual image

localization and georeferencing during the orthomosaicking process. Each output

orthomosaic covers an area of around 30 hectares encompassing the cutblock.

2.2.2 Proposed Integrated Orthomosaicking Workflow

Here, I describe the proposed workflow for generating a thermal orthomosaic by

leveraging RGB data. The workflow relies on Open Drone Map (ODM) [97], an

open-source framework that implements a texturing-based orthomosaicking algorithm
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Cynthia

Figure 2.2: Left: Location of Cynthia cutblock in Alberta, Canada. Right: A
close-up of the area including the village of Cynthia.

Table 2.1: Summary of Cynthia Cutblock Data for each Flight Date. Tem-
perature and humidity values are taken from three weather stations closest to the
cutblock and averaged.

Jul 20 Jul 26 Aug 09 Aug 17 Aug 30

Number of RGB-Thermal Image Pairs 827 828 820 825 814

Average Air Temperature (◦C) 20.3 20.8 19.8 24.5 25.4

Average Relative Humidity (%) 42.7 61.0 53.0 40.7 46.3

similar to that described in [40]. ODM is described in further detail in Section 2.2.2,

but briefly, a textured surface mesh reconstruction of the scene is first produced

to yield an orthomosaic, rather than relying on a digital surface model (DSM) for

orthorectification of images before stitching. The intermediate outputs generated from

the RGB orthomosaicking process (i.e., surface mesh reconstruction and external cam-

era orientations) are used to initialize the thermal orthomosaic generation, bypassing

the need for SfM with thermal images and therefore avoiding the issues present in

thermal-only orthomosaicking workflows. Instead, thermal images are only used to

texture the surface mesh previously reconstructed from the RGB images, thereby

producing a high-quality thermal orthomosaic.

The proposed integrated orthomosaicking workflow comprises four stages, as shown

in Fig. 2.3 – (1) RGB orthomosaic generation, (2) Thermal image conversion (from

R-JPEG to grayscale TIFF), (3) RGB-thermal image co-registration, and (4) Thermal
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orthomosaic generation. The proposed workflow has also been implemented as an

open-source tool, presented with more details in Section 2.2.4.
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Figure 2.3: Overview of the Integrated RGB-thermal Orthomosaicking
Workflow. Example images of each type of data are also included, connected by
dashed lines. Stage 3 is more detailed in Fig. 2.4.

The rest of this section provides a summary of the integrated workflow, and the

following subsections describe each stage in more detail. In the first stage, ODM is used

to generate an RGB orthomosaic. This relies on structure from motion (SfM) [128], a

computer vision process that automatically aligns the overlapping drone photos. After

this, a dense point cloud and a surface mesh of the study area are derived together

with the estimated camera orientations, as shown in the dotted bubble on the right

side of Fig. 2.3. Undistorted RGB images are also obtained as intermediate outputs

– these are the original input RGB images but corrected for radial and tangential

distortions. After the RGB orthomosaic is generated, the ODM project is duplicated

along with its intermediate outputs.

In the second stage, each thermal image is preprocessed to obtain, out of the native

R-JPEG format, a single-channel (i.e., grayscale) image that displays the surface

temperature of the object present within it. The third stage is the computation of

the transformation matrix that co-registers every preprocessed thermal image with its
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corresponding undistorted RGB image, such that both are geometrically aligned and

objects appear in the same pixel locations. Note that this geometric alignment (i.e.,

co-registration) is different from the ‘alignment’ during SfM, which yields the external

orientations of the cameras.

Finally, in the fourth stage, the undistorted RGB images in the duplicated project

are replaced with the co-registered thermal images obtained from the previous stage,

and the ODM process is restarted from the texturing step. In this way, SfM with

thermal images is avoided. Instead, the co-registered thermal images are used to

texture the surface mesh previously derived from the RGB images. This stage outputs

a high-quality thermal orthomosaic that is geometrically aligned with the RGB

orthomosaic.

RGB Orthomosaic Generation

In the first stage of the proposed workflow, ODM is used to generate the RGB

orthomosaic of the study site from the collected RGB nadir drone images. If the FOVs

of the RGB and thermal cameras differ drastically, such as for the H20T instrument,

the central regions of the RGB images are cropped so that each RGB-thermal pair

depicts roughly the same scene. This is necessary for effective geometric alignment in

the RGB-thermal image co-registration stage later on. The exact amount of cropping

depends on the specific cameras used. The cropping must generally maintain sufficient

forward and sideways overlap between adjacent images for effective orthomosaicking.

In this case, the 3040×4056 wide-angle RGB images were cropped to 1622×1216 pixels

(60% reduction in width and height). An additional advantage of cropping wide-angle

RGB images is that it mitigates lens distortion from the edges of such images from

propagating to the orthomosaic. Without cropping, relief displacement (tree lean)

effects would likely occur in the RGB orthomosaic due to the relatively low flight

height [138]. Moreover, reducing the image size by cropping enables faster processing

in ODM. Once the RGB orthomosaic is successfully generated by ODM, the project
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is duplicated for reuse in later stages.

The key steps involved in the orthomosaic generation process of ODM are summa-

rized as follows. The 3D structure of the area of interest (AOI) is reconstructed using

the SfM technique within ODM; namely, OpenSfM [82]. This involves extracting tie

points (corresponding to salient features) from images using the scale-invariant feature

transform algorithm [75] and then matching tie points from overlapping images. These

points are then located in 3D space using parallax. Next, the external orientation of

the camera for each image is refined in an iterative process called bundle adjustment.

Finally, new points are added to the initial point cloud of tie points using multi-view

3D reconstruction based on depth estimation [115], yielding a dense point cloud with

thousands of points per square meter. Thus, the 3D structure of the scene is inferred

entirely from (RGB) drone imagery without the need for expensive sensors like LiDAR.

The SfM process additionally performs internal camera calibration, providing esti-

mates for the camera model’s focal length, principal point, and distortion coefficients.

The same internal camera parameters apply to all RGB images since they are all cap-

tured by the same sensor. The estimated distortion coefficients are used to undistort

every RGB image under the Brown-Conrady distortion model [12]. This models the

radial distortion in the RGB images using coefficients k1, k2, and k3, and tangential

distortion with coefficients p1 and p2, both arising from the camera lens shape. Briefly,

every pixel location in the original image is mapped to its corresponding location in

the undistorted image, correcting for the distortions using these coefficients. More

details about the exact formulation can be found in [12]. Compared to the (distorted)

image taken from the wide-angle lens, the undistorted image is warped to look closer

to what it would look like using a pinhole camera. For instance, straight lines in the

real world that appear curved in the captured image are recovered as straight in the

undistorted image.

OpenMVS [14] is then used to produce a textured mesh with the undistorted images:

outliers in the dense point cloud are filtered out, and the 2.5-dimensional surface

21



mesh, i.e., a warped surface typically made of small triangles that represents the

outer envelope of the point cloud, is generated using Screened Poisson Reconstruction

[55]. At this point, the estimated external orientations (one for each image) and

camera internal parameters (same for all images) are used to determine how to texture

the triangular mesh surfaces, which involves selecting for each small triangle the

undistorted image from which it is best observed. This is done through Triangle

to Image Assignment, which considers each image’s proximity to the triangle, the

triangle’s amount of occlusion (if any), and the viewing angle’s steepness relative to

the triangle surface [40]. Once assigned, the relevant pixels of the undistorted images

are projected onto the triangular surfaces using the calculated transformation matrices

from the exterior and interior parameters. Finally, the orthomosaic is generated as

the orthographic projection of the textured mesh onto the horizontal plane defined by

the chosen coordinate system (NAD83 UTM 12 N in this case). The default ground

sampling distance (GSD) corresponds to the average pixel size on the mesh surface.

This results in a single, high-resolution RGB orthomosaic of the study area. This

texturing-based orthomosaicking differs from alternative methods that use a digital

surface model to orthorectify individual images that are later stitched together.

Thermal Image Conversion

In the next stage of the proposed workflow, the 3-channel, 8-bit RJPEG images

captured by the H20T camera, which are intended for visualization (as in the top

left of Fig. 2.3), are converted to absolute surface temperature readings in Celsius

degrees, stored as 32-bit floating-point TIFF images. This is done through the DJI

Thermal SDK (software development kit) using the ‘measure’ functionality, with

average emissivity as 0.95 and distance to target as ¿25m for all flights. Relative

humidity and reflected temperature (i.e., air temperature) are set independently for

each flight using the values reported in Table 2.1. The SDK outputs one binary file

per image, which is then rasterized into grayscale TIFF images like those in Fig. 2.3.
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RGB-Thermal Image Co-registration

As a result of the initial cropping of the RGB images, the footprint of a preprocessed

thermal image roughly coincides with that of its corresponding undistorted RGB

image. In this stage, the geometry of the image pairs is more precisely aligned

through image co-registration. Specifically, this requires the computation an estimate

to the optimal geometric transformation matrix M∗ that co-registers every thermal

image with its corresponding undistorted RGB image, such that objects appear in the

same pixel locations in both. In this work, the computation is restricted to a single

affine linear transformation matrix, i.e., a 3×3 matrix with 6 degrees of freedom that

preserves parallel lines. The same transformation applies to all image pairs as they

come from the same instrument simultaneously capturing both modalities. This has

the advantage of being computationally efficient while not adversely impacting co-

registration performance, as corroborated in Section 2.3. Once a close approximation

to the optimal M∗ is obtained, it is used to warp all the thermal images to emulate

their undistorted RGB counterpart, using the concept of inverse warping [123]: For

every pixel location (xout, yout) in the warped output thermal image, the pixel location

(xin, yin) in the input thermal image is calculated by performing matrix multiplication

of the inverse of M∗ with the homogenous coordinates (xout, yout, 1)
T . The third

dimension is used to scale coordinates in the projective plane and set by convention to

1. Then, the value at the pixel location (xin, yin) in the unwarped image is assigned to

(xout, yout) in the warped image, performing re-sampling through bicubic interpolation.

This work investigates two methods for computing the optimal transformation

matrix M∗. One is to manually supply up to four point correspondences between a

pair of RGB and thermal images and then to solve a system of linear equations for

an estimate of M∗ [41]. Although these correspondences need only be supplied once,

the quality of co-registration (and optimality of the computed transformation matrix)

heavily depends on their correctness.
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In the second method, the estimate of M∗ is automatically computed through

intensity-based image co-registration using gradient descent optimization, inspired

by [92] and [34]. Given a set of N thermal images and their corresponding N RGB

counterparts, the gradient descent optimization iteratively refines the 6 learnable

parameters (i.e., variables) within a Homography Module that encapsulates the

computation of the transformation matrix M [92]. An intensity-based co-registration

is leveraged, which does not rely on extracting features from both images, instead

working directly with the pixel values and image gradients [34]. Fig. 2.4 summarizes

this process, and a detailed description follows below.
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Figure 2.4: Detailed Steps of the Automated Intensity-based Image Co-
registration. After preprocessing the images, K RGB and thermal image pairs are
systematically sampled for batch processing. The parameters of the Homography
Module [92] represent the values in the transformation matrix being computed and
are learned during gradient descent optimization [106] of the normalized gradient
fields (NGF) loss [60] between each transformed thermal Gaussian pyramid and its
corresponding RGB pyramid.
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First, both sets of images need to be preprocessed to facilitate further computations.

The grayscale thermal images extracted during the previous stage are upscaled through

bicubic interpolation to match the dimensions of the undistorted RGB images (i.e., from

640×512 to 1622×1216). The resized thermal images are then min-max normalized. As

for the undistorted RGB images, they are converted to their single-channel luminance

representation using the weighted formula L(x,y) = 0.2125R + 0.7154G + 0.0721B

for each pixel location (x, y), as defined in the rgb2gray function of the scikit-image

processing library [131]. The resulting grayscale images are also min-max normalize.

The gradient descent-based optimization is a computationally intensive process.

To avoid loading all image pairs into the hardware memory (CPU or GPU) while

still ensuring the transformation matrix computation is robust, a batch of 64 image

pairs is sampled. 64 was deemed sufficient after empirically testing different batch

sizes. Further, working with a batch rather than a single pair ensures less variance

in gradient calculations while encouraging good convergence during gradient descent

[106]. Although any image pairs can be selected for the batch as a single linear

transformation matrix that applies to all pairs needs to be computed, appropriately

choosing batch pairs is important for good co-registration performance. Therefore,

systematic sampling is performed: the RGB-thermal image pairs are first ordered by

acquisition time, then every j-th pair is picked for the batch, where j = ⌊N/K⌋ and

K is the batch size. Besides the intuitive reasoning that the computed M should be

more robust due to a greater coverage of the AOI within the batch, the quantitative

results in Section 2.3.1 will also show that systematic sampling is preferable to random

sampling for batch pairs. A multi-resolution Gaussian pyramid is then constructed for

all the grayscaled, normalized RGB and thermal image pairs in the batch, where each

smaller layer is obtained by blurring followed by sub-sampling from the previous larger

one [2]. A batch size of 64 is utilized, with 11 levels in each pyramid at a downscale

factor of 1.5. Blurring is done with a filter mask twice the size of the downscale factor

that covers more than 99% of the Gaussian distribution, and sub-sampling is done
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through pixel averaging. This multi-resolution framework ensures that the current

estimate of M will be refined simultaneously at multiple scales, allowing for more

precise and robust co-registration [78].

During gradient descent, the following objective function is optimized to find the

transformation matrix M that warps every thermal image T to most closely align its

geometry with that of its corresponding RGB image R [92],

min
M

L(R,Warp(T,M)), (2.1)

where L is the normalized gradient fields (NGF) loss function [60]. This loss function

is well suited for optimization and preferable for multi-modal images [34]. It is based

on the principle that two images are well-registered if intensity changes occur at the

same locations. NGF computation requires the x-direction gradient (∇xI(x, y)) and

y-direction gradient (∇yI(x, y)) of the image I at every pixel location (x, y), which in

this work is numerically approximated using central finite difference [139],

∇xI(x, y) ≈
I(x+ 1, y)− I(x− 1, y)

2
, ∇yI(x, y) ≈

I(x, y + 1)− I(x, y − 1)

2

(2.2)

Then, the NGF loss L(I, J) for two grayscale images I and J as [34],

L(I, J) =
1

w · h

w∑︂
x=1

h∑︂
y=1

[(
∇xI(x, y)

∥∇I(x, y)∥
− ∇xJ(x, y)

∥∇J(x, y)∥
)2 + (

∇yI(x, y)

∥∇I(x, y)∥
− ∇yJ(x, y)

∥∇J(x, y)∥
)2],

(2.3)

where h and w are the number of rows and columns in both images and ∥∇I(x, y)∥

denotes the point-wise gradient magnitude at pixel (x, y).

For the gradient descent-based optimization to work, M is encapsulated as the

learnable parameters v within a simple differentiable module, termed the Homography

Module [92], using the matrix exponential representation [36],

exp(A) =
∞∑︂
k=0

Ak

k!
. (2.4)

The matrix exponential formulation has the following two desirable properties [35].

Its computation is differentiable, which is necessary for learning the Homography
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Module’s parameters v through backpropagation during the gradient descent opti-

mization. Moreover, the output of the matrix exponential function (i.e., the computed

transformation matrix) is always invertible, so forward and inverse transforms can be

reliably combined for more robust NGF loss computation. In practice, using 10 terms

closely approximates the sum of the infinite series. Using the matrix exponential

representation, the objective function in Equation (2.1) can be rewritten as,

min
v

L(R,Warp(T,M(B, v))), (2.5)

M(B, v) = exp(
6∑︂

i=1

viBi), (2.6)

where M(B, v) is the current estimate of the affine transformation matrix, derived from

the current parameters v = {vi|i = 1...6} of the Homography Module and the constant

basis matrices B = {Bi|i = 1...6}. These 3×3 matrices are generators of the group

of affine transformations on the 2D plane, as described in [92]. Therefore, any affine

transformation matrix may be computed using this formulation. Before commencing

training, vi = 1∀i = 1, .., 6 is initialized. Fig. 2.5 summarizes the mechanism of the

Homography Module and how matrix exponential is implemented within it.

A = A/1

A = eye(3) 
(3x3)

M = eye(3) 
(3x3)

A = A*CSum Matrices 
 (over i)

 C 

A = A/2

A = A*C

A = A/10

A = A*C
...

 matrix sum  matrix sum
...

 matrix sum
Output: M 
(3x3)

A = A/2

A = A*C A = A*C

A = A/10

 6 Scalar-Matrix
Products 

 Bi*vi

Figure 2.5: Internal Mechanism of the Homography Module, which leverages
matrix exponential to compute the affine transformation matrix M using 6 basis
matrices B and learnable scalar parameters v. The same 3×3 matrix C is used to
update A at each of the 10 substeps, which are finally summed to yield M . The term
eye(3) denotes the identity matrix of size 3×3.
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At every step of the optimization loop in Fig. 2.4, the current parameters v of the

Homography Module are used to derive M . Using M , the average NGF loss between

RGB and warped thermal pairs is computed (forward transform loss) along with the

loss between thermal and warped RGB pairs (inverse transform loss) at every image

pyramid level, and both of these losses are summed. The total multi-resolution loss is

the sum of bi-directional losses across all pyramid levels. Backpropagation [107] is

used to learn the parameters within the Homography module v by using the partial

derivatives with respect to v of the computed multi-resolution NGF loss to adjust v in

a way that decreases loss. The Adam optimizer [59] (as implemented in the PyTorch

software library [101]) is utilized with a learning rate of 0.005. All other optimizer

hyperparameters are unchanged from their defaults. After each training iteration, the

computed loss should decrease, and the estimates of v should be closer to their optimal

values. Training is terminated once convergence is reached (i.e., loss stops decreasing),

for which 200 iterations were found to be sufficient during all the experiments. The

best approximation to the optimal transformation matrix M∗ has been found at

convergence. In the final step of this stage, the computed matrix is used to warp all

the resized, non-normalized thermal images. The non-normalized images are warped

to preserve the original absolute temperature values during orthomosaicking in the

next stage.

Note that the described intensity-based co-registration differs from previous feature-

based registration techniques that match salient feature descriptors between the

images, for example in [63]. It is also different from the mutual information (MI)-based

registration in [92], which trains an additional neural network to approximate MI

for image pairs as a measure of similarity of their grey-level histogram distributions,

and performs gradient descent with respect to MI loss to compute the transformation

matrix for registration. To compute MI, they consider pixels belonging to edges

(determined by Canny edge detection). However, in this work, all pixels are used

to compute NGF loss since canny edge detection was observed to not be robust for
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the aerial forest images in the Cynthia cutblock data. Lastly, in comparison to the

pair-specific diffeomorphic (non-linear) transformations used in [34] for medical image

registration that deforms images unevenly, the transformation in this work is restricted

to a single linear transformation matrix for all image pairs, which is both efficient and

effective for this work as the results corroborate in Section 2.3.

Thermal Orthomosaic Generation

In the final stage of the proposed workflow, the undistorted RGB images in the

duplicate of the RGB orthomosaic project are first replaced with the co-registered

thermal images obtained from the previous stage. Then, this duplicated ODM project

is rerun, starting from the texturing step. The same external camera orientations

estimated from the RGB SfM process during orthomosaicking are reused here. As a

result, the co-registered thermal images are used to texture the surface mesh previously

obtained as an intermediate output of the RGB orthomosaicking process. In this

way, ODM outputs a thermal orthomosaic. Because the individual undistorted RGB

and thermal images were co-registered in the previous stage, the RGB and thermal

orthomosaics are also co-registered (i.e., geometrically aligned). Each tree appears at

the same pixel locations in both orthomosaics. Both orthomosaics also contain the

same georeferencing information; hence, they line up exactly when viewed using GIS

software (see the next section).

2.2.3 Downstream ITCD Task

To highlight the versatility and utility of the proposed workflow, in Section 2.3.5 I will

demonstrate how the generated orthomosaics can be used for a practical downstream

task, specifically tree crown detection. I will use DeepForest [136], a pre-trained deep

neural network, to delineate individual tree crowns from the RGB orthomosaic. This

model was originally trained using RGB images, not thermal ones. However, since the

proposed workflow generates geometrically-aligned orthomosaics, the results will show
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that the same bounding boxes obtained from the RGB orthomosaic apply directly to

the generated thermal orthomosaic.

The DeepForest model is based on the one-stage object detection RetinaNet [67]

framework. Its backbone comprises a ResNet-50 [43] neural network that extracts

multi-scale features from the image, and a feature pyramid network (FPN) [66] that

combines semantically low-resolution features with low-level, high-resolution ones.

Each level of the FPN feeds its computation to a regression head that locates bounding

boxes in the image and to a classification head that outputs a confidence score for

each box. This score denotes the model’s confidence that a tree crown is contained

within the predicted box.

2.2.4 Proposed Open-Source Tool

To facilitate the usage of the proposed workflow, I have created an open-source

tool that offers both a command line interface and a graphical user interface (GUI)

developed using the PyQt5 Python library. As shown in Fig. 2.6, every setting for

each stage of the workflow can be easily customized from the GUI depending on the

specific requirements of a project. The tool runs on the Windows operating system and

leverages GPU acceleration if available. It offers the option to toggle each processing

stage, including the downstream ITCD, and specify their relevant hyperparameters.

For example, it is possible to specify the batch size, the number of pyramid levels, and

the degrees of freedom in the co-registration stage. Additionally, there is an option

to supply manual point correspondences for a chosen image pair or to compute the

transformation automatically using the described intensity-based co-registration. Each

of the Open Drone Map settings can likewise be modified directly using the GUI, and

it also offers the option of RGB- or thermal-only processing. Practitioners may use

this tool without having to look at any code.

30



Figure 2.6: Graphical User Interface for the orthomosaicking tool showing the
various easily-configurable processing options.

2.2.5 Performance Assessment

During the experimental evaluation for this work, all orthomosaics were generated at

a ground sampling distance (GSD) of 10cm, which is close to the spatial resolution

of the original thermal images at the nadir. The drone images were collected from

the Cynthia cutblock, as described in Section 2.2.1. Although the same H20T camera

was used during all flights, separate transformation matrices were computed for the

geometric alignment of each flight individually. The quality of four different co-

registration techniques on individual thermal and RGB image pairs were compared.

The first was the baseline, i.e., not performing any co-registration of thermal and RGB

images, similar to that in [117]. The second was manual co-registration, where an

affine transformation matrix is computed using three point correspondences supplied
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manually by a user when looking at a randomly chosen RGB-thermal pair, similar

to that in [49]. The best result across 10 repeated trials has been reported. The

third technique is the proposed intensity-based registration framework using the NGF

loss function, as described in Section 2.2.2. For the fourth, the enhanced correlation

coefficient (ECC) [23] was used as the loss function instead of NGF in the proposed

workflow. ECC seeks to maximize the pixel-wise correlation between image pairs

and has been used in previous works for RGB-thermal co-registration [17, 72, 73].

The four techniques were compared using mutual information (MI) as a quantitative

metric, which measures how well the intensity in one image can be predicted given the

intensity in the other. Thus, MI can be used to measure the similarity in grey-level

distributions for two images from their histograms. MI was also used in further

experiments to determine the optimal design choices for other parts of the proposed

workflow, such as batch size and sampling method. Additionally, the co-registered

images and orthomosaics for the proposed NGF-based workflow were qualitatively

compared to the unregistered baseline. Then, the Bhattacharyya coefficient [8] was

used to compare the histograms of randomly chosen original thermal images and

their corresponding patches in the thermal orthomosaic to confirm that the proposed

workflow preserves radiometric information in the form of absolute temperature values.

Finally, the performance of the downstream ITCD task on the thermal orthomosaics

using the RGB-detected tree crowns was evaluated. The observed results are discussed

in depth in Section 2.4.

2.3 Experimental Results

2.3.1 Quantitative Results

Image registration techniques are typically evaluated against a ‘gold standard’ registra-

tion using a measure of positional error between known ground truth correspondence

points when available [103]. However, this information was unavailable for the Cyn-
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thia study site for the two modalities, as many of the image pairs lack any salient

geometric feature to be used as ground truth. Specifically, points on swaying tree

crowns due to wind are unsuitable, and easily identifiable hotspots in thermal images

do not necessarily correspond to salient features in the RGB images (and vice versa).

Therefore, the MI between an RGB and thermal image pair was utilized as a quan-

titative metric to measure the performance of each image co-registration technique.

Better co-registration corresponds to a higher MI value. MI was computed using the

histograms of the min-max normalized images with 100 equally spaced bins for all

image pairs, as described in [92].

Fig. 2.7 shows the MI between the individual RGB and thermal images from

the August 30 Cynthia flight. The unregistered images had a median MI of 0.054.

Performing manual image co-registration improved the median MI of the image pairs

to around 0.203. Although this is a considerable improvement, it could be even higher

if more accurate point correspondences are provided. The transformation matrix

computed automatically using intensity-based co-registration with NGF as the loss

function resulted in the highest MI, with a median value of 0.324. Using ECC instead

of NGF produced a significantly lower median value of 0.198, close to the performance

achieved by manual registration. Except for July 26, where ECC performed slightly

better than NGF, similar results in terms of relative performance were obtained

for the other flights (Table 2.2). These results indicate that the intensity-based co-

registration using NGF most closely aligned the geometry of the RGB and thermal

images compared to the other co-registration techniques.

In Table 2.2, I report the average MI after co-registering all individual thermal

and RGB images using different design choices within the proposed workflow. There

is one column for each flight in the Cynthia cutblock data, and the final column

reports the arithmetic mean over all five flights. The rows are divided into multiple

sections, one for each design choice. Each design choice was tested independently

while setting all others to their best-performing options (indicated in bold). I make
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Figure 2.7: Mutual Information (MI) for August 30 Cynthia Flight. Box
(interquartile range, IQR) and whisker (within 1.5× IQR) plots are shown for the
MI between 814 RGB-thermal image pairs using different co-registration techniques.
NGF is normalized gradient fields [34], while ECC is enhanced correlation coefficient
[23]. The white circles denote mean values.

the following observations from the reported results: (1) Co-registration using NGF

outperformed the other techniques on average across the five flights by 0.2196 units

over unregistered, 0.0853 units over ECC, and 0.0575 units over manual; (2) Restricting

the transformation matrix to six degrees of freedom (affine) resulted in a slightly

higher average MI than allowing eight degrees of freedom (perspective); (3) The

multi-resolution Gaussian pyramid framework performed immensely better than using

only the single, highest-resolution image by 0.2519 units; (4) Larger batches led to a

higher average MI, with a batch size of 64 yielding the most performance improvement

by least 0.02 units over smaller batches; and (5) Systematically sampling image pairs

for the batch marginally outperformed random sampling. Setting each design choice to

its best-performing option yielded the highest average MI of 0.2787, indicated in bold.

The average MI between the perfectly registered red and blue channels of the same

RGB images from the August 30 flight was 1.4896, which is predictably higher than

the reported values between grayscaled RGB and thermal pairs of different modalities.
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Table 2.2: Average MI of Individual RGB and Thermal Images obtained using
different design choices in the proposed workflow for five flights over the Cynthia
cutblock. The best values are emboldened.

Design Choice Jul 20 Jul 26 Aug 09 Aug 17 Aug 30 Mean

Unregistered 0.0539 0.0473 0.0695 0.0589 0.0658 0.0591

Manual 0.2417 0.1781 0.2612 0.2247 0.2003 0.2212

ECC 0.1658 0.2141 0.1742 0.2051 0.2079 0.1934

NGF 0.2999 0.2003 0.3181 0.2715 0.3038 0.2787

Perspective 0.2994 0.1995 0.3176 0.2707 0.3052 0.2785

Affine 0.2999 0.2003 0.3181 0.2715 0.3038 0.2787

Single-resolution 0.0239 0.0323 0.0271 0.0262 0.0247 0.0268

Multi-resolution 0.2999 0.2003 0.3181 0.2715 0.3038 0.2787

Batch size = 1 0.0420 0.0396 0.0602 0.0506 0.0477 0.0480

Batch size = 4 0.1420 0.0759 0.1053 0.1343 0.1036 0.1122

Batch size = 16 0.3003 0.1966 0.3176 0.2672 0.3017 0.2767

Batch size = 32 0.2966 0.1982 0.3182 0.2679 0.2999 0.2762

Batch size = 64 0.2999 0.2003 0.3181 0.2715 0.3038 0.2787

Random sampling 0.3000 0.1963 0.3177 0.2682 0.3023 0.2769

Systematic sampling 0.2999 0.2003 0.3181 0.2715 0.3038 0.2787

2.3.2 Qualitative Results

The quality of the generated thermal orthomosaic depends on the accuracy of the

geometric alignment between the individual RGB and thermal images. If the co-

registration is poor, some tree crowns appear twice while others are missing from

the orthomosaic. Additionally, objects tend not to line up correctly. Fig. 2.8a shows

the RGB orthomosaic generated for the Cynthia cutblock from the August 30 flight.

Fig. 2.8b shows the orthomosaic obtained by texturing using unregistered thermal

images. Although there are no gaps (similar to the RGB orthomosaic), the poor quality

of this thermal orthomosaic is noticeable from the jagged nature of the vertical paths
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through the trees (cutlines). Using the co-registered images obtained after applying

the transformation matrix computed with NGF and the other best-performing design

choices denoted in Table 2.2, a higher quality orthomosaic is generated, as shown in

Fig. 2.8c. The cutlines are straight, and no individual trees are missing or duplicated.

(a) RGB Orthomosaic

(b) Thermal Orthomosaic from Unregistered Images (c) Thermal Orthomosaic from NGF-registered Images

Figure 2.8: Visualization of Orthomosaics generated from August 30 Cynthia
cutblock data. (a) Georeferenced RGB orthomosaic. (b) Georeferenced thermal
orthomosaic from unregistered images. (c) Georeferenced thermal orthomosaic from
NGF-registered images. The improved quality of the orthomosaic in (c) is especially
evident from the circular inset showing a straight path between the trees (similar to
(a)) compared to the jagged path in (b).

The co-registration performance can also be observed by interlacing an undistorted

RGB image with its corresponding thermal image before and after co-registration, as

shown in Fig. 2.9. Before co-registration, there is an offset between the images that

is especially noticeable from the larger individual trees in the top row and the road

and parked vehicles in the bottom row. The geometric alignment of the two images

significantly improves after co-registration. This explains why the co-registration stage

results in a higher quality orthomosaic when the images are used to texture the surface
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mesh reconstruction. Because of the geometric alignment of the individual RGB and

thermal images, the resulting orthomosaics are also geometrically aligned. Thus, the

co-registration stage is crucial to the success of the proposed workflow.

Figure 2.9: Checkerboard Visualization of two samples of undistorted RGB images
interlaced with their corresponding thermal images (a) before and (b) after performing
image co-registration with the proposed workflow. Coloured squares correspond to
the RGB images, and grayscale ones to the thermal images.

2.3.3 Robustness of Transformation Matrix Computation

As mentioned previously, five transformation matrices were computed for performing

co-registration, one for each of the five flight dates. Since the same H20T instrument

was used across all flights, the computed transformation matrices are expected to be

identical in theory. In practice, variations may arise due to differences in lighting

conditions during data acquisition, for example. Table 2.3 reports statistics of the

average, minimum and maximum values of each component of the affine transformation
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matrices computed for all five flights. The maximum coefficient of variation (CoV)

was observed to be 33.69% for M2,1 (the component that controls vertical shear).

Despite this high relative value, the maximum absolute difference from the average for

this component across the five flights was merely 0.00536, which has a minor impact

on the final transformation. For instance, with the point (400,300) in the original

image (approximately the middle point between the image centre and top left corner),

applying the 3×3 transformation matrix corresponding to the highest value of M2,1

yields the point (390.36, 269.04). On the other hand, applying the matrix with the

smallest value of M2,1 yields (391.74 266.85). The Euclidean distance between these

2D image points is just 2.59 pixels or around 13 cm on the ground. This confirms

that the co-registration used in the proposed workflow is robust, with only minor

differences in the computed transformation matrices across different flights.

Table 2.3: Robustness of NGF-based Co-registration. Average, minimum, and
maximum observed values over all flights for each affine transformation M component
are listed. The coefficient of variation (CoV) for each component is reported in the
final column. Mi,j denotes the value in the ith row and jth column. M3,1 and M3,1

are always 0 for affine transformation matrices and thus omitted.

Component Average Minimum Maximum CoV (%)

M1,1 1.01442 1.01380 1.015200 0.05

M1,2 0.00618 0.00579 0.006600 4.45

M1,3 0.02537 0.02075 0.030240 12.19

M2,1 -0.00861 -0.01397 -0.005990 33.69

M2,2 0.94546 0.94442 0.946730 0.08

M2,3 -0.06670 -0.08146 -0.049870 16.40

M3,3 1.04259 1.04153 1.043970 0.09
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2.3.4 Radiometric Analysis

Here, I show that the proposed workflow preserves the radiometric information in

the individual thermal images used to generate the orthomosaic. Specifically, I

show that the captured absolute temperature values are the same before and after

orthomosaicking for any region. Fig. 2.10 shows the central 256 × 204-pixel region

of a sample thermal image and its corresponding patch (of the same size) extracted

from the thermal orthomosaic generated by the proposed workflow. Cropping was

done for this experiment to ensure that the orthomosaic patch corresponds to only

this single image, as the texture mapping tends to only use the central portion of

images during orthomosaic generation. The figure also shows that their temperature

histograms (in bins of 0.1◦C) are nearly identical. The level of similarity between the

histograms can be quantified using the Bhattacharyya coefficient [8], which measures

overlap between two statistical populations. For 50 randomly chosen thermal images

across all five flights, the average Bhattacharyya coefficient with their corresponding

orthomosaic patches was 0.992 (minimum 0.984, maximum 0.998). This is very close

to the theoretical maximum value of 1. Therefore, the orthomosaicking workflow

successfully preserves radiometric information, i.e., absolute temperature values.
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Figure 2.10: Visual and Radiometric Similarity between thermal images and the
thermal orthomosaic. (a) A thermal image, (b) its corresponding patch in the thermal
orthomosaic generated from the proposed workflow, and (c) temperature histograms
for both in equally-spaced bins of 0.1◦C.
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2.3.5 Downstream Task Performance

Fig. 2.11a shows some examples of the detected tree crown patches from RGB ortho-

mosaics using the DeepForest pre-trained tree crown detector. The confidence score

of each prediction in the figure was greater than 75% – there is only one tree centred

tightly within each patch. In total, there were 8729 trees detected with confidence

over 50%. The same bounding box coordinates were used on the thermal orthomosaic,

and the extracted patches are shown in Fig. 2.11b. As a result of the good geometric

alignment between the generated orthomosaics, the same trees appear in each of the

corresponding pairs at the same locations. Hence, the proposed workflow enables

applying an external model trained solely on RGB images to correctly detect individual

tree crowns from the generated thermal orthomosaic, without having to train the

detector on this new modality.

Figure 2.11: Visualization of Downstream ITCD Task Performance on Ortho-
mosaics generated from the August 30 Cynthia data. (a) Detected tree crowns from
the RGB orthomosaic. The percentages represent the detection model’s confidence
score for each RGB crown. (b) Corresponding patches extracted from the thermal
orthomosaic at the same pixel locations as in (a).
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2.3.6 Processing Time

The CPU-only processing time for 814 RGB images (cropped to 1622×1216) and

814 thermal images (640×512) for the August 30 flight through all stages of the

proposed workflow was around 2 hours and 25 minutes (with around 75 minutes for

co-registration). This was for a machine running on a 12th Generation Intel Core

i9-12900K 3.19 GHz processor with 32GB of RAM. With a single NVIDIA GeForce

RTX 3090 GPU, the total time was reduced to around 80 minutes. The bulk of this

processing time was taken up by the ODM process with RGB images for obtaining the

surface mesh and undistorted RGB images. The co-registration stage took just around

10 minutes, meaning that the thermal orthomosaic can be generated in a fraction of

the time taken for the RGB orthomosaic due to the reuse of intermediate outputs.

2.4 Discussion

The quantitative results reported in Section 2.3.1 emphasize the importance of choosing

the correct hyperparameters during the RGB-thermal image co-registration stage.

Automated intensity-based co-registration through gradient descent of the NGF loss

function on average outperformed the other co-registration techniques, owing to its

suitability for gradient descent optimization and multi-modal data [34]. Using ECC as

the loss function resulted in a higher MI for one of the flights (July 26) but performed

poorly compared to NGF overall. This indicates that ECC as the loss function in the

proposed workflow is not as robust to different data as NGF for co-registering RGB

and thermal drone images of forests. Manually supplying point correspondences for co-

registration performed slightly better than ECC but worse than NGF, possibly due to

human errors in selecting the exact pixels for correspondence. These errors stem from

the possibility that hotspots (i.e., bright points) in a thermal image may not correspond

to easily identifiable features in the RGB counterpart and vice versa. Regarding the

transformation matrix, restricting it to six degrees of freedom (affine) yielded a slightly
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better mean MI than allowing all eight degrees of freedom (perspective). This is

because the RGB and thermal sensors lie on the same plane (or at least parallel planes)

in the drone instrument, capturing nadir images. Hence, there is only a variation in the

scale and translation, with possible rotation and skew between the two sets of images

[63]. Allowing the two additional degrees of freedom in perspective transformation

matrices led to a non-zero level of warping in the z-direction (perpendicular to the

image plane). While this did not significantly reduce MI (and actually increased MI

for the August 30 flight), it was observed to introduce a regular distortion pattern in

the generated orthomosaic due to the misalignment of the image planes. Hence, the

proposed workflow only considers affine transformation matrices.

The quantitative results further show that using a multi-resolution Gaussian pyramid

framework is essential for proper co-registration - only relying on the single-scale

original image significantly deteriorated performance compared to even the unregistered

images. This is consistent with previous research showing that multi-resolution

frameworks benefit image registration [78]. It can also be seen from the results

that batch processing consistently outperformed single-image processing due to the

computation of average gradients during optimization that reduces variance and

promotes good convergence [106]. Using larger batch sizes increased performance for

all flights, and although a batch size of 16 or 32 yielded competitive results with a size

of 64, the latter option performed the best on average across all flights. Finally, the

results corroborate the intuition that systematic sampling of image pairs for batch

processing offers a good starting point for successfully performing co-registration.

Compared to random selection, systematic selection was more robust, resulting in a

slightly higher mean MI value. Overall, the reported results justify the specific design

choices of the intensity-based co-registration stage within the proposed orthomosaicking

workflow by demonstrating the robustness and high performance of the automated co-

registration using the NGF loss function, multi-resolution image pyramid framework,

batch processing, and systematic sampling. The highest MI of 0.2787 was achieved
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during my experiments using this co-registration framework. This may seem low

compared to the average MI of 1.4896 for the blue and red channels of the undistorted

RGB images. However, this can be explained by the fact that thermal and RGB

images carry very different information, so the MI for two perfectly co-registered

optical images (i.e., red and blue channels of the same RGB image) has to be much

higher than that of a precisely co-registered optical-thermal pair.

The qualitative results shown in Section 2.3.2 confirm that the selected design

choices for the co-registration workflow, which individually were the best-performing

options in terms of MI, collectively yielded a high-quality thermal orthomosaic that

is geometrically aligned with its RGB counterpart. The co-registration of individual

RGB and thermal images facilitates the correct reuse of intermediate outputs from

the RGB orthomosaicking process to bypass the more problematic initial stages

of the thermal orthomosaic generation. As a result, gaps and swirling artifacts

[138] were absent in the generated thermal orthomosaic, demonstrating that the

proposed integrated workflow can overcome these common issues of thermal-only

processing workflows. The orthomosaic generated from unregistered thermal images

was of poorer quality because the lack of geometric alignment of the individual

RGB-thermal pairs renders the camera orientations inapplicable to the unregistered

thermal images during texturing. Despite variations in conditions such as lighting

across different flights, the five transformation matrices computed for RGB-thermal

co-registration showed only minor variances as reported in Section 2.3.3, thereby

additionally demonstrating that the workflow is robust across different flight data.

The results in Section 2.3.4 further show that the thermal orthomosaic generation

preserves radiometric information - absolute temperature values were unchanged by

the orthomosaicking process. This is evidenced by the intensity histograms of image

patches before and after orthomosaicking appearing highly similar and yielding a

Bhattacharyya coefficient close to 1, the theoretical maximum. Additionally, the ITCD

performed in Section 2.3.5 confirms that the generated orthomosaics are geometrically
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aligned while simultaneously demonstrating the value of this alignment. The perfect

match of the RGB crown boxes when applied to the thermal orthomosaic arises from the

geometric alignment performed during the RGB-thermal image co-registration stage

of the proposed integrated workflow. If the individual images are unregistered, the

generated thermal orthomosaic has inconsistencies, such as the jaggedness of straight

cutlines. Another less-noticeable yet significant issue of improper co-registration was

that some trees in the study area became missing while others were duplicated.

In the remainder of this section, I discuss additional recommendations to effectively

utilize the proposed workflow (and developed tool). Within the workflow, it is required

to first crop the central regions of the RGB images. This can be done by specifying

an appropriate scale in the GUI tool. For the H20T camera considered in this work,

the 1622×1216 central region was cropped out of the original 4056×3040 wide-angle

RGB images (i.e., 40% of width and height). When working with wide-angle RGB

images, this has the added benefit of preventing the barrel distortion near the edges

of such images from propagating to the generated orthomosaic (so that there is no

visible tree lean) without significantly reducing the overlap between successive images.

This results in a high-quality RGB orthomosaic, as shown in Fig. 2.8a.

The implementation of the thermal extraction stage within the GUI tool is specific

to thermal images captured using a camera supported by the DJI Thermal SDK (e.g.,

Zenmuse H20 series, Matrice 30 series, and DJI Mavic 3 enterprise). When using the

tool with these cameras, the input thermal images can be the unprocessed RJPEG files.

There is an option for unsupported cameras to skip this stage and instead directly

specify the path to the converted thermal images that should be used. These images

should be similar to the 32-bit floating TIFFs output by the DJI Thermal SDK, i.e.,

images representing temperature values.

In a multi-resolution framework, the exact number of levels and the downscale

factor also affect co-registration performance. A good minimum size for the width of

the smallest image level is 20 pixels, so for a given downscale factor d and original
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image width w, the number of levels L should be set to ⌈logd( w
20
)⌉. Based on this

formula, I found that d = 1.5 and L = 11 performed well for the Cynthia cutblock data.

Additionally, the success of co-registration depends on the learning rate and number

of gradient descent iterations during optimization. These typically vary depending

on the dataset, but I found 200 iterations at a fixed learning rate of 0.005 to be

sufficient to reach convergence in all experiments, using the Adam optimizer [59].

Besides co-registration performance, hardware memory constraints and processing

time are important considerations. Datasets with more images or with larger image

dimensions necessitate longer processing times. Larger image dimensions also require

more hardware memory, and so a smaller batch size may be needed – in my experiments

a batch size of 32 or even 16 led to competitive results and should be safe alternatives.

An important choice I made in this work is that a single linear transformation

matrix was used to co-register all thermal and undistorted RGB image pairs for a given

flight data. The results showed that this choice yielded good thermal orthomosaicking

performance in terms of both quality and geometric-alignment with the RGB orthomo-

saic. An alternative, pair-specific diffeomorphic co-registration can be done, as in [34]

for medical images. This non-linear warping has the advantage of accounting for any

uncorrected differential distortions present in the image. However, it has significant

drawbacks that prevent its effective application for orthomosaicking. First, it is not

robust for a given flight - since it would require computing a specific transformation

for each pair, if any of the registrations performed worse than the others, that part of

the orthomosaic would be of poorer quality and possibly even unusable. Second, it is

not computationally efficient to compute a non-linear transformation for each pair,

especially for longer flights having more image pairs.

2.5 Conclusions and Future Work

This chapter proposed a new workflow that generates two geometrically-aligned

orthomosaics from simultaneously acquired RGB and thermal drone images. Compared
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to previous workflows that process thermal data separately and hence generate lower-

quality orthomosaics suffering from gaps and swirling artifacts, the proposed workflow

leverages the intermediate outputs of RGB orthomosaic generation and only uses

thermal images for texturing, thereby overcoming those issues. Using an automated

intensity-based image co-registration, the method achieves good geometric alignment

between the individual thermal and RGB images, which allows for using the thermal

images to properly texture the surface mesh previously reconstructed from the RGB

images. The co-registration optimizes the NGF loss function that is based on image

gradients and is found to outperform ECC, an alternative registration technique

commonly used in previous works. The co-registration of the individual images

translates to the geometric alignment of the two generated orthomosaics. This is

advantageous for downstream forest monitoring tasks, as demonstrated by the tree

crown bounding boxes detected from the RGB orthomosaic by a DL model being

directly applicable to the same tree crowns in the thermal orthomosaic generated

from the proposed workflow. Moreover, the orthomosaicking process preserves the

radiometric information present in the original thermal images. To facilitate future

research and improvement of the proposed workflow, a flexible open-source tool with

an easy-to-use GUI has been developed and is publicly available1 to facilitate use by

practitioners.

The generated orthomosaics in this chapter provide a comprehensive representation

of the AOI and can be used for a variety of downstream analysis and processing tasks,

as exemplified by the ITCD performed briefly in Section 2.3.5. The next chapter

details a novel ITCD model that outperforms the RGB-only detector used in this

chapter, especially under challenging illumination conditions.

1https://github.com/rudrakshkapil/Integrated-RGB-Thermal-orthomosaicing
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Chapter 3

Shadow-Agnostic Tree Crown
Detection

3.1 Introduction

Forest environments are important to ecosystems, economies, and society worldwide.

A critical step in forest remote sensing is individual tree crown detection (ITCD),

which can assist ecologists, foresters, biologists, and land managers in increasing the

scope of their sampling for performing tasks such as pest infestation detection [54,

83], carbon storage estimation [26], and species identification [5, 96], and various

other forest health monitoring applications [21]. In recent years, various DL-based

ITCD methods have been proposed to address the challenges in forest monitoring

[151]. However, the lack of diverse, publicly available datasets tailored to this specific

application has impeded progress in this research domain. Additionally, the ITCD task

poses significant application-oriented and environmental challenges. These challenges

include effectively harnessing the information from multiple sensors and ensuring

the robustness of results in the presence of environmental factors. Existing tree

crown detectors (e.g., [136]) have primarily been trained on RGB images, which

are sensitive to occlusions and illumination variations (e.g., for shorter trees hidden

in shadows). Nevertheless, the advantages of incorporating thermal images with

complementary information in ITCD have been largely overlooked. While a few

studies have used RGB-thermal data for urban tree crown detection (e.g., [89]), they
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require extensive manual pixel-wise annotation for supervised training and fail to

address forest monitoring challenges, such as shadowed or occluded tree crowns. To

bridge these gaps, this chapter aims to provide an aligned RGB-thermal forest tree

crown dataset. It proposes a novel self-supervised approach that leverages both RGB

and thermal imagery, improving the accuracy and adaptability of ITCD in various

illumination conditions.

Our RGB-Thermal Detector

Training

Domain
Adversarial 

Training

Foreground
FPN Feature

Alignment

Inference

Background
Feature Fusion

Fused-Feature Predictions 
Shadowed Trees Detected as well

Thermal Image 
Illumination-invariant

RGB Image 
Illumination-dependent

RGB-only Predictions 
Only well-illuminated trees detected

 RGB-Only Detector 

Figure 3.1: Overview of Proposed Method. Undetected trees hidden in shadows
are indicated by dotted red boxes. Best viewed in color.

The proposed method, named ShadowSense, comprises domain adversarial training

(DAT) and foreground (FG) feature alignment to learn domain-invariant representa-

tions and match observed tree crowns in both modalities (see Fig. 3.1). In particular, I

train a shadow-agnostic ITCD model consisting of two parallel branches based on the

RetinaNet architecture [67]. After initializing both branches with RGB-trained weights

of the detector, the thermal branch and three domain discriminators are jointly trained,
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minimizing the domain discrimination loss for the feature extractor while maximizing

it for domain discriminators. Tree crowns visible in both modalities are adapted by

aligning FG feature maps of the feature pyramid network (FPN) using a simple yet

effective intensity-based segmentation followed by morphological operations. During

inference, the background (BG) regions of the FPN feature maps from RGB-thermal

modalities are fused using a weighted average. The fused maps are then passed to

the detector heads, leading to accurate prediction of tree crown bounding boxes. The

proposed method is entirely self-supervised, avoiding the need for labour-intensive

manual annotations for model training. Moreover, a challenging, large-scale dataset

consisting of registered RGB-thermal drone image pairs is presented, serving as a

valuable resource to develop robust models and support future research.

My main contributions in this chapter are summarized as follows,

1. I propose a novel shadow-agnostic tree crown detection method to exploit

complementary information of RGB-thermal images and overcome the limitations

of recent RGB-trained models for the ITCD task. The method leverages the

registered nature of available data for self-supervision (i.e., eliminating the need

for data annotations) and incorporates source domain data post-adaptation.

2. I provide a challenging dataset for shadowed tree crown detection encompassing

varying degrees of shadows and illumination conditions in a complex forest

environment. This RGB-thermal dataset is large-scale and includes annotated

images for evaluation, and unlabelled images for training, aiming to advance the

development of unsupervised/self-supervised methods.

3. I perform extensive empirical evaluations to demonstrate the superior effective-

ness of the proposed method when compared to SOTA methods that utilize

image-to-image translation, early image fusion, or unsupervised domain adapta-

tion (UDA).
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3.2 Related Work

Tree Crown Detection. DL methods have gained significant popularity in ITCD

from RGB drone imagery in recent years. These methods primarily rely on well-known

object detectors with different architectures [39, 151] and have found applications

in various domains (e.g., [84]). However, these models are often trained on small

datasets, resulting in moderate performance and the inability to effectively address

challenges like overlapping canopies, small tree crowns, and distractors in various forest

environments. Among the existing ITCD methods, DeepForest [136] stands out as the

SOTA detector and was trained on a manually annotated dataset comprising over 10k

tree crowns from 37 forests across the United States of America. Nevertheless, despite

its remarkable performance in well-illuminated conditions, this RGB-only trained

detector struggles to accurately detect trees with crowns hidden in shadows.

Unsupervised Domain Adaptation (UDA). The goal of UDA is to transfer

knowledge from a source domain (e.g., RGB) to a target domain (e.g., thermal)

without relying on annotations specific to the target domain [99]. In general, UDA

involves adapting models either within the same modality (e.g., RGB with clear vs.

foggy weather) or across different modalities, such as RGB-thermal [3, 27, 58, 86, 111,

129, 153].

Many UDA approaches incorporate DAT by integrating domain discriminator

networks into multiple parts of the model to encourage learning domain-invariant

representations. These methods often employ global domain classification for the

entire image [100], or local pixel-wise classification focusing on FG regions [145] or

areas of interest predicted by attention modules [58, 129]. Despite their success for

generic object detection/segmentation, the potential application of these methods

for the ITCD task is still largely unexplored. A drawback of applying existing UDA

methods to this task is their reliance on source domain annotations for training (see

Table 3.1), which is not feasible in this problem setting. To address this limitation,
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the method I propose in this chapter adapts to the thermal data distribution without

requiring any annotations, utilizing only the registered nature of the available data

for self-supervision. Moreover, unlike previous approaches, my method retains and

incorporates the source domain data after adaptation.

RGB-Thermal Early Fusion. Instead of adapting an RGB-trained model to the

thermal data, an alternative approach is to fuse information from both modalities

into a more informative image. Most works cope with the lack of ground truth fusion

results by employing unsupervised RGB-thermal fusion methods. These methods

can be applied to unregistered or registered images. For instance, UMFusion [132]

improves upon existing methods for unregistered images by incorporating style transfer

and a parallel-branch fusion module. Wang et al.[135] propose an attention-based

method to integrate thermal target perception and RGB detail characterization for

scenarios with registered images (like in this work). These methods perform fusion at

the image level, resulting in a new, richer image with combined properties from both

modalities.

Alternatively, fusion can be conducted at the intermediate feature level. Moradi

et al.[89] propose a U-Net-based fusion model for tree crown segmentation, which

requires ground truth segmentation maps for training. Supervised intermediate feature

fusion methods have also been extensively studied in tasks like classification [62],

segmentation [64, 121], and salient object detection [32, 65, 120, 127, 133, 148, 155]

(SOD, see Table 3.1). In contrast, the proposed method performs feature fusion during

inference, rather than early fusion at the image level, in a self-supervised manner

specifically designed for ITCD.

Image-to-Image Translation. Aside from fusion approaches, an alternative

research direction involves colourizing a thermal image to resemble its RGB counterpart

using encoder-decoder networks [16, 47, 76], and leveraging the ‘translated’ image for

downstream tasks. Another approach is the use of classical algorithms [25] or SOTA

DL methods [31] to translate RGB images into shadow-free versions. However, these
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methods typically discard the original RGB images in preference of the translated

images, which may suffer from image artifacts and potentially contain less semantic

information. Instead, the proposed method effectively fuses intermediate features

extracted from both modalities after performing the UDA, thereby preserving the

complementary information of RGB and thermal modalities.

Table 3.1: Categorization of Related Works according to training supervision
through RGB ground truth (GT) annotations.

Category GT Required GT Not Required

UDA for
Detection

[56] [57] [77] [86] [90] [100]
[130] [129] [145] [153] [154]

Proposed

RGB - Thermal
Fusion

[29] [69] [70] [89] [152]
SOD : [32] [65] [120] [127] [133]

[148] [155]

[38] [68] [132]
[135] [141]

and Proposed

Translation [16] [31] [47] [76]

3.3 Proposed Method and Dataset

In this section, “visible trees” refers to trees seen in both RGB and thermal images,

primarily due to adequate lighting conditions. In addition, “shadowed trees” are

commonly shorter trees that remain hidden by the shadows of neighbouring larger

trees in the RGB image but become apparent in the thermal image. Due to the

limitations of the illumination-dependent RGB modality, RGB-trained detectors are

ineffective in identifying a significant number of shadowed trees. This is primarily

because signals beyond the visible spectrum are imperceptible using RGB sensors

alone. Hence, the proposed method first adapts the backbone of the existing baseline

detector to the thermal data and then fuses extracted features from both modalities

during inference. In the remainder of this section, I present the proposed method in

detail and then introduce an RGB-thermal dataset that facilitates advancements in

challenging illumination conditions and enables the development of robust models for

the ITCD task.
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Figure 3.2: (a) Detailed Workflow of Proposed Training Procedure consisting
of a thermal branch (in red) and an RGB branch (in blue). The weights of both are
initialized from [136], and the RGB branch is frozen during training. The thermal
feature extractor is trained to fool the domain discriminators (in green), and vice
versa, using gradient reversal layers (GRL) at multiple levels. (b) Close-up of FPN
feature alignment (in purple) at the M3 level that encourages foreground feature map
regions of the two branches for a given image pair to match.

3.3.1 Model Architecture and Training

The proposed model consists of two parallel branches (i.e., RGB and thermal branches)

based on the RetinaNet architecture [67] for the detection task (see Fig. 3.2a). This

architecture consists of a backbone network and detection heads. The backbone

includes a ResNet-50 network [43] that extracts features at multiple resolutions from

input images and an FPN that combines extracted features from multiple levels. Each

branch of the proposed model comprises the backbone network, while the classification

and regression heads that produce detection outputs are shared. A 1×1 convolutional

layer (i.e., ‘pre-layer’) is attached at the beginning of the thermal branch for expanding

thermal input images to three channels before passing them to the backbone network.

Both branches are initialized with weights from a pre-trained RGB tree crown detector

[136], and the RGB is frozen to maintain its performance in the source domain. This
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is done because these weights effectively identify tree crowns from RGB images but

perform poorly for thermal images, as indicated in Table 3.3. Then, DAT and FG FPN

feature alignment are employed to adapt the thermal branch to the target domain

distribution. Considering the thermal data’s inherent low texture and contrast, the

proposed training helps the thermal branch provide accurate predictions for visible

and shadowed tree crowns.

Domain Adversarial Training (DAT). DAT is employed to train the thermal

ResNet-50 feature extractor and thermal pre-layer to learn domain-invariant repre-

sentations. Inspired by [100], three domain discriminator networks (shown in green

in Fig. 3.2) are attached to the 3rd, 4th, and 5th levels of the extractor. These

convolutional neural network (CNN)-based classifiers predict the domain label (i.e.,

RGB or thermal) for the computed feature map for input images during training.

Each discriminator is preceded by a gradient reversal layer (GRL) [28] that acts as

the identity function in the forward pass, i.e., G(x) = x, but negates gradients in the

backward pass. This layer ensures that the gradients flowing through the extractor

and the discriminators are in opposition. Doing so sets the stage for a two-player game:

the feature extractor is trained to generate indistinguishable feature representations

by discriminators between the source and target domains, while the discriminators

aim to accurately classify the domain labels based on the feature representations.

The single-class focal loss is used to emphasize challenging images during DAT, as,

Lc
D = −(1− pt)

γlog(pt), (3.1)

where c ∈ {3, 4, 5} is the level of the feature map, pt is the predicted domain probability,

and γ controls the diminishing rate of the modulating factor. A larger weight is assigned

to more challenging instances, increasing their importance in the overall loss calculation.

Then, the game is modelled as a min-max optimization,

min
{θ3d,θ

4
d,θ

5
d}

max
{θr,θp}

L3
D + L4

D + L5
D, (3.2)
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where θcd, c ∈ {3, 4, 5} are the parameters of the three domain discriminators, θr are

the parameters of the thermal feature extractor, and θp are the parameters of the

thermal pre-layer. Unlike typical UDA works [90, 100, 129], the proposed method

does not combine adversarial loss with a task-aware detection loss due to the lack of

source annotations.

Foreground FPN Feature Alignment. It is crucial for FPN outputs of the RGB

and thermal branches to align (i.e., be the same) for the trees that are visible in both

modalities (i.e., in the FG regions). This alignment acts as a proxy for task-specific

detection loss to guide adaptation during training and is vital for the weighted average

fusion process during inference (see Section 3.3.2). Thus, the proposed method can

ensure the effective combination of complementary information from both modalities,

leading to improved detection performance for shadowed tree crowns. Fig. 3.2b

illustrates the alignment process for the third FPN feature map. To do so, a binary

BG/FG mask (obtained as described below) is down-sampled to the feature map

size at the current level and then applied to the feature maps from the two branches.

Standard average pixel-wise L2 loss is then computed between the residual values.

Accordingly, five loss values denoted as Lf
2 , f ∈ {1, 2, 3, 4, 5} are obtained. These

losses are then combined in a scaled manner, with higher weightage assigned to the

larger feature maps using scaling values βf , f ∈ {1, 2, 3, 4, 5}, i.e.,

LFPN =
5∑︂

f=1

βfLf
2 . (3.3)

This alignment is complementary to the UDA process – both have the effect of

producing the same feature maps at FG regions regardless of the modality. Therefore,

LFPN is used to update the parameters θf of the thermal FPN as well as the preceding

parameters θr and θp.

To generate the binary masks used to train the detection model, a simple yet

computationally efficient method combining classic watershed segmentation [124] and

mathematical morphology is employed. This approach avoids the complexity of recent
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methods that utilize auxiliary neural networks for mask prediction. It is particularly

suitable for the shadow-agnostic ITCD task because it leverages the assumption that

BG pixels (including shadows) are generally darker than those in the FG. According

to the binary mask generator in Fig. 3.2, each RGB image is converted to grayscale.

Then, pixels with intensity < 20
255

are marked as 1 (representing the darker BG) and

those with intensity > 100
255

as 2 (i.e., brighter FG). The FG/BG labels for pixels with

intensities in between (initially unmarked) are determined through Meyer’s iterative

flooding algorithm [7], as implemented in scikit-image [119, 131]. In this algorithm, an

elevation map is computed using Sobel filtering. This map is then ‘flooded’ starting

from the defined FG/BG markers. For this, each marked pixel’s neighbours are inserted

into a priority queue based on gradient magnitude, with enqueue time serving as a

tiebreaker favouring the closer marker. The pixel with the highest priority is extracted,

and if its already-marked neighbours share the same marker, it is assigned to that pixel.

All unmarked neighbours that are not yet in the priority queue are enqueued. This

flooding procedure iterates until the queue is empty and all pixels are marked as either

FG or BG. After obtaining the initial binary mask, three morphological operations

are applied for further refinement. Specifically, 4-connected 3×3 structuring elements

are used for (1) opening to remove errant FG pixels surrounded by BG, (2) closing to

remove errant BG pixels surrounded by FG, and (3) dilation to pad FG boundaries

and maintain FG performance during inference.

3.3.2 Feature Fusion during Inference

During the inference phase, complementary information from the thermal branch is

exploited to address the limitation of detecting shadowed tree crowns with only the

RGB branch, thereby improving the overall ITCD performance. This information

resides in the BG regions of the RGB images, which are typically prominent in their

thermal counterparts. To achieve this, the same binary mask generation process is

used as in the training phase, but this time assigning ‘1’s to represent BG regions
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and ‘0’s for FG. Subsequently, the feature maps extracted from the RGB and thermal

modalities are fused level-wise. In Fig. 3.3, I illustrate this fusion process for the M2

level of feature maps.
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Figure 3.3: Masked Fusion During Inference for the M2 level feature maps as
an example. Background features (purple) are obtained by weighted averaging of the
RGB (blue) and thermal (red) features. Foreground features are assigned the original
RGB values. Best viewed in colour.

While the FG pixels (depicted as black regions in Fig. 3.3) from the RGB feature

maps are directly utilized, the BG regions of the thermal feature maps are masked

to focus solely on the areas that are not visible in the RGB modality. As a result,

the fused feature map F f
Fused at level f is obtained through a weighted average of the

RGB feature map (FRGB) and the thermal feature map (FT ) for all BG pixels (x, y)

as,

F f
Fused(x, y) =

FRGB(x, y) + (FT (x, y)× λT × ηf )

1 + (λT × ηf )
, (3.4)

where λT is the weight assigned to thermal features for all levels and ηf denotes the

fusion weight scaling specific to that level. ηf decreases with f because larger feature

maps have a higher spatial resolution, and thus the averaging is less error-prone due

to containing more fine-grained information. Once the fused feature map is obtained
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at each level, it replaces the RGB feature map and is fed into the classification and

regression heads to predict bounding boxes.

3.3.3 Dataset for Shadowed Tree Crown Detection

In this section, I present an RGB-thermal dataset titled RT-Trees for advancing

shadowed tree crown detection and developing robust models for ITCD. This dataset

builds on the existing data introduced in Section 2.2 by conducting additional flights

using the same setup. Specifically, the same DJI H20T sensor was employed to capture

RGB-thermal drone imagery during nine flights over a mixed forested region of central

Canada. This data was then combined with available data from the original five flights.

During data collection, flight times were purposely diversified to encompass a spectrum

of challenging illumination conditions. Additionally, ever-changing climatic conditions

throughout the year (e.g., temperature and snow cover) introduce an additional layer

of diversity and challenges, especially in the more sensitive thermal images.

A series of preprocessing steps were applied on the raw drone imagery from all flights,

including cropping, resizing, co-registration with NGF-based workflow (proposed in

previous chapter), splitting into training/validation sets based on GPS coordinates,

and providing high-quality annotations for evaluation purposes. This resulted in a

substantial collection of approximately 50k registered image pairs across all flights,

signifying a considerable expansion compared to existing RGB-thermal datasets (see

Table 3.2). 63 non-overlapping images were sampled for testing and 10 for validation

from a single flight date (August 30). Each tree crown only appears once in these sets

to ensure the reliability of performance evaluation, and the annotations differentiate

between visible and shadowed (i.e., “difficult”) tree crowns. The remaining bulk of

images (49,806) was designated for training. These images display a high degree

of overlap (> 75%) and span all flights, a deliberate choice aimed at promoting

diversity and consequently justifying the discrepancy in data split numbers. RT-

Trees is primarily intended for self-supervised RGB-thermal ITCD, so no training
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set annotations are provided, but the proposed method demonstrates that the co-

registered imagery can facilitate domain adaptation and feature fusion techniques

through the registered nature of the multi-modal imagery. A notable characteristic

of the RT-Trees dataset is the highly dense spatial distribution of detection targets

compared to existing datasets, averaging around 60 tree crowns per image. Moreover,

the presence of different tree species results in considerable variability of crown areas

and shapes. The challenges of RT-Trees are substantiated with descriptive statistics

in Appendix A, where I also describe the collection, pre-processing, and annotation

procedures in more detail.

Table 3.2: Comparative Overview of RGB-Thermal Image Datasets.

Dataset # Pairs Dimensions Year GT Application

TNO [125] 63 Various 2014 × Image Fusion

MFNet [33] 1569 640×480 2017 ✓ Semantic Segmentation

VIFB [149] 21 Various 2020 × Image Fusion

RoadScene [142] 221 768×576 2020 × Image Fusion

LLVIP [50] 15488 1080×720 2021 ✓ Pedestrian Detection

M3FD [70] 4200 1024×768 2022 ✓ Object Detection

RT-Trees (Proposed) 52869 500×500 2023 ✓(eval.) Tree Crown Detection

3.4 Experiments

In this section, I first provide implementation details for the proposed method (Shad-

owSense). I then compare its performance with the baseline and existing SOTA

methods through the quantitative results reported in Table 3.3. Specifically, I utilized

three metrics for evaluation: (1) AP50, representing the average precision at 50% IoU

(Intersection over Union) threshold, (2) AR100, representing the average recall over

several IoUs given 100 detections, and (3) Percentage of correctly identified shadowed

trees. The third metric focuses only on the difficult boxes, counting a positive if a

predicted box with an overlap of 85% with the BG regions was assigned to a difficult

box. Finally, I present qualitative comparisons.
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3.4.1 Implementation Details

The well-known RGB-trained crown detector DeepForest [136] was considered the

baseline method. The RetinaNet networks [67] in each RGB/thermal branch were

initialized with pre-trained weights from [136]. To ensure fair comparisons, the

RetinaNet hyperparameters were configured similarly to those employed in the baseline.

This involved setting the non-maximum suppression threshold to 0.15 and the score

threshold to 0.1 (default in [136]). During training, I set the FPN alignment scales

β = [1.0, 1.0, 0.5, 0.05, 0.01] and the focal loss parameter γ to 2 (recommended in

[67]). The domain discriminators consisted of three Conv-BatchNorm-ReLU-Dropout

layers, followed by an adaptive average pooling layer to reduce feature maps to a

single channel and a linear layer to finally produce a single output representing the

confidence of belonging to the target domain. Dropout layers with a probability of 0.5

were included for regularization. To suppress noisy classification signals during early

training stages, the adaptation factor for the GRL was gradually increased from 0 to

1, as recommended in [28]. A training batch size of 16 was used in all experiments.

The Adam optimizer [59] was used with an initial learning rate of 0.001, which was

exponentially decayed with a gamma factor of 0.9 after each epoch (i.e., a complete

pass through the training set). The training was conducted for 10,000 iterations, a

sufficient period to observe plateauing in all training losses. The experiments were

conducted on a single Nvidia GeForce RTX 3090 GPU with 24 GB of RAM. During

inference, weighted fusion was performed using a thermal weight of λT = 5, which

provided the best results. Similar to β, the scaling weights η = [1.0, 1.0, 0.5, 0.2, 0.2]

were applied to weight more towards thermal features in larger feature maps while also

ensuring that all products of λT and η are greater than or equal to one (i.e., always

at least equal weighting between thermal and RGB features). Further validation of

selected hyperparameters is provided in Appendix B.
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3.4.2 Baseline Quantitative Comparison

I evaluated the performance of the baseline model [136] in four scenarios. The first

two involved assessing the effectiveness of this model off-the-shelf on RGB images

and thermal images, respectively. The performance on RGB images was 49.86%

AP50 and 24.01% AR100, although just 10.41% of the difficult shadowed trees were

successfully identified. On thermal images, the baseline detector exhibited significantly

inferior performance (see Table 3.3). These results demonstrate that the off-the-shelf

RGB-trained detector is ill-suited for the thermal domain. In the other two scenarios,

I conducted supervised fine-tuning of the detector model on RGB imagery, using

supervised focal loss [67] for 10 epochs, following [136]. I used a subset of RT-Trees

comprising 326 non-overlapping RGB images containing over 22.5k crowns of visible

and shadowed trees. These were manually annotated for this experiment by inspecting

the RGB-thermal image pairs. The performance on RGB images shows a lead of 5.34%

and 5.41% in terms of AP50 and AP100, respectively, while also resulting in a 9.69%

increase in the detection of shadowed trees. Although the thermal modality is not

directly used for training, this configuration requires costly annotation based on both

modalities. Also, the performance of this model on thermal images is dramatically

poor due to low spatial resolution and lack of fine details in these images. Instead, the

proposed ShadowSense can achieve superior performance by leveraging multi-modal

data without needing any annotations during training at all.

3.4.3 State-of-the-art Quantitative Comparison

I compare the performance of the proposed ShadowSense with various image-to-image

translation, RGB-thermal early fusion, or UDA SOTA methods. The baseline detector

was applied to the generated images in the image translation and fusion methods. In

contrast, the proposed weighted-average fusion of BG FPN feature maps was adopted in

all UDA experiments (and ShadowSense) for fair comparisons. Additionally, I present

an ablation study to analyze the impact of different components on ShadowSense.
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Table 3.3: Quantitative Comparison of the proposed method with baseline and
SOTA methods using % AP50 (↑), % AR100 (↑), and % of shadowed trees correctly
identified (↑). Best and second-best results are emboldened in red (supervised) and
blue (self-supervised).

Evaluation Method Training Data
All Trees Shadowed Trees

AP50 AR100 % Identified (↑)

Baseline [136]

Off-The-Shelf Model (Eval. on RGB Images) NEON [137]
(RGB only)

49.86 24.01 10.41

Off-The-Shelf Model (Eval. on Thermal Images) 4.34 2.27 2.82

Supervised Fine-Tuned Model (Eval. on RGB Images) + Ann. RGB
RT-Trees subset

55.20 29.42 20.10

Supervised Fine-Tuned Model (Eval. on Thermal Images) 5.64 3.98 3.81

Image Translation
Inference using [136]
on Generated Images

Increased Background Brightness in HSV Space N/A 42.01 20.35 10.41

ShadowFormer [31]: Shadow Removal ISTD [134] 11.62 6.48 3.47

PearlGAN [76]: Thermal Image Colourization RT-Trees 40.72 19.67 11.18

Early Image Fusion
Inference using [136]
on Generated Images

UMFusion [132] TNO [125] 38.00 18.56 10.20

MFEIF [68] TNO [125] 39.62 18.95 15.40

MetaFusion [152] M3FD [70] 43.17 21.29 18.00

RGB-Thermal
UDA without
Source Domain
Annotations
Our Fused Inference
after Adaptation

SSTN [90]: Contrastive Learning RT-Trees 31.53 15.16 2.13

Attention-based UDA [129] RT-Trees 31.97 15.34 3.84

DA-RetinaNet [100]: ResNet DAT RT-Trees 32.88 15.72 3.65

A
bl
a
ti
o
n
S
tu
d
y (i) Proposed: FG FPN FA RT-Trees 47.11 22.48 5.21

(ii) Proposed: ResNet DAT + FPN FA w/o Masking RT-Trees 49.75 23.22 10.63

(iii) Proposed: ResNet DAT + FG FPN FA (Pred. Masks) RT-Trees 52.18 24.84 9.33

(iv) Proposed: ResNet FG DAT + FG FPN FA RT-Trees 52.24 24.38 14.32

(v) Proposed (ShadowSense): ResNet DAT + FG FPN FA RT-Trees 54.13 25.76 19.09

Image-to-Image Translation. I investigated the effectiveness of three such

methods: PearlGAN [76] (SOTA thermal colourization method); ShadowFormer [31]

(SOTA shadow removal method); and a classic method that increases the brightness

of pixels in HSV colour space proportionally to their original brightness, i.e., darker

pixels are made brighter. Thermal images colourized using PearlGAN performed

worse than the baseline by -9.14% AP50 and -4.34% AR100. However, slightly more

shadowed trees were detected. The decreased performance can be attributed to

the introduction of artifacts and an overall loss of semantic information compared

to the original RGB images. The classical shadow removal method showed better

results than PearlGAN but performed worse than the baseline. This method jitters

the entire image inconsistently with the detector, leading to poor performance. The

detection performance on images generated by ShadowFormer was the most inadequate,

achieving an AP50 of 11.62% and an AR100 of 6.48%, with just 3.47% shadowed trees

identified. This model is ineffective for removing the shadows of dense tree canopies

in the RT-Trees dataset.
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RGB-Thermal Early Fusion. I evaluated three SOTA methods: UMFusion [132],

MFEIF [68], and supervised MetaFusion [151]. MetaFusion directly generates a fused

three-channel RGB image, whereas UMFusion and MFEIF convert the RGB image to

the YCbCr colour space, fuse the brightness (Y) channel with the thermal image, and

then convert the fused image back to the RGB space. In all three methods, shadowed

trees become partially visible in the fused images to varying extents. According to

the results, MetaFusion achieved the best performance. Although the AP50 and

AR100 results were still lower than those of the baseline detector, the fused images

revealed 7.59% more shadowed trees than the baseline. Similar trends were observed

for UMFusion and MFEIF. Although RGB-thermal early fusion improved the visibility

of BG regions, the performance of detecting FG tree crowns deteriorated. In summary,

the overall detection performance of all three methods was worse than the baseline.

UDA. As shown in Table 3.1, existing UDA methods require ground truth an-

notations to compute task-specific detection loss during training, which guides the

adaptation process. To ensure a fair comparison, three UDA methods compatible with

the one-stage object detector RetinaNet were selected – Attention-based UDA [129],

SSTN [90], and DA-RetinaNet [100]. These methods were modified by excluding only

the supervised detection loss due to the lack of training annotations in RT-Trees. In

Attention-based UDA, the attention module that dynamically selects local feature

regions for adaptation was trained using DAT alongside the thermal branch of the

proposed model. In the case of SSTN, only the ResNet-50 and pre-layer of the ther-

mal branch were fine-tuned using contrastive loss as described in [90]. Similarly, for

DA-RetinaNet [100], only global DAT (i.e., for all regions of extracted feature maps)

was employed to adapt the ResNet and pre-layer of the thermal branch. Among these

three methods, DA-RetinaNet demonstrated the best adaptation to the thermal data

distribution. However, its performance was still limited as numerous false positive

predictions contributed to the overall insufficient performance. The drawback of these

methods lies in the absence of task-aware detection loss during adaptation due to the
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lack of ground truth annotations in RT-Trees. Consequently, these models cannot

learn to extract domain-invariant representations that are meaningful for the detection

task. Instead, they primarily learn to deceive the domain discriminators irrespective

of the downstream task (i.e., detection).

The proposed method overcomes the limitations of the discussed UDA methods

by incorporating task-aware FG FPN feature alignment (abbreviated FG FPN FA)

to guide the adversarial adaptation process. By using DAT and FG FPN FA, the

proposed method outperforms the baseline RGB-only detector and existing SOTA

methods with an AP50 of 54.13% and AR100 of 25.76%, with 19.09% of shadowed

trees successfully detected (almost doubling the success rate of the baseline). The

entirely self-supervised method performs comparably to the supervised fine-tuning

method without requiring labour-intensive manual labelling. The proposed feature

fusion process selectively enhances features in the BG regions using thermal-extracted

features. Importantly, this fusion does not have an adverse effect on FG performance,

which distinguishes ShadowSense from existing early fusion approaches. Additionally,

the fusion process leverages available data from both domains for detection, unlike

single-domain image-to-image translation methods.

3.4.4 Ablation Study

A systematic ablation analysis of the proposed method is presented in Table 3.3. It

includes five different configurations: (i) FG FPN FA using the proposed classic image

masking (CIM) with no DAT applied to the ResNet model, (ii) ResNet DAT with

FPN FA and no masking (aligning all regions of feature maps), (iii) ResNet DAT with

FG FPN FA and different masking (using baseline detector predictions as FG and the

rest as BG), (iv) Pixel-wise ResNet DAT (discriminators output domain labels for

each pixel and consider loss only for FG pixels) with FG FPN FA using CIM, and (v)

Proposed ResNet DAT with FG FPN FA using CIM (ShadowSense).

According to the results, the following key inferences can be made: 1) UDA
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through DAT is crucial (from (i) & (v)): relying solely on FG FPN FA led to inferior

performance compared to the baseline, indicating that the thermal branch did not

effectively learn to extract domain-invariant representations without DAT. 2) FG

masking for FPN alignment is crucial (from (ii), (iii) & (v)): Even with DAT, aligning

whole feature maps slightly decreased performance compared to the baseline – aligning

features of a tree visible only in the thermal image with BG features from the RGB

image interfered with training. 3) The proposed mask generation method outperforms

RGB detector-predicted mask generation (from (iii) & (v)): The proposed masking

detected significantly more shadowed trees than this alternate masking, showing

superior performance for FPN FA and fusion. 4) FG masking is unnecessary for DAT

(from (iv) & (v)): Pixel-wise domain classifiers with loss computation restricted to

FG regions resulted in slightly worse performance than global DAT, likely due to the

usage of less available data (only FG pixels vs. all pixels) in the same number of

training iterations.

3.4.5 Qualitative Results

Feature Space Visualization. Fig. 3.4 shows the initial disparity between the

RGB-thermal FPN feature map representations before the proposed training procedure.

After training, however, they become indistinguishable as domain-invariant feature

maps are aligned and thus can be directly averaged for fusion during inference.

RGB Thermal

M2M1 M3 M4 M5

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

––———————————————————————————————————————––

Figure 3.4: t-SNE Visualization of RGB-thermal FPN features: (top row) before
training and (bottom row) after training.
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Detection Performance. The visual performance of the proposed method is com-

pared to the off-the-shelf RGB detector [136] for five different image patches in Fig. 3.5.

Two outputs of the proposed method are shown: one from thermal FPN feature maps

(isolated thermal branch) and the other from the fused feature maps. The thermal

branch can detect shadowed trees in the BG that were missed by the baseline, but there

is a decline in the FG performance. In the latter, the BG detections are accurately

propagated while maintaining the FG baseline performance. Overall, the proposed

method outperforms the baseline by comprehensively improving the detection results.

3.5 Conclusions

In this chapter, I proposed a novel shadow-agnostic ITCD method and presented a

challenging RGB-thermal dataset to address the limitations of existing RGB-only

detectors. The proposed method exploits DAT and FG FPN FA to learn domain-

invariant representations and match visible tree crowns between RGB and thermal

modalities. Unlike existing adaptation methods, the approach does not require anno-

tations for task-aware supervision during training. Instead, it relies on the registered

nature of the images for aligning feature maps of visible FG regions. The proposed

method effectively detects shadowed trees by fusing complementary thermal informa-

tion. Further, the dataset presented comprises registered RGB-thermal drone image

pairs that can stimulate future research in challenging ITCD scenarios. Experimental

comparisons demonstrate the superiority of the proposed method over the baseline

RGB-trained detector as well as SOTA image fusion and UDA-based techniques.

Although the experiments in this chapter consider drone-collected images to ensure

a larger training set, it is entirely possible to apply the proposed detection model to

the registered orthomosaics generated in the previous chapter (recall that the baseline

RGB-only detector was used in this chapter was the same as that in the previous one).

The next chapter explores a downstream classification task on the tree crown patches.

These patches can be effectively extracted using the proposed model in this chapter.
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Figure 3.5: Tree Crown Detection Results. Each column shows (a) RGB image,
(b) Thermal image, (c) Generated mask; and predictions by (d) Baseline [136], (e)
DAT-adapted thermal branch, (f) Proposed ShadowSense, and (e) Ground truth. Best
viewed in colour.
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Chapter 4

Bark Beetle Visible Attack Stage
Classification

4.1 Introduction

Bark beetle outbreaks significantly impact forests worldwide, thereby disrupting the

functioning and properties of natural ecosystems. As a result of various factors (e.g.,

population density, tree moisture & condition, beetle & host tree species), a successful

bark beetle attack gradually reveals itself by affecting various parts of the host tree

[22]. Over time, the crown of an infested tree begins to fade – there is a gradual

change in foliage colour from a healthy green to yellow, red, and finally a leafless (i.e.,

needle-less) grey. These are referred to as different attack stages.

The crown fading process is linked to the life cycle of bark beetles (see Fig. 4.1),

in which pioneer female bark beetles bore tunnels (called oviposition galleries) in the

phloem of host trees to lay their eggs, and the larvae hatch and excavate additional

larval galleries to feed on phloem tissue. The rate of discoloration depends on the

progress of bark-beetle-induced fungal infection that further interrupts nutrient and

water flow through the phloem and xylem of host trees, as well as environmental

conditions such as soil moisture content [94]. Typically, the change from green to

red takes one year [10]. However, variations in the host tree’s defensive response to

minimize water losses can significantly delay the onset of visible discoloration [94].

Suppose colonization is successful and the host tree’s defences are overwhelmed. In
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Figure 4.1: Typical Life Cycle of Bark Beetles and their effect on host tree foliage
over time. Beetle images have been adapted from [109].

that case, the tree ultimately dies, and the next generation of beetles disperses from

the parental tree in search of new hosts [109].

Emerging bark beetles from infested trees disperse in several ways in search of new

hosts, with the majority partaking in short-range dispersal [110]. They fly below the

forest canopy and attack suitable host trees within a few hundred meters. Hence,

identifying previously colonized trees will help determine the next likely location

of infestations and guide beetle management activities (e.g., sanitation, removal, or

disposal) to prevent infestations from further spreading [37].

Bark beetle outbreaks have had devastating consequences [11]. Infestations affect

the total volume of merchantable pine, even if some trees can be salvaged. Rural

communities that rely on the forests for local employment and tourism are especially

vulnerable. Beyond the risk to commercial interests, bark beetle-induced tree mortality

can adversely affect priceless ecosystem service values, such as biodiversity and carbon

sequestration. Increased wildfire risk is another significant impact since dead trees

ignite more easily than live trees. These consequences highlight the importance

of detecting bark beetle activity to mitigate their spread by falling and burning

infested trees over the winter and early spring [13]. The detection of infested trees
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by Dendroctonus mexicanus is studied in this chapter, which is among Mexico’s most

damaging insects for pine forests.

Traditionally, bark beetle attacks have been detected through satellite or aircraft

platforms and classical ML-based approaches such as random forests (RF) or support

vector machines (SVM). Although satellite and aircraft platforms are widely used at

the landscape level, recent research has focused on leveraging UAVs for data collection

due to their advantages at the individual tree level (e.g., higher spatial and temporal

resolution). Besides, classical ML-based approaches require feature selection, which

demands prior domain experience and extensive effort to achieve satisfactory results.

Thus, exploiting DL-based models is of interest due to their capacity for learning

powerful representations and exhibiting good generalization by discovering intricate,

underlying data patterns. As shown in Fig. 4.2, an automated system that detects

and analyzes bark beetle infestations using remote sensing and machine learning (ML)

is desirable to avoid labour- and cost-intensive efforts of typically employed ocular

assessments.

Crown Image  
Collections

Classification 
Model

Red

Predicted Class  
for each Image

Yellow

Green

Leafless

Figure 4.2: Brief Diagram of the desired classification model for this task.

4.2 Related Works

In this section, I briefly describe existing DL-based approaches that seek to detect trees

infested by bark beetle species from UAV-captured images (i.e., individual tree level).

First, the potential of deep neural networks (DNNs) to detect bark beetle outbreaks

in fir forests was studied in [108]. A two-stage method consisting of a classical image
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processing-based crown detection and a six-layer convolutional neural network (CNN)

was employed for predicting red- and grey-attacked trees by four-eyed fir bark beetles

(Polygraphus proximus Blandford, Coleoptera, Curculionidae). This method used

RGB images captured by a DJI Phantom 3 Pro quadcopter, and the performance

was compared to six well-known CNN models (e.g., VGGNet [116], ResNet [43], and

DenseNet [46]). After that, the classification accuracy of infested trees in a temperate

forest was investigated in [88] by training two shallow CNNs (with three and six

convolutional layers) and applying transfer learning to a pre-trained DenseNet-169

[46]. Despite the availability of multi-spectral images from a DJI Matrice 210 RTK,

the best results of this method were obtained using only RGB bands for detecting

yellow-attacked trees. Finally, the health statuses of Maries fir trees were evaluated in

[93] by adopting pre-trained CNN models of AlexNet [61], SqueezeNet [45], VGGNet,

ResNet, and DenseNet. Using a DJI Mavic 2 Pro & DJI Phantom 4 Quadcopter, this

method used RGB images to delineate treetops traditionally and classify healthy and

grey-attacked trees.

In contrast, I propose to adapt a SOTA, deep RGB tree crown detector [67] (same

as the RGB-only baseline detector used in the previous chapter) for the classification of

bark beetle attacks by exploiting backbone network weights that have been specifically

pre-trained for tree crown detection from UAV images, along with an introduced

shallow subnetwork for distinguishing between attack stages.

4.3 Proposed Method

Even though this task seems like a simple colour classification, ill-defined attack labels

and imbalanced datasets make it more challenging than it appears. For instance, the

distribution and some challenging samples are visualized in Fig. 4.3, in which green

and leafless (needle-less) classes overlap with other classes. Also, Fig. 4.4 shows the

RGB colour space histograms for each class that reveals similarities between the yellow

and red attack stages due to the gradual foliage discoloration.
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Figure 4.3: RGB Colour Space Distribution of Bark Beetle Dataset Images.
The borders of the highlighted challenging samples indicate their true labels.
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Figure 4.4: Histograms showing RGB colour space distribution of the different attack
stages with leaves.

The proposed method is based on the RetinaNet architecture [67], which has been

successfully used for other remote sensing applications (e.g., [146]) owing to its ability

to detect dense targets from data with highly imbalanced classes. The proposed

RetinaNet-based architecture includes a backbone network (i.e., ResNet-50 feature

extractor [43] and feature pyramid network (FPN)), classification subnetwork, and

focal loss. Although the backbone network seeks to extract multi-scale features, the

FPN combines semantically low-resolution features with low-level, high-resolution

ones. The classification subnetwork then predicts the category of bark beetle attacks

(i.e., green (healthy) tree, yellow-/red-attacked tree, or leafless) using focal loss. This
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loss function helps to simultaneously handle the inherent similarity of attack classes

and limited data by focusing on hard samples and avoiding easy negatives.
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Figure 4.5: An Overview of the Proposed Method. First, the ResNet-50 and
feature pyramid network (FPN) are initialized using the tree crown detection pre-
trained baseline weights [136]. Following that, the network is modified and fine-tuned
to classify the stages of bark beetle attack.

As shown in Fig. 4.5, the cropped images of tree crowns are normalized according

to the mean and standard deviation of the training set images and then fed into the

backbone network. The computations are forward propagated through the bottleneck

layers and combined with the different layers in the FPN. Each level of the FPN feeds

its computation to a classification subnetwork consisting of four convolutional layers.

Then, the network outputs a score for each attack stage. At last, one-hot encoding is

done to get the class prediction for each tree. Considering the available tree crown

collections, the bounding box regression subnetwork typically found in the RetinaNet

architecture has been removed. In contrast to previous studies that train either a

shallow network or deep models pre-trained on ImageNet [18], the proposed method

exploits a pre-trained deep model (i.e., DeepForest [136] for tree crown detection)

and trains the modified network for the classification of attack stages. As a result

of appropriately initializing the network with weights relevant to tree crowns, the

classification subnetwork can focus on learning to differentiate between different

bark beetle attack stages. To overcome class imbalance in the considered dataset

and increase the total number of training images, data augmentation is employed

prior to training. In this work, several different data augmentation strategies were

considered. Although it is generally assumed that data augmentation will result in
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better performance for DL models, the results in Section 4.4.3 show that blindly

utilizing these techniques can drastically affect classification results for this challenging

task.

4.4 Empirical Evaluations

I evaluated the proposed method using the dataset presented in [113], which utilized

a hexacopter with a Tarot FY680 Pro to capture multiple RGB video sequences of a

forested region in Northern Mexico from a top-down perspective. Five flights in total

were conducted at three different average heights above ground (60m, 90m, and 100m)

during three months (June, July, and August). The individual frames from each flight

were combined into five different orthomosaics, and the ground truth information for

each tree’s centre and attack stage was available (see [113] for more details). The

proposed method is compared with the baseline method [113] and the most promising

SVM, RF, and K-nearest neighbours (KNN) classifiers. During the experiments, the

hyperparameters for each classifier were tuned using grid search.

4.4.1 Implementation Details

As shown in Fig. 4.6, individual tree crowns were cropped from the five orthomosaics

as patches of 76x76 pixels and split into five separate sets with training, validation, and

testing subsets (see Table 4.1). One model was trained for each flight, and evaluation

was performed for each individually and averaged. The proposed networks (five models

for flights) were trained using the AdamW optimizer [74] for 50 epochs and a batch

size of 2. The training procedure was performed on an Nvidia GeForce RTX 3090

GPU, with each model taking approximately 1.5 hours to train. The dataset was

augmented by generating minority class samples using i) random affine warps, ii)

vertical/horizontal flips, iii) 90◦/180◦/270◦ rotations, iv) cropping a random sub-patch

of 70% and resizing, v) colour jittering with random brightness, contrast, & saturation,

and vi) Gaussian blurring with kernel size 5, visualized in Fig. 4.7. Furthermore, early
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Figure 4.6: Data Processing Pipeline for the bark beetle attack stage classification
orthomosaics.

stopping was considered to avoid overfitting during training.

(a) Warping (b) Flipping (c) Rotating

(d) Cropping (e) Jittering (f) Blurring

Figure 4.7: Visualization of Data Augmentation Strategies considered to
produce minority class samples.

Table 4.1: Dataset Distribution for each flight according to attack stage label and
training/validation/testing split.

Subsets of Samples Jun 60m Jul 90m Jul 100m Aug 90m Aug 100m

Green Trees 68 81 103 141 98

Yellow Trees 34 19 28 45 49

Red Trees 24 26 48 52 48

Leafless Trees 25 28 26 33 25

Train 128 130 174 230 187

Augmented Train 232 276 352 480 332

Validation 7 7 10 13 11

Test 16 17 21 28 22
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4.4.2 Experimental Results

The experimental comparison of the proposed method with the baseline and best-

performing models for classical ML methods is shown in Table 4.2. The random guess

accuracy for classification between four classes is 25%. According to the results, the

proposed method with affine augmentation considerably outperformed the cellular

automaton baseline method – by 9.9% (& 7.6%) with (& without) data augmentation

in average accuracy across all flights. Also, the classical ML methods achieved

significantly lower accuracy than the proposed method. This can be explained by the

ill-defined separation between classes in the RGB colour space, as shown in Fig. 4.3.

The confusion matrices for the challenging flights for the best-performing proposed

model are shown in Fig. 4.8. There are no misclassifications for four of the flights, and

only one leafless image is incorrectly predicted as red in the June 60m flight due to the

considerable overlap from nearby red attack stage trees. Since classic ML methods rely

on manual feature selection, applying them directly to raw data (like images of tree

crowns) results in poor performance. However, the proposed DL-based method can

automatically learn the most relevant and robust features from the dataset, enabling

it to perform significantly better.
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Figure 4.8: Confusion Matrices for the best-performing proposed model.
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Table 4.2: Classification Accuracy for various attack stage classification models.
The best result is emboldened.

Model Average Accuracy (↑)

SVM 46.37%

KNN 45.89%

RF 35.49%

Baseline [113] (Best result) 89%

Proposed (with warping) 98.95%

A
bl
a
ti
o
n
S
tu
d
y

Proposed (without augmentation) 97.69%

Proposed (with cropping) 96.29%

Proposed (with flips) 94.74%

Proposed (with rotation) 94.71%

Proposed (with blurring) 92.23%

Proposed (with color jittering) 83.90%

4.4.3 Ablation Study

Various probabilistic augmentation strategies were studied to assess the effectiveness of

data augmentation. In each strategy, additional samples belonging to the red, yellow,

and leafless classes were randomly generated to obtain the same number as the green

samples and balance the dataset. The classification results for models trained on each

strategy are shown in Table 4.2. Accordingly, affine warping was the most effective

strategy considering tree crowns are not always circular. This strategy changes the

apparent geometry of the trees, promoting more diversity in the dataset. Also, it

accounts for angular variation in the UAV during data collection. Colour jittering

unsurprisingly led to the most performance degradation, explained by its major effect

on the images that further confuses the model between visual symptoms of trees.

These results are further analyzed using t-SNE visualizations in Fig. 4.9. The middle

and left plots display similar separations in the dataset, indicating that warping added
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minority class samples without adversely impacting the separation of the classes.

On the other hand, the right plot is obtained from the colour-jittered dataset, and

significantly more overlap between the classes can be observed (e.g., in the bottom

right corner). The other augmentation strategies did not improve performance either.
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Figure 4.9: t-SNE Visualization of dataset with different augmentations.

4.5 Conclusion

A DL-based approach to classify bark beetle-infested trees is proposed in this chapter.

Based on the RetinaNet architecture, the proposed method simultaneously trains a

shallow subnetwork and exploits a deep network initialized with weights trained to

detect tree crowns from UAV images. Pre-training on tree crowns and employing

transfer learning allows the network to learn how to extract more relevant features for

attack stage classification, and the limited task-specific data is effectively used to only

train the shallow classification subnetwork. To overcome the data imbalance problem

in the considered dataset, different data augmentation strategies were investigated,

and affine warping was found to be the most effective for this purpose. Despite the

challenges of inter-class overlap and intra-class non-homogeneity in the dataset, the

proposed method achieved an average accuracy of 98.95%, significantly outperforming

the baseline method.
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Chapter 5

Conclusions

This thesis concludes by discussing the primary results for the three applications

tackled in the preceding chapters. I first recap the key contributions to my primary goal

in this thesis, applying computer vision techniques to solve practical forest monitoring

problems with remote sensing (RS) data. In addition, I discuss the implications of

each work individually and then briefly discuss the possibilities for future work.

5.1 Summary of Contributions

In this thesis, I first focused on generating high-quality orthomosaics from thermal

drone imagery (Chapter 2). Traditional, single-modality orthomosaicking workflows

often yield poor results when applied to drone-collected thermal images of forests due

to the inherent low-resolution and low-contrast of such images. The necessary SfM

process during orthomosaicking fails to accurately infer the 3D structure of the AOI,

meaning that the later stages of orthomosaic generation also perform poorly. As a

result, the generated thermal orthomosaics are of poor quality, failing to cover the

entire area due to a large proportion of unaligned images. The areas that are present

often have swirling distortions that muddle neighbouring trees. These issues render the

generated orthomosaics unsuitable for downstream applications like ITCD. To solve

this significant problem, I proposed a novel orthomosaicking workflow that bypasses

the need for SfM on thermal images by instead using the SfM results of simultaneously
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acquired RGB images for further processing stages. Once a 2.5D surface mesh of the

AOI is constructed from the RGB images by ODM, thermal images need only be used

to texture this mesh, and the final thermal orthomosaic is produced through a simple

ortho-projection of the textured 2.5D model. Despite being taken simultaneously,

objects do not initially appear in the same pixel locations for each RGB-thermal image

pair. Therefore, to ensure the RGB-computed surface mesh is correctly textured using

thermal images, the image pairs must first be properly co-registered. For this purpose,

I proposed an ML-based strategy to accurately compute a single transformation matrix

that precisely registers every image pair taken during a drone flight. Through extensive

experimentation, a batched multi-resolution framework using the NGF loss function

yielded the most precise registration results in terms of the MI metric for all five

flight dates considered. Further, it was found that using a linear affine transformation

matrix (i.e., rotation, scale, and skew) led to the best results regarding the visual

appearance of the orthomosaic. The proposed workflow generates orthomosaics that

are geometrically aligned, with objects appearing in the same pixel locations in both,

as exemplified by a downstream ITCD task using an RGB-only detection model. It

was further demonstrated that the proposed workflow correctly preserves radiometric

information – temperature values were nearly identical for randomly selected locations

in the individual thermal drone images and their corresponding locations in the

generated thermal orthomosaic. The proposed integrated orthomosaicking workflow is

applicable when both modalities are simultaneously acquired, which is possible with

many commercially available multi-sensor instruments. The quality of the generated

thermal orthomosaic is bounded by the quality of its generated RGB counterpart. Thus,

standardized best practices should be followed during drone data acquisition to ensure

the generation of a high-quality RGB orthomosaic and the necessary intermediate

outputs. There must be sufficient overlap in both directions between successive images

(at least 75%, but the higher, the better), and the drone flight speed should be slow

enough to prevent motion blur. Weather conditions should be favourable as well. Too
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much wind can destabilize the drone, leading to blurry images or deviations from

the intended flight path. At the same time, raindrops on the camera lens may cause

significant occlusion or artifacts in the images.

In Chapter 3, I shifted my focus to detecting individual tree crowns from overhead

drone imagery. This chapter expands upon the straightforward ITCD example per-

formed in the previous chapter by proposing a novel DL-based model (ShadowSense)

that successfully uses RGB and thermal images to detect trees in challenging illumi-

nation conditions. In addition, I proposed a partially annotated, large-scale dataset

(RT-Trees) based on the Cynthia cutblock acquisition for the experimental evaluation

in this chapter and for facilitating future research for self-supervised ITCD in difficult

lighting scenarios. The need for the proposed method and dataset was clear. The

RGB-only detection model used in Chapter 2 fails to identify shorter trees hidden by

the shadows of neighbouring taller trees (referred to as shadowed trees). Even manual

inspection proves ineffective for delineating these tree crowns using only RGB imagery

due to their inadequate visibility in these images. However, these crowns are apparent

in the illumination-invariant thermal imagery. The need for the proposed method and

dataset was clear. Therefore, ShadowSense exploits complementary information from

both modalities to improve ITCD performance. During training, the RetinaNet back-

bone network pre-trained on RGB images is adapted to the thermal data distribution

without any annotations through DAT using the foreground regions of the registered

RGB-thermal image pairs in RT-Trees. Binary masks generated through a classic

segmentation technique differentiate low-illumination areas (background) from brighter

areas (foreground). Once the thermal backbone has been adapted to extract similar

features as the RGB backbone for tree crowns in the foreground regions, the extracted

features from both modalities in the background regions are fused in a weighted manner

and passed to the detection heads to produce bounding box outputs. This combined

model has the advantages of (1) successfully identifying completely shadowed trees

and (2) improving the precision of bounding box limits for trees partially hidden in
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shadows. Quantitative results on the manually annotated test set of RT-Trees showed

that the proposed model detected tree crowns with a higher precision and recall score

than the baseline RGB-only detector and existing multimodal methods based on UDA

or early image-level fusion. Importantly, the number of shadowed trees detected was

significantly higher using the proposed RGB-thermal detection model.

The tree crowns detected in Chapter 3 are useful for determining specific properties

of individual trees. To demonstrate this, in Chapter 4 I tackled the problem of

classifying images of individual tree crowns into one of four bark beetle attack stages.

Once enough bark beetles infest a pine tree and overwhelm its natural defences,

the host tree’s crown gradually fades from a healthy green to yellow, red, and then

a lifeless grey (i.e., the pine needles fall off). Manual surveys have long been the

standard approach for mapping bark beetle infestations using these visual symptoms.

However, this can quickly become arduous as the area considered grows, prompting

the need for an automated classification model. Although this may seem like a

simple colour classification task, overlapping crowns and the gradual, non-homogenous

nature of crown discoloration due to variations in host tree defensive responses

pose a considerable challenge. DL models can be trained to learn general feature

representations to account for such biological and physical characteristics for successful

classification. However, there is a scarcity of labelled data for this task to train a

DL model from scratch using supervised learning. Therefore, I employed a transfer

learning strategy to fine-tune a pre-trained ITCD model for this task (i.e., the one used

in Section 2.3.5 and the baseline in Chapter 3). The ResNet-50 and FPN backbone

weights were initialized from the pre-trained model, while the detection heads were

replaced with a shallow classification subnetwork specific to this task. The model was

then trained end-to-end using the limited labelled data. Additionally, augmentation

was employed to balance the number of samples from each class and simultaneously

increase the total number of training data samples. Experimental results on an

existing bark beetle attack dataset demonstrated the superiority of the proposed DL
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model over the existing cellular automaton baseline method and various classical ML

methods. Different augmentation strategies were analyzed, and affine warping yielded

near-perfect classification accuracy, improving on the baseline results for this dataset

by nearly 10%. Once the distribution of trees infested and killed in the previous

years is mapped using the proposed classification model, infestation trends can be

predicted using the proximity of red-attack trees. The presence of bark beetles can

be confirmed through manual inspection before felling or burning (a common control

method). Manual inspection involves searching for external-bole symptoms like pitch

tubes or boring dust and generally provides more conclusive evidence of bark beetle

infestations than crown fading, which other factors like drought or different pests

may cause. Using overhead drone imagery alone is not as effective in distinguishing

between these stressors. However, the search area for recently infested trees can be

significantly reduced thanks to the proposed model since emerging bark beetles are

known to engage in short-range dispersal preferentially.

5.2 Implications

With the pace of innovation in the computer vision field, RS applications for FHM can

be solved like never before. As I showed in this thesis, ML and DL, in particular, can

be applied to various parts of the RS pipeline, from preprocessing (orthomosaicking)

to downstream analysis (attack stage classification).

A particularly significant component of this thesis was the utilization of multi-modal

drone imagery. Despite the challenges associated with multiple data sources, such

as differences in contrast, resolution, and misalignment, complementary information

can be combined to solve problems more effectively than using any one modality

alone. I demonstrated this for two of the applications considered. In the case of

orthomosaicking, intermediate results from RGB images were used to enhance the

thermal processing and provide a more comprehensive representation of the AoI. For

ITCD, I showed that fusing features from both modalities improves on RGB-only
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detection by effectively identifying trees hidden in shadows.

An overall RS pipeline comprising the works proposed in the thesis can be directly

employed to solve practical problems like monitoring bark beetle attacks. For instance,

forest managers can collect RGB-thermal drone imagery, generate two high-quality

orthomosaics of the AOI, extract tree crowns, and classify the bark beetle attack

stage of each to help determine the distribution of infested trees. Alternatively, the

three components can be independently applied to the corresponding parts of existing

RS pipelines. High-quality thermal orthomosaics alone can be used to determine

fire fronts and rate of spread for forest fire monitoring without the need to detect or

classify tree crowns. Similarly, the proposed shadow-agnostic ITCD model can be

applied to drone images directly rather than first generating an orthomosaic, or the

attack stage classifier can be used on manually extracted tree crowns, depending on

the requirements of forest managers.

5.3 Future Work

The methods proposed in this thesis lay the foundation for future research in several

possible directions. For instance, the open-source nature of the orthomosaicking

tool described in Chapter 2 inherently allows for continuous improvement. One

such improvement could involve integrating specific postprocessing techniques on the

generated orthomosaics, such as thermal drift correction for handling variations in

thermal sensor readings as the instrument warms up during the flight and thus produce

more robust orthomosaics. Another improvement could be allowing diffeomorphic

transformations to achieve more precise registration of images that may not be

completely undistorted. An important consideration would be to do this in a way

that doesn’t interfere with the stitching algorithm so that individual trees don’t get

duplicated or omitted. Over time, I believe the tool will continue to grow as a valuable

resource for the RS community. Furthermore, as long as simultaneously acquired RGB

images are available, the underlying proposed method can be used for applications
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other than forest monitoring, e.g., urban or agricultural monitoring, or co-registered

modalities other than thermal, e.g., multispectral.

The work presented in the other two chapters can also be extended in future research

projects. The shadow-agnostic ITCD model proposed in Chapter 3 successfully detects

tree crowns from forest images, and the deep classification model presented in Chapter 4

them into four visible bark beetle attack stages. Although this can be a valuable tool

for understanding the temporal and spatial distribution of beetle infestations during

previous years, by the time the red attack stage sets in, it is usually after the next

generation of beetles hatches and disperses, making it challenging to control mass

outbreaks effectively. Therefore, a more useful tool could be one that can identify

the presence of bark beetles before the onset of visual crown fading, i.e., green attack

identification. This remains a difficult task due to factors such as variations in the

biological response of host trees and weather conditions during data collection [140].

However, a classification model that can accomplish this task would be exceedingly

valuable for the FHM community. One possible solution for this task could be to use

thermal images to identify signal changes occurring before the onset of visual symptoms

as an indicator of bark beetle presence. The orthomosaicking and registration methods

presented in Chapter 2 can be effectively applied to this solution. The detection

model proposed in Chapter 3 that successfully detects shorter shadowed trees will

be especially helpful for green attack classification, considering that bark beetles

preferentially attack these younger, weaker trees during their endemic population

stage.
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Appendix A: RT-Trees Dataset
Additional Information

In this appendix, the collection, pre-processing, and annotation procedures employed

for the RT-Trees dataset is described. Furthermore, instances of challenging scenarios

within the proposed dataset are showcased to provide a broader perspective.

For this dataset, the Cynthia cutblock data introduced in Section 2.2 was expanded

through nine additional drone flights conducted between September and November

2022 (14 flights in total) with the same drone and sensor setup. Specifically, a multi-

camera DJI H20T sensor instrument was used to simultaneously acquire wide-angle

RGB images of 4056 × 3040 pixels with an 82.9◦ FOV and thermal images in the

8-14µm spectral band of 640 × 512 pixels with 40.6◦ FOV. The RGB camera uses

a 1/2.3C̈MOS (12 MP) sensor, while the thermal camera uses an uncooled VOx

microbolometer sensor. The sensor instrument was mounted to a Matrice 300 RTK

drone and successive image pairs were captured with an 80% front and 75% side

overlap in the thermal images via a fixed flight path identical to the path used for the

original five flights.

The image pairs from all 14 flights were preprocessed as follows. Thermal images

were first upscaled through bilinear interpolation to 1500×1000, while RGB images

were centre-cropped to 1500×1000 pixels to discard edge distortions. This cropping

size also ensures that both images in a pair display roughly the same amount of area.

Each RGB-thermal pair was precisely co-registered using the normalized gradient

fields-based workflow described in [53]. Fig. A.7 shows an example pair of 1500×1000
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Table A.1: RT-Trees Dataset Information by Flight Date. All dates are from
the year 2022. Information about the flight, lighting and weather conditions, and
number of images is listed. Approximately 70% of the raw image pairs captured for a
given date are sampled for the training set based on GPS location (see Fig. A.2), and
then divided into six 500×500 patches. From the August 30 data, 63 images are taken
for testing and 10 for validation, hence the total number of image pairs in RT-Trees is
49879.

Flight Date
Time of First
Capture (24h)

Flight
Duration (min)

Sun
Elevation (◦)

Sun
Azimuth (◦)

Air
Temperature (◦C)

Raw Image
Pairs Captured

500×500 Patches in
Training Set

July 20 11:04 27 44.77 120.15 20.3 827 3582

July 26 10:18 28 37.51 109.32 20.8 828 3588

August 9 10:16 28 34.45 111.71 19.8 820 3552

August 17 12:15 33 46.12 147.29 24.5 825 3570

August 30 11:21 31 37.26 134.21 25.4 814 3516

September 9 11:40 32 36.08 142.39 14.0 824 3570

September 15 11:00 27 30.20 133.15 17.5 825 3582

September 23 11:14 28 29.12 139.04 14.7 820 3552

October 4 11:13 31 25.43 141.56 16.8 820 3558

October 6 15:16 27 27.22 210.10 9.8 808 3498

October 7 19:02 27 0.26 261.26 2.8 819 3552

October 12 10:53 27 20.92 138.40 11.5 826 3576

October 19 11:35 27 22.29 150.20 12.4 821 3558

November 24 16:10 28 2.21 230.46 4.7 819 3552

Total 11496 49806

RGB-thermal images from each of the 14 flights, highlighting the presence of varying

illumination and weather conditions within RT-Trees. Table A.1 reports the flight

start time, flight duration, sun elevation, sun azimuth, and air temperature at the

time of each drone flight, along with details on the number of images captured and

processed for training. The variation in weather and lighting conditions caused due

to different sun positions once again highlights the challenge of RT-Trees. Similarly,

Fig. A.1 shows the image brightness (L) averaged across all pixels in LAB colour

space, distinguished by flight date. Images from flights later in the day (e.g., October

7) are typically darker than those taken closer to noon due to a lower sun position.

The exception to this is November 24, where the significant presence of white snow

cover is inflating the average brightness level.

The total imaged area of one of the flights (August 30) was geographically split,

with around 25% reserved for the test set, 5% for the validation set, and the rest for

training, as illustrated in Fig. A.2. Images from the same training area from all other

flights were included in the training set, while images from the testing and validation
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Figure A.1: Kernel Density Estimation Plot for Average Brightness for images
in each flight date, mapped first to LAB color space.

areas were discarded, leading to roughly 70% of the total captured images being used

for training. To allow for higher batch sizes during training, each training area image

(RGB and thermal) was first split into six 500×500 patches as demonstrated in Fig. A.3,

retaining the high degree of overlap between neighbouring images. On the other hand,

only the central 500×500 patch was considered for each image in the evaluation sets,

and we sampled every third image in the capture sequence from these sets to eliminate

overlap, resulting in 10 patches for validation and 63 for testing. Only non-overlapping

images from a single flight date are included in the testing and validation sets to ensure

that each tree only appears in one image in those sets so that detection performance

is not overestimated. On the other hand, the inclusion of overlapping imagery from

multiple dates helps promote diversity in the training set. This explains the seemingly

large disparity in the number of training and validation/testing images.
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Figure A.2: GPS-based Data Split. Each point represents the location where a
drone image was taken. The assigned cutoff line separates the testing area from the
training (and validation) area.

The proposed method is entirely self-supervised and does not require ground truth

annotations for training. Therefore, only image pairs in the testing and validation sets

were annotated with bounding boxes in a two-step manner for evaluation purposes.

First, visible tree crowns were delineated from the RGB image through careful inspec-

tion. Then, the corresponding registered thermal image was used to identify shadowed

tree crowns that had been missed in the first step – these new boxes were marked as

“difficult”. In total, 447 out of the 3611 tree crowns in the testing set were marked as

difficult. In general, the difficult boxes were fewer in number (see Fig. A.4) and of

a smaller area (see Fig. A.5) than non-difficult boxes corresponding to visible trees.

This is because younger, smaller trees are more likely to be hidden in the shadows

of their taller neighbours. Although the annotated bounding boxes were primarily

square (1:1 linear relation in Fig. A.6), a considerable number of rectangular boxes

are present in the testing set due to the presence of different species with non-circular

crowns, partial tree crowns at the edges of images, and overlapping canopies in the

densely forested region, another challenge posed by the proposed dataset.
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Figure A.3: Splitting Training and Evaluation Images into patches. All training
images are evenly split into six patches, whereas every third evaluation image (testing
& validation sets) is centre-cropped.
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Figure A.4: Distribution of Bounding Boxes per Image for all boxes (top) and
only difficult boxes (bottom) in the testing set.
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Figure A.5: Distribution of Bounding Boxes Areas for all boxes, difficult boxes
only, and non-difficult boxes (i.e., visible in RGB image) in the testing set.
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Figure A.6: Distribution of Bounding Boxes Dimensions for all boxes in the
testing set.
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(a) July 20 (b) July 26

(c) August 9 (d) August 17

(e) August 30 (f) September 9

(g) September 15 (h) September 23

(i) October 4 (j) October 6

(k) October 7 (l) October 12

(m) October 19 (n) November 24

Figure A.7: Example of Drone-collected Image Pairs for each flight date after
performing co-registration.
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Appendix B: ShadowSense
Extended Ablation Study

Comprehensive ablations were performed to support the selection of hyperparameters

in the ShadowSense method proposed in Chapter 3. The quantitative results obtained

with different values within the proposed method on the validation set are presented

in Table B.1. This configuration of the ShadowSense model represents the best-

performing combination of hyperparameters. Each configuration’s performance was

assessed independently while setting all others to their best-performing values. Different

distributions for the FPN alignment scales β and fusion scaling weight η were tested.

In both cases, a descending order of values (largest to smallest FPN feature map)

with medium variance was found to perform the best in terms of all three metrics

considered. In general, assigning higher scales to the smaller feature maps (ascending

order) performed worse than when using a descending order of scales, since smaller

feature maps are of a lower resolution. The classic image masking procedure used to

generate binary masks relies on watershed segmentation [119, 124]. The performance of

this mask generation process depends on the initial choice of thresholds for the defined

BG/FG markers, and (20,100) was found to be the best choice among the alternatives.

These alternatives had either less or more differences between the thresholds, which

made it more difficult for the algorithm to correctly determine the marker for pixels

with intensities in between. Thermal weight λ is used during inference to compute

the weighted average of the FPN feature maps from the RGB and adapted thermal

branches. Assigning a lower weight to thermal features than RGB features did not
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help enhance the identification of shadowed trees, though foreground performance

is somewhat satisfactory. As the thermal weightage was increased, shadowed tree

performance increased and eventually leveled off. Using a weight of 5 was found

to be the best choice, which further increases the performance on foreground trees.

NMS values around 0.10 were tested, according to the recommended default value in

the baseline RGB-only detection model considered [136], and 0.15 yielded the best

performance.

Table B.1: Extended Ablation Study for different hyperparameter settings in the
proposed method based on AP50 and AP100 metrics, trained without annotation on
the RT-trees training set. Results on the RT-Trees validation set are reported. While
changing one hyperparameter, all others are set to their best-performing values as
described in the implementation details for the proposed ShadowSense configuration
(also emboldened here).

Hyperparameter Value(s)
All Trees Shadowed Trees

% AP50 (↑) % AR100 (↑) % Identified (↑)

FPN Alignment
Scales β
In order of largest
(lowest) to smallest
(highest) FPN level.

[1.0, 1.0, 1.0, 1.0, 1.0] Identical Weighting 54.02 24.73 19.20

[1.0, 1.0, 0.75, 0.5, 0.25] Descending w/ Low Variance 54.20 24.97 15.20

[1.0, 1.0, 0.5, 0.05, 0.01]Descending w/ Med. Variance 55.48 25.86 20.80

[1.0, 0.5, 0.1, 0.01, 0.005] Descending w/ High Variance 53.20 24.55 20.00

[0.25, 0.5, 0.75, 1.0, 1.0] Ascending w/ Low Variance 50.96 24.70 12.80

[0.01, 0.05, 0.5, 1.0, 1.0] Ascending w/ Med. Variance 50.21 24.61 13.60

[0.005, 0.01, 0.1, 0.5, 1.0] Ascending w/ High Variance 48.49 23.41 8.00

Fusion Scaling
Weights η
In order of largest
(lowest) to smallest
(highest) FPN level.

[1.0, 1.0, 1.0, 1.0, 1.0] Identical Weighting 54.62 24.28 19.60

[1.0, 1.0, 0.8, 0.6, 0.4] Descending w/ Low Variance 54.84 24.88 20.80

[1.0, 1.0, 0.5, 0.2, 0.2] Descending w/ Med. Variance 55.48 25.86 20.80

[1.0, 0.5, 0.2, 0.05, 0.01] Descending w/ High Variance 51.71 23.00 20.00

[0.4, 0.6, 0.8, 1.0, 1.0] Ascending w/ Low Variance 52.09 22.75 17.60

[0.2, 0.2, 0.5, 1.0, 1.0] Ascending w/ Med. Variance 50.86 22.26 16.00

[0.01, 0.05, 0.2, 0.5, 1.0] Ascending w/ High Variance 48.81 21.07 10.40

Intensity Thresh-
olds: Min. & max.
in mask generation.

[30, 75] Low number of initially unmarked intensities 49.86 21.74 8.00

[20,100] Medium number of initially unmarked intensities 55.48 25.86 20.80

[10,125] High number of initially unmarked intensities 51.67 22.23 18.40

Thermal Weight
λT : Used in weighted
fusion during
inference.

0.5 Higher weighting for RGB features 50.57 22.65 13.80

1.0 Identical weighting for RGB and thermal features 50.31 22.03 16.00

2.5 | 52.61 23.08 18.40

5.0 ↓ 55.48 25.86 20.80

7.5 Higher weighting for thermal features 52.01 22.86 20.80

Non-max Suppres-
sion: NMS threshold
used in training and
inference.

0.05 Less overlap in filtered predictions 49.15 22.25 17.20

0.10 | 50.50 23.30 16.00

0.15 ↓ 55.48 25.86 20.80

0.20 More overlap in filtered predictions 50.60 23.97 17.20
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