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Abstract

Game-tree search is an important research topic in Artificial Intelligence.
Because it is computationally intensive, researchers have turned t} ir at-
tention to parallel game-tree search algorithms in order to improve running
time. However, achieving high parallel performance remains a difficult task
on distributed-memory systems. Many high-performance systems for two-
player games use the af search algorithm, enhanced with transposition tables.
Transposition tables store useful information about game-trees from previous
searches. When parallelizing the a3 algorithm, a major problem is sharing
transposition table information efficiently among the processors. A processor
must communicate in order to look up table entries on other processors, which
hurts the performance of the parallel search.

TDS (Transposition-table Driven Scheduling) was recently proposed to
overcome this difficulty. TDS was implemented for single-agent search and
achieved remarkable results. It is an open question as to whether applying
this idea to a3 can yield good performance, because of the greater complexity
of the af algorithm.

This thesis explains why it has been considered hard to combine TDS with
af. We then develop TDSAB, a parallel algorithm that contains important
new techniques which enable TDS to be used with a. TDSAB has been
tested in two games which have different search characteristics - Awari and
Amazons. The performance of TDSAB is evaluated on a network of worksta-

tions. TDSAB achieved satisfactory speedups for both games.
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Chapter 1

Introduction

1.1 Artificial Intelligence and Games

Search plays an essential role in solving many problems in computer sci-
ence, and search algorithms have many practical applications. For example,
database systems, theorem-provers, and game-playing systems have search en-
gines at the core of the application. Games have been regarded as useful test
beds for search algorithms research in Artificial Intelligence (AI), for many
reasons. First, games provide researchers with strong and clear motivations
such as defeating the best human players. Second, because games have simple
rules and clear results (wins, draws, or losses), it is easier for researchers to
measure improvements than in many real-world applications. Finally, games
are intellectually challenging and the skills required to play a game well are
skills we want to teach a computer.

For the last 40 years, researchers have invested significant resources to im-
prove the quality of play of computers for games such as Othello, checkers, and
chess. The results have been impressive, although some games such as Shogi
(Japanese chess) and Go still have considerable room for improvement. In
Otbhello, Logistello defeated the human world champion in 1997 [12]. In check-
ers, Chinook was the first computer program to win a World Man-Machine
Championship in 1994 [47]. In chess, Deep Blue [14] is the culmination games
research, providing features such as a special hardware chip for chess, mas-
sive parallelism, and enhanced search algorithms. Deep Blue defeated Garry

Kasparov, the World Chess Champion, in 1997 [49].



Because chess is a popular game in the western world, it is sometimes re-
ferred to as one of the Drosophila of Al [30]. The Drosophila, which is the
scientific name for the common fruit fly, is popularly used for biological exper-
iments. Similarly, chess is used by many researchers to perform experiments
in AL. The techniques pioneered in computer chess have been widely applied
to other games, such as Othello and checkers. The af search [11, 23] is the
most successful algorithm in computer chess. In fact, most of the research in
chess has focused on searching chess trees more efficiently, a tool which may
be applicable directly to other games.

The strength of a game-playing system is strongly influenced by the depth
of the search tree explored [52]. To increase the probability of winning, game-
playing systems strive to out-search the opponent. Therefore, researchers have
attempted to develop algorithms which search game-trees deeper, subject to

time constraints such as those used in tournaments.

1.2 Parallel Systems and Games

Although single processor machines are becoming faster every year, researchers
are always looking for increased speed, since that will improve the quality of
their game-playing systems. Faster machines provide deeper searches and a
better quality of play - which can be tal;en one step further by using a large
number of machines in parallei.' Parallel game-playing systems use multiple
processors to cooperate in computing the game-tree. One of the key factors in
Deep Blue’s victory was the use of a massively parallel system.

From the viewpoint of hardware technologies, there are two main kinds
of parallel systems. A shared-memory system has a global shared address
space: each processor can access whichever location it chooses to, in memory.
Therefore, when a processor wants to access data created by other processors,
it can do so as easily as if it were its own data. On a distributed-memory system,
each processor has a local address space for its local memory, which cannot
be directly accessed by other processors. A processor exchanges messages to

obtain information from other processors. For example, when a processor



P, wants some information held by another processor P,: (1) P, sends a
message to P, to request the information; (2) P, receives the message from
Py; (3) P, sends the information to P,; and (4) P, receives the information.
Clearly, communication between processors using a shared-memory is simpler
and faster than a distributed-memory system.

There are trade-offs between shared-memory and distributed-memory sys-
tems and both types of systems are widely used. From the programmer’s point
of view, shared-memory systems are attractive for applications which need to
frequently share data, because this is more easily done on shared-memory
systems than on distributed-memory systems. However, distributed-memory
systems are becoming an important architecture. With the increasing impor-
tance of the Internet, a large number of computers connected through a net-
work (e.g., NOWs (Network Of Workstations) [3]) are becoming increasingly
attractive for parallel computing. In this environment, a computer cannot ac-
cess information in other computers without incurring communication. Using
a network of workstations has two advantages: (a) compared to the expensive
shared-memory supercomputers, high-performance workstations are available
at low cost; and (b) the system is able to easily incorporate the latest technol-
ogy as soon as it is available. There has been a strong demand, therefore, to
efficiently implement parallel applications in distributed environments.

State-of-the-art game-playing systems most often use the enhanced af al-
gorithm with iterative deepening [50] and transposition tables (basically con-
structed as hash tables). Iterative deepening performs a shallower search be-
fore doing a deeper search in order to have better move ordering information
which reduces the search effort. Combined with iterative deepening, transposi-
tion tables store useful information on the result of subtrees searched, thereby
eliminating duplicate effort. When developing parallel game-playing systems
on distributed-memory systems, the effective sharing of transposition tables
among processors becomes a serious problem. The fact that the tables cannot
be shared without exchanging messages degrades the performance of the par-
allel search algorithm. In a distributed-memory system, if a processor does not

have local table information concerning a position, there are two natural ways

3



to deal with the situation. One is to recalculate the information locally, even
though it might be available on another processor. However, this approach in-
curs an extra computation which a sequential game-playing system does not.
The other method is to request another processor, which might have the infor-
mation on the position, to send it back. Although this approach does not lose
the information on the position previously computed, it has a communication
latency whenever a processor has no information on the position.

Recently TDS (Transposition-table Driven Scheduling) was proposed as a
general scheme for implementing transposition tables efficiently on distributed-
memory systems [43]. Many parallel systems keep the work local, and send
out requests for data. TDS keeps the data local, and moves the work to the
data. The idea of TDS is to always move a position to the processor which
has information on the work in its transposition table.

TDS was used to parallelize IDA®, a single-agent search algorithm. Re-
markable results were achieved using workstations connected with a fast net-
work.

The af algorithm has a more complicated framework than IDA*. There-
fore, in spite of the success of TDS in the single-agent search algorithm, it is

considered to be hard to parallelize the a3 search algorithm using TDS ideas.

1.3 Contribution of this Thesis

This thesis investigates an efficient implementation of parallel a3 search al-
gorithms on distributed-memory systems. Our contribution is summarized as

follows;

e We propose a new parallel af search algorithm, TDSAB (Transposition-
table Driven Scheduling Alpha-Beta). TDSAB is an application of TDS
to the af search algorithm. The solution addresses the problem of ef-

fectively sharing transposition tables on distributed-memory systems.

e Experiments for TDSAB are measured in the games of Awari and Ama-

zons, two games which have completely different characteristics. Awari



programs build narrow game-trees, which makes it difficult to create suf-
ficient work to search for the parallel algorithm. On the other hand, the
game-trees of Amazons are bushy, which may create too much work in
parallel search algorithms. The speedups observed in our experiments
are roughly 23 in Awari and Amazons, on a network of workstations
with 64 processors. These speedups are comparable to many reported

speedups for other games.

1.4 Organization

Chapter 2 introduces game-tree search algorithms used on a single processor.
This chapter is a survey for those who are not familiar with this topic. Chapter
3 surveys the major parallel af search algorithms and addresses some perfor-
mance issues of the previous work on distributed-memory systems. TDS is
introduced in Chapter 3. Chapfer 4 gives the details of TDSAB, which uses
TDS, and addresses the issues explained in Chapter 3. Chapter 5 presents and
analyzes experimental results on TDSAB in Awari and Amazons. Chapter 6

concludes the thesis and indicates further research directions.



Chapter 2

Sequential Game-Tree Search

In this chapter, we describe the basics of sequential game-tree search for two-
player games with perfect information. Section 2.1 is an introduction to the
concepts of game-trees and minimax search in order to explain how game-
playing programs choose a next move. Section 2.2 deals with the a3 algorithm,
which is considerably more powerful than minimax search, while ensuring that
the same value as the minimax algorithm is computed. Section 2.3 presents
performance enhancements to aB. In Section 2.4, we introduce MTD(Y),
which is the state-of-the art af algorithm for two-player games. In Section

2.5, we conclude this chapter.

2.1 Minimax Search

In two-player games, each player in turn chooses one of the legal moves avail-
able to them. A player selects the move that mazrimizes their advantage, while
the opponent tries to minimize the advantage of the other player. The largest
gain for the player is to win, while the largest loss is to lose.

In order to build a game-playing program, we need a framework to analyze
the possible combination of moves by both players. Therefore, the program
builds a game-tree to represent positions and moves. A node represents a
position in a game, and a branch corresponds to a move. The root node of the
tree represents the current position of the game. If the next player to move
has no legal move at a node, then the value of that node is determined by the

rules of the game. This node is called a terminal node. If the program can



look ahead all the way from the root to the terminal nodes, it can determine
whether the root is a win, lose, or draw. In other words, the ultimate purpose
of game-playing programs is to find the best strategy (maximum score) from
the root to the terminal node, by considering all the possible move sequences
from the root.

However, it is not feasible to generate the whole game-tree in general be-
cause the tree size becomes too big. For example, checkers is 10?°, and chess
has been estimated at 10%. Therefore, we have to stop generating the tree at
a certain point for a practical game-playing program that has to make a move
in a set amount of time; all we are able to do is to search the game-tree as
deep as possible within the restricted time. To represent to what depth the
game-tree is explored, the term ply was first introduced by Samuel [44]. The
ply represents a distance from the root, and is the same notion as the depth
of a game-tree. A d-ply search means that the program searches the positions
d moves (one play by one player) ahead from the root.

Because the search cannot usually reach a terminal node, we have to ap-
proximate the value for a node that the program explored, using a heuristic
evaluation function. The evaluation function estimates the chance of winning
the game. Higher positive numbers represent a more advantageous position
for the player, while lower negative numbers represent a more disadvantageous
position. Winning positions are usually evaluated to oo, and losing positions
are set to —o0o. These evaluation values are negated from the viewpoint of the
opponent, because a win (loss) for the player is a loss (win) for the opponent.

The minimaz framework identifies the best move among the legal moves at
a node. In the minimax framework, we have Max nodes and Min nodes. The
player at each Max (Min) node is called the Max (Min) player. The children
of each Max node are always Min nodes, and the children of each Min node are
always Max nodes, because each player makes a move in turn. A node which
the program does not expand further is called a leaf node. The values assigned
to the leaf nodes are from the viewpoint of the Max player. Higher values are
advantageous to the Max player, while lower values are advantageous to the

Min player. The minimaz value at each node is naturally calculated from the
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Figure 2.1: Minimax Tree

leaf nodes in a bottom-up manner. Each Max node maximizes the score of
the children (Min nodes), while each Min nodes minimizes the values from the
child Max nodes. Intuitively, this procedure assumes that both players always
try to play the best-scoring move at each position.

Figure 2.1 illustrates the minimax procedure. By convention, the root node
is a Max node. The numbers in the leaf nodes are evaluation values, which
are computed from the Max player’s viewpoint. The scores at the leaf nodes
are passed back to their parents. For example, the value for A is equal to
50 because it takes the maximal value of its children, while the value of 30 is
passed back to the Min node E after calculating the values for A and B. The
root G has a score of 30, the maximum value of its children £ and F. At the
root G, the best score is reported back by way of P, B, and E through the
maximizing/minimizing procedure. This path is called a principal variation,
which is the best-scoring move sequence for both players. The nodes on this
path are called PV (Principal Variation) nodes.

Figure 2.2 presents pseudo code for the minimax algorithm. For the sake
of simplicity, we present it as the negamar form, which is equivalent to the
maximizing/minimizing framework. Instead of taking the minimal score for
each Min node, the negamax form maximizes the scores by negating the re-
turned values from the children. The scores at the leaf nodes are calculated

from the player’s own viewpoint in the negamax form. Therefore, all the val-



int Minimax(node_t n, int d) {
int i, score = —oo;
if (d == 0| n == terminal) return Evaluate(n);
for(i = 0; i < n.num_of_children; i++) {
g = -Minimax(n.child_node(i}, d-1)
score = max(score, g);

}

return score;

}

Figure 2.2: Negamax form of the Minimax Algorithm

Figure 2.3: Minimax Tree (Negamax Form)

ues assigned in Figure 2.1 are negated in order to compute the same minimax
value when using the case in Figure 2.2. (See Figure 2.3, which illustrates the
same minimax tree as Figure 2.2). The code has a node n and depth d as a
parameter and returns the minimax value for n. At each Max (Min) node, the
algorithm looks at the minimax values of all the children of n, and returns the
maximal (minimal) value among them to its parent. The minimax algorithm
can be implemented as a depth-first search, which requires memory only linear
to the search depth.

A d-ply minimax search algorithm visits all the leaf nodes at depth d to
determine the minimax value of the search. When searching a d-ply uniform

tree with an average of b children at each node, the number of bottom positions



(NBP) (i.e., leaf nodes) visited by the minimax algorithm is:
NBP pfinimaz = b*

The search grows exponentially as a function of the depth d. This influences
the strength of game-playing programs, because deeper search achieves better
quality of game play [52].

Fortunately, this work can be reduced because it is not always necessary
to visit all the leaf nodes at depth d to determine the minimax value for the
root. It can be proved that some nodes cannot affect the value of the root.
Knuth and Moore showed the least number of leaf nodes that must be visited

to prove the root value is [23],
NBP ey = bI%! 4 bl3) — 1

Although NBP g,,, is still exponential in d, it is much smaller than NBP »s;nimaxz-
The best-case minimax algorithm can search roughly twice as deep as the min-
imax algorithm. Practical algorithms try to achieve the best-case result. The

rest of this chapter focuses on reducing the number of leaf nodes visited.

2.2 The of Algorithm

In a minimax tree, it is not necessary to visit every node to compute the
correct value at the root. For example, max(10, min(5, T)) is always equal
to 10, because min(5,---) is equal to or less than 5. Therefore, from the
viewpoint of game-trees, the subtree which corresponds to T can be pruned
(cut-off). This is the basic idea of af search. Brudno was the first to publish a
paper showing that pruning was possible in minimax search [11], a result which
was also independently discovered by other researchers. The af algorithm is a
special case of branch-and-bound algorithms. While many branch-and-bound
algorithms have only one parameter to bound conditions, a8 has two bounding
parameters (a and ), achieving more cut-offs [23].

Figure 2.4 shows pseudo code for the negamax form of the af algorithm.

Unlike the minimax algorithm shown in Figure 2.2, it has a search window

10



int AlphaBeta(node_t n, int d, int a, int 8) {
int score = —o0;
if(d ==0 || n == terminal) return Evaluate(n);
for (i = 0; i < n.num_of children; i++) {
score = max(score, -AlphaBeta(n.child_nodefi}, d-1, -3, —a);
a = max(a, score); /* Adjust the search window */
if (o > B) return a; /* Cut-off */

return score;

}

Figure 2.4: Pseudo Code for the a8 Algorithm (Negamax Form)

(, B) to detect pruning conditions. a represents a lower bound on the range
of relevant values for the player to move, while 3 indicates an upper bound.
Values outside the search window cannot affect the minimax value for the root.

a3 search starts searching the root node with an initial window (—oo0, c0),
and it traverses a game-tree recursively in a depth-first manner until it reaches
a leaf node. The leaf node is evaluated and the value is passed back to its
parent node.

Because we use the negamax form, a and 3 are negated and exchanged
using —f3 (—a) as a lower (upper) bound. At each node, if the returned score
of a child is greater than a, a3 updates its lower bound a, because the minimax
value is at least equal to score. Therefore, at a node as a3 explores more
children, a is monotonically increasing, while 3 is monotonically decreasing.

When a > f, a proof that the value lies outside the range of relevant
values has been achieved. Hence, further work at this node is unnecessary. a3
returns immediately the lower bound to its parent.

Figure 2.5 shows an example of how the af algorithm works, as it returns
the same minimax value as in Figure 2.3. Let us assume that af searches
in a left-to-right order. af passed down the initial window (—o0,00) at G
to search A via E in a depth-first manner. After evaluating the left child of
A, the right child of A is searched with the window (—o0, —50), because the
value for E is at least 50. a at the root node is updated after completing

the search of the left child node E. Therefore, the right sibling F is searched
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Figure 2.5: Example of a8 Pruning

with the search window (—o0,-30). When a8 backs up -20 to F, the a is
adjusted to -20. However, because £ is -30, no minimax value can satisfy the
search window (a, 3). If we do not use the negamax form, this means that
max (30, min(20, T)) is assured to be equal to or more than 30. Thus, a cut-off

occurs at E and af never visits the subtrees of D.

2.3 Enhancements to a3 Search

af3 has a best case that is experimentally better than minimax. In this section,
we discuss enhancements to af to ensure that the performance is close to the

best case.

2.3.1 Move Ordering

Although the af algorithm is efficient compared to the minimax algorithm,
its efficiency depends on the order in which nodes are searched. For example,
Figure 2.6 shows the best-ordered tree (called minimal tree) in which more
nodes are pruned than in Figure 2.5. Intuitively, if there are N children, the
cut-offs should be obtained with the first child; if this is not the case, then an
additional search is done.

Knuth and Moore classified nodes into 3 groups in the best-ordered af
search to calculate NBP g.,; [23] (See Figure 2.7). Type 1 nodes are also called
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Figure 2.6: Best-Ordered Game-Tree (Minimal Tree)

principal variations (or PV nodes). PV nodes are located in the left-most
branch of the tree and they are evaluated first. Cut-offs can occur at type 2
nodes, while all children of the other two types (i.e., type 1 and type 3) are
always expanded. Therefore, type 2 nodes are sometimes called CUT nodes,
and type 3 nodes are called ALL nodes. In the minimal tree, the a3 algorithm
prunes the rest of the siblings if the left-most child has the best value because,
at CUT nodes, cut-offs occur immediately after searching the left-most node,
and at PV and ALL nodes af3 always searches the rest of the siblings.

The af algorithm cannot define the best child at a node in advance. There-
fore, before the searching effort is expended, it identifies the likely best child
using heuristics. The killer heuristic [50] keeps track of moves (killers) at each
depth which most frequently caused a cut-off. The history heuristic [46] is
a generalization of the killer heuristic. The history heuristic maps moves to
entries in the history table, which contains the weights of the moves. When a
cut-off happens at a node with a d-ply search, a weight of 2¢ is added to the
table entry for the best move. The moves are ordered using their history table
scores.

The other techniques widely used are iterative deepening and transposition

tables, which we will explain in the next section.
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Figure 2.7: Classifications of Nodes in Best-Ordered Trees

2.3.2 Iterative Deepening and Transposition Tables

Early game-playing programs had trouble setting the maximum search depth
d, because the computational complexity grows exponentially with d. Slate
and Atkin first tried the idea of iterative deepening as a better time control
scheme, in CHESS 4.5 [50]. Before searching to a large depth d, iterative
deepening carries out a series of 1-ply, 2-ply, 3-ply,- - -,(d — 1)-ply searches. If a
new iteration takes too long to return the minimax value, the program aborts
searching and returns the best move from the previous iteration.

Although iterative deepening seems inefficient because of the extra cost
of expanding interior nodes, it is usually more efficient than those methods
using a direct d-ply search, because iterative deepening can improve the move
ordering. The best path from the previous iteration is searched first in the
new iteration. In effect, the previous iteration provides good move ordering
information for the next iteration. The cost of the d — 1 iterations is relatively
small compared to the benefits of having a high probability of searching the
best move first with a larger depth d.

In practice, search spaces for many games are not trees, but graphs. A
node may be reached by more than one path. The result of a search can be

stored in a transposition table [19, 50] so that, if the same position recurred in
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the search, the previously computed value can be reused. In the transposition
table, each entry has room for the best score, the depth, and whether the
score is exact, an upper bound, or a lower bound. After searching a node,
the information on the node is stored in its transposition table entry. The

advantages of the transposition table are as follows:

(1) The transposition table can omit searching subtrees that were previously
expanded, by checking the table before expanding a node. If a node
is found in the transposition table and it was searched to at least the
desired depth, the score for the node may be returned without searching

the subtrees.

(2) The transposition table is especially useful for iterative deepening. Itera-
tive deepening causes the interior nodes to be repeatedly visited. Even if
the transposition table information on the value for a node is not useful,
the move that it suggests can improve move ordering. The best move
from a previous iteration is searched first with high confidence of being

the best move for the new iteration.

Transposition tables are usually constructed as hash tables in order to
minimize the response time. The most popular hash function is Zobrist’s
function, which needs only some XOR operations of random values [54]. If
all the transposition entries are full, some information is lost due to replacing
an existing entry or discarding new search results. Therefore, the size of the

transposition table should be as large as possible.

2.3.3 Aspiration Windows and Principal Variation Search

Let v be the value AlphaBeta(n,d,a,3) returns (see Figure 2.4) and F(n) the
minimax value for n. Knuth and Moore showed the following properties of the

af algorithm [23]:
(1) Fail low: v<a= v < F(n).
(2) Exact value: a < v < 8 = v = F(n).
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int PVS(node_t n, int d, int a, int 3) {
int score;
if (d == 0| n == terminal) return Evaluate(n);
/* Full window search */
score = -PVS(n.child_node[0], d-1, -8, —a);
for (i = 1; i < n.num_of children; i++) {
if (score > () return score;
a = max(a, score);
/* Null window search */
value = -PVS(n.child_node[i], d-1, —a — 1, —a);
if(value > a) {
if (value < B)
/* If fails high, re-search */
score = -PVS(n.child_node[i], d-1, -8, —a);
else score = value;

}
}

return q;

}

Figure 2.8: Pseudo Code for PVS Algorithm (Negamax Form)
(3) Fail high: v > 3 = v > F(n).

Although the basic af starts with the window of (—o00,00) at the root
node, we can still calculate the accurate minimax value v while searching
fewer nodes, if we can narrow the search window (called aspiration window)
—00 < a <v<f <oo. Ifweusea narrower window, we will achieve more
cut-offs.

A reasonable estimation for the aspiration window can be derived from
iterative deepening. If the minimax value from a (d — 1)-ply search is v, then
we set the aspiration window to be (v — €, v + €) for the d-ply search. If the
returned value v' is v — € < v' < v + ¢, then v’ is the precise minimax value
for the root node. The fail low value, v' < v — ¢, requires a re-search with
(—o0,v'), while the fail high, v' > v + ¢, means the minimax value at the root
node is in (v',00). Although a re-search in the case of a fail low or fail high
may cost more work than that with the initial window (—o0, 00), in general

with a good evaluation function, aspiration search is usually a winner.
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If a window is set to (@, a + 1) instead of (a, 8), it is called a null window.
A null window can be used to determine whether or not the score for a node is
larger than a. For example, let a be the score for the left-most node. Consider
searching the next child with the (a,a + 1) window. If the value returned is
smaller than or equal to a, then the move is no better than the left-most move
and no further work is necessary. A value bigger than « shows that the move
searched with the null window is better than the left-most node, and the move
must be re-searched with a full window to get its exact value.

Following the theoretical study of Pearl’s Scout algorithm [35], Principal
Variation Search (PVS) [27] and NegaScout [39] were proposed independently.
PVS and NegaScout are improved af algorithms using null windows, and both
are widely used search algorithms in game-playing programs. For PVS to work
efficiently, moves are required to be strongly ordered by using the techniques
described above. Figure 2.8 shows the pseudo code for PVS. PVS first searches
the left-most node with a full window. Unlike the basic a3, after updating
a lower bound for the node, it searches the rest of the siblings with a null
window (a,a + 1), which costs less than a full window (a, 8). Intuitively, we
see that all the algorithm has to do is to prove the remaining moves are no
better than the first move, if the best move is searched first. The only cases
in which to re-search the siblings are those when the returned score v holds

a < v < 3, because we do not know the exact values of the siblings.

2.4 MTD()

As we described in Section 2.3.3, the key idea of PVS was the null window
search. A further improvement of the af algorithm can be made by always
searching with null windows. MTD(f) is one of the variants of such algorithms
[38]. MTD(f) itself was originally inspired by the research to reformulate
Stockman’s best-first search SSS* [51] as a depth-first search MT-SSS* [37].
Figure 2.9 shows the pseudo code for MTD(f). In MTD(f), when searching
the root node to depth d, the initial window at the root node is set to a null

window (f — 1, f), where f is the minimax score for the root node obtained
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int MTD(node_t n, int d, int f) {

int score;
/* Set the initial lower and upper bounds */
lowerbound = —o0; upperbound = oo;

if (f == o00) bound = f + 1;
else bound = f;
do { o
/* Null window search */
score = AlphaBeta(n, d, bound-1, bound);
if (score < bound) upperbound = score;
else lowerbound = score;
/* Re-set the bound */
if (lowerbound == score) bound = score + 1;
else bound = score;
} while (lowerbound # upperbound);

Figure 2.9: MTD(f)

with a d — 1 ply search. Let score be a result for a node n with a d-ply
search with a null window (bound — 1, bound). Each null window search proves
whether score is less than bound or not; if score < bound, then the minimax
score for n is less than score; otherwise the minimax score is greater than or
equal to score. In other words, a null-window search can determine an upper
or lower bound of the minimax score for n. MTD(f) continues performing null
window searches, whether a score for n is until the lower bound agrees with
the upper bound at the root node - which means that the returned score is an
exact value for the root node. For example, let v be the minimax score for n.
If a null window search (f — 1, f) returns a score f, it holds that v > f. Then,
MTD(f) re-searches n with (f, f +1). If it returns f, v < f +1 (i.e., v < f)
is proven. Therefore, the minimax score for n is assured to be f.

The transposition table is essential to the performance of MTD(f) because
it prevents the same nodes from having to be searched again and again. Exper-
iments show that MTD(f) outperforms NegaScout on the number of visiting

total nodes on execution [36].
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2.5 Conclusions

The af search algorithm is used by many game-playing programs. af is able
to search close to the minimal tree using the enhancements that we looked at.
However, it is still not adequate to enable game-playing programs to improve
the quality of play. We need to search game-trees deeper and faster. The next
chapter deals with parallel game-tree search algorithms in order to satisfy these

requirements.
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Chapter 3

Parallel Game-Tree Search

Parallelizing af search is an important research topic, not only in Artificial
Intelligence, but also in Parallel Computing. This chapter surveys the previous
work on parallel game-tree search algorithms. The first section introduces the
primary notions of parallel algorithms - parallel performance and overheads
- to clarify the problems of parallel search. Section 3.2 explains essential
problems of parallel search algorithms on distributed-memory systems. The
rest of this chapter deals with previous approaches to parallel game-tree search

algorithms.

3.1 Preliminaries
3.1.1 Parallel Performance

In order to show the effectiveness of a parallel algorithm, we need to measure
how fast it is, in some way. A popular way to measure the relative performance
of a parallel algorithm is the speedup. The speedup measures how much faster
the parallel algorithm solved a problem than the best sequential algorithm and

is defined as:

speedup = solution time by the best sequential algorithm
P p= solution time by a parallel algorithm

For a comparison of a parallel algorithm with a sequential one, using the
fastest sequential algorithm on a single processor is very important. For ex-
ample, when a parallel algorithm achieves a 2-fold speedup with 4 processors,

compared with a sequential algorithm which is 4 times slower than the best
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sequential one, in effect, the speed of the parallel algorithm is half of the best
sequential one. However, because we cannot define analytically what the best
sequential algorithm is in game-tree search, we use the best optimized sequen-
tial algorithm we can write, as a baseline. Therefore, we must be careful in
how the speedup is measured so as not to misinterpret the quality of speedups.
Unoptimized sequential algorithms can achieve better speedups, compared to
those possible with the optimized one. When applied to games, a poor se-
quential algorithm, which causes fewer cut-offs than the best one, will provide
parallel algorithms with more opportunities to search the branches in parallel,
which may increase the observed speedup.

‘The maximum speedup is n with n processors (linear speedup). Although
a speedup better than n times than that of the sequential algorithm (super
linear speedup) may happen in parallel game-tree search, on average this should
not happen. If it does, then it likely implies that the sequential algorithm is
inferior (e.g., the sequential algorithm could be improved by mimicking the
parallel algorithm).

Efficiency is a measure that is similar to speedup, and it is defined as:

solution time by the best sequential algorithm
solution time by a parallel algorithm X number of processors

efficiency =

Efficiency is the fraction of the time that is used by each processor in
performing the computation. For example, an efficiency of 0.5 means that
the processors are used half of the time on the actual computation, while an
efficiency of 1.0 (linear speedup) indicates that the processors are used all of
the time.

In general, our goal is to achieve as high an efficiency as possible with a

large number of processors.

3.1.2 Overheads

In order to improve the execution time through the use of parallelism, it is
necessary to divide game-trees into subtrees for the processors to search in par-

allel. However, although the decomposition of game-trees achieves speedups,
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Figure 3.1: Example of Increasing Search Overhead

it causes eztra overheads which a sequential algorithm does not have. There
are three main overheads in parallel search algorithms.
Search overhead is the larger search tree that a parallel algorithm usually

builds, compared with its sequential counterpart. It is defined as:

number of nodes searched by a parallel algorithm
number of nodes searched by the sequential algorithm =

search overhead =

There are several causes of search overhead. One possibility is that, at
each CUT node, parallel algorithms may search unnecessary subtrees in paral-
lel; these are subsequently proven unnecessary by one of the subtrees causing
a cut-off. Another possibility is that the sequential algorithm has a better
search window than that used by the parallel algorithm. Figure 3.1 illustrates
an example of search overhead in the af algorithm. Assume the initial window
at a node C is set to (—o0,00), and the children A and B are searched in par-
allel. Parallel o searches A and B with the window (—00,00). On the other
hand, sequential af can update the window to (—o0o, —30) by propagating the
search result of A. Therefore, sequential a8 will search B with the window
(—00, —30), resulting in fewer nodes searched than parallel aj.

Synchronization overhead is the idle time wasted at synchronization points,
where some processors have to wait for the others to finish their search. Some
parallel algorithms gather information, such as search windows at a node, to
search subsequent nodes with better bounds. Figure 3.2 illustrates an example

of synchronization overhead. In order to get a better window than that in
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Figure 3.2: Example of Increasing Synchronization Overhead

Figure 3.2, parallel a3 first searches A sequentially, then searches the children
of B in parallel. The other processors have to wait for the minimax value for
A, resulting in wasted idle time.

The notion of load balancing is an important influence on synchronization
overhead, and is defined as:

maximal number of nodes searched by a processor
average number of nodes searched by each processor’

load balancing =

Load balancing measures how evenly the work is distributed among the pro-
cessors. Ideally, each processor should be given work that takes exactly the
same amount of time. In practice, this does not happen, and some proces-
sors are forced to wait for others to complete their tasks. Although effective
load balancing does not necessarily mean that there is a low synchronization
overhead, in general bad load balancing implies that a parallel algorithm has
a large synchronization overhead.

Communication overhead is caused by the cost of exchanging information
between processors. Obviously, communication overhead never occurs in se-
quential algorithms because there is no need to exchange information.

Our purpose is to decompose the game-trees to maximize the speedup of
our parallel algorithm. In other words, we want to minimize the overheads

mentioned above. However, we have to note that these overheads are not in-
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dependent of each other. For example, if we reduce the communication and
synchronization overheads, the search overhead will likely be increased. On
the other hand, reducing search overhead may increase the other two. In fact,
because it is difficult to find the best case which minimizes the combination
of these overheads, most researchers attempt to maximize the performance of
their parallel af algorithms by running a large number of experiments and
choosing the combination of algorithmic features that gives the best perfor-
mance. Researchers also study theoretical frameworks of parallel a3 algo-
rithms. However, the performance estimated by theoretical analyses is usually
different from that achieved by experiments, because theoretical approaches
sometimes assume the conditions which are unlikely satisfied in practice. For
example, Hsu not only measures the experiments for his parallel af algorithm,
but also studies the theoretical analysis [20]. However, Hsu’s theoretical anal-
ysis assumes that the nodes are perfectly ordered at CUT nodes, while nodes
are not always ordered perfectly in practical parallel af algorithms.

The notion of granularity is important in parallel computing. Granularity
is defined as the amount of work that is done between communications. Coarse
granularity implies large computation, resulting in relatively fewer communica-
tions - which may cause a load imbalance. On the other hand, fine granularity
usually achieves good load balancing. However, it may have more communi-
cation overhead than coarse granularity, because it divides a larger number of
tasks among the processors by exchanging messages. Therefore, granularity
depends on systems such as CPUs, and network latencies. In game-tree search,
the term granularity is used to refer to the search depth of a subtree, since

this determines the size of the computation.

3.2 Issues of Distributed-Memory Systems

From the viewpoint of hardware technologies, we basically have two types of
parallel machines: shared-memory and distributed-memory systems. A shared-
memory multiprocessor system has a global address space for main memory,

which means that each processor can access all of the main memory. Therefore,

24



when a processor wants to access data created by another processor, the data
is accessed as easily as if it were its own data. In a distributed-memory system,
each processor has a local address space for its local memory, and can access
only its own memory. Because a processor cannot directly access the memory
of other processors, it has to do so by sending messages over an interconnection
network.

As described in Chapter 2, practical af search algorithms utilize transpo-
sition tables. Therefore, when parallelizing a3 search on distributed-memory
machines, the efficient implementation of transposition tables becomes a seri-
ous problem. Because each processor does not share its memory on a distributed-
memory machine, it cannot access the transposition table entries of the other
processors without any communication.

There are three naive ways to implement transposition tables on distributed-

memory machines.

(1) Partitioned transposition table: Each processor keeps a disjoint sub-
set of the table entries. This can be seen as a large transposition table
divided among all the processors (e.g., [16]). Let L be the total num-
ber of table entries with p processors, then each processor usually has
ﬁ entries. When a processor P needs a table entry, it sends a message
to ask the processor @, which keeps the corresponding entry, to return
the information to P. P has to wait for @ to send back the information
on the table entry to P. Wheh the processor P updates a table entry,
P sends a message to the corresponding processor to update the entry.

Updating messages can be done asynchronously.

(2) Replicated transposition table: Each processor has a copy of the
same transposition table. Looking up a table entry can be done by a local
access because each processor has its own local copy of the information.
Updating an entry requires a broadcast to all the other processors so

that they can update their tables with the new information.

(3) Local transposition table: Each processor has its own transposition
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table. No table entries are shared among processors. Looking up and

updating an entry can be done by a local access.

These implementations of the transposition table produce serious bottle-

necks, which negates some of the benefits of the parallelization of sequential

af:

(1)

(3)

(5)

The partitioned transposition table has a high overhead because com-
munication occurs for most of the table accesses. Looking up an entry
is expensive because it incurs both synchronization and communication
overheads. The communication delay for lookup operations is at least

twice as high as the network latency.

In the replicated transposition table, updating an entry has a large over-
head because of broadcast updates. Even if messages for updates can
be sent asynchronously, and multiple messages can be sent at one time
by combining them as a single message, the communication overhead

increases as the number of processors increases.

The replicated transposition table has fewer entries than a partitioned
transposition table. Though one of the advantages of using distributed-
memory machines is having more memory, the replicated transposition

table does not make use of this advantage.

Though the local transposition table has no communication and syn-
chronization overhead, it usually produces a large search overhead. A
processor may end up computing a piece of work that already exists in
the transposition table of another processor. Therefore, local transposi-

tion tables are only good for a small number of processors [29].

These approaches may perform redundant search in the case of a DAG
(Directed Acyclic Graph). In a DAG, a node may have more than one
parent, while every node except the root has only one parent in a tree.
A search result is stored in the transposition table after the search is

complete. If two identical nodes are allocated to two different processors
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in the case of a DAG, then duplicate search may occur, which increases

the search overhead.

Because the efficient implementation of transposition tables in a distributed
environment is a challenging problem, researchers have been looking for better
solutions (45, 8]. We will describe an efficient way to implement transposition
tables in a distributed environment in the case of single-agent search in Section

34.

3.3 Previous Work on Parallel a8 Search

Numerous parallel af search algorithms have previously been proposed. (See
[7] for a broad survey in this field). Although these parallel algorithms dif-
fer, there are two classes of algorithms widely used - synchronous and asyn-
chronous. Synchronous algorithms force some nodes in the game-tree to be
completed before other nodes can be searched; this reduces the search over-
head, at the expense of synchronization overhead. Asynchronous algorithms
allow processors to search nodes independently of other processors, which can
reduce the synchronization overhead, but has the drawback of increasing the
search overhead. Section 3.3.1 presents synchronous parallel a3 search algo-
rithms, using YBWC (Young Brothers Wait Concept) as an example. Section
3.3.2 deals with asynchronous algorithms, using APHID (Asynchronous Par-

allel Hierarchical Iterative Deepening) as an example.

3.3.1 Synchronous Algorithms

Highly optimized sequential af search algorithms have good move ordering
schemes. A well-ordered tree has the property that if a cut-off is to occur at a
node, the first move has a high probability of achieving it. YBWC [15] states
that the left-most branch at a node must be searched before the other branches
at the node are searched. This notion can be generalized so that all the
promising branches must be searched before the rest of the branches at a node
are searched. This generalization is applied to Feldmann’s YBWC"* algorithm
(15]. Although there are many variants of YBWC, the only differences are in
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the implementation details [25, 53, 21]. The idea of YBWC originates from
PV-Split [28], which applies the above strategy only at PV nodes. YBWC can
be seen as a generalized version of PV-Split because the strategy of YBWC
is applied to all nodes. YBWC has the following benefits: First, the minimal
game-trees can be parallelized with no search overhead in YBWC. This is
because parallelization is applied based on the properties of best-ordered trees,
in which cut-offs are caused by the values of the left-most nodes. Second,
YBWC may limit search overhead even if the game-trees are not best-ordered.
At each CUT node, the left-most branch of the node can cause a cut-off with
a high probability, while searching the left-most branch first at each PV node
can improve the search window for searching the rest of the branches.

However, synchronous algorithms such as YBWC and PV-Split present two
problems. First, these synchronous algorithms initiate parallelism too quickly
at CUT nodes. For example, if the second left-most branch causes a cut-
off at a CUT node in YBWC, searching the other branches is unnecessary.
YBWC?® can delay parallelism if some branches also have a high probability of
causing a cut-off. Application-dependent information can be used to initiate
parallelism. Second, YBWC suffers from severe overhead at synchronization
points (Figure 3.3 is helpful in understanding synchronization points). Assume
that the strategy of YBWC is applied to all nodes. At the beginning, no
parallelism is allowed until the search reaches a leaf node. After evaluating that
leaf node, the right siblings of the leaf node are searched in parallel. However,
the number of siblings is usually smaller than the number of processors. As the
search continues, subtrees allocated to the processors become larger and these
subtrees themselves are split into smaller pieces, enabling more processors to
work. Thus, YBWC inherently causes a synchronization point for every node of
the left-most branch; one processor is busy and the remaining processors will be
idle. Furthermore, by using iterative deepening, the number of synchronization
points increases, which hurts performance.

Because synchronization overhead degrades the speedups, researchers have
attempted to reduce the number of synchronization points. Synchronization

points become a more serious problem in a game-tree where the branching
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Figure 3.3: Synchronization Overhead in YBWC

factor is small, such as in checkers [26]. Feldmann’s YBWC® searches all the
branches at each type 3 node in order to reduce the number of synchronization
points - based on the fact that no cut-off happens at type 3 nodes in a8. The
chess program, Zugzwang, was implemented based on YBWC* [15]. Deep Blue
also allows parallelization of all the branches at type 3 nodes [14]. However,
this approach may increase the search overhead, even though it reduces the
number of synchronization points. Furthermore, it is clear that we need a way
to determine if a node is a type 3 node. An educated guess can be made, as
to which are the type 3 nodes, but may be wrong and thereby incur extra
parallel overhead. Zugzwang and Deep Blue parallelized NegaScout, which
must traverse all the children of each type 3 node. Searching all the children at
a type 3 node in parallel may incur extra search overhead in parallel MTD(f),
because MTD(f) can cause cut-offs, even at type 3 nodes.

Another problem in using synchronous search algorithms is load balancing.
Even if each processor is allocated the same number of nodes, some proces-
sors may finish searching their nodes faster than others. To solve this, some
programs rely on work-stealing. The work-stealing framework is a popular ap-
proach in two-player games (e.g., Zugzwang [15], Multigame’s runtime system
[41], *Socrates [22], and its successor Cilkchess [4]). Each processor has a local
work queue containing nodes which can be distributed to other processors. If
the local work queue of a processor is not empty, it dequeues a node from its

local work queue, traverses the node, and enqueues new children of the node
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into its own local work queue. When the local work queue has no work to
do, the processor steals a node from another processor. The processor to steal
from is selected randomly. Although the work-stealing framework improves the
load balancing, it has a trade-off on distributed-memory machines, because of
the transposition table. Assume that a node is moved from a processor which
has information on the node locally in its transposition table, to a processor
which does not have any transposition table information. In this case, using a
local transposition table will increase the search overhead because of the lack
of relevant transposition entries at the processor which received the stolen
work. Using a partitioned transposition table causes a communication latency
in looking up the transposition entry for the node. Replicated tables also have
extra communication overhead when broadcasting the result of searching the
node.

ABDADA is a variant of YBWC [53]. However, ABDADA does not use
work-stealing. Instead, ABDADA uses a shared transposition table to control
the parallel search. All the processors start searching the root node simultane-
ously. Each transposition table entry has a field for the number of processors
entering a node, which is used to determine the order in which to search chil-
dren of that node. ABDADA achieved greater speedups than YBWC in chess
and Othello on a shared-memory machine. However, it is hard to implement
ABDADA on distributed-memory machines because of the necessity of sharing

the transposition tables.

3.3.2 Asynchronous Algorithms

Because synchronous approaches have synchronization points where some pro-
cessors have to wait for others to finish searching, researchers have attempted
to get rid of the synchronization points by using asynchronous approaches.
Newborn’s UIDPABS first tried this approach in his chess program, but the
speedups were worse than PV-Split [33]. However, Brockington’s APHID,
which generalizes UIDPABS, recently showed better speedups than YBWC
in Othello and checkers, and comparable speedups to YBWC on two chess

programs [8, 10].
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Figure 3.4: APHID

APHID ([8, 10] is constructed with a master processor and a series of slave
processors (Figure 3.4). Roughly speaking, when conducting a d-ply search,
the master repeatedly searches the first d'(< d) ply of the game-tree from the
root node, using the af algorithm, while the slaves independently search the
remaining d — d' ply with the iterative deepening af algorithm. If a node at
depth d' is not searched by the slave to the depth d — ¢, the master cannot
use the precise value of the node. Therefore, when the master visits a node
at depth d' for the first time, the node is marked uncertain and assigned to
a slave. The master uses the guessed scores for uncertain nodes until a slave
searches the node to depth d—d'. The master traverses the root node to depth
d' until no node visited by the master is assigned an uncertain mark. The
slave processors simply search nodes allocated by the master in an iterative-
deepening manner, and report the result back to the master for each iteration.
Because no information is exchanged among them, it has no communication
and synchronization overheads among the slaves.

Load imbalances can happen in APHID. The master processor tries to
effectively manage load balancing. There are two reasons why load imbalance
can occur. One is that the number of nodes assigned to the slaves is not always
equal; the other is that some pieces of work are much larger than others. For
example, work on the principal variations is usually larger than other pieces of
work in the search. APHID has two strategies for load-balancing. If there is an
underworked slave which has no node to search, the master moves nodes to the
underworked slave from an overworked slave that has a large number of nodes

to work on. There is a trade-off based on the implementation of transposition
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tables in a distributed environment, because moving nodes may result in not
reusing the information in the transposition tables. The other load balancing
technique used in APHID is that it breaks a large piece of work into smaller
pieces in order to facilitate distributing them to multiple processors. The
approach of APHID is that the master extends its search horizon to a depth
greater than d¢'. The master stores the information on the largest pieces of
work explored for the last few iterations, as well as the average size of each
piece of work. If the largest piece of work is v times bigger than the average
size, the master searches that node 2-ply deeper, by splitting the work into
multiple pieces and distributing them to the slaves. Therefore, Figure 3.4 is
misleading because the depth to which the master searches is not always d'.
Compared to synchronous algorithms, APHID has the following advan-

tages:

(1) APHID has no synchronization points, which are the serious bottlenecks

in YBWC within an iteration and between iterations.

(2) APHID does not require a shared transposition table for distributed-
memory machines, because the master always stores the most important
transposition entries - the first d’-ply of the search. The table access to

these important entries is controlled locally by the master.

(3) APHID solves a major problem of initiating parallelism at CUT nodes.
In YBWC?®, application-dependent knowledge is used to avoid paralleliz-
ing the branches that have high probabilities of causing cut-offs. On the
other hand, APHID can parallelize the only nodes which are unlikely to
be pruned by using the best information available, based on application-
independent criteria (i.e., guessed scores). Therefore, APHID can limit
the increase of search overhead at CUT nodes (see [10] for detailed de-

scriptions on this problem).

(4) APHID is designed to easily integrate parallelism into existing sequential
af} search algorithms. For example, while APHID was integrated into

the checkers program, Chinook (48], with one afternoon of effort, the
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parallel version of Chinook used in the 1994 match against Tinsley took

4 to 6 weeks to implement [9].

Although APHID provided the answer to the question of whether asyn-
chronous algorithms could outperform synchronous algorithms, there is still
further work to be done. The sequential counterpart Brockington et al. par-
allelized is NegaScout. Brockington mentions in his thesis that APHID does
not perform well on a sequential search algorithm enhanced with an aspiration
window at the root of the tree, such as MTD(f) [8]. It is still an open question
whether or not APHID can outperform YBWC using MTD(f).

3.4 TDS

In Section 3.2, the bottlenecks of parallel search algorithms on distributed sys-
tems were described. For single-agent search, such as solving the sliding tile
puzzles and Rubik’s cube, Romein et al. investigated a novel parallel algo-
rithm called TDS (Transposition-table Driven Scheduling) [43]. TDS is a new
scheduling algorithm on distributed-memory systems. Its idea can be applied
to any parallel search algorithms which use a transposition table, although
TDS was used by Romein et al. to parallelize IDA* [43, 41]. In this section,
we first describe IDA*, a sequential algorithm for single-agent search. We then

present TDS. Finally, we discuss the applicability of TDS to two-player games.

3.4.1 IDA"

While the goal of two-player search is to find the best move by traversing
game-trees, the goal of single-agent search algorithms is to find a path from
a given problem to a solution, with minimal cost. IDA* [24] and A* [24] are
used for single-agent search. While A® is a best-first search algorithm, IDA*
is a modification of A* based on depth-first iterative deepening searches [50).
IDA® , therefore, uses less memory than A®.

IDA® has two heuristic values. g(n) is the cost already spent to reach a
node n from the root. The heuristic function h(n) is an estimated cost to a

goal node from n. The total estimated cost f(n) at n is f(n) = g(n) + h(n).
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IDA® contains a bound to cut off searching nodes which exceed the bound.
At first, the bound is set to the estimated cost at the root node, h(root). For
each iteration, IDA® traverses nodes in a depth-first manner until it exceeds
the bound or finds a solution. When an iteration fails to find a solution, the
bound is increased to the minimum value that exceeded the previous bound.
This continues until IDA* finds a solution, or resources are exhausted.

Figure 3.5 presents pseudo code for IDA*. For the sake of simplicity, we
assume that the cost from a node to its child is always 1. The algorithm
consists of two parts: IDA*® controls the search bound at the root node for
each iteration, and DFS expands nodes in a depth-first manner. In DFS, if
the estimated cost from a branch of a node to a solution exceeds the bound,
it does not expand the branch, and goes to the next branch. Otherwise, DFS
dives into a child of the node by recursively calling DFS.

The heuristic function h(n) plays an important role in IDA*. h(n) is anal-
ogous to an evaluation function in two-player games. If h(n) never overesti-
mates the cost to the goal state, IDA* will find an optimal solution whose cost
is minimal. This property is called admissibility.

Similar enhancements used for the af algorithm, such as transposition ta-
bles, can also be used in IDA* to improve the performance of the algorithm
[40]. Hence, sharing the transposition tables becomes an issue when paralleliz-

ing IDA® on distributed-memory machines.

3.4.2 TDS Algorithm

In a traditional approach, such as work-stealing, it is hard to share a transposi-
tion table on distributed-memory systems, because which processor a piece of
work ends up on is decided dynamically. Therefore, the processor receiving a
piece of work may not have any relevant transposition table entries in its local
memory. TDS is a parallel IDA® algorithm which uses a different approach for
solving the transposition table problem [43, 41]. In TDS, transposition tables
are partitioned over the processors. Then, whenever a node is expanded, its
children are scattered to the processors which keep their transposition table

entries, instead of utilizing remote lookups to the processors. Figure 3.6 il-
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int solved = false;

int IDA*(node._t root) {
int new_bound = h(root);
do {
/* Perform a depth-first iterative deepening search */
new_bound = DFS(root,new_bound);
} while ('solved || new_bound #o0);

}

int DFS(node_t n, int bound) {
int i, b, new_bound = oo;
if (h(n) ==0) {
solved = true;
return 0;
}
for (i = 0; i < n.num_of children; i++) {
if (1 + h(n.child-node(i]) < bound)
/* Search deeper */
b =1 + DFS(n.child_node[i],bound-1);
else b = h(n) + 1;
if (solved) return b;
/* Update the bound for next iteration */
new_bound = min(new_bound,b);

}

return new_bound;

}

Figure 3.5: Pseudo Code for IDA* (the cost is always 1)
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Figure 3.6: Transposition-table Driven Scheduling

lustrates the ideas of TDS. In this figure, we show 3 processors, and a circle
stands for a node. Each position is assigned a number k (see integers inside
the nodes). In practice, the transposition table key of a node is used to assign
the unique number to the node. F(k) determines the processor that the posi-
tion should be moved to. In this example, we define F as F(k) = k (mod 3).
Transposition tables are partitioned to each processor. The transposition en-
try of a position with a number k is assigned to Processor F'(k), so as to enable
looking up this table entry locally. Let A be a node that is expanded now,
and let us assume that B and C are the children of A. When B and C are
created, they are moved to the processors which have their transposition table
entries. Therefore, B (6 is assigned to this position) is sent to Processor 0,
because F'(6) = 0 (mod 3), and C is sent to Processor 2.

Intuitively, TDS seems to have much more communication overhead than
the work-stealing framework. In fact, however, TDS achieves lower communi-
cation overhead because all the transposition table accesses are local. As well
it eliminates the synchronous communication of the remote table lookups such
as occurs in partitioned transposition tables.

In TDS, each processor has a local work queue which contains nodes to be
searched, and part of the transposition table accessed by its own processor.
The local work queue is implemented as a stack to maintain the depth-first
manner of IDA".

Figure 3.7 presents a sketch of TDS. In MainLoop, each processor repeat-
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edly attempts to dequeue a node from its local work queue, and then expands
the children of the node. The cost to reach a solution for each child is calcu-
lated by the heuristic function h(n). If the estimated cost of the child does not
exceed the search bound, the child is sent to a target processor (called a home
processor) which has the transposition table entry for the child (assigned by
the function HomeProcessor). The home processor of a node is computed from
the transposition table key of the node. Transposition table keys are calculated
by the function TTKey. After expanding all the children, their parent node is
erased from the local work gueue because the search results of the children do
not need to be reported back to their parent in IDA*. Each processor contin-
ues the above procedure as long as it has any nodes to be expanded in its local
queue. If a local queue is empty, it may mean that it has expanded all the
nodes for that IDA" iteration. Therefore, processors check whether a solution
has been found; if not, they set a new search bound to start a new iteration of
IDA* (called global termination). ReceiveNode is called repeatedly to receive
work. When a processor receives a node, it checks its transposition table en-
try by doing a local lookup to check if the node was previously searched with
an adequate bound. If the node has already been adequately searched, the
processor does not need to re-search the node; therefore, the node is discarded
and not stored in the local queue. Otherwise, the information on the node is
stored in the transposition table in order to avoid duplicate search, and then
it is pushed onto the local queue to be searched.

TDS has the following advantages [43]:

(1) All transposition table accesses are local. Nodes are always moved to the
processor which may have information on the node in its transposition

table.

(2) All communications are asynchronous. Processors do not have to wait
for messages. Therefore, TDS achieves close to linear speedups with a

large number of processors.

(3) No duplicate search is performed as long as a processor does not use
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void MainLoop() {
int i, dest, solved = FALSE;
while (!solved) {
node_t n = GetLocalJob();
if (n # NOT_FOUND)
for (i = 0; i < n.num_of children; i++) {
if (h(n.child_node[i]) + 1 < n.bound) {
n.child_node{i].bound = n.bound - 1;
dest = HomeProcessor(TTKey(n.child_node][i]));
SendNode(n.child_node]i],dest);
}
}
else solved := CheckGlobalTermination();
}
}

void ReceiveNode(node_t n) {
trans_entry_t entry = TransLookup(n);
if ('entry.hit || entry.bound < n.bound) {
TransStore(n);
PutLocalJob(n);

}
}

Figure 3.7: Simplified TDS Algorithm
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up all the transposition table entries. Even if a node is reached from

different paths, the node is always allocated to the same processor.

(4) TDS achieves more stable execution times than work-stealing frame-

works.

(5) It is not necessary to have a separate load balancing scheme. When using
IDA*®, Zobrist’s method [54] is used to calculate the transposition table
keys, which are uniformly distributed. Uniformly distributed transposi-

tion table keys distribute the work evenly to the processors.

The performance of TDS was measured on the 15-puzzle, the double-blank
puzzle, and Rubik’s cube. In these experiments, TDS achieves speedups
between 109 and 122 on 128 processors, while the traditional work-stealing
framework with replicated/partitioned transposition tables achieves speedups
between 8.7 and 62. On a system containing multiple clusters, connected by
high-latency and low-bandwidth wide-area links, TDS with some modifications
(Wide-Area TDS) also achieves better performance than the work-stealing

framework, by a wide margin [42].

3.4.3 Applicability of TDS to af Algorithms

The idea of TDS seems to be easily applied to two-player games. However,
there are important differences between IDA* and a3 algorithms that compli-

cate the issue.

(1) IDA® does not have ap-like pruning. When traversing the children of a
node, IDA® merely checks their bounds. In other words, the results of
the children are not reported back to its parent. On the other hand, a3
checks if a cut-off happens, after searching a branch of a node. When
a cut-off occurs, we need a mechanism to not only receive the scores
reported from the children, but also to tell the other processors to stop

searching other branches, in order to avoid unnecessary search.

(2) apB search has a window which IDA* does not have. Search windows

make the implementation of TDS complicated because (a) the window
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may be narrowed after searching a node, and (b) a node reached through

more than one path may be searched with different windows.

(3) The search order of nodes in a8 is much more important than in IDA".
In IDA®, the implementation of the work queue is a stack to allow TDS
to behave in a depth-first manner. In parallel af3 search, we need a more
complex scheme in order to allow the left-most and shallowest nodes to
be searched first.

For these reasons, parallel a8 based on TDS has been considered hard to
parallelize. The next chapter describes integrating TDS into an af frame-

work.
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Chapter 4
TDSAB

In this chapter, we propose a new parallel o algorithm, TDSAB (Transposition-
table Driven Scheduling Alpha-Beta). TDSAB is an application of TDS to the
af3 algorithm. This chapter first gives an explanation of the basic TDSAB al-
gorithm, and then it deals with the implementation details for the games of
Awari and Amazons. Finally, it discusses the difficulty in design and imple-

mentation of parallel search algorithms.

4.1 Basic Algorithm

4.1.1 Overview

As we explained in the last chapter, applying TDS to the a3 algorithm presents
the following difficulties:

(1) Pruning: af’s scheme for pruning is different from that of IDA®.

(2) Search windows: af may search identical nodes with different windows

if the search space is a DAG.

(3) Priority of nodes: The order in which nodes are considered is more
important in af than in IDA'. In parallel af based on TDS, a more
complex scheme is requiréd to manage the order in which nodes are
searched than is the case in IDA*. In IDA®, a stack is sufficient; in

TDSAB, this method is inadequate.
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The solution to the above issues is facilitated by the fact that TDSAB

consists of the following three combinations of algorithms:
TDSAB = MTD(f) + YBWC + TDS.

e MTD(f): TDSAB uses MTD(f) as its sequential version of a3, which
solves the problem of searching identical nodes with different search win-
dows. MTD(f) consists of null window searches initialized at the root;
therefore, each search has the same search window at each node. If
we always synchronize parallelization at the root, we do not have to be
concerned with searching nodes with different search windows. Using
MTD(f) as the sequential algorithm mabkes it simpler to parallelize .
However, parallel MTD(f) may achieve fewer speedups than parallel
af3, because MTD(f) causes more cut-offs, in general, and requires more

synchronization.

e YBWC: Parallelism is restricced by YBWC. If the left-most branch
of a node does not cause a cut-off, TDSAB traverses the rest of the
branches in parallel. Because the left-most branch of a node has a high
probability of causing a cut-off, YBWC can avoid the huge increase in
search overhead that arises from simply searching all the branches in

parallel.

e TDS: The distribution of nodes to processors is based on TDS, and
therefore, TDSAB retains the important merits of TDS. Nodes to be
searched are moved to the processors which may have transposition table

entries for those nodes.

TDSAB addresses to the TDS scheme of moving work to the data. Several
issues need to be resolved in TDSAB:

(1) Priority queue: To search the nodes in approximately the same order
as sequential af3 does, we keep the nodes in a priority queue, similar to
that used in Brockington'’s APHID ([8].
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(2) Signatures: For the purpose of solving the issue of cut-offs, we propose
a signature, which expresses, roughly speaking, a path from the root to a
node. A signature reduces the number of messages by only broadcasting
to all the processors when a cut-off happens; as well, it detects cyclic

positions when searching cyclic graphs such as in Awari.

(3) Synchronization of nodes: The search order of identical nodes must
be considered carefully in the case of cyclic graphs, in order to avoid
deadlock. Our strategy for synchronizing identical nodes guarantees that

deadlock cannot occur.

4.1.2 Priority Queues

In sequential game-tree search, moves are ordered from the best to the worst,
in order to prune as many nodes as possible. Good move ordering must be
kept in the parallel search as well. Our solution in TDSAB for selecting the
next node to be searched is similar to that used in APHID [8]. Each node
has a priority based on how “left-sided” it is, as Brockington explains in [8].
To compute the priority of a node, the path from the root to that node is
considered. There are 3 priority scores for a node, based on the type of node.
The priority of a node is the sum of priority scores along the path from the root
to that node. For example, assume that we wish to calculate the priority of a
node A. For each PV node which is on the path from the root node to A, the
highest score is added to the priority of A. For each left-most node that is not
a PV node, the second highest score is added to the priority of A. For the other
nodes, nothing is added to the priority of A. For our current implementation,
the highest score is 4 and the second highest is 2. We note that the calculation
of the priorities can be done inexpensively. When a node A creates a child B,
the priority of B is computed by the sum of the priority of A and the score of
B. This scheme is simple and could be improved by calculating the order of
nodes more precisely, which would require more expensive computation.
TDSAB maintains a doubly-linked list of priority buckets for each depth.

A bucket contains a fixed number of nodes with the same priority. For each

43



depth, priority buckets are sorted in decreasing order, so as to easily find a
node with the highest priority and the shallowest (farthest from the root)
depth. The strategy of TDSAB to determine which node is to be expanded

next is as follows:

(1) A node with deeper (closer to the root) depth and the highest priority
is chosen in the following case: Let high be the highest priority of the
nodes in the depth d queue. A node P searching to depth d with the
priority high is selected if (a) any node whose priority is less than high

is currently being searched, and (b) P is not currently being searched.

(2) Otherwise, a node with the shallowest depth and the highest priority is
selected among the nodes which (a) have not been expanded yet, and
(b) have received the score for the first left-most branch with no cut-off
occurring. The shallowest depth is considered first, and the priority is

considered next.

We note that (1) is important in order to keep the left-sided order of
exploring game-trees, which happens in the case of a processor receiving a

node with a higher priority, after expanding a node with a lower priority.

4.1.3 Signatures

Let P be a node and Q be a child of P. When searching the children of P
in parallel, if Q returns a score that causes a cut-off at P, searching other
children of P is not necessary. If searching any other children is currently
under way, then it must be stopped. TDSAB, therefore, has to stop any
useless searches in order to avoid increasing the search overhead. However,
because all the descendants of P are not always on the same processor in the
TDS framework, we have to consider an efficient implementation for cut-offs
in TDSAB. In a naive implementation, when a cut-off happens at a node,
the processor searching the node has to send a message to all the processors
searching its children, asking them to stop searching. Then, the processors

searching the children of the node send messages to the processors searching
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Figure 4.1: Signatures

the grandchildren of the node asking them to abort searching, and so on. This
approach clearly results in the exchange of many messages which can lead
to a large increase in communication overhead, and also to delay in killing
unnecessary work - which, in turn, results in more search overhead.

In TDSAB, when a cut-off occurs, we reduce the number of messages ex-
changed by using a signature. Intuitively, the signature for P is the path
traversed from the root node to P. Every branch of a node has a tag which
differentiates it from other branches at that node; a signature of P is seen as
a sequence of these tags from the root to P. Figure 4.1 illustrates an example
of signatures. The decimal number on each branch between two nodes is the
tag. The signature of A is 111 derived from the path from the root to A; the
signature of B is 211.

When a cut-off happens at a node P, all TDSAB is required to do is to
broadcast the signature of P to all the processors. When a processor receives a
cut-off signature, it examines its local priority queue, and deletes all the nodes
which have the same paths from the root to P. For example, in Figure 4.1, if
TDSAB wants to prune all the children of A, the signature 111 is broadcast and
each processor prunes all the nodes that begin with the signature “111...”,

For our implementation, we express signatures as n moves each of m bits,
because we can compress each move at a node into a unique integer by using
the index of the moves generated. For example, in Awari each move can be

encoded into a 3 bit tag because there are at most 6 moves in each position.
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Therefore, a signature with 96 bits indicates a 32-ply search from the root.
In Amazons, our implementation encodes each move into a 16-bit tag and
expresses a signature as a 160-bit integer for a 10-ply search.

With cyclic graphs, we need a method for detecting cycles because a prac-
tical implementation of af scores a cycle as a draw and does not perform any
additional search.! We will explain how cycles are detected in the Section

4.2.2.

4.1.4 TDSAB Algorithm

Figures 4.2 and 4.3 present the pseudo code of the Negamax form of TDSAB.
For the sake of simplicity, we explain TDSAB without YBWC. Like the IDA*
version of TDS, TDSAB repeatedly (a) receives a node from other processors,
(b) enqueues it into its local priority queue, (c) selects a node to expand from
its local queue, and (d) sends the children of the node to the appropriate
processor.

The function ParallelNWS does one iteration of a null window search
(7—1,7) in parallel, until the score for the root becomes a fail high or fail low.
The end of the iteration is checked by the function FinishedSearchingRoot,
which can be implemented by broadcasting a message when the score for the
root has been decided. The function RecvNode checks regularly to determine
if new information has arrived at a processor. We note that messages are

exchanged asynchronously. RecvNode receives 3 kinds of information:
(1) NEW_WORK: New node created by traversing a game-tree.
(2) CUT_OFF: Signature used for cut-offs.

(3) SEARCH_RESULT: Minimax score of a node decided after searching

its descendants.

If new information arrives at a processor, Get Node, GetSignature, and Get-

SearchResult acquire information on a node, signature, and score for a node, re-

This approach causes the GHI (Graph-History-Interaction) problem [34, 13, 6], which
may lead to a different score with different paths for the same position. Nevertheless, games
programmers ignore the GHI problem because it rarely happens in practice.
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spectively. GetLocalJob determines a node to be expanded from its local prior-
ity queue, while Delete LocalJob deletes a node from its queue. SendNode is a
function to send a node to the processor chosen by the function HomeProcessor,
which returns the processor having a transposition table entry to the node.
There are some extra lines in TDSAB compared to the IDA* version of
TDS. (*), (+), (-), and (#) indicate code which does not appear in TDS.
TDSAB needs to receive a score from the children and deal with cut-offs. (*)
is the code for receiving a cut-off message, and a cut-off is implemented by
using a signature. If a processor receives a signature, it examines its local
queue and discards all the nodes traversed by the same path as the signature
(CutAllDescendant), as explained in Section 4.1.3. A terminal node or small
piece of work is immediately searched locally (i.e., this small piece is called
granularity of the work) with a null window (v — 1,7), and sent to its parent
node by using the function SendScore. That node is then deleted because
the node need not be searched further (code at (-) in ParallelNWS). When
receiving a search result (code at (+)), TDSAB negates the score because of
the Negamax form; it then has to consider two cases (StoreSearchResult):
fail high and fail low. If a score proves a fail high, TDSAB does not need
to search the rest of the branches, therefore, a fail high score is saved in the
transposition table (T'ransFailHighStore). The node is then dequeued from
the priority queue, and the fail high score is sent to the processor having
its parent (SendScore). We note that TDSAB keeps information on nodes
being searched, unlike the IDA* version of TDS. Only after a processor has
completed searching a node is it discarded. Because searching the rest of the
branches has already started, the processor broadcasts a signature to abort
all useless search (see the code at (#)). When a fail low happens, a processor
stores the maximal score of the branches. If all the branches of a node are
searched, the fail low score for the node is stored in the transposition table

(TransFailLowStore), and the score is reported back to its parent.
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int v; /* A search window is set to (y — 1,7). */
const int granularity; /* Granularity depends on machines, networks, and so on. */

/* Null window search in parallel. */
void ParalleINWS() {

int type, value;

node_t p;

signature_t signature;

do {

if (RecevNode(&type) == TRUE) { /* some information arrives */
switch(type) {
case NEW_WORK: /* New work is stored in its priority queue. */

GetNode(&p);
Enqueue(p); break;
(*) case CUT_OFF: /* Obsolete nodes are deleted from its priority queue. */
(*) GetSignature(&signature);
(*) CutAllDescendant(signature); break;
(+) case SEARCH_RESULT:
(+) GetSearchResult(&p,& value);
(+) /* The value is negated because of the negamax form. */
(+) StoreSearchResult(p,-value); break;
default:
Error();
}
}
/* Find the next node to be traversed. */
GetLocalJob(&p);

if (p # NOT_FOUND) {
if (p == terminal || p.depth < granularity) {
value = AlphaBeta(p,p.depth,y — 1,7); /* Local search is done for small work. */
(-) SendScore(p.parent,value);
(-) DeleteLocalJob(p);
} else { /* Do one-ply search in parallel. */
for (int i = 0; i < p.num_of_children; i++) {
p.child_node[i].depth = p.depth - 1;
SendNode(p.child_node[i],HomeProcessor(TTKey(p.child_node[i])));
}
}
}
} while ('FinishedSearchingRoot());

}

Figure 4.2: Simplified Pseudo Code for TDSAB (Negamax, without YBWC)
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/* A minimax value is computed and stored in the transposition table. * /
void StoreSearchResult(node_t p, int value) {
if (value > v) { /* Fail high */
/* Put the search result in the transposition table. */
TransFailHighStore(p,value);
(-) SendScore(p.parent,value);
/* Discard useless search. */
(#) SendPruningMessage(p.signature);
(-) DeleteLocalJob(p);
} else { /* Fail low */
p.score = MAX(p.score,value);
p.num_received ++;
if (p.num_received == p.num_of_children) {
/* All the scores for its children are received. */
TransFailLowStore(p,p.score);
/* Send the minimax value to its parent. */
(-)  SendScore(p.parent,p.score);
(-)  DeleteLocalJob(p);

}
}
}

Figure 4.3: Simplified Pseudo Code for TDSAB (cont.)
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4.2 Implementation Details

TDSAB has been implemented for the games of Awari and Amazons. These
games have different properties that exhibit themselves in the different charac-
teristics of a parallel search. The main differences between Awari and Amazons

are:

(1) The average number of children at each node (average branching factor)
in Awari is small (less than 6), while Amazons has bushy trees. For
example, the initial position in Amazons has 2,176 moves. We need

different strategies to deal with these different search spaces.

(2) The search space of Amazons is a DAG, while Awari has cyclic positions.
In Awari, we need a mechanism for cycle detection. In both games we
need to delay searching a node if more than one path leads to the node so
as not to do a redundant search. Furthermore, we have to carefully treat
the search order of these nodes in Awari, because some synchronization

strategies may cause deadlock.

This section deals with the specific techniques applied to each game.

4.2.1 Amazons
Modification of YBWC

In YBWC, if the left-most branch of a node does not cause a cut-off, the rest of
the branches are searched in parallel. However, YBWC distributes too many
nodes to the processors in Amazons, which increases search overhead because
of the large branching factor. Therefore, if the first branch of a node does not
cause a cut-off, a smaller number of children at a time are searched in parallel.
If all these branches return fail lows, a processor tries to expand another small
number of children in parallel, and so on. For our current implementation,
the number of children to be searched in parallel is set to 30 at PV (or ALL)
nodes, 20 at CUT nodes with up to 15 processors, 50 at PV (or ALL) nodes,
and 20 at CUT nodes with more than 15 processors. These numbers are tuned

by hand to achieve the best speedup with some test positions.
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Synchronization of Identical Nodes

TDSAB can easily detect identical nodes with different paths, because they
are always kept on the same processor. When more than one path leads to
an identical node in Amazons, the lengths of the paths are always the same.
Assume A and B are identical nodes, and A is chosen for a search. For our
implementation, if the expansion of B has already begun, A is not expanded.
A waits for the score of B to be stored in the transposition table. On the other
hand, if B has not yet been searched, A is expanded and B will wait for the
score of A. Once a minimax score for the identical nodes is in the transposition
table, the processor searching the identical nodes can immediately send this
score to the processors having the parents of the nodes, because A is always

searched as deep as B with the same search window.

4.2.2 Awari
Parallelism at the Root

In MTD(f), there are 2 possible ways to determine the minimax score at the
root: one is to continuously lower the scores at the root in each iteration by
returning fail lows, then return a fail high score in the last iteration. The other
is to raise up the scores at the root by proving fail highs, and finally return a
fail low score in the last iteration. Fail low searches expand more nodes than
fail high searches, in general. While it is necessary to traverse all the children
to prove a fail low for a node, MTD(f) may explore only one of the children
for a fail high.

Because Awari has a narrow search tree, processors are often starved for
work. Our implementation always expands all the children of the root node in
parallel, increasing the amount of work and reducing the frequency of starva-
tion.

This clearly decreases the idle time of each processor by generating a large
amount of work to do, while possibly increasing search overhead. Searching
all nodes in parallel can be a win when MTD(f) lowers the score, for both the

synchronization and the search overhead. For fail low searches, all the children
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of the root node are always expanded to prove a score for the root is lower
than the current window; this can reduce the synchronization points without
increasing the search overhead. In the last iteration, MTD(f) proves an exact
score for the root by returning a fail high score. Speculatively searching all the
children of the root in parallel could increase search overhead, when compared
to simply applying the normal YBWC strategy to the root. However, it is
worth paying the price of extra search in the last iteration, because proving
fail lows is more difficult than proving fail highs.

Even when MTD(f) is raising the score, searching all children of the root in
parallel does not increase the search overhead as much as one might imagine.
First, even in this case, MTD(f) needs to return a fail low in the last iteration
in order to determine the score for the root - which requires more work than
proving fail highs. If the number of fail high searches before the last fail low
is small, reducing the idle time for the fail low reduces the execution time in
total. For example, if a fail low happens immediately after a fail high, and
proving that fail low is much heavier than proving the fail high, searching the
root in parallel will achieve improvement - although some extra nodes may be
searched in order to prove the fail high. Moreover, when we search all children
in parallel at the root and expect a fail high, the search overhead is generally
low because our priority queue scheme guarantees that the left-most branch is
searched first.

However, we need to note that the parallelism at the root may change the
search order from that obtained when applying the YBWC strategy to the
root. Figure 4.4 illustrates an example. Let PV be the principal variations in
the last iteration, and the number inside a node be a priority computed using
the priority scheme explained in Section 4.1.2. Assume that P and Q are
located in the same processor in the current iteration. If we allow parallelism
at the root, the processor expands @ before P, because Q has a higher priority.
In the basic YBWC, this situation never occurs because Q is always expanded
after searching P is completed.

If P does not cause a fail high at the root and the root receives a fail

high score because of Q, searching all the children in parallel may improve
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Figure 4.4: Problem of Parallelism at the Root

the running time. However, if P proves a fail high at the root, while Q does
not, the search overhead will be increased. This problem will provide a further

research topic for TDSAB.

Cycle Detection Using Signatures

The search space in Awari is a cycle. Therefore, a3 search immediately returns
an evaluation score of a draw when it detects a cycle; zero is usually used for
the evaluation score of a draw. Although the ancestors of a node are not stored
in the same processor in TDSAB, TDSAB is able to detect cycles by using
signatures in the following way: First, TDSAB can always detect whether two
nodes are identical, and if so, they are always allocated to the same processor.
Then, TDSAB can detect whether the relations between two nodes are cyclic
or not, by using the properties of signatures. The node with shallower depth
should go by way of the identical node with deeper depth, if they are cyclic.
Figure 4.5 shows an example of signatures with cycles, in which we assume B
and B’ are cyclic. In this case, the signature of B’ should be “1--.”, because
B is on the way to B’ and the signature of B is 1.

We point out that we do not suggest a solution to the GHI problem, but
simply mention that TDSAB can detect cycles by using signatures.
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Synchronization of Identical Nodes

In Amazons, when a processor receives identical nodes with different paths, it
expands only one of the nodes. The remaining nodes wait for the return of the
score of the node, so as to avoid redundantly expanding these nodes. In Awari,
identical nodes can have a different search depth, and may even have a cyclic
position. Careless strategies for avoidance of a redundant search may cause
deadlock. For instance, assume that n, and n; are identical nodes and n, has
already been expanded. Then, if a processor always waits until it receives the
score for n; before searching n,, it may cause deadlock in cyclic graphs. Figure
4.6 illustrates an example of deadlock: Suppose that B and B’ are identical

nodes. If these nodes are searched in the following order, deadlock will occur:
(1) Ais expanded, and B and F are sent to their home processors.

(2) Bisexpanded, and C is sent to its home processor. If the home processor
of B receives a node B’ identical to B, searching B’ is delayed until it

receives a score for B.
(3) FE is expanded, and D is sent.

(4) D is expanded, and B’ is sent. Searching B’ is complete after finishing
B.
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Figure 4.6: Deadlock with Cycles

(5) C is expanded, and D is sent.

In this case, B waits for the score for C, C waits for D, D waits for B’, and
B' waits for B. Therefore a cyclic wait has been created and deadlock ensues.

Looking at the above example again, B’ is a repeated node of B if it comes
by a path A -+ B = C - D — B’, which can immediately return a score
using the technique explained above. However, B’ is not a cyclic node if it
is reached by the path A — E — D — B’. Therefore, considering the path
from A to B’, B' must be searched in order to determine a score for E. We
note that this problem is very similar to the GHI problem, which may return a
wrong score for a node with a cyclic position, because the transposition table
does not consider the path by which the node was reached.

To eliminate the possibility of deadlock, TDSAB searches the shallower of
the identical nodes first. This prevents the search of a shallower node being
delayed until a deeper identical node returns its score. The reason deadlock
happens in Figure 4.6 is that B’ waits for the result of B, even though the
search depth of B’ is 3-ply shallower than B. More specifically, let n, be a
node for a d,-ply search chosen by the priority queue strategy explained in

Section 4.1.2. TDSAB expands the nodes as follows:

(1) If a processor has no identical interior nodes to n,, n, is expanded for a
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d;-ply search.

(2) If n, is a cyclic node, it immediately returns the minimax score 0. The

cyclic detection is done by using the signature of n,.
(3) Let n, for a d,-ply search be identical to n,.

(a) If d, > dy and ny has not been searched yet, n, is chosen to be

expanded, and n; waits for ny to return its score.

(b) If d; > dp and the search of n; has already begun, n; is searched

after n, has finished being searched.

(c) If d; < d,, then n; is expanded, regardless of the state of n,.

Note that this is similar to the solution for the GHI Problem (e.g., [6]). The
good news is that freedom from deadlock is assured in our strategy. The proof
is given in Appendix A. However, some nodes are searched more than once
even if deadlock is not caused. For example, if no descendant of D is a repeated
node of the ancestors of D in Figure 4.6, the above node synchronization

scheme cannot avoid searching D more than once in the case of (3)(c).

4.3 Difficulty in TDSAB Implementation

Basically it is a difficult task to design and implement parallel programs. They
have inconsistencies in execution, and sometimes deadlock occurs, making it
much more difficult to debug parallel programs than sequential programs. Fur-
thermore, TDSAB has asynchronous aspects of computation, which makes
it more difficult to implement, although asynchronous communications re-
duce the idle time. Therefore, we need to write a TDSAB program very
carefully. For example, debugging the implementation of signatures was diffi-
cult. TDSAB sends signatures and nodes asynchronously, and does not control
which messages a processor receives first. In a practical environment, a signa-
ture for a cut-off sometimes arrives earlier than a node which should be pruned
by that signature, because a node which will be pruned by that signature may
have already distributed its children, which should be pruned as well. These
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children may arrive at a processor after that processor receives that signature.
Therefore, it was necessary to keep signatures even after processors received
them. In fact, even with our knowledge of parallel programming as well as
game-tree search algorithms, it took several weeks to achieve stable TDSAB
implementations for Awari and Amazons. This does not include the time to
tune the performance, for example, setting the best granularity for the target
environment.

There are several ways that games programmers may parallelize their se-
quential af3 algorithms with a minimal amount of effort. Cilk [17] is an exten-
sion of the C language, with some primitives to support parallelism. Given a
sequential a3 algorithm, Cilk is a choice for implementing synchronous paral-
lel af algorithms, such as YBWC. However, we note that the runtime system
of Cilk is based on the work-stealing framework, which has serious bottlenecks
that affect transposition table performance on distributed-memory systems.
Another choice for games programmers is to incorporate parallelism using the
APHID library (8]. In this case, all we have to do to achieve parallelization
is to add a small number of lines of code to the sequential programs. How-
ever, APHID does not achieve a very satisfactory speedup in a game with a
larger branching factor, when compared to YBWC. Moreover, APHID does
not perform well when parallelizing MTD(f). On the other hand, we need to
implement TDSAB from scratch with the help of message-passing libraries. It
is therefore necessary to help programmers to easily incorporate TDSAB into

their game-playing programs. This will be a further research topic of TDSAB.
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Chapter 5

Experimental Results

This chapter presents some performance results for TDSAB. Two different
applications, Awari and Amazons, have been implemented in order to investi-
gate the characteristics of TDSAB. Awari has a small branching factor which
enables game-tree search algorithms to search deeper, while a large average
branching factor in Amazons forces them to build shallower game-trees. We
will show that TDSAB succeeds in achieving good results in both these games.
Section 5.1 describes the experimental methodology used. The rest of this
chapter analyzes the performance and bottlenecks of two applications. Sec-
tion 5.2 deals with the experiments in Awari and Amazons, and compares our

results to those reported by other researchers.

5.1 Methodology
5.1.1 Hardware Environments and Applications

Our environment consists of 50 dual Processor Pentium III PCs at 933 MHz,
provided by Computing and Network Services at the University of Alberta.
Each PC has 512 MB of memory and the machines are connected through
a 100 Mb/s Ethernet. The shared memory between dual processors was not
exploited. (p / 2) (p > 2) PCs were used for the experiment with p processors.
The experiments used up to 64 processors (i.e., 32 PCs were used) at a time.

We implemented TDSAB in two applications. The TDSAB framework was

modified to use move generators for Awari and for Amazons.
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e Awari: The evaluation function of BamBam, written by Jack van Ri-

Jswijck, was used.

e Amazons: The evaluation function of Antiope,written by Theodore

Tegos, was incorporated into our implementation.

Information on these games, as well as on BamBam and Antiope, can be
found at http://www.cs.ualberta.ca/~games/. TDSAB could have been
implemented in chess and checkers instead of Awari and Amazons. However,
we chose these games, because they are simpler to implement and are of more
research interest currently than chess and checkers.

Both applications are written in C. PVM [18] (its version is 3.4) is used for

the message passing between processors.

5.1.2 Test Sets and Experimental Conditions

Care is needed in selecting a test suite for benchmarking parallel performance.
The test suite should be representative of the conditions that are present during
a competitive game. Larger sizes of game-trees improve the speedups. This is
well-known result and is one way to create misleading results. Any af3 speedup
must be interpreted in the context of the size of the search performed. The
sizes should be limited, because game-playing programs must select a move
within a limited amount of time. In our experiments, the test suites are chosen
to enable parallel searches to finish within 2-3 minutes on average, when using
the largest number of processors in an environment. The time constraint is 180
seconds on 64 processors. We prepared 20 test positions selected from games
played by BamBam against itself in Awari, and 20 positions through the self-
play of Yasushi Tanase's Amazons program. The positions selected for our test
suite are between 10 and 20 moves (half moves in chess terminology), from the
initial position in Awari, and between 25 and 35 moves in Amazons. We ran
all the test positions to the same fixed search depth, which is set to 24 in Awari
and 5 in Amazons. At present, no search extensions, such as singular extension
[2] and quiescence search [5), are implemented in the sequential counterparts.

This prevents the parallel searches from returning different minimax scores
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from those of the sequential searches. For example, a varying search order of
nodes could cause different search extensions to be turned on, thereby causing
different minimax scores. Having no search extensions allowed the applications
to return the identical minimax scores in most of the test positions (97.5% in
Awari and 100% in Amazons), measuring meaningful observed speedups.!
The performance of game-playing programs is sensitive to the size of the
transposition table used. Our experiments used 200 MB memory for transpo-
sition tables for both sequential applications. Some researchers measure the
experiments under the condition that the parallel test uses exactly the same
amount of memory for transposition tables as does the sequential test. Others
use additional memory, with an increase in the number of processors. The
first methodology measures the scalability of the number of processors, rather
than the scalability of memory [8], while the second measures the practical
performance on distributed-memory systems. Because both approaches must
be considered, we measured the results under the conditions that the total
size of memory used for the transposition tables of parallel programs is 200
MB, and that each processor used 200 MB memory for its transposition ta-
ble. Throughout this chapter we call the former the constant size memory (or

constant), and the latter the increased size memory (or increased).

5.2 Results

This section describes the main results for both applications. We will start
with Awari, then show the result in Amazons and, finally, compare our results

to those reported by other researchers.

'In Awari the minimax score of a parallel search sometimes does not match that of a
sequential search, because a transposition table entry for a node that has been searched to at
least the required depth immediately returns a score. There may be a difference of the search
order between the sequential and parallel searches, returning a different score. However, the
ratio of returning the different score is small (97.5% of the test positions returned identical
scores in our experiment).

60



7 v - 160 v v
Syschrmization Overhead ~-o---
o4 F Lincar —— 1 o} Communication Overhead - o~
Awarf e Scarch Overtead --o—
or 120 s -a
o+ JEESDES S cian -
v 100 b [ TS enna
40 b >
0}
w 32
S wl
24 S
T
TN e L] ”__,/
SIS e o
- -
'y ,,r// 20 -
o i i A P " N " " 0 PP TR PP EE ST oD Crtedetdel Seladidudele, |
0 L to 24 32 0 45 56 od n 1] L] 6 24 32 0 M 6 o
Numher of Processon Number of Prcessons

Figure 5.1: Speedups and Overheads (Awari, Constant)

Number of Execution Speedup Search Synch. Comm.
Processors || Time (seconds) Overhead (%) | Overhead (%) | Overhead (%)
1 2177.2 - . - -
8 628.7 3.46 98.8 19.9 0.9
16 363.4 6.16 98.3 294 1.1
32 2154 10.11 106.7 44.6 1.6
64 152.9 14.24 117.9 52.9 3.5

Table 5.1: Performance and Overheads (Awari, Constant)

5.2.1 Awari

Figure 5.1 illustrates the graphs of the average speedups and overheads with
20 positions in Appendix C.1, when using the constant size memory. Our
sequential Awari program expands 300,000 nodes per second. Table 5.1 gives
the corresponding performance data. Execution time is computed by dividing
the total execution time by the number of positions experimented with (i.e.,
20). Synchronization overhead is measured as the ratio of the average idle time
of a processor to the average execution time. Communication overhead is the
ratio of the average amount of time which a processor spends in exchanging
data with other processors, to the average execution time. Search overhead is
measured by the definition given in Chapter 3.

To measure synchronization and communication overheads, we used dif-
ferent programs, which have additional operations to those used to mea-

sure speedups and search overhead. Therefore, we note that the theoretical
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speedups calculated by these overheads do not always reflect the observed
speedups in each game.

Figure 5.1 shows that scalability goes down as the number of processors
increases. The best speedup achieved with the constant size memory is 14.24
on 64 processors, for a speedup efficiency of 0.22. This result looks disappoint-
ing, however, game-tree search is notoriously hard to parallelize. In particular,
it is difficult to parallelize Awari because of its small branching factor: there
often is not enough parallel work to keep 64 processors busy.

Communication overhead is a minor factor in the performance of TDSAB.
Although this overhead increases slightly as we use more processors, it is still
relatively small. Transposition table entries are accessed locally by the proces-
sors in TDSAB. Therefore, processors communicate only when they distribute
nodes, exchange scores, and broadcast signatures asynchronously, resulting in
the small communication overhead.

Search and synchronization overheads hurt the performance of TDSAB.
The synchronization overhead grows almost linearly with the number of pro-
cessors, which becomes 52.9 % with 64 processors. The large synchronization
overhead limits the speedup. For example, if 64 processors spend half of the
execution time being idle, the speedup is theoretically at most 32-fold. This is
not surprising, given that there are 12 iterations (the program iterates in steps
of two ply at a time), each of which contains an average of 34 synchroniza-
tion points at the root in the experiments. Moreover, because we parallelized
MTD(f), it clearly has more synchronization points than are obtained by par-
allelizing other af variants such as PVS and NegaScout.

In order to analyze the synchronization overhead, we implemented a tool to
monitor the idle time of each processor. Figure 5.2 shows a graph of processor
idle time (white space) for Position 1 in Appendix C.1. The Y-axis is the
processor number (0-31) and the X-axis is time spent. The vertical lines show
where a synchronization point occurred. The blue vertical line (darker line for
grey-scale print) shows a fail low at the root, while the green line (lighter line)
shows a fail high. Clearly, the last few synchronization points resulted in a

large amount of idle time, limiting the speedup.
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Figure 5.4: Speedups and Overheads (Awari, Increased)

Number of Execution Speedup Search Synch. Comm.
Processors || Time (seconds) Overhead (%) | Overhead (%) | Overhead (%)
1 2177.2 - - - -
8 463.81 4.69 185 20.3 0.8
16 253.48 8.59 15.3 30.1 1.1
32 152.67 14.26 15.6 40.5 1.5
64 99.80 21.82 15.6 55.0 3.6

Table 5.2: Performance and Overheads (Awari, Increased)

Figure 5.3 illustrates the number of nodes enqueued in the priority queue.
The X-axis represents time spent, while the Y-axis indicates the number of
nodes contained in the queue of a typical processor. The vertical lines show
where a synchronization point occurred, as defined in Figure 5.2. This graph
indicates that the processor is running out of work at the beginning and the
end of iterations.

The search overhead starts at 98.8 % and increases gradually with an in-
crease in the number of processors; it becomes 117.9 % with 64 processors.
Clearly, TDSAB suffers from a large search overhead.

Our hypothesis to explain a large search overhead when using the constant
size memory is that the size of transposition tables for the search is too small;
valuable information is overwritten - potentially serious issue, because parallel
search builds larger trees than does sequential search.

To test this hypothesis, experiments were done with an increased amount
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of memory Figure 5.4 shows the resulting speedups and overheads, and Table
5.2 shows the corresponding numbers of these graphs. The result proves our
hypothesis of a large increase of search overhead with the constant size mem-
ory. Compared to the constant size memory, additional memory improves
the speedup (21.82-fold on 64 processors). Increasing memory reduces the
search overhead by a large margin (117.9 % versus 15.6 %), although it still
has considerable synchronization overhead. This result demonstrates that one
of the properties of TDSAB - that the transposition table scales well with
more memory - is an important advantage that can dramatically influence the

speedup.

5.2.2 Amazons

Figure 5.5 and Table 5.3 show the performance and overheads in Amazons
using the constant size memory. Amazons has superior performance (23.68-
fold speedup) to Awari, using the constant size memory, because Amazons has
a very large branching factor (and, hence, no shortage of work to be done).
The large branching factor, however, turns out to be a liability. At nodes where
parallelism can be initiated, many pieces of work are generated, creating a lot
of concurrent activity (which is desirable). If a cut-off occurs, many of these
pieces of work may prove to have been unnecessary, resulting in increased
search overhead (which is undesirable). In this case, search overhead limits
the performance, suggesting that the program should be more prudent than
it currently is in initiating parallel work. Other parallel implementations have
adopted a similar policy of searching subsets of the possible moves at a node,
precisely to limit the impact of unexpected cut-offs (for example, [53]).

The synchronization overhead in Amazons is smaller than in Awari (37.2
% versus 52.9 %). Figure 5.6 illustrates a graph of processor idle time for
Position 1 in Appendix C.2 with 32 processors. This clearly illustrates there
are fewer synchronization points compared to the number obtained in Awari
(See Figure 5.2). Amazons’ 3 iterations (the Amazons program also iterates
in steps of two ply at a time) contain 13 synchronization points on average at

the root in the experiments, while Awari has 34 synchronization points.
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Figure 5.5: Speedups and Overheads (Amazons, Constant)

Number of Execution Speedup Search Synch. Comm.
Processors || Time (seconds) Overhead (%) | Overhead (%) | Overhead (%)
1 1604.1 - - - -
8 324.6 4.94 42.5 18.3 0.7
16 195.6 8.20 69.2 16.2 1.0
32 112.0 14.32 70.7 33.9 1.3
64 67.7 23.68 68.8 37.2 3.1

Table 5.3: Performance and Overheads (Amazons, Constant)
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Figure 5.8: Speedups and Overheads (Amazons, Increased)

Number of Execution Speedup Search Synch. Comm.
Processors || Time (seconds) Overhead (%) | Overhead (%) | Overhead (%)
1 1604.1 - - - -
8 343.58 4.67 55.8 11.1 09
16 180.11 8.90 55.2 15.1 1.0
32 116.11 13.81 79.2 254 1.3
64 68.25 23.50 66.4 35.5 3.6

Table 5.4: Performance and Overheads (Amazons, Increased)

Figure 5.7 is the profile of the number of nodes in the priority queue of a
typical processor, measured under the same conditions as in Figure 5.6. We
note that the size of the queues is kept small because of Amazons’ enhance-
ment of initiating only some of the children in parallel at a time. The number
of nodes allocated to the processor increases and decreases suddenly, contin-
uing this phenomenon until the search ends. This demonstrates that a larger
number of nodes (20 at CUT nodes, and 50 at other nodes) are immediately
searched in parallel when a fail low happens at a node, and deleted when a
cut-off occurs, because of the larger branching factor of Amazons. The result
is less synchronization overhead but more search overhead in Amazons than
in Awari.

Figure 5.8 and Table 5.4 show the performance and overheads with the in-
creased size memory. Interestingly the performance in Amazons does not im-

prove at all when the memory size is increased (23.68-fold with constant versus
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23.50-fold with increased). Unlike the results in Awari, using additional mem-
ory does not reduce the search overhead. Our Amazons implementation has a
much more expensive evaluation function than that of Awari (300,000 nodes
per second in Awari versus 20,000 in Amazons). Therefore, our Amazons im-
plementation expends more time in using up all the transposition table entries.
Using 200 MB transposition tables in total is sufficient for both sequential and

parallel search algorithms.

5.2.3 Comparison to Other Experiments

At present, TDSAB achieves only comparable speedups to those reported by
other researchers, using the conventional parallel af algorithms. The advan-
tages of TDSAB are partially offset by synchronization overhead, in Awari
and by search overhead in Amazons. However, it is difficult to make a fair
comparison to the results reported by other researchers, because the speedups
depend on factors such as the hardware configurations, sequential counterparts
to parallelize, implementations, experimental conditions, and games.

In a sense, implementing a new parallel idea using MTD(f) was not useful.
When comparing results with previous work, it is clear that two parameters
have changed: the sequential algorithm (MTD(f) versus af3) and the parallel
algorithm (TDS versus some variants of YBWC). Thus, it is not obvious which
component is responsible for any parallel inefficiencies. As the synchronization
overhead for Awari demonstrates, MTD(f) has more synchronization points
at the root and, hence, more synchronization overhead.

The Awari results can be compared to previous work using checkers, be-
cause checkers also has a small branching factor. For example, APHID achieves
a speedup of 14.35-fold with the constant size memory, using an Origin 2000
with 64 processors [8]. This result is similar to TDSAB'’s speedup (14.24-fold)
in Awari using the constant size memory. However, APHID’s result is ob-
tained using a different sequential a3 (PVS versus MTD(f)), and a different
environment (distributed shared-memory versus distributed-memory).

Multigame is the only previous attempt to parallelize MTD(f) using the

increased size memory [41]. Multigame’s performance at checkers (21.54-fold
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speedup) is comparable to TDSAB'’s result in Awari. In chess, Multigame
achieved a 28.42-fold speedup using partitioned transposition tables - better
than TDSAB'’s results in Amazons. However, this is not a fair comparison.
The Multigame results were obtained using slower machines (Pentium Pros at
200 Mhz versus Pentium IIIs at 933 Mhz), a faster network (Myrinet 1.2 Gb/s
duplex network versus 100 Mb/s Ethernet), longer execution times (roughly
33% larger), and different games. Chess and checkers could have been used
for our TDSAB implementations, allowing for a fairer comparison between our
work and the existing literature. However, chess and checkers no longer seem
to be of interest to the research community, while both Awari and Amazons
are the subject of active research efforts, indicating greater interest in these

games, currently.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we tried to answer the question raised in Romein’s thesis [41]
concerning the application of TDS to two-player games: “Since this kind of
(minimax) algorithm requires propagation of search results upward in the tree,
it is not yet clear whether TDS will be successful for this class of algorithms
[41).”

In Chapter 4, TDSAB was developed as a combination of TDS with MTD(f).
Based on TDS, TDSAB reversed the relationship of the computation and the
data. While the traditional approach sends data to the work that needs it,
TDSAB sends work to where the data is located. Two important new tech-
niques (priority queues and signatures) were proposed to overcome the more
complex framework of af than that found in a single-agent search algorithm
(IDA*). The synchronization strategy of identical nodes in TDSAB avoids
deadlock when searching a cyclic graph.

In Chapter 5, the results of the first implementations of TDSAB in Awari
and Amazons were reported for a network of workstations with 64 proces-
sors. The best speedups in these two application domains were roughly 23,
which are comparable to what others have achieved using conventional parallel
algorithms.

Our answer to Romein’s question is both yes and no. Clearly, the TDS
framework offers important advantages for a high-performance search appli-

cation, including asynchronous communication and effective use of memory.

73



However, these advantages are partially offset by the increased synchroniza-
tion overhead of MTD(f). The end result of this work is to achieve speedups
that are comparable to what others have obtained. This is disappointing since,
given the obvious advantages of transposition table driven scheduling, better
results might have been expected. On the other hand, this is the first at-
tempt to apply TDS to the two-player domain, and TDSAB opens up new

opportunities for further performance improvements.

6.2 Future Work

Although a lot of effort has been put into TDSAB, there are a number of

things to be done in the future.

e Speculative Search
Although TDSAB achieved satisfactory speedups on a network of work-
stations, the results were not impressive. In order to achieve better
performance in Awari, we need to reduce the number of synchronization
points. At present, in an attempt to solve the starvation problem, our
Awari implementation searches the children of the root in parallel. This
is an ad hoc approach that does not generalize to old application do-
mains. We need a general way to allow a speculative search only when
the processors are starved for work - while not increasing the search

overhead.

e TDS Implementation of af
Because MTD(f) clearly has more synchronization points at the root
than PVS (or NegaScout), it might not be the best algorithm to par-
allelize. Parallel PVS based on TDS could possibly achieve a better
speedup by reducing the synchronization points. In order to parallelize
PVS we need to deal with the case of receiving identical nodes with dif-

ferent ranges of search windows, when searching a DAG or cyclic graph.

e Better Priority Queue Ordering

Our current scheme for priority queues is not as “left-sided” as would

74



be the case for a sequential search - which will increase search over-
head. Better priority queue ordering will reduce the search overhead

and, hence, improve the speedup.

Initiating Parallelism

Our Amazons implementation suffered from large search overhead, which
decreased performance. When a fail low score returned to a node, the
Amazons implementation allowed only a (small) constant number of
branches to be searched in parallel. This constant was decided by human
programmers. We might need a dynamic method to control the amount

of parallelism initiated at a node, in order to reduce the search overhead.

Assistance for Programmers

As we explained in Section 4.3, it is a difficult task to implement TDSAB
from scratch. Therefore, it would be highly desirable to be able to pro-
vide other programmers with useful tools for developing TDSAB (e.g.,
debugging aids).

Applicability of TDS to AND/OR Tree Search

Recently AND/OR tree search algorithms based on proof and disproof
numbers have achieved remarkable results in solving endgames [1, 31, 32].
TDS ideas can be used for parallelizing these algorithms, however, this
creates a serious problem. When a node is expanded, the sequential
algorithms using proof and disproof numbers look up the table entries of
the node’s children. In TDS, the processor expanding a node does not
always keep the table entries of its children. Therefore, we need further

research to resolve this issue.
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Appendix A

Proof that TDSAB is
Deadlock-Free

A.1 Proof

We assert that TDSAB is free from deadlock, since the selection scheme ex-
plained in Chapter 4 cannot have a circular wait. In other words, if a node A
waits for the score of a node B, B cannot wait for the score of A.

Here we prove that TDSAB is deadlock-free. The relation (n,,d;) —
(n2,dz) means that a node n, for a d,-ply search waits for ny for a d,-ply
search to finish. W maintains the relations of the synchronizations between
two nodes. W is initialized to ¢ to indicate that no node is waiting for a score
of some other nodes initially (See (#) in Figure A.1). We note that W is
shared among the processors, and updated as soon as it is overwritten.

Figures A.1 and A.2 present the pseudo-code of TDSAB used for the proof.
In this Figure, the data structure node_t contains an element for the search
depth depth. The idea of the proof is to insert extra operations into the TDSAB
code to maintain the search order of the nodes. (+) and (-) insert a relation
(n1,d1) = (ng,dp) to W to indicate that searching n, will be done after ac-
complishing n,. (+) appears in GetLocalJob. The function EristldenticalNode
picks up a node n; from its local priority queue, which is identical to n, and
whose depth is equal to or shallower than the depth for n,. EzistIdenticalNode
first tries to find a node n, which has already begun to be expanded. If there

is no node already expanded, EristldenticalNode chooses the shallowest node
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(and not deeper than n,) which is not yet searched. GetLocalJob first chooses
the next node to be expanded, n,, as explained in Section 4.1.2 (FindCandi-
date). A cyclic node checked by IsCycle returns zero immediately. Then, if
there exists a node n, searched with the same or a shallower depth, searching
n, is delayed until after the completion of the search of n,, as described in
Section 4.2.2. Therefore, a relation at (+) is added to W to check that n, is
searched after n,. We note that no relation is added in GetLocalJob if (a) there
are no nodes identical to n;, or (b) even if there exists an identical node whose
depth is deeper than that of n;. A relation is also added inside ParallelINWS
(See (-) in ParalleINWS). Whenever a node n for a d-ply search expands its
child n., searching n is completed after receiving the score of n.. Therefore, a
relation (n,d) = (n.,d — 1) is added to W.

From Figure A.1 and A.2, the following two lemmas are proven:

Lemma A.1.1 Let n, and ny be nodes and d\,d; be depths. Then, for any
(Tl,[,dl) l) (ng,dg) € W it holds that

(n1,d1) = (na,dy) => d, > dy.

Proof. Straightforward from the pseudo code in Figure A.1 and A.2. (+) and
(-) are the only cases in which relations are added to W. It holds d, > d,
at (+), while dy = d; — 1 at (-).

Lemma A.1.2 Letn,,n; be nodes and d,,d, be depths. Then, for any (n1,d)) =
(n2,dy) € W it holds that

(ni,d)) == (ny,dy) Ady = dy => n, and ny are identical nodes.

Proof. The only case where (n,,d;) = (nj,d,) is added to W is at (+) in

GetLocalJob. Here n, is assumed to be identical to n,.

[ ]
Now the theorem for freedom from deadlock is proven by using the above

two lemmas:

81



(#)

(+)

/* W maintains the relations of the synchronizations between two nodes.
W is shared among all the processors. */
relation_t W = ¢;

/* A search window is set to (y - 1,7). */

int v;

/* Granularity depends on machines, networks, and so on. */
const int granularity;

/* Find a node to expand next. */
void GetLocalJob(node_t n) {
node_t n;, ny;
do {
/* Select a node in the local priority queue. */
FindCandidate(&n, );
if (n; == NOT_FOUND) {
n = NOT_FOUND; return;
}
if (IsCycle(n;)) {
/* Cyclic positions immediately return a score to its parent,
then find another candidate to be searched. */
SendNode(n, .parent,0);
DeleteLocalJob(n,); continue;
} else if (ExistIdenticalNode(n;,n;)) {
/* There exists a node n; which holds n,.depth > n,.depth. */
W+ = {(n;, n;.depth) = (ny, ny.depth)};
if ('IsSearching(n,)) {
n = ny; return;
} else {
/* Find another node to be expanded. */
continue;
}
} else {
n = n;; return;
}
} while (1);
}

Figure A.1: Simplified Pseudo Code for TDSAB with W
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/* W is declared in Figure A.1, which is initialized to ¢. */
(#) extern relation_t W;

/* Null window search in parallel. */
void ParalleINWS() {

int type, value;

node_t n;

signature_t signature;

do {

/* Find a node traversed next. */
GetLocalJob(&p);
if (p # NOT_FOUND) {

if (p == terminal || p.depth < granularity) {

} else { /* Do one-ply-search in parallel. */
for (int i = 0; i < p.num_of_children; i++) {
(-) W+ = {(p, p.depth) = (p.child_node]i}, p.depth — 1)};

p,child_nodeli].depth = p.depth - 1;
SendNode(p.child_node[i], HomeProcessor(TTKey(p.child_nodeli])));

}
}

}
} while ('FinishedSearchingRoot());

/* A minimax value is computed and stored in the transposition table. */
void StoreSearchResult(node_t p, int value) {

}

Figure A.2: Simplified Pseudo Code for TDSAB with W (cont.)
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Theorem A.1.1 (Freedom from Deadlock)
Let ny,---,n be nodes and d,, - - -d,, be depths. W never holds the following
relation:
(n1,di) = -+ = (ng, di) = (ny, dy).
In other words, the node selection scheme in TDSAB does not have a circular

wazil.

Proof. Assume that deadlock occurs in the selection scheme. Then, there

exists relations in W such that:
(nl,dl) —‘L} see _w) (nk,dk) l) (‘nl,d[).
o Case d; < d;:
By Lemma A.1.1, d; > d, holds. This contradicts d; < d,.

e Case d; > d;:
By using Lemma A.1.1 repeatedly, it holds that d, > dp,d, >
d3,---,dg_y > di. Therefore, d; > di, which contradicts di > d,.

e Case d; = d,:
Lemma A.1.1 deduces d; > d, > - - -di. Because d; = d, it follows
that d; = d, = --. = di. By using Lemma A.1.2 repeatedly, we
can prove that ny,---,n; are identical nodes. Without loss of gen-

erality, we can assume that n, is chosen last among these nodes.
Before n, is chosen, the relation should be (n,d;) ~% (n3,d,) -5

- =5 (n,d,), because there is no relation (n;,dy) = (m,dy)
in W if n; is not expanded. Then, in GetLocalJob, (a) only the
relation (n,,d;) — (n;,d1)(i # 1) is added when n; is being
searched, or (b) no relation is added to W if all the identical
nodes have finished being searched. Clearly, because neither (a)
nor (b) adds the relation (ng,d;) — (n,,d,), it does not have

(n,di) =5 - =5 (ng, di) == (0, dy).

Thus, it is proven that TDSAB is free from deadlock.
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Appendix B

Brief Summary of Games

This Appendix is for those who are not familiar with the games of Awari and

Amazons. We briefly explain the rules of these games.

B.1 Awari

Awari is an African board game played for more than 3500 years. Because there
are several variations of the rules, we only explain the version implemented in
the program we used for our experiments. More information can be found at
http://www.cs.ualberta.ca/~awari/rules.html.

Awari has 48 stones and 12 pits. The goal of Awari is to capture as many
stones as possible. Each pit contains stones, which are sowed by each player
(north or south player) by turns. The north plays first. Figure B.1 illustrates
the starting position. Four stones per pit are assigned at the initial position
of the Awari board. The two boxes outside the board are used to keep the
stones captured by the players. Because no stones are captured at first, no

North
[ d c b

ololonpa
ololololn

North to Move

o
oo

Figure B.1: Starting Position in Awari
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Figure B.2: Starting Position in Amazons
player has any stones. The rules of Awari are summarized as follows:

(1) On each turn, a player selects a non-empty pit on the side of that player.
The player then sows the stones in that pit, dropping one stone at a time
anti-clockwise into each pit. If a pit with 12 or more stones is chosen,

the original pit is skipped and left empty.

(2) If the last stone lands in the opponent’s pit, leaving 2 or 3 stones, these
stones are captured. If the previous pit also contains 2 or 3 stones, they
are captured as well. This continues with consecutive previous pits on

the opponent’s side.

(3) The player may not play a move that makes all the pits of the opponent
empty.

(4) When a player captures more than 24 stones, it is a win for that player.

If a position is repeated or both players take 24 stones, it is a draw.

B.2 Amazons

The game of Amazons was invented by Argentinian Walter Zamkauskas in
1988. It is played on a 10 x 10 board. Each player has 4 queens (called ama-
zons), initially placed on the board as in Figure B.2. The rules are summarized

in the following way:
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(1) The players alternate playing moves, white moving first. A move consists
of two mandatory parts. First, a player chooses an amazon to move. An
amazon moves like a chess queen. After the amazon has moved, it shoots
an aerrow from the destination square to an empty square. An arrow is
shot like an chess queen. The square which an arrow lands on is marked

for the rest of the game.
(2) Amazons and arrows cannot go over or onto marked squares.

(3) The last player who can make a move is a winner.
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Appendix C

Test Positions

C.1 Awari
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