Search
Skip to Search Results- 13Chen, Guanqun
- 12Xu, Yang
- 9Weselake, Randall J.
- 7Caldo, Kristian Mark P.
- 5Mietkiewska, Elzbieta
- 4Ozga, Jocelyn
- 14Agricultural, Food and Nutritional Science, Department of
- 14Agricultural, Food and Nutritional Science, Department of/Journal Articles (Agricultural, Food and Nutritional Science)
- 1Graduate and Postdoctoral Studies (GPS), Faculty of
- 1Graduate and Postdoctoral Studies (GPS), Faculty of/Theses and Dissertations
-
Physaria fendleri and Ricinus communis LCAT-like phospholipases selectively cleave hydroxy acyl chains from phosphatidylcholine
Download2020-10-27
Xu, Yang, Caldo, Kristian Mark P., Singer, Stacy D., Mietkiewska, Elzbieta, Greer, Michael S., Tian, Bo, Dyer, John M., Smith, Mark, Zhou, Xue-Rong, Qiu, Xiao, Weselake, Randall J., Chen, Guanqun
Producing hydroxy fatty acids (HFAs) in transgenic crops represents a promising strategy to meet our demands for specialized plant oils with industrial applications. The expression of Ricinus communis (castor) OLEATE 12-HYDROXYLASE (RcFAH12) in Arabidopsis has resulted in only...
-
Plant sn‐Glycerol‐3‐Phosphate Acyltransferases: Biocatalysts Involved in the Biosynthesis of Intracellular and Extracellular Lipids
Download2018-05-31
Jayawardhane, Kethmi N., Singer, Stacy D., Weselake, Randall J., Chen, Guanqun
Acyl‐lipids such as intracellular phospholipids, galactolipids, sphingolipids, and surface lipids play a crucial role in plant cells by serving as major components of cellular membranes, seed storage oils, and extracellular lipids such as cutin and suberin. Plant lipids are also widely used to...
-
Properties and Biotechnological Applications of Acyl‐CoA:diacylglycerol Acyltransferase and Phospholipid:diacylglycerol Acyltransferase from Terrestrial Plants and Microalgae
Download2018-07-30
Xu, Yang, Caldo, Kristian Mark P., Pal‐Nath, Dipasmita, Ozga, Jocelyn, Lemieux, M. Joanne, Weselake, Randall J., Chen, Guanqun
Triacylglycerol (TAG) is the major storage lipid in most terrestrial plants and microalgae, and has great nutritional and industrial value. Since the demand for vegetable oil is consistently increasing, numerous studies have been focused on improving the TAG content and modifying the fatty‐acid...
-
Substrate preferences of long-chain acyl-CoA synthetase and diacylglycerol acyltransferase contribute to enrichment of flax seed oil with a-linolenic acid
Download2018-04-01
Xu, Yang, Holic, Roman, Li, Darren, Pan, Xue, Mietkiewska, Elzbieta, Chen, Guanqun, Ozga, Jocelyn, Weselake, Randall J.
Seed oil from flax (Linum usitatissimum) is enriched in a-linolenic acid (ALA; 18:3?9cis,12cis,15cis), but the biochemical processes underlying the enrichment of flax seed oil with this polyunsaturated fatty acid are not fully elucidated. Here, a potential process involving the catalytic actions...
-
Substrate preferences of long-chain acyl-CoA synthetase and diacylglycerol acyltransferase contribute to enrichment of flax seed oil with α -linolenic acid
Download2018-01-01
Xu, Yang, Holic, Roman, Li, Darren, Mietkiewska, Elzbieta, Chen, Guanqun, Ozga, Jocelyn, Weselake, Randall
Seed oil from flax ( Linum usitatissimum ) is enriched in α -linolenic acid (ALA; 18:3 Δ 9 cis ,12 cis ,15 cis) but the biochemical processes underlying the enrichment of flax seed oil with this polyunsaturated fatty acid are not fully elucidated. Here, a potential process involving the catalytic...