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Abstract:  28 

Triacylglycerol (TAG) is the major storage lipid in most terrestrial plants and microalgae, and 29 

has great nutritional and industrial value. Since the demand for vegetable oil is consistently 30 

increasing, numerous studies have been focused on improving TAG content and modifying the 31 

fatty acid compositions of plant seed oils. In addition, there is a strong research interest in 32 

establishing plant vegetative tissues and microalgae as platforms for lipid production. In higher 33 

plants and microalgae, TAG biosynthesis occurs via acyl-CoA-dependent or acyl-CoA-34 

independent pathways. Diacylglycerol acyltransferase (DGAT) catalyzes the last and committed 35 

step in the acyl-CoA-dependent biosynthesis of TAG, which appears to represent a bottleneck in 36 

oil accumulation in some oilseed species. Membrane-bound and soluble forms of DGAT have 37 

been identified with very different amino acid sequences and biochemical properties. 38 

Alternatively, TAG can be formed through acyl-CoA-independent pathways via the catalytic 39 

action of membrane-bound phospholipid:diacylglycerol acyltransferase (PDAT). As the enzymes 40 

catalyzing the terminal steps of TAG formation, DGAT and PDAT play crucial roles in 41 

determining the flux of carbon into seed TAG and thus have been considered as the key targets 42 

for engineering oil production. Here, we summarize the most recent knowledge on DGAT and 43 

PDAT in higher plants and microalgae, with the emphasis on their physiological roles, structural 44 

features, and regulation. The development of various metabolic engineering strategies to enhance 45 

TAG content and alter fatty acid composition of TAG is also discussed.  46 

 47 

 48 

 49 
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Abbreviations 51 

ABI ABSCICIC ACID INSENSITVE transcription factor 

ACAT acyl-CoA:cholesterol acyltransferase 

AMPK AMP-activated protein kinase 

cDNA complementary DNA 

CRISPR clustered regularly interspaced short palindromic repeats 

DAG diacylglycerol 

DCR Defective Cuticle Ridge  

DGAT acyl-CoA:diacylglycerol acyltransferase 

EMS ethyl methanesulfonate 

ER endoplasmic reticulum  

FAD fatty acid desaturase 

FAH fatty acid hydroxylase 

G3P sn-glycerol-3-phosphate 

GPAT acyl-CoA:sn-glycerol-3-phosphate acyltransferase 

IDR intrinsically disordered region 

LCAT lecithin:cholesterol acyltransferase 

LEC LEAFY COTYLEDON transcription factor 

LPAAT acyl-CoA:lysophosphatidic acid acyltransferase 

MBOAT membrane-bound O-acyltransferases 

PtdOH phosphatidic acid 

PtdCho phosphatidylcholine 

PDAT phospholipid:diacyglycerol acyltransferase 

RNAi RNA interference 

sn stereospecific numbering 

SnRK1 sucrose non-fermenting1-related kinase1 

TAG triacylglycerol  

TILLING targeting-induced local lesions in genomes 

TMD transmembrane domain 

WRI WRINKLED1 transcription factor 
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Introduction 53 

Triacylglycerol (TAG), which is the major component of vegetable oils, consists of three 54 

fatty acids esterified to a glycerol backbone. In terrestrial plants, TAG is mainly stored in seeds 55 

functioning as an energy reservoir to facilitate germination and early seedling growth. TAG also 56 

provides the precursors for membrane biosynthesis and lipid signaling, which are crucial for 57 

normal plant growth and development (Fan et al., 2013b; Fan et al., 2014). In microalgae, TAG 58 

serves as a source of energy in response to adverse environmental conditions (for review, see Hu 59 

et al., 2008). The primary use of seed oils is for edible applications (food and feed). There is, 60 

however, a strong interest in using seed oil as renewable feedstock to produce biodiesel, 61 

biolubricants and other bioproducts (Biermann et al., 2011).  62 

The global demand for vegetable oils has been steadily growing over the past 50 years 63 

and is expected to further increase due to a rising global population and reliance on vegetable-64 

oil-derived chemicals (Chen et al., 2015). Increasing vegetable oil supply is generally 65 

accomplished via two approaches: growing more oil crops and increasing oil content in seeds 66 

and/or other oil-forming tissues (e.g., mesocarp of palm [Elaeis spp.] and avocado [Persea 67 

Americana]). Direct increase of oil crop planting area, however, is limited by the finite 68 

availability of the arable lands (Lu et al., 2011). Recent efforts to meet the rising demands have 69 

been focused on increasing oil content of seeds and vegetative tissues by the implementation of 70 

metabolic engineering strategies. In addition, considerable research has focused on exploring the 71 

potential of oleaginous microalgae to produce TAG, a process that is not expected to utilize 72 

arable lands. Since the property of vegetable oils is largely affected by fatty acid composition, 73 

research interests have also been directed on the modification of fatty acid composition to 74 

increase the nutritional and industrial value of oils.  75 

In general, TAG biosynthesis in terrestrial higher plants and microalgae is similar. 76 

Schematically, TAG assembly can be divided into acyl-CoA-dependent and acyl-CoA-77 

independent pathways. Diacylglycerol acyltransferase (DGAT; EC 2.3.1.20) catalyzes the last 78 

and committed step in the acyl-CoA-dependent TAG biosynthesis by transferring an acyl group 79 

from acyl-CoA to the sn-3 position of diacylglycerol (DAG), which has been the target of 80 

numerous studies attempting to engineer oil content and fatty acid composition (for review, see 81 

Liu et al., 2012). In contrast, phospholipid:diacylglycerol acyltransferase (PDAT; EC 2.3.1.158) 82 

catalyzes the acyl-CoA-independent synthesis of TAG using membrane glycerolipids as acyl 83 
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donors (Dahlqvist et al., 2000). In this review, we begin by providing background information on 84 

storage lipid biosynthesis in higher plants and microalgae. Thereafter, the biochemical and 85 

physiological properties of DGAT and PDAT are discussed. This, in turn, is followed by 86 

discussion on the metabolic engineering of DGAT and PDAT- catalyzed reactions so as to 87 

manipulate oil production in terrestrial plants and microalgae. 88 

 89 

Overview of storage lipid biosynthesis in higher plants and microalgae 90 

TAG formation in oleaginous plants and microalgae involves fatty acid biosynthesis and 91 

TAG assembly (Fig. 1; for review, see Chen et al., 2015). Depending on the plant species, TAG 92 

formation can also involve a complex interplay with membrane metabolism. For example, seed 93 

oils enriched in polyunsaturated fatty acids or unusual fatty acids require processes for routing 94 

these fatty acids from the site of their synthesis in membranes into TAG. 95 

 96 

Higher plants 97 

In developing seeds of oleaginous plants, de novo fatty acid biosynthesis and TAG 98 

assembly occur in different compartments. Fatty acid biosynthesis operates in the plastid, 99 

wherein acetyl-CoAs are converted to fatty acyl chains (for reviews, see Ohlrogge and Jaworski, 100 

1997; Chapman and Ohlrogge, 2012). Acetyl-CoA carboxylase catalyzes the ATP-dependent 101 

formation of malonyl-CoA, while the fatty acid synthase complex uses two carbon fragments 102 

derived from malonyl-CoA to form an acyl chain while attached to an acyl carrier protein of the 103 

fatty acid synthase complex. The main source of acetyl-CoA used for fatty acid synthesis is 104 

derived from pyruvate via the catalytic action of the plastidial pyruvate dehydrogenase complex. 105 

Pyruvate can be produced from glucose derived from photosynthate through plastidial and 106 

cytosolic glycolysis. Specific transporters are required to move some of the cytosolic 107 

intermediates of glycolysis into the plastid (for review, see Rawsthorne, 2002). Fatty acyl chains 108 

produced in plastids can extend up to 16 or 18 carbons in length, which can further undergo 109 

monounsaturation, before being released from the fatty acid synthase complex and transported 110 

out of the plastid and converted into acyl-CoA. 111 

TAG assembly occurs in the endoplasmic reticulum (ER) and uses glycerol-3-phosphate 112 

(G3P) derived from glycolysis, and acyl-CoA as acyl donor. This process is known as the 113 

Kennedy pathway and involves the sequential acylation of the glycerol backbone of G3P at sn-1, 114 
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2, and 3 positions to yield TAG (Weiss and Kennedy, 1956). Three acyl-CoA-dependent 115 

acyltransferases, including sn-glycerol-3-phosphate acyltransferase (GPAT), lysophosphatidic 116 

acid acyltransferase (LPAAT) and DGAT, participate in this process (for review, see Snyder et 117 

al., 2009). GPAT catalyzes the first acylation of G3P to yield lysophosphatidic acid. 118 

Lysophosphatidic acid is further acylated by the catalytic action of LPAAT to produce 119 

phosphatidic acid (PtdOH), which is then converted to sn-1, 2-DAG via the catalytic action of 120 

phosphatidic acid phosphatase. DGAT catalyzes the final acylation of the sn-3 position of sn-1, 121 

2-DAG to form TAG, which is the committed step in acyl-CoA-dependent TAG biosynthesis. 122 

TAG can also be synthesized through acyl-CoA-independent pathways via the catalytic action of 123 

PDAT, which catalyzes the transfer of an acyl moiety from the sn-2 position of 124 

phosphatidylcholine (PtdCho) to the sn-3 position of sn-1, 2-DAG to yield TAG (Dahlqvist et 125 

al., 2000; Ståhl et al., 2004). Both DGAT and PDAT play crucial roles in determining the flux of 126 

carbon into TAG (Zhang et al., 2009; Harwood et al., 2013; Aznar-Moreno and Durrett, 2017). 127 

They also contribute to the routing of modified fatty acids from PtdCho into TAG in some plant 128 

species, such as flax (Linum usitatissimum), castor (Ricinus communis), tung tree (Vernicia 129 

fordii) and ironweed (Vernonia galamensis), which produce relatively high levels of 130 

polyunsaturated or unusual fatty acids in their seed oils (Kroon et al., 2006; Shockey et al., 2006; 131 

Li et al., 2010a; van Erp et al., 2011; Kim et al., 2011; Pan et al., 2013).  132 

The synthesis of long-chain polyunsaturated or unusual fatty acids generally occurs on 133 

PtdCho or in the acyl-CoA pool, where the nascent fatty acids derived from the plastid, mainly 134 

saturated [16:0 and 18:0] and monounsaturated [18:1∆9cis] fatty acids, undergo further 135 

modifications, such as elongation and desaturation. The further elongation of the acyl chain is 136 

catalyzed by ER-bound fatty acid elongase with acyl-CoA as substrates (Ghanevati and 137 

Jaworski, 2001; Rossak et al., 2001). For fatty acid desaturation, fatty acid desaturase (FAD) 2 138 

and FAD3 subsequently introduce double bonds in cis configuration at positions ∆-12 and ∆-15 139 

of fatty acids on the sn-2 position of PtdCho, respectively (Browse et al., 1993; Vrinten et al., 140 

2005). Other fatty acid modifications, including hydroxylation, epoxidation and conjugation, also 141 

utilize PtdCho as the substrate. The contributing enzymes, such as hydroxylase from castor (van 142 

de Loo et al., 1995), conjugase from Momordica charantia (Cahoon et al., 1999) and 143 

epoxygenase from V. galamensis (Cahoon and Kinney, 2005), are related to or derived from 144 

FAD2.  145 
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After being synthesized on PtdCho, the modified fatty acids are moved out of PtdCho and 146 

eventually incorporated into TAG via various routes which include acyl-editing (Bates et al., 147 

2007; for reviews, see Chen et al., 2015; Bates, 2016). PDAT is capable of directly moving 148 

modified fatty acids from their site of synthesis in PtdCho to TAG. Alternatively, PtdCho-149 

derived fatty acids can also be routed into the acyl-CoA or DAG pool. Fatty acids on PtdCho can 150 

enter the acyl-CoA pool via the combined action of phospholipase A2 and long-chain acyl-CoA 151 

synthetase or via the reverse reaction catalyzed by lysophosphatidylcholine acyltransferase. 152 

Phospholipase A2 catalyzes the cleavage of a fatty acid from the sn-2 position of PtdCho, the 153 

primary site for acyl modification, and the released fatty acid is further ligated to CoA through 154 

the catalytic action of long-chain acyl-CoA synthetase, yielding an acyl-CoA. Alternatively, the 155 

reverse action of lysophosphatidylcholine acyltransferase generates acyl-CoA and 156 

lysophosphatidylcholine from PtdCho and free CoA. In turn, the forward action catalyzed by 157 

lysophosphatidylcholine acyltransferase can re-acylate the vacant sn-2 position of 158 

lysophosphatidylcholine generated by the catalytic action of PLA2 and/or the reverse reaction of 159 

lysophosphatidylcholine acyltransferase. Furthermore, PtdCho-derived fatty acids can also be 160 

incorporated into TAG in the form of DAG. De novo synthesized DAG can be converted into 161 

PtdCho for modification via the catalytic action of CDP-choline:sn-1, 2-diacylgycerol 162 

cholinephosphotransferase (Slack et al., 1983; Slack et al., 1985). PtdCho can subsequently be 163 

converted back to DAG and/or PtdOH via the catalytic action of phospholipase C and/or D, 164 

respectively (for reviews, see Chapman and Ohlrogge, 2012; Bates et al., 2013). Alternatively, 165 

the PtdCho-DAG conversion could also be achieved via the catalytic action of 166 

phosphatidylcholine: diacylglycerol cholinephosphotransferase, which transfers the 167 

phosphocholine headgroup of modified-PtdCho to the de novo synthesized DAG in the Kennedy 168 

pathway (Lu et al., 2009; Wickramarathna et al., 2015). Although the sn-2 position of PtdCho is 169 

the primary site for acyl-editing, a low amount of acyl-editing flux was also observed to go 170 

through the sn-1 position (Bates et al., 2007; Bates et al., 2009). The exchange of acyl groups 171 

might occur between the sn-1 and sn-2 positions of PtdCho with involvement of the catalytic 172 

action of glycerophosphocholine acyltransferase and lysophosphatidylcholine transacylase 173 

(Lager et al., 2015).  174 

In developing seeds of oleaginous plants, TAG accumulates between the outer leaflets of 175 

the ER. Eventually, lipid droplets (oil bodies) ranging from 0.2 to 2 microns in diameter pinch 176 
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off of the ER and remain surrounded by a monolayer of phospholipid known as a half-unit 177 

membrane (for review, see Huang, 1996). In plant seeds, oil-body-membrane associated proteins 178 

are embedded on the outside of the lipid droplets (for reviews, see Shimada and Hara-Nishimura, 179 

2010; Pyc et al., 2017; Huang, 2018). The most abundant lipid droplet proteins are oleosins, 180 

which appear to prevent oil droplets from coalescing and function in the formation and turnover 181 

of lipid droplets (Pyc et al., 2017). In addition, other lipid droplet proteins, such as caleosins and 182 

steroleosins, were identified in seeds according to proteomics analyses of isolated lipid droplets 183 

(Pyc et al., 2017). The physiological roles of caleosins and steroleosins in seeds, however, are 184 

not entirely clear. Some caleosins appeared to be involved in plant stress response (Shimada and 185 

Hara-Nishimura, 2010). 186 

 187 

Microalgae 188 

TAG biosynthesis in microalgae, in general, is analogous to higher plants involving both 189 

acyl-CoA-dependent and acyl-CoA-independent processes (Fig. 1), but has some different 190 

features (for reviews, see Hu et al., 2008; Li-Beisson et al., 2015). In the conventional TAG 191 

biosynthetic pathways, TAG is generally assembled in the ER from ER-derived DAG and is 192 

deposited mainly in lipid droplets in the cytosol. In the halophytic microalga Dunaliella 193 

bardawil, however, TAG is deposited in plastidial oil droplets-plastoglobuli in addition to 194 

cytosolic lipid droplets (Katz et al., 1995). Moreover, the starch-less unicellular green microalga 195 

Chlamydomonas reinhardtii has a unique plastidial pathway for TAG biosynthesis using DAG 196 

derived almost exclusively from the chloroplast (Fan et al., 2011). Plastidial TAG biosynthesis is 197 

largely dependent on de novo fatty acid biosynthesis, and the resulting TAG is stored in lipid 198 

droplets in both the chloroplast and cytosol (Fan et al., 2011). Currently, the chloroplast 199 

envelope-based pathway of TAG biosynthesis in microalgae is receiving increasing experimental 200 

support (Fan et al., 2011; Goodson et al., 2011; Liu and Benning, 2013; Li et al., 2014; Bagnato 201 

et al., 2017); the presence of chloroplast lipid droplets, however, is still debatable. The similar 202 

origin and composition of the lipid droplets in cytoplasmic lipid droplets and β-carotene rich 203 

plastoglobuli of D. bardawil suggested the possibility that β-carotene-rich plastoglobuli are 204 

formed in part from hydrolysis of chloroplast membrane lipids and in part from fatty acids or 205 

TAG derived from cytoplasmic lipid droplets (Davidi et al., 2014). More recently, it was 206 

revealed by microscopy that the chloroplast-associated lipid droplets in C. reinhardtii entirely 207 
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originated in the cytosol and were distinct from the plastoglobuli in the chloroplast stroma, even 208 

though some lipid droplets were associated with the outer envelope of the chloroplast without 209 

intervention of the ER (Moriyama et al., 2017). Moreover, some microalgae also possess other 210 

pathways of TAG biosynthesis that differ from higher plants. For instance, in the microalga C. 211 

reinhardtii which lacks PtdCho, the synthesis of TAG involves the participation of the betaine 212 

lipid diacylglycerol N,N,N-trimethylhomoserine (for review, see Li-Beisson et al., 2015).  213 

 214 

Acyl-CoA-dependent formation of TAG 215 

To date, the majority of studies on the acyl-CoA-dependent formation of TAG have 216 

focused on three DGAT gene families. The first two gene families, including DGAT1 and 217 

DGAT2, encode enzymes embedded in the membrane lipid bilayer, whereas DGAT3, the third 218 

gene family, encodes a soluble enzyme with DGAT activity (for reviews, see Lung and 219 

Weselake, 2006; Liu et al., 2012). DGAT3 is the least investigated of the three DGAT families. 220 

In the following several sections, the features of DGAT from each gene family will be discussed 221 

along with some discussion of other proteins with DGAT activity.  222 

 223 

Membrane-bound DGAT  224 

In 1956, the very first report of DGAT activity was from chicken (Gallus gallus 225 

domesticus) liver (Weiss and Kennedy, 1956; Weiss et al., 1960), but over four decades passed 226 

before the genes were cloned and characterized (Cases et al., 1998). In 1998, the first DGAT 227 

gene, which is a member of the DGAT1 family, was isolated from mouse (Mus musculus) based 228 

on its sequence homology to acyl-CoA: cholesterol acyltransferase (ACAT) 1 (Cases et al., 229 

1998). Shortly thereafter, plant DGAT1 were identified in the model plant Arabidopsis thaliana 230 

(hereafter referred to as Arabidopsis) (Hobbs et al., 1999; Routaboul et al., 1999; Zou et al., 231 

1999; Bouvier-Navé et al., 2000) and tobacco (Nicotiana tabacum) (Bouvier-Navé et al., 2000). 232 

Subsequently, many DGAT1 have been isolated and characterized from various plant species 233 

including (but by no means comprehensive) olive (Olea europaea) (Giannoulia et al., 2000), 234 

oilseed rape (Brassica napus) (Nykiforuk et al., 2002; Greer et al., 2015), castor bean (R. 235 

communis) (He et al., 2004), burning bush (Euonymus alatus) (Milcamps et al., 2005), tung (V. 236 

fordii) (Shockey et al., 2006), soybean (Glycine max) (Wang et al., 2006), garden nasturtium 237 

(Tropaeolum majus) (Xu et al., 2008), Echium pitardii (Manas-Fernandez et al., 2009), flax (L. 238 
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usitatissimum) (Siloto et al., 2009b; Pan et al., 2013), sesame (Sesamum indicum) (Wang et al., 239 

2014), and more recently Cuphea avigera var. pulcherrima (Iskandarov et al., 2017) and peanut 240 

(Arachis hypogaea) (Zheng et al., 2017b).  241 

Following the discovery of DGAT1, DGAT2 was found, which essentially has no amino 242 

acid sequence similarity with DGAT1 and ACAT1. In 2001, the first DGAT2 was isolated from 243 

the oleaginous fungus Umbelopsis ramanniana (formerly Mortierella ramanniana) (Lardizabal 244 

et al., 2001). In the same study, DGAT2 homologs were isolated from Saccharomyces cerevisiae, 245 

Caenorhabditis elegans and Arabidopsis, but only DGAT2 from the former two species encoded 246 

active enzymes. Based on the DGAT2 sequence from U. ramanniana, DGAT2-related genes 247 

were rapidly identified from mammals, such as mouse and human (Homo sapiens) (Cases et al., 248 

2001). Although the early attempt to produce active recombinant Arabidopsis DGAT2 249 

(AtDGAT2) was unsuccessful, functional DGAT2 was isolated and characterized from plants, 250 

including tung tree, castor bean, ironweed and flax, on the basis of the putative AtDGAT2 251 

sequence (Kroon et al., 2006; Shockey et al., 2006; Li et al., 2010a; Pan et al., 2013; Xu et al., 252 

2018).  253 

 254 

Physiological roles of DGAT1 and DGAT2 255 

DGAT1 is considered to play a critical role in determining the flux of carbon into seed 256 

TAG in some species (Harwood et al., 2013). In oilseed crops such as canola-type B. napus and 257 

safflower (Carthamus tinctorius), the level of DGAT activity was found to be coordinated with 258 

oil accumulation during seed development (Tzen et al., 1993; Weselake et al., 1993). Expression 259 

analysis of DGAT1 revealed that this gene is highly expressed in developing embryos in many 260 

oilseed crops (Hobbs et al., 1999; Lu et al., 2003) and its expression level is correlated with oil 261 

deposition during seed development (Li et al., 2010b). Forward and reverse genetics strategies 262 

brought about a more direct piece of evidence that DGAT1 is a major determinant in oil 263 

accumulation (Katavic et al., 1995; Zou et al., 1999; Zheng et al., 2008). DGAT1 inactivation 264 

resulted in a dramatic decrease in seed oil levels in the Arabidopsis mutant AS11 (Katavic et al., 265 

1995; Zou et al., 1999). Consistently, the activation of DGAT1 [by a phenylalanine insertion in 266 

the maize (Zea mays) DGAT1] was responsible for the increased embryo oil content in a high-oil 267 

maize line (Zheng et al., 2008). Furthermore, DGAT1 appears to play a role in freezing and/or 268 

drought stress responses in Arabidopsis, Boechera stricta and B. napus. The expression of 269 
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DGAT1 was found to be highly cold responsive and correlated with the cold tolerance in B. 270 

stricta lines (Arisz et al., 2018). Consistently, enhanced DGAT1 expression led to increased 271 

freezing tolerance in Arabidopsis (Arisz et al., 2018), whereas Arabidopsis dgat1 mutant lines 272 

were sensitive to freezing (Tan et al., 2018). In addition, over-expression of DGAT1 during seed 273 

development in B. napus was shown to decrease the penalty on seed oil content caused by 274 

drought (Weselake et al., 2008).   275 

Unlike the substantial contribution of DGAT1 to seed oil accumulation, DGAT2 appears 276 

to play a minor role in regulating oil production. The expression of AtDGAT2 did not restore the 277 

TAG synthesizing ability in the S. cerevisiae mutant H1246 (Zhang et al., 2009), and the 278 

Arabidopsis dgat2 mutants do not show any changes in TAG accumulation (Zhang et al., 2009). 279 

Recently, the functionality of AtDGAT2 in TAG biosynthesis was confirmed in Nicotiana 280 

benthamiana leaves by transient expression of the encoding cDNA (Zhou et al., 2013), and S. 281 

cerevisiae yeast by heterologous expression using a codon-optimized version of the cDNA 282 

(Aymé et al., 2014). Nevertheless, the physiological role of DGAT2 in Arabidopsis remains to be 283 

further explored. Interestingly, by characterizing DGAT2 from different plant species 284 

accumulating unusual fatty acids, it was revealed that DGAT2 appears to be important for 285 

incorporating unusual fatty acids, such as eleostearic acid (18:3Δ9cis,11trans,13trans) from tung tree 286 

(Shockey et al., 2006), ricinoleic acid from castor (Kroon et al., 2006), and vernolic acid (cis-12-287 

epoxy-octadeca-cis-9-enoic acid) from ironweed (Li et al., 2010a) into storage TAG. Indeed, the 288 

expression of DGAT2 during embryo development was found to be at a higher level than DGAT1 289 

expression in the developing seeds from plants accumulating unusual or polyunsaturated fatty 290 

acids (Kroon et al., 2006; Shockey et al., 2006; Li et al., 2010a; Pan et al., 2013), whereas 291 

DGAT2 transcripts in Arabidopsis and soybean were far below the levels observed for DGAT1 292 

transcripts (Li et al., 2010b). It appears that TAG production by DGAT1 occurs in a distinct ER 293 

subdomain than that of DGAT2, since tung tree DGAT1 and DGAT2 were found to localize to 294 

different regions of the ER and they differ in substrate preference (Shockey et al., 2006). The 295 

physiological roles of DGAT1 and DGAT2 in microalgae also remain largely to be explored. For 296 

example, in most of the microalgal species, one DGAT1 and one to multiple DGAT2 genes 297 

appear to contribute to the complexity of TAG biosynthesis (Turchetto-Zolet et al., 2011; Chen 298 

and Smith, 2012; Gong et al., 2013; Liu and Benning, 2013), and it is still unknown why 299 

microalgae need these many redundant copies of DGAT2. 300 
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In mammals and yeasts, DGAT2 rather than DGAT1 appears to be the dominant enzyme 301 

for TAG synthesis. Knocking out of dgat2 in mouse (Dgat2-/-) led to lipopenia, abnormal skin 302 

and early death (Stone et al., 2004), whereas dgat1 defective mouse (Dgat1-/-) was viable and 303 

capable of TAG synthesis (Smith et al., 2000). Whilst the DGAT2 almost ubiquitously exists in 304 

all eukaryotes, DGAT1 is missing in the genome of certain yeasts (S. cereviseae and Candida 305 

albicans) and fungi (Laccaria bicolor, Schizophillum commune and Agaricus bisporus) 306 

(Turchetto-Zolet et al., 2011). DGAT2 is likely the primary TAG-synthesizing enzyme in the 307 

yeast Yarrowia lipolytica, which also has a DGAT1 gene (Zhang et al., 2012).  308 

 309 

Structural and functional features of DGAT 310 

DGAT1 and DGAT2 are integral membrane-bound proteins with multiple 311 

transmembrane domains (TMD) (for review, see Liu et al., 2012). Currently, there is no three-312 

dimensional structure available for any DGAT or closely homologous enzymes (Liu et al., 2012; 313 

Lopes et al., 2015). The recent insights into DGAT structure-function relationships largely rely 314 

on the identification of possible functional motifs and the determination of putative membrane 315 

topologies. Very recently, the structure of the hydrophilic N-terminal domain of DGAT1 from B. 316 

napus (BnaDGAT1) was solved, which resulted in a leap forward in the understanding of the 317 

self-regulatory mechanism of this enzyme family (Caldo et al., 2017). Below we discuss the 318 

structural and functional features of plant DGAT with relevant reference to the mammalian 319 

literature. 320 

DGAT1 is composed of about 500 amino acid residues having a large hydrophilic N-321 

terminal region, followed by 8 to 10 predicted TMD (Fig. 2A; Liu et al., 2012). The N-terminal 322 

region of DGAT1 is highly variable and is encoded by the first exon, which is separate from the 323 

exons encoding the rest of the polypeptide (Liu et al., 2012; Greer et al., 2015). The N-terminal 324 

regions of B. napus and mouse DGAT1 enzymes were demonstrated to bind acyl-CoA in a 325 

sigmoidal fashion, suggesting positive cooperative binding (Weselake et al., 2006; Siloto et al., 326 

2008). In addition, the N-terminal region of B. napus DGAT1 formed dimers and tetramers 327 

based on crosslinking experiments (Weselake et al., 2006). Consistently, analysis of mouse and 328 

B. napus DGAT1 showed that the N-terminal region plays a role in self-oligomerization (McFie 329 

et al., 2010; Caldo et al., 2017). Furthermore, the hydrophilic N-terminal region of B. napus 330 

DGAT1 was shown to constitute the enzyme’s regulatory domain, which is not necessary for 331 
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catalysis (Caldo et al., 2017). This domain is comprised of two distinct segments, specifically an 332 

intrinsically disordered region (IDR) and a folded segment (Fig. 2A). The IDR can form 333 

interactions that are important for dimerization and may allow it to partially mediate positive 334 

cooperativity. Truncation of this IDR resulted in a more active enzyme form, suggesting the IDR 335 

encompasses an autoinhibitory motif. This observation agrees with a previous study on mouse 336 

DGAT1, wherein removal of N-terminal fragments led to increased normalized enzyme activity 337 

(McFie et al., 2010). The solution NMR structure of the folded segment of the N-terminal region 338 

of B. napus DGAT1 showed that it is composed of an α-helix near the first predicted TMD 339 

(Caldo et al., 2017). Loops and coils connected this helix to the IDR. The loop near the α-helix 340 

was shown to contain the allosteric site for acyl-CoA and CoA, which serves as homotropic 341 

activator and feedback inhibitor of the enzyme, respectively (Caldo et al., 2017). The small-angle 342 

X-ray scattering structure of this domain showed that the monomer has a highly extended 343 

structure, exhibiting various heterogeneous conformations. While the domain is predominantly 344 

disordered, it appears to exhibit a small gain in secondary structure upon binding to acyl-CoA 345 

and CoA. Altogether, these studies demonstrated that the hydrophilic N-terminal domain of B. 346 

napus DGAT1 comprises a regulatory domain that positively and negatively affects enzyme 347 

activity. 348 

The remainder of DGAT1 accounting for more than 75% of the enzyme contains the 349 

TMD and the catalytic sites. The TMD is expected to form helical bundles in the membrane, 350 

which agrees with circular dichroism profile of purified BnaDGAT1 indicating the 351 

predominance of α-helices (Caldo et al., 2017). DGAT1 belongs to a family of enzymes named 352 

membrane-bound O-acyltransferases (MBOAT), which were proposed to have highly conserved 353 

arginine and histidine residues. Sequence analysis coupled with mutational studies showed a 354 

conserved histidine near the C-terminus of mouse DGAT1 represents one of the active site 355 

residues (Fig. 2A; McFie et al., 2010). In the same study, mouse DGAT1 was shown to have 356 

three TMD, with a cytosolic N-terminus and a C-terminus inside the ER lumen. In contrast, tung 357 

tree DGAT1 appeared to have two termini localized in the cytosol, suggesting the presence of 358 

even-numbered TMD (Shockey et al., 2006). Furthermore, it was noted that human DGAT1 may 359 

have dual topologies as DGAT1 activity was present on both faces of the ER (Wurie et al., 360 

2011). In addition to topological analysis, the membrane-embedded region was also probed for 361 

possible substrate binding sites. Two peptide fragments corresponding to the putative binding 362 
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sites of bovine (Bos taurus) DGAT1 were investigated via synchrotron circular dichroism 363 

spectroscopy (Lopes et al., 2014). The first peptide spanning the motif, FYxDWWN, was shown 364 

to bind the acyl group of acyl-CoA (Fig. 2A). The second peptide having a candidate DAG 365 

binding site (HKWxxRHxYxP), which also exists in protein kinase C and diacylglycerol kinase, 366 

interacted with DAG.  367 

DGAT2 is a member of the DGAT2/acyl-CoA:monoacylglycerol acyltransferase family, 368 

which also includes acyl-CoA:monoacylglycerol acyltransferases and wax synthases (McFie et 369 

al., 2010). It is completely different than DGAT1, being shorter in length and having less TMD 370 

(Fig. 2B). The membrane topologies of mouse and S. cerevisiae DGAT2 were experimentally 371 

determined. Mouse DGAT2 has two TMD with cytosolic N- and C- termini (Stone et al., 2006). 372 

On the other hand, S. cerevisiae DGAT2 has four TMD, and as in mouse DGAT2, both the N- 373 

and C-termini were localized in the cytosol (Liu et al., 2011). The topology of plant DGAT2 has 374 

not been determined yet, although preliminary analysis of tung tree DGAT2 showed that both 375 

termini are also found in the cytosol (Shockey et al., 2006). The first 30-50 amino acid residues 376 

of mouse and yeast DGAT2 were shown to be not essential for catalysis (Stone et al., 2006; Liu 377 

et al., 2011). No detailed structural analysis of DGAT2 has been reported although various 378 

motifs have been proposed to serve as important binding or active sites. In mouse DGAT2, an 379 

FLXLXXXn (n=non polar amino acid) motif is proposed as a binding site for neutral lipid, and 380 

substitution of either the first two residues in this motif resulted in decreased DGAT activity 381 

(Fig. 2B). Furthermore, the substitution of the second leucine residue in mouse DGAT2 resulted 382 

in enzyme inactivation (Stone et al., 2006). As for putative active site residues, a conserved 383 

HPHG motif has been implicated to play an important function, since substitution of any residue 384 

within this motif either led to lower activity or complete enzyme inactivation (Stone et al., 2006; 385 

Liu et al., 2011). It should be noted, however, that the topologies of mouse DGAT2 and S. 386 

cerveisiae DGAT2 (ScDGAT2) did not agree at certain regions. The HPHG motif, for example, 387 

is in the cytosol in mouse DGAT2 but is found within the membrane in ScDGAT2. Other 388 

conserved motifs with potentially important function identified in DGAT2 include motifs YFP, 389 

RXGFX(K/ R)XAXXXGXX(L/V)VPXXXFG(E/Q) and GGXXE (Liu et al., 2012). An ER 390 

retrieval motif responsible for the steady state localization of DGAT2 protein in the ER was 391 

identified near the C-terminus of tung tree DGAT2 (Shockey et al., 2006). Even though this ER 392 
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retrieval motif is also present in mouse DGAT2, deletion of this region in mouse DGAT2 did not 393 

affect the targeting of the mouse acyltransferase into the ER (McFie et al., 2011).  394 

 395 

Regulation of DGAT 396 

The activity of enzymes can be regulated at the transcriptional, translational and post-397 

translational levels. Enzymes can differ in their temporal and spatial expression in plants. The 398 

expression profile of DGAT genes has been determined in different plant species particularly in 399 

oil crops. In Arabidopsis, DGAT1 was expressed in different plant organs such as leaves, roots, 400 

flowers, siliques, seeds and seedlings, the last two of which exhibited the highest expression 401 

levels (Zou et al., 1999). The high expression of Arabidopsis DGAT1 (AtDGAT1) in developing 402 

seeds and pollen correlates with the ability of these organs to accumulate high amounts of TAG 403 

(Lu et al., 2003). In addition, DGAT1 was expressed at lower levels in shoots and roots of 404 

seedling, which are sites exhibiting active cell division and growth. DGAT1 was suggested to be 405 

involved in maintaining a balance of DAG and acyl-CoA for the biosynthesis of membrane lipids 406 

and recycling of fatty acids to TAG under conditions where catabolic reactions are halted (Lu et 407 

al., 2003). Arabidopsis DGAT2, however, was expressed at a lower level in seeds compared to 408 

other tissues (Li et al., 2010b). Similar to Arabidopsis, the expression level of soybean DGAT1 409 

was much higher relative to DGAT2 throughout seed development (Li et al., 2010b). In contrast, 410 

oil crops accumulating unusual fatty acids have higher DGAT2 transcript levels in developing 411 

seeds than Arabidopsis and soybean, supporting the possible role of DGAT2 in the accumulation 412 

of unusual fatty acids in seed oil (Kroon et al., 2006; Shockey et al., 2006; Li et al., 2010b).  413 

Transcription factors affecting the extent of oil accumulation have been identified 414 

including LEAFY COTYLEDON genes (LEC1, LEC2, LIL and FUS3), ABSCICIC ACID 415 

INSENSITVE (ABI) and WRINKLED1 (WRI) (Santos-Mendoza et al., 2008). These transcription 416 

factors have been shown to be involved in the up-regulation of genes in late glycolysis and fatty 417 

acid biosynthesis. ABI and WRI were shown to have a direct effect on DGAT1 expression (Fig. 418 

3). ABI4 was found to bind to the AtDGAT1 promoter and activate transcription under stress 419 

conditions, such as nitrogen deficiency (Yang et al., 2011) and increased sucrose content (Wind 420 

et al., 2013). Similar to ABI4, ABI5 was also shown to synergistically regulate the expression of 421 

DGAT1 under stress (Kong et al., 2013). In addition, over-expression of WRI in B. napus 422 

increased the expression of DGAT1 together with GPAT9 and LPAAT2, although the specific 423 
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promoter sequence has yet to be identified (Li et al., 2015b). Very recently, the R2R3-type 424 

MYB96 transcription factor was shown to regulate TAG biosynthesis by directly activating the 425 

expression of DGAT1 and PDAT1 (Fig. 3) (Lee et al. 2018). DGAT1 expression is regulated by 426 

MYB96 through binding to the promoter of ABI4, whereas MYB96 regulates PDAT1 expression 427 

by directly binding to PDAT1 promoter (Lee et al. 2018).  Transcription factors directly 428 

influencing the expression of DGAT2 in plants, however, have not been identified. 429 

After translating a folded and functional enzyme, its activity can be regulated directly 430 

through the binding of allosteric effectors and/or post-translational modifications. DGAT1 has 431 

been shown to be modulated by its substrate, acyl-CoA, which binds to an allosteric site at the N-432 

terminus (Weselake et al., 2006; Caldo et al., 2017). The presence of this allosteric site for acyl-433 

CoA agrees with kinetic studies of microsomal and purified plant DGAT1 showing that DGAT1 434 

exhibits positive cooperativity with acyl-CoA (Roesler et al., 2016; Caldo et al., 2017; Xu et al., 435 

2017). Interestingly, CoA was identified as a feedback inhibitor of BnaDGAT1 and was shown 436 

to bind to the same allosteric site for acyl-CoA. It is thus possible that the hydrophilic N-terminal 437 

domain can act as a sensor of the acyl-CoA:CoA ratio, enabling enzyme activity to adjust to the 438 

availability of substrates (Fig. 4). Similarly, acyl-CoA and acyl-ACP were identified as feedback 439 

inhibitors of the acetyl-CoA carboxylase, the regulatory enzyme in fatty acid biosynthesis (Davis 440 

and Cronan, 2001; Andre et al., 2012). Furthermore, PtdOH was identified as a feedforward 441 

activator of plant DGAT1 (Caldo et al., 2018). PtdOH was suggested to aid in relieving possible 442 

autoinhibition by interacting with the N-terminal regulatory domain spanning the autoinhibitory 443 

motif and convert DGAT1 to a more active state that is also less sensitive to substrate inhibition 444 

(Fig. 4). The activity of microsomal DGAT activity has been shown to be activated by proteins 445 

such as acyl-CoA binding protein, bovine serum albumin, and human acylation-stimulating 446 

protein (Little et al., 1994; Hobbs and Hills, 2000; Weselake et al., 2000; Yurchenko et al., 447 

2014), although specific plant regulatory proteins modulating DGAT1 has yet to be identified. 448 

Furthermore, microsomal DGAT activity in Arabidopsis was inhibited by niacin (Hobbs and 449 

Hills, 2000); this compound was later shown to non-competitively inhibit mouse DGAT2 (Ganji 450 

et al., 2004). 451 

DGAT1 is also regulated through phosphorylation/dephosphorylation (Ghillebert et al., 452 

2011). Initial sequence analysis indicated that mouse DGAT1 contains phosphorylation 453 

consensus sequences for tyrosine kinase, protein kinase A as well as protein kinase C (Yen et al., 454 
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2008). Later reports, however, demonstrated that a number of these predicted phosphorylation 455 

sites had negligible effect on enzyme activity (Han, 2011; Humphrey et al., 2013). Furthermore, 456 

a recent study on mouse DGAT1 identified 24 potential phosphorylation sites and confirmed 457 

phosphorylation in several sites through mass spectrometry (Yu et al., 2015). Mutation of three 458 

serine phosphorylation sites (S83, S86 and S89) to glutamate to mimic phosphorylation also 459 

resulted in enzyme variants with higher activity. Previously, a putative sucrose non-fermenting1-460 

related kinase1 (SnRK1) phosphorylation site was also identified in T. majus DGAT1 (Xu et al., 461 

2008). When this residue was mutated to alanine, an increase in enzyme activity was observed. 462 

In addition, the over-expression of DGAT1 with the mutated SnRK1 site translated to higher seed 463 

TAG levels in Arabidopsis when compared to an unmodified enzyme. Recent biochemical 464 

studies found that purified BnaDGAT1 can be phosphorylated and inactivated by SnRK1, further 465 

confirming earlier investigation through mutagenesis (Fig. 4; Caldo et al., 2018). In addition, 466 

SnRK1 has also been found to act on the WRI transcription factor (Zhai et al., 2017), which 467 

subsequently regulates DGAT expression. Similar observations were also noted in studies 468 

involving the mammalian AMP-activated protein kinase (AMPK), which corresponds to the 469 

SnRK1 enzyme in plants. Elevated AMPK activity reduced the expression levels of transcription 470 

factors and lipogenesis-related genes (eg., DGAT1 and DGAT2), resulting in decreased TAG 471 

accumulation in mouse (Yin et al., 2015). It may be possible that mammalian AMPK can also 472 

modulate DGAT1 activity directly as observed in plant systems, since AMPK is a member of a 473 

kinase family implicated in transcriptional and post-translational regulation (Ghillebert et al., 474 

2011). Overall, these lines of evidence showed that DGAT1 can be regulated by 475 

phosphorylation/dephosphorylation. As for DGAT2, there are no reports discussing the possible 476 

regulation of this isoenzyme by phosphorylation. The PhosPhat database indicated that there was 477 

no phosphorylated site identified yet in Arabidopsis DGAT2. On the other hand, human DGAT2 478 

was shown to be regulated by ubiquitination via gp78, which is an E3 ligase facilitating ER-479 

associated degradation (Choi et al., 2014).  480 

 481 

Soluble DGAT, diacylglycerol acetyltransferases and other enzymes with DGAT activity 482 

The DGAT3 gene family encodes a soluble enzyme localized in the cytosol. The first 483 

DGAT3 was isolated from peanut (Arachis hypogea) through protein purification (Saha et al., 484 

2006). Somewhat later, DGAT3 was also identified in Arabidopsis (Peng and Weselake, 2011; 485 
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Hernández et al., 2012). Another soluble enzyme with DGAT activity was also identified in 486 

Arabidopsis and termed Defective Cuticle Ridge (DCR) (Rani et al., 2010). The physiological 487 

roles of soluble DGAT in plants, however, remain largely to be explored. It has been reported 488 

that Arabidopsis DGAT3 appears to be involved in recycling of linoleic acid (18:2∆9cis, 12cis) and 489 

α-linolenic acid (18:3∆9cis, 12cis, 15cis) into TAG when TAG breakdown was blocked (Hernández et 490 

al., 2012), whereas DCR is likely to be related to the biosynthesis of cutin rather than seed oil 491 

(Rani et al., 2010). Unlike the puzzling roles of soluble DGAT in plants, several pieces of strong 492 

evidence support the involvement of DGAT3 in TAG biosynthesis in microalgae and diatoms. 493 

For instance, the involvement of DGAT3 to TAG biosynthesis in the diatom Phaeodactylum 494 

tricornutum was confirmed by heterologous expression in S. cerevisiae mutant H1246 (Cui et al., 495 

2013). Similarly, a novel DGAT exclusive to green microalgae with moderate similarity to plant 496 

DGAT3 was found to participate in the chloroplastidial de novo synthesis of TAG (Bagnato et 497 

al., 2017). Moreover, many other TAG-biosynthetic biosynthetic enzymes, including GPAT, 498 

LPAAT, phosphatidic acid phosphatase and acyl-CoA:monoacylglycerol acyltransferase, have 499 

been previously reported to exist in soluble forms (Ichihara et al., 1990; Tumaney et al., 2001; 500 

Turnbull et al., 2001; Han et al., 2006; Ghosh et al., 2009). Thus, it is possible that these soluble 501 

TAG-biosynthetic enzymes might use different substrate pools and have different physiological 502 

roles from the membrane-bound isoforms.  503 

In addition to the aforementioned DGATs, other enzymes with DGAT activity were also 504 

identified. One example is the bifunctional wax synthase/DGAT, which predominantly catalyzes 505 

the formation of wax esters. This enzyme was first identified in Acinetobacter (Kalscheuer et al., 506 

2003) and later characterized in Arabidopsis (Li et al., 2008). Another enzyme with putative 507 

DGAT activity is chloroplastic phytyl ester synthase. Two Arabidopsis chloroplastic phytyl ester 508 

synthases were characterized and shown to be involved in fatty acid phytyl ester synthesis in 509 

chloroplasts (Lippold et al., 2012). A special DGAT (diacylglycerol acetyltransferase) utilizing 510 

acetyl-CoA rather than acyl-CoA as acyl donor was also identified in E. alatus. This unique 511 

DGAT catalyzes the formation of 3-acetyl-1, 2-diacyl-sn-glycerol rather than TAG, and the 512 

resulting acetyl-TAG has lower viscosity than normal oil (Durrett et al., 2010). The acetyl-CoA 513 

utilizing DGAT also belongs to the MBOAT family. Recently, the topology model of 514 

diacylglycerol acetyltransferase from E. alatus was experimentally determined (Tran et al., 515 

2017). The model shows four TMD with both the N- and C-termini orientated toward the lumen 516 
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side of the ER (Fig. 2C). In addition, the MBOAT signature region containing the putative 517 

histidine active site is embedded in the third TMD in close proximity with the interface between 518 

the membrane and the cytosol, and thus may be readily accessible by the cytosolic acetyl-CoA 519 

substrate. 520 

 521 

Acyl-CoA-independent formation of TAG 522 

The Kennedy pathway provides a straightforward route towards the formation of TAG 523 

using acyl-CoA and G3P. As previously discussed, in many species, however, TAG assembly is 524 

intricately associated with membrane metabolism (Fig. 1). PDAT catalyzes the transfer of the 525 

acyl moiety at the sn-2 position of PtdCho or phosphatidylethanolamine to the sn-3 position of 526 

sn-1, 2-DAG, yielding TAG and sn-1 lyso-PtdCho or sn-1 lysophosphatidylethanolamine 527 

(Dahlqvist et al., 2000; Ståhl et al., 2004).  528 

The identification of PDAT has historically lagged behind that of DGAT probably 529 

because of its exclusive presence in plants, algae, and yeast and its absence in mammals (for 530 

review, see Chen et al., 2015). In 2000, PDAT activity was first identified in microsomal 531 

preparations of the developing seeds from sunflower (Helianthus annuus), castor bean (R. 532 

communis), and Crepis palaestina by Stymne and co-workers (Dahlqvist et al., 2000). In the 533 

same study, they also isolated the first PDAT gene (YNR008w, LRO1) from yeast (S. cerevisiae). 534 

Yeast PDAT has homology with mammalian lecithin:cholesterol acyltransferase (LCAT), which 535 

catalyzes the acyl-CoA-independent formation of cholesteryl esters by transferring the acyl 536 

group from PtdCho to cholesterol. In addition, S. cerevisiae PDAT also displayed low 537 

DAG:DAG transacylase activity (Ghosal et al., 2007). In S. cerevisiae yeast, PDAT and DGAT2 538 

are the major contributors to TAG biosynthesis and their relative contributions were dependent 539 

on the yeast growth stage (Oelkers et al., 2002). PDAT contributed predominantly to yeast TAG 540 

accumulation during the exponential growth stage, whereas DGAT2 was involved in the 541 

majority of yeast TAG biosynthesis at the stationary growth stage (Oelkers et al., 2002).  542 

Subsequently, two PDAT orthologs, AtPDAT1 (At5g13640) and AtPDAT2 (At3g44830), 543 

with 57% amino acid sequence identify, were identified in Arabidopsis based on sequence 544 

homology to yeast PDAT (Ståhl et al., 2004). AtPDAT1 is expressed generally at higher levels in 545 

vegetative tissues than in seeds, whereas AtPDAT2 is highly expressed in seeds (Ståhl et al., 546 

2004; Pan et al., 2015) (For detailed information on expression pattern, refer to AtGenExpress 547 
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database (http://jsp.weigelworld.org/expviz/expviz.jsp; accessed on 10 July 2018) or Arabidopsis 548 

eFP Browser (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi; accessed on 10 July 2018). In 549 

contrast with the situation in yeast where PDAT is a major determinant of TAG biosynthesis at 550 

the exponential growth stage, the contribution of PDAT to TAG biosynthesis in Arabidopsis 551 

seeds was unclear. Over-expression of AtPDAT1 resulted in no effects on the fatty acid and lipid 552 

composition, despite the fact that increased PDAT activity was observed in microsomes prepared 553 

from AtPDAT1 Arabidopsis over-expressor lines (Ståhl et al., 2004). In addition, no change in 554 

the fatty acid content or composition was observed from the seeds of an Arabidopsis knockout 555 

line with a T-DNA insertion in the AtPDAT1 locus (Mhaske et al., 2005).  556 

The contribution of PDAT to Arabidopsis seed TAG accumulation was not realized until 557 

AtPDAT1 was suppressed by RNA interference (RNAi) in a dgat1 knockout background (Zhang 558 

et al., 2009). In a dgat1 knockout background, RNAi silencing of AtPDAT1 resulted in up to 559 

63% further oil content reduction compared with the dgat1 control, whereas neither silencing of 560 

AtPDAT2 nor AtDGAT2 showed further reduction in oil content (Zhang et al., 2009). These 561 

results suggested that PDAT1 is a dominant determinant in Arabidopsis seed TAG biosynthesis 562 

in the absence of DGAT1 activity. Consistently, AtPDAT1 expression was found to be highly up-563 

regulated in the seeds of the Arabidopsis dgat1 mutant, whereas the expression of AtPDAT2 and 564 

AtDGAT2 was only marginally affected (Xu et al., 2012). Furthermore, the Arabidopsis pdat1 565 

dgat1 double mutant displayed abnormal seed and pollen development (Zhang et al., 2009), 566 

indicating that PDAT1 and DGAT1 have overlapping functions in TAG biosynthesis in 567 

developing seeds and pollen, which are essential for their normal development.  568 

Recently, PDAT has been suggested to play a crucial role in mediating TAG biosynthesis 569 

in leaves. PDAT functions in diverting fatty acids from membrane lipids to TAG before 570 

peroxisomal β-oxidation, thereby maintaining leaf membrane homeostasis in Arabidopsis (Fan et 571 

al., 2013a; Fan et al., 2013b; Fan et al., 2014). The relative contribution of PDAT1 and DGAT1 572 

to leaf TAG biosynthesis has been examined. Arabidopsis pdat1 mutant displayed a 57% 573 

reduction in TAG content in developing leaves whereas only 31% decrease in TAG level was 574 

observed in the dgat1 mutant (Fan et al., 2013b). In contrast to the 7-fold increase in PDAT1 575 

over-expressing lines, there was only a marginal increase in leaf TAG levels in DGAT1 over-576 

expressing Arabidopsis lines (Fan et al., 2013b). These results suggested that PDAT1 may play a 577 

more important role in TAG synthesis in young leaves than DGAT1. Pulse-chase radiolabelling 578 

http://jsp.weigelworld.org/expviz/expviz.jsp
http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
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of pdat1 and dgat1 mutants using [14C] 12:0, however, showed that the reduction in TAG 579 

accumulation was more severe in the dgat1 mutant rather than the pdat1 mutant, suggesting that 580 

DGAT1 is mainly responsible for the TAG biosynthesis in Arabidopsis leaves (Tjellström et al., 581 

2015). Considering medium chain fatty acids such as 12:0 are rarely incorporated into the sn-2 of 582 

PtdCho, which is the substrate of PDAT, it is likely that the relative use of PDAT and DGAT in 583 

TAG biosynthesis in leaves is dependent on the substrates and acyl flux conditions within the 584 

cell (Bates, 2016). Besides Arabidopsis, PDAT genes have also been identified and characterized 585 

in various plant and microalgal species, including castor (van Erp et al., 2011; Kim et al., 2011), 586 

flax (Pan et al., 2013), Camelina sativa (Aznar-Moreno and Durrett, 2017; Yuan et al., 2017), 587 

green algae C. reinhardtii (Yoon et al., 2012) and green algae Myrmecia incise (Liu et al., 588 

2016b). It should be noted that PDAT nomenclature in literature lacks consistency. For example, 589 

flax PDAT 2 and 4 are homologs of AtPDAT1 whereas flax PDAT 3 and 6 are AtPDAT2 590 

homologs (Pan et al., 2015).  591 

Although a T-DNA insertion in the AtPDAT1 locus led to no effect on the fatty acid 592 

content or composition in Arabidopsis (Mhaske et al., 2005), Aznar-Moreno and Durrett (2017) 593 

introduced mutations in genes encoding PDAT1 in C. sativa (an AtPDAT1 homolog) using the 594 

CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated 595 

protein) system and observed reduced seed oil content and altered fatty acid composition (eg., 596 

decreased linoleic acid content) in many transgenic lines, supporting the contribution of PDAT1 597 

in seed oil biosynthesis. Consistently, microRNA mediated down-regulation of PDAT1 in C. 598 

sativa led to a decrease in linoleic acid content, whereas over-expression of PDAT1 had an 599 

opposite effect (Marmon et al., 2017). The changes in fatty acid composition in these PDAT1 600 

over-expression or down-regulation lines, however, were not accompanied with any significant 601 

effects on total oil content. In the same study, the relative importance of C. sativa PDAT and 602 

DGAT in oil accumulation in developing seeds and in different embryo sections was examined. 603 

DGAT1 appears to dominate the TAG assembly in cotyledons, while PDAT1 may compensate 604 

for TAG accumulation in the absence of DGAT1 by specifically routing linoleic acid from 605 

PtdCho into TAG. Unlike PDAT1, PDAT2 homologs from Arabidopsis (AtPDAT2), flax 606 

(LuPDAT3 and LuPDAT6) and castor bean (RcPDAT2) did not show an apparent function in 607 

TAG biosynthesis (Ståhl et al., 2004; van Erp et al., 2011; Kim et al., 2011; Pan et al., 2013). 608 
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In some plants, PDAT is likely to be a key player in directing modified fatty acids from 609 

PtdCho into TAG by displaying unique specificity for the acyl group in PtdCho (van Erp et al., 610 

2011; Kim et al., 2011; Pan et al., 2013). PDAT from castor has been shown to preferentially 611 

catalyze the incorporation of ricinoleoyl and vernoloyl groups into TAG in vitro, while C. 612 

palaestina PDAT catalyzes the incorporation of vernoloyl groups (Dahlqvist et al., 2000). 613 

Consistent with the in vitro results, over-expression of castor PDAT in Arabidopsis led to large 614 

accumulation of hydroxy fatty acids in the seed oil (van Erp et al., 2011; Kim et al., 2011). 615 

Similarly, specialized PDAT for selective incorporating α-linolenic acid into TAG was also 616 

identified in flax (Pan et al., 2013). These PDATs with unique substrate selectivity, including 617 

castor PDAT (RcPDAT1A) and flax PDATs (LuPDAT1 and LuPDAT5), have seed-specific 618 

expression pattern and are grouped into a single clade that is different from those of PDAT1 and 619 

PDAT2 (Pan et al., 2015). 620 

In oilseed crops accumulating high oleic acid such as B. napus, PDAT may be less 621 

important than DGAT in affecting seed oil accumulation, since neither the in vitro enzyme 622 

activity nor the transcripts abundance for PDAT or its encoding gene was higher than that of 623 

DGAT (Troncoso-Ponce et al., 2011; Tang et al., 2012). This is also supported by a recent 624 

detailed lipidomic analysis of developing B. napus seeds, in which the relative contributions of 625 

DGAT and PDAT were predicted based on the patterns of their molecular substrates (Woodfield 626 

et al., 2018). Furthermore, it has also been recently suggested that PDAT appears to function in 627 

stress responses in Arabidopsis (Mueller et al., 2017), C. sativa (Yuan et al., 2017) and green 628 

algae (Yoon et al., 2012; Liu et al., 2016b). For instance, PDAT1-mediated TAG accumulation 629 

was found to increase the heat resistance of Arabidopsis seedlings (Mueller et al., 2017).  630 

Structure-function studies on PDAT have only been limited to in silico analysis. 631 

Phylogenetic analysis showed that plant PDAT can be grouped into four clades, two of which 632 

have one putative TMD while the other two are predicted to be entirely soluble (Pan et al., 2015). 633 

The majority of PDAT in the database have the single predicted TMD consisting of a small 634 

cytosolic N-terminus and a large C-terminal domain in the ER lumen. The N-terminal region is 635 

hydrophilic with arginine clusters similar to those observed in DGAT1 (Liu et al., 2012). The 636 

removal of the putative N-terminal TMD in S. cerevisiae PDAT did not affect activity (Ghosal et 637 

al., 2007).  Similar to LCAT-like proteins, PDAT has the conserved features of human LCAT 638 

(Peelman et al., 1999). Sequence alignment of PDAT enzymes identified the highly conserved 639 
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residues constituting a catalytic triad, specifically a histidine residue and an aspartate residue 640 

near the C-terminus and an internal serine residue. Other conserved features include a salt bridge 641 

between an aspartate residue and an arginine residue and a lid region with a tryptophan residue, 642 

which is proposed to bind released fatty acid for efficient acylation. PDAT exhibits homology to 643 

human LCAT (26% identity) and phospholipase A2 (27% identity), the structure of which were 644 

recently elucidated (Glukhova et al., 2015; Piper et al., 2015). Using the phospholipase A2 645 

structure, the AtPDAT1 model was determined using PHYRE software with high confidence 646 

level (Fig. 2D; Kelley et al., 2015), giving a preliminary glance at the possible orientation of the 647 

aforementioned functional motifs. In the model, the components of the catalytic triad are located 648 

close to one another, possibly forming contacts through hydrogen bonding. The lid region is 649 

composed of loops and a β-sheet on one face of the structure and the salt bridge is in close 650 

proximity interacting through electrostatic interaction. About 53% of the polypeptide was 651 

modelled using the phospholipase A2 structure. PDAT1 has a long N-terminal sequence that has 652 

been predicted to encompass a TMD that is not included in the model (Fig. 2D).   653 

In contrast to DGAT-catalyzed reaction, the equilibrium of which lies far to the right 654 

because of the cleavage of a high energy thioester bond of acyl-CoA and the formation of a 655 

carbon-oxygen (ester) bond, PDAT-catalyzed TAG formation uses PtdCho as the acyl donor and 656 

is considered thermodynamically neutral. Although the reaction mechanisms of PDAT are still a 657 

mystery, some insights might be gained from the work on mammalian LCAT, which shares some 658 

homology with PDAT from yeast and plants (Dahlqvist et al., 2000; Ståhl et al., 2004; Pan et al., 659 

2013). The recently elucidated structures of human LCAT revealed that the catalytic mechanism 660 

of LCAT is similar to that of phospholipase A2, in which the lid-loop can move aside from a 661 

tunnel opening allowing lipids to enter the active site and interact with the catalytic triad (serine 662 

residue 181, aspartate residue 345, and histidine residue 377) (Glukhova et al., 2015; Piper et al., 663 

2015). During catalysis, serine residue 181 of the catalytic triad functions as a nucleophile 664 

residue by attacking the sn-2 acyl-chain of PtdCho and, subsequently, the cleaved acyl-chain is 665 

covalently bound to the serine residue to form an acyl-enzyme intermediate before transfer to 666 

cholesterol to generate a cholesteryl ester. Unlike the acyl-CoA-dependent acyltransferases 667 

requiring an activated acyl-donor, LCAT uses itself as the donor in acyl transfer and thus it is 668 

very likely that the acyl-enzyme intermediate has a high chemical potential (Segrest et al., 2015). 669 

In addition, recent molecular simulation results suggested that the acyl-LCAT intermediate can 670 
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facilitate the entry of cholesterol to the active site by decreasing the free-energy cost (Casteleijn 671 

et al., 2018). 672 

 673 

Biotechnological applications of plant DGAT and PDAT  674 

 A rising demand for vegetable oil has been witnessed across the globe due to a ballooning 675 

human population and increased consumption of plant oil for food, feed, biofuel and industrial 676 

applications (for reviews, see Durrett et al., 2008; Weselake et al., 2009). As a consequence, 677 

various biotechnological strategies have been used to increase the flow of carbon into TAG in 678 

oilseeds, vegetative tissues and microalgae. The importance of DGAT in governing the flux of 679 

substrate into TAG was first reported by Katavic and colleagues (1995), wherein an Arabidopsis 680 

ethyl methanesulfonate (EMS) mutant with inactivated DGAT1 exhibited low TAG levels. 681 

PDAT is another dominant determinant in plant seed TAG biosynthesis especially in the absence 682 

of DGAT1 activity (Zhang et al., 2009). In some plants, PDAT is also characterized as a key 683 

player in contributing to directing modified fatty acids from PtdCho into TAG (Dahlqvist et al., 684 

2000). Thus far, DGAT and PDAT cDNAs have been extensively used as biotechnological tools 685 

in many studies aimed at increasing oil content and modifying the fatty acid composition of oils 686 

in seeds of higher plants, vegetative tissues and microalgae (Table 1). 687 

 688 

Increasing seed oil content 689 

Jako and colleagues (2001) initially demonstrated that the over-expression of native 690 

DGAT1 in Arabidopsis resulted in increased oil accumulation and seed weight. Increased TAG 691 

content was also obtained upon over-expression of Arabidopsis and native DGAT1 in canola-692 

type B. napus under either greenhouse or field conditions (Weselake et al., 2008; Taylor et al., 693 

2009). It was further noted that DGAT1 over-expression improved B. napus oil accumulation 694 

when compromised under drought condition (Weselake et al., 2008). The over-expression of T. 695 

majus DGAT1 in Arabidopsis, high-erucic-acid rapeseed and canola-type B. napus also led to 696 

enhanced seed oil content (Xu et al., 2008). Since these aforementioned studies, many groups 697 

have further used DGAT1 from different species to boost seed content in various crops such as 698 

G. max (Hatanaka et al., 2016; Roesler et al., 2016), B. juncea (Savadi et al., 2015), Z. mays 699 

(Alameldin et al., 2017), C. sativa (Kim et al., 2016) and Jatropa curcas (Maravi et al., 2016). 700 

Moreover, over-expression of DGAT1 from microalgae, such as Chlorella ellipsoidea and 701 
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Nannochloropsis oceanica, also led to increased oil content in Arabidopsis and B. napus (Guo et 702 

al., 2017; Zienkiewicz et al., 2017). Furthermore, DGAT1 has been used to increase the 703 

proportion of unusual fatty acids in seed oil, particularly epoxy fatty acid in G. max (co-704 

expressed with an EPOXYGENASE gene; Li et al., 2010a) and capric acid in C. sativa (in 705 

combination with fatty acyl-ACP thioesterase B1 and LPAAT from Cuphea viscosissima; 706 

Iskandarov et al., 2017). Similar to DGAT1, seed-specific over-expression of fungal DGAT2 707 

resulted in enhanced seed oil content in G. max (Lardizabal et al., 2008) and Z. mays (Oakes et 708 

al., 2011). DGAT2 was also used to increase the proportion of unusual fatty acids in seeds 709 

specifically accumulating hydroxy fatty acid in Arabidopsis through co-expression with a cDNA 710 

encoding fatty acid hydroxylase 12 (FAH12; Burgal et al., 2008) and epoxy fatty acids in G. max 711 

through co-expression with a cDNA encoding an epoxygenase (Li et al., 2010a). Over-712 

expression of DGAT2 alone in Arabidopsis was also shown to increase the percentage of oleic 713 

acid in Arabidopsis seed TAG (Zhang et al., 2013; Wang et al., 2016). PDAT has also 714 

successfully been applied in engineering transgenic plants with high levels of unusual fatty acids 715 

and polyunsaturated fatty acids, such as hydroxy fatty acid and α-linoleic acid, respectively. 716 

Over-expression of flax PDAT in Arabidopsis led to an increase in the accumulation of α-linoleic 717 

acid in its seed oil (Pan et al., 2013). Similarly, co-expression of castor FAH12 and PDAT1 in 718 

Arabidopsis led to an increase in the accumulation of total hydroxy fatty acid up to 25% (van Erp 719 

et al., 2011; Kim et al., 2011). Over-expression of castor DGAT2 in the above co-expression line 720 

increased the hydroxy fatty acid content further to 26.7% (van Erp et al., 2011). As previously 721 

suggested by Vanhercke et al. (2013b), the competition between endogenous and transgenically 722 

introduced lipid biosynthetic machinery would limit the full potential of the metabolic 723 

engineering intervention. In order to reduce the endogenous competition from Arabidopsis 724 

DGAT1, van Erp et al. (2015) introduced a mutation in AtDGAT1 in the line expressing castor 725 

FAH12, DGAT2 and PDAT and the hydroxy fatty acid content was further increased to an 726 

average of 31.4%.  727 

 728 

Increasing the oil content of vegetative tissue  729 

In addition to increasing seed oil content, it was previously shown that over-expression of 730 

DGAT1 could also boost the oil content of tobacco leaves (Bouvier-Navé et al., 2000). This 731 

concept of increasing TAG in vegetative tissues has recently gained traction among researchers 732 
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as a viable alternative to meet the ever-growing demand for plant oil. Tobacco (N. tabacum and 733 

N. benthamiana) has served as the most common platform for producing oil in vegetative tissues 734 

given its ability to produce high biomass. DGAT1 has been used to boost oil in leaf or/and stem 735 

of tobacco through over-expression of DGAT1 alone (Andrianov et al., 2010; Wu et al., 2013) or 736 

in combination with one or more cDNAs encoding proteins/enzymes such as acyl-737 

CoA:monoacylglycerol acyltransferase, WRI, oleosin, cysteine-oleosin and thioesterase (Petrie 738 

et al., 2012; Kelly et al., 2013; Vanhercke et al., 2013a; Winichayakul et al., 2013; Vanhercke et 739 

al., 2014; Chen et al., 2017; El Tahchy et al., 2017). The latter multi-gene strategies have proven 740 

to be more effective in green tissues for enhancing the carbon flux into TAG at multiple 741 

metabolic levels, including upregulation of fatty acid biosynthesis (‘Push’; e.g., over-expression 742 

of WRI), enhancing TAG assembly (‘Pull’; e.g., over-expression of DGAT1 and introduction of 743 

mouse acyl-CoA:monoacylglycerol acyltransferase) and preventing lipid turnover (‘Protect’; 744 

e.g., over-expression of oleosin) (Vanhercke et al., 2014). The combined over-expression of 745 

cDNAs encoding DGAT1, WRI and oleosin, respectively, is a very effective approach for 746 

increasing leaf TAG, driving oil accumulation to more than 15% dry weight in N. tabacum 747 

(Vanhercke et al., 2014). Increased incorporation of medium-chain fatty acids into TAG has also 748 

been obtained in tobacco leaves through over-expression of DGAT1 together with other genes 749 

that can increase the flux of medium chain fatty acids in the pathway (Reynolds et al., 2015; 750 

Reynolds et al., 2017). Increased oil content in vegetative tissues was also obtained in 751 

Arabidopsis (Kelly et al., 2013; Winichayakul et al., 2013), Saccharum spp. hybrids (Zale et al., 752 

2016) and J. curcas (Maravi et al., 2016) through over-expression of DGAT1 alone or in 753 

combination with other genes. As for DGAT2, over-expression of a C. reinhardtii DGAT2 in 754 

Arabidopsis boosted oil content in leaves (Sanjaya et al., 2013). As mentioned earlier, PDAT1 755 

appears to play a more important role in TAG synthesis in young leaves than DGAT1 (Fan et al., 756 

2013b). The combined over-expression of PDAT1 and OLEOSIN increased leaf TAG 757 

accumulation by up to 6.4% and 8.6% of the dry weight in Arabidopsis and the Arabidopsis 758 

trigalactosyldiacylglycerol1-1 mutant, respectively (Fan et al., 2013b). 759 

 760 

Increasing the oil content of microalgae  761 

Microalgae are considered to be one of the most potentially viable sources of storage 762 

lipid (TAG) for biofuel production and a future solution to the renewable energy challenge (Hu 763 
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et al., 2008; Wijffels and Barbosa, 2010). Whereas mostly green algae and eustigmatophytes are 764 

regarded as the best suitable oil producers, oil-rich diatoms such as P. tricornutum and several 765 

red algal species such as Porphyridium purpureum and Cyanidioschyzon merolae are also 766 

getting considerable research attention (Hu et al., 2008; Liu et al., 2017; Sato et al., 2017; Shuba 767 

and Kifle, 2018). Microalgal DGAT and PDAT are potential targets to engineer improved oil-768 

rich biomass accumulation (Goncalves et al., 2016). For instance, genetic engineering of C. 769 

reinhardtii by expressing a truncated DGAT1 cDNA from B. napus, led to increases in the 770 

contents of lipids and polyunsaturated fatty acids (Ahmad et al., 2015). Heterologous expression 771 

of DGAT1 from E. pitardii, and DGAT2 from S. cerevisiae also resulted in higher TAG 772 

accumulation in the marine microalga Tetraselmis chui (Úbeda-Mínguez et al., 2017). In C. 773 

reinhardtii, however, contrary findings were obtained from CrDGAT2 over-expressors. Deng et 774 

al. (2012) reported an increase in lipid content with over-expression of CrDGAT2-1 or 775 

CrDGAT2-5 in C. reinhardtii, whereas La Russa et al. (2012) reported that over-expression of 776 

CrDGAT2 did not increase the lipid content of C. reinhardtii. Despite the contrary results in C. 777 

reinhardtii, over-expression of DGAT2 in N. oceanica increased TAG content up to 2-fold 778 

without affecting growth (Li et al., 2016). More recently, increased TAG production with altered 779 

fatty acid composition was also observed in the oleaginous microalga Neochloris oleoabundans 780 

by the over-expression of DGAT2 (Klaitong et al., 2017). In the diatom P. tricornutum, over-781 

expression of DGAT2 resulted in eicosapentaenoic acid (20:5∆ 5cis, 8cis,11cis, 14cis, 17cis)-rich oil and 782 

increased neutral lipid accumulation while sustaining similar growth rate in the transgenic 783 

microalgae (Niu et al., 2013). Recently, Zulu et al. (2017) used heterologous co-expression of 784 

yeast DGAT2 and a plant OLEOSIN as an efficient intervention for enhancing TAG 785 

accumulation in P. tricornutum. Additionally, it has also been shown that DGAT plays a major 786 

role in controlling the photosynthetic carbon flux towards TAG in this diatom (Dinamarca et al., 787 

2017). Interestingly, Xin et al. (2017) investigated the acyl-CoA specificity of different isoforms 788 

of DGAT2 in the eustigmatophyte N. oceanica (NoDGAT2) for fatty acids with different 789 

unsaturation levels. NoDGAT2A preferred substrates with saturated fatty acids, NoDGAT2D 790 

preferred substrates with monounsaturated fatty acids, whereas NoDGAT2C exhibited its higher 791 

activity toward substrates with polyunsaturated fatty acids. Microalgal transgenic lines were 792 

generated with specific saturated fatty acid: monounsaturated fatty acid: polyunsaturated fatty 793 

acid proportions in TAG by modulating the ratio of NoDGAT2A:2C:2D transcripts. The authors 794 
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have further established a novel strategy to simultaneously improve productivity and quality of 795 

oils from microalgae for industrial use. 796 

 797 

Increasing DGAT1 activity through protein engineering 798 

 Due to the importance of DGAT1 as a molecular tool for increasing oil accumulation, there 799 

has been an interest in further increasing the activity of the enzyme through protein engineering. 800 

Previous efforts to engineer DGAT enzyme performance, however, have largely relied on the 801 

identification of natural variation sites and sequence-based site-directed mutagenesis. For 802 

instance, a phenylalanine insertion in maize DGAT1 at position 469, which naturally occurs in a 803 

high-oil maize line but not a normal-oil maize line, is responsible for the increased DGAT 804 

activity and oil content (Zheng et al., 2008). Similarly, analysis of the protein sequences of eight 805 

closely related peanut DGAT2 from a collection of peanut varieties revealed that two out of the 806 

six identified amino acid residue substitutions led to increased enzyme activity in DGAT2 807 

variants (Zheng et al., 2017a). Moreover, a previous study on the substitution of a serine residue 808 

with an alanine residue in a candidate SnRK1 consensus site in T. majus DGAT1 resulted in a 809 

variant with higher activity (Xu et al., 2008). Over-expression of the T. majus DGAT1 variant in 810 

Arabidopsis seeds led to higher seed oil content than what could be achieved with over-811 

expression of the cDNA encoding the wild-type enzyme. The potential of protein engineering to 812 

boost DGAT1 activity was also demonstrated in mouse DGAT1 wherein the mutation of three 813 

serine residues to glutamate residues individually in the N-terminal region also resulted in 814 

enzyme variants with increased activity (Yu et al., 2015). The aforementioned switch to 815 

glutamates residues was argued to mimic the addition of negatively charged phosphate groups, 816 

which was hypothesized to be a stimulatory signal in mouse DGAT1. Moreover, production of a 817 

recombinant BnaDGAT1 with an N-terminal poly-His tag in S. cerevisiae also resulted in 818 

elevated oil accumulation. The added N-terminal tag was shown to minimize the deleterious 819 

effect of the N-terminal domain and was able to increase the level of polypeptide production 820 

(Greer et al., 2015).  821 

 In contrast to the limited target sites identified from natural variation and sequence-based 822 

prediction, directed evolution provides a powerful approach for DGAT engineering, especially in 823 

the absence of structural information. Pioneering work on this involved the development of a 824 

yeast H1246-based high-throughput system for selection of high performance enzyme variants 825 
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(Siloto et al., 2009a). Many improved BnaDGAT1 variants were generated using the 826 

aforementioned method and the two most promising ones were used to increase the oil content of 827 

tobacco leaves (Chen et al., 2017). Kinetic analysis indicated that one of the BnaDGAT1 variants 828 

exhibited apparent decreased substrate inhibition at concentrations of acyl-CoA beyond 5 µM 829 

(Xu et al., 2017). The possible role of the ninth and tenth predicted TMD in enzyme regulation 830 

was also identified as a considerable number of beneficial mutations were localized near and 831 

within this region (Chen et al., 2017). A similar yeast-based high-throughput system also 832 

identified Corylus americana and G. max DGAT1 variants with improved kinetic properties 833 

(Roesler et al., 2016). The over-expression of a cDNA encoding a DGAT1 variant with 14 834 

substitutions in soybean resulted in larger increases in seed TAG when compared to seeds 835 

resulting from over-expression of the wild-type enzyme. Furthermore, a truncated BnaDGAT1 836 

was found to increase TAG accumulation in green microalga (Ahmad et al., 2015). 837 

 838 

 Closing comments 839 

Ever since the isolation of the first plant DGAT in Arabidopsis (Hobbs et al., 1999; 840 

Routaboul et al., 1999; Zou et al., 1999; Bouvier-Navé et al., 2000) and the discovery of PDAT 841 

activity in plant species (Dahlqvist et al., 2000), our understanding in the terminal steps of plant 842 

TAG biosynthesis has grown tremendously. Some of the knowledge has been successfully 843 

applied in metabolic engineering of oilseed crops to increase seed oil content and modify the 844 

fatty acid composition of seed oil. Meanwhile, the growing interest of using vegetative tissues 845 

and microalgae as platforms for industrial oil production has brought them into the spotlight, 846 

achieving substantial progress by taking the advantage of the successful applications in oilseed 847 

biotechnology. The physiological roles of DGAT and PDAT in regulating plant TAG 848 

accumulation underline the potential applicability of over-expression of DGAT or PDAT in 849 

transgenic plants and microalgae for increasing oil content, modifying oil quality and improving 850 

plant stress tolerance. It should be noted that the relative contributions of DGAT and PDAT to 851 

seed TAG accumulation may vary among species (Ramli et al., 2005; Troncoso-Ponce et al., 852 

2011; Tang et al., 2012; Woodfield et al., 2018), and it is therefore important to choose suitable 853 

strategies based on individual plants in manipulating oil production. Thus far, our greatest 854 

progress has been in probing the properties and regulation of DGAT1 and exploring the 855 

biotechnological uses of DGAT1. In addition to over-expression of cDNA encoding the wild-856 
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type DGAT1, there has been recent successes in the manipulation of oil production using high 857 

performance enzyme variants generated via directed evolution (Roesler et al., 2016; Chen et al., 858 

2017). Recent advances in genome editing techniques, such as, CRISPR (Belhaj et al., 2013) and 859 

targeting-induced local lesions in genomes (TILLING; Till et al., 2006), open new perspectives 860 

on improving enzyme action in planta. For instance, the “super DGAT” variants with single 861 

amino acid residue substitutions generated in B. napus DGAT1 provide valuable candidates for 862 

genome editing of DGAT1 in different species using CRISPR and TILLING (Chen et al., 2017; 863 

Xu et al., 2017). The knowledge obtained from directed evolution, in turn, can provide novel and 864 

valuable insights into structure-function relationships of DGAT1 (Chen et al., 2017), especially 865 

since no detailed three-dimensional structure is available for the entire DGAT1 enzyme. 866 

Recently, the structure of the hydrophilic N-terminal domain of BnaDGAT1 was solved and its 867 

self-regulatory function was revealed (Caldo et al., 2017). Since DGAT1 from B. napus has been 868 

successfully purified in an active form (Caldo et al., 2015), first steps are made towards 869 

obtaining high-resolution structures. The eventual structural elucidation of DGAT and PDAT 870 

will uncover the molecular mechanisms of catalysis and provide for detailed insights into modes 871 

of enzyme regulation thus establishing a basis for rational design of acyltransferases for 872 

manipulation of oil production.  873 
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Table 1. Metabolic engineering interventions targeting DGAT1, DGAT2 or PDAT to 883 

increase/modify oil/triacylglycerol content in higher plants and microalgae.  884 

Gene source 
 Transgenic 

crop/organism 

In combination with 

other genes and/or 

modifications 

Observed trait(s) References 

Over-expression of DGAT1 to increase seed oil content and/or modify oil composition 

Arabidopsis Arabidopsis  
Higher seed oil content and 

seed weight 

(Jako et al., 

2001) 

 

Brassica napus, 

Arabidopsis 
Brassica napus  Higher seed oil content 

(Weselake et 

al., 2008; 

Taylor et al., 

2009) 

Tropaeolum 

majus 

Arabidopsis, 

Brassica napus 

Mutated SnRK1 site in 

DGAT1 (Ser 197 to 

Ala) 

Higher seed oil content 
(Xu et al., 

2008) 

Vernonia 

galamensis 
Glycine max 

Stokesia laevis 

epoxygenase 
Higher epoxy fatty acids  

(Li et al., 

2012) 

Arabidopsis Brassica juncea  
Higher seed oil content and 

seed weight 

(Savadi et al., 

2015) 

Zea mays Zea mays  Higher seed oil content 
(Lan et al., 

2015) 

Corylus 

americana, 

Glycine max 

Glycine max, 

Saccharomyces 

cerevisiae 

Engineered DGAT1 

variants 

Higher seed oil content, 

lower soluble 

carbohydrate, higher yeast 

oil content 

(Roesler et 

al., 2016) 

Sapium sebiferum Brassica napus  

Higher seed oil content, 

lower oleic acid and higher 

linoleic acid 

(Peng et al., 

2016) 

Camelina sativa Camelina sativa  Higher seed oil content 
(Kim et al., 

2016) 

Vernoni 

galamensis 
Glycine max  Higher seed oil content 

(Hatanaka et 

al., 2016) 

Arabidopsis Jatropha curcas  
Higher seed and leaf oil 

content, higher seed weight 

(Maravi et  

al., 2016) 

Sesamum 

indicum 

Arabidopsis, 

Glycine max 
 

Higher seed oil content and 

seed weight 

(Wang et al., 

2014) 

     

Cuphea avigera 

var. pulcherrima 
Camelina sativa 

FatB1 and LPAAT from 

Cuphea viscosissima 

Higher capric acid (10:0) 

in seed oil 

(Iskandarov 

et al., 2017) 

Chlorella 

ellipsoidea 

Arabidopsis, 

Brassica napus var. 

Westar, 

Saccharomyces 

cerevisiae 

 

Higher seed oil content and 

seed weight, higher yeast 

oil content 

(Guo et al., 

2017) 
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Over-expression of DGAT1 to increase leaf/microalgae oil content and/or modify oil composition 

Arabidopsis Nicotiana tabacum  Higher leaf oil content 

(Bouvier-

Navé et al., 

2000) 

Arabidopsis Nicotiana tabacum Arabidopsis LEC2 Higher leaf oil content 
(Andrianov et 

al., 2010) 

Arabidopsis 
Nicotiana 

benthamiana 
Mus musculus MGAT2 Higher leaf oil content 

(Petrie et al., 

2012) 

Arabidopsis 

Arabidopsis, 

Saccharomyces 

cerevisiae 

Cysteine-oleosin 

(engineered Sesamum 

indicum oleosin 

containing up to 13 

cysteines) 

Higher leaf and root oil 

content; Higher yeast oil 

content 

(Winichayak

ul et al., 

2013) 

Arabidopsis Nicotiana tabacum  Higher leaf oil content 
(Wu et al., 

2013) 

Arabidopsis 
Arabidopsis sdp1 

(lipase) mutant 
Arabidopsis WRI 

Higher root, stem and leaf 

oil content 

(Kelly et al., 

2013) 

Arabidopsis 
Nicotiana 

benthamiana 
Arabidopsis WRI Higher leaf oil content 

(Vanhercke et 

al., 2013a) 

Arabidopsis Nicotiana tabacum 

Arabidopsis WRI, 

Sesamum indicum L 

oleosin 

Higher leaf oil content 
(Vanhercke et 

al., 2014) 

Arabidopsis 
Nicotiana 

benthamiana 

Medium-chain FATs, 

Arabidopsis WRI, Cocos 

nucifera LPAAT  

Higher medium-chain fatty 

acid content and Higher 

leaf oil content 

(Reynolds et 

al., 2015) 

Arabidopsis Jatropha curcas  
Higher seed and leaf oil 

content, higher seed weight 

(Maravi et 

al., 2016) 

Zea mays 
Saccharum spp. 

hybrids 

Codon optimized Z. 

mays DGAT1, 

Arabidopsis WRI and 

Arabidopsis oleosin for 

expression in 

Saccharum spp. 

hybrids; 

RNAi mediated down-

regulation of ADP-

glucose 

pyrophosphorylase and 

peroxisomal ABC  

transporter1 

Higher leaf and stem oil 

content 

(Zale et al., 

2016) 

Arabidopsis Zea mays 
WRI and oleosin from 

Arabidopsis 
Higher leaf TAG content 

(Alameldin et 

al., 2017) 

Arabidopsis 
Solanum 

tuberosum L 

Arabidopsis WRI, 

Sesamum indicum L 

oleosin 

Higher tuber oil content 
(Liu et al., 

2016a) 
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Elaeis guineensis 

Nicotiana 

benthamiana 

 

Medium-chain FATs, 

GPAT9 and LPAAT 

from Cocos nucifera 

Higher medium chain fatty 

acids in leaf oil and Higher 

leaf oil content 

(Reynolds et 

al., 2017) 

Echium pitardii Tetraselmis chui  
Higher oil content in 

microalgae 

(Úbeda-

Mínguez et 

al., 2017) 

Arabidopsis 
Nicotiana 

benthamiana 

Arabidopsis WRI, 

oleosin, and FATs 
Higher leaf oil content 

(El Tahchy et 

al., 2017) 

Brassica napus 

Saccharomyces 

cerevisiae 

Nicotiana 

benthamiana 

Single-site variants 
Higher leaf oil content and 

yeast oil content  

(Chen et al., 

2017) 

     

Over-expression of DGAT2 to increase seed/leaf/microalgae oil content and/or modify oil composition 

Umbelopsis 

ramanniana 
Glycine max  Higher seed oil content 

(Lardizabal et 

al., 2008) 

Ricinus 

communis 
Arabidopsis FAH12 Higher hydroxy fatty acids 

(Burgal et al., 

2008) 

Umbelopsis 

ramanniana 
Zea mays  Higher seed oil content 

(Oakes et al., 

2011) 

Vernonia 

galamensis 
Glycine max 

Stokesia laevis 

epoxygenase 
Higher epoxy fatty acids  

(Li et al., 

2012) 

Chlamydomonas 

reinhardtii  

Chlamydomonas 

reinhardtii  
 

Higher oil content in 

microalgae 

(Deng et al., 

2012) 

Thraustochytrium 

aureum 

Arabidopsis 

fad3fae1 mutant 
 Higher oleic acid in seeds 

(Zhang et al., 

2013) 

Chlamydomonas 

reinhardtii 
Arabidopsis  Higher leaf oil content 

(Sanjaya et 

al., 2013) 

Phaeodactylum 

tricornutum 

Phaeodactylum 

tricornutum 
 

Higher oil content in 

microalgae with higher 

polyunsaturated fatty acid 

(Niu et al., 

2013) 

Brassica napus 
Chlamydomonas 

reinhardtii 
 

Higher oil content in 

microalgae, lower 

saturated fatty acids 

content, higher α-linolenic 

acid content, 

(Ahmad et 

al., 2015) 

Sapium sebiferim Arabidopsis  
Higher oleic acid content 

in seeds 

(Wang et al., 

2016) 

Nannochloropsis 

oceanica 

Nannochloropsis 

oceanica 
 

Higher oil content in 

microalgae 

(Li et al., 

2016) 

Neochloris 

oleoabundans 

Neochloris 

oleoabundans 
 

Higher oil content in 

microalgae with altered 

fatty acid composition 

(Klaitong et 

al., 2017) 

Saccharomyces 

cerevisiae 

Phaeodactylum 

tricornutum 
Arabidopsis oleosin 

Higher oil content in 

microalgae 

(Zulu et al., 

2017) 
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 885 

Abbreviations: FAH, fatty acid hydroxylase; FAT, fatty acyl-ACP thioesterase; GPAT9, sn-886 

glycerol-3-phosphate acyltransferase; LPAAT, lysophosphatidate acyltransferase; LEC, LEAFY 887 

COTYLEDON; MGAT, monoacylglycerol acyltransferase; RNAi, RNA interference; SnRK1, 888 

sucrose non-fermenting-related protein kinase 1; WRI, WRINKLED1; TAG, triacylglycerol. 889 

 890 

  891 

Saccharomyces 

cerevisiae 
Tetraselmis chui  

Higher oil content in 

microalgae 

(Úbeda-

Mínguez et 

al., 2017) 

Nannochloropsis 

oceanica 

Nannochloropsis 

oceanica 

Modulate the ratio of 

DGAT2A:2C:2D 

transcripts by over-

expression and 

knockdown 

 

Modified fatty acid 

composition in microalgae 

(Xin et al., 

2017) 

Nannochloropsis 

oceanica (CCMP

1779) 

Arabidopsis, 

Saccharomyces 

cerevisiae 

 

Higher seed and leaf oil 

content, higher yeast oil 

content 

(Zienkiewicz 

et al., 2017) 

Over-expression of PDAT to modify seed/leaf oil content and/or modify oil composition 

Ricinus 

communis 
Arabidopsis 

Ricinus communis 

FAH12 

Higher hydroxy fatty acid 

in seed oil 

(Kim et al., 

2011) 

Ricinus 

communis 
Arabidopsis 

FAH12 and 

DGAT2 from Ricinus 

communis 

Higher hydroxy fatty acid 

in seed oil 

(van Erp et 

al., 2011)  

Ricinus 

communis 
Arabidopsis 

FAH12 and 

DGAT2 from Ricinus 

communis; 

silencing of endogenous 

DGAT1  

Higher hydroxy fatty acid 

in seed oil 

(van Erp et 

al., 2015) 

Linum 

usitatissimum L. 
Arabidopsis  

Higher α-linolenic acid in 

seed oil 

(Pan et al., 

2013) 

Arabidopsis 

Arabidopsis, 

Arabidopsis 

trigalactosyldiacyl

glycerol1-1 mutant 

 Higher leaf oil content 
(Fan et al., 

2013b) 



35 

 

Figure Legends 892 

Figure 1. Generalized scheme for triacylglycerol (TAG) biosynthesis in developing seeds of 893 

oleaginous higher plants and microalgae. Abbreviation: ACP, acyl carrier protein; ACCase, 894 

acetyl-CoA carboxylase; CoA, coenzyme A; CPT, choline phosphotransferase; DAG, 895 

diacylglycerol; DGAT, diacylglycerol acyltransferase; ER, endoplasmic reticulum; FAD, fatty 896 

acid desaturase; FAE, fatty acid elongase; FAS, fatty acid synthase; FAT, acyl-ACP thioesterase; 897 

FAX, fatty acid export; FFA, fatty acid; GPAT, sn-glycerol-3-phosphate acyltransferase; GPC, 898 

glycerophosphocholine; GPCAT, glycerophosphocholine acyltransferase;  G3P, sn-glycerol 3- 899 

phosphate; Hexose P, hexose phosphate; LACS, long-chain acyl-CoA synthase; LPA, 900 

lysophosphatidic acid; LPAAT, acyl-CoA:lysophosphatidic acid acyltransferase; LPC, 901 

lysophosphatidylcoline; LPCAT, lysophosphatidylcholine acyltransferase; LPCT, 902 

lysophosphatidylcholine transacylase; MCAT, malonyl-CoA:ACP acyltransferase; PAP, 903 

phosphatidic acid phosphatase; PDAT, phospholipid:diacyglycerol acyltransferase; PDCT, 904 

phosphatidylcholine: diacylglycerol cholinephosphotransferase; PDH, pyruvate dehydrogenase; 905 

PEP, phosphoenolpyruvate; PLA2, phospholipase A2; PLC, phospholipase C; PLD, 906 

phospholipase D; PPP, pentose phosphate pathway; PtdCho, phosphatidylcholine; PtdOH, 907 

phosphatidic acid; Pyr, pyruvate; SAD, stearoyl-ACP desaturase; Triose P, triose phosphate. 908 

This figure was developed based on information from reviews and articles on lipid biosynthesis 909 

(Ohlrogge and Jaworski, 1997; Rawsthorne, 2002; Shearer et al., 2004; Harwood, 2005; Baud 910 

and Lepiniec, 2010; Bates et al., 2012; Chapman and Ohlrogge, 2012; Bates et al., 2013; Chen et 911 

al., 2015; Li et al., 2015a). Carriers/ transporters on the plastid envelope that are required to 912 

move the cytosolic intermediates of glycolysis into the plastid are shown as dark circles.  913 

 914 

Figure 2. Current insights into structure and function in triacylglycerol biosynthetic 915 

enzymes. A, Structural features of DGAT1 that have been determined using experimental 916 

methods. Despite the absence of a crystal structure of DGAT1, some structural features of this 917 

enzyme have been determined using a combination of biochemical and biophysical methods. The 918 

N-terminal region is found to constitute the regulatory domain, with two distinct segments that 919 

influence activity differently. The intrinsically disordered region (IDR) has an autoinhibitory 920 

function, while the folded segment has the allosteric binding site (AS) for acyl-CoA/CoA. The 921 

transmembrane domains (TMD) have the catalytic sites (catalytic histidine, binding site for acyl 922 
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group and diacylglycerol/DAG), SnRK1 phosphorylation site and the endoplasmic reticulum 923 

(ER) retrieval motif. This figure was developed based on information from McFie et al. (2010), 924 

Liu et al. (2012), Lopes et al. (2014) and Caldo et al. (2017). B, Experimental topology of 925 

Saccharomyces cerevisiae DGAT2 based on mutagenesis experiments. The important motifs 926 

are also shown in the topology including the FLXLXXXn motif for binding neutral lipids, 927 

HPHG motif with putative active site residues, and the ER retrieval motif. This figure was 928 

developed based on information from Shockey et al. (2006), Stone et al. (2006), Liu et al. (2011) 929 

and McFie et al. (2011). C, Experimentally verified topology model of Euonymus alatus 930 

diacylglycerol acetyltransferase. The important motifs are shown in the topology including the 931 

MBOAT signature region with putative active site residues, and the ER retrieval motif. This 932 

figure was developed based on information from Tran et al. (2017). D, Molecular model of 933 

Arabidopsis PDAT using phospholipase A2 as template and PHYRE2 Protein Fold 934 

Recognition Server. The different functional motifs are shown in the structure including the 935 

catalytic triad, salt bridge and a lid region with a tryptophan implicated in binding released fatty 936 

acid for efficient acylation.  937 

 938 

Figure 3. Possible transcriptional regulation of DGAT1 and PDAT1 in plants. Solid lines 939 

represent up-regulation with experimental evidences. Dashed lines represent possible up-940 

regulation. Abbreviation: ABI, ABSCISIC ACID INSENSTIVE; DGAT, acyl-941 

CoA:diacylglycerol acyltransferase; LEC, LEAFY COTYLEDON; MYB96, R2R3-type MYB96 942 

transcription factor; PDAT, phospholipid:diacyglycerol acyltransferase; WRI, WRINKLED. 943 

This figure was developed based on information from reviews and research articles on 944 

transcriptional regulation of DGAT and PDAT (Baud et al., 2007; Santos-Mendoza et al., 2008; 945 

Yang et al., 2011; Wind et al., 2013; Kong et al., 2013; Li et al., 2015b; Lee et al. 2018). 946 

 947 

Figure 4. Proposed model for the biochemical regulation of Brassica napus DGAT1. 948 

BnaDGAT1 has a regulatory N-terminal domain (1-113, NTD, oval) and a membrane-bound 949 

domain containing the catalytic site (114-501, MB, rectangle). The N-terminal domain has 2 950 

distinct segments specifically an intrinsically disordered region with autoinhibitory sequences 951 

and a folded section with allosteric site for acyl-CoA (FCoA) or CoA. Acyl-CoA and CoA serve 952 

as homotropic activator and inhibitor of DGAT1, respectively (Caldo et al., 2017). High CoA 953 
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levels inactivate the enzyme whereas the binding of acyl-CoA induces the transition into the 954 

moderately active state. SnRK1 can add a phosphoryl group, to further inactivate the enzyme 955 

(Caldo et al., 2018). An unknown protein phosphatase may be involved in the dephosphorylation 956 

process. An unknown protein phosphatase may be involved in the dephosphorylation process. 957 

Lastly, phosphatidic acid (PtdOH) serves as a feedforward activator that can initiate the 958 

transition into the more active state possibly by relieving autoinhibition. PtdOH may interact 959 

with the N-terminal domain upon activating the enzyme. This figure was adapted from Caldo et 960 

al., 2018.  961 

 962 

  963 
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