This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
- 2Abdi Oskouie, Mina
- 2Birkbeck, Neil Aylon Charles
- 2Cai, Zhipeng
- 2Chen, Jiyang
- 2Chowdhury, Md Solimul
- 2Chubak, Pirooz
- 83Machine Learning
- 76Reinforcement Learning
- 42Artificial Intelligence
- 37Machine learning
- 24Natural Language Processing
- 23reinforcement learning
-
Spring 2010
Glioma is one of the most challenging types of brain tumors to be treated or controlled locally. One of the main problems is to determine which areas of the apparently normal brain contain glioma cells, as gliomas are known to infiltrate several centimetres beyond the clinically apparent...
-
Two Irons in the Fire: Synthesizing Libraries of Programs by Optimizing an Auxiliary Function while Solving Problems
DownloadFall 2023
Program synthesis faces a significant challenge in exploring a vast program space to find a program that satisfies the user's intent. Prior studies have proposed using different methods to guide the synthesis process to address this challenge. We propose a method that offers search guidance which...
-
Fall 2019
Policy evaluation, learning value functions, is an integral part of the reinforcement learning problem. In this thesis, I propose a neural network architecture, the Two-Timescale Network (TTN), for value function approximation which utilizes linear function approximation for the value function...