
Two-Timescale Networks for Nonlinear
Value Function Approximation

by

Wesley Chung

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science
in Statistical Machine Learning

Department of Computing Science

University of Alberta

c© Wesley Chung, 2019



Abstract

Policy evaluation, learning value functions, is an integral part of the reinforce-

ment learning problem. In this thesis, I propose a neural network architecture,

the Two-Timescale Network (TTN), for value function approximation which

utilizes linear function approximation for the value function with learned fea-

tures. By separating these two learning processes—approximating the value

function and learning features—we can utilize classic policy evaluation meth-

ods suited for linear function approximation but still obtain nonlinear esti-

mates of the value function. Additionally, the separation facilitates proving

convergence guarantees for the value estimates. This thesis contains empiri-

cal investigations about the choice of linear policy evaluation algorithm, the

choice of objective for feature-learning and also presents some experiments in

the control setting. We find that TTNs perform competitively with other algo-

rithms which train both the features and the value function estimates jointly.

In particular, utilizing least-squares temporal difference methods seem to pro-

vide the largest benefit and eligibility traces can also be helpful for linear

time TD algorithms. Overall, this thesis provides evidence that separating

feature and value learning is a promising direction for nonlinear value function

approximation.
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Chapter 1

Introduction

The goal of reinforcement learning agents is to collect the maximal cumu-

lative amount of reward. Value functions—the expected discounted sum of

rewards in the future from a state—therefore play a central role in reinforce-

ment learning, with many different uses. Given the optimal value function, an

RL agent need only choose the action with the highest value to assure reward-

maximizing behaviour. These optimal value functions can be learned from a

process called generalized policy iteration, which alternates between two steps:

one, learning the value function for the current policy and, two, improving the

policy to lead the agent to higher value states. Value functions are also a cru-

cial part of actor-critic algorithms, which directly learn a good policy. In these

algorithms, the value function helps the agent differentiate between good and

bad actions by comparing their performance to a baseline value. As a final

example, value functions can be interpreted more generally as a form of pre-

dictive knowledge. By summarizing sums of future quantities, the agent has

immediate access to predictions about the future—information that could be

valuable for decision-making [13, 30, 38]. In sum, due to their pervasiveness

in reinforcement learning, the task of learning these value functions—policy

evaluation—has great importance.

In practice, policy evaluation can only ever be done approximately. In

most domains of interest, the number of states the agent may encounter is

far greater than the amount of memory available to the agent. As such, a

tabular representation with one value per state would be infeasible. Instead,
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we can transform each state into a feature representation and utilize a learn-

able parametric function to approximate the value function. By learning the

parameters for an approximate value function, we can generalize across states

and still provide reasonable estimates of any state’s value.

The most well-studied function approximators are linear functions, i.e.,

the value of a state is given by the dot product of state features and a set of

parameters. This class of functions is simple enough to enable the derivation of

many efficient optimization algorithms for learning the parameters and proving

convergence guarantees for them [6, 36, 37]. Yet, despite their simplicity,

linear functions can serve as good approximations to the value function due

to the flexibility of the features. In fact, there are few restrictions on the

function mapping the states to features. For the appropriate set of features, a

linear function of those features can approximate the true value function well—

exactly even. Hence, for a given application, the practitioner’s task is to design

these features to obtain suitable performance. The quality of these features

has a large impact on the effectiveness of the approximate value function.

Designing an appropriate set of features can be difficult and often requires

expert knowledge of the domain at hand. This can place a large burden on

the practitioner to engineer features. With the advent of deep learning, it has

been found that good feature representations can often be learned from basic

ones using neural networks [26]. This approach is appealing since it requires

less domain knowledge and, by using a more expressive class of functions, can

often achieve better performance than hand-engineered solutions [34].

Unfortunately, training neural networks poses its own set of challenges and

the optimization problem is much more difficult than that of linear functions.

In particular, for learning value functions, the semi-gradient TD algorithm

would be an obvious choice, but this algorithm does not have any convergence

guarantees with nonlinear function approximation. In fact, there are certain

cases where it is known to diverge [40]. Other than the theoretical issues, in

practice, deep RL algorithms often rely on many heuristic tricks to stabilize

training, such as reward and gradient clipping, without which effective train-

ing is difficult or impossible. Some progress has made to tackle these issues
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although they are still not yet solved.

In this work, we explore an algorithm to take advantage of both the ca-

pacity of neural networks to learn effective features but also the plethora of

efficient optimization algorithms available to linear function approximation.

The Two-Timescale Network (TTN) is an architecture in which we use two

concurrent processes to obtain nonlinear estimates of the value function. The

first consists of optimizing weights for linear function approximation and the

second learns the features by optimizing a surrogate objective. This separa-

tion allows us to use algorithms for linear functions while retaining nonlinear

estimates of the value function. Additionally, we are able to prove convergence

guarantees for all the parameters by appealing to a two-timescale argument:

treating the features as slow-changing and the value weights as fast-changing.

In this way, the features can be treated as fixed from the perspective of the

fast optimization process and we can utilize the convergence guarantees for the

linear TD algorithms with fixed features. Note that the agent still improves

the feature representation (slowly) over time.

Similar approaches have previously been explored for policy evaluation,

learning features in tandem to a linear value function, though without the

key aspect of TTNs—the separation of losses for value and feature learning.

This division enables simpler optimization objectives to be used for each part

and hence simplifies the overall algorithm. In particular, the (linear) mean-

squared projected Bellman error (MSPBE) can be used for efficiently learning

values while another objective is used for updating the features with stochastic

gradient descent, avoiding the complexities of the nonlinear MSPBE. Other

feature-learning approaches utilizing two-timescales have been explored, al-

though they used the same objective for learning both values and features

[11, 25, 27]. Yu et al. [43] provided algorithms for basis adaptation using

other losses, such as Bellman error using Monte carlo samples, taking deriva-

tives through fixed point solutions for the value function. Levine et al. [21]

periodically compute a closed form least-squares solution for the last layer

of neural network to assist training with stochastic gradient descent, with a

Bayesian regularization term to prevent too much change. These prior meth-
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ods were more complex since they did not explicitly separate the feature and

value learning. The core idea of using two different objectives, one to drive the

representation and one to learn the values, has not been thoroughly explored.

In practice, while the underlying idea behind TNNs is more general and

could potentially be applied to any feature-learning mechanism provided there

is a fast/slow dichotomy, we focus on learning features with neural networks.

Concretely, we consider training a neural network on a surrogate objective us-

ing stochastic gradient descent algorithms and treating the final hidden layer

as a set of features. These features can then be used with value-learning al-

gorithms suited for linear functions while they are being learned. By choosing

neural networks for the feature representation, we can readily make compar-

isons to typical approaches using end-to-end training of the whole network. In

this case, the main distinction is that the value updates within TTNs do not

affect the features even though values and features are learned concurrently.

In this thesis, we provide an investigation into TTNs and the various design

choices associated with them. The contributions are as follows:

• We conduct a suite of experiments in the online policy evaluation setting

and find that TTNs can perform competitively with other value-learning

algorithms. Additionally, our investigations indicate that least-squares

algorithms are the best choice for the linear value-learning head, with

faster convergence and lower asymptotic error. Eligibility traces can also

bring benefits to some of the linear algorithms. Concerning surrogate

objectives, we find no clear consensus as to which is more effective for

feature-learning, with varying results depending on the environment.

• In the control setting, we find that TTNs equipped with linear fitted-Q

iteration for the value-learning can be much more effective than DQN.

Notably, TTN is able to learn much quicker in the early phases of train-

ing and avoid the initial ‘warmup’ period where DQN suffers from low

returns.

• We present a convergence result for TTNs with TD(λ), showing that this
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strategy is indeed a theoretically-sound approach to learning nonlinear

estimates of the value function under reasonable assumptions.

This thesis is organized into 6 chapters. Chapter 2 discusses some rele-

vant background concepts. Chapter 3 introduces Two-Timescale Networks.

Chapter 4 contains the results of our empirical investigations into TTNs in

the policy evaluation setting. Chapter 5 showcases our results in the control

setting. Finally, chapter 6 concludes the thesis with a discussion of possible

future work.
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Chapter 2

Policy Evaluation Background

In this chapter, we provide the reader with a brief review of the necessary

background concepts including Markov Decision Processes, value functions

and temporal difference learning. The relevant notation is also introduced.

2.1 Markov Decision Processes

The standard formalism in reinforcement learning is a Markov Decision Process

(MDP). A MDP is defined as a tuple (S,A,R,P , γ) where S is the set of states,

A is the set of actions, R : S ×A → R is the reward function, P : (S,A,S)→

R+ gives the probability of transitions and γ : (S,A,S)→ R+ is the discount

function.

The agent interacts with the environment through the following process.

At time t, the agent is in some state St and it chooses an action At. Then,

conditional on St and At, the environment returns the next state, the reward

and a discount factor according to P , R and γ respectively. This process is

repeated indefinitely. Note that both episodic tasks and continuing tasks are

covered in this framework by setting the discount function appropriately [42].

The agent chooses actions according to a policy π : S × A → R+, which

produces the probabilities of picking each action in a given state. When in-

teracting with the environment, the agent will choose actions by sampling

according to π.
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2.2 Value Functions and Policy Evaluation

Value functions are a central part of reinforcement learning. Formally, these

are defined as the expected cumulative rewards into the future

V π(s) = E [
∑∞

t=0 γ
tRt+1|St = s] where Rt is a random variable corresponding

to the reward at time t.

The task of policy evaluation consists of finding the value function for

a given policy. This is a fundamental task in reinforcement learning since

the value function represents the quality of the policy π as a measure of the

amount of reward it would collect if it were run. Additionally, by considering

an extension called General Value Functions (GVF) [38], we may be able to

represent predictions about other quantities of interest other than the reward.

Algorithms for learning value functions can also be used for learning GVFs

due to their similarity. Aside from producing predictive knowledge, policy

evaluation with rewards can be interleaved with policy improvement steps to

produce better policies as part of generalized policy iteration [35].

In practice, it is usually not possible to expect to learn the value of every

single state in S. The size of S may be too large to expect to see every state

even just a single time. In fact, most states will not be visited. In these cases,

the agent must be able to generalize from the states it has observed to unseen

states. To do this, we consider learning a parametrized approximation to the

value function vθ(s), where θ denotes the vector of parameters to be learned.

If we choose a suitable form for the function approximator, then we can expect

the agent to make good predictions about unseen states by generalizing from

its past experiences.

A simple and effective choice of function approximator is a linear function.

We let our prediction be vθ(s) = θ>x(s), a linear combination of features

of the state x(s). This is a well-studied class of functions, with many effec-

tive and theoretically-sound algorithms for policy evaluation existing already.

The drawback of linear functions is that the accuracy of the approximation

is heavily dependent on the features used, x. Choosing appropriate features

often requires specialized knowledge about the domain at hand and, in some
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cases, may be difficult to specify manually even by experts.

Alternatively, it is possible to choose a flexible nonlinear function approx-

imator such as neural networks. In this case, less expert knowledge may be

needed to specify useful inputs and the neural network can better adapt to the

given data. This comes at the cost of complicating the optimization problem,

so it may be more difficult to find an adequate set of parameters. Specifically,

more data may be required and sometimes training can completely fail, with

no progress at all on the objective of interest. Furthermore, the theoretical

aspects of neural networks are not well understood, making it challenging to

obtain theoretical guarantees for algorithms.

2.3 Optimizaton Objectives and Temporal Dif-

ference Methods

Our end goal is to learn an accurate approximation of the value function

vθ(s) ≈ V π(s) for all s ∈ S. We can define an objective, the mean-squared

value-error (MSVE) as

MSV E(v)
def
= ‖V π − v‖2

dπ

where V π is a vector with |S| entries corresponding to the true value function

and dπ is the stationary distribution over states corresponding to the policy π.

Unfortunately, we cannot directly optimize this objective since we do not have

access to the true value function V π. Instead, we can choose to optimize the

mean-squared return-error (MSRE), which provides samples of the true value

function.

MSRE(v)
def
=

N∑
n=1

(Gn − v(Sn))2

where Gi is a sampled return, Si is the corresponding state from which the

return was calculated and N is the total number of sampled returns.

The drawback is that we need to wait until the end of an episode to be

able to calculate the returns. For episodic tasks, this prevents the agent from

learning within an episode and is not directly possible in continuing tasks.

We can turn to temporal difference methods to avoid this problem and do
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updates at every step. We consider three candidate objectives: the mean-

squared Bellman error (MSBE), the mean-squared TD error (MSTDE) and

the mean-squared projected Bellman error (MSPBE).

Several of these objectives are based on the Bellman equation, a special

recurrence relation satisfied by value functions. The value function v associated

to a policy π will satisfy the following equation:

v(s) =
∑
s′,r,a

π(a|s)p(s′, r|s, a)(r(s, a, s′) + γ(s, a, s′)v(s′))) for all s ∈ S

We can write this equivalently using vector notation. First, define the

Bellman operator B : R|S| 7→ R|S| as mapping a vector u ∈ R|S| to a vector w

where the s-th entry of w is given by ws =
∑

s′,r,a π(a|s)p(s′, r|s, a)(r(s, a, s′)+

γ(s, a, s′)ws′)). Then, the Bellman equation can be compactly rewritten as

v = Bv

The fixed point of the Bellman operator is the value function corresponding

to the policy π.

Having defined the Bellman equation, the mean-squared Bellman error

(MSBE) is a natural consideration since it captures the idea that the value

function should satisfy this recurrence relation. Optimizing the MSBE directly

tries to minimize the difference between the current state’s value and the

quantity given by the Bellman equation. Letting δt
def
= Rt+1 + γt+1v(St+1) −

v(St), the TD error for one step, we can write this loss as

MSBE(v)
def
= E

[
E [δt|St]2

]
= ||Bv − v||2dπ

where the outer expectation is over the state distribution while the inner ex-

pectation is over the one-step transition dynamics. In the tabular case, we

know that minimizing this objective would recover the true value function V π

so the MSBE seems like a reasonable choice. Unfortunately, it is not easy to

minimize this objective in general. To obtain an estimate of the gradient. we

would need to get two independent samples of the next state of a transition,

which is impossible when an agent is interacting in a real environment (see

chapter 11 of [35]).
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A similar alternative which is easy to sample from is the mean-squared TD

error:

MSTDE(v)
def
= E

[
δ2
t

]
where the expectation is over both the state distribution and the one-step

rewards/transition dynamics. Minimizing this objective with stochastic gra-

dient descent (differentiating with respect to the value function for both the

current step and the next step) yields the residual gradient algorithm [2],

which converges reliably (by gradient descent properties). For deterministic

environments, this is also equivalent to minimizing the MSBE. The downside is

that the residual gradient algorithms have empirically been found to converge

slower than semi-gradient TD methods (when these converge) and asymp-

totically find worse estimates of the value function when used with function

approximation [10, 35].

Finally, we have the MSPBE. To define this objective, we need to specify

a set of value functions V representable by the function approximator of our

choice. We can then write the loss as:

MSPBE(v)
def
= ||ΠBv − v||2dπ

where Π is a projection operator which maps a vector w to the nearest vector

in V using the norm ||.||dπ to measure distance.

This objective is perhaps the most natural in retrospect, since a solution

of the MSPBE is the same as a TD-fixed point, a set of parameters for which

semi-gradient TD would make no updates on average. For linear function ap-

proximation and some weak assumptions, there is a unique minimizer of the

MSPBE. Similar to the MSBE, directly computing the gradient of the MSPBE

yields an expression that requires two independent samples of the next state.

Nevertheless, this problem can be circumvented by tracking appropriate quan-

tities, as in the gradient TD methods. Unfortunately, an additional obstacle

for the MSPBE is that the projection operator is not easy to compute for

arbitrary function classes so, aside from linear function approximation, it can

be difficult to optimize.
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2.4 Linear Algorithms

In this section, we give descriptions of many of the algorithms of the TD

family along with their update rules. Many of these algorithms were derived

specifically to be used with linear function approximation and, as such, we later

present experiments utilizing them in the TTN architecture. We describe the

possible advantages that these linear TD algorithms may bring.

Gradient TD

The gradient TD family of algorithms, including TD with gradient correc-

tions (TDC) [24] , was designed to offer more robust convergence guarantees.

While the classic TD algorithm with linear function approximation may di-

verge in the off-policy case, TDC retains convergence guarantees. This is

accomplished by modifying the classic TD update so it corresponds to the

gradient of the mean-squared projected Bellman error. In this way, the fixed

point of TDC is identical to that of TD but additionally, as a gradient descent

method, convergence is assured.

The additional robustness does come at a cost since TDC requires an ad-

ditional set of parameters to be estimated for the gradient correction term.

Overall, factoring the additional updates, this means TDC is approximately

twice as expensive in terms of time and memory as regular TD. Empirically,

even in the on-policy case, TDC may offer certain advantages over regular TD

such as lower sensitivity to step sizes.

Emphatic TD

Proposed by Sutton et al. [36], emphatic TD (ETD) was first motivated

by the off-policy setting to find a convergent algorithm that could avoid the

problems associated with the deadly triad of bootstrapping, off-policy updates

and function approximation. While we focus on the on-policy setting in this

work, ETD is nevertheless an interesting algorithm to try as it provides a new

update rule which places more emphasis on certain states and de-emphasizes

others. This emphasis mechanism results in a different fixed point compared

to the classic TD algorithm and can potentially lead to better solutions.

True-online TD
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The True-online TD (TOTD) algorithm [32] was motivated by the dis-

crepancy between the forward and backward views of TD(λ) in the online

setting, By introducing a new forward view, the authors find that there is a

backward view that produces exactly the same set of updates, encapsulated

in the TOTD algorithm. Experimental evidence showed this algorithm often

performed better than vanilla TD(λ) for online learning [33].

Least-squares TD

Least-squares TD (LSTD) [6] trades off computational complexity, in time

and memory, in order to achieve better sample efficiency. More specifically,

LSTD requires the storage of the inverse of a d×d matrix and a vector of length

d: O(d2) memory overall, where d is the number of features. By using the

Sherman-Morrison formula, it is possible to incrementally update the matrix

with one transition at a time at the cost of O(d2) computation per timestep. In

summary, LSTD is d times more expensive than the previous linear algorithms

in terms of both time and memory. In practice, LSTD has been found to have

better sample complexity and be less sensitive to hyperparameters [6, 10].

A notable variant is forgetful LSTD (FLSTD). Introduced by Van Seijen

et al. [41], FLSTD uses a modified update rule, allowing the estimates of A

and b to focus on more recent transitions. This property can be advantageous

if we are in a setting where older transitions are less reliable than recent ones,

including control or, in the presence of changing features—as in Two-Timescale

Networks.
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Chapter 3

Two-Timescale Networks

In this chapter, we introduce the Two-Timescale Network (TTN) architecture,

describing the learning algorithm along with its associated convergence guar-

antees. We also discuss possible surrogate objectives to be used within TTNs

and associated desiderata.

TTNs split the task of learning an accurate value function into two parts:

finding effective features and optimizing a linear value prediction based on

them. The approximate value function is defined as V̂ (s)
def
= xθ(s)>w, where

θ represents the parameters of the feature construction and w are a set of

linear weights. Essentially, the form is the same as for linear value function

approximation. The only difference is that, in this case, the features are not

fixed and are dependent on the parameters θ.

In practice, two learning processes are run in tandem; the agent updates

both θ and w at every step by each optimizing a separate objective. w is

updated using any RL algorithm designed for linear function approximation,

including TD, gradient TD or least-squares TD. Meanwhile, θ is optimized

by using stochastic gradient descent steps on some chosen surrogate objective

Lslow.

In Fig 3.1, we see that we can interpret TTNs as a neural network with two

heads. One outputs V̂ (s), the value estimate and the other Ŷ (s) = xθ(s)>w̄,

an auxiliary prediction required to compute the surrogate loss. For example,

this could be another value estimate or a prediction of the next reward. Note

that, here, there are other auxiliary parameters w̄ which do not affect the
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features directly but assist in training them.

3.1 Training Algorithm

s Outputsx (s)
θ

w
w V(s)^

 Y(s)  ^ 

Hidden layers

Figure 3.1: Two-Timescale Network architecture. The diagram depicts the
neural network structure, starting with the input state as the leftmost layer.
There are two output heads Ŷ (s), for the surrogate objective, and V̂ (s), for the
value estimate. Note that the dotted line associated to w indicates that there
is no error signal propagated backwards through this connection to update
the previous layers since the value-learning process is separated from feature-
learning.

Training TTNs are straightforward. After choosing a surrogate objective

Lslow, a neural network can be trained in the standard manner using stochastic

gradient descent to minimize that objective. For example, we could choose

Lslow(v) = MSTDE(v), the mean-squared TD error. For the value-learning

process, we need to choose an appropriate algorithm for approximating the

value function with linear function approximation—any algorithm from the

TD family. The TD algorithm will be (implicitly) optimizing an objective

Lvalue. For every transition of experience the agent receives, we do an update

for each process: one for the feature-learning neural network and one for the

linear value-learning head. This is summarized in Algorithm 1.

While the algorithm is presented for the online case, it can be easily adapted

to other settings. For example, a replay buffer can readily be incorporated

by sampling transitions from a set of stored experiences. Additionally, mini-

batches can also be utilized by adapting the learning algorithms appropriately.
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Algorithm 1 Training of TTNs

1: procedure Train(w,θ, w̄, π) . π is a fixed policy
2: Initialize θ, w̄ with Xavier initialization, w to 0 and the starting state
s according to the environment

3: while training do
4: a← action chosen by π given s
5: r, s′ ← Environment(s, a) . Get reward and next state
6: θ, w̄← GradientDescent on Lslow using sample (s, r, s′)
7: w← Update on Lvalue using sample (s, r, s′)
8: s← s′

9: end while
10: return learned parameters w,θ, w̄
11: end procedure

For stochastic gradient descent-like methods, this can simply be accomplished

by averaging the updates over the minibatch.

3.2 Theory and Convergence

Convergence results can be proved for the parameters of both the feature

and value-learning processes. The intuition is as follows: The TD algorithms

with linear function approximation can be proved to converge (under certain

assumptions) [6, 37, 40]. These analyses treat the features as being fixed

throughout learning. By using a two-timescale approach [3] and utilizing a

smaller step size for the feature-learning part relative to the value-learning

process, we can treat the features as slow-changing relative to the weights of

the linear value function. In other words, we can consider the features to

essentially be static, enabling us to use the regular convergence results for the

TD algorithms.

A formal result is presented below:

Assumption 1: The pre-determined, deterministic, step-size sequence

{ξt}t∈N satisfies

ξt > 0 ∀t ∈ N,
∑
t∈N

ξt =∞,
∑
t∈N

ξ2
t <∞.

These are the classic Robbins-Monro conditions on the step size to guaran-

tee convergence. For example, αt = 1
tc

satisfies these conditions for c ∈ (1
2
, 1].
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Assumption 2: The Markov chain induced by the given policy π is

ergodic, i.e., aperiodic and irreducible.

Assumption 2 implies that the underlying Markov chain is asymptotically

stationary and henceforth it guarantees the existence of a unique steady-state

distribution dπ over the state space S [20], i.e., limt→∞ P(St = s) = dπ(s),

∀s ∈ S. Note that the policy π is unchanging throughout the whole process

i.e. we are not performing and policy optimization.

Assumption 3: Given a realization of the transition dynamics of the

MDP in the form of a sample trajectory Oπ = {S0, A0, R1, S1, A1, R2, S2, . . . },

where the initial state S0 ∈ S is chosen arbitrarily, while the action A 3

At ∼ π(St, ·), the transitioned state S 3 St+1 ∼ P (St, At, ·) and the reward

R 3 Rt+1 = R(St, At, St+1).

Assumption 3 ensures that the data is collected in the typical fashion for

reinforcement learning agents, as a sequence of transitions.

Assumption 4-TD(λ): The pre-determined, deterministic, step-size

sequence {αt}t∈N satisfies:

αt > 0,∀t ∈ N,
∑
t∈N

αt =∞,
∑
t∈N

α2
t <∞, lim

t→∞

ξt
αt

= 0.

This assumption encompasses the two timescales for the feature-learning

and value-learning. With this condition, we can ensure that the value-learning

is done at a significantly faster rate than the feature-learning. In other words,

we can effectively treat the features as fixed when learning the linear weights

of the approximate value function.

Theorem 1 Let θ̄ = (θ, w̄)> and Θ ⊂ Rm+d be a compact, convex subset with

smooth boundary. Let the projection operator ΓΘ be Frechet differentiable and

Γ̂Θ
θ̄

(−1
2
∇Lslow)(θ̄) be Lipschitz continuous. Also, let Assumptions 1-3 hold. Let

K be the set of asymptotically stable equilibria of the following ODE contained

inside Θ:

d

dt
θ̄(t) = Γ̂Θ

θ̄(t)(−
1

2
∇θ̄Lslow)(θ̄(t)), θ̄(0) ∈ Θ̊ and t ∈ R+.
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Then the stochastic sequence {θ̄t}t∈N generated by the TTN converges almost

surely to K (sample path dependent). Further,

TD(λ) Convergence: Under the additional Assumption 4-TD(λ), we

obtain the following result: For any λ ∈ [0, 1], the stochastic sequence {wt}t∈N
generated by the TD(λ) algorithm within the TTN setting converges almost

surely to the limit w∗, where w∗ satisfies

Πθ̄∗T
(λ)(Φθ̄∗w

∗) = Φθ̄∗w
∗, (3.1)

with θ̄∗ ∈ K (sample path dependent) and where T (λ) is the projected Bellman

operator and θ̄∗ is a matrix with each row being the set of features for a state

(with parameters θ̄∗).

The first part of this theorem states that the parameters of the neural

network converge to a fixed point where the gradient is equal to 0. The exact

convergence point will depend on the path taken by the iterates. Note that this

does not preclude the possibility of converging to a saddle point of Lslow. While

this remains a possibility for the nonconvex loss surfaces of neural networks,

there is empirical and theoretical evidence that stochastic gradient descent can

avoid saddle points and converge to a local minimum [14, 18].

The second part of the theorem states that the additional parameters of lin-

ear value function trained by TD(λ) also converge to a solution of the projected

Bellman equation (ie. a minimum of the mean-squared projected Bellman er-

ror). For linear independent features, there would a unique solution but, since

the features are generated by a neural network, this condition may not hold.

As such, there could be infinitely many solutions satisfying the projected Bell-

man equation and the convergence point will also depend on the initialization

and the exact path taken by the iterates.

While this theorem considers only TD(λ), similar convergence guarantees

can be obtained for other TD algorithms such as least-squares TD and gradient

TD. The proof of this theorem along with additional results can be found in

the conference paper version of this thesis work [7].

Note that, while the value estimates depend on the features, there is no

dependence in the other direction. Because of this unilateral coupling, it may
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be possible to use a simpler approach to provide convergence guarantees. The

two-timescale method was chosen due to its intuitive appeal—slow-changing

features and fast-changing values—and since it is a technique that has been

utilized in reinforcement learning previously [11, 37].

There are some noteworthy differences between the theory and the practi-

cal implementation of TTNs. While assumption 4 dictates that the step sizes

of both learning processes must decay over time, in practice, we use constant

learning rates. This matches conventional usage of stochastic gradient de-

scent algorithms in reinforcement learning [1, 16, 26]. In this situation, while

the convergence theorem would not hold as-is, we can expect the weights to

converge to a region of low loss whose size depends on the step size used [4].

Furthermore, the two-timescale condition on the step sizes is not explicitly

enforced in our experiments. Since the optimal step size is dependent on

properties of the optimizer and the loss function, we instead tune the step

sizes for each process empirically, without verifying that the step size for the

feature parameters is lower than the one of the linear value weights. In our

experiments, we happen to find that the step size for feature-learning is lower

than the one for value-learning though this may be a spurious result and should

not be taken too seriously due to differences in the optimization algorithms.

We can see that the update rules analysed here make use of a projection

operator to a compact set, which is not present in the regular update. This is

due to a technical condition for the proof requiring that the weights generated

by the updates be bounded for the learning processes. Note that is a weak

condition since the compact set can be very large and is allowed to grow over

time, meaning it can eventually include any parameter value. Hence, this

projection can have negligible or no impact so, in practice, we do not apply

this projection for simplicity.

The theorem holds for twice continuously-differentiable functions. While

this is a large class of functions, it does not include conventional neural net-

works with rectified linear activations (which were used in our experiments).

To satisfy this requirement, we could utilize smooth versions of the rectified

linear unit, such as the softplus function or the exponential linear unit [8].
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Practically, we do not expect there to be a significant difference in perfor-

mance between these choices.
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Chapter 4

Online Policy Evaluation

In this chapter, we empirically investigate several aspects of Two-Timescale

Networks, including the utility of different linear policy evaluation algorithms,

the influence of the surrogate objective and comparisons to existing algorithms.

These experiments were conducted on 6 different environments, with extensive

hyperparameter tuning for all the algorithms.

4.1 Setup and Environments

Experiments were conducted in the online policy evaluation setting. The

behaviour policy is fixed and the agent receives a single transition at every

timestep according to its current state and the selected action, with which

it can perform an update to its parameters. The agents were evaluated ac-

cording to the mean-squared error (MSE) between the learned and true value

functions for the fixed policy at certain checkpoints during training. For all

plots, hyperparameters were chosen to minimize the average error across the

checkpoints in the latter half of training.

The true value functions were estimated by sampling states using the be-

haviour policy and then running extensive rollouts from each of them using

the behaviour policy until the episode terminated (for episodic tasks) or a cap

was reached (for continuing tasks). The average return from those rollouts

was treated as the true value function.
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4.1.1 TTN Settings

For all the experiments, the TTN architecture had a single hidden layer of 256

hidden units and rectified linear activations to use as the representation, with

the weights in the neural network initialized according to Xavier initialization

[15]. The neural network was optimized using the AMSGrad optimizer [28]

with β1 = 0 and β2 = 0.99 on the MSTDE (unless specified otherwise). For

the linear head, the weights were all initialized to 0 with the optimization

algorithm varying according to the experiment.

4.1.2 Environments

We used 6 environments to test our algorithms. These were puddle world,

image and nonimage versions of catcher, acrobot, puck world and cartpole.

The details are presented below:

Puddle World

This is is a classic environment introduced by Boyan and Moore [5] consist-

ing of a 2-d continuous gridworld with two large puddles. The agent starts in

the South-West corner and must reach the North-East corner, getting a large

negative reward for crossing the puddles. The 2-dimensional state consists of

the (x, y)-position of the agent.

The policy takes the North and East actions with equal probability, moving

towards the goal.

Catcher

Catcher is a game from the Pygame Learning Environment [39]. Apples

fall from the top of the screen and the agent must control a paddle at the

bottom to catch them. The actions are left or right, each increases the velocity

in the respective direction. A third ”None” action does nothing. There are

two versions of catcher, differing in their state. For the image version with

visual inputs (I), the agent receives a 64 × 64 pixel grayscale frame showing

the playing field. Since this image is not a Markov state due to the inability

to perceive velocity of the paddle, we stack two consecutive frames and treat

this stack as the state. For the nonimage version (NI), the agent receives a 4-
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dimensional state vector consisting of the velocity of the paddle, the x-position

of the paddle and the (x, y) positions of the apple.

The policy chooses the action in the direction of the apple if the apple is

within a euclidean distance of 25 units of the paddle. If not, then 80% of the

time, the agent chooses the ”None” action and with 20% chance, an action is

selected uniformly at random.

Puck World

Puck World is another game form the Pygame Learning Environment. In

this game, the agent moves in a two-dimensional box towards a good puck while

avoiding a bad puck. The 8-dimensional state consists of player x location,

player y location, player x velocity, player y velocity, good puck x location,

good puck y location, bad puck x location and bad puck y location. The action

space consists of the 4 cardinal directions, each increasing the agent’s velocity

in that direction, along with a ”None” action, doing nothing. The reward is

the negative distance to the good puck plus a penalty of −10 + x if the agent

is within a certain radius of the bad puck, where x ∈ [−2, 0] depends on the

distance to the bad puck (the reward is slightly modified from the original

game to make the value function less uniform over states).

The policy moves the agent towards the good puck, while having a soft

cap on the agent’s velocity. In more detail, to choose one action, it is defined

by the following procedure: First, we choose some eligible actions. The None

action is always eligible. The actions which move the agent towards the good

puck are also eligible. For example, if the good puck is Northeast of the agent,

the North and East actions are eligible. If the agent’s velocity in a certain

direction is above 30, then the action for that direction is no longer eligible.

Finally, the agent picks uniformly at random from all eligible actions.

Acrobot

In the classic Acrobot domain, the agent consisting of two links has to

swing up past a certain height. The agent observes a 4-dimensional state

consisting of the angles and the angular velocities of each link. The available

actions are three possible levels of torque to be applied to the joint.

The evaluated policy is obtained by training an agent with true-online
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Sarsa on a tile coding representation and then fixing its learned epsilon-greedy

policy.

Cart Pole

In the classic Cartpole environment, the agent has to balance a pole on a

cart. The state is given by vector of 4 numbers: cart position, cart velocity,

pole angle and pole velocity. The two available actions are applying a force

towards the left or the right. Rewards are +1 at every timestep and an episode

terminates once the pole dips below a certain angle or the cart moves too far

from the center of the field.

The policy to be evaluated consists of applying force in the direction the

pole is moving with probability 0.9 (stabilizing the pole) or applying force in

the direction of the cart’s velocity with probability 0.1. We chose this policy

to ensure that the agent doesn’t perform overly well, which would result in an

uninteresting value function that is mostly constant across the state space.

4.2 TTN and Competitors

Here, we compare TTN to some baseline algorithms for online policy evalu-

ation. We utilize TTN with least-squares TD (LSTD) as the value-learning

algorithm since it seemed to perform best overall.

Nonlinear TD

This corresponds to the most simple and common approach of training a neural

network, end-to-end with semi-gradient TD. This algorithm also incorporates

a tunable λ parameter for eligibility traces. Note that this approach has no

theoretical guarantees. It is known that semi-gradient TD can diverge with

nonlinear function approximation in certain cases [40] but, in practice, it can

often work well with neural networks.

Nonlinear TD-Reg

This variant of nonlinear TD is an adaptation of the LS-DQN algorithm [21]

to online policy evaluation. In this algorithm, we incrementally estimate the

LSTD solution for the last layer’s weights, treating the final hidden layer as

a set of features. Then, at every step, we compute the regular nonlinear TD
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update with some additional regularization towards the LSTD solution. By

adding this regularization term, we might expect to gain some of the benefits

that LSTD enjoys in the linear setting, while still enabling the use of neural

networks. The strength of this regularization is a tunable parameter that we

sweep over.

Nonlinear GTD

This algorithm was derived by Maei et al. in [23] as an extension of the gradient

TD algorithm to nonlinear function approximation. The main motivation was

to derive a convergent algorithm for nonlinear function approximation. The

authors consider a nonlinear MSPBE objective and develop an algorithm that

performs gradient descent on it, using only linear time and memory in the

number of parameters. Note that the fixed points of nonlinear TD are also

fixed points of nonlinear GTD, so we could expect nonlinear GTD to find

similar weights of similar quality (with additional stability). While this is the

first theoretically-sound TD algorithm for nonlinear function approximation,

it did not see much use and empirical evaluations of the algorithm are scarce.

ABTD and ABBE

These algorithms were introduced by Di Castro et al. [11]. Both of these

algorithms function similarly. We use a regular fully-connected neural network

and split the parameters into two sets: the last set of linear weights and the

rest. During training, we set two different learning rates, one for each set.

ABTD uses the semi-gradient TD update, while ABBE uses the full gradient

of the MSTDE to compute updates. Note that we also utilize the AMSGrad

optimizer.

This approach is similar to TTN, but with a key difference. The two set of

weights are jointly trained as part of the same neural network. This is unlike

TTN, where the optimization process for the weights of linear value function

is separate from the one used to learn the features. In this architecture, there

is only a single output head for the network.

By using a two-timescale approach, the authors are able to prove conver-

gence of the parameters under standard assumptions, making this algorithm

theoretically-sound.

24



Note that there is a third algorithm presented by Di Castro et al. in this

paper, ABPBE, which optimizes the projected Bellman error. We did not

run that algorithm since it was computationally infeasible, requiring memory

proportional to O(d2m), where d is the number of features and m is the number

of parameters of the features (this is large for neural networks). Also, the

derivation was similar in spirit to that of nonlinear GTD, which we do include

as a baseline. Hence, we omitted that algorithm.

Catcher

Root 
Mean 

Square 
Error

Number of Steps

TTN

ABBE

Nonlinear-GTD

Nonlinear-TD
ABTD

Nonlinear TD- Reg

Image Catcher

Root 
Mean 

Square 
Error

Number of Steps

TTN

ABTD

Nonlinear-GTD

Nonlinear TD-Reg

ABBE

Nonlinear TD

Puddleworld

Root 
Mean 

Square 
Error

Number of Steps

TTN

ABBE

Nonlinear-GTD

Nonlinear TD

ABTD

Nonlinear TD-Reg

Puck World

Root 
Mean 

Square 
Error

Number of Steps

TTN

ABBE

Nonlinear-GTD

Nonlinear-TD
ABTD

Nonlinear TD- Reg

Cartpole

Root 
Mean 

Square 
Error

Number of Steps

TTN

ABBE

Nonlinear-GTD

Nonlinear-TD

ABTD

Nonlinear TD- Reg

Acrobot

Root 
Mean 

Square 
Error

Number of Steps

TTN with MSTDE

TTN with next state

Nonlinear-GTD

Nonlinear-TD

ABBE
Nonlinear TD- Reg

ABTD

Figure 4.1: Learning curves of TTN and competitor algorithms. TTN offers
competitive performance with the other algorithms across this set of environ-
ments.
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From Fig 4.1, we find that TTNs is a competitive algorithm in most en-

vironments and, for some, performs best at all points during training. This

difference is particularly visible in the Puddle World domain, where TTN

achieves an asymptotic error of less than half the second best algorithm’s. In

the physical environments, Cartpole and Acrobot, TTN does perform worse

compared to the others. Looking at the surrogate objective section, we see

that this can be explained by the poor performance of the MSTDE to drive

feature-learning. For Cartpole, using the semi-gradient MSTDE instead yields

much better results while, for Acrobot, the next state surrogate objective is

adequate.

These results also show that nonlinear TD, the most common algorithm,

does not perform as well as many of the alternatives. On the other hand,

nonlinear GTD, which adjusts nonlinear TD to be theoretically-sound, out-

performs vanilla nonlinear TD in every domain and is, overall, quite effective

compared to all the other competitors.

4.3 Linear Algorithms

We investigate the differences between choices of learning algorithms for the

linear value head with particular attention to least-squares methods and eligi-

bility traces. We consider the following algorithms: classic TD (TD), TD with

gradient corrections (TDC), emphatic TD (ETD), true-online TD (TOTD),

true-online emphatic TD (TOETD), least-squares TD (LSTD) and forgetful

least-squares TD (FLSTD). Aside from TD and TDC, these methods have

been limited to linear function approximation, without extensions to nonlin-

ear functions such as neural networks.

Least-squares methods have been found to achieve better sample efficiency

compared to other linear methods [6, 19]. The main drawback is their com-

putational and memory costs, requiring O(d2) time and memory where d is

the number of features, as opposed to the linear cost for the other algorithms.

While problematic when we must deal with very large number of features, this

cost can be acceptable when d is relatively low. TTNs provide a good use
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case for least-squares algorithms since the user can decide how large to make

the hidden layers. Additionally, computing a forward pass through a fully-

connected layer in a neural network already requires O(d2) time and memory,

so employing a least-square method does not increase the (asymptotic) total

cost.

From Fig. 4.2, we see that the least-squares methods perform significantly

better than other linear algorithms, confirming previous findings about LSTD’s

sample efficiency. There doesn’t seem to be a large difference between LSTD

and FLSTD. This is a bit surprising considering that LSTD simply computes

an average over all past features (and rewards), including invalid features from

older transitions. As such, we would expect FLSTD to have an advantage as

it can put more weight on the recent features, which correspond better to

the current feature parameters. To explain LSTD’s good performance, it is

possible that the η hyperparameter (for initializing the A matrix) can prevent

the early transitions from having an unduly large impact on the average A

matrix (estimated by LSTD) by regularizing it towards a diagonal matrix. At

the later stages of training, A can still be accurate as the features are then

more stable and the influence of the early, invalid features have been diluted

by averaging across a large number of transitions.
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Figure 4.2: Learning curves for least-squares methods. These plots compare
the performance of LSTD and FLSTD to some of the other linear algorithms.
Both of the least-squares methods displayed better performance in terms of
learning speed and asymptotic error in all the domains, with substantial dif-
ferences in certain environments.
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squares methods, the best-performing values of λ are closer to 1. On the other
hand, for nonlinear TD, λ = 0 is the best choice.
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Figure 4.4: Step size sensitivity curves. The average RMSE over the last half
of training is plotted against the value of α. The least-squares methods seem
to be the least sensitive to their (effective) step size parameter, while the other
linear algorithms seem to have similar shapes. Out of those, TOTD seems to
be slightly more robust to the step size.

Eligibility traces have been found to speed up learning by spreading credit

backwards in time and updating previously seen states. Their derivation hinges

on an equivalence between the forward and backward views of TD updates

with the λ-return target. This enables the update to be done in an online,

incremental fashion without having to wait to the end of an episode. Unfortu-
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nately, this equivalence only holds for linear function approximation, without

a theoretically-sound extension to more general functions. Nevertheless, by

matching the form of the eligibility trace update rule, it is still possible to

write a trace update for nonlinear function approximators. So, for nonlinear

TD(λ) and a generic function approximator with parameters θ, we would have

et+1 = γλet +∇θVθ(St)

where et is the eligibility trace vector and ∇θVθ(St) is the gradient of the value

function with respect to the parameters.

From the λ sensitivity plots (Fig. 4.3), we can observe that most of the

linear algorithms benefit from a high value of λ, with the exception of the

least-squares methods. LSTD and FLSTD are relatively insensitive to the

choice of λ. To explain the difference between least-squares methods and

the rest, we provide the following hypothesis: the main purpose of eligibility

traces is to help temporal credit assignment. Least-squares methods are able

to compute a batch solution on all previously seen data (in an incremental

manner). By doing so, temporal credit assignment is already done effectively

on all previous states and rewards, obviating the need for traces. Note that

increasing λ does still have an effect on the fixed point solution (moving it

closer to the Monte-Carlo solution), which could explain the slight differences

in performances across λ values.

Contrary to the linear algorithms, nonlinear TD’s performance suffers from

any λ > 0. This is unsurprising considering that the naive eligibility trace used

is not theoretically-sound. The addition of these traces seems to be hindering

learning instead of assisting it.

4.4 Utility of optimizing MSPBE

In this section, we highlight the utility of optimizing the MSPBE as opposed to

the MSTDE for learning values. More specifically, one, we show that training

a neural network end-to-end on the MSTDE provides worst estimates of the

value function than only using the MSTDE to drive feature-learning along with
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optimizing the (linear) MSPBE for values. Second, we show that optimizing

MSTDE indeed yields better features by comparing the TTN’s performance

to one where the features are fixed (a neural network at initialization). For

completeness, we also include a curve for using the MSTDE only on the linear

part with fixed features.

For the end-to-end training on the MSTDE, we utilize the AMSGrad op-

timizer and for the TTN linear part, we use LSTD (which optimizes the

MSPBE). These choices were made to reflect what we believe to be are good,

realistic settings for these algorithms in practice. Other settings were the same

as before.

To summarize, we test these four settings:

• MSPBE-TTN: LSTD on linear part, MSTDE for feature learning. This

is the regular TTN algorithm.

• MSPBE-Fixed: LSTD on linear part, no feature learning. We test what

happens when the features are fixed, instead of learned. We want to

check that learning features does provide some benefit.

• MSTDE: MSTDE from end-to-end, i.e. MSTDE for linear part and

MSTDE for feature learning. We test what happens if we do not use the

MSPBE for the linear part. We want to check that using the MSPBE

for learning the value function is superior to using the MSTDE.

• MSTDE-Fixed: MSTDE for linear part, no feature learning. We test

what happens if we only use the MSTDE with a fixed representation.

This is a sanity check, we expect this to be the worse setting.

From these plots (Fig. 4.5), we see that the two aforementioned phenomena

do occur. There is some variability between the results depending on the

specific environment. In certain environments, optimizing the MSTDE directly

seems to be relatively effective such as Catcher but, on others, the MSPBE is a

better choice. Note that in none of the environments do we see that optimizing

the MSPBE with TTN gives worse results than the end-to-end training on the

MSTDE.
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These results are in line with previous work [31] that find that the MSTDE

may not be the best objective to optimize directly. On other hand, it has been

argued that the MSPBE is the most appropriate choice of objective [35] and

our experiments support this claim.
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Figure 4.5: Learning curves under four different combinations corresponding to
using the MSPBE or MSTDE for value-learning and fixed vs. learned features.
We see that utilizing the MSPBE to learn the value function is superior to
using the MSTDE (comparison of MSPBE-TTN and MSTDE curves). Also,
the MSTDE can indeed be helpful for driving feature-learning (comparison of
MSPBE-TTN and MSPBE-Fixed curves).
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4.5 Surrogate Objectives

The TTN architecture allows us to flexibly specify the objective for driving

the representation-learning aspect. In the previous experiments, we focused

on the MSTDE since it was a simple objective which is directly related to our

ultimate goal, predicting the value function. It is certainly possible to choose

other losses instead and, in fact, finding suitable objectives for this purpose

has been the subject of much research under the branches of auxiliary tasks or

self-supervised learning. For example, the UNREAL architecture [17] proposes

to make the agent learn to control pixels or the activations of hidden units as

an auxiliary task to help learn useful representations.

Here, we investigate some simple alternatives to the MSTDE as a surro-

gate objective: predicting the next state, the next reward, or using the semi-

gradient version of the MSTDE (treating the next state’s value as fixed). The

first two objectives are theoretically-sound since we are performing gradient

descent on a fixed loss function (the targets are fixed for each step). On the

other hand, the semi-gradient MSTDE is a common choice even though it does

not (currently) have any theoretical guarantees with neural networks.

For these experiments, we use LSTD for the linear part for each of the

objectives since it performed best. As opposed to the other experiments, we

also sweep over the learning rate for the feature-learning part to accommodate

the different objectives.
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Figure 4.6: Learning curves under various surrogate losses. We find that there
is no clear pattern as to which surrogate loss is superior, with the best one
varying depending on the environment.

From figure 4.6 we find that the performance of the different objectives var-

ied greatly across domains. In some environments such as Puck World, these

loss functions all performed similarly while in others like Cartpole, there was

greater variance between them. Overall, these results seem to indicate that the

correct surrogate objective is task-dependent and that some experimentation

would be required to find the best. It is notable that none of the surrogate

objectives completely failed on any of the environments though, suggesting
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these are all reasonable choices.

Further research into surrogate objectives may lead us to more principled

approaches into choosing them. For example, one line of research is exploring

using geometrical properties of value functions to produce suitable feature-

learning objectives [9].
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Chapter 5

Control

In this chapter, we present some experiments utilizing TTNs in the control

setting. As baseline algorithms, we include Deep Q-Networks (DQN) [26] and

least-squares DQN (LS-DQN) [21]. Inspired by fitted Q-iteration [12, 29],

DQN adapts the classic Q-learning algorithm for use with neural networks by

introducing two main additions to stabilize training: experience replay [22]

and target networks.

To adapt TTNs to the control setting, we also make several modifica-

tions. We introduce a replay buffer to mitigate the difficulties of learning

online with neural networks. This buffer is used for both feature and value-

learning, though in different ways. For feature-learning, at every step, a mini-

batch from the replay buffer is sampled and a gradient step is performed on

it, minimizing the semi-gradient MSTDE. For value-learning, we directly use

fitted Q-iteration (FQI) [12] for linear function approximation, treating the

whole replay buffer as a batch of data. In more detail, the Q-learning targets,

y = r+γmaxa′ Q(s′, a′) are computed for every transition in the replay buffer.

Then, to obtain the new set of value weights, we solve a linear regression prob-

lem where y is the response and xθ(s) are the predictors. This solution can

efficiently be found with standard solvers in O(d2n) time, where d is the size

of the last hidden layer of the network and n is the length of the replay buffer.

Since this is a relatively expensive operation, the weights are only recomputed

every m steps, reducing the amortized per-step cost to O(d2n/m).

Unlike the original FQI algorithm designed for a fixed batch of data, we
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consider the online setting, with a sliding window of experience being accu-

mulated in the replay buffer. Due to this difference, we incorporate a regular-

ization term in the FQI objective to encourage the linear regression solution

to remain close to the current weights, just as in LS-DQN [21]. This can help

prevent the parameters from changing wildly across consecutive FQI solves

when the data in the buffer has changed.

The LS-DQN variant augments the standard DQN by periodically updating

the final layer’s set of weights towards the solution obtained by linear FQI,

using the final hidden layer as the features. Once again, the primary difference

between LS-DQN and TTN is that LS-DQN trains the representation jointly

with the value estimates, while in TTN, these two processes are separated.

We evaluate the algorithms on Catcher, the nonimage and image versions.

For nonimage (image) Catcher, we run the algorithms for 200 thousand (10

million) steps. The replay buffer was set to have a maximum size of 20 thou-

sand (200 thousand) and initialized with 5000 (50000) steps using a random

policy for non-image (image) Catcher. The neural network architectures were

similar for all three algorithms: for nonimage catcher, the network consisted

of three hidden layers of 128 units with ReLU activations. For image catcher,

the chosen architecture was similar to the original DQN’s [26], with two con-

volutional layers followed by a fully-connected layer of 256 units. To make

comparisons more fair, the frequency for which the target network was up-

dated for DQN/LS-DQN and TTN performed FQI solves were set to the same

value. This ensures that the Q-learning targets were updated the same number

of times for all the algorithms. These updates were done every 1000 (10000)

steps for non-image (image) Catcher.

Concerning the other hyperparameters, on nonimage Catcher, we do a

sweep over αslow and λreg, the regularization parameter, for TTN and sweep

over the learning rate and the number of steps over which ε is annealed for

the DQN variants. Minibatches of size 32 were sampled from the replay buffer

at every step to do updates. ε-greedy policies are used, for TTN, ε is fixed

(for simplicity) while for DQN/LS-DQN it is annealed over time, as described

originally. The final value of ε for all algorithms was set to 0.01 (0.1) for the
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Figure 5.1: Comparison of returns obtained by each algorithm on a) non-image
Catcher and b) image Catcher.

non-image (image) versions. Each algorithm is run 10 times (5 times) for 200

thousand steps (10 million steps) on the non-image (image) Catcher.

From Fig. 5.1, we find that TTNs show competitive performance compared

to both DQN variants. TTNs display a marked improvement early in training.

While DQN catches close to zero apples for a large number of steps before

suddenly improving, the length of this initial “warmup” phase is minimal for

TTN. Our hypothesis is that this advantage is brought by the use of a least-

squares method, fitted Q-iteration, for the value-learning process. Q-learning,

the core learning mechanism in DQN, is a stochastic approximation algorithm

which finds a good solution through the iterative process of taking a large

number of small noisy steps. Hence, due to the small steps and noisy updates,

convergence could be slow. On the other hand, fitted Q-iteration with linear

function approximation is directly able to compute a closed-form solution on

a whole batch of data. This can integrate any new information the agent

observes quickly, without having to rely on noisy gradient steps to readjust

the current set of weights. The experiments of Levine et al. support this

hypothesis as they find that larger batch sizes with DQN are advantageous for

learning [21]. Interestingly, LS-DQN does not seem to perform better than the

vanilla DQN. This can be due to the fact that the FQI updates in LS-DQN

make large changes to the weights in the final layer. Since there is only one

set of weights for the last layer in LS-DQN, this may destabilize the learning

process for the earlier layers.
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On image Catcher, we can also observe that all three algorithms seem to

be prone to forgetting; the average return increases at first but then decreases

significantly after some amount of time. TTN is particularly affected by this,

as the average return reaches almost 500 before dipping back down to around

100. A plausible explanation is that, when the policy is close to optimal, the

replay buffer gets filled exclusively with the data from certain, near optimal,

trajectories. Since the training data no longer covers the state space effectively,

the agent forgets the optimal policy in many states. Thus, if the agent happens

to land in one of these rare states, it would not be able to perform well. This

can have a compounding effect as the agent then has to learn the action-values

in those states again which themselves bootstrap off incorrect values from

other rare state-action pairs in Q-learning. Thus, the agent’s performance can

suffer significantly. By looking at the number of steps elapsed in the upwards

spike in TTN’s average return, we find that the average return is greater than

200 for over a million steps, much larger than the replay buffer’s capacity

of 200 thousand transitions. This lends credence to the previous forgetting

hypothesis, as the buffer could be completely refilled by transitions from a

near-optimal policy. Note that, despite the drop, TTN’s average return still

remains higher than the DQN algorithms’ at any point during training, and

slowly increases over time thereafter.

In conclusion, we find that TTNs can perform well in control in comparison

to end-to-end methods such as DQN and LS-DQN. By utilizing FQI on entire

replay buffer, TTNs can learn more quickly, especially at the beginning of

training.
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Chapter 6

Conclusion and Future
Directions

6.1 Contributions

In this thesis, we investigated the Two-Timescale Network (TTN), a new ar-

chitecture for learning value functions which are nonlinear functions of the

state. The proposed architecture separates the feature and value-learning pro-

cesses, a departure from the standard deep RL approach of learning both parts

jointly. This separation enable the use of many classic linear policy evaluation

algorithms which do not have any sound extensions to nonlinear function ap-

proximation. We also presented a theorem showing that this training scheme

is guaranteed to converge under standard assumptions for temporal-difference

algorithms.

We performed a suite of experiments to investigate various design choices

related to TTNs. We found that the most effective linear algorithms for value-

learning were the least-squares methods, whose main drawback in terms of

computational costs are offset by choosing a relatively small number of fea-

tures. Additionally, eligibility traces were found to be an effective choice for

many of the linear algorithms although it was not beneficial when used naively

with nonlinear TD (a theoretically-unsound algorithm). The choice of surro-

gate loss was found to be environment-dependent and no surrogate loss uni-

versally outperformed the others. Finally, experiments in the control setting

with TTN combined with fitted Q-iteration showed that TTN’s can greatly

outperform DQN.
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6.2 Future Directions

The core idea of separating feature-learning and value-learning is general and

there are many aspects to be examined. We outline a couple of possible re-

search direction that may warrant further investigation.

Off-policy Learning and Variance Reduction

When the main objective is difficult to optimize, it may be easier to sepa-

rate the learning problem into two pieces: learning a representation and then

tackling the main task. By choosing a simpler surrogate objective to propel

representation-learning, it can be easier to obtain reasonable (though per-

haps not optimal) features. These features can then be leveraged with more

powerful optimizers developed for linear function approximation to obtain pre-

dictions for the main task. Overall, by reducing the noise in the optimization

process, we can expect the separation approach to lead to faster learning. Since

off-policy learning typically leads to higher variance gradients, it seems like a

suitable setting to examine to magnify the effect of any variance reduction.

Investigations into this hypothesis could be an interesting direction for future

work. Extending this idea further, it may be even more effective to decom-

pose an agent’s learned representation into separate modules, each with its

own surrogate objective to optimize. This may potentially reduce the variance

even further by decomposing the entire (difficult) optimization problem into

subproblems that are less noisy and easier to optimize.

Surrogate Objectives and Representation-learning

In this work, we did not find any conclusive evidence about which surrogate

objective was best. Since we only tried simple surrogate objectives, it is likely

that these are not robust to different environments. It would be interesting to

answer questions such as:

• What properties do the learned representations have for each surrogate

objective?

• What kind of representation do we want to learn?

• How can we design a surrogate objective to ensure that we learn desired
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representations?

Understanding Control Experiments

We found that TTN utilizing linear fitted Q-iteration was able to soundly

outperform DQN in the Catcher environment. While promising, it would be

good to confirm that TTNs are able to work effectively in a larger range of

environments. Additionally, looking to understand more deeply why TTN-

FQI gives much better performance, particularly during the early training

phase, would be of interest. A plausible hypothesis would be that using FQI

to directly solve for a good set of weights is much more effective than having to

a larger number of stochastic gradient steps as in DQN. It has been observed

previously that typical learning curves for DQN are flat for some large number

of steps at the beginning before suddenly jumping up. This may be due to

the fact that it takes a long time for the Q-values to be reasonably accurate

starting from a random initialization since each gradient step only makes small

noisy changes to the parameters. On the other hand, FQI can find the best

set of weights in a single solve, limiting the length of the ‘warmup’ phase.
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[8] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast
and accurate deep network learning by exponential linear units (elus).”
In: arXiv preprint arXiv:1511.07289 (2015). 18

[9] Robert Dadashi, Adrien Ali Taiga, Nicolas Le Roux, Dale Schuurmans,
and Marc G Bellemare. “The Value Function Polytope in Reinforcement
Learning.” In: arXiv preprint arXiv:1901.11524 (2019). 36

[10] Christoph Dann, Gerhard Neumann, and Jan Peters. “Policy evaluation
with temporal differences: A survey and comparison.” In: The Journal
of Machine Learning Research 15.1 (2014), pp. 809–883. 10, 12

44



[11] Dotan Di Castro and Shie Mannor. “Adaptive bases for reinforcement
learning.” In: Joint European Conference on Machine Learning and Knowl-
edge Discovery in Databases. Springer. 2010, pp. 312–327. 3, 18, 24

[12] Damien Ernst, Pierre Geurts, and Louis Wehenkel. “Tree-based batch
mode reinforcement learning.” In: Journal of Machine Learning Research
6.Apr (2005), pp. 503–556. 37

[13] Benjamin Eysenbach, Shixiang Gu, Julian Ibarz, and Sergey Levine.
“Leave no trace: Learning to reset for safe and autonomous reinforce-
ment learning.” In: arXiv preprint arXiv:1711.06782 (2017). 1

[14] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. “Escaping from saddle
points—online stochastic gradient for tensor decomposition.” In: Con-
ference on Learning Theory. 2015, pp. 797–842. 17

[15] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of train-
ing deep feedforward neural networks.” In: Proceedings of the thirteenth
international conference on artificial intelligence and statistics. 2010,
pp. 249–256. 21

[16] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg
Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and
David Silver. “Rainbow: Combining improvements in deep reinforcement
learning.” In: Thirty-Second AAAI Conference on Artificial Intelligence.
2018. 18

[17] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom
Schaul, Joel Z Leibo, David Silver, and Koray Kavukcuoglu. “Rein-
forcement learning with unsupervised auxiliary tasks.” In: arXiv preprint
arXiv:1611.05397 (2016). 34

[18] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I
Jordan. “How to escape saddle points efficiently.” In: Proceedings of the
34th International Conference on Machine Learning-Volume 70. JMLR.
org. 2017, pp. 1724–1732. 17

[19] Michail G Lagoudakis and Ronald Parr. “Least-squares policy iteration.”
In: Journal of machine learning research 4.Dec (2003), pp. 1107–1149. 26

[20] David A Levin and Yuval Peres. Markov chains and mixing times. Vol. 107.
American Mathematical Soc., 2017. 16

[21] Nir Levine, Tom Zahavy, Daniel J Mankowitz, Aviv Tamar, and Shie
Mannor. “Shallow updates for deep reinforcement learning.” In: Ad-
vances in Neural Information Processing Systems. 2017, pp. 3135–3145.

3, 23, 37–39

[22] Long-Ji Lin. “Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching.” In: Machine learning 8.3-4 (1992), pp. 293–
321. 37

45
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