INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bieedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0800

®

UMI

University of Alberta

TyYPE SYSTEM FOR AN OBJECT-ORIENTED
DATABASE PROGRAMMING LANGUAGE

by

Yuri Leontiev ©

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

Department of Computing Science

Edmonton, Alberta
Fall 1999

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your hie Votre référence

Our fie Notre réfdrence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette these.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-46872-0

Canadia

University of Alberta

Library Release Form

Name of Author: Yuri Leontiev

Title of Thesis: Type System for an Object-Oriented Database Programming Language
Degree: Doctor of Philosophy

Year this Degree Granted: 1999

Permission is hereby granted to the University of Alberta Library to reproduce single copies of this
thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with the copyright in the
thesis, and except as hereinbefore provided, neither the thesis nor any substantial portion thereof
may be printed or otherwise reproduced in any material form whatever without the author’s prior
written permission.

Jowarich

Yuri Leontiev
10710 83 Ave #204
Edmonton, AB
Canada, T6E 2E4

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies
and Research for acceptance, a thesis entitled Type System for an Object-Oriented Database
Programming Language submitted by Yuri Leontiev in partial fulfillment of the requirements for
the degree of Doctor of Philosophy.

Dr. M. P. Atkinson

Dr. W. W. Armstrong

. W‘J o

Dr. L. W. Pedrycz

To my parents Vladimir Vasilievitch Leontiev and Alla Davidovna Leontieva

Abstract

The concept of an object-oriented database programming language (OODBPL) is appealing because
it has the potential of combining the advantages of object orientation and database programming
to yield a powerful and universal programming language design.

A uniform and consistent combination of object orientation and database programming, how-
ever, is not straightforward. Since one of the main components of an object-oriented programming
language is its type system, one of the first problems that arise during an OODBPL design is related
to the development of a uniform, consistent, and theoretically sound type system that is sufficiently
expressive to satisfy the combined needs of object orientation and database programming.

This dissertation presents the design of a type system suitable for object-oriented database
programming. The type system has a unique combination of uniformity, expressibility, verifiability,
and theoretically proven soundness. [t also possesses features that make it suitable for database
programming, such as seamless integration of imperative types and features, precise query typing
via union and intersection types, separation among three abstraction layers providing a high degree
of code reuse, parametric polymorphism. extensibility, and dynamic type analysis capabilities.

In the process of type system development, a theoretical framework for dealing with type systems
that combine parametric and inclusion polymorphism is established. Due to its modular construc-
tion, this framework can be easily extended and used beyond the scope of this dissertation. Another
contribution of this work is an extensive analysis of existing and proposed type systems from the
point of view of the set of requirements related to object orientation and database programming.

This research leads to the development of a uniform and theoretically sound OODBPL that
can successfully utilize the power inherent in both object orientation and database programming
paradigms. This will eventually lead to the development and implementation of a uniform object-

oriented database system that will use the OODBPL as its main programming and query engine.

Acknowledgements

I would like to express my sincere thanks to my supervisors Dr. Tamer Ozsu and Dr. Duane Szafron
for their invaluable input, constant support and understanding. This dissertation would not have
been possible without their guidance.

[am also grateful to the members of my committee Dr. Malcolm Atkinson, Dr. William Arm-
strong, and Dr. Witold Pedrycz for many valuable comments and suggestions.

Special thanks go to my Russian supervisor Vladimir Lvovitch Arlazarov and my colleagues
Alexander Merkov and Marina lofinova. Without their guidance and support this work would not
have been possible, as I would not have had an opportunity to come to study at the University of
Alberta. [would also like to thank Dr. Tony Marsland who helped me come to this University.

Thanks also go to the database research group and in particular to Boman Irani, Igbal Goralwalla,
Kaladhar Voruganti, Paul Iglinski, and Wade Holst for many interesting, helpful, and insightful
discussions.

Thanks to the University of Alberta, Department of Computing Science, and the Killam Fund
for their financial support.

My supervisors at Intuit Canada Ltd. Andrew Smith and Drew LaHaie have provided me with
an opportunity to continue my studies while working full-time for this company.

Many thanks to my friends Igor Kolodkin, Igor Voronkov, Oleg Verevka and Victoria Lohvin,
Alexandr and Alina Litvak, Andrey Zelnikov, [lya Vodopyanov, Andrey Maximov, Vlad Alexiev and
Dolya Alexieva, Anna Zolotova, Ewgenii Gawrilow and Tatyana Gawrilowa, Grigoriy Andronov,
Dmitriy Makarov and Natalya Makarova, Maxim Potashev, Maria Schigoleva, Dmitriy Khabirov
and Olga Chernova, Evgenia Kashina and Kirill Oseledets. Their friendship has supported me
throughout these years.

I am grateful to my wife Marina for her love, encouragement and understanding. It is her support
that gave me the strength to complete this work.

[am indebted to my parents Vladimir Vasilievitch Leontiev and Alla Davidovna Leontieva for
their love and support during this work and throughout my entire life. This thesis is for them.

Contents

1 Introduction
L.L OVeIVIEW e e e e e e e e e e e e e e
1.2 Scope and contributions
1.3 Organization
2 Requirements and Type System Survey
2.1 Terminology . . . o v v v o e e e e e e e e e
2.2 Essential features of a type system
2.3 Object-oriented programming language requirements
2.4 Database programming language requirementso
2.5 Object-oriented database system requirements
2.6 Summary of requirements
2.7 Related work e e e e
2.7.1 Typesystemsreview
28 Conclusions e e
3 The Type System Design
3.1 Typesand behaviors
3.1.1 Thenotionofatype
3.1.2 Subtyping
3.1.3 Interface specification and product types
J3.1.4 Behaviortypes
3.1.5 Mutabletypes
3.1.6 Parametric types and behaviors: specification
3.1.7 Parametricity and subtypingo
3.1.8 Parametricity and interface specification
3.1.9 Union and intersection typeso
3.1.10 Constrained specifications e
3.1.11 Subtyping and inheritance Lo oo
3.1.12 Conclusions e e e e e e
3.2 Classesand functions e e e e e e
3.2.1 Classesttt e e e e e e e e e e e e e e e
3.2.2 Subclassing and class extension Lo
3.2.3 Object creation and extent maintenance
3.2.4 Functions and associations e
325 Dispatch.
3.26 Closuresand typeif
3.3 Implementationtypes
3.4 Three-layer design: Advantages and applications
3.5 Thebasictypesystem
3.5.1 Object types e

352 Atomictypes e e e e

[L

O =1 =1 & b

41

50
53

3.5.3 Collection types
3.6 Conclusions e e e e e

4 The Language and Typechecking

4.1 Syntaxand translation L oL
4.1.1 Thetarget language
4.1.2 Thetranslation e

4.2 CONSISLENCY . .« « v v v e e e e e e e e e e e e e e e
4.2.1 Notation. o i i e e e
4292 Local monotonicity
4.2.3 Simplicity and the user typegraph
424 Typeexpamsion e
4.2.5 Constraint ConSISLENCY . . . - « « v« v v v v e e e e e e e e e
4.2.6 Global behavior consistency o
4.2.7 Functional consistency o
4.2.8 Dispatchconsistency

4.3 Entailment e e e

4.4 Conclusions e e e

5 The Type System Theory

5.1 Decidability e e e
5.1.1 Finiteevolution e
5.1.2 Termination of expansion algorithm
5.1.3 Termination of fattening algorithm
5.1.4 Termination of entailment algorithm

5.2 TYPES -« « o e e e e e e
5.2.1 Regulartrees
52.2 Subtyping
52.3 Entailment
5.2.4 Properties of entailment and flattening algorithms
5.2.5 Constrained types e e

5.3 Subject reduction
5.3.1 Static subsumption Lo
5.3.2 Natural semantics
5.3.3 Execution state typing oo
5.3.4 Dispatch correctness
5.3.5 Subject reduction Lo

5.4 Imperative types L

5.5 BXtensiONS e e e e e e e e e e e e e e e e
5.5.1 Errors, nulls, and exceptions oo L
5.5.2 Local variables and dynamicscoping
55.3 Non-localreturns
5.5.4 Handlingobject creation L oL

5.8 DISCussion e e e e e e e e e e e e
56.1 Extensibility
5.6.2 Typesystemevolution
5.6.3 Engineering trade-offts o oo oo
5.6.4 SUIMMALY . . . - o o o ot i et e e e e e e e e e e e e e e e e e

6 Conclusions
6.1 Summary and contributions L oo
6.2 Futureresearch e e e

Bibliography

96

96

96
100
110
110
116
117
120
122
124
126
131
136
141

142
142
143
146
147
149
149
150
151
153
156
160
162
162
169
170
173
178
195
198
198
199
201
201
201
201
202
204
205

206
206
207

209

A The Basic TIGUKAT Type System
A.l Commonbehaviors e
A2 Product types e
A3 Functional types
A4 Object tyPes o o o
A4l Specialtypes
Ad42 Atomictypes
A.43 Collection types e
A4.4 Imperativetypes
A45 Metatypes oo e
A.4.6 Class types and the metaclasses

B Implementation Notes
B.1 Object identifiers
B.2 Multipledispatch
B.3 [mplementation types and functions L
B.4 Adding persistence e

C Module System
C.1 Information hiding and sharing
C.2 Export and import
C.3 Imnermodules e e
C4 Namesearch e e
C.5 Adding persistence

List of Tables

2.1
2.2
2.3
2.4

4.1

Typesystemindex 20
Type systermn features« c . e 21
Type system expressibility oo o oo 22
Type system tests« . oo e e 23

Variance combination e e e e e 114

List of Figures

3.1
3.2
3.3
34
3.5
16
.7
3.8
3.9
3.10

5.1
5.2

C.1
C.2
C3
C4

Type system layers 16
Person type hierarchy 41
SErEam bYPeS. . . o . v o v e e e e e e e e 62
Comparable types. 63
Class type hierarchy 78
Shape type hierarchy o 32
TIGUKAT types. o o o e e i e e e e e 87
TIGUKAT object types. oo i i it 83
TIGUKAT atomic types.t vt i ittt e 89
TIGUKAT collection types. o i it e e 93
Example user type graph Go 120
Typing rules for the target language 128
Natural semantics of the target language 171
Typing rules for rt-objects 171
Module data sStructureso e e e e e e e 233
Name search e e e 234
Name search in the given module 235
External name search in the givenmodule 236

Chapter 1

Introduction

1.1 Overview

From its early days, object orientation {(OQ) was considered one of the most influential and useful
programming paradigms. Its impact on research in virtually all areas of computing science can
only be compared to that of relational algebra, or that of the functional and logic programming
paradigms.

Much of the power of object orientation lies in the fact that it provides conceptual and modeling
capabilities that allow it to express real-world entities with relative simplicity. Another source of
the appeal of object orientation is its support for incremental software construction, provided in the
form of code reuse.

All these advantages were first realized and exploited by the programming language (PL) research
community. Starting with Simula-67 and Smalltalk, the development of object-oriented languages
has become a landmark of programming language research in the last two decades.

Another major research area that experienced the impact of the object-oriented paradigm is the
area of database management systems (DBMS). The high modeling power of object orientation along
with its abstraction capabiiities can make it one of the preferred paradigms in the development of
DBMSs designed to deal with complex data-intensive applications, such as CAD/CAM, multimedia,
and office information systems.

As both programming language and database system research areas experienced the impact of
the object-oriented paradigm, so did their child — the area of database programming languages.
This relatively young research area is still a source of prolific research and development activity,
much of this activity being concentrated on object-oriented database programming languages or
database programming languages with object-oriented features.

Object-oriented database programming languages (OODBPLs) have the potential to combine the
modeling and software construction power of the object-oriented paradigm. extensive and efficient
data storage and retrieval techniques of the modern database systems, and the efficiency and power
of today’s programming languages in a single uniform framework.

However, OODBPLs have yet to live up to their potential. Most of the modern OODBPLs are
simply object-oriented programming languages with the concept of persistence added to them. They
do not provide the full power of database systems either in their data access mechanisms or in their
query capabilities. Therefore, the problems related to the design of an OODBPL that can combine
the power of its three constituent parts (OO, DB, and PL) are nowadays the topics of extensive
research activity.

Both the modeling and software construction powers of object-oriented languages are rooted in
their type and inheritance systems. A properly designed, rich, and theoretically sound type system
can greatly increase the power of a language, while a poor, inflexible type system can render almost
all power inherent in the object-oriented paradigm useless.

While the type system of an object-oriented language greatly affects its characteristics, the type
system of an QODBPL affects its characteristics even more. The reason for that is the presence

of different and sometimes contradictory requirements that are imposed on the type system by an
OODBPL’s database and programming language components.

The presence of two sets of requirements makes the development of a type system for an OODBPL
a challenging task. It, therefore, comes as no surprise that no existing type system satisfies the
requirements that are imposed on OODBPLs.

While the task of developing such a type system is difficult, it is also quite rewarding. Apart
from the proof of the validity of the very concept of OODBPL, the solution to this problem will
provide the designers of OODBPLs with a consistent and uniform framework that would greatly
facilitate the development of such languages in the future.

1.2 Scope and contributions

In this dissertation, a type system for an object-oriented programming language is developed. This
type system satisfies a set of requirements that are placed on the type system by both database and
object-oriented language components. These requirements are compiled from several sources and
reviewed in terms of their relevance and necessity.

An extensive review of existing type systems is conducted in order to find out which of them
satisfy the requirements. [t is concluded that none of the reviewed type systems completely satisfies
all the requirements and therefore the task of designing such a system is relevant and important.

The discussion of the type system presented in this dissertation is broken down into three com-
ponents: the design principles, the typechecking and verification algorithms, and the theoretical
framework that consists of the proofs of correctness of the presented techniques.

One of the design principles used in the construction of the presented type system is the novel
principle of three-layered language design. The three layers are the interface layer, the implemen-
tation (code) layer, and the representation (data) layer. This design principle provides additional
flexibility in specification and use of types, and facilitates better code reuse. A major motivation
for the layered design is understandability of the type system by programmers. The system can
be used at all the three layers; the deeper the layer, the more power it provides, and the greater
complexity it involves. Other major design principles are substitutability, parametricity, verifiabil-
ity, and soundness. The source language showing the use of this design and the type system is also
presented. This language can serve as a core for the development of a full-fledged OODBPL.

Typechecking and verification algorithms are based on a notion of type constraint entailment.
A program to be verified is transformed into a set of subtyping constraints, and the task of the
type checker is to verify that these constraints admit a solution under certain assumptions. Another
important aspect of program verification is the validity of the dispatch mechanism. Dispatch is the
process of dynamically choosing the function to execute at a call-site depending on the types of actual
arguments. The validity of dispatch is also tested by verifying entailment relationships between sets
of subtyping constraints. Development of a correct and decidable typechecking algorithm for a type
systemn as complex as the one described here is one of the major contributions of this work.

In order to formally prove the properties of the presented algorithms, a theory of subtyping and
the natural semantics of a simplified version of the language (the target language) are developed.
Equipped with this theory, proofs of decidability and correctness of the presented algorithms are
given.

Thus, properties of the presented type system include verifiability, soundness, and expressibility.
Verifiability is understood as a provable termination of all the algorithms involved in the program
verification process. Soundness stands for the guarantee that a successfully typechecked program
does not generate type errors at run-time. Expressibility is the ability of the type system to express
various program and type structures. The result of this research is applicable to the development of
persistent object-oriented type systems and languages and their theoretical underpinnings.

Other research areas relevant to the development of an OODBPL but not discussed in this
dissertation include built-in object-oriented query language and its optimization, the persistence
model, and the implementation of the language.

1.3 Organization

The remainder of this dissertation is organized into five chapters. Chapter 2 presents the set of
requirements placed on the type system. The requirements are discussed and a test suite of programs
designed to test the conformance of the type system to the expressibility and reflexivity requirements
is developed. An extensive review of existing and proposed type systems is conducted. The chapter
concludes with an evaluation of these type systems relative to the requirements. Chapter 3 is devoted
to the description of the design principles and decisions made during development of the presented
type system. It highlights various design choices and explains the ones that were made. The language
and the typechecking and verification algorithms are presented in Chapter 4. Chapter 5 deals with
the formal aspects of the presented type system. The proofs of the decidability and correctness
results as well as the natural semantics of the simplified target language used for typechecking are
presented in this chapter. Finally, Chapter 6 concludes with a summary of contributions and outlines
directions for future research.

Appendix A presents an example of usage of the concepts developed in this dissertation for
an OODBPL based on a uniform, behavioral object model [Pet94]. Appendix B provides a set of
implementation notes and design decisions made during a preliminary implementation of a compiler
and the run-time system for the TEGUKAT persistent programming language. Appendix C presents
a module system design for the language. While not directly related to the type system itself, the
module system provides support for additional information hiding and sharing.

Chapter 2

Requirements and Type System
Survey

The purpose of this chapter is to answer two questions: “What are the requirements that a modern
type system for an object-oriented database programming language should satisfy?” and “Are there
any type systems developed to-date that satisfy these requirements?”.

In order to answer the first question, the set of requirements put forth in the literature for
type systems (Section 2.2), modern object-oriented programming languages (Section 2.3), database
programming languages (Section 2.4), and object-oriented database systems (Section 2.5) by the
leading researchers in these areas will be considered. Then, the set of required type system features
will be extracted. The resulting combination of requirements is presented in Section 2.6. Also
presented is the test suite that is used later to evaluate the existing type systems reviewed in this
chapter.

Section 2.7 presents an extensive review of more than 30 languages and type systems. These type
systems are evaluated with respect to the requirements and the test suite presented in Section 2.6.
The result of this extensive analysis shows that while each of the requirements is satisfied by at
least one type system, no type system satisfies all of them. It also enables the identification of the
mechanisms that lie behind the strengths and weaknesses of the current type systems. The knowledge
obtained this way will be used in subsequent sections to aid in the design and development of the
type system that satisfies all of the above requirements, which is the primary goal of this work.

2.1 Terminology

Let us start by establishing some terminology to be used throughout the rest of this chapter. This
is necessary as many of the terms used in the object-oriented language research area have no clear
definition and are used differently by different authors. Most of the terminology below! comes from
[Car89, BP94].

Object: A primitive term for a data item used to model a concept or a real-world entity.
Message: A part f of an invocation z.f; an identification for a related set of methods.

Function name: A part f of invocation f(z); also can be termed as a message not associated with
any type. Sometimes called a free-floating function.

Method: A procedure to be executed when an object is sent an appropriate message.

Function: A procedure to be executed when a function invocation is requested. Function relates
to a function name the same way a method relates to a message.

1 These definitions are not necessarily universally accepted, but they are used consistently throughout this disser-
tation.

Interface type: A description of messages applicable to an object.
Implementation (representation) type: A description of an object’s structure.
Type: A shorthand for interface or implementation type or both, depending on the context.

Mutable object type: A type of an object that is capable of changing its state at run-time. For
example, variables and arrays are mutable objects. These types are sometimes called imperative

types.

Parametric (parameterized) type (message, function): A type (message, function) that de-
scribes a family of types (messages, functions) by using (an) explicit parameter(s). For exam-

ple,

type T_List(X) {
getAt(T_Integer): X;
I

Constrained type: A parametric type that places a constraint on its parameter(s). The mecha-
nism that allows a programmer to specify such a type is called bounded quantification. For
example

type T_PersonList(X) where X subtype of T_Person;
specifies a constrained type T_PersonList.

Intersection (greatest lower bound) types: An intersection of a set of types is a type that
represents the greatest lower bound of the set in the type lattice. Intersection types are useful
for typing of set-theoretic operations and queries.

Inheritance: A mechanism for making one (interface or implementation) type from another. A
single inheritance requires that a type has at most one immediate ancestor (parent) in the
inheritance chain; multiple inheritance lifts this restriction.

Interface subtyping: A partial order on interface types. An interface type A is a subtype of
another interface type B when an object of the interface type B can be thought of as an object
of the interface type A (e.g., a type T_Student is a subtype of T_Person since every student
can be thought of as a person).

Implementation subtyping (code reuse): A partial order on implementation types. An imple-
mentation type A is a subtype of another implementation type B if it is possible to use code
written for A to manipulate objects that have the implementation type B.

First-class object: An object that is capable of receiving messages.

Non-first-class object (value): An immutable object that lacks the ability to receive messages.
Traditionally, it is assumed that values have no interface, just a set of operations defined on
them. In this dissertation, such a set of operations will be considered an interface of a value.

Primitive (atomic) type: A primitive type is a type of basic (primitive) system-defined objects
or values (such as integers, reals, characters, etc.). Primitive types usually have a special status
in non-uniform systems and languages.

Soundness of a type system: Inability of a successfully typechecked program to produce run-
time type errors. Sometimes divided into static and dynamic soundness. The latter makes
sense for languages with dynamic type checking and assures that run-time type errors will be
caught.

Verifiability of a type system (decidable typechecking): The ability to verify that a pro-
gram does not contain type errors with respect to a particular type system; equivalently,
the presence of a decidable typechecking algorithm. Note that verifiability does not imply
soundness. For example, the language Eiffel [Mey88] has a decidable typechecking algorithm,
but a successfully typechecked program can produce run-time type errors.

Substitutability: A property of a type system (language) that guarantees that an object of a
subtype can be used everywhere the object of its supertype can (e.g. if a type T_Person is a
supertype of T_Student, then a student can be legally used wherever a person can be).

Dispatch: A process of finding out at run-time which method of a particular message to execute.
Single dispatch bases its decision on the type of the first argument (receiver) only, while multiple
dispatch takes into account types of other arguments as well. The term static dispatch will be
used to refer to a compile-time process of method determination.

Static/dynamic typing (typechecking): Static typechecking is done at compile-time, while dy-
namic typechecking is done at run-time.

Implicit/explicit typing: Languages with explicit typing require the programmer to insert type
annotations in the program. Languages with implicit typing infer the types of expressions
without any help from the programmer. Intermediate approaches are also possible.

Inclusion polymorphism: This term refers to a combination of subtyping and substitutability.

Parametric polymorphism: Parametric polymorphism is present when parametric specifications
(e.g., parametric types) are supported.

Covariance (contravariance, novariance): Covariance means that changes in a particular type
are parallel to the direction of the type hierarchy. In the following example the result type of
the method getAt changes covariantly, as it is T_Person in definition 1 (which occurs in the
type TPersonList) and T.Student (a subtype of T Person) in definition 2 (which occurs in
the type T.StudentList, a subtype of T_PersonList).

type T_Student subtype of T_Person;

type T_PersonList {
getAt(T_Integer): T_Person; // 1
3

type T_StudentList subtype of T_PersonList {
getAt(T_Integer): T_Student; // 2
IH

The reverse direction is termed as contravariant. Novariance forbids any type changes along
the type hierarchy. In this example, the argument type int changes novariantly, i.e. does not
change at all.

The terms class and subclassing are deliberately avoided in this chapter as they are too overloaded.
In object-oriented literature, the term class is used to denote a mechanism for object construction,
an equivalent of an implementation type, an equivalent of an interface type, a set of objects satisfying
a particular condition, or some combination of the above four notions. The definition of subclassing
is equally overloaded.

Also, the term type is qualified as being either interface type or implementation type. This will
prove useful when considering type systems where the two type notions are distinct.

2.2 Essential features of a type system

The major goals of a type system in today’s programming languages and database systems include
[Car89, Car97, BP94}:

1. Provide a programmer with an efficient way of catching programming errors before a program
(or a part of it) is actually executed. This is often considered to be the major objective of a
type system in the programming language community.

2. Serve as a data structuring tool for design and modeling purposes. Many design technologies
that have emerged through the past decade rely partially or fully on type systems to provide
a convenient design and documentation framework for a system development process. This is
especially true of object-oriented design technologies. This is often considered to be the major
goal of a type system in the database community.

3. Provide a convenient framework for program maintenance. This includes documentation at
the production stage of program evolution as well as the ability of a programmer to understand
the functionality and interfaces of a completed product.

4. Provide sufficient infsrmation for optimization purposes. The information provided by the type
system can be used by an optimizing compiler, interpreter, or a query optimizer (in persistent
systems) to improve the efficiency of a program.

In order for a compiler (or interpreter) to be able to typecheck a program (or a part of it), there
must exist a typechecking algorithm®. Existence of such an algorithm for a given type system is
termed as verifiability of the type system. Thus, a type system should be verifiable. It is preferred
that a type system be decidably verifiable; however, one may have to put up with an undecidable
type system just as one puts up with undecidable programs if enough expressive power is desired
(BP94]. The verifiability property also implies that a type system should be provably sound, i.e.
there should exist a formal proof that a successfully type-checked program does not generate any
type errors at run-time.

If a compiler finds a type error and reports it to a programmer, the latter should have sufficient
information to be able to understand the reason for the type error in order to correct it. Thus, the
type system should be transparent.

A type system should also be enforceable in order to prevent an execution of type-incorrect
programs. This implies that programs have to be written with as much type information as possible
to prevent “false alarms”.

Finally, a type system should be extensible. This requirement stems from the fact that none of
the existing type systems were found to be satisfactory for all possible applications. Therefore the
chance that any new type system will satisfy all application domains is remote. If a type system
can not be extended, it will sooner or later be abandoned for a type system that can adapt to new
application requirements. Switching from one type system to another is extremely costly both in
terms of people resources (that have to be reeducated) and in terms of data conversion costs.

2.3 Object-oriented programming language requirements

Pure object-oriented programming languages pose some specific requirements on their type systems.
These requirements will be constructed by considering features essential for pure object-oriented
languages and reformulating them in terms of type system features.

To be called a pure object-oriented language, a langnage should possess at least the following
properties® (most of the following is borrowed from [TNG92]):

2Much of the discussion below is borrowed from [Car97].
3Some of the features listed here are advocated in [TNG92] as absolutely necessary for future object-oriented
languages.

Encapsulation. This property is usually considered as one of the characteristic features of
object-oriented languages and greatly facilitates code reuse. [t refers to the ability of a language
to shield internals of an object implementation from outside access.

Inheritance. This is a characteristic property of object-oriented languages as well. The inher-
itance mechanism promotes and facilitates well-structured software design and reusability of
the code. Multiple inheritance is highly desirable, as its absence leads to clumsy or limited
type specification in some important cases.

Uniformity. Primitive values (integers etc.), types, and messages (methods) should be first-
class objects. If this requirement is not satisfied, the language will have to handle the
non-object entities in some non-object-oriented way, and will therefore not be purely object-
oriented. Note that the existence of methods that are able to operate on types and other
methods is a consequence of this property. This is also advocated in [Hau93].

Object access and manipulation uniformity. An object can only be manipulated by methods
defined for it. Together with uniformity, this property provides for purely object-oriented
programming.

Method uniformity. This refers to the absence of distinction between stored and computed
methods or, equivalently, the absence of public instance variables. This requirement is impor-
tant as its violation breaks encapsulation and may effectively hinder the usefulness of the code
reusability provided by inheritance.

. Separation between interface and implementation inheritance (sometimes termed as separation

between type and class hierarchies). This is actually a consequence of encapsulation, inheri-
tance, and object manipulation uniformity. Additional arguments in favor of such separation
can be found in [LP91, Cas96, Tai96, BLR96, LOS98].

. Multi-methods (multiple dispatch). This refers to the ability of a language to use types of all

arguments during dispatch. Traditionally, only the type of the first argument (the receiver) is
used. This property of the language is essential to adequately model binary methods [BCC*96,
Cas96, LM98, FM96] and certain object-oriented design patterns [BLR96].

Using these requirements for pure object-oriented languages, it is now possible to formulate desirable
features of type systems for such languages. These requirements are:

L.

Inheritance mechanisms for both interface and implementation inheritance. This requirement
is a direct consequence of the language requirements 2 and 6 above.

. Type system reflexivity. This is necessary to ensure uniformity of the language (requirement 3),

since types (classes) have to be objects. Since every object has a type, types and classes need
to have types as well. Thus, the type system needs to be reflexive.

Method types. This is also a consequence of uniformity. Indeed, since methods have to be
objects to ensure uniformity, they will have types. Moreover, when methods are manipulated
as objects (e.g., passed as arguments to other methods), their types should be descriptive
enough to ensure the validity of type-checking.

Method uniformity at the type level (no distinction between types of stored and computed
methods). This is a direct consequence of the language requirement 5.

. Support for multi-methods (multiple dispatch). This is a consequence of the language require-

ment 7.

Another desirable feature of an object-oriented type system is substitutability (at least for interface
inheritance). This property is essential to achieve one of the primary goals of the object-oriented
paradigm: code reuse.

2.4 Database programming language requirements

Database programming languages (DBPLs) possess their own set of distinguishing features that
poses additional requirements on type systems. The approach of the previous subsection will be
used to derive the type system features from the following list of necessary features of a persistent
language that is taken* from [AB87, AM95].

1.

Persistence independence (the form of the program is independent of the longevity of data
the program operates upon). This is necessary to provide seamless integration between the
database and the language and to significantly reduce the amount of code necessary to deal
with persistent data.

. Orthogonality of type and persistence (data of all types can be persistent as well as transient).

This is an aid to data modeling as it ensures that the model can be independent of the longevity
of data. It also eliminates the need of explicit persistent-to-transient data conversions.

. User-defined type constructors. This requirement is due to the necessity of modeling new,

potentially complex data structures in a uniform and consistent manner.

. Information hiding (also known as encapsulation). Encapsulation allows for data modeling at

a higher (more abstract) level as it hides the implementation details and gives the programmer
an ability to deal with abstract interfaces rather than concrete data structures. It greatly
facilitates modeling, code reuse, and component integration.

. Polymorphism (parametric, inclusion, or both). Parametric and inclusion polymorphisms make

the specifications more succinct and precise. They also allow for a significant reduction in the
amount of code that needs to be written to specify and implement a particular data model,
as a significant portion of the specifications are reused via genericity achieved by the use of
polymorphic constructs.

. Static and strong typing with provisions tor partial type specification (which necessitates the

presence of a type mechanism similar to one formed by type constructor dynamic and operator
typecase). This is necessary in order to deal with data that come from a persistent store whose
structure is only partially known at the time the program is written. An example of a program
that requires such capabilities is a generic database browser that is supposed to work on any
database independently of its structure.

. Incremental program construction and modularity. This principle ensures that most of the

program modifications can be done locally, without affecting the rest of the code. While this
property is very important for programming languages in general, it is even more important
for database programming, since databases tend to exist and evolve for extensive periods of
time. As a database evolves, the programs designed to operate on it have to evolve as well.
Modularity is one of the major features that significantly reduce the overhead of such an
evolution.

. Query facilities. One of the main reasons behind the success of the relational data model was

its ability to support declarative, simple, yet powerful data access/query languages. In order
for object systems to be successful, they must provide querying capabilities equal or exceeding
those of the relational systems.

. Ability of a program to deal with state change. This requirement is necessary as persistent

data outlive the program and if a program is not able to change data, the state of persistent
data will never change.

From this list of requirements, the following properties of the type system can be derived:

1Features not related to type system are dropped from the list.

. Types (classes) in the type system should not be specified as either persistent or transient.

This is the DBPL requirement 2 reformulated in terms of type system terminology.

. User-defined type constructors. This is the same as the DBPL requirement 3.

Encapsulation. This follows from the DBPL requirement 4.

The presence of parametric types. This follows from the DBPL requirements 5 (parametric
polymorphism) and 3. It is also desirable to handle bounded (constrained) parametric types
as it increases the modeling power of the type system.

. Possibility of partial type specification and dynamic type checking. This follows from the

DBPL requirement 6.

. Verifiable and sound type system (as a consequence of the DBPL requirement 6).
. Incremental type checking (as a consequence of the DBPL modularity requirement).

. The ability of the type system to correctly type declarative queries. This stems from the

DBPL requirement 8. According to {BP99], this requires that the type system can support
union (least upper bound) types.

The ability of the type system to deal with types of mutable objects (later referred to as mutable
object types) and assignment. This is a direct consequence of the DBPL requirement 9.

In addition to the above, [KCMS96] advocates the use of reflection in persistent object systems.
The combination of object-orientedness and persistence poses some additional requirements de-
scribed in the next subsection.

2.5 Object-oriented database system requirements

A list of features needed or desirable in object-oriented database management systems (OODBMS)
and the rationale behind it are given in [ABD*92]. This is the most comprehensive of such lists
published so far.

The following list3 is the part of it that is related to type system issues. It contains the additional
requirements to those already listed in the previous subsections.

1.

Complex objects (orthogonal type constructors should include at least sets, tuples, and lists).
This is necessary to ensure that the modeling power of the system is sufficient to deal with
modern applications, such as CAD/CAM, medical and geographical information systems.

. Extensibility: user-defined and system types should have the same status and the user should

be able to add new “primitive” types to the system. This is also due to the necessity of dealing
with new demanding application areas. It is impossible to anticipate all the data types that will
be required to model the data structures in those areas since some of them are yet to emerge.
By providing the same status to system and user-defined types, the system guarantees that its
capabilities are not decreased when it is applied to a new application domain. Also advocated

in [MS91].

. Views. A view is, in a sense, an ability to transparently change the appearance of data for

different users (clients). The importance of this concept as well as its usefulness and power
have been convincingly demonstrated by years of experience obtained by the research and
industrial communities in dealings with relational databases.

5Some issues often considered as deficiencies of object-oriented systems (for example, in [Kim93]) but deemed
optional in [ABD*92] are listed here as mandatory. The reason for that is the understanding that if object-oriented
databases are to be the next step in the database development, they should utilize the advances already made in
relational databases.

10

4. Dynamic schema evolution. This requirement is based on the necessity to maintain (and
change) the database structure over extensive periods of time. While it is sometimes possible
to create a completely new database with a new schema and migrate data to it, this approach
is usually quite expensive and results in a substantial down time. This is often not acceptable
in large distributed applications such as air traffic control systems. Dynamic schema evolution
makes it possible to change a database structure transparently to its users.

These additional requirements have to be taken into account when designing a type system for a
pure object-oriented database programming language. Next, these requirements will be summarized
and a short overview will be given.

2.6 Summary of requirements

The following is the compilation of all type system requirements presented so far. The categorization
of the requirements presented here is subjective, but it does provide a useful structure to the extensive
set of requirements compiled so far. Each requirement listed below contains a reference to the section
where it has been introduced and explained.

1. Theoretical requirements

(a) Verifiability (preferably decidable) and provable soundness of the type system. These
features are necessary for the type system to be useful for program verification (see
Section 2.2 and Section 2.4).

2. Inheritance requirements

(a) Inheritance mechanisms for both interface and implementation inheritance (Section 2.3).

(b) Substitutability property (at least for interface inheritance) (Section 2.3).
3. Expressibility requirements

(a) Method types (Section 2.3).

{(b) Parametric types (Section 2.4).

(c) Orthogonal type constructors (at least sets, tuples, and lists) (Section 2.4).
(d) Encapsulation (Section 2.3 and Section 2.4).

(e) The ability of the type system to deal with mutable object types and assignment (Sec-
tion 2.4).

(f) The ability of the type system to correctly type multi-methods (Section 2.3).
(g) The ability of the type system to correctly type SQL-like queries (Section 2.4).

4. Uniformity requirements

(a) Extensibility (user-defined and system types should have the same status) (Section 2.5).

(b) Types (classes) in the type system should not be specified as either persistent or transient
(Section 2.4).

(c) Method uniformity at the type level (no distinction between types of stored and computed
methods) (Section 2.3).

5. Reflexivity requirements
(a) Type system reflexivity (Section 2.3).

6. Dynamic requirements

11

(a) Possibility of partial type specification and dynamic type checking (Section 2.4).

(b) Provisions for schema evolution (Section 2.5).
7. Other requirements

(a) Transparency of the type system for a programmer (Section 2.2).
(b) Incremental type checking (Section 2.4).
(¢) The ability to define views in a type-safe fashion (Section 2.5).

Some of the above requirements are complimentary, while others are contradictory. Most notably,
decidable verification conflicts with reflection (as shown, for example, in [Car86b]). Also, enforce-
ability conflicts (to a degree) with partial type specification. Another conflict can be seen in that the
complexity of the type system that satisfies the expressibility requirements above will most probably
make the resulting type system much less transparent for a programmer than one would like it to be.
[CMMO91] also identified a conflict between substitutability, mutable types, and static type safety.
The presence of such contradictory requirements makes the task of designing a type system that
satisfies them particularly difficult.

The following is a set of test programs that a type system should be able to type correctly®.
These tests are primarily designed to test type systems for their expressibility as this is the most
difficult set of requirements to check; however, the last test is the test for reflexivity and uniformity.
The programs are written in an object-oriented pseudo-language”.

These programs are designed to test known problem areas of object-oriented type systems. They
are also used to verify the ability of the type system to consistently and orthogonally combine
parametric and inclusion polymorphism with mutable types and assignment. This has to be done
because soundness, verifiability, parametricity, substitutability, and mutable types are all among the
requirements for an OODBPL type system.

Many of the expressibility tests are adapted from [BP94] which presented a benchmark for testing
type system expressibility. However, their benchmark was designed to measure the expressibility of
a type system for an object-oriented programming language and not for an object-oriented database
programming language. Thus, some tests related to the additional expressibility requirements pre-
sented above were added.

The requirement related to mutable object types and assignment is tested by each of the tests
below. This is done in order to verify that a type system can deal with mutable types in combination
with parametric and inclusion polymorphisms. This is a well-known problem area in object-oriented
type systems [CMM91].

1. Types T.Person and T_Child with method getAge that returns T_Integer when applied to a
person and T_Smalllnteger when applied to a child. (PERSON)

type T_Integer;
type Smalllnteger subtype of Integer;

type T_Person {
getAge(): T_Integer;

};

type T_Child subtype of T_Person {
getAge(): T_Smalllnteger;

};

new T_Person (...);
new T_Child (...);

T_Person p :
T_Child ¢ :

6Note that the terms “test” and “test program” are not used here in the traditional software engineering sense.
7The programming language examples are used to illustrate the tests and not to suggest the necessary language
constructs.

12

T_Integer i;
T_Smalllnteger si;

i := p.getAge(); // should be Ok
i := c.getage(); // should be Ok
si := p.getAge(); // should cause compile-time error
8i := c.getAge(); // should be Ok

This test is designed to verify that subtyping does not necessitate the absence of changes.
Surprisingly, there is a considerable number of languages that do not allow any changes while
inheriting, only additions. This significantly limits the power of the type system and forces
the designer to use less specific type information.

. Types T_Point and T.ColorPoint, with equality on both. The equality between color points

should take color into account, while the equality between two points or between a point and

a color point should ignore it. (POINT)
type T_Point {
equal(T_Point p):T_Bool implementation ... ; // equali
3
type T_ColorPoint subtype of T_Point {
equal(T_ColorPoint p):T_Bool implementation ... ; // equal2
3

T_Point p1 := new T_Point (...);
T_ColorPoint p2 := new T_ColorPoint (...);

pl.equal(pl); // should call equall
pl.equal(p2); // should call equall
p2.equal(p2); // should call equal2
p2.equal(pl); // should call equall

p1l := new T_ColorPoint (...);

pl.equal(pl); // should call equal2
pl.equal(p2); // should call equal2
p2.equal(p2); // should call equal2
p2.equal(pt); // should call equal2

This test is adapted from [BP94]. It tests the type system'’s ability to deal with binary methods,
a well-known problem area in object-oriented type systems [BCC*96, FM96].

. Types T Number (with unrelated subtypes T_Real and T_Radix) and T Date with comparison

methods such that comparing two numbers or two dates is legal, while their cross-comparison
is not. All method code below, except for the code for the method less, should be reused.
(COMPARABLE)

interface I_Comparable {
less(selftype c):T_Bool;
greater(selftype c):T_Bool implementation { return c.less(this); };

Y
type T_Number implements I_Comparable {

less(T_Number n):T_Bool implementation ... ; // lessi
};

type T_Real subtype of T Number { ... };

13

type T_Radix subtype of T_Number { ... };
type T_Date implements I_Comparable {

less(T_Date d):T_Bool implementation ... ; // less2
3

T_Date di, d2;

T_Number ni, n2;

T_Radix radixVar := OxF;
T_Real realVar := 1.0;

di := '2/3/99’; 42 := '3/4/78’;

nl := realVar;

n2 := radixVar;

nl.less(n2); // should call lessi
n2.greater(nl); // should eventually call lessi
ni.less(realVar); // should call lesst
n2.greater(radixVar); // should eventually call lessl
di.less(d2); // should call less2
di.greater(d2); // should eventually call less2
di.less(nl); // should cause compile-time error
ni.less(dl); // should cause compile-time error

This is an additional test for binary method handling. It tests whether the subsumption
property can be maintained in the presence of binary methods. This test is necessary due
to the fact that some approaches to the binary method problem (most notably, matching
[BSG95, BFPY6]) abandon substitutability, and substitutability is one of the requirements for
an OODBPL type system.

. Parametric input/output/IOstream type hierarchy such that the three types are parameterized
by the type of objects readable/writable to/from a particular stream, with T_IOstream being
a subtype of both input and output stream types. (STREAMS)

type T_InputStream(covar X) {
get():X;
isEmpty() :T_Bool;

};

type T_OutputStream(contravar X) {
put(X arg);

};

type T_IOStream(novar X) subtype of T_InputStream(X), T_OutputStream(X);

type T_Point { ... };
type T_ColorPoint subtype of T_Point { ... };

T_Point p := new T_Point (...);
T_ColorPoint cp := new T_ColorPoint (...);

T_InputStream(T_Point) isp;

T_OutputStream(T_Point) osp;
T_IOStream(T_Point) iosp;

14

T_InputStream(T_ColorPoint) iscp;
T_OutputStream(T_ColorPoint) oscp;

T_I10Stream(T_ColorPoint) ioscp;

... // Initialization of the above streams

p := isp.get();
p := iscp.get();
cp := isp.get();
cp := iscp.get();

osp.put(p);
oscp.put(p);
osp.put{cp);
oscp.put(cp);

isp := iosp;

isp := ioscp;
igcp := iosp;
iscp := ioscp;
osp := iosp;

osp := ioscp;
oscp := iosp;
oscp := ioscp;

//
//
//
//

//
//
//
//

//
//
//
//

//
//
//
//

should
should
should
should

should
should
should
should

should
should
should
should

should
should
should
should

be Ok
be Ok
cause
be Ok

be Ok
cause
be Ok
be Ok

be Ok
be Ok
cause
be Ok

be Ok
cause
be 0Ok
be Ok

compile-time error

compile-time error

compile-time error

compile-time error

This test is designed to verify that a combination of parametric and inclusion polymorphism
in the type system does not adversely affect either of them. In other words, it tests the
orthogonality of the two polymorphisms. The presence of both parametricity and inclusion
polymorphism (subtyping + substitutability) in the type system is among the requirements
compiled earlier. The unrestricted combination of the two polymorphisms is known to be

difficult [DGLM95, BOSW98c].

5. Sorting of arbitrary objects under the constraint that all the objects have a comparison method.

interface I_Comparable {
less(selftype c):T_Bool;

I
type T_Number implements I_Comparable { ... };
type T_Person { ... };

type T_List(novar X) { ... };

(SORT)

sort(T_List(X) list): T_List(X) where (X implements I_Comparable)
implementation ..

T_List(T_Number) 1n;
T_List(T_Person) 1p;

.. // Initialization of list variables

1n := sort(ln);
1p := sort(lp);
1p := sort(ln);

// should be 0k
// should cause compile-time error
// should cause compile-time error

15

1n := sort(lp); // should cause compile-time error

This test is due to [BP94]. It is designed to verify the ability of the type system to deal with
bounded quantification of the form “for all types satisfying a given condition”. This is yet
another aspect of the binary method problem. It also tests the ability of the type system to
provide a link between parametricity and subtyping.

. Generic sort with a comparison method (<) as a parameter. The generic sort can be applied to
a set of any objects provided that an appropriate comparison method is supplied. (GENSORT)

type T_List(X) { ... };
type T_Number {
less (T_Number arg):T_Bool;
};
type T_Date {
compare(T_Date arg):T_Bool;

};

sort(T_List(X) list, (X,X):T_Bool comparison): T_List(X)
implementation ... ;

T_List (Number) 1ln;
T_List(Date) 1d;

. // Initialization of list variables

1n := sort(ln,less); // should be Ok
1d := sort(ld,compare); // should be Ok
i1n := sort(ld,compare); // should cause compile-time error
ln := sort(ln,compare); // should cause compile-time error

This test is also from [BP94]. It is designed to verify that the type system is capable of
combining parametricity, method typing, and substitutability.

. A single-linked list node type and a double-linked list node type, where the second type inherits
from the first one. A single-linked list node type is a recursively defined type with a mutable
attribute that represents the list node linked to the given one. A double-linked list node type
has an additional mutable attribute to represent the second link. The type system should not
allow links between different node types.

Note that in this example the double-linked node type is not a subtype of a single-linked node
type; however, the type system should be flexible enough to allow code reuse between them.
The code sample uses the keyword extends in order to describe this relationship between

types. (LIST)

type T_LinkedListNode {
selftype next;
getNext() :selftype implementation { return next; };
attach(T_LinkedListNode node)
implementation ... ; // attachi
};
type T_DoubleLinkedListNode extends T_LinkedListNode {
selftype prev;
getPrev() :selftype implementation { return prev; };
attach(T_DoubleLinkedListNode node)
implementation ... ; // attach2

16

T_LinkedListNode 1lni, 11n2;
T_DoubleLinkedListNode dllni, dl1ln2;

... // Initialization of list node variables

1lnt
11lni

:= dllni;
:= 11n2;

11lni.attach(11ln2);
dllnt.attach(dlln2);
1lni.attach(dllni);
dllni.attach(llnl);

// should
// should
// should
// should
// should
// should

cause compile~time error

be Ok
call attachi
call attach2

cause compile-

time error

cause compile-time error

This test is also adopted from [BP94]. It checks whether the type system supports code reuse
beyond that provided by subtyping. In other words, it checks if code reuse is possible between
types that are not in a subtyping relationship with each other. Situations analogous to the
one described in this test occur frequently when dealing with mutable types.

8. Set union and intersection for immutable sets.

type T_Set(X) {
union(T_Set(Y) summand): T_Set(lub(X,Y));
intersection(T_Set(Y) summand): T_Set(glb(X,Y));

I
type T_Person { ... };
type T_Student subtype of T Person { ... };

T_Set(T_Person) spl, sp2;
T_Set(T_Student) ss1, ss2;

LA/

spl :=
spi :
spl :
spl :=

ssl :=
ssi :
ssl
ssi :

.
non

spl :=
spl :
spi :
spl :=

ssl :=
88l :=
8sl :
ssl :

Initialization of set variables

spl

ssi
ssi

spl
spl
ssi
ssl

spl.
spl.
ssl.
ssl.

spil.
spl.
ssi.
ssi.

.union(sp2);
spi.
.union(sp1);
.union(ss2);

union(ssi);

.union(sp2);
.union(ssl);
.union(sp1);
.union(ss2);

intersection(sp2);
intersection(asi);
intersection(spl);
intersection(ss2);

intersection(sp2);
intersection(ssi);
intersection(sp1);
intersection(ss2);

// should
// should
// should
// should

// should
// should
// should
// should

7
7
//
//

//
//
//
//

be 0Ok
be Ok
be Ok
be Ok

(SET)

cause compile-~time error
cause compile-time error
cause compile-time error

be Ok

should be Ok
should be Ok
should be Ok
should be 0Ok

should cause
should be Ok
should be Ok
should be Ok

compile-time error

This test is designed to verify that set operations used in SQL-like declarative queries can
be successfully and precisely typed. This is necessary to ensure seamless integration of such
queries into the language.

17

9. Function apply. {APPLY)
apply((X):Y msg, X obj):Y implementation ... ;

type T_Integer { ... };
type T_SmallInteger subtype of T_Integer { ... };

type T_Person {
getAge():T_Integer;

};

type T_Child subtype of T_Person {
goetAge() :T_Smalllnteger;

};

T_Person p := new T_Person (...);
T_Child ¢ := new T_Child (...);
T_Integer i := 1000;
T_SmallInteger si := §;

i := apply(getAge,p); // should be 0Ok
i := apply(getAge,c); // should be Ok
si := apply(getAge,p); // should cause compile-time error
si := apply(getAge,c); // should be Ok

This test is analogous to the “A-calculus” test presented in [BP94] (it differs in that this test
also includes assignment). It is designed to verify the ability of the type system to deal with
method types and uniformly treat methods as objects in the system,.

10. General database browser. The browser should be able to deal with databases that have an
unknown schema®. (BROWSER)

printNumber(T_Number num) implementation ... ;
type T_Person {
getAge():T_Integer;

T_Object root;
T_Database db;
db.open();

root := db.getRoot();
typecase root.typeOf() {
subtype of T_Number: {

printNumber(root); ... }; // should be Ok
subtype of T_Person: {
printNumber(root.getAge()); ... }; // should be Ok

othervise: {
print("Something else"); };

I B
root.getige(); // should cause compile-time error
printNumber(root.getAge()); // should cause compile-time error

5The given code only tests the ability of the type system to deal with dynamic type information in a type-safe
manner. A complete browser would also require the ability to examine type structure of previously unknown types.

18

This test checks the ability of a type system to handle partial type specifications and dynamic
type checking. Both are on the list of requirements for an OODBPL type system.

This set of requirements and tests will be used in the next section to evaluate existing languages
and type systems.

2.7 Related work

In this section, type systems of many current languages® as well as theoretical developments in the
area will be reviewed. These type systems and languages are listed in Table 2.1. The table gives
references and pages in this dissertation where a given system is reviewed.

The comparison between the type systems is presented in Table 2.2, Table 2.3, and Table 2.4.
Not all of the languages and systems listed in Table 2.1 are present in these tables. Type systems
that are superseded by other type systems reviewed in this section, languages that have no static
type systems, and incomplete type systems are excluded from the review tables.

Table 2.2 lists features of the reviewed type systems that correspond to the requirements listed
in Section 2.6. Verifiability is understood as the presence of a decidable type checking algorithm.
Static soundness means that a successfully typechecked program does not produce errors at run-time,
while dynamic soundness means that the program reports all possible type errors at run-time in a
well-defined and predictable manner. Static soundness is strictly stronger then dynamic soundness.
The column uniformity/atomics means that objects of primitive (atomic) types have the same rights
as objects of user-defined types. The column uniformity/methods refers to the ability of a language
to treat methods (or messages, or both) as objects. Reflection/typecase indicates the ability of a
language to deal with dynamic type checking in a type-safe manner. Finally, reflection/evolution
shows whether a given language supports incremental type system evolution.

Table 2.3 compares various aspects of type system expressibility. The first two columns indicate
whether a given type system has a notion of subtyping, shows what kind of subtyping (structural
(implicit) or user-defined (explicit)) it supports, and what kind of inheritance (single or multiple)
the type system has. The third column shows whether the type system supports method (function)
types. The fourth column addresses the issue of dispatch (single or muitiple) in the given type
system. Columns 5 through 8 deal with parametricity and its relationship with subtyping. Column 5
indicates whether a given type system supports parametric types. Columnn 6 shows if a type system
can deal with constrained parametric types. Positive indication in column 7 means that a type
system makes it possible for different parametric types formed using the same type constructor
to have a subtyping relationship with each other (for example, T_Set(T_Person) is a subtype of
TSet(TStudent)). Column 8 indicates whether the type system is capable of specifying subtyping
relationships between parametric types with different type constructors (e.g. T_List(T Person) is
a subtype of T_Set(T_Person)). Column 9 is an indication of the ability of a type system to deal
with mutable types. This indication is negative for type systems of purely functional languages.
Column 10 shows whether a type system supports intersection (greatest lower bound) types.

Finally, Table 2.4 demonstrates the performance of the reviewed type systems on the test suite.

From the analysis of the results presented in Table 2.4 it can be concluded that languages Mini-
Cecil and Transframe rate the best on the test suite. However, none of them has provably sound
typechecking; in fact, typechecking Mini-Cecil is likely to be undecidable [Lit98]. Of the systems
with sound and verifiable type checking, the most impressive is Sather; however, its type system
lacks multiple dispatch and union types. Soundness of Sather type system has not been formally
proven. Almost all “theoretical” type systems show similar performance on the test suite.

Sound type checking, substitutability, parametricity, method types, and multi-methods appear
together in only one type system: that of ML<. However, ML< (as well as most ML clones) severely
restricts usage of mutable types and does not deal well with certain aspects of binary methods and
parametricity (failed tests COMPARABLE and STREAMS).

9Due to the enormous number of languages constantly being developed by the scientific community, this review
has to be incomplete. However, every effort has been made to include known languages with interesting type system
features (or their analogs). Thus I hope that none of the essential type systems are left out.

19

Table 2.1: Type system index

References Reviewed on page
C++ [Stro1] 21
E [RCS93] 23
O++ [AG89] 23
) [LRV92] 24
Java 1.1 [AG96, DE97, Sar97] 24
Generic Java (GJ) [BOSW98c, BOSW98a, BOSW98b] 24
Java parametric extension (JPE) || [MBL97] 24
Pizza [OW97, AFM97] 24
Virtual types in Java (JVT) [Tho97, BOW98| 25
ODMG/OQL 2.0 [CBB*97] 25
Modula-2 [Wir83] 25
DBPL [SM94] 25
Modula-90 [LML*94] 25
Modula-3 [Har92] 26
Oberon-2 [MW93, RS97] 26
Lagoona [Fra97] 26
Theta [DGLM95] 26
Ada 95 [Ada95] 27
Eiffel [Mey88] 27
Sather [SO96] 27
Emerald [RTL*91) 7
BETA [MMPN93] 27
VML [KT92] 28
Napiers8 (MBC*96] 28
Smalltalk [GR89] 29
Strongtalk [BG93] 29
Cecil {Cha93, Cha92b] 29
BeCecil [CL96, CL9I7) 29
Mini-Cecil [Lit98] 29
Transframe (Sha97] 30
CLOS [BDG™*88] 30
Dylan (App94] 30
™ [BBdB*93] 30
ML [MTHS90, Wri93] 31
Machiavelli [OBBT89, BO96] 31
Fibonacci [AGO95] 32
ML< [BM96b, BM96a] 32
Constrained types in ML [AWL94, AW93, Pot98, Reh98) 33
Constrained types in Erlang MWwW97] 33
A&-calculus [CGL9s] 33
Poly TOIL [BSG95, BSG94] 33
Loop (ESTZ95, EST95b, EST95a] 34
TL [MS92, MMS94] 34
Tool [GM96] 34
TOFL [QKBg6] 34

20

Table 2.2: Type system features

Soundness Separation between Uniformity Reflection

Type system Verifiability [Static Dynamic interface and Subastitatability tomicy Methods Typecase Evolution
implementation

C++ + - - - +° - + - -
E + - - - +3 - + - -
C4++ + - - - +° - + 142 -
[2} + Unknown Unknawn - - - - - +/-7
Java 1.1 + - Care only + +/- - - + -
alJ + - Unknown + - - - + -
IPE + - Unknown + - - - + -
Piiza + +} + - + + + -
vt + - Unknown + - - - + -
ODMG 2.0 + Unknown Unknown + - - - + -
DBPL + Unknown Unknown -0-2 a/a n/a + - -
Maduila-90 + Unknown Unknown +’ +" - + + -
Modula-3 + Unknown Unknown +J + - + + -
Oberon-2 + Unknown Unknown +3 + - + + -
Theta + Inknawn nknown + tinknown - + + -
Ada 98 + Unknown Unknown +3 - - + +
Sather + + + - + + -
Emerald + Unknown Unknowa + + + - + +/-!
BETA + - Uaknown 4-2 + + + + -(-/—7
Napierasd + + +/~ n/a n/a + + +
Strongtalk + Unknowsn Uaknown + - + + + +/—7
Cecil + - Unknown + - + + +/-6 +
BeCecil + Unknown Unknown + Unknown + + -
Mini-Cecil Uaknown Unknown Unknown + Unkoawn + + - -
Transframe + - Unknown + Unknown + + + +
™ + Unknown n/a - - + - - -
ML + + n/a +32 a/e + + - -
Machiavelli + + nfa - + + + -
Fibonaccai + + afa +/- + + +
ML« + + n/a - + + +
PolyTOIL + + n/a - + + + -
Loop + + n/s + + + + - -
TL + Unknown Unknown - Unknaown + + + -
Taool, Uanknown Unknown a/a + Unknown + + -
TOPL + + n/a - + + -

Except for covariant arrays which have been kept in Pizaa only for backward compatibility with Java
3 These features are based on modules(pachages, fragmenis) rather than on fypes
3 Subatitutability works for painters and references anly
4 For object types only
5 Bven though a type can be examined dynamically in Q4+, typechecking does not take this into account
8 Classes (implementation types) only
7 Evolution is type-unsafe

The test STREAMS proved to be the most difficult one. This is surprising as the test outlines
the situation that occurs in almost every language dealing with [/O operations on a relatively high
level. Only the type systems of Emerald and Mini-Cecil where able to pass this test; however, none
of these type systems has a proof of soundness.

Overall, type systems with nice theoretical properties show only moderate performance on the
test suite, while type systems that perform well on tests lack a theoretical basis.

The rest of this section presents a detailed review of various type systems. The index of these
type systems is found in Table 2.1.

2.7.1 Type systems review

C+-+ [Str91] is currently one of the most widely used object-oriented programming languages. C++
types combine the characteristics of interface and implementation types in that they define both the
interface and the structure of their objects. Classes in C++ are special cases of types: classes specify
properties of first-class objects, while types specify properties of non-first-class objects. C++ inher-
itance rules are novariant; however, C++ allows polymorphic function and method specifications by
using a method (function) signature instead of a name for identification purposes. In the presence
of static type checking this is equivalent to a restricted form of static multiple dispatch. Non-first-
class objects in C++ are operated upon by free functions; only objects (instances of classes) have
methods. C++ also provides parametric types (templates) that car take an arbitrary number of
parameters; parametric types can be subtyped.

The C++ type system is not verifiable in general due mostly to its unrestricted use of pointer
conversions; however, partial verification is possible and is performed at compilation time. The C++
type system combines interface and implementation inheritance and thus violates the first inheritance
requirement. It is not completely uniform as it distinguishes between “data” and “objects” and treats

21

Table 2.3: Type system expressibility

Subtyping Method Dispatch Parametric types Mutable Intersection

Type system Inheritance types Bounded Intra later types types
C++ User-defined Multiple + Single” + - - + + -

E User-defined Muitiple + Single® + + - + + -
O+4+ User-defined Multiple + Singltb - n/a a/a a/a + -
O, User-defined k4 - Single - o/a n/a n/a + -
Java 1.1 User-defined Multiple? - Single - a/a a/a n/a + -
alJ User-defined MullipleJ - Siagle + + - -+ + -
IPE User-defined Multiple? - Single + + - + + -
Pisza User-defined Multiple” + Single + + - + + -
T User-defined Multipled - Single + + /41t + + -
ODMG 2.0 User-defined Mulliplc" - Single -/+8 n/a -4 - + -
DBPL User-defined n/a + n/a - a/a n/a ufa + -
Modula-80 User-defined Single + Single - a/a a/a a/a + -
Modula.-3 User-defined Single + Single +? - n/a a/a + -
Oberan-2 Structural n/a + Single - n/a a/a n/a + -
Theta User-defined Mulliplzs + Single + - - + + -
Ada 98 User-defined Single + Singlc6 + + - + + -
Sather User-defined Multiple + Single + + - + + -
Emeraid Structural n/a - Single + - n/a a/a + Unknown
BETA Structural Single + Single + + n/a /s + -
Napieras - a/a + a/a + - n/a a/a + -
Stroagtaik Structurall Single +4 Single + k4 - + + -
Cecil User-defined Mulitiple + Multiple + + - + + +
BeCeci! User-defined Mulitiple + Multipile - n/a n/fa a/a + +
Mini-Cecil User-defined Muitiple + Multiple + + + + + +
Transframe User-defined Multiple + Multiple + + +/-13 + + -
™ Both Multiple - Single + - -1+ + - -
ML Structural a/a + n/a + - n/a + +/- -
Machiavelli Structural a/a + n/s - a/a a/a n/a +/- +
Fibonacci User-defined? Single Unknown a/s + - n/a n/a +/- Tmplicit
ML¢ Both Multiple + Multiple + ~ + +/- +/- Implict
Pnl;’l‘OlL Structural n/a + Sin‘lz'7 + + a/a n/a + -
Loop Structural n/a + Sin.le" - a/a n/a n/s + Implicit
TL Structural n/a + a/a + + -4t + + .
ToolL Structural Multiple + Sin'le" + + - + + -
TOPL User-defined? Multiple? + Multiple + +410 -+t + - tmplicit

T Structural subtyping is the default; however, user can =xplicitly turn it off when needed
User-defined for ¢le structural for algedraic dala types

Ounly for interface ses have single inheritance

Block types only

Only nirtes! functions are dispatched

Only laggsd fypes are dispatched

Dispatch modeled as record field extension/execution

Only system-defined; parameters can only be used for specification of properties
These features are based on moduies rather than on types

10 The language provides mechaniam more expressive then bounded quaatification
133 Always covariant

ta Only covariant and naovariant parameters are allowed

(LI BN Y Py N

22

Table 2.4: Type system tests

Type system PBRSON POINT COMPARABLE STREAMS SORT GENSORT LIST S8T APELY BROWSER
C++ - +/-"
E -
O++

o

Java 1.1
GJ

IPE
Pizza
vt
ODMG 2.0
DBPL
Modula-80
Modula-3
Oberon-3
Theta

Ada 98
Sather
Emeraid
BETA
Napierss
Strongtalk
Cecil
BaCecil
Mini-Cecil
Transframe
™

ML
Machiavelli
Pibonacci
ML
Poly TOIL 443
Loop ~14+2
Tool. -/-0»J
TOPL +
! Relies on dynamic type checking

2 Quly suggestive type-checking

3 While the subtyping relationship required by the test holds, one type can not be derived from the other
4 type parameters are explicitly instantiated

5 Thie test can be anly programmed with blocks rather than messages

8 Built-in operators for dealing with sets are provided; however, their typing is special (non-user-definable)
7T I RTT! is present

8 Even though & type can be examined dynamicaily, typechacking does not take thie into account

-1+8

-
-

'
Il+++lllllll:llllllll
‘
+++|+|x|1+++|||||
U
~
U
~
+
I SO RS T BRI R S R SN B}

‘+++|||||:A|||||||

1

~

~

+4

- -

)
l||AAt1IAI+I0||:+Itlhllll+llllllll

)

Y

+

i

~

+

'

~

+|-

~

Fr+++++t o+t

o
L+
I e A R S R
[)

[
+

(%)
4.
+
-~
]
(%]
+
T SRR S S LSS

.

a

2

2

+
+|||+o|||+++\I||:|||A||l|t|||||r|||

4 AT
-
+
~
1
(%]
+
ng
)
w
+
IS S P
w

union

T S

+
P ok R T & SRR SRR
-~

4+ bt
+
~
Kﬂ
+ 4+
Ca

.
I~
+

union

attributes in a special way. C++ provides a limited substitutability for object pointers (not for
objects). In terms of expressibility, the C++ type system is quite powerful as it has function types,
parametric types, orthogonal type constructors, and deals with mutable object types. However,
when used on the test suite, the C++ type system fails all tests except for GENSORT. Other
tests can be programmed, but only with significant type-checking lapses. The reason for this is
the fact that C++ does not handle the typing of binary methods since it lacks multiple dispatch.
Parametric types in C++ can only be used when fully instantiated, thus limiting a programmer’s
ability to define polymorphic functions (methods). Type parameters are always unrestricted and
novariant. The variant of C++ that includes run-time type information (RTTI) allows for dynamic
type checking (allowing it to tentatively pass the BROWSER test). Intersection and union types
can not be represented by the C++ type system. The C++ type system is also quite complicated.

E [RCS93] is derived from C++ and borrows much of the type and class system from it. Dif-
ferences between E and C++ lie in the specification of parametric types and in the fact that E is
a persistent language. In E (as opposed to C++) parametric types (called generic classes) can be
specified using a general type parameter restriction mechanism; however, subtyping for parametric
classes can not be defined in E. This mechanism allows a programmer to specify restrictions on
methods of a parameter type. For example, it is possible to require a certain function (method)
parameter type to have a compare method with a given specification, thus making the test SORT
succeed. As a persistent language, E is not completely uniform as its persistence is type-dependent.
E also fails the BROWSER test.

O++ [AG89] is another persistent language derived from C++. It is similar to C++ in all
respects except for provisions for persistence, queries, and a limited form of type-reflection. Persis-
tence in O++ is not type-based, thus its type system is uniform in this respect!®. Type reflection
in O++ is provided by the means of the is operator that checks whether a given object has a given

1904+ still does not have orthogonal persistence, as its persistence is declaration-based; also, persistent object
creation is different from transient object creation.

23

type. However, the BROWSER test in O++ still fails with respect to type checking even though it
can potentially be programmed. The SETS test also fails as O++ queries do not provide the full
power of SQL even though the typing for forall and suchthat is present in O++ at the operator
(non-user-definable) level.

0. [LRV92] provides a family of languages, but its type system is the same in all of them, so
here the discussion is based upon the CO. language, which is based on C. The type system of
0. makes a distinction between first-class and non-first-class objects (called values in Oa; however,
values in O, are mutable). O uses the term type to refer to implementation types of non-first-
class objects, and the term class to refer to types of first-class objects, which combine properties of
interface and implementation types. Thus, the type system of Q2 is not completely uniform in that
only first-class objects are manipulated by methods, much like in C++. Inheritance in O is based
on implementation subtyping, with an additional ability to add or modify methods. O: adopts a
covariant signature refinement rule, thus providing for more natural data modeling. However, in the
absence of multiple dispatch, this covariant rule results in the loss of static type safety, and thus the
type system of O, is unsound. Oa does not provide any kind of parametricity; methods, messages,
and types are not objects in O,. O1 is uniform in terms of persistence (it is orthogonal to the type).
0, also makes provisions for dynamic schema evolution; however, this evolution is not type-safe.
O1's type system essentially fails all tests for type system expressiveness, since even the tests that
could be programmed would pass type checking and fail at run-time. In [BC95], multimethods are
used to provide type safety for covariant specifications in the O, programming language. With the
addition of the mechanisms described in the article, test POINT would succeed, while the others
would still fail.

Java [AG96] has recently become a popular language in both academic and industrial commu-
nities. Its type system shares many features with that of C++, therefore the discussion will focus
primarily on its differences from the latter. The advantages of the Java type system include sep-
aration between interface and implementation, better handling of run-time type information, and
simplification of the overall type system design resulting in a much more transparent type system.
A non-reflexive Java fragment has been shown to be type-safe [DE97], while the full language has
certain type deficiencies [Sar97). On the other hand, the Java type system lacks method types (all
methods when considered as objects have the same type in Java 1.1), parametric types (except for
statically unsafe parametric arrays, which are built-in), and inherits some of the problematic fea-
tures of the C++ type system discussed above. Java fails all tests except for SORT, the latter being
successful due to the presence of interfaces. Java fails the GENSORT test as its method types are
not sufficiently expressive for this test.

Recently, several parametric extensions to the Java type system have been proposed. Generic
Java (GJ) [BOSW98c, BOSW98a, BOSW98b] adds parametric types to the static type system,
while using the same run-time model (type parameters are erased and do not exist at run-time).
Parametric types in GJ are novariant and parameters can only be of reference (class) types. There
are also several restrictions on the usage of parametric types and methods, related to the particular
type inferencing algorithm used in GJ. GJ passes the test COMPARABLE and the union part of
the SET test in addition to the SORT test passed by Java 1.1.

Another parametric type extension of Java is proposed in [MBL97] (JPE). It allows usage of non-
reference types as type parameters and also uses where-clauses to express requirements on parameter
types. In this extension, parametric types are also novariant. The type-checking algorithm is not
presented in [MBL97]. This extension has test suite performance identical to that of Generic Java,
but provides a more uniform system. These two approaches are informal in that they do not have
a theoretical proof of their soundness.

Yet another Java extension is Pizza [OW97] which extends Java with parametric and function
types. The approach taken in [OW97] is similar to that of [MBL97], but is much better formalized.
In fact, Pizza would have been statically type-safe if not for covariant arrays which were left in Pizza
for Java compatibility. It is shown that the resulting type system does not have the subsumption
property. However, the same is true of all Java extensions considered so far as well as of Java itself.
Pizza passes tests GENSORT and APPLY in addition to COMPARABLE and SORT due to the
presence of method types. A similar set of extensions is proposed in [AFM97], but without method

24

types and a supporting theory. The latter approach, however, does lift several restrictions placed on
the usage of type parameters in Pizza.

A different approach is taken by Thorup [Tho97], where Java is extended with virtual types
(JVT). Here the choice is made in favor of convenience, and both static typing and (dynamic)
substitutability are sacrificed. Because of this, tests PERSON, COMPARABLE, and LIST could
be programmed, but would give run-time rather than compile-time errors in incorrect cases. A
modification of this approach is presented in [BOW98], which also compares parametric and virtual
type approaches.

[BCY97] extends Java with multi-methods that are introduced via the so-called parasitic methods.
The goal of this extension is to add support for multi-methods to the existing language providing
full compatibility with Java. [BC97] contains proof of soundness for the resulting system.

The Object Database Management Group has developed a set of standards for object database
management systems [CBB*97]. Two of these standards specify an object model (ODMG Object
Model) and an object query language (OQL). The object model includes types that specify abstract
properties and abstract behavior of their objects. Types are categorized as interfaces (abstract
behavior only), classes, and literals (abstract state only). Types are implemented by language-
specific representations; a single type can have several representations, but only one of them can be
used in a single program. Interfaces support multiple inheritance, while classes only support single
inheritance (class eztension). Thus, ODMG Object Model provides separation between interface and
implementation. Interfaces in this model can not be instantiated. Abstract properties in ODMG
Object Model include abstract state and abstract relationships (two-way mappings). Relationships
can only be defined between classes. Abstract behavior is specified as a set of operations. Behavior
specifications are novariant in both their argument and return types. ODMG Object Model supports
single dispatch. Several system-defined parametric container classes are present in the object model,
but the user is not allowed to define new ones. Type parameters can only be used in property
specifications; operation specifications can not be parameterized. OQL is a strongly tvped query
language that provides a possibility of explicit dynamically checked type conversions. Set operations
in OQL can only be performed on “compatible types” (types that have the least upper bound).
Since the notion of the greatest lower bound is not available in OQL, all set operations use the
least upper bound for typing purposes. For example, intersecting a set of students with a set of
persons would return a result of type “set of persons” even in the case when the type of students is
a subtype of the person type. ODMG/OQL fails all tests except for BROWSER and the union part
of the SET test. It should be noted, however, that ODMG/OQL is not a general-purpose database
programming language, and therefore its performance on the test suite is not fully indicative of the
merits of the ODMG Object Model.

The following group of languages is based, directly or indirectly, on Modula-2 [Wir83]. Modula-2
is neither object-oriented nor a persistent language. Its type checking is verifiable. Modula-2 has a
construct for separating interface and implementation in the form of interface and implementation
modules, and the languages based on Modula-2 also use this approach. This mechanism has proven
to be very convenient and robust for procedural languages. However, its advantages and disadvan-
tages for object-oriented languages with their primarily type-based approach to both interface and
implementation specification are yet to be evaluated.

DBPL [SM94] is one of the persistent languages based on Modula-2. In DBPL, modularity
is achieved by using the native language (Modula-2) modularization mechanisms with a special
DATABASE MODULE construct. [n the absence of module persistence, it does not cause problems
with orthogonality. Transactions are supported as special procedures. Partial SQL compatibility
is provided by the use of a RELATION OF type constructor with the appropriate set of operations
and first-order constructs ALL IN, SOME IN, and FOR EACH. DBPL also allows updatable and non-
updatable views (via SELECTOR and CONSTRUCTOR procedural specifications). DBPL is not object-
oriented; however, it does offer implementation types (with no methods). The DBPL type system is
static and non-reflexive. The tests described in Section 2.8 are not applicable to DBPL directly as
it is not object-oriented. DBPL would tentatively pass only the test GENSORT. The DBPL type
system is uniform in that system and user-defined types have the same rights.

Another persistent language based on Modula-2 is Modula-90 [LML*94]. Modula-90 has some

25

rudimentary object-oriented capabilities (single inheritance) and is similar to C++ in that method
signatures are novariant, object types are different from other types, implementation and interface
hierarchies coincide, and there is only a limited support for function types. Thus, the Modula-90 type
system is not uniform. An interesting property of Modula-90 is the presence of type DYNAMIC. Data
of this type are pairs of values and their types expressed as values of a compound type DATATYPE.
Type DATATYPE is the type of the representations of all data types in the system; it can be used
independently of DYNAMIC type to store, retrieve, and operate upon various data types. Any value
can be coerced to the type DYNAMIC. Modula-90 provides a special operator TYPECASE that provides a
type-safe interface to the values of type DYNAMIC. The language also provides a set of predefined type
operators that can be used to operate on values of type DATATYPE. Thus, Modula-90 provides type-
safe immutable type reflection. The Modula-90 type system is static and non-parametric; however,
it does provide orthogonal persistence. The only expressibility tests that would succeed in Modula-
90 are GENSORT and BROWSER. Modula-90 provides incremental type checking, including its
dynamic variety.

Modula-3 [Har92] is another language with object-oriented extensions based on Modula-2.
Modula-3 is not a persistent programming language and its object extensions are similar to those of
Modula-90; it also has TYPECASE statement that gives a programmer the ability to request dynamic
type checking in a type-safe manner. Modula-3 has parameterized modules; however, parameter-
ized types are not allowed. Modula-3 passes the tests COMPARABLE, SORT, GENSORT, and
BROWSER.

Another descendant of Modula-2 is Oberon-2 [MW93]. Subtyping in Oberon-2 is based on record
ectension, also known as structural subtyping. The subtyping relationship is predefined for atomic
types. Thus, Oberon-2 has multiple subtyping. Oberon-2 supports single dispatch. Subtyping of
procedure (method) types is based on novariance of argument and result types; only the receiver
type is covariant. Parametricity is not supported by Oberon-2. Separation between interface and
implementation is supported at the level of modules in the same manner as in all Modula-2 based
languages. Oberon-2 also has an extended WITH statement that allows a programmer to dynamically
inspect the type of an object and act according to it. This statement is similar to the TYPECASE
statement in Modula-3 and Modula-90 discussed earlier. The type system of Oberon-2 would pass
the tests SORT, GENSORT, and BROWSER.

There has been a proposal for adding parametric types and methods to Oberon [RS97]. In
this proposal, parametric types are novariant, and the type checker ensures that a parameter type
substitution exists that satisfies the rules for matching arguments of a particular call. Unfortunately,
neither the typechecking algorithm nor the proof of its soundness are present in [RS97].

Lagoona [Fra97] is another descendant of Oberon. It focuses on messages, objects, and message
passing. In contrast to most object-oriented languages, a message in Lagoona is an independent
entity. An interface (category in Lagoona) is a set of messages. Each message has a type specifi-
cation. There can be several methods implementing a message, each for a different receiver type.
[mplementation in Lagoona is specified by a class (usually a record type); when a category meets a
class, a type (combination of interface and implementation) is born. No code inheritance is possible
in Lagoona, only structure inheritance is possible. Variables in Lagoona can be specified using either
category or class. Lagoona thus provides a complete separation between interface, implementation
(representation), and code (methods). When a message is sent to an object, an object can forward
(resend) it to another object. Other features of the Lagoona type system include single dispatch
and single inheritance. Unfortunately, the article [Fra97] provides insufficient information to test
the performance of Lagoona on the test suite.

The language Theta [DGLM95] combines the expressive power of parametric and inclusion poly-
morphisms. It also provides where-clauses that give its type system a flexibility similar to that
provided by matching. Theta has single dispatch, multiple inheritance for types (interfaces), and
single inheritance for classes (implementations). Theta only allows novariant parametric types.
Method types can be specified in Theta and methods (functions) can be used as first-class values.
Theta also has reflexive capabilities in the form of the typecase operator. Theta’s type system is
verifiable, uniform, and static. It is also quite expressive. However, the its soundness has not been

proven. Theta passes the tests COMPARABLE, SORT, GENSORT, LIST, and BROWSER.

26

The language Ada 95 [Ada95) is a procedural language with some object-oriented features. Ada 95
has a remarkably strong support for parametricity: generic packages (parametric modules) and
generic subprograms (parametric functions) can not only be instantiated, but also used as parameters
of other generic entities, thus providing for great flexibility. Parameter types can be constrained by
a with clause requiring the type to have a method with a particular signature, which can also be
parameterized. However, Ada generics have to be fully and explicitly instantiated before they can
be used. Another interesting and powerful feature of Ada is the notion of an access type which
generalizes such notions as “pointer” and “reference”, allowing also for user-defined access types.
Ada also has function types, and function arguments can be specified as in, out, or inout according
to the role they play. Ada uses its package mechanism (similar to the module mechanism of Modula-
2) to provide separation between interface and implementation. On the other hand, object-oriented
Ada 95 features appear to be relatively weak: in order to be used for dynamic dispatch, a type has
to be explicitly declared as tagged. In order to be able to use subtyping (inclusion) polymorphism,
a programmer has to use a special form of parameter specification. Ada provides single dispatch and
single inheritance with novariant methods. Subclassing in Ada is limited to record extension. In
Ada, types can be examined dynamically; data of a type can be converted to any other type, and such
a conversion is dynamically type-checked. The Ada type system is very complicated and it places
emphasis on static rather than dynamic polymorphism. Ada will pass the tests COMPARABLE,
SORT, GENSORT, LIST, and BROWSER, provided generic packages rather than types are used.

Next, the object-oriented language Sather [SO96] will be considered. Sather is based on the much
better known Eiffel [Mey88]; however, Eiffel is not discussed here as one of the primary goals behind
the design of Sather was to remedy typing problems present in Eiffel.

Sather has multiple interface and implementation inheritance hierarchies almost independent of
each other (concrete implementation types called classes in Sather must have leaf interface types).
Implementation subtyping in Sather corresponds to textual inclusion with replacements. Sather
uses single dispatch and is strongly and statically typed. Therefore its methods are covariant on the
receiver and contravariant on other arguments. Sather also provides partial closures of its methods
and iterators as first-class values. It has parametric implementation types that can use a form of
bounded polymorphism to constrain type parameters. These parametric types are novariant and
they can not be used until fully instantiated. Method arguments in Sather can be specified as
in, out, or inout, according to the role they play. The Sather type system correctly handles all
these cases. Argument types and local variables can be specified by using either Sather types or
Sather classes. In the former case, the parameter class has to be a subtype of the given type; in the
latter case, the parameter class has to match the specification exactly. The language also provides a
novel notion of iters (iterators) that are an object-oriented generalization of loop control structures.
Sather also provides a special compound type TYPE and operators typeof and typecase. Thus, it
has type-safe immutable type reflection. The type system of Sather therefore possesses verifiability
(even though it has not been formally proven) and satisfies inheritance and (partially) uniformity and
expressibility requirements. [t passes tests PERSON, COMPARABLE, SORT, GENSORT, LIST,
and BROWSER and tails on tests POINT, STREAMS, SET, and APPLY. Note that APPLY fails
because parametric types in Sather require full instantiation before they can be used.

Emerald [RTL*91] is a non-traditional object-oriented language that combines features of class-
based and delegation-based object-oriented languages. Objects are created in Emerald by a special
syntactic form called an object constructor. The object constructor plays a triple role: first, it
defines the object’s implementation; second, it defines a publicly visible object interface (type in
Emerald); third, it denotes the process of object creation itself. Subtyping in Emerald is structural,
as a type is understood as a set of signatures. Types are also objects that can be created by object
constructors; thus, a user can define new types, including parametric ones. The type checker uses
user-defined types along with system-supplied ones to typecheck a program statically. Since types
are objects, dynamic type checking is also possible. The Emerald type system is therefore verifiable,
uniform, reflexive, satisfies inheritance requirements, and is quite expressive. However, its soundness
is unknown. Emerald passes the tests PERSON, STREAMS, SORT, and BROWSER.

BETA [MMPN93] is a unique object-oriented language that unifies the notions of class, object,
and procedure (method) via its notion of a pattern. Patterns can contain other patterns (such as

27

member objects, code fragments, and types). BETA also has fragments that play the role of modules
and can also be used to separate interface from implementation. BETA fragments can be regarded
as high-level restricted patterns since they operate on the same basic principles. Patterns can be
virtual; a virtual pattern can be extended by adding code fragments in places specified by the inner
placeholder (a.k.a. method extension as in Simula-67 [BDMNT79]), by extending a virtual pattern
with additional members (a.k.a. record extension), or by supplying a class pattern in place of a
virtual one (a.k.a. parametric instantiation). Virtual patterns have to be explicitly declared as
such. Unification of all language concepts using the notion of pattern makes it possible to design a
very powerful language based on only a couple of orthogonal principles. While the language design
simplicity is very impressive, the resulting language is quite unconventional. Structural subtyping in
conjunction with a class substitution mechanism makes the type system of BETA statically unsound;
dynamic type checks are inserted to ensure type safety. Due to the uniformity of BETA, all tests
except for POINT can be coded in it, but only SORT and GENSORT have static type safety. Illegal
usage in other tests would cause run-time type errors.

In the persistent object-oriented language VML [K'T92], all objects that are instances of object
types (called classes) are persistent while all (non-first-class) objects of non-object types (called data
types) are transient. However, a value of a non-object type can become persistent if it is referenced
from a persistent object. Thus, VML does not have orthogonal persistence. VML object types are
first-class objects and as such belong to their respective metaclasses. Metaclasses define some of the
essential class methods, for example the methods for the inheritance Behavior message that is used
when a method for a message is not found in the receiver class. Thus, VML allows user-defined
method inheritance due to its “classes are objects” concept. However, VML data types are not. first-
class objects and thus VML only partially satisfies the type reflexivity requirement. Inheritance in
VML can be tailored to specific application needs by using the user-definable inheritance Behavior
message found in an appropriate metaclass. VML does not have a verifiable type system, therefore
the tests are not applicable to it.

The persistent programming language Napier88 (version 2) [MBC*96] is not an object-oriented
programiming language; however, its type system is quite powerful. In Napier88, parametric types
can be built freely from the basic types, type constructors, and type variables. Parametric procedures
(procedures with parametric types) can also be defined and are first-class objects. Napier88 types
are purely implementation types; however, Napier88 provides the type constructor abstract that
may be considered as an interface type as it provides existential quantification over witness type(s).
Thus, the type system of Napier88 satisfies all expressibility requirements not related to the notions
of subtyping and inheritance. However. since Napier88 does not have the notions of subtyping and
inheritance, it fails the requirements related to those notions. In Napier88, parametric types can not
be used until fully instantiated. Napier88 provides support for a limited form of linguistic reflection
via dynamic environments. Environments are dynamically typed structures that provide bindings
of names to Napier88 entities. Environments can be dynamically modified, inspected and used in
expressions. Environments can be persistent.

Napier88 has a special type any that is a union type of all types in the system. A special project
operator can be used to deal with values of type any in a type-safe manner. This operator is similar
to TYPECASE of Modula-90. Since any value can be injected into type any, the above mechanism
makes run-time data type inspection possible. Thus, the type system of Napier88 has type-safe type
reflexive capabilities.

The persistent store of Napier88 is an object of type any that holds a typed collection of objects.
The objects from the persistent store can be projected from any and operated upon transparently
after that. Napier88 uses a persistence model based on reachability from the root (persistent store)
object. Thus, the persistence in Napier88 is orthogonal to type.

In spite of the power of its type system, Napier88 would only unconditionally pass the test LIST.
It would, however, tentatively pass the tests COMPARABLE, SORT, GENSORT, and APPLY if
usage of explicit type parameters in parametric calls were allowed. In other words, the burden of
inferring correct parametric instantiation from the code in Napier88 is placed on a programmer
rather than on the type checker.

Next, purely object-oriented programming languages’ type systems will be reviewed. The first

28

language to be considered in this group is Strongtalk [BG93] which is a statically typed version of
Smalltalk [GR89]. Smalltalkis widely regarded as the first purely object-oriented language; however,
it has no static type checking.

In Strongtalk, everything (including types, called classes in Strongtalk, methods, and messages) is
a first-class object. Thus, Strongtalk is uniform®!. All Strongtalk objects can be operated upon and
modified at run-time and therefore Strongtalk is reflexive (the reflexivity is type-unsafe). Strongtalk
separates interfaces (protocols) from implementations (classes), provides subtyping and matching. It
also has parametric (novariant) types and messages, block types, and union types. However, the user
has to explicitly specify a mechanism to guide parametric type inferencing, resulting in the loss of
substitutability. It is also unclear from [BG93] whether Strongtalk allows bounded parametric types.
Strongtalk provides single inheritance and single dispatch. Subtyping is structural, but the user can
use brands to restrict it. Even though Strongtalk was not designed to be a persistent language, it does
provide uniform persistence of its objects in a so-called image. Overall, the Strongtalk type system
is quite expressive, uniform, and reflective. It passes the tests COMPARABLE, LIST, BROWSER,
and, possibly, GENSORT (if parametric type bounds are allowed). The union part of the SET test
is also passed. Strongtalk would fail the tests PERSON, POINT, STREAMS, as well as APPLY
and SORT (the latter two could be programmed, but only with blocks rather than messages).

Cecil [Cha93, Cha§2b] is a delegation-based language that has both implementation and interface
types (the former are called representations while the latter are called types). Types in Cecil are used
for suggestive type-checking only as Cecil’s multiple dispatch is done according to representations.
Cecil’s type checking is suggestive because it might report false errors or miss real ones, therefore
its type discipline is not enforceable. Cecil’s does not support incremental type checking. Cecil
uses multiple dispatch and provides covariant specification of specialized arguments together with
contravariant specification of unspecialized ones. Closures and methods are first-class objects in
Cecil; they are contravariantly typed. Cecil also provides novariant parametric types and methods
as well as type parameter bounds. Parametric types in Cecil can be instantiated either explicitly or
implicitly; in the latter case, the user has to provide a hint to the type inferencing algorithm. This
behavior results in loss of substitutability. Cecil has multiple inheritance, union and intersection
types. Overall, the Cecil type system is quite expressive and uniform, while being non-reflexive!2 and
static. It also satisfies the inheritance requirements. Since Cecil type checking is only suggestive,
it is difficult to apply the tests to it. However, tests that Cecil would tentatively pass include
PERSON, POINT, SORT, GENSORT, LIST, SET, APPLY, and BROWSER. It would fail the tests
COMPARABLE (due to the restrictions on parametric type bounds) and STREAMS (due to the
novariance of parametric types).

There are several extensions/modifications to the original Cecil language. One of these extensions
is BeCecil [CL96, CL97]. BeCecil is a statically typechecked version of Cecil. It supports block and
modular structure, has extensible objects and an extensible type system, and its type system has
been formalized. However, soundness and substitutability properties have yet to be proven. BeCecil
also has a novel notion of acceptors which can be considered as an object-oriented generalization of
the assignment operator. However, BeCecil does not have parametric types while sharing most of the
other features with Cecil. The absence of parametricity contributes to the decreased expressibility of
the BeCecil type system as compared to that of Cecil. BeCecil passes the tests PERSON, POINT,
SORT, GENSORT, and LIST, and fails the rest.

Another modification (Mini-Cecil) is described in [Lit98]. Mini-Cecil strives to achieve a com-
bination of static typing and a very general form of parametric polymorphism. Mini-Cecil also has
frameworks which are basically interfaces with what appears to be an analog of selftype. The
frameworks can be used to separate interface and implementation, as well as to achieve the effect of
matching. Methods in Mini-Cecil are first-class objects; multimethods and multiple inheritance are
supported. Subtype clauses can have a form of forall @ C, isa C»: (3 isa Cy, where adisa
set of free type variables and C; are type specifications. The resulting type system is very expressive;

11 Except for a possible uniformity breach in the form of direct attribute access.

12Being a delegation-based language, Cecil has language reflection; however, the type system of Cecil is not reflexive
as Cecil types are not objects and can not be manipulated by the language. More precisely, representations of Cecil
are reflexive while types are not.

29

it can even be argued that it is the most expressive type system possible. However, the typechecking
seems to be undecidable. The algorithm proposed is a conservative approximation, and its soundness
is yet to be proven. It is also unknown if the resulting type system has substitutability. Mini-Cecil
would pass all tests except for BROWSER as it does not have reflexive capabilities.

Transframe [Sha97] allows the user to specify whether a parameter of a parametric type is to
be covariant or novariant (type-ezact) and to constrain it by giving it an upper bound. Subtyping
and subclassing (interface and implementation inheritance) are different concepts in Transframe.
There is a distinct name selfclass that allows classes to support matching. The language unifies
the notions of class and function (like BETA). Transframe also supports multiple dispatch. There
are provisions for dynamic type checking and dynamic schema evolution. Transframe implicitly
instantiates parameter types in expressions; unfortunately, there is no formal proof of type safety.
In fact, it can be shown that the type system presented in [Sha97] is not type-safe. Overall, the
Transframe type system is verifiable, very expressive, almost uniform, and dynamically reflective.
However, it is unsound. Transframe would pass all expressibility tests except for the test STREAMS
(due to its inability to represent contravariant type parameters) and the intersection part of the test
SET (due to the absence of intersection types).

CLOS (Common LISP Object System) [BDG*88] is a reflexive language, with all the power
of Common LISP reflection. CLOS has types and object types (called classes), the latter being
a subset of the former. CLOS types are implementation types; they do not specify any interface.
However, CLOS classes combine implementation and interface definitions. Since CLOS makes a
distinction between object and non-object types (where only object types define interfaces and are
subject to inheritance), the CLOS type system is not completely uniform. CLOS classes are objects
that belong to metaclasses, which are also objects; CLOS messages, methods, and functions are also
CLOS objects that can be operated upon and changed at run-time, so CLOS is fully reflexive and
dynamic. Subclassing in CLOS is slot collection extension with slot types changed covariantly (a
type of a slot is the intersection of the types specified for this slot in all of the class’ superclasses).
Messages (called generic functions) are also covariant. CLOS is not statically typed. A CLOS
message can be dispatched to yield an appropriate method (or a combination of methods) according
to the class or value of all arguments (multiple dispatch). Methods are covariant on all arguments'3
since CLOS has muitiple dispatch. If more than one method is appropriate for the given arguments,
a user-definable way of constructing the function to be executed out of all appropriate methods is
employed. In the body of a method, a special function call-next-methodcan be called to invoke the
next applicable method. This capability is analogous to the inner construct of Simula-67 [BDMN79]
and is much more powerful. Overall, the dispatch mechanism of CLOS is the most powerful of all
known mechanisms, if the consideration is limited to classes and values. CLOS can not dispatch on
types. Updates in CLOS are invoked on slots directly or by using an appropriate message. CLOS is
not statically type checked, therefore a run-time error is signalled if a value assigned to a slot does
not conform to the slot’s type specification. Since CLOS is not statically typed, the tests are in
general not applicable to it; however, CLOS would pass POINT, APPLY, and BROWSER tests if
its type discipline were enforceable.

Dylan [App94] is an imperative programming language similar to CLOS. While there are certain
differences between the two, they are almost identical in terms of their type systems. Dylan has
more control over the defined classes, as Dylan classes can be sealed (only subclassable by the library
where they belong) or open, primary (there is only single inheritance of primary classes) or free,
abstract (all superclasses of an abstract class must be abstract) or concrete. There is also support
for singleton types, but not singleton classes. Multiple dispatch in Dylan is also different from that
in CLOS in that in Dylan all arguments are equal, and the method specificity is defined by a class
precedence list. Dylan also has modules with import and export lists and module libraries.

TM [BBdB+93] is an object-oriented persistent language with many functional features. TM has
a verifiable type system based on [Car88]. However, the soundness proof seems to be missing. TM’s
type hierarchy includes user-definable sorts (atomic, immutable types) and classes. Sorts and classes
have representation (implementation) types that are almost hidden inside of them. Methods and

13 More precisely, methods are covariant on those arguments that are constrained by class specifications.

30

types are not first-class values in TM. TM method specification uses selftype to achieve the effect
of matching. Since this is the only polymorphic mechanism in TM, specifications are covariant and
substitutability does not hold, as functional updates are present. No method redefinition mechanisms
are provided in TM. The TM type system extends the type system of Cardelli [Car88] with a powerset
type constructor. Since TM is stateless, powerset types are covariant. TM allows enumerated as
well as predicative sets as primitive language expressions. Enumerated sets in TM can only be
homogeneous, while predicative sets can be heterogeneous up to subtyping. Predicative sets in
the presence of the record-based type system of [Car88] and the absence of updates play a role of
embedded queries that are highly integrated with the rest of the language. TM provides several levels
of constraint specification mechanisms which are also set-based and resemble relational constraint
systems. TM also provides first-order set operations. However, the set operations require special
treatment and are not messages in the usual object-oriented sense. It is also unclear how well different
type constraints for different kinds of sets interact with each other. TM has modules that define their
persistent components by names, and everything those objects refer to is also implicitly persistent.
Thus, TM provides a combination of static name-based and dynamic reachability-based persistence,
completely orthogonal to the type. Overall, the TM type system is verifiable, sound, supports
both interface and implementation inheritance (though they are not completely independent of
each other), is almost uniform, partially expressive, and provides support for declarative queries.
However, it does not support substitutability and is non-reflexive and static. It would unconditionally
pass tests SORT and LIST. Test SET also succeeds because of built-in support for set operations.
However, it would not be possible to construct user-defined types with the same functionality.

Most of the following languages borrow much of their expressiveness from ML [MTH90]. ML is
a language with both functional and imperative flavors; it also has some object-oriented features.
This can be said about almost all the languages discussed below.

Standard ML [MTH90] is a functional language with some imperative features. It is strongly
typed and provides provably decidable and sound type checking. In the ML type system, all type
information is inferred by the type checker. Addition of explicit type annotations and declarations
is considered in [OL96]. Standard ML also provides a very sophisticated module system, where
each module (structure) has its type (signature). However, ML's structures are more like abstract
(implementation) types than modules, as they are designed to shield their internals from the rest of
the program and not to handle separate compilation or similar tasks. There is no notion of subtyping
in Standard ML, except for signature matching, which can be considered as restricted structural
subtyping for abstract (interface) types. Highly parametric types are supported in Standard ML.
They can arbitrarily include type variables and can be user-defined. Thus, the type system of
Standard ML is uniform. For interface types (signatures) there are also functions that map signatures
to signatures (functors). Function types in ML can also be polymorphic. Polymorphism in Standard
ML function types is expressed via type expressions that have to be “pattern-matched”. For example,
the type of the identity function in Standard ML is ‘a — ‘a, where ‘a is a type variable. This kind
of polymorphism is uniform in that it allows user-defined parametric types. Standard ML, being in
essence functional, allows updates on so-called ref types. These types are reference types somewhat
similar to pointer types in C or C++. ref types have a restricted parametricity, as an argument
of a ref type must always be a monotype (e.g. see discussion in [Wri93]). Types are not objects
in Standard ML even though they can be operated upon by functions similar to those that operate
on ordinary values. Overall, the type system of Standard ML is theoretically sound, very expressive
and uniform, while lacking inheritance and being only partially reflexive. This type system would
tentatively'4 pass tests PERSON, and SORT, GENSORT, and APPLY (for the test SORT use of
modules rather than types is required).

Another language from this family is Machiavelli [OBBT89, BO96] which is a persistent language
that extends ML by adding more polymorphism as well as query and view support. Machiavelli has
a verifiable and provably sound type system. It adds record inclusion polymorphism to ML by
using type variables of the form (a’’), that correspond to an arbitrary record extension. Thus
Machiavelli allows “more polymorphic” types than ML. Machiavelli is also able to automatically

14Provided that the notion of subtyping is substituted by the notion of code reuse.

31

maintain more sophisticated {even non-covariant) type constraints on description types'®. It is
therefore possible for Machiavelli’s type checker to statically infer an error in case a join of two sets
of records whose types do not have a greatest lower bound is attempted. Machiavelli’s type system
treats description and other types differently. Thus, it is not completely uniform. In Machiavelli,
a special set type constructor {} is introduced and query operations are defined for objects of set
types. Machiavelli extends the type system of ML to be able to deal consistently with type inference
of generalized relational operations. Machiavelli also provides views similar to those in relational
databases. Namely, a Machiavelli view is defined as a function that returns a projection of a given
set over some appropriate type'®. Overall, the type system of Machiavelli is verifiable, sound,
very expressive, reflexive, partially uniform, partially dynamic, and capable of supporting views.
However, it lacks interface inheritance. It passes the same tests as ML with the addition of the SET
test due to the special support of sets by the language and the type system.

Fibonacci [AGO95] is a persistent object-oriented language that is a descendant of Galileo
[ACOS85] which is, in turn, based on ML. It has some functional and imperative features and pos-
sesses a verifiable, provably sound type system; it also has multiple inheritance and single dispatch.
In Fibonacci, object types are independent from each other in terms of subtyping; however, role types
form independent directed acyclic graph (DAG) subhierarchies for each object type. For example, an
object of type PersonObject can play roles Person, Employee, Student, and TeachingAssistant
(that is both Employee and Student). Fibonacci roles can be dynamically created and Fibonacci
objects can dynamically acquire new roles. Fibonacci types are not objects in the language. Method
arguments in Fibonacci are contravariant, while their results are covariant. Fibonacci supports a dis-
tinction between methods and functions: methods are attached to role types and are not Fibonacci
objects, while functions are independent and are first-class values. Fibonacci also has non-object
and non-role types, such as basic types, class types, function types, and association types. These
types form a hierarchy independent of that of object and role types. Fibonacci defines some buiit-in
parametric types (Class, Sequence, and Association). However, it is unclear from [AGOY5] if
the user can create new parametric types. In Fibonacci, objects of the same object type can have
different implementations. These implementations are defined at the time of object creation. Thus,
an implementation in Fibonacci is not a part of an object or role type specification. Updates in
Fibonacci are allowed on special novariant Var types. In Fibonacci, the syntax of message sends
determines the strategy of the method lookup. There are two strategies: upward lookup, that corre-
sponds to the standard lookup procedure in the presence of multiple inheritance, and double lookup,
that first tries to find an appropriate method in the subroles of the role it has started from. Fibonacci
offers declarative query operators on parametric Sequence types. These are types of immutable se-
quences that are supertypes of their respective mutable Class and Association types. Thus, the
query facilities of Fibonacci are also applicable to Fibonacci classes and associations. Fibonacci
has a reachability-based orthogonal persistence model. Everything accessible from the top-level
environment automatically persists between sessions. Thus, Fibonacci persistence is orthogonal to
both interface and implementation types. Overall, the Fibonacci type system is verifiable, prov-
ably sound, provides different inheritance for interface and implementation types, and has inclusion
polymorphism (substitutability). It is also expressive, almost uniform, and is capable of supporting
query typing. However, it is non-reflexive and static. The type system of Fibonacci would pass the
same tests as that of Machiavelli.

The language ML< [BM96b, BM96a] is an extension of ML with subtyping and higher-order
polymorphic multi-methods. It has type inference, strong static type checking, and substitutability.
ML-like type constructors provide parametric polymorphism. Type constructors in ML< can be
specified as covariant, novariant, or contravariant. The formalism used is based on the systems of
type constraints. In this theoretical language, no separation between interface and implementation
is provided. Handling of imperative (mutable) types is borrowed from ML and is quite restrictive
w.r.t. polymorphism. Another restriction placed on ML<'s type system is the requirement that all
types that have a subtyping relationship should have the same number of arguments as well as the
same variance specification for them. Thus, this type system fails the test STREAMS as it requires

15 Description types are ML types that do not include — outside of ref.
161¢ is unclear whether Machiavelli handles view updates.

32

a subtyping relationship to be established between parametric types of different variances. Overall,
the ML< type system is expressive, verifiable, sound, and static. It passes the tests PERSON,
POINT, SORT, GENSORT, APPLY, and the union part of the SET test. However, the inability
of the system presented in [BM96b] to deal with recursive constraints makes generalization of the
system to unrestricted subtyping of parametric types quite difficult.

There are several other approaches to adding subtyping to ML, but none of them deals with
multi-methods. Aiken and Wimmers [AWL94, AW93] proposed a system that finds a solution for
a system of subtyping constraints; this system can deal with recursive constraints. Pottier [Pot98]
also proposed a system in which recursive constraints are allowed; instead of solving the constraints,
his system proves their consistency (like that of ML<). [Seq98] also adds subtyping and user-defined
type constructors, as well as constrained types, to an ML-style type system. The resulting system
appears to be similar to that of ML¢, but lacks its ability to deal with multi-methods. Complexity
results related to solving subtyping systems appear in [Reh98].

[MWA7] proposes a type system for a core subset of the purely functional language Er-
lang [AVWW96)]. The type system is similar to the one proposed by Aiken and Wimmers [AWL94,
AW93] and uses constrained type entailment for type verification. The main difference is the absence
of function types, general unions, and intersections. The system is provably sound and presumably
complete. Addition of function types to the system makes it incomplete, and the proof of sound-
ness in this case is absent. [MW97] includes decidable algorithms for type inferencing, signature
verification, and constraint simplification.

Castagna, Ghelli, and Longo [CGLY5] proposed a variant of A-calculus (A&-calculus) dealing
specifically with multi-methods. Several important results (generalized subject reduction, Church-
Rosser etc) are proven. It is also shown how the calculus can be used to model inheritance, matching,
and multiple dispatch.

(CO94] presents a type system where a full-fledged support for mutable types is added to an
ML-style type system. The approach taken by the authors separates mutable and immutable types
by creating a parallel language syntax. In essence, every functional language construct has its imper-
ative counterpart. Interaction between mutable (imperative) and immutable (functional) language
components is restricted by a set of type validity rules that restrict polymorphism of data types
for the data passed between the two language components. The approach of [CO94] appears to be
sound, but soundness seems to be achieved at the expense of language simplicity and type system
transparency.

Next, theoretical programming languages and systems that are designed specifically for object-
oriented programming will be reviewed.

PolyTOIL [BSG95, BSG94] has a verifiable and sound type system and single subtyping. Poly-
TOIL identifies subtyping with substitutability, while providing a concept of matching (subtyping
up to MyType). The latter is introduced to allow for covariant method specification. Subtyping
in PolyTOIL is structural, as is matching. The language allows for both subtyping and matching
constraints. Matching is used as a mechanism of specifying constraints that are weaker than sub-
stitutability and is therefore useful for updatable types. In [Bru96] it is suggested that subtyping
should be dropped altogether as matching is more intuitive and more flexible. In [BSG95], there
are distinct notions of object types and class types. The former are interface types, while the latter
are implementation types. Namely, object types specify signatures (type information) for methods
applicable to the objects of this object type, while class types specify instance variables and code
for methods applicable to objects that belong to the class. Classes are used to create new objects.
They are produced by applying functions whose arguments are values used to initialize the produced
objects as well as the argument types for parametric classes to their arguments. Classes can use
inheritance with redefinitions. Parametric types in PolyTOIL are pattern functions of their param-
eter types. A notion of a function type is also present in PolyTOIL. However, it is only used in
specifications and during type-checking and is inherently different from either class or object type.
Overall, the type system of PolyTOIL is verifiable, sound, expressive, almost uniform, and satisfies
inheritance requirements. However, it is static and non-reflexive. It passes tests COMPARABLE,
SORT, GENSORT, LIST, and APPLY and fails the rest. The PERSON test fails, because while
record subtyping allows method type redefinition, record extension does not.

33

Loop [ESTZ95, EST95b, EST95a] is a theoretical language similar to PolyTOIL. There are no
explicit type annotations in Loop and the typing is inferred automatically. Loop has a concept of
subclassing where one class inherits from several other classes. Subtyping and subclassing in Loop
are different concepts. Loop enjoys provably sound type-checking and a state semantics given by
its translation to Soop. Function types are present in Loop; however, in the absence of explicit
type annotations, they are only used internally for type checking purposes. Loop classes are mech-
anisms for creating objects. Subclasses do not necessarily correspond to subtypes and class and
type inheritance hierarchies are different. The type hierarchy in Loop is implicit, while the class
hierarchy is explicitly specified by the programmer. Subclassing can be multiple and both methods
and instance variables can be added, inherited, or modified. Since Loop is a “theoretical” language,
it does not have any syntactic sugar for subclassing which makes Loop inheritance rather difficult
to use. Updates in Loop are allowed for instance variables only. The semantics of these updates is
given by their translation to Soop. Loop does not have parametric types. Subtyping in a similar
system has been shown to be decidable in [TS96]. The type system of Loop is verifiable, sound,
partially expressive, almost uniform, partially reflexive, static, and satisfies the inheritance require-
ments. It passes the same tests as PolyTOIL. The type checking mechanism uses constrained types.
The system does not attempt to find a solution to the system of constraints it generates; rather, it
verifies that such a system is non-contradictory. The theory guarantees that in this case the system
has a solution and the program is considered to be type-correct.

TL (Tycoon Language) [MS92, MMS94] is based on the F<. system [CMMS91, Car93]. From
F<. it borrows constrained (bounded) parametric types and type operators, as well as polymorphic
functions and partial type inference. It is also uniform in its treatment of functions (including
higher-order ones) and atomic values. In addition to these features, TL has mutable types, modules,
and typecase statement. Even though TL is designed on the basis of a formal system (F¢), its
type system features have not been mathematically proven. Thus, the questions of soundness and
decidability remain open for the TL type system. TL is an orthogonally persistent programming
language. Since TL is not an object-oriented language, the tests are not applicable to it.

In the TooL language [GM96], an attempt is made to combine the notions of subtyping, matching,
and bounded universal quantification. The resulting language is quite powerful in terms of supporting
different kinds of relationships between types. However, it has significant complexity and requires
good anticipation by type specifiers to correctly choose the kind of type relationship that is needed
before any subclasses of the class in question are created. The theoretical aspects of the language
do not seem to be fully developed, as neither soundness nor decidability of type checking has been
proven. TooL supports single dispatch. Interface and implementation subtyping (termed respectively
as subtyping and subclassing) are different in TooL. Parametric types can be specified, and the type
parameters can be bounded. Information presented in [GM96] is insufficient to judge the uniformity
and reflexivity of the type system; however, it seems to be static and very expressive. [GM96] also
states that TooL is a persistent language; however, nothing else is said about its persistence. The
performance of this type system with respect to the test suite is identical to that of the type systems
of PolyTOIL and Loop.

The language TOFL [QKB96] is a theoretical object-oriented functional language. It has multiple
dispatch, novariant argument redefinition, function types, and parametric types. TOFL allows
subtype specifications of the form “if x is a subtype of Eq, then list(z) is a subtype of Eq for any
type £”. All parametric types in TOFL are covariant, except for functionals which are novariant
in their first argument (function argument position). This is justified since TOFL is a functional
(stateless) language. TOFL has a verifiable and provably sound type system. The TOFL type
system is also quite expressive as it passes the tests PERSON, POINT, SORT, GENSORT, APPLY,
and the union part of the test SET.

2.8 Conclusions

In this chapter, the set of requirements for a type system of an object-oriented database programming
language was formulated. In order to be able to assess expressibility of various type systems, a set

34

of tests was developed. A large number of existing type systems and languages was reviewed and
assessed according to their ability to satisfy the requirements and handle the test cases.

Of the languages reviewed, none was found to completely satisfy the requirements laid down in
Section 2.8. None of the provably sound type systems has passed the majority of the tests. However,
every test was passed by at least one type system thus showing that the necessary mechanisms have
already been developed. It is their consistent and theoretically sound combination that remains
elusive so far.

The type system presented in the next chapters is the result of my attempt to produce such a
combination. It was a challenging task, and its solution will allow us to the develop a theoretically
sound, reflexive, uniform, and dynamic persistent object-oriented programming language.

35

Chapter 3

The Type System Design

This chapter gives an informal description of the type system. It illustrates the main ideas behind
the developed type system, gives examples of its use, and discusses design decisions. The formal
treatment of the type system is given in Chapter 5.

Functionality

Figure 3.1: Type system layers

The type system consists of three specification layers. Each layer consists of two components:
one deals with functionality (dynamic component), and the other with structure (static component).
This taxonomy is depicted in Figure 3.1.

The most abstract layer consists of types (abstract data) and behaviors (abstract functionality).
This is the interface layer that has no concrete description of object structure and functionality.
This layer defines the object interface only and is primarily used for typechecking purposes. [t is
described in Section 3.1.

The intermediate layer consists of classes (high-level structure) and functions (high-level code).
It is this layer that defines most of the code to be executed when a program runs. Classes are also
used for object creation and extent maintenance. This layer is described in Section 3.2.

The lowest layer allows the programmer to use a low-level language to specify data and func-
tionality. This is the layer at which many system primitives are defined. An ordinary programmer
usually does not need to know or care about the existence of this layer unless heavy optimization or
interoperability issues are involved. This layer consists of implementation types and implementation
functions that will be considered in Section 3.3.

The three-layer design is useful in shielding the user from the internal complexity of the system.
Namely, an ordinary user posing queries against a database would only have to be familiar with the
outermost layer (types and behaviors). An application programmer needs to know about the second
abstraction layer (functions and classes) in addition to the first one. Only a database administrator,
implementor and designer should operate at all the three layers, using the implementation layer for

36

low-level optimization and integration tasks. The advantages of the three-layer design are described
in more detail in Section 3.4.

In order to support type system evolution, most of the typechecking presented here is designed
to be invariant with respect to the covariant transformations described in Section 5.6.1. One of the
consequences of this feature is the localization of function code typing. A change in a function code
does not affect the typing or validity of the program code outside of the association that uses the
modified function. This is in contrast with ML-style type inference systems where a local change in
a function code can potentially affect the typing of the code outside the function. The difference lies
in the presence of explicit type annotations of behavior definitions. While type inferencing is still
possible in the presented system, its scope is restricted to a single association.

The application of the principles and constructs described in this chapter is given in Section 3.5,
where an example of a basic type system designed for the TIGUKAT object model [Pet94] is dis-
cussed.

3.1 Types and behaviors

The notion of a type plays a central role in any type system. This section is devoted to types, their
flavors, and the type specification issues. Special attention is given to the issues related to subtyping
and type safety.

Types are introduced in Section 3.1.1. Then, in Section 3.1.2, the notion of subtyping is discussed.
Section 3.1.3 offers a detailed discussion of behavior specifications, redefinition, and inheritance. Sec-
tions 3.1.4 through 3.1.9 discuss various type flavors present in the type system. Additional flexibility
of constrained type specifications is discussed in Section 3.1.10. Interaction between subtyping and
inheritance is considered in Section 3.1.11. Section 3.1.12 concludes the discussion of this layer of
the type system.

3.1.1 The notion of a type

In the type system presented here, type denotes a concept. The concept might originate from the
real world (such as “person” or “student”), mathematics (“integer number” or “set”), computer
science {“output stream” or “character”), or any other domain. For instance, a statement “5 is an
integer number” can be rephrased as “5 has type T_Integer”!. In the same way, it is possible to
say “john has type T_Person” meaning that “John is a person”.

Each object in a program has a type. The type not only characterizes the conceptual properties
of an object, it aiso defines its programmatic interface. The presented type system is based on a
uniform behavioral object model [Pet94]. In this model, everything is an object, and the only way to
manipulate an object is via behavior applications (message sends, function applications). Therefore
the statement that the type defines a programmatic interface for its objects is equivalent to the
statement that the type defines a set of behaviors applicable to a particular object. The type can
also define implementations (methods) for one or more of its behaviors.

Consider, for example, type T_Person. Objects of this type have an age, which is represented as
a natural number, a name (represented as a string), and possibly a spouse (another person). The
definition of a person type will have the following format:

type T_Person {
age() : T_Natural;
name() : T_String;
spouse() : T_Person;
};
UIn the rest of the dissertation, types will be prefixed by T_, classes by C_, and implementation types by IT_. Also,
a typesriter font will be used to denote objects that occur in the program, while normal font will be used to denote

the real-world objects and concepts they are designed to model. This convention will be followed through the rest of
the dissertation, unless otherwise specified.

37

Given this definition, the following behavior application is legal provided the type of john is
T_Person: john.age(). It will return an object of type T Natural.

While simple, this notion of a type has certain non-trivial implications. Some of them manifest
themselves when subtyping is considered; they are discussed later. An implication that is immediate
is the absence of object structure definition in a type. Unlike many other type systems, the type
system discussed here totally separates object interface from the object structure. An object of type
T_Person might be implemented as a list of three slots, holding age, name, and a spouse; it might
also be implemented as a list of five slots holding date of birth, first, second, and middle names, and
a spouse. Both objects can legally and simultaneously belong to the type T_Person as long as they
provide the interface defined in it. The advantages of such separation, as well as a more detailed
description of the mechanisms that achieve it, will be given in Section 3.2.

Another implication of the notion of a type adopted here is the fact that a type is more than
just an interface. In other words, two types can have identical interfaces, and still be considered un-
related to each other. Such an arrangement is termed as name equivalence, as opposed to structural
equivalence. The structural equivalence principle states that two types are equivalent and indis-
tinguishable from each other if they have identical interfaces. In order to illustrate the difference
between the two approaches, let us consider the following example.

type T_Person {
age() : T_Natural;
name() : T_String;
¥
type T_Wine {
age() : T_Natural;
name() : T_String;

};

Here, types T_Person and T_Wine have identical interfaces. Under the rules of name equivalence,
these two types are distinct and unrelated; an attempt to bind a variable declared to be of type
T_Person to an object of type T_Wine will be considered a compile-time error. On the other hand.
if structural equivalence rules were in force, such an assignment would be considered legal, since
in this case both T_Person and TWine would be regarded as two different aliases for the same
entity (the interface). The choice between name equivalence and structural equivalence is a design
decision. Structural equivalence is more permissive as it allows code sharing between semantically
unrelated types. On the other hand, sometimes structural equivalence is “too permissive”, as in the
above example. Most of the “real” languages today adopt name equivalence as the safer and more
transparent alternative (Table 2.3). Name equivalence and structural equivalence are two opposite
ends of a spectrum of possible design decisions; some intermediate approaches are also possible. An
example of such an intermediate approach is the notion of semantical, or behavioral, equivalence
[NP91, LW94, LW95]. In this approach, equivalence is defined in terms of “observable behavior”.
While quite intuitive and appealing, this approach suffers from a major drawback: the notion of
behavioral equivalence is undecidable in general.

3.1.2 Subtyping

The power of a type system comes in part from its ability to adequately model an application
domain. In the real world, concepts are not independent of each other. For example, each student
is also a person; an integer number can also be considered as a special case of a real number. In
order to model this relationship, the type system provides a notion of subtyping. If a type T Person
models the concept of a person, a type T_Student models the concept of a student, and each
student is also a person, then the type T_Student is called a subtype of the type T_Person (denoted
T_Student < T_Person or type T_Student subtype of T_Person).

What does it mean for a type to be a subtype of another one at a programming language level?
Since every object that belongs to the first type also belongs to the second (subsumption property; a
student is a person), it is natural to assume that an object of a subtype can be legally used everywhere

38

an object of its supertype can. This is termed the substitutability property and considered to be one
of the most powerful mechanisms for code reuse in object-oriented programming.

In the following example, a type T_Student is defined as a subtype of the type T_Person. An
additional behavior studentId is defined for this type.

type T_Person {
age() : T_Natural;
name() : T_String;
spouse() : T_Person;
};
type T_Student subtype of T_Person {
studentId() : T_Natural;
3

In the presence of these declarations, the behavior applications aStudent.age and
aStudent .studentId are valid®, while aPerson.studentId is not (every student is also a person,
but not every person is a student).

The term subtyping is sometimes used to denote inheritance. Yet there is a considerable difference
between these two notions. Inheritance is the ability to reuse properties of a type (interface, code,
structure, or any combination of the above) in another type. Inheritance does not imply subtyping,
but subtyping implies interface inheritance. An inheriting type may or may not be a subtype
of the type it inherits from. Thus, inheritance is more general than subtyping. On the other
hand, subtyping guarantees substitutability; inheritance does not. This is discussed further in
Section 3.1.11.

The subtyping relationship between types defines a partial order on the domain of types. If
there are two types T-A and T.B such that TA < TBAT.B < TA, then TAA = T.B. Since subtyping is
user-defined, the system has to verify that this condition is satisfied. The presence of parametricity
makes such checking a non-trivial task, as discussed further in Section 3.1.7.

A type can subtype several types (multiple subtyping). This feature improves the expressibility
of the type system and allows straightforward definitions of complicated type hierarchies. Cousider,
for example, the following type hierarchy:

type T_Person {
age() : T_Natural;
name() : T_String;
spouse() : T_Person;
};
type T_Student subtype of T_Person {
studentId() : T_Natural;
¥
type T_Teacher subtype of T_Person {
coursesTaught : T_Set(T_Course);
| H
type T_TeachingAssistant subtype of T_Student, T_Teacher;

Here, a teaching assistant is both a student and a teacher. A teaching assistant is also a person, so
age, name, and spouse apply. Being also a student, there is a student id; being a teacher, there is a
set of courses taught.

While the situation described here is not uncommon in practice, many type systems do not
allow multiple subtyping (Table 2.3). The major reason for this restriction is the fact that multiple
subtyping incurs significant complications for systems and languages where subtyping is coupled
with inheritance of code and structure. Multiple subtyping also makes type system theory and
dispatch significantly more complicated.

2]t is assumed that aStudent evaluates to an object of type T_Student, while aPerson evaluates to an object of
type T_Person.

39

The type system presented in this dissertation has multiple subtyping, as it increases the modeling
power of the system. Its theoretical treatment will be discussed in Chapter 5.

When a type system is used to design an application, it is often necessary to add new super-
types, subtypes, or behaviors to existing types. [t is often desirable, and sometimes required, to do
these modifications without changing the original type specifications. Most of today’s object-oriented
languages allow addition of subtypes without touching the existing code. However, addition of new
behaviors and/or supertypes® can not be done without changing the original specifications.

The presented type system is designed for database programming languages where the problem
of evolution is even more important then in traditional languages. The ability to reuse legacy code
while providing new types and behaviors is therefore crucial for the type system.

The method that is used in the presented type system is based on specification combination: there
can be more then one specification of a single type, and they are all glued together automatically
during compilation. The same is true of all other specifications used in the presented type system.

Consider the situation when a type T Employee has been defined in a university payroll. Later
on, new types T_Student and T_TeachingAssistant have to be introduced into the system because
it is being expanded to handle student payments as well. The integrated application will have to
produce sets where both employees and students are present; moreover, some behaviors previously
defined for employees (such as salary) have to handle students as well. The following is the existing
specification:

type T_Employee {
salary() : T_Amount implementation ...

¥
Using the specification combination method, the following code has to be added:

type T_Person {
name() : T_String;
salary() : T_Amount;
printSalary() implementation { name.print; salary.print; };
};
type T_Employee subtype of T_Person;
type T_Student subtype of T_Person {
salary() : T_Amount implementation .

|
type T_TeachingAssistant subtype of T_Student, T_Employee;

The addition of this code to the code above will make T_Person a common supertype of the old
type T_Employee and the new type T.Student (Figure 3.2) making it possible to operate on sets of
persons; for example, the following code would print salary information for all people in the database,
provided that allStudents evaluates to the set of all students and allEmployees evaluates to the
set of all employees:

T_Set(T_Person) allPeople := allStudents.union(allEmployees);

allPeople.foreach(printSalary);

If this mechanism was not available, the common supertype T_Person could not be created. Then,
the code to print all names and salaries would not be able to use union to automatically filter out the
duplicated teaching assistants, and extra code would have to be written to support this operation.

3The importance of the ability to create new supertypes of existing types has been discussed in [H5193b] in the
context of interoperability.

40

Figure 3.2: Person type hierarchy

3.1.3 Interface specification and product types

The specification of the programmatic interface is the main component of a type specification. In
the previous sections, some examples of interface specification have already been considered. In
the type system presented, the interface consists of a set of behavior specifications. Each behavior
specification lists behavior argument types and specifies the return type. For example, the following
specifies the type T_Real and its interface that consists of six behavior specifications:

type T_Real {
add(T_Real) : T_Real;
subtract(T_Real) : T_Real;
multiply(T_Real) : T_Real;
divide(T_Real) : T_Real;
negate() : T_Real;

};

The above specification defines the standard arithmetic operations.
Consider the following example where the type T_ChequingAccount is defined. A customer can
deposit or withdraw cash or cheques to/from a chequing account and receive a transaction record.

type T_ChequingAccount {
deposit(T_Cheque) : T_TransactionRecord;
deposit(T_Cash) : T_TransactionRecord;
withdraw(T_Cheque) : T_TransactionRecord;
withdraw(T_Cash) : T_TransactionRecord;

};

Here, the behavior deposit has two different interface specifications. Multiple interface specifications
are allowed as long as they differ in their argument types. A distinction in return types only is
disallowed; for example, the following specification is invalid:

type T_Account {
deposit(T_Cheque) : T_TransactionRecord;
deposit(T_Cheque);

};

In the second case the return type is implicitly assumed to be a special predefined type T_Unit,
which is analogous to type void in C++ [Str91] and Java [AG96].
In order to see why return type differences are insufficient, consider the following example:

type T_A {
beh() : T_C;
beh() : T_D;

41

I
type T_C subtype of T_B;
type T_D subtype of T_B;

T_A a;
T_B b;

b := a.beh();

Since at run-time the object b may have dynarmic type T-C or T.D, it is unclear which behavior
specification to use. Both are legal, and none is more specific then the other. In order to avoid this
kind of ambiguity, it is required that behavior specifications be different in their argument types.

When a subtype is defined, the interface specification inherited from its parent can be modified.
These modifications should follow the return type covariance rule in order for the newly defined type
to be a subtype of its parent. The rule states® that the return type in a behavior specification for
a subtype should be a subtype of the return type in the specification of the same behavior in its
parent type. For example, the specification®

type T_Real;
type T_Integer subtype of T_Real {
succ() : T_Integer;
};
type T_SmallInteger subtype of T_Integer;

type T_Person {
age() : T_Integer;

LN

type T_Child subtype of T_Person {
age() : T_Smalllnteger;

};

is allowed, while the specification

type T_Person {
age() : T_Integer;

|

type T_Child subtype of T_Person {
age() : T_Real;

};

is not. In order to see why this last specification is considered illegal, consider the following code
fragment:

T_Person p;

T_Integer i;

é':= aChild; // 1 (the type of aChild is T_Child)
1 = p.age; // 2

i := i.succ; // 3

This code is type-correct: the first assignment is type-correct, since the static type of p is T_Person
and the static type of aChild is T_Child which is declared to be a subtype of T_Person. The second

4 A more precise formulation of this rule will be considered later in this section
5Note that this specification is equivalent to an implementation of the test (PERSON) from the test suite given
in Section 2.6.

42

assignment is type-correct since the return type of age defined on the type T_Person is T_Integer.
The third assignment is also type-correct as the return type of succ is T_Integer. On the other
hand, at run-time the second assignment will put a real number (of type T_Real) into the variable
i since the behavior specification of age on the type T_Child has return type TReal. The call to
succ in the third assignment will then fail with a run-time error, since the behavior succ is not
defined on TReal.

Note that no restrictions are placed on the argument types. In other words, the following defini-
tion is legal:

type T_Real {
add(T_Real) : T_Real;

};

type T_Integer subtype of T_Real {
add(T_Integer) : T_Integer;
succ() : T_Integer;

};

While this definition seems to be natural, its legality requires some explanation.

A significant number of object-oriented languages today use single dispatch, in which the method
to execute is chosen according to the type of the receiver (Table 2.3). In such languages, the above
specification (with covariant arguments) would not be type-safe. In order to see why, consider the
following code fragment:

type T_Point {
getX() : T_Real;
getY() : T_Real;
compare(T_Point x) : T_Boolean implementation {
return x.getX == getX
and x.getY == getY ; };
};
type T_ColorPoint subtype of T_Point {
getColor() : T_Color
compare(T_ColorPoint x) : T_Boolean implementation {
return x.getX == getX
and x.getY == getY
and x.getColor == getColor ; };
¥

T_Point p1, p2;

aPoint;
aColorPoint;

"

pl :
P2 :

p2.compare(pl);

If this type specification was considered to be legal, then the code following it would be type-correct;
assignments are type-correct since T_ColorPoint is declared to be a subtype of T_Point, and the
application of compare is type-correct since it compares two points. The methods that implement
comparison are also type-correct since they only rely on behaviors that are defined on their argument
types. However, at run-time the application of compare will be dispatched to the method defined
for color points (according to the type of the receiver, which is T-ColorPoint) and it will fail at
run-time, since its argument is of type T_Point which does not define the behavior getColor.

Therefore, in all type-safe single-dispatched languages covariant specification of argument types is
disallowed. However, such specification is natural and desirable. In order to use covariant argument
type specification safely, multiple dispatch is required.

43

In languages with multiple dispatch, the method to invoke is determined according to the run-
time types of all arguments, not just the receiver. In such languages, the above example with points
and color points would not fail at run-time, because the behavior application in question would be
dispatched to the method defined for points.

The main idea behind multiple dispatch is the uniform treatment of all arguments. While in
single-dispatching languages the receiver has a special status, multiply-dispatching languages treat
all arguments as a single unified receiver. This concept can be neatly described by using the notion
of a product type. A product type is a tuple of the form (T,...,T,), where T; are simple (non-
product) types. Subtyping between product types is induced by the subtyping between simple types
and is defined as

(Tor. . T <{(Qr . Q) &S (m=nAT, < Qi foralli=1,...,n) (3.1)

Now, every behavior can be considered as having a single argument — the tuple of all arguments
defined for it, the first being the original receiver. Since every behavior is always applied to a
product, angle brackets are unnecessary and can usually be omitted.

It is possible to translate the standard object-oriented notation for behavior specification and
application into the product-type notation. The product-type notation is mainly used for theoretical
purposes, but it is also useful for the description of multiple dispatch. The following code fragment
is a product-type translation of the point example above®:

type T_Point;

gotX(T_Point) : T_Real;
getY(T_Point) : T_Real;
compare(T_Point r, T_Point x) : T_Boolean implementation {
return getX(x) == getX(r)
and getY(x) == getY(r) ; };

type T_ColorPoint subtype of T_Point;

getColor(T_ColorPoint) : T_Color;
compare(T_ColorPoint r, T_ColorPoint x) : T_Boolean implementation {
return getX(x) == getX(r)
and getY(x) == getY(r)
and getColor(x) == getColor(r) ; };

T_Point pi, p2;

aPoint;
aColorPoint;

pl :
p2 :

compare(p2, p1);

Product-type notation resembles a procedural notation; however, this is only a superficial sim-
ilarity. Here, the behavior compare has methods on two product types: (T_Point, T Point)
and (T_ColorPoint, T_ColorPoint). The run-time argument type for the behavior application
compare(p2, p1) is (T-ColorPoint, T Point), which is a subtype of (T_Point, T_Point), but not
a subtype of (T_ColorPoint, T_ColorPoint), according to Equation 3.1. Therefore, the method to
execute is the one defined for points.

Another illustrative example of praduct type dispatch is the dispatch of the behavior application
p2.compare(p2) which will be translated to product-type notation as compare(p2,p2). Here,
the run-time type of the argument is (T_ColorPoint, T_ColorPoint), which is a subtype of both
(T-ColorPoint, T_ColorPoint) (1) and (T_Point, TPoint) (2). However, since the product type

8This is an implementation of the test (POINT) from the test suite given in Section 2.6.

44

(1) is a subtype of the product type (2), the method associated with the product type (1) is chosen
as the more specific one. Thus, the behavior application p2.compare(p2) will execute the code
written for color point comparison, as expected.

Having reviewed product type notation and dispatch, we will now return to the specification of
real and integer numbers. Rewritten in a product-type notation, the example specification is:

type T_Real;

add(T_Real, T_Real) : T_Real;
subtract(T_Real, T_Real) : T_Real;
multiply(T_Real, T_Real) : T_Real;
divide(T_Real, T_Real) : T_Real;
negate(T_Real) : T_Real;

type T_Integer subtype of T_Real;

add(T_Integer, T_Integer) : T_Integer;
subtract(T_Integer, T_Integer) : T_Integer;
multiply(T_Integer, T_Integer) : T_Integer;
negate(T_Integer) : T_Integer;
succ(T_Integer) : T_Integer;

Here, there is no code. However, in a product type world, not only the code to execute, but also
the specification to use for typechecking is chosen according to the product type of the receiver.
Consider the following code:

T_Integer i1, i2;

i1.add(i2).succ;

In the product notation, the behavior application above will be succ(add(ii, i2)). Since
the static type of the tuple <i1, i2> is (T_Integer, T_Integer), both of the specifications
add(T_Real, T_Real) : T_Real and add(T_Integer, T_Integer) : T_Integer are applicable
to it. However, the second one is more specific than the first and is therefore chosen for type-
checking. The result type of the second specification is T_Integer, and since the behavior succ is
defined on this type, the whole expression is considered to be type-correct.

On the other hand, the following code will produce a type-checking error:

T_Integer i;
T_Real r;

i.add(r) .succ;

In this case, the call in question will translate to succ(add(i, r)), and the static type of <i, r>
is (T_Integer, T_Real). Therefore, of the two specifications for the behavior add, only the first one
will do: the second requires that the receiver type be a subtype of (T_Integer, T_Integer), and the
type of <i, r> is not. The first specification has a return type T_Real, but the behavior succ is not
defined on T Real, and the typechecking reports an error. This is the expected result as adding an
integer to a real yields a real number, and the successor function is not defined on reals.

The above specification of types T_Integer and T_Real can be significantly simplified by the
use of selftype’, which is a reference to the defining type that changes covariantly along the type
hierarchy. The following is a (non-product) specification that uses selftype:

type T_Real {
add(selftype) : selftype;

7 A more formal treatment of selftypae will be given in Section 3.1.10

45

subtract(selftype) : selftype;
multiply(selftype) : selftype;
divide(selftype) : T_Real;
negate() : selftype;

¥

type T_Integer subtype of T_Real {
succ() : T_Integer;

};

Note that the result type of the behavior divide is specified as T-Real, not as selftype. If it was
specified a selftype, the inherited definition in T_Integer would be

type T_Integer subtype of T_Real {
divide(selftype) : selftype;
};

which means that an integer divided by an integer is always an integer, which is not the case.
Therefore, the result type of divide has not been changed to selftype.

Usage of selftype in argument types is known to be statically type-unsafe in languages with
single dispatch [Cas95a, BG96]. However, it is so convenient that some language designers chose to
drop static type safety in favor of it (e.g., Eiffel [Mey88]), while others chose to drop substitutability
(e.g., LOOM [BFP96]). However, in a multiply-dispatching language covariant specification is type
safe, so it is possible to have it all: use of selftype, type safety. and substitutability [Cas95a, BG96).

With the introduction of product type notation, it is now possible to give a precise formulation
for the return type covariance rule discussed at the beginning of this section. The rule is as follows:
for any two specifications of the same behavior, if the product receiver type of the first behavior
specification is a subtype of the product receiver type of the second specification, then the return
type of the first specification should be a subtype of the return type of the second. Thus, the
following is allowed:

type T_Cash;
type T_SmallAmount0fCash subtype of T_Cash;
type T_TransactionRecord;
type T_SimplifiedTransactionRecord subtype of T_TransactionRecord;
type T_Account {
deposit(T_Cash) : T_TransactionRecord;
deposit(T_SmallAmountOfCash) : T_SimplifiedTransactionRecord;
};

This would not be allowed if T_SimplifiedTransactionRecord was not declared to be a subtype of
T_TransactionRecord, since in product notation the two behavior specifications would read

deposit(T_Account, T_Cash) : T_TransactionRecord;
deposit(T_Account, T_SmallAmountOfCash) : T_SimplifiedTransactionRecord;

Since (T-Account, T_SmallAmountOfCash) < (T_Account, T.Cash), it should also be true that
TSimplifiedTransactionRecord < T_TransactionReccrd (otherwise the rule would be violated).

In this section, the interface specifications were discussed. The problem of behavior redefinitions
was considered and its solution was outlined. The notions of multiple dispatch and product type
notation were introduced and used to illustrate the mechanisms behind the behavior redefinition
semantics adopted in the presented type system.

3.1.4 Behavior types

Before the introduction of the object-oriented programming paradigm, data types were considered
as object structure definitions. This point of view is present in procedural programming languages

46

such as Pascal [JWT75], as well as in database programming where the set of data structure defi-
nitions for a database is called its schema. As the object-oriented programming paradigm gained
popularity, the focus of data (object) specifications has been slowly shifting from object structure
to object functionality. In the object-oriented programming model, the functionality is the major
characteristic, while the object structure plays a secondary role.

An object structure specification describes the logical interpretation of the physical storage the
object occupies. On the other hand, specification of object functionality focuses on the things one
can do with a particular object, i.e. the set of actions (behaviors, messages, functions) that can be
performed (applied) on a particular object.

A unit of structure specification is therefore a field definition. A field definition describes both the
amount of physical memory allocated for a field and its logical treatment. At the same time, a unit
of functionality specification is an action (behavior, message). Here, the action declaration (behavior
specification) can be viewed as being parallel to the logical field type (abstract interpretation), while
the action definition (method, function code) can be considered parallel to the physical layout of a
particular field (concrete interpretation). Thus, the relationship between an action declaration and
an action definition is parallel to the relationship between field type and its physical layout.

It is therefore natural to consider the behavior specification as a type of the behavior for which
such a specification is given. In other words, when a behavior b is specified as being applicable to a
certain type T.t, such specification contains information about both the type T_t and the behavior
b. Note that the parallel between actions and fields goes even further: the simplest possible concrete
interpretation of fields (binary bits) is capable of representing any information via binary numbers,
while the simplest possible concrete interpretation of actions (A-terms) is capable of representing
any computation via A-calculus [Tur37].

When behavior specifications are considered as types, behaviors themselves become objects.
Such an arrangement leads to a truly uniform model, in which all entities, including actions, are
objects. This allows one to extend the notions of subtyping and substitutability to behavior types
and behaviors. The standard notation for behavior types is T.a—Tr, where Ta is an argument
type, while Tr is the result type of a behavior. For example, the type T_Real—T Real is the type of
functions that produce a real result when applied to a real number. In the example syntax adopted
here, the same behavior type can also be written as (T_Real):T_Real, which is parallel to the
syntax of behavior specifications.

Counsider the following specification:

type T_Real {
negate(): T_Real;
}

const T_Real r;
which is equivalent to

type T_Real;
negate(T_Real): T_Real;

const T_Real r;
in product-type notation. This can be considered as an abbreviation for

type T_Real;
const (T_Real):T_Real negate;

const T_Real r;

that defines two typed constants: negate of type (T_Real):T_Real and r of type T_Real. This last
specification is in turn equivalent to

47

type T_Real;
const (T_Real -> T_Real) negate;

const T_Real r;

Behavior types are not atomic: they are composed from other types using the behavior type
constructor — (or, equivalently, () :), much the same way as product types are composed of other
types using the type constructor (). Therefore, it is relevant to define the subtyping rules for
the behavior types based on the subtyping relationship between their components. The general
subtyping rule for behavior types is as follows:

(A1 R; < Aa—Ra) &5 (A2 < AL AR, < Ra) (3.2)
Note that the relationship between argument types is reversed®. In order to see why this is the case
consider the following example:

type T_Real {
truncate() : T_Integer;

}

type T_Integer subtype of T_Real {
succ() : T_Integer;

};

(T_Real):T_Integer rifunc;
(T_Integer):T_Integer iifunc;

iifunc := truncate;

5.iifunc;
rifunc := succ; // Compile-time type error
(5.0).rifunc;

Here, two variables rifunc and iifunc are defined. The first one is declared to be of
type T_Real—T.Integer, while the second one is defined to be of type T_Integer—T.Integer.
Constants (behaviors) truncate and succ are defined to be of types T_Real—T_Integer and
T-Integer—T_Integer, respectively. The first assignment in the above code is statically type-
correct since

type of truncate = T_Real—T_Integer < T_Integer—T_Integer = type of iifunc

according to the Equation 3.2. The subsequent application of the behavior stored in the variable
iifunc to the integer constant 5 is also statically type-correct, since the argument type of iifunc
is declared to be T_Integer. When this behavior application is executed, truncate is applied to an
integer. This is type-correct because truncate is declared to operate on any real number, and an
integer is a real.

On the other hand, the assignment of succ to the variable rifunc is not statically type-correct,
since it is not true that

type of succ = T_.Integer—T_Integer £ TReal—T_Integer = type of rifunc

If this assignment was allowed, the subsequent application of rifunc to the real number §.0 would
fail at run-time, as the behavior succ is not designed to work on real numbers.

So far a single behavior specification was used in the examples to specify a type of a behavior.
However, a behavior can have several specifications (Section 3.1.3). In this case, the type of a
behavior is defined as the greatest lower bound (glb) of the types given by these specifications.

Consider the following specification:

8This fact is usually formulated as follows: The type constructor —+ is contravariant in its first position.

48

type T_Real {
add(T_Real) : T_Real;
};

type T_Integer subtype of T_Real {
add(T_Integer) : T_Integer;
Y

or, in product type notation with behavior types,

type T_Real;
const (T_Real, T_Real)->T_Real add;

type T_Integer subtype of T_Real;
const (T_Integer, T_Integer)->T_Integer add;

The two specifications of the behavior constant add are combined, and the resulting specification is

type T_Real;
type T_Integer subtype of T_Real;

const glb((T_Real, T_Real)->T_Real, (T_Integer, T_Integer)->T_Integer) add;

Thus, the resulting type of add is
glb({T_Real, T Real)—T Real, (T_-Integer, T_Integer)—T_Integer)

This expression can be understood as follows: the behavior add produces a real result when applied
to a pair of real numbers, and an integer result when applied to a pair of integer numbers. A
behavior application 5.add(8) produces an integer result, while behavior applications 6.add(6.0),
(5.0).add(8), and (5.0) .add(6.0) produce real results. This is so because only the product-type
of the argument of the first behavior application is a subtype of (T.Integer T_Integer), while all
four of the product-types of the arguments of these applications are subtypes of (T Real T Real).
Therefore, the results of all four applications are known to be subtypes of T _Real, while the result
of the first behavior application is additionally known to be a subtype of T_Integer.

Consider the following piece of code (provided that the above specification of the behavior add
is in effect):

(T_Real, T_Real):T_Real rrfunc;
(T_Integer, T_Integer):T_Integer iifunc;

rrfunc := add;
(6.0).rrfunc(6.0);

iifunc := add;
S.iifunc(8);

When the assignment of the behavior constant add to the variables rrfunc and iifunc is type-
checked, the combined type of the behavior add is taken into account. Therefore, both assignments
type-check:

Let TRR = (T_Real, T Real)—T Real and T_II = (T.Integer, T_Integer)—>T Integer. Then
type of add = gib(TRR,T_II) < TRR = type of rrfunc
type of add = glb(TRR,TII) < T_II = type of iifunc

Note that in the absence of greatest lower bounds the above code would not type-check: if the type
TRR was assigned to the behavior add, then the assignment iifunc := add would not typecheck;

49

on the other hand, using the type T_II for the type of add would not allow us to type-check the
assignment rrfunc := add. Only the combination of these two types in the form of the greatest
lower bound enables successful typechecking of both assignments.

In this section, the notion of a behavior type has been introduced. Properties of behavior types and
their usage were discussed, and the principle of combining behavior types from different specifications
using the greatest lower bound was considered. All these notions will be given a formal treatment
in Chapter 5.

3.1.5 Mutable types

The ability to define any computation in the applicative (functional, stateless) paradigm has led to
the development of a number of programming languages. These languages share several important
properties: strict and rigorously defined semantics, simplicity of the main programming paradigm,
and well-established theoretical mechanisms for reasoning about programs. On the other hand, the
biggest disadvantage of these languages from a practical perspective is exactly the same feature that
makes them so attractive from the theoretical viewpoint: the inability to deal with state.

While there are certain applications that can be programmed without using the concept of state,
most real-world applications rely on the ability of a program to store and retrieve data. This is
especially true of database applications, as database data have a life span beyond the execution time
of a program. Therefore if a program is unable to deal with state change, the data in a database
can never be updated.

The ability of a type system to deal with mutable data is essential for database programming.
However, many languages with well-developed and theoretically sound type systems either do not
consider mutable data at all or severely restrict their use (Section 2.7).

The ML language [MTH90] is a representative example of the languages in the last category. It is
based on the functional programming paradigm, but provides some imperative features in the form
of its reference type constructor ref. However, due to the problems related to typing of imperative
features in a functional environment, the use of the reference cells in ML is much more restricted
than the use of all other type constructors. An excellent review of this problem is given in [App92].

In imperative object-oriented programming languages, the concept of state is usually captured
by two separate but related notions: the notion of an attribute and the notion of a variable. An
attribute is a slot inside an object that is capable of holding an object (or an object reference) of
a particular type. An object can be put into an attribute (assigned to it) or extracted from it. A
variable is similar to an attribute in its ability to hold an object. On the other hand, while an
attribute is a part of an object, a variable is not.

Here, only the issues related to typing of behaviors that are used to access or set attributes will
be discussed. The discussion of the other aspects of state (such as typing of local variables, definition
of object structure using a set of attributes and its relationship to the behavioral interface, et cetera)
appears in Section 3.2.

In the proposed type system, setting an attribute (or a variable) is an ordinary behavior
application. The assignment syntax aPerson.age := 45 is considered as an abbreviation for
aPerson.set_age(46) which is, in turn, an abbreviation for set_age(aPerson, 46). The attribute
specification in this system belongs to a class, not a type; the type only specifies the interface for
getting and setting the attributes. This corresponds to the absence of public instance variables.
The advantages of this approach will be discussed later in Section 3.2. Here a familiar notation for
specifying an attribute interface as a part of a type will be introduced and the typing implications
of this mechanism will be discussed.

The following specification

type T_Person {
age() :=: T_Natural;
name() :=: T_String;
};

50

specifies a type T_Person that has two assignable “attributes”: a name and an age. Note here the
sign :=: that is used to separate the behavior arguments from its result type. It is a combination
of the sign : used to specify the return type for immutabls behaviors and the sign := used for
assignment. The specification age() := T_Natural is also possible; it means that a person’s age
can not be read, but it can be assigned to.

The above specification makes the following behavior applications legal:

T_Person p;

p-age := p.age.add(5);
p.-name := "John";

The type specification for T.Person given above is equivalent to

type T_Person;

age(T_Person) : T_Natural;
set_aga(T_Person, T_Natural);
name (T_Person) : T_String;
set_name(T_Person, T_String);

and the behavior applications are translated into

T_Person p;

set_age(p, add(age(p), 5));
set_name(p, "John");

Thus, the standard product-type typing rules described in Section 3.1.3 apply to assignment as well.

A more complicated example of user-defined assignment is the definition of the behavior at that
is capable of getting the n-th element of a list. [t is also possible to assign to an element, as in the
following code®:

type T_MutableList {
at(T_Natural) :=: T_Object;
I

T_MutableList mlist;

mlist.at(4).print;
mlist.at(4) := object;

The translation of this code fragment is

type T_MutableList;
at(T_MutableList, T_Natural) : T_Object;
set_at(T_MutableList, T_Natural, T_Object);

T_MutableList mlist;

print(at(mlist, 4));
set_at(mlist, 4, object);

The first behavior application prints the fourth element of an array, while the second behavior appli-
cation sets it to object. Thus, the treatment of assignment proposed here allows the programmer

91t is more precise to define T_MutableLiat as a parametric type parameterized by the type of its elements. Such
a specification will be considered in Section 3.1.6.

51

to specify custom versions of the assignment operation, including the possibility of using additional
arguments.

The standard subtyping rule for updatable attributes requires their typing to be novariant. The
following examples illustrate the reasons behind this requirement, while the subsequent discussion
demonstrates how the attribute novariance requirements are relaxed in the proposed type system.

Consider the following specification:

type T_SmallNatural subtype of T_Natural;
type T_Person {
age() :=: T_Natural;
};
type T_Child subtype of T_Person {
age() :=: T_SmallNatural,;
};

Two types are specified, T_Person and T.Child, with an updatable attribute age. A person’s age
is a natural number, while a child’s age is a small natural number (a subtype of natural). [f the
attribute age was immutable, such an arrangement would be perfectly legal. However, the mutable
nature of this attribute causes a problem that manifests itself in the typing of the following code:

T_Person aPerson;
T_Child aChild;
T_Natural n;

aPerson := aChild;
aPerson.age := n;

The above code is type-correct. However, after its execution the age attribute of aChild will contain
a natural number rather than a small natural one, which contradicts the specification of the attribute
age. Situations like the one presented in this example are the primary reason for the novariance
requirement for mutable attributes in current object-oriented type systems.

On the other hand, there are situations in which the novariance requirement is too strict. Con-
sider the following specification:

type T_CharacterList {
substring(T_Natural start, T_Natural end)

};

type T_String subtype of T_CharacterList {
substring(T_Natural start, T_Natural end) :
translateFromFrench() : T_String;

};

It allows for the following code!? to be successfully typechecked:

: T_CharacterlList;

: T_String;

T_String string;
T_CharacterList list;

string := "pteit mluot”;
string.substring(8,9) :

“ul"; // The resulting string

// will contain "pteit mulot”
list := (’e’, ’t?);
string.substring(2,3) :

list; // The resulting string

// will contain "petit mulot”
string.substring(1,5).translateFromFrench; // The result will be the
// translation of "petit" , i.e. "small"

101 is assumed that numbering of arrays and strings starts from 1, not from 0.

52

If the novariance requirement was in force, the redefinition of substring in the type T_String would
be disallowed. Then, the last behavior application that performs the translation would not type-
check, as the result type of substring would be considered to be T_CharacterList which does not
have behavior translateFromFrench defined on it.

The code above is legal and does not cause any run-time errors. In order to see why the covariant
redefinition in the first example causes problems while the one in the second example does not, details
of product-type specifications have to be taken into account. In the first example, the translation
will give the behavior set_age the type

glb((T-Person, T.Natural)—T.Unit, (T.Child, T SmallNatural)—T.Unit)

which implies that the behavior application set_age(aChild,n) (where the type of aChild is
TChild and a type of n is T_Natural) is type-correct. This is so because the product-type of
the argument is (T_Child, T Natural), which is a subtype of (T_Person, T Natural). However,
which code should be executed when such a behavior application is encountered? Apparently, the
code that just stores n in the appropriate slot of the object aChild would be type-incorrect. On
the other hand, if code was provided that caps the natural argument to make it a small natural
before storing it into the slot, the above behavior application would not cause the run-time error.
In the presented type system, such an alternative code can be provided by using keyword := in the
association. Therefore, it is not the behavior specification that is incorrect; rather it is the implicit
assumption that the corresponding code directly stores the value into the slot. Such an implicit
assumption is never made in the second example because it does not resemble structure definition
as much as the first one does. In other words, it is not the type specification that fails here - it is
our intuition.

Based on the above discussion, it is concluded that this problem can not and should not be
dealt with at the type and behavior specification level, but only at the code and structure definition
level. If the two levels (interface and structure definitions) were coupled as they are in many of
today’s programming languages, the novariance constraint would have to be enforced. However,
in a type system that provides a clean separation between these two levels of abstraction (like the
one presented here) the novariance restriction can be lifted at the higher level of behavior and type
specification. This will be discussed further in Section J.2.

In this section, mutable type specifications were discussed. A powerful user-defined assignment
specification mechanism was introduced and its usage as well as its translation to product-type
specifications were considered. The novariance condition usually placed on mutable types was also
discussed; it was concluded that such a restriction is unnecessary at the type level for a type system
that provides a clean separation between interface and structure definitions.

3.1.6 Parametric types and behaviors: specification

Parametricity is one of the most powerful mechanisms used for precise type specification. Parametric
polymorphism that is present in type systems that support parametricity is comparable in power to
inclusion polymorphism which is due to subtyping and interface inheritance.

The distinction between the two kinds of polymorphism is blurred in type systems with structural
subtyping (BETA [MMPN93], Strongtalk [BG93], TM {BBdB*93], ML [MTH90] and its clones). On
the other hand, the designers of type-systems with user-defined (non-structural) subtyping usually
focus on only one of the two forms of polymorphism, supporting the other one only minimally. For
example, the type systems of Ada [Ada95] and Napier88 [MMPN93] focus primarily on parametric
polymorphism, while the type systems of more traditional object-oriented languages (C++ [Str91]
and clones, Java [AG96]) focus on inclusion polymorphism. Attempts to combine the full power
of parametric and inclusion polymorphisms result in loss of substitutability, safety, or decidable
typechecking (Java clones, Transframe [Sha97], Cecil [Cha93] and clones). The only type system
that combines safety, substitutability, decidable typechecking, expressive parametric and inclusion
polymorphism, and user-defined subtyping is ML< [BM96a]. However, ML¢ restricts user-defined
subtyping to types within the same type class (a set of types with the same number of type arguments
and the same kind of subtyping relationships between them), has a limited ability to deal with

53

mutable types (like other ML clones), and does not provide separation between different specification
levels (interface and implementation).

The type system presented in this dissertation is unique in that it combines all of the above
properties. The parametricity interacts with all the components of the type system, making its
consistent design a non-trivial task. Such interactions will be considered in this section along with
examples showing the potential problems stemming from these interactions.

Consider the example of the specification of the type T List:

type T_List {
at(T_Natural) : T_?77;
cat(T_List) : T_List;
};

Here at extracts the n-th element from the list, while cat concatenates two lists. In type systems
that do not support parametricity the type T_??? is usually specified to be T_-Object (a supertype
of all types). However, this leads to the container problem exemplified by the following code:

type T_Person {
age() : T_Natural;
};

T_List list;
T_Person personl, person2, person3;

list := (personi, person2, person3);
list.at(1).age.print;

Here the last behavior application is considered to be illegal because the type-checker only has
enough information to conclude that the result of 1ist.at(1) will be T_Object, and the behavior
age is not applicable to just objects, it is only applicable to persons. Thus, in this case the above
type specification is too restrictive.

On the other hand, consider the code fragment

type T_Person {

age() : T_Natural;
};
type T_Wine {

age() : T_Natural;
};

T_List aWineList;

T_List aPersonList;

T_Person personl, person2, person3;
T_Wine winel, wine2, wine3;

aPersonlList := (personl, person2, person3);
aWineList := (winel, wine2, wine3);
aPersonlList := aPersonlList.cat(aWineList);

The last assignment will store a mix of persons and wines in the variable aPersonList - a semanti-
cally incorrect action. However, the typechecker can not detect this incorrectness as its knowledge of
the type of the variables aPersonList and aWineList is limited to the generic list type T List. One
can attempt to make the specification more strict by specifying types T_PersonList and T WineList
as unrelated subtypes of T List:

type T_List {
at(T_Natural) : T_Object;

54

cat(T_List) : T_List;

};

type T_PersonList subtype of T_List {
at(T_Natural) : T_Person;
cat(T_PersonList) : T_PersonList;

};

type T_WineList subtype of T_List {
at(T_Natural) : T_Wine;
cat(T_WineList) : T_WinelList;

};

T_PersonList aPersonList;
T_WineList aWineList;

T_Person personl, person2, person3;
T_Wine winel, wine2, wine3;

aPersonList := (personl, person2, person3);
aWineList := (winel, wine2, wine3);
aPersonlList := aPersonList.cat(aWineList);

Then, the assignment in question will become type-incorrect, as the result of concatenation of a list of
persons and a list of wines will have type T_List, which is not a subtype of T_PersonList. However,
this approach requires a programmer to explicitly define list types for every possible element type -
an activity which is both tedious and error-prone.

In order to provide static type safety in a clear and concise manner, the following parametric
type specification can be utilized:

type T_List(X) {
at(T_Natural) : X;
cat(T_List(X)) : T_List(X);
};

The specification of the type T_List now has a type parameter X. The code in question will be

T_List(T_Person) aPersonList;
T_List(T_Wine) aWineList;

T_Person personl, person2, person3;
T_Wine winel, wine2, wine3;

aPersonList := (personl, person2, person3);
aWineList := (winel, wine2, wine3);
aPersonList := aPersonList.cat(aWineList);

and the last assignment will not type-check. Coming back to the container problem example, now
the code

type T_Person {
age() : T_Natural;
};

T_List(T_Person) list;
T_Person personl, person2, person3;

list := (personi, person2, person3);
list.at(1).age.print;

55

will typecheck, as the typechecker knows that the result type of 1ist.at(1) is T_Person rather than
Just T Object.

The number of parameters is not limited to one; for example, it is possible to specify a dictionary
type as follows:

type T_MutableDictionary(KeyType,ValueType) {
at(KeyType) :=: ValueType;
allKeys() : T_List(KeyType);
allValues() : T_List(ValueType);

}
and use it in code like the following:

T_MutableDictionary(T_String,T_Person) mdict;
T_Person pi, p2;

pl := mdict.at("John");

mdict.at("Peter") := p2;

Parameters do not necessarily have to be types - they are only required to come from some
lattice (a partially-ordered domain with lower and upper bounds). As an example, consider an array
type that has a number of elements as one of its parameters:

type T_Array(ElementType, T_Natural UpperBound) {
at(T_Natural) :=: ElementType;
}

This defines a parametric type T_Array with two parameters. The first parameter is called
ElementType; it represents the type of array elements. The second one is called UpperBound; it
represents the number of elements in the array. Since the second parameter is a natural number
rather than a type, its specification includes the type specifier T Natural.

In this section, the parametric type specifications were described. The next question related to
parametric types is related to the specification of subtyping rules between them. Is the type of a
list of students a subtype of the type of a list of persons? Can a parametric type be a subtype of a
non-parametric one or vice-versa? The answers to these questions are given in the next section.

3.1.7 Parametricity and subtyping

Each parametric type specification defines a family of parametric types that differ only in their
parameters. Therefore, the issue of subtyping parametric types can be divided into two: the issue
of intra-family subtyping and that of inter-family subtyping.

Intra-family relationships

Intra-family subtyping is a subtyping relationship between types that belong to the same parametric
type family. Consider an immutable list type specified as

type T_List(X) {
at(T_Natural) : X;
cat(T_List(X)) : T_List(X);
};

Let a type T_Student be a subtype of T_Person. Then, every student is also a person; therefore, a
list of students can also be considered as a list of persons since each element of the former can be
considered a person. In general, it is desirable to have a rule that specifies an intra-family subtyping

56

relationship in terms of the relationships between parameter types, the same way it was specified
for product (Equation 3.1) and behavior (Equation 3.2) types. In particular, for the immutable list
types it is desirable to have the following rule:

(T_List(X) < TList(Y)) <% (x < ¥)

Le., the immutable list types are covariant in their first and only argument. This is specified as

type T_List(covar X) {
at(T_Natural) : X;
cat(T_List(X)) : T_List(X);
};

where the keyword covar is used to denote the covariance of the type parameter X.
Consider the following code:

T_List(T_Person) aPersonList;
T_List(T_Student) aStudentList;

aPersonList := aStudentList.cat(aPersonList); // 1 Ok
aStudentList := aStudentList.cat(aPersonList); // 2 Type error
aStudentList := aStudentList.cat(aStudentList); // 3 Ok
aPersonList := aStudentList.cat(aStudentlList); // 4 Ok

All these assignments are type-correct except for the second one. This is the expected result since a
mix of students and persons can also be considered as a list of persons (every student is a person},
while it cannot be considered a list of students (not every person is a student). On the other hand,
a list of students can be considered to be a list of persons.

In order to see how the type-checker arrives at this conclusion, the behavior-product type trans-
lation of the above specification has to be considered:

type T_List(covar X);

const ((T_List(X), T_Natural) -> X) at;
const ((T_List(X), T_List(X)) -> T_List(X)) cat;

Thus, for a behavior application cat(11, 12) to be valid, there should exist a type X such that
(type of 11, type of 12) < (T_List(X), T.List(X)) (3.3)

and the result of this behavior application will then have type T_List(X). Since the above statement
is true for all types X that satisfy the above condition, the actual result type T_R has to be less than
TList(X) for all such X. This is equivalent to the statement that

TR = glb{X | X satisfies Equation 3.3}

Getting back to our example, the first behavior application aStudentList.cat(aPersonList)
(or cat(aStudentList, aPersonList) in product notation) has argument product-type
(TList(T.Student), T List(T Person)). Therefore the set of types X that satisfy Equation 3.3
is {T_Person}. The above is due to covariance of T List: T_List(T Student) < T_List(T_Person)
because T_Student < T_Person. The greatest lower bound of this set is T_Person, and therefore
the result type of this behavior application is T_List(T Person), which can be safely assigned
to the variable of type T_List(T Person) (the first assignment), but not to the variable of type
T List(T_Student) (the second assignment).

On the other hand, the set of types X that satisfy Equation 3.3 for the second behavior appli-
cation aStudentList.cat(aStudentList) will be {T_Person, T Student}; its greatest lower bound
is T_Student, therefore the result type of this behavior application is T List(T_Student) that can

57

safely be assigned to a variable of type T_List(T Person) (the third assignment) as well as to a
variable of type T_List(T.Student) (the fourth assignment).

The above example dealt with a covariant type specification and an immutable list type. What
happens when a mutable list type is considered? Such a type can no longer be covariant, since the
resulting type specification would be unsound. If it was allowed, the following code would typecheck:

type T_Person;

type T_Student subtype of T_Person {
studentId() : T_Natural;

};

type T_MutableList(covar X) {
at(T_Natural) :=: X;

};

T_MutableList(T_Student) aStudentlist;
T_Person aPerson;

aStudentList.at(l) := aPerson; // Should be a type error!
aStudentList.at(1).studentId;

This code, however, will fail at run-time since the behavior studentId is not defined on persons.
The following is the reason why type-checking of the assignment succeeds: In product-behavior
type notation, the above would read as

const ({T_MutableList(X), T_Natural) -> X) at;
const ((T_MutableList(X), T_Natural, X) -> T_Unit) set_at;

T_MutableList(T_Student) aStudentList;
T_Person aPerson;

set_at(aStudentList, 1, aPerson); // Should be a type error!
The set of types X such that

argument type = (T.MutableList(T Student), T_Natural, T Person)
< (T MutableList(X), T-Natural,X) = arguments for which set_at is defined

will be {T_Person}. Indeed,

(T MutableList(T Student), T Natural, T Person)
< (T MutableList(T_Person), T-Natural, T_Person)

according to the subtyping rule for product types (Equation 3.1) and due to the covariance of list
specification that gives

T_MutableList(T_Student) < T MutableList(T_Person) (3.4)

This is the same situation as the one considered in Section 3.1.5: if the code that is written to
implement set_at is just storing its argument into the array, it is not type-correct. In order to be
able to write such code in a type-safe manner, the definition of the parametric type T MutableList
should be novariant:

type T_Person;

type T_Student subtype of T_Person {
studentId() : T_Natural;

};

58

type T_MutableList(novar X) {
at(T_Natural) :=: X;
};

T_MutableList(T_Student) aStudentList;
T_Person aPerson;

aStudentList.at(1) := aPerson; // Type error
aStudentList.at(1).studentId

The parametric type T MutableList is now defined as novariant (keyword novar), which means
that none of the mutable list types is a subtype of the other, no matter which relationship exists
between the type parameters of these list types.

The typechecking of this code fails because Equation 3.4 that led to successful typechecking of
the above code in covariant mutable list specification is no longer true for novariant specification.

Why should a mutable list type be novariant? Informally, the type T MutableList(T Student)
can not be a subtype of T MutableList(TPerson) since the second one can accept into it any
person, while the first one can not. On the other hand, the type T MutableList(T Person) can
not be a subtype of T MutableList/{T Student) because student’s behaviors can be applied to an
object extracted from the list of the second type while such behaviors can not be applied to an
object extracted from the list of the first type.

So far, covariant and novariant specifications have been considered. The third possibility, a
contravariant specification (keyword contravar), also exists. The following type specification uses
contravariance to correctly type output streams:

type T_OutputStream(contravar X) {
put() := X;
};

Note usage of the specifier := in the specification of behavior put: it means that this behavior can
not be accessed, but only assigned to. Contravariance means that

(T-OutputStream(X) < T_OutputStream(Y)) &L (Y=<X)

{note the reversed direction of subtyping!).

Informally, both a student and a person can be put into an output stream of persons (a student
is a person); however, only students can be put into an output stream of students. Therefore, an
output stream of persons can do the same as an output stream of students (accept students) plus
more (accept persons). Thus, the type of output streams of persons should be a subtype of the type
of output streams of students.

Therefore, in the following code fragment

type T_Person;
type T_Student subtype of T_Person;

T_OutputStream(T_Student) aStudent0S;
T_OutputStream(T_Person) aPerson0S;
T_Person aPerson;

T_Student aStudent;

aPerson0S.put := aPerson; // 1 Ok
aPerson0S.put := aStudent; // 2 Ok
aStudent0S.put := aPerson; // 3 Type error
aStudent0S.put := aStudent; // 4 Ok

all assignments are type-correct except for the third one, as it attempts to output a person to a
stream designed for students.

59

In general, read-only entities (like immutable lists) are covariant, write-only entities (like output
streams) are contravariant, and read-and-write entities (like mutable lists) are novariant.

Behavior types are examples of a parametric type family with two type parameters. The first of
these parameters (argument, or input type) is contravariant, while the second one (result, or output
type) is covariant (Equation 3.2). Thus, the behavior type discussed earlier in Section 3.1.4 can be
specified as'!

type ->(contravar ArgType, covar ResType) {
apply(ArgType) : ResType;
};

This specification allows a programmer to use the behavior apply to apply behaviors to their ar-
guments. This is type-safe behavioral reflection. It also shows how higher-order behaviors can be
specified.

Product types considered in Section 3.1.3 can also be specified as parametric types in which all
parameters are covariant (Equation 3.1).

Parametric types are also used for local variable type specification. The type implicitly used for
local variables is a novariant type T_Var defined as follows:

type T_Var(novar X) {
val() :=: X;
};

Whenever a local variable definition of the form T_aType aName; is encountered, it is trans-
lated into const T_Var(T_aType) aName;. Every assignment to this local variable of the form
aName := anExpression is translated into aName.val := anExpression. Every other access to
a local variable aName is translated into aName.val. The resuit is of course subject to normal
product-type processing and expansion.

For example, the following code

type T_Person {
age : T_Natural;
¥
type T_Student subtype of T_Person;

T_Person aPerson;
T_Student aStudent;

aPerson := aStudent;
aPerson.age.print;

in fully expanded form becomes:

type T_Person;

const ->(T_Person, T_Natural) age;
type T_Student subtype of T_Person;

const T_Var(T_Person) aPerson;
const T_Var(T_Student) aStudent;

set_val(aPerson,aStudent);
print (age(val(aPerson)));

The typechecking algorithm is therefore free from any special treatment of local variables - they
are simply regarded as objects of one of the T_Var types. The syntactic transformations described

11 This is an implementation of (APPLY) test.

60

above do not allow the variables to “escape” from their scope, as there is no syntactic way to refer
to a variable as an object. It is straightforward to verify that these transformations indeed give the
intended meaning to the notion and typing of local variables. This will be formalized in Chapter 5.

In this section intra-family subtyping was considered. Concepts of covariance, contravariance,
and novariance were discussed and examples of their use were presented. It has also been shown
that intra-family subtyping is sufficient for definition of the fundamental types of the proposed type
system, as well as for handling of local variables. This property demonstrates the power and reflexive
capabilities of the presented type system.

Inter-family relationships

Another aspect of subtyping related to parametric types is inter-family subtyping. It occurs when
a subtyping relationship is established between parametric types from different families.
Consider the following specification:

type T_Set(covar X) {
isMember(X) : T_Boolean;
union(T_Set(X)) : T_Set(X);
¥
type T_List(covar X) subtype of T_Set(X) {
at (T_Natural) : X;
}
It declares the type T_List(X) to be a subtype of T.Set(X) for every type X. For example, the

following code is type-correct:

T_List(T_Student) aStudentList;
T_Set(T_Person) aPersonSet;

aPersonSet := aPersonSet.union(aStudentlist);

The product-type argument type of the behavior application above is of type (T.Set(T_Person),
TList(T Student)). The minimal type X such that

(T-Set(TPerson), TList(T-Student)) < (T_Set(X), T_Set(X))
(as required by the specification of the behavior union) is X = T_Person, since
T.List(T.Student) < T_Set(T-Student) < T_Set(T_Person) =X

Therefore, the result type of the behavior application above is T_Set (T _Person), which is assignable
to a variable of the same type.

In the above example, both types participating in inter-family subtyping relationship had the
same number of type parameters with the same variance specification (covar). None of the above
is required by the type system. For example, all of the following specifications are allowed:

type T_Set(covar X);
type T_EmptySet subtype of T_Set(X);

type T_List(covar X);
type T_String subtype of T_List(T_Character);
type T_UpdatableList(novar X) subtype of T_List(X);

type T_InputStream(covar X) {
get : X;
};
type T_OutputStream(contravar X) {

61

put := X;
}
type T_IOStream(novar X) subtype of T_InputStream(X), T_OutputStream(X);

These specifications define an empty set type that is a common subtype of all set types; a string
type which is a subtype of the type of character lists; and an input-output stream type which is a
subtype of appropriate input and output stream types.

An example streams type hierarchy for parameter types T_Person and its subtype T_Student is
depicted in Figure 3.3. Note that this is an implementation of the test (STREAMS) from the test
suite given in Section 2.6.

T_InputStream(T_Person) T_OutputStream(T_Student)

?

T_OQutputStream(T_Person)

T

T_IOStream(T_Student) T_IOStream(T_Person)

T_InputStream(T_Student)

¥

Figure 3.3: Stream types.

Not every set of (possibly parametric) subtype declarations results in a valid type system. For
example, the type specification

type T_MutableList(novar X) subtype of T_Strange;
type T_Strange subtype of T_MutableList(T_Person);

is incotrect, since there exists a cycle
T_Strange < T_MutableList(T Person) < T_Strange

In order to avoid situations like these, the following restriction is enforced. Let the user type graph
G be defined as follows: for every parametric type family with constructor'® TX, there is a vertex
TX in G. For every subtype specification of the form T_X(...) <= T_Y(...) there is a directed
edge fromTX toTYin G.

Rule 3.1 (Acyclicity). The user type graph G is acyclic. o

For example, the user type graph for the above type hierarchy will look as follows:
T_Strange = T_MutableList. This graph clearly contains a cycle, and therefore this type hierarchy
is rejected.

One of the applications of inter-family parametric type specifications is F-bounded quantification
[CCH*89] which can be effectively used for specification of binary methods. Binary methods are
behaviors with two arguments with identical types; their specification has always been a challenge
for object-oriented type systems [BCC*96].

Consider the following situation (COMPARABLE test from the test suite given in Section 2.6).
Assume it is necessary to specify types T Number (with unrelated subtypes T.Real and T_Radix)
and T.Date with comparison methods such that comparing two numbers or two dates between each
other is legal, while their cross-comparison is not. A standard way of defining a type T_Comparable
does not work because it is too permissive. For example, in the following code

12Simple types like T_Person are considered 0-ary constructors.

62

type T_Comparable {
less(selftype) : T_Boolean;
};
type T_Number subtype of T_Comparable;
type T_Date subtype of T_Comparable;

T_Number n;
T_Date d;

n.less(d); // Should have been a type error

the behavior application n.less(d) is type-correct. This is the case because the product argument
type for this behavior application is (T_Number, T Date) which is a subtype of (T_Comparable,
T_Comparable) that specifies one of the argument product types where the behavior less is defined.

The problem can be solved by using F-bounded polymorphism [CCH*89] and parametricity. The
following type specification

type T_Comparable(contravar X) {
less(selftype) : T_Boolean;
};
type T_Number subtype of T_Comparable(T_Number);
type T_Real subtype of T_Number;
type T_Radix subtype of T_Number;
type T_Date subtype of T_Comparable(T_Date);

describes the necessary type hierarchy which is depicted in Figure 3.4.

T_Comparable (T_Real) T_Comparable (T_Radix)
\ 7
T_Comparable (T_Number) T_Comparable (T_Date)
T T
T_Number T_Date
[N\
T_Real T_Radix

Figure 3.4: Comparable types.

Note that the type T_Comparable is contravariant in its only parameter. The following is the
argument in favor of contravariance in this case: If an object of a type T can be compared to an
object of type X, then it can also be compared to an object of any subtype Y of X. For example,
since a real number (T = T_Real) can be compared to any number (X = T Number), it can also be
compared to a radix number (Y = TRadix). Thus, for all types T, X, and Y

(T < T_Comparable(X)A Y < X) = T < T_Comparable(Y)

Let’s put T = T-Comparable(X). Then,
VX,Y: Y < X = T_Comparable(X) < T_Comparable(Y)

63

which is the definition of contravariance.
With the comparable type specification given above, the code

T_Number n;
T_Real re;
T_Radix ra;
T_Date di, d2;

n.less(re);
re.less(ra);
ra.less(n);
di.less(d2);

will be successfully typechecked, while the code

T_Number n;
T_Date d;

d.less(n);

will be rejected.

In this section, the interactions between parametricity and subtyping were considered. Both
intra-family and inter-family relationships were discussed, and their power was illustrated by a
number of examples. It was shown that the mechanisms described in this section are powerful enough
to define behavior typing, variable typing, and F-bounded quantification. In the next section, the
extension of the return type covariance rule discussed in Section 3.1.3 for the case of parametric
types will be considered.

3.1.8 Parametricity and interface specification

In the presented type system, there are several rules that are imposed upon the user type specifi-
cations. One of them is the requirement of acyclicity of the user type graph G (Section 3.1.6); the
other is the return type covariance rule (Section 3.1.3).

The return type covariance rule was formulated only for simple (non-parametric) types. A
refinement of this rule for parametric types is required. Parametric specifications can introduce new
problems related to return type covariance, as can be seen in the following code:

type T_Var(novar X) {
val() :=: X;
};
type T_Object {
makeRef () : T_Var(selftype);
3
type T_Person subtype of T_Object;

T_Object object;

// It is assumed that the dynamic type of aPerson is T_Person
// and the dynamic type of anObject is T_QObject

object := aPerson; /71

object .makeRef().val := anObject; // 2 Dynamic type error

Here, both assignments are statically type-correct. However, the second assignment is dynamically
incorrect since it tries to put anObject inside of a person reference created by the behavior applica-
tion object .makeRef (). The latter creates a person reference rather than an object reference since
the dynamic type of object is T Person.

The problem here is related to the specification of the behavior makeRet. The expanded product-
type definition of this behavior for types T_Object and T_Person yields

64

const (T_Object -> T_Var(T_Object)) makeRef;
const (T_Person -> T_Var(T_Person)) makeRef;

which contradicts the return type covariance rule!3. The direct expansion used here is only done for
illustrative purposes, since full expansion is in most cases infinite.

Therefore, the return type covariance rule has to be reformulated to deal with parametric speci-
fications directly. The following is the desired formulation:

Rule 3.2 (Return type covariance). If {A;(ay,... ,a,,)Bi(ay,... aa,)}]2, are the specifi-
cations for a behavior b, then

ViVay,...,an,,ay,... 0y :
Ailar,...,aq,) 2 Alal, ... ,a;,) = Bi(ay,...,aa,) 2 Bi(a),....ay)
Yi,j(i # j) Vai,...,an,,a},... ,aﬁ,, :
Ai(ar, ... an,) 2 4j(al, ... ap) = Bi(ai,...,as,) 2 Bj(al,...)
where A(ay,...,an,) denotes a parametric type with parameters ay, ..., an,. a

This rule will be further refined in Chapter 4 (Definitions 4.5 and 4.10) to deal with constrained
types.

The definition of the behavior makeRef does not satisfy Rule 3.2 since its product-type specifi-
cation is a—T_Var(a), and for o« = T_Person, o’ = T.Object the first condition is violated:

A(a) = a = T.Person < T.Object = a’ = A(a’)
B(a) = T_Var(a) = T_Var(T-Person) £ T_Var(T.Object) = T_Var(a') = B(«a')

In ML [MTH90], the type constructor ref is defined similarly to the definition of makeRef and
T_Var above (in ML, a type constructor plays a dual role: it is used for both type specification and
run-time object creation). Therefore its usage causes problems. The ML solution to this problem is
to treat this type constructor specially, severely restricting its polymorphism. In the presented type
system, no special treatment is required for any type constructor and the effect of ref as a type
constructor is accomplished using the mutable types considered in Section 3.1.5.

In this section, the extension of the return type covariance rule for the case of parametric spec-
ifications has been presented. Several examples illustrating the necessity and use of the extended
rule have been considered.

3.1.9 Union and intersection types

One of the unique features of database programming languages is the incorporation of query facilities.
Queries are declarative (side-effect free!) computations that are usually based on a variant of SQL.
Queries require precise and adequate typing of set-theoretic and applicative operations, such as
union, intersection, map etc.

With the help of parametric types, it is possible to define the behavior union on the type of
immutable sets T_Set in such a way that it indeed has the desired properties:

type T_Set(covar X) {
union(T_Set(X)): T_Set(X);
};

What happens if a union of a set of students and a set of persons is attempted? Such behavior
application will have a product-type argument type (T_Set (T _Student), T_Set(Person)), a product

13Indeed, T-Var(TPerson) is not a subtype of T_Var(T.Dbject) as T_Var is novariant.
141n object query models, a query may not necessarily be side-effect free; however, this does not affect query typing.

65

type in the specification of union is (T_Set(X), T_Set (X)), and the greatest lower bound of types X
such that

(T_Set(T-Student), T Set(Person)) < (T-Set(X), TSet(X)})

is X = T_Person. Therefore, the result type of the application will be T_Set (T Person). It is easy

to show that the result type of an application of the behavior union to two sets with element types

A and B will always be T_Set(lub(A,B)) — precise typing for the set-theoretic union operation.
The specification of behavior map is also possible using parametric and behavior types:

type T_Set(covar X) {
map((X):Y): T_Set(Y);
Y

The behavior map takes an argument which is a behavior applicable to the elements of the set and
returns the set of results of applying this behavior, element-wise, to the elements of the source set.
For example,

type T_Real {
negate() : T_Real;
};

T_Set(T_Real) s;
s := (0.1, 0.2, 3.0);

s := s.map(negate); // After the assignment, s will be (-0.1, -0.2, -3.0)

Only the specification of the behavior intersect causes problems. The result type of this
behavior should be the greatest lower bound of the argument types because the resulting set contains
only those objects that belong to the two argument sets at once. The presented type system provides
a programmer with an ability to use type operators glb and lub explicitly in type specifications. Using
these additional capabilities, the immutable set type can be specified as follows:

type T_Set(covar X) {
union(T_Set(Y)) : T_Set(lub(X,Y));
intersection(T._Set(Y)) : T_Set(glb(X,Y));
map((X):Y) : T_Set(Y);

};

Note that the specification of union given here is equivalent to the specification given above. How-
ever, it describes the programmer’s intentions more explicitly and is therefore preferable.

Using type specifiers glb and lub together with parametric and behavior types makes it possible
to specify set-theoretic operations with an adequate precision. The mechanisms used here are not
designed just for sets; they can be used for all types, including user-defined ones. This is in contrast
to the approach taken in Machiavelli [BO96] and Fibonacci [AGO95], where precise typing of set-
theoretic operations is also possible, but the treatment of sets is special and the programmer can
not define new types with analogous typing precision.

3.1.10 Constrained specifications

The parametric type specifications considered so far were unconstrained in that any type could be
used as their parameter. However, sometimes a parametric type only makes sense for some parameter
types and not for all of them. In order to specify such conditions, type constraints are utilized.

The following is a specification of a type T_-OrderedSet that requires that its elements be com-
parable with each other:

66

type T_OrderedSet(covar X)
where (X subtype of T_Comparable(X))
subtype of T_Set(X) {
maximals() : T_Set(X);
minimals() : T_Set(X);
3

This specification requires the type parameter X to be comparable. It also specifies that ordered sets
are subtypes of sets. The behaviors maximals and minimals are defined to return sets of maximal
and minimal elements of the set. Ordered sets are sets, and therefore all operations defined for sets
are also applicable to them.

Type constraints can also be used to specify behaviors. For example, if the type of ordered sets is
introduced just to define behaviors maximals and minimals, then it is possible to do without it and
define the above behaviors on sets by adding the appropriate type constraints to their definitions:

type T_Set(covar X) {

maximals() : T_Set(X) where X subtype of T_Comparable(X);
minimals() : T_Set(X) where X subtype of T_Comparable(X);
Y

This specification, however, does not allow one to declare variables of ordered set types, while the
previous one did.

Constraints that can be used for type or behavior specification should not contain variables that
are not used in the rest of the specification. They must also be monotonic. Monotonicity here
means that type constraints must be constructed in a way that does not violate substitutability.
The following is an example of how a non-monotonic constraint can result in a loss of type safety:

type T_Employed;
type T_CEO subtype of T_Employed;

type T_Company {
fire(X) where (T_Employed subtype of X, X subtype of T_Employed); // *
3

T_Company c;
T_Employed e;
T_CEQ ceo;

e := ceo; // 1 0k
c.tire(e); // 2 Run-time error

The behavior fire is only applicable to employed persons that are not CEOs (the specification *
says that the argument of this behavior must have type T Employed, and T.CEO is not equal to
T_Employed). The code above is statically type-correct (e is just an employed person, and so can
be fired), but fails at run-time when an attempt is made to fire ceo. The reason for this failure is
non-monotonicity of the constraint placed on the specification of the behavior fire: an employed
person satisfies it, but a CEO does not, even though a CEO is an employed person.

In order to specify monotonicity requirernents, a new translation step (besides the product-type
translation) is introduced. The purpose of this step is to add any constraints implicitly specified for
selftype to the constraint set. Every behavior specification that has an occurrence of selftype is
translated as follows:

1. All occurrences of selftype are replaced by a fresh type variable S

2. A constraint S subtype of T(...) where T(...) is a type where the behavior is defined is
added to the list of type constraints for that behavior

67

For every type T that defines a constraint that constraint is added to all behavior specifications
where type T_T occurs.

For example, the full translation of the specification of the type of ordered sets (given above)
will be:

type T_OrderedSet(covar X)
where (X subtype of T_Comparable(X))
subtype of T_Set(X);

const (T_OrderedSet(X) -> T_Set(X)

where X subtype of T_Comparable(X)) maximals;
const (T_OrderedSet(X) -> T_Set(X)

where X subtype of T_Comparable(X)) minimals;

while the translation of the type specification of real numbers’ type

type T_Real {
add(selftype) : selftype;
subtract(selftype) : selftype;
multiply(selftype) : selftype;
divide(selftype) : T_Real;
negate() : selftype;

};

will be

type T_Real;

const ((S, S) -> S where S subtype of T_Real) add;

const ((S, S) -> S where S subtype of T_Real) subtract;
const ((S, S) -> S where S subtype of T_Real) multiply;
const ((S, S) -> T_Real where S subtype of T_Real) divide;
const (S -> S where S subtype of T_Real) negate;

Now the monotonicity requirement can be defined. [t has two parts: one deals with type spec-
ification constraints, and the other with constraints placed on behaviors. If a set of constraints

C(ay,...,ays) is placed on a type specification of a type T(ay,an), then monotonicity requires
that
Yai,...,an,a'1,...,a'n: Cla'y,...,a's)A(T(a1,...,an) XT(a'1,...,a's})) = Clay, ..., aq)

Thus, the constraint placed on the specification of T.OrderedSet is monotonic, as

Va,a’: o' < T_Comparable(a’) A T_OrderedSet(a) < T.OrderedSet(a’)
= a < a’ < T_Comparable(a’) < T_Comparable(a)
= a < T_Comparable(a)

due to covariance of T_OrderedSet and contravariance of T_Comparable.
If a set of constraints C(ay,...,a,) is placed on a behavior specification

Alay,... ,a,)—R(ay,...,an)
then monotonicity requires that
Vay,... yan;all,--. ,a',, : C(a'l,..‘ ,a',,)/\A(al,... ,ﬂn) j A(Ql[,‘.‘ ,an) =>C(01,... ,On)

Thus, the constraint placed on the behavior specification of maximals is monotonic (the same proof
as for the previous example), while the one placed on tire is not.

These monotonicity conditions will be given a more formal treatment in Chapter 5.

In this section, constraints and constrained specifications were considered. The monotonicity
conditions that the constraints must satisfy have been formulated and illustrated.

68

3.1.11 Subtyping and inheritance

While subtyping is a very powerful concept, sometimes it is too restrictive. There are cases when
it is necessary to reuse an interface without creating a subtype. An example of such situation is
demonstrated by the LIST test from Section 2.6, where a single linked list node type and a double
linked list node type have to be specified.

The straightforward approach to this problem

type T_LinkedListNode {
getNext() : selftype;
attach(selftype);
1
type T_DoubleLinkedListNode subtype of T_LinkedListNode {
getPrev() : selftype;
attachLeft(selftype);
I

is unsatisfactory because it allows nodes of different types to be mixed in a single list. This is so be-
cause T DoubleLinkedListNode is specified as a subtype of T_LinkedListNode and can therefore be
used everywhere a linked list node can be used, including a single linked list. If a programmer does
not want to allow this behavior, the above specification will not do. In this case, F-bounded poly-
morphism [CCH*89] can be used. This solution is analogous to the solution of the COMPARABLE
problem presented in Section 3.1.7.

type T_LinkedListNodeInterface(novar X) {

getNext() : X;

attach(X);
};
type T_LinkedListNode subtype of T_LinkedListNodeInterface(T_LinkedListNode);
type T_DoubleLinkedListNode

subtype of T_LinkedListNodeInterface(T_DoubleLinkedListNode) {

getPrev() : T_DoubleLinkedListNode;

attachLeft(T_DoubleLinkedListNode);
I

This solution is type-correct and gives the intended type semantics to both node types. However, it
is not nearly as elegant as the solution based on matching [BFP96]. Another way of representing this
situation will be given in Section 3.2.2, where class eztension rather than subtyping will be utilized.

3.1.12 Conclusions

In this section, the type and behavior specifications were described. The use of subtyping, product
types, behavior types, parametric types. and constrained types was illustrated and discussed. Sev-
eral transformation techniques used to translate the user-defined specifications into a more basic,
primitive notation were introduced. Examples considered in this section show that the presented
type system is capable of typing all tests'® from Section 2.6 without sacrificing substitutability, static
type safety, and decidable typechecking (as will be shown in Chapter 5).

Type and behavior specifications form the most abstract layer of the proposed type system,
since they deal only with interfaces, ignoring object structure, the code implementing behaviors,
and underlying physical memory layout. The middle layer of the presented type system consists of
classes that describe object structure and functions that implement behaviors. This layer will be
considered in the next section.

15Except for the (BROWSER) test that will be discussed in the next section.

69

3.2 Classes and functions

Interfaces play an important role in object-oriented programming. Yet, an interface specification is
insufficient for programming since both object structure and code implementing the interfaces for a
particular structure has to be specified before a program can be successfully translated (compiled or
interpreted). The intermediate layer of abstraction which consists of classes (structure) and function
(code) specifications is designed for this purpose.

In this section, classes and functions will be described. Issues related to dispatch will also be
discussed. Connections between the intermediate layer of abstraction and the higher (interface)
layer, such as correspondence between classes and types, behaviors and functions, and typechecking
issues will also be elaborated.

3.2.1 Classes

While types denote concepts at a very abstract level, classes give a more concrete structural view of
objects used in a program. Every object belongs to a class, as no material object can exist without
a structure. A type may be implemented by a single class, or by several different classes, or it may
not be implemented at all (an abstract type). Classes specify object structure at an intermediate
level: they are not as abstract as types, yet they are abstract enough not to specify a particular
physical memory layout for the objects that belong to the class. The following is an example class
specification:

type T_Person {
age :=: T_Natural;
name :=: T_String;
I H
class C_Person implements T_Person {
T_Natural _age;
T_String _name;
age implementation _age;
name implementation _name;

};

The class C_Person implements the type T_Person; the behavior age is implemented by the attribute
.age'® and the behavior name is implemented by the attribute name. This implementation of the
type T_Person is rather trivial, while the next example shows a non-trivial implementation of the
same type:

class C_Person3Names implements T_Person {

T_Natural _age;

T_String _firstName;

T_String _secondName;

T_String _middleName;

age implementation _age;

name : T_String implementation fun() {
return _firstName + ' ' + _middleName + ’ ’ + _secondName;

};

name := T_String implementation fun(arg) {
_firstName := arg.columnSeparatedBySpaces(1);
_middleName := arg.columnSeparatedBySpaces(2);
-secondName := arg.columnSeparatedBySpaces(3);

};
};

18The notation _attr will be used for attributes to distinguish them from behaviors.

70

Here, a person is implemented by a class with four attributes. The first one corresponds to a person’s
age, while the other three represent different components of a person’s name. Therefore, the behavior
name can no longer be implemented as a simple attribute access; instead, it is implemented as a pair
of anonymous functions whose bodies are written in curly braces. Two functions are necessary
because the behavior name was specified as assignable (token :=:). One function is used to “access”
the name, and the other is used to “set” it.

It is perfectly legal for a program to have both C_Person and C_Person3Names implementing the
same type T_Person. Objects of both classes can exist simultaneously in the program. Only the
programmer of the person classes needs to know about them. Users only need to see the type. For
example, the following code

T_Person person;
person.name := "John A Smith";

person.age.print;
person.name.print;

will work for objects of both person classes. Moreover, it will also work for any class that implements
the type T_Person.

The ability of the code above to work correctly for all possible implementations of T_Person is a
consequence of using just types and not classes for variable and argument type specifications. Since
the code never refers to an actual object structure (class), only the interface specified by a type is
used for typechecking. Successfully typechecked code therefore relies on interface only and does not
need to be changed if the object structure changes.

This property is very important for code reuse in evolving systems, such as database applications
where the legacy code constitutes a significant portion of overall application code. When data
structure evolves, the legacy code is still valid and does not have to be rewritten.

The only place where classes are implicitly used for argument specification is the code of functions
written for a particular class. The functions implementing behaviors in a class need to access
attributes of that class. Therefore, the implicit first argument of those functions (the receiver) is
implicitly typed by the enclosing class. For the purposes of typechecking, a class translates to a
special kind of type, while an attribute translates into a pair of behaviors, one for getting and the
other for setting the value of the attribute being translated.

For example, the specification of the class C_Person3Names given above will be translated into

type T_Person {
age : T_Natural;
set_age (T_Natural);
name : T_String;
set_name(T_String);

b

type C_Person3Names subtype of T_Person {
// translation of the attribute _age
_age : T_Natural implementation fun() <system-defined code>;
set__age (T_Natural) implementation fun(arg) <system-defined code>;
// translation of the attribute _firstName
_firstName : T_String implementation fun() <system-defined code>;
set__firstName(T_String) implementation fun(arg) <system-defined code>;
// translation of the attribute _secondName
_secondName : T_String implementation fun() <system-defined code>;
set__secondName(T_String) implementation fun(arg) <system-defined code>;
// translation of the attribute _middleName
_middleName : T_String implementation fun() <system-defined code>;
set__middleName(T_String) implementation fun(arg) <system-defined code>;

age implementation fun() { return _age; };
set_age(T_Natural) implementation fun(x) { _age := x; };

71

name implementation fun() {
return _firstName + ' ’ + _middleName + ’ ' + _secondName;
};
set_name (T_Natural) implementation fun(arg) {
firstName := (arg.columnSeparatedBySpaces(1));
_middleName := (arg.columnSeparatedBySpaces(2));
_secondName := (arg.columnSeparatedBySpaces(3));
};
¥
after class and assignment expansion. The implementation clauses are the association specifications:
they specify the code (function) that is associated to a particular behavior on arguments of a
particular type. Functions, associations, and issues related to their consistency will be discussed in
Section 3.2.4.

In the above example it has been shown how the class specifications can be translated into
type specifications for type checking purposes. It also shows that classes (C_Person3Names) are
translated into subtypes of the types they implement (T _Person), so an object of such a class can
be used everywhere its type is required.

While a type can be implemented by several classes, a class always implements a single type. A
family of parametric types can be implemented by a family of parametric classes. For example, the
following specifies the family of classes C.Set(X) that implements the famnily of parametric types
TSet(X):

type T_Set(covar X) {
isElement(X) : T_Boolean;
union(T_Set(X)) : T_Set(X);

};

class C_Set(X) implements T_Set(X) {
const T_List(X) _list;

};

The set is implemented as a list. Since sets are immutable, the attribute _1ist was specified as
constant (specifier const) thus disallowing assignment to the attribute. This specification allows for
extensive reuse since the attribute _list is specified to have a type T_List(X) and will thus work
with any possible implementation of a list.

The parametric class specification is not as elaborate as the parametric type specification, as
each class has to correspond to a single type. Thus, the following class specification is illegal:

class C_Set implements T_Set(X);

since it would make C_Set correspond to all types T_Set(X). The above restriction is important since
classes are responsible for object creation. If a class could correspond to several types, the type of
an object created via that class would be ambiguous.

Another way of parameterizing a class is by explicit use of selftype. For example, the following
is a specification of a linked list node class:

type T_LinkedListNode {
getNext() : selftype;
attach(selftype);

};

class C_LinkedListNode implements T_LinkedListNode {
selftype _next;
getNext() : selftype implementation _next;
attach(selftype) implementation ..

};

72

The resulting class C LinkedListNode has a mutable attribute _next that is typed by selftype.
The reason for the use of selftype instead of plain T_LinkedListNode will be apparent when the
notions of subclassing and class ertension are introduced in the next section.

3.2.2 Subclassing and class extension

Just as subtyping is used to achieve inclusion polymorphism when types are concerned, subclassing
can be used to achieve the same effect for classes. Subclassing as well as subtyping implies substi-
tutability, and the subclassing semantics is the semantics of subtyping given by the translation of
classes to types introduced in the previous section. For example, the following is a specification of
the class C_Student as a subclass of C_Person:

type T_Person {
age :=: T_Natural;
name :=: T_String;
};
class C_Person implements T_Person {
T_Natural _age;
T_String _name;
age implementation _age;
name implementation _name;

};

type T_Student subtype of T_Person {
studentlId :=: T_Natural;

};

class C_Student subclass of C_Person implements T_Student {
T_Natural _studentlId;
studentld implementation _studentlId;

};

The class C_Student has the same attributes as the person class C_Person as well as the additional
attribute _studentId. In this case, the type T_Student which is a subtype of T_Person is imple-
mented by a subclass C_Student of the class C_Person. This relationship is neither necessary nor
required. For example, the following specifies unrelated classes for the same two types:

type T_Person {
age :=: T_Natural;
name :=: T_String;
};
class C_Person implements T_Person {
T_Natural _age;
T_String _name;
age implementation _age;
name implementation _name;

};

type T_Student subtype of T_Person {
studentlId :=: T_Natural;

};

class C_Student3Names implements T_.Student {
T_Natural _age;
T_String _firstName;
T_String _secondName;
T_String _middleName;
T_Natural _studentld;
age implementation _age;

73

name : T_Natural implementation fun() {
return _firstName + ’ ' + _middleName + ’ ' + _secondName;
};
name := T_Natural implementation fun(arg) {
_tirstName := arg.columnSeparatedBySpaces(1);
_middleName := arg.columnSeparatedBySpaces(2);
~secondName := arg.columnSeparatedBySpaces(3);
};
studentld implementation _studentld;

};

Thus, subtyping does not imply subclassing, but subclassing does imply subtyping.

This definition of subclassing is parallel to the definition of subtyping. Traditionally, however,
the term subclassing denotes the notion of class eztension, in which only the structure is inherited
and no subtyping or substitutability is required. In the presented type system class ertension is a
mechanism for such structure reuse. It does not imply substitutability or subtyping. The need for a
relationship that is weaker than subtyping stems from the fact that mutable attributes are novariant
(Section 3.1.5). For example, the following specification is incorrect:

type T_Person {
age :=: T_Natural;
name :=: T_String;
};
class C_Person implements T_Person {
T_Natural _age;
T_String _name;

};

type T_Child {
age :=: T_SmallNatural;
name :=: T_String;
favoriteToys : T_Set(T_Toy);

};

class C_Child subclass of C_Person implements T_Child {
T_SmallNatural _age;
T_Set(T_Toy) _ftoys;

};

since the class C_Child redefines mutable attribute _age and therefore can not be used everywhere
the class C_Person is used.
However, the following specification is allowed:

type T_Person {
age :=: T_Natural;
name :=: T_String;
};
class C_Person implements T_Person {
T_Natural _age;
T_String _name;

};

type T_Child {
age :=: T_SmallNatural;
name :=: T_String;
favoriteToys : T_Set(T_Toy);

74

3

class C_Child extends C_Person implements T_Child {
T_SmallNatural _age;
T_Set(T_Toy) _ftoys;

};

In this specification, the class C_Child extends the class C_Person rather than subclasses it. Therefore
it is possible to redefine the attribute _age while inheriting the attribute .name with no modification.

In the presented type system, class extension is understood as textual rewriting of the class with
automatic substitution of explicit and implicit occurrences of selftype in the style of [PS94]. The
definitions given in the extending class override the definitions of the class being extended (just like
the definition of the attribute _age in the above example). A class can extend several classes, and
the conflicts have to be explicitly resolved by the programmer. Since class extension does not imply
subtyping, the code inherited from the class being extended needs to be retypechecked in the context
of the extending class.

The following is the example of usage of class extension along with the selftype mechanism:

type T_LinkedListNode {
getNext() : selftype;
attach(selftype);

};

class C_LinkedListNode implements T_LinkedListNode {
selftype _next;
getNext() : selftype implementation _next;
attach(selftype) implementation ...

};

type T_DoubleLinkedListNode {
getNext() : selftype;
getPrev() : selftype;
attach(selftype);
attachLeft(selftype);
};
class C_DoubleLinkedListNode
extends C_LinkedListNode
implements T_DoubleLinkedListNode {
selftype _prev;
getPrev() implementation _prev;
attachLeft(selftype) implementation ...
I

Even though the type T.DoubleLinkedListNode is not a subtype of T LinkedListNode and the
class C_DoubleLinkedListNode is not a subclass of C_LinkedListNode, it is still possible to reuse
the code and specification of the former in the specification of the latter. The programmer does
not need to rewrite the code if a subtype can not be produced, since class extension can be used
to avoid code duplication (the implementations of behaviors attach and next and the attribute
_next are inherited from C_LinkedNodeType). Note that this is another solution of the (LIST) test
(Section 2.6), which is in many ways more elegant and concise than the one given in Section 3.1.11.

Class extension need not be parallel to subtyping; in fact, they can legally go in opposite direc-
tions. Consider the specification of circles and ellipses. A circle is-a ellipse, and therefore its type
should be a subtype of that of an ellipse. From the structural point of view, however, a circle can
be represented by center and radius (major axis), while for an ellipse center, major axis, and minor
axis are needed!?. Therefore, the structure of an ellipse is an extension of the structure of a circle.

17 We assume that the major axis is always parallel to X-axis. Otherwise, an additional attribute would be required.

75

This situation is extremely difficult to model in most of the today’s type systems and languages'®.
Yet, it can be elegantly represented in the type system described here:

type T_Ellipse {

center() :=: T_Point;
majorAxis() :=: T_Length;
minorAxis() :=: T_Length;

};
type T_Circle subtype of T_Ellipse;

class C_Circle implements T_Circle {
T_Point _center;
T_Length _majorAxis;
center implementation _center;
majorAxis implementation _majorAxis;
minorAxis implementation _majorAxis;
};
class C_Ellipse extends C_Circle implements T_Ellipse {
T_Length _minorAxis;
minorAxis implementation _minorAzxis;

};

Note how the same attribute majorAxis is used in the class C_Circle to implement both majorAxis
and minorAxis behaviors and how the implementation of minorAxis is overridden in C_Ellipse to
refer to the new attribute minorAxisinstead. This specification allows circles to be used everywhere
ellipses can be used, yet it allows the structure of circles to be reused for ellipses.

In this section, both subclassing and class extension have been described. Their use was illus-
trated by several examples. It has also been shown how class specifications are transformed into
type definitions for typechecking purposes.

3.2.3 Object creation and extent maintenance

Classes not only define the object structure, they are also used to create objects. In fact, objects
can only be created via classes. Since classes themselves are objects, the object creation is done by
applying the creation behavior new to the class object. There are two differences between object
creation and regular behavior application. First, the creation behavior is predefined and does not
have any arguments. Second, when a class is explicitly used, the constructor erpression can be
used to initialize its attributes, both mutable and immutable. This is important as only construc-
tor expressions can put values into immutable attributes. Consider the following example where
immutable circles and ellipses are defined:

type T_Ellipse {
center() : T_Point;
majorAxis() : T_Length;
minorAxis() : T_Length;

}

type T_Circle subtype of T_Ellipse;

class C_Circle implements T_Circle {
const T_Point _center;
const T_Length _majorAxis;
center implementation _center;
majorAxis implementation _majorAxis;

18 A5 a C++ programmer, the author has encountered numerous situations of this kind. Every time, either type
safety or code reuse had to be compromised.

76

minorAxis implementation _majorAxis;

};

class C_Ellipse extends C_Circle implements T_Ellipse {
const T_Length _minorAxis;
minorAxis implementation _minorAxis;

};
Then, the following would create a circle with a unit radius:

T_Circle aCircle := new C_Circle(
_center = new C_Point (...),
_majorAxis = 1.0

);

The inability to redefine behavior new is not nearly as serious a restriction as it seems to be. Consider
the following specification of a person type and class:

type T_Person {
age :=: T_Natural;
name :=: T_String;
};

class C_Person implements T_Person {
T_Natural _age;
T_String _name;
name implementation _name;
age implementation _age;
initialize(T_Natural initAge, T_String initName) implementation {
if (initName.isEmpty or initAge.isEmpty) then {
raise incorrectlnit;

};
—age := initAge;
_name := initName;
};
};
// Create a new person
T_Person aPerson := (new C_Person).initialize(25, "John Smith");

Note that the behavior initialize is defined in the class C_Person rather than in its type. This
means that the behavior initialize can only be legally used on objects whose class is statically
known to be C_Person. Since classes can not be explicitly used for any specification, the only time
the class is statically known is when the object has just been created, as in the example above.

Classes are also used for extent maintenance. Most of the classes maintain a collection of all their
objects (the ertent) automatically. The extent can be used to query over all objects of a specified
class. The behavior extent is defined on classes to return a set of their objects. It can be used as
follows:

// Print all persons created so far
C_Person.extent.foreach(print);

Not all classes allow object creation or support object maintenance. In fact, there is a taxonomy
of classes. Regular classes support object creation and maintain their extents. Finite classes support
extents, but do not allow object creation (classes of characters and booleans are examples of finite
classes). Manual classes allow object creation, but do not automatically support their extents (e.g.
classes of lists and sets). Finally, infinite classes support neither extent nor object creation (such as
classes of real and integer numbers).

77

T_InfiniteClass (X)

AN

T_ManualClass (X) T_FiniteClass (X)
T_Class (X)

Figure 3.5: Class type hierarchy

Since classes are objects, the above taxonomy can be neatly expressed in terms of the type
hierarchy of classes:

type T_InfiniteClass(covar X);
type T_FiniteClass(covar X) subtype of T_InfiniteClass(X) {
extent() : T_Set(X);

}

type T_ManualClass(covar X) subtype of T_InfiniteClass(X) {
new() : X;

3

type T_Class(covar X) subtype of T_ManualClass(X), T_FiniteClass(X);

When a class is specified, an appropriate object of one of the above types is created. The class type
hierarchy is depicted in Figure 3.5.

Classes represent an intermediate layer of structure specification. Their functional counterparts
at the intermediate layer are functions considered in the next section.

3.2.4 Functions and associations

Behaviors are abstract entities. They describe functionality at the highest level, via signatures. For
the actual computation, however, signatures can not be used and therefore more concrete function-
ality specification has to be provided. In the presented type system, functions play this role. A
function defines functionality via a code fragment that is executed when the function is invoked.

The code that is used in functions is composed of a sequence of behavior applications. Inside
the code, local variable declarations and certain control statements are allowed. For the purposes
of typechecking, only assignment, return and typeif (discussed later) statements are of interest.
The following is an example function:

tfun(x) {
T_Integer result;
result := x.age - age;

return result;

};

This function can not be typechecked since it specifies neither its argument nor return type. However,
functions do not exist by themselves'®. Before a function can be used, it has to be associated with
a particular behavior on a set of argument types. This is an example association:

type T_Person {
age :=: T_Natural;

19Except for closures discussed later.

78

ageDifference(T_Person x) : T_Integer implementation
fun(x) // <~ This line can be omitted, as it can be
// inferred from the behavior signature

{
T_Integer result;
result := x.age - age;
return result;

};

};

This association can be typechecked to determine whether the function conforms to the signature
of the behavior it is associated with. The issues of typechecking are discussed in Chapter 4, and
its formal underpinnings in Chapter 5. An informal overview of typechecking and type system
capabilities was already given in Section 3.1, therefore in this section only issues specific to function
associations, dispatch, and special statements will be discussed.

A function can also be associated with a behavior on a class instead of a type. Such a function
has access to class attributes, as in the following example:

type T_Person {
age :=: T_Natural;
name :=: T_String;
I
class C_Person3Names implements T_Person {
T_Natural _age;
T_String _firstName;
T_String _secondName;
T_String _middleName;
age implementation _age;
name : T_String implementation fun() {

return _firstName + ’ ’ + _middleName + ’ ’ + _secondName;
};
name := T_String implementation fun(arg) {
_tirstName := arg.columnSeparatedBySpaces(1);
_middleName := arg.columnSeparatedBySpaces(2);
_secondName := arg.columnSeparatedBySpaces(3);
};

};

Here the functions that implement the two (set and get) branches of the behavior name are associated
with these branches on the class C_Person3Names.

Note that the ability to associate functions with both types and classes is an extension of a
standard object-oriented model. For example, Java [AG96] supports separation between types (in-
terfaces) and classes. However, it only allows class associations to be made, while providing single
subclassing. This is too restrictive for many practical purposes. Consider the specification of a
printer, a fax machine, a copier, and an all-in-one machine. The first three devices know how to
print, fax, or copy a document, while the last device combines the properties of the three. Since
the methods for printing, copying, and faxing are the same for the corresponding devices and the
all-in-one machine, it is desirable to reuse the functions written for the type of the latter. The
following is the required specification:

type T_Printer {

print(T_Document) implementation .
};
type T_Copier {

copy(T_Document) implementation ..

};

79

type T_Fax {
fax(T_Document) implementation ...
};
type T_AllInOne subtype of T_Printer, T_Copier, T_Fax;

In this example, the type T-A11InOne inherits both the behavior specifications and their implemen-
tations from its three parent types. Such an arrangement would be impossible in Java, and all the
code would have to be repeated twice.

What does it mean for a function to be inherited? It means that the function code can not
only be used in the type it is specified on, but also in subtypes that do not override the belhavior
association for that function. The following example illustrates this point (another example of code
inheritance was given in Section 3.1.3):

type T_Account {
withdraw(T_Amount amount) implementation ... // a
type T_ChequingAccount subtype of T_Account;
type T_RRSPAccount subtype of T_Account {
withdraw(T_Amount amount) implementation ... // b
|
T_Account anAccount;
T_ChequingAccount aChequingAccount;

T_RRSPAccount anRRSPAccount;

anAccount.withdraw(100); // 1

aChequingAccount.withdraw(100); // 2
anRRSPAccount.withdraw(100); /7 3

A generic account allows a person to withdraw money and provides an implementation (function a)
for the behavior withdraw. The same implementation can be used for chequing accounts, since
the withdrawal procedure is the same. However, registered retirement savings plan accounts have
a totally different withdrawal procedure implemented by the function b. Therefore, the behavior
applications | and 2 will dispatch to function a, while the behavior application 3 will dispatch to
function b. The same code is used for types T-Account and T_.ChequingAccount.

3.2.5 Dispatch

The process of choosing the function to execute according to the receiver type is called dispatch. In
the presented type system, multiple dispatch (Section 3.1.3) is adopted.

Multiple dispatch is a complicated process. The description of dispatch algorithms used for
multiple dispatch is outside the scope of this dissertation. Some of the proposed algorithms can be
found in [DCG94], [DGC95]. [CTK94], [CT95], and [DAS96]. However, in a typechecked program,
dispatch should never end with a “method not understood” or “message ambiguous” error. The
conditions that the specifications are required to meet in order to provide such an assurance are
outlined below.

Some terminology first. The association of the form

<behavior>(<product-type>) implementation <function>

defines that a function <function> is associated with the behavior <behavior> on types that par-
ticipate in the <product-type>. For example, the following

compare(T_Point, T_Point) implementation fun(pointi, point2) {
return pointli.x == point2.x and pointl.y == point2.y ;
}

80

denotes association between the behavior compare and the function given on the product type
(TPoint, T_Point). In other words, it is assumed that if two points are arguments to the behavior
application of compare, the above function should execute.

A behavior can have several associations, for different argument types. In the presented system it
is required that the product-types that participate in the associations be different up to parametric
type families. In other words, the following associations can coexist:

isEmpty(T_List(X)) implementation <functioni>;
isEmpty(T_Set(X)) implementation <function2>;

while the following ones can not:

isEmpty(T_List(Person)) implementation <functioni>;
isEmpty(T_List(String)) implementation <function2>;

since in the second case the argument types are from the same parametric family (TList) and are
not “distinct enough”.

The reason for the above restriction is the multi-fold increase in dispatch complexity in case the
restriction is lifted?®. This is due to the necessity to dispatch differently on types from the same
parametric family in the absence of the above restriction. Multi-method dispatch itself is quite
complicated, and complicating it even further does not seem to provide any additional modeling
power. For example, the above situation can be resolved in the following manner:

type T_SpecialPersonList subtype of T_List(T_Person) {
isEmpty() : T_Boolean implementation <functioni>;

};

type T_SpecialStringList subtype of T_List(T_String) {
isEmpty() : T_Boolean implementation <function2>;

};
or by using classes:

class C_PersonList implements T_List(T_Person) {
isEmpty() implementation <functioni>;

};

class C_Stringlist implements T_List(T_Person) {
isEmpty() implementation <function2>;

};

If P is a product type of a behavior argument in a behavior application behavior(args). then
only certain associations will be relevant. An association

behavior(<product-type>) implementation <function>

is called applicable to an argument product type P iff P < <product-type>. Of the two associations
1 and 2 applicable to P, 1 is called more specific than 2 for an argument type P iff the product type
specified in the association 1 is a subtype of the product type of the behavior association 2.

A behavior is always dispatched according to the most specific association for a given argument
product type P. Therefore, the type system has to verify that for every type-correct behavior
application behavior(args), for every P such that P < (static type of args) and all types in P
are class types, the set of the most specific applicable associations has exactly one element.

If the set is empty, it means that there are no functions that the system should execute during
behavior application - the situation usually referred to as a “message not understood” error. On
the other hand, several most specific elements mean that the system can not choose which function
to execute — “message ambiguous” error.

The requirement that all types in P must be class types is due to the fact that objects can only
exist inside classes. Therefore, any set of arguments that appears during dynamic execution of the
program has a type P such that all types in P are class types.

The following example illustrates the discussion above.

20 The type system of MLS [BM96a] which is in many ways similar to the one presented here has a similar restriction.

81

T_Rectangle

N

T_Point

T_Circle

implements

p

.+ extends

C_Rectangle

Figure 3.6: Shape type hierarchy

type T_Shape {
center :=: T_Point;
intersects(T_Shape) : T_Boolean;
3
type T_Rectangle subtype of T_Shape {
height :=: T_Real;
width :=: T_Real;
intersects(T_Rectangle) : T_Boolean implementation <functionRR>; // RR
intersects(T_Circle) : T_Boolean implementation <functionRC>; // RC
};
class C_Rectangle extends C_Point implements T_Rectangle { ... };
type T_Circle subtype of T_Shape {
radius :=: T_Real;
intersects(T_Circle) : T_Boolean implementation <functionCC>; // cC
intersects(T_Rectangle) : T_Boolean implementation <functionCR>; // CR

};
class C_Circle extends C_Point implements T_Circle {... };
type T_Point subtype of T_Circle, T_Rectangle {
intersects(T_Point) : T_Boolean implementation <functionPP>; // PP
};

class C_Point implements T_Point { ... };

The specification defines a hierarchy of shape types and implements a set of intersection functions.
The type T_Shape is an abstract type (there is no class implementing shapes). Types T_Rectangle,
T.Circle, and T Point are concrete types. The type structure for this example is depicted in
Figure 3.6.

Consider the following behavior application: intersects(aPoint, aPoint). The set of ap-
plicable associations include the associations RR, CC, and PP, of which the third one is the most

82

specific:

arguments = (C_Point, CPoint) < (T_Rectangle, T Rectangle) = RR
arguments = (C_Point, C Point) < (T_Circle, T Circle) = CC
arguments = (C_Point, C_Point) < (T_Point, T_Point) = PP
PP = (T.Point, T Point) < (T-Rectangle, T_Rectangle) = RR
PP = (T_Point, T_Point) < (TCircle, T Circle) = CC

Therefore, the function <functionPP> will be executed. If the association PP was removed, the set
of applicable associations would consist of RR and CC, none of which is more specific than the other,
and the behavior application would be ambiguous.

Assume that the association CR is removed. Then, the application intersects(aCircle,
aRectangle) would not have any applicable associations even though the application is statically
type correct.

Note, however, that the absence of applicable associations for the argument type (T_Shape,
T.Shape) dces not cause problems since the type T_Shape is abstract and therefore the argument
typed (T_Shape, T_Shape) can never be an actual argument type for a behavior application.

The algorithms for verifying the restrictions described above will be introduced in Chapter 4,
and their formal treatment is in Chapter 5.

[n this section, the dispatch process and the requirements related to its consistency have been
discussed. Next, higher-order functional constructs and their typing will be considered.

3.2.6 Closures and typeif

Behavior application is a powerful construct that allows a programmer to conveniently express most
of the necessary computations. Sometimes, however, a function needs to be introduced for a single
computation only. In such cases, creation of a behavior and binding it to the necessary function
is too expensive to be tolerated. Another, more concise construct called a closure provides the
capability to construct such one-use-only functions on the fly.

Consider the following specification of a behavior map that applies the given argument behavior
to all elements of the receiver set and produces a set of answers:

type T_Set(X) {
map((X):Y) : T_Set(Y);
I

Assume the programmer wants to use this behavior to produce a set that consists of all elements of
the receiver set of numbers increased by 6. The following code is supposed to perform the task:

T_Set(T_Number) aSourceSet, aDestSet;

aDestSet := aSourceSet.map(??7);

but which behavior should be put in the place of ???? The behavior should take a number and
produce that number increased by 5. While it is possible to define a new behavior for that purpose:

type T_Number {
add5() : T_Number implementation { return add(5); };
¥

aDestSet := aSourceSet.map(addS);

such a definition is unnecessary since it is only used once.
With closures, the above example can be coded as

aDestSet := aSourceSet.map(fun(x) { return x.add(5); });

83

where the anonymous function was introduced on-the-fly. This style of programming is common
in functional languages; however, it is rarely used in statically typed object-oriented programming
languages. The presented type system not only allows the above example to be programmed, it also
infers the type of the function from the code of the function. In the example above, the type inferred
will be?! T Number —T Number provided that the type of the behavior add is T_Number —T_Number.

Closures allow simplified specification of functions that work the same way on objects of all types
they are applicable to. What happens if a behavior that is used only once has to behave differently
on different types of arguments? In this case, a special construct typeit can be utilized.

Consider the following situation: there is a set of persons, and the task is to print out the names
of the persons in the set. However, if a person from the set happens to be a student, the student id
number has to be printed as well.

It is possible to define a new behavior extendedName and implement it differently for persons
and students:

type T_Set(X) {
foreach((X):T_Unit);

};
type T_Person {
name :=: T_String;
extendedName() : T_String implementation {
return name;
};
}

type T_Student subtype of T_Person {
studentId :=: T_Natural;
extendedName : T_String implementation {
return name + " student ID#" + studentld.convertToString;
};
};

T_Set(T_Person) aSet;

let f = fun(x) { x.extendedName.print } in aSet.foreach(f);

However, this approach suffers from the same drawback as the first approach used to implement the
previous example. Namely, the introduction of a new behavior that is only going to be used once is
unwarranted.

Using the typeif construct, the above example can be rewritten as

T_Set(T_Person) aSet;

let £ = fun(x) {
x.name.print;
typeif (x is T_Student) then {
* studentID#".print;
x.studentId.print;
};
}
in aSet.foreach(f);

The typeif construct checks if the run-time type of the given expression is a subtype of the given
type and executes the code given if it is. The code is typechecked with the assumption that the
expression is of the type given. This special behavior of the typeif construct with respect to type
checking is crucial for static type safety. The example above would not typecheck if the typechecker

21 After certain simplifications.

84

did not take the given type T_Student into account, as otherwise the type of x would be considered
to be T_Person and the behavior application x.studentId would be considered illegal.
The same construct can be used to code the (BROWSER}) test from Section 2.6:

T_Object root;

typeif (root is T_Number) then {
root.print;

} elseif (root is T_Person) then {
root.age.print;

} else {
“Something else”.print;

};

Note the usage of else and elseif in the above example.

In this section, closures and the typeif constructs have been considered. Their use was illustrated
by several examples, and the issues of their typing were discussed.

This concludes the overview of the intermediate abstraction layer consisting of types and func-
tions. In the next section, the lowest specification layer will be described.

3.3 Implementation types

Implementation types and functions represent the lowest layer of the presented type system. They
are designed to provide support for interoperability and low-level optimizations.

Implementation functions represent what is sometimes referred to as foreign or primitive func-
tions, i.e. functions that are specified outside of the system. [mplementation types, on the other
hand, serve dual purpose: they provide a low-level structure specification and they allow for a limited
form of typechecking of the foreign function interfaces.

The way implementation types and functions are described is implementation-dependent. For ex-
ample, if the target language is C++, implementation functions are C++ functions, while implemen-
tation types are C++ classes. If a target language provides a notion of subtyping, implementation
types may have a subtyping relationship between each other; otherwise, they are unrelated.

Implementation types can be used to impiement the structure defined by classes. For example,
the following is the specification of integers and reals under the assumption that the target language
is C++:

type T_Real {
add(T_Real) : T_Real;
}
infinite class C_Real implements T_Real {
implementation type short atomic float;
add(C_Real) : C_Real implementation function
float addRR(float self, float arg) { return self + arg; };
add(C_Integer) : C_Real implementation function
float addRI(float self, int arg) { return self + arg; };
};

type T_Integer {
add(T_Integer) : T_Integer;
};
infinite class C_Integer implements T_Integer {
implementation type short atomic int;
add(C_Integer) : C_Integer implementation function
int addII(int self, int arg) { return self + arg; };
add(C_Real) : C_Real implementation function

85

float addIR(int self, float arg) { return self + arg; };
};

Note that the specification above®? requires classes rather than types in argument specifications.
The reason for that is the fact that the system has to know how to convert objects into low-level
data, and that information is only provided by classes.

The system verifies that all possible behavior applications can be dispatched to an appropriate
function or implementation function. In the above specification, all four combinations had to be
explicitly specified since C++ can not dispatch on the data of type int. The system also makes
sure that substitutability for subclasses is not violated in case the subclass uses an implementation
type that is different from the one used in the superclass.

The usage of implementation types allows seamless integration of foreign data into the existing
system. Once an implementation type and a class that describe the foreign objects are specified, those
objects can be manipulated by behaviors and functions in exactly the same manner as the objects
native to the system. All code previously written will work on foreign data with no modifications.

Another use of implementation types and functions is related to the specification of so-called
primitive types. Unlike other systems, the system described here is ertensible in that new primitive
types can be easily introduced. The above example can be seen as a definition of integer and real
primitive types that is done by a programmer rather than by the programming language designer.

The interoperability and extensibility provided by this system are extremely important for
database applications that tend to evolve over long periods of time and incorporate data from dif-
ferent sources, some of which are beyond the database designer’s control. Other arguments in favor
of implementation types and functions. as well as in favor of the three-layer type system structure
in general, can be found in [LOS98].

An ordinary user may never see or use implementation types and functions. This low-level
mechanism is provided for administrative purposes and is not supposed to be used by the ordinary
users.

While implementation types and functions are important for interoperability, their role in type-
checking, which is the major topic of the presented research, is marginal. Implementation types
and functions described here will not be considered in any detail in the following chapters that are
devoted primarily to typechecking.

The next section describes the advantages of the three-layer design and its possible applications
in a database system.

3.4 Three-layer design: Advantages and applications

The three-layer design described in this chapter not only allows for a high degree of code reuse, but
also makes the system more transparent for the user by making it possible to use the system at
different abstraction layers, depending on the user’s needs and level of expertise.

An ordinary user posing queries against the database using a query language only needs to know
about the highest abstraction layer — that of behaviors and types. A query may contain behavior
applications (a.k.a. path expressions), and the knowledge of the types and behaviors defined in the
system is sufficient for the purpose of constructing such behavior applications. Thus, an ordinary user
is completely shielded from any implementation details, such as the layout of the objects involved in
the query and the way behaviors are implemented. This has two major advantages: first, the user is
presented with a significantly simplified, yet consistent view of the object model. Second, the user is
provided with a uniform view of objects and behaviors that is independent of their implementation.
For example, if a point type is implemented via two different classes (polar and rectangular points),
the path expression

aPoint.x

will produce the x-coordinate for both polar and rectangular points, even though the code that is
executed in both cases is completely different.

22The meaning of the specifier short atomic is explained in Section B.1.

86

An application programmer should be given access to the second abstraction layer consisting of
functions and classes. This arrangement would make it possible to implement a new functionality
by writing function code and new data structures by defining new classes. Thus, an application
programmer is given the opportunity to develop the system. However, an application programmer
is shielded from the differences in the operating system functionality and bit-level data structures
that may exist between different systems, as this functionality is provided by implementation types
and functions that are not visible at the second abstraction layer. The code developed at this
abstraction layer is therefore system-independent and portable. In addition to this, if a piece of
code in an existing system is modified (e.g., a more efficient implementation of a particular behavior
is produced), such modification does not affect the validity of the user code written at the first
abstraction layer, as the interfaces are not affected.

Finally, a database designer would have access to the third abstraction layer (implementation
types and functions). Using this layer involves dealing with native code, which makes it possible
to handle tasks involving low-level system access, access to foreign data, and introduction of new
optimized primitive types (e.g., multimedia types such as audio and video). It should be noted that
any development done at this layer does not affect the validity of the code written earlier by either
ordinary users or application programmers.

3.5 The basic type system

This section describes an application of the principles and constructs described in this chapter. The
basic type system for the TIGUKAT object model [Pet94] has been developed as a proof of concept
and the basis for the development of the TIGUKAT programming language.

Only object types, atomic types, and container types will be described here. The complete speci-
fication of the basic TIGUKAT type system including reflexive metaclass and metatype specifications
can be found in Appendix A.

3.5.1 Object types

In the presented type system, all types can be separated into three basic categories: object types,
function types, and product types. The types from different categories do not have any subtyping
relationships with each other. This structure is depicted in Figure 3.7. The types T and L are
purely theoretical concepts; they can not be used by the user in any way. In fact, the type T can be
understood as a type of all type errors that are guaranteed not to occur in a successfully typechecked

program.

T_Unit Object type hierarchy Behavior type hierarchy Product type hierarchies

N

1

Figure 3.7: TIGUKAT types.

Object types are the types of all objects in the system except for functions (behaviors) and
products. This is the type category that includes almost all user- and system-defined types in the
system. This category will be discussed in detail later.

Product types are types of products that are ordered tuples of values. Subtyping between product
types is induced by the subtyping between their component types. n-ary product types are defined

87

for all n greater than 1. Product types of different arity do not have any subtyping relationship
with each other. Thus, there are several unrelated product type hierarchies: one foreach n > 1. A
special type T_Unit plays the role of a O-ary product: it has no subtypes or supertypes. It is used
primarily for specifying return types of behaviors that are not supposed to return a result. n-ary
products are assumed to have the following definitions:

type T_ProductN(covar X1, covar X2, ..., covar XN) {
projecti(): X1;
project2(): X2;

projectN(): XN;
};

for each N greater than 1.
Function and behavior types are defined as follows:

type T_Function(contravar A, covar R);
type T_Behavior(contravar A, covar R) subtype of T_Function(A,R);

These are the only functional types in the system.

In the object type hierarchy, there are two types that play a special role. They are T Object and
T Null.

The type T_Object is a common supertype of all object types. [t does not define any behaviors,
but they can be added to T.Object by the user.

The type T Null is a common subtype of all object types. Therefore, values of type T.Null can
be used everywhere in the program. The values of type TNull denote uninitialized, missing, or
otherwise absent (null) values. Thus, T Null is a concrete type.

Figure 3.8 depicts the relative placement of various object types in the object type hierarchy.

T_Object

Container type hierarchy Class type hierarchy Metatype hierarchy Atomic type hierarchy

7

T_Null

Figure 3.8: TIGUKAT object types.

Even though there is no common supertype of all types in the system (T.Object is a common
supertype of object types, but not all types), the parametric nature of the type system allows for spec-
ification of behaviors that are uniformly applicable to all objects, including products and behaviors.
The following is the specification of these behaviors:

behavior 0IDequal(X,X) : T_Boolean; // Object identity equality
behavior equal(X,X) : T_Boolean // Equality
// Shortcut: operator binary "=="
implementation fun(x,y) { return x.0IDequal(y); };

notEqual(X,X) : T_Boolean // Inequality
// Shortcut: operator binary "!="
implementation fun(x,y) { return not (x ==y); };
print (X,OutputStream(X)); // Print to an output stream
apply((X):Y) : ¥; // Behavior application

// Shortcut: operator binary "."

88

Due to the fact that in the presented system the notations £(a,b) and a.f(b) are equivalent and
interchangeable, the above code for equality and inequality is type-correct and behaves as expected.
The following is the specification of the two special object types.

type T_Object;
type T_Null subtype of <all object types>;
class C_Null implements T_Null { ... };

3.5.2 Atomic types

Atomic types include the standard set of real, integer, and natural numbers, characters, and booleans.
Abstract types T Numeric, T.PartiallyOrdered, T_Ordered, and T_Discrete abstract out several
common properties that are likely to be reused for future extensions.

T_PartiallyOrdered(T_Numeric) T_Boclean

T_Ordered (T_Numeric)

T_PartiallyOrdered(T_Character) T. Numeric
T_Ordered(T_Character) T_Discrete T_Real
~ N4
T_Character T_integer
T_Natural

Figure 3.9: TIGUKAT atomic types.

type T_Discrete subtype of T_Object {

pred : selftype; // Return the previous element
succ : selftype; // Return the next element
};
type T_PartiallyOrdered(contravar X) subtype of T_Object {
less(selftype) : T_Boolean; // Antisymmetric comparison.
// Shortcut: operator binary '<’
greater(selftype) : T_Boolean // Antisymmetric comparison.

// Shortcut: operator binary ’'>’
implementation fun(x) { return x < self; };

lessOrEqual(selftype) : T_Boolean // Symmetric comparison.
// Shortcut: operator binary '<=’
implementation fun(x) { return x < self or x == self; };

greaterOrEqual(selftype) : T_Boolean // Symmetric comparison.
// Shortcut: operator binary ’>=’
implementation fun(x) { return x <= self; };

};

89

type T_Ordered(contravar X) subtype of T_PartiallyOrdered(X) {
max(selftype) : selftype // Maximum of the two
implementation fun(x) {
return if x < self then self; else x; endif };
min(selftype) : selftype // Minimum of the two
implementation fun(x) {
return if x < self then x; else self; endif };

3
type T_Numeric subtype of T_Ordered(T_Numeric) {
abs : T_Numeric; // Absolute value
negate : T_Numeric; // Negation.
// Shortcut: operator unary ’'-’
add(T_Numeric) : T_Numeric; // Addition.

// Shortcut: operator binary '+’
subtract (T_Numeric) : T_Numeric; // Subtraction.

// Shortcut: operator binary ’'-’
multiply(T_Numeric) : T_Numeric; // Multiplication.

// Shortcut: operator binary 's’
divide(T_Numeric) : T_Numeric; // Division.

// Shortcut: operator binary '/’

};

So far, only abstract types have been specified. Note how F-bounded quantification ([CCH*8Y],
Section 3.1.7) is used in ordered type specifications to disallow unwanted cross-comparisons, such
as comparisons between characters and numbers. The specification of ordered types also provides a
default implementation for all behaviors except for 1ess. Once the implementation of that behavior
is provided, all the other comparison behaviors are automatically available.

type T_Boolean {

not : T_Boolean; // Negation.
or(T_Boolean) : T_Boolean; // Logical OR.

// Shortcut: operator binary ’or’
and{(T_Boolean) : T_Boolean; // Logical AND.

// Shortcut: operator binary ’and’
xor(T_Boolean) : T_Boolean; // Logical XOR.

// Shortcut: operator binary 'xor’
ig(x, X) b // If-expression. Shortcut:

// it ... then ... else ... endif’

};

finite class C_Boolean implements T_Boolean {
implementation type short atomic int;
not implementation function
not(int self) { return “self; };
or(C_Boolean) implementation function
and(int self, int x) { return self || x; };

};
type T_Character subtype of T_Discrete, T_Ordered(T_Character) {

ord : T_Natural; // Returns the ordinal value
};

90

finite class C_ASCIICharacter implements T_Character {
implementation type short atomic char;

};

finite class C_UnicodeCharacter implements T_Character {
implementation type short atomic Unichar;

};

The above types are concrete. All of the described classes are finite since they do not allow object
creation, yet maintain their (finite) extents. The parameterized behavior if defined on booleans
is typed in such a way as to provide the most static type information possible (it is equivalent
to if(X, Y) : lub(X, Y)). There are two separate classes implementing characters: a standard
ASCII character and a Unicode character. Since these are classes rather than types, any program
written will be able to work seamlessly with both types of characters or any mix of them.

type T_Real subtype of T_Numeric {

truncate : T_Integer; // Truncate throwing away
// the fractional part
round : T_Integer; // Round to the nearest
sign : T_Integer; // Sign: 1 if positive, -1 if

// negative, 0 otherwise
// Refined from T_Numeric
abs : T_Real;
negate : T_Real;
add(T_Real) : T_Real;
subtract(T_Real) : T_Real;
multiply(T_Real) : T_Real;
divide(T_Real) : T_Real;
};

infinite class C_Real implements T_Real {
implementation type short atomic float;

};

infinite class C_LongReal implements T_Real {
implementation type long atomic double;

};

type T_Integer subtype of T_Real, T_Discrete {
div(T_Integer) : T_Integer; // Integer division

// Refined from T_Real

abs : T_Natural;

negate : T_Integer;

add(T_Integer) : T_Integer;

subtract(T_Integer) : T_Integer;

multiply(T_Integer) : T_Integer;
3

infinite class C_Integer implements T_Integer {
implementation type short atomic int;

91

};

infinite class C_Longlnteger implements T_Integer {
implementation type long atomic long int;

};

type T_Natural subtype of T_Integer {
mod(T_Natural) : T_Natural; // Remainder
// Refined from T_Integer
truncate : T_Natural;
round : T_Natural;
sign : T_Natural;
div(T_Natural) : T_Natural;
add(T_Natural) : T_Natural;
multiply(T_Natural) : T_Natural;
};

infinite class C_Natural implements T_Natural {
implementation type short atomic unsigned;

};

infinite class C_LongNatural implements T_Natural {
implementation type long atomic long unsigned;

};

The above is the specification of numeric types. Each of the types is implemented by several classes;
all classes are infinite as they have infinite extents and do not allow object creation. Careful
redefinition of binary methods along the type hierarchy allows for a very precise typing. For example,
the system will deduce that 5§ + 6 has the type T.Natural, while 5§ + 6.0 has the type T Real.
Any two numerics can be compared using comparison operations, including possible min and max
operations, since all numeric types are subtypes of T_-Numeric and therefore T_Ordered(T Numeric).

Integers are also discrete (subtype of T Discrete),

be applied to them.

3.5.3 Collection types

and therefore the behaviors pred and succ can

The collection type hierarchy is represented here only partially. Its full description can be found in
Appendix A. The hierarchy described here is depicted in Figure 3.10.

type T_Collection{covar X) {

hasElement(X) : T_Boolean;
cardinality : T_Natural;

pick : X;

map((X):Y) : T_Collection(Y);

// Checks if the element

// is in the collection

// Cardinality of the collection
// Pick an element

// Apply the given function to all
// elements and return the

// collection of results

tilter((X):T_Boolean) : T_Collection(X); // Filters the receiver

92

// collection using the
// argument function as a filter

};

T_Collection(X)

AN

T_Set (X) T_List (X)
all X / \n X X=T_Character
T_EmptySet T_Array(X) T_EmptyList T_String

Figure 3.10: TIGUKAT collection types.

sort() where (X subtype of T_Ordered(X)): T_List(X); // Sorts the
// elements of the collection.
// Only applicable to
// collections of ordered elements
sort((X,X) : T_Boolean) : T_List(X); // Sorts the collection using
// the supplied sorting function

type T_Set(covar X) subtype of T_Collection(X) {

};

subset(T_Set(Y)) : T_Boolean; // Is the receiver

// a subset of the argument?
union(T_Set(Y)) : T_Set(lub(X,Y)); // Set union
intersect(T_Set(Y)) : T_Set(glb(X,Y)); // Set intersection
difference(T_Set(Y)): T_Set(X); // Set difference
addElement (Y) : T_Set(lub(X,Y)); // Add an element
removeElement (Y) : T_Set(X); // Remove an element
// Refined from T_Collection
map((X):Y) : T_Set(Y);

filter((X):T_Boolean) : T_Set(X);

infinite class C_Set(X) implements T_Set(X) {

};

const T_List(X) _list;

type T_EmptySet subtype of T_Set(X);

finite class C_EmptySet implements T_EmptySet { ... };

type T_List(covar X) subtype of T_Collection(X) {

at(T_Natural) : X; // Get at arg’s position
cat(T_List(Y)) : T_List(lub(X, Y)); // Concatenation
slice(T_Natural, T_Natural) : T_List(X); // Slice from i-th

// to j-th element
// Refined from T_Collection
map((X):Y) : T_List(Y);
filter((X):T_Boolean) : T_List(X);

93

};

infinite class C_List(X) implements T_List(X) { ... };
type T_EmptyList subtype of T_List(X);

finite class C_EmptyList implements T_EmptyList { ... };

type T_Array(novar X) subtype of T_List(X) {
at(T_Natural) = X; // Set at arg’s position
slice(T_Natural, T_Natural) := T_List(X); // Slice set

};

manual class C_Array(X) implements T_Array(X) { ... };

type T_String subtype of T_List(T_Character) {
// Refined from T_List
cat(T_String) : T.String;
slice(T_Natural, T_Natural) : T_String;
filter ((T_Character):T_Boolean) : T_String;
};

infinite class C_String implements T_String { ... };

infinite class C_UnicodeString implements T_String { ... };

This specification defines several immutable parameterized collection types and a mutable type
TArray. The type of empty sets (lists) is a subtype of all set (list) types, so that a single empty
set (list) can be used in all set (list) operations. The type T_String is defined as a subtype of the
character list type that has some additional properties.

The set-theoretic and higher-order (map, filter, sort) behaviors defined on collections have precise
typings. This property can be used to define a statically typechecked version of a query language
over immutable sets.

The slice assignment defined on arrays allows one to write the following code:

T_Array(T_Number) arr;
arr.slice(3,5) := (1,2,3); // Assign to elements 3,4, and S

Note that the class that implements arrays is specified as manual. It allows creation of new arrays,
but does not maintain the set of all arrays created so far, as that would be very expensive.

Note also that the class of sets uses T_List for implementation of sets. The ability to specify
relationships like this is a consequence of the separation between interface and implementation in
the presented type system.

This concludes the overview of the basic TIGUKAT type system that was presented as an
example of the application of the presented type system to an object-oriented object model. The
resulting basic type system provides precise typing for many traditionally problematic areas of object-
oriented specification: covariant arguments, query typing, parametricity, and binary methods. Yet,
the resuiting system is statically type-safe and has the substitutability property.

3.6 Conclusions
In this chapter, an overview of the proposed type system has been presented. Three layers of

specification (types and behaviors, classes and functions, implementation types and functions) have
been considered. Their use was exemplified with a number of examples. In the process, it has been

94

shown that the presented type system can successfully deal with all the tests described in Section 2.6.

Finally, an example application of the developed principles to the TIGUKAT object model has been
described.

In the next chapter, the typechecking algorithm will be described. The theorems and proofs of
its correctness and termination will be considered in Chapter 5.

95

Chapter 4

The Language and Typechecking

One of the most important constituent parts of any type system is its typechecking algorithm. The
typechecking algorithm allows a translator to verify that the program conforms to the given spec-
ifications and issue an error message if it does not. A verifiable type system has a typechecking
algorithm that is guaranteed to terminate even if a program being checked contains type errors.
On the other hand, a sound type system has the property that once a program successfully passes
through a typechecker, it is guaranteed not to produce any type errors at run-time.

The type system presented here is both verifiable and sound. These properties will be proven in
Chapter 5 on the basis of the typechecking algorithm presented in this chapter.

This chapter serves to describe two important parts of the type system: the typechecking al-
gorithm (Section 4.2) that works on a simplified version of the language (the target language -
Section 4.1.1), and the “de-sugaring” translation process (Section 4.1.2) that produces a program in
the target language from a given source language program.

The heart of the typechecking algorithm is the algorithm that decides entailment (Section 4.3).
This algorithm is language-independent and is part of the type system core.

fn the next section, both source and target languages will be considered and the translation
process will be described.

4.1 Syntax and translation

Since the beginning of the computer era, there has been a gap between an “efficient” and “human-
readable” presentation of information. The first form of information presentation is easily processed
by the computers; on the other hand, the second form is advantageous to human beings. The use
of computers to automate the transformation between the two forms of information representation
has been a cornerstone of the computer revolution.

In this section, the source and target (Section 4.1.1) languages will be described. The source
language has a traditional syntax which is familiar to people who deal with procedural and object-
oriented programming. The target language’s syntax is less standard; however, it is much more
concise and significantly more convenient to use in automatic typechecking.

Note that this chapter does not present a complete source language design. Rather, it is a proof-
of-concept design that shows how the presented type system can be used to model various features
existing in today’s programming languages.

Finally, in Section 4.1.2 the process of automatic translation from source to target language will
be described. The translation process is sometimes called de-sugaring since it removes “syntactic
sugar” from the program, making it more suitable for further automatic processing.

4.1.1 The target language

The target language is a “de-sugared”, simplified object-oriented language that will be used for type-
checking. It consists of type and subtype definitions, behavior declarations, and function associa-

96

tions. Class specifications are translated to type definitions by the process described in Section 4.1.2.

A program in the target language consists of type definitions, subtype definitions, behavior defi-
nitions, associations, and an expression:

<program> ::= [<defs> [";"]] <expr>

<defs> ::= <def> {";" <def>}=*

<def> ::= <type-def> | <subtype-def> | <constant-def>
| <behavior-def> | <association>

Type definitions describe types, variance of their parameters, and validity conditions. They also
specify whether a type is concrete or abstract:

<type-def> ::= [<concrete-spec>] "type" ["(" <comstraints> ")"]
<name> ["(" <type-par-specs> ")"] ";"

<concrete-spec> ::= "concrete"

<type-par-specs> ::= <type-par-spec> {"," <type-par-spec>}#
<type-par-spec> ::= <variance> <name>

<variance> ::= "covar" | "contravar" | "novar"
<constraints> ::= <constraint> {"," <constraint>}=*

<constraint> ::= <type> "<=" <type>
The following are examples of type specifications:

type T_Number;

concrete type T_Behavior(contravar Arg, covar Result);
concrete type T_Product2(covar X1, covar X2);

concrete type T_Set (covar X);

concrete type (X <= T_Ordered(X)) T_OrderedSet (covar X);

A type can be defined only once. It is illegal to have two definitions of the same type (type
with the same name}.

Types that are used in specifications are defined as follows:

<type> ::= <name> ["(" <types> ")"]

["glb" "(" <types> ")"

| “lub" "(" <types> ")"
<types> ::= <type> {"," <type>}*
<type-proper> ::= <name> ["(" <names> ")"]
<names> ::= <name> {"," <named>}*

Examples of types are

T_Number
T_Behavior(T_Product2(T_Set(X), T_Set(Y)), T_Set(lub(X,Y)))
T_Dictionary(X,T_Dictionary(T_Number,X))

The shortcut <typeA> -> <typeR> will be used for T_Function(<typeA>, <typeR>)
(functional types), and the shortcut (<type1>,...,<typeN>) will be used for
T_ProductN(<typei>,...,<typeN>) (product types). It will also be assumed that
(<type>) = <type> (unary products and types are indistinguishable).

In the following presentation, the concept of free type variables will be extensively used. The
set of free type variables in a type expression is defined as a set of <name>s in that expression
minus the set of all <name>s defined in type definitions and is denoted as FTV(t). For example,
the set of free type variables of the expression (T_Set(X), T_Set(Y)) -> T_Set(lub(X,Y))
is {X,Y}. A type expression that has an empty set of free type variables will be called a closed
type (e.g. T.Number).

97

Subtype definitions define subtyping relationships between types. A subtype definition has the
form

<subtype-def> ::=

[(" <constraints> ")"] <simple-type> "<=" <simple-type>
<simple-type> ::= <name> ["(" <types> ")"]
<simple-types> ::= <simple-type> {"," <simple-type>}+*

The requirement that only simple types can occur in subtype definitions is designed to protect
against user-defined subtyping of upper and lower bound types. It is also assumed that no
subtype definitions involve T_Function, T_Behavior, and T_Product at the outermost level,
i.e. that the user is not allowed to define any additional subtyping relationships for these types.
Svntactically valid examples of subtype definitions are

T_Real <= T_Number;
(X <= T_Ordered(X)) T_Set(X) <= T_Ordered(T_Set(X));

Constant definitions are used to declare constants and their types.
<constant-def> ::= "const'" <type> <name> ";"
Examples of constant definitions are

const T_Class(T_Person) C_Person;
const T_Integer nargs;

A constant can be defined only once. It is illegal to have two definitions of the same constant.
The <type> of a constant should be a closed one.

Behavior definitions are used to declare behaviors to be used in the program. They specify
argument and result types of a behavior as well as validity conditions:

<behavior-det> ::= <behavior-def-proper> ";"
<behavior-def-proper> ::=
“behavior" ["(" <constraints> ")"] <type> "->" <type> <name>

The type on the left-hand side of > should not contain type operators lub and glb. Examples
of behavior definitions are

behavior T_Number -> T_Number add;
behavior (X <= T_PartiallyOrdered(X)) T_Set(X) -> T_Set(X) maximals;

There can be several definitions of the same behavior. For example, the following definitions
can appear in the same program:

behavior (T_Number, T_Number) -> T_Number add;
behavior (T_Real, T_Real) ~-> T_Real add;
behavior (T_Integer, T _Integer) -> T_Integer add;
behavior (T_Natural, T_Natural) -> T_Natural add;

This last property is the reason why behavior and constant definitions are separated from each
other. While duplicate constant definitions are disallowed, duplicate behavior definitions are
possible, and the system is responsible for checking their consistency and finding out the most
specific type for each behavior.

Associations are used to associate an expression to a behavior on a set of types. The associations
thus provide a link between a behavior specification and its implementation.

<association> ::= <behavior-def-proper> <abstraction-expr> ";"
| <behavior-def-proper> "primitive" <name> ";"

98

The difference between associations and behavior definitions is analogous to the difference
between abstract and concrete types. However, the former is much more relevant to the
typechecking than the latter. The primitive associations are provided as a tool that enables the
language designer to provide the primitive, low-level function definitions to base the language
upon. These functions correspond to implementation functions of the source language. The
conditions that the primitives must satisfy for the type system to be sound are outlined in
Section 5.3.2.

Expressions constitute the action part of a program. There are several kinds of expressions,
described below.

<expr> ::= <name>
| <product-expr>
| <projection-expr>
| <let-expr>
| <compound-expr>
| <application-expr>
| <abstraction-expr>

Product expressions are used to group several objects into one. Product expressions are
primarily used to bypass the single-argument restriction for behaviors and abstractions.

<product-expr> ::= "(" <expr> {"," <expr>}» ")"
| n{n <expr> {u’n <expr>}‘ u}u
A product expression with a single component is equivalent to that component. For

example, (a, b) is a binary product expression, while (a) is a unary product expression
equivalent to a.

Projection expressions are used to extract components from product expressions. These
expressions are not primitive; rather, they are understood as a shortcut for projection
behavior applications.

<projection-expr> ::= <expr> "_" <number>
<number> ::= {0111213[4I516[7|8]9}+

For example, (a, b)_2 = b, while (a, b)_3isillegal. An expression <expr>_<number> is
treated as project<number>(<expr>), where projection behaviors are defined as follows:

behavior projecti (Xi,...,Xn) : X1 // For all n > 1
behavior project2 (Xi,...,Xn) : X2 // For all n > 2

behavior projectN (X1,...,Xn) : XN // For all n > N

Let expressions make it possible to introduce a new name in the environment. Both typed
and untyped variants are aliowed; if a variable is untyped, its type is inferred from the
context.

<let-expr> ::= "let" [<type>] <name> "=" <expr> "in" <expr>

<type> must be a closed type. An abbreviation with multiple bindings will be used to
denote a sequence of nested let expressions. For example,

let a = £(x), b = g(x) in a(b)
is equivalent to
let a = £(x) in let b = g(x) in a(b)

Compound expressions are used to compute expressions in sequence, discarding the results
of all but the last one.

99

<compound-expr> ::= <expr> {";" <expr>}*
For example, the result of a; b; cisc.

Abstractions are anonymous functions (A-abstractions). They construct closures that can
be executed immediately or later on.

<abstraction-expr> ::= “fun" "(" [<names>] ")"
u{n [<prr>] ["return" <prr> u;u] u}u

For example,
fun(x) { return add(x,5); }

is an abstraction that creates a closure that will be able to add 5 to its argument and
return the result. Note that there is always a single argument, which may or may not be
a product. The keyword return is used to specify the fact that something is returned
from the function. If it is absent, the function is presumed to implicitly return a special
object unit of type T_Unit.

Applications are behavior and abstraction applications to a given argument. They are de-
noted by juxtaposition and associate to the left:

<application-expr> ::= <expr> <expr>
For example, £ a bisequivalent to (£ (a)) (b). Note that the last expression makes use

of unary products of the form (x). Multi-argument function and behavior applications
can be similarly expressed via n-ary product expressions: add(a, b).

In this section, the target language has been described. The target language is designed to be
an intermediate language that has a form convenient for type-checking. In the next section, the
translations of various features of the source language into the target language will be described.

4.1.2 The translation

The source language has been informally introduced in Chapter 3. This section describes a transla-
tion of the source language into the target language described in the previous section.

Type specifications in the source language define types, their subtyping relationships, behaviors
applicable to the objects of these types, and behavior-to-function associations. The following
is the description of the translation process for the type specifications of the source language,
whose syntax is given below:

<type-def> ::= "type" <type-def-proper> ["{"
["where" <constraints>]
[“subtype of" <type-spec-list>]
[<behavior-def-list>] "}"] ";"
<type-def-proper> ::=
<type-name> ["“(" <type-par-spec> {"," <type-par-spec>}s ")"]
<type-par-spec> ::= {"covar" | "contravar" | "novar"} <name>

Explicit receiver: Every behavior specification for the type is transformed into a stand-
alone behavior definition by adding the receiver as an explicit first argument. The added
argument is given the type being defined if selftype is not used anywhere in the be-
havior specification. Otherwise, selftype is replaced by a fresh type variable S, and the
constraint S subtype of <type-being-defined> is added to the where clause of the
behavior specification. Example:

type T_Set(covar X) {
union(selftype): selftype;
pick(): X;

};

100

is transformed into

type T.Set(covar X);

union(S,S): S where S subtype of T_Set(X);
pick(T_Set(X)) : X;

Note how the explicit first argument typing depends on the presence or absence of
selftype.

Assignment elimination: For all behavior definitions that use the symbol :=:, the behavior
definition is split into two: one identical to the original, but with symbol : in place of :=:,
and the other with the name obtained from the original one by appending the prefix set_,
the additional argument of the return type, and the new return type T_Unit. Behavior
definitions that use the symbol := get transformed into the second alternative outlined
above. For example:

age(T_Person) :=: T_Natural;
put(T_OutputStream(X)) := X;
substr(T_String, T_Natural, T_Natural) :=: T_String;

gets transformed into

age(T_Person) : T _Natural;
set_age(T_Person, T_Natural) : T_Unit;

set_put(T_OutputStream(X), X) : T_Unit;

substr(T_String, T_Natural, T_Natural) : T_String;
set_substr(T_String, T_Natural, T_Natural, T_String) : T_Unit;

Subtype separation: Each type description is split into the type specification proper and
zero or more subtype specifications. where-clauses related to the type being defined stay
with the type, while where-clauses related to a type in the appropriate subtype of-clause
are kept with the subtype specification that is produced from the clause. For example:

type T_OrderedPersonSet(covar X) where (X subtype of T_Person)
subtype of T_Set(X)
where (X subtype of T_Ordered(X), T_SpecialSet(X));

gets transformed into

type T_OrderedPersonSet(covar X) where X subtype of T_Person;
T_OrderedPersonSet(X) subtype of T_Set(X)

where X subtype of T_Ordered(X);
T_OrderedPersonSet(X) subtype of T_SpecialSet(X);

Reflexive constants: Since types are objects (of type T_Type) they are not only used for
specification purposes, but can also be queried at run-time. Therefore, for each type
specification, the constant declaration

const T_Type <name>;

is added to the program, where <name> is the name of the type being specified. For
example: the type specification

type T_Number;

results in the addition of the deciaration
const T_Type T_Number;

to the program.

Syntactic transformations: Finally, the syntax of the declarations is modified to fit the
syntax of the target language. Namely,

101

1. where-clauses are transformed into lists of <constraints>;
2. the behavior specifications get transformed from
<name>(<arg-types>) : <res-type>;
into
behavior (<arg-types>) -> <res-type> <name>;
3. behaviors with implementation-clauses get transformed into associations.
For example:

type T_OrderedPersonSet(covar X) where X subtype of T_Person;
T_OrderedPersonSet(X) subtype of T_Set(X)

where X subtype of T_Ordered(X);
T_OrderedPersonSet(X) subtype of T_SpecialSet(X);

union(T_OrderedPersonSet(X),
T_OrderedPersonSet(X)) : T_OrderedPersonSet(X);
add(T_Integer r, T_Integer a) : T_Integer implementation { ... };

is transformed into

type (X <= T_Person) T_OrderedPersonSet(covar X);
(X <= T_Ordered(X)) T_OrderedPersonSet(X) <= T_Set(X);
T_OrderedPersonSet(X) <= T_SpecialSet(X);

behavior (T_OrderedPersonSet(X),

T_OrderedPersonSet(X)) —> T_OrderedPersonSet(X) union;
association (T_Integer, T_Integer) -> T_Integer add

fun(r, a) { ... };

This concludes the description of the type definition translation.

Class specifications in the source language define classes, their abstract structure (fields). the
class type (infinite, finite, manual, or regular), subclassing and class extension, behaviors
defined on classes, and possibly their low-level structure. Syntax of the source language class
definition is given below:

<class-def> ::= [<class-specifier>] "class" <class-proper> ["{"
["implements" <type-proper>]
["subclass of" <classes>]
["extends" <class-ext-list>]
[<field-def-list>]
[<behavior-def-list>] "}] ;"

<class-specifier> ::= "infinite" | "finite" | "manual" | "regular"
<class-proper> ::= <class-name>["(" <name> {"," <name>}s+")"]
<class-ext-list> ::= <class-ext> {"," <class-ext>}*

<class-ext> ::= <class-spec> ["removing" <name-list>]

<class-spec> ::= <class-name> ["(" <class-spec> {"," <class-spec>}+")"]
<class-name> ::= <name> | "selfclass"

<classes> ::= <class-proper> { ",” <class-proper> }*

Class extension: A class extension is a mechanism for textual substitution. Therefore, cyclic
extension dependencies between classes are not allowed. If such a dependency is detected,
it is an error and the translation stops. Otherwise, classes form a directed acyclic graph
(DAG) with respect to the relationship extends. Starting with the roots of the DAG
and following the graph edges in the direction opposite to the one given by the extends
relationship in such a way that a node is visited only when all its parents are visited
(width-first traversal), the following operation is performed. A class that extends an-
other class is expanded by copying all field and behavior definitions from the class being

102

extended except for the ones whose names are specified in the appropriate removing
clause, marking the copied definitions in the process. Thus, inherited definitions are
marked while native ones are unmarked. After the traversal is finished, every class that
contains marked definitions is examined. [f there are identical definitions, extra copies
are removed; if there are conflicting definitions and at least one of them is unmarked,
the marked definitions are removed; if there are conflicting definitions and none of them
is unmarked, it is an error and the translation stops. The definitions are conflicting if
they define a behavior or field with the same name. If there are conflicting unmarked
definitions for a field, it is also considered an error. Finally, extends clauses are removed
from all classes.

As an example, consider the following class specifications:

class C_Circle implements T_Circle {
T_Point _center;
T_Length _majorAxis;
center implementation _center;
majorAxis implementation _majorAxis;
minorAxis implementation _majorAxis;
}
class C_Ellipse extends C_Circle implements T_Ellipse {
T_Length _minorAxis;
minorAxis implementation _minorAxis;
};
At the first stage, it is determined that there is no cyclic dependency and C_Circle is the
root of the DAG. The edge from C_Ellipse to C_Circle is then traversed, and the class
C-Ellipse is extended. After copying, it will take the form!

class C_Ellipse extends C_Circle implements T_Ellipse {
*T_Point _center;
»T_Length _majorAxis;
scenter implementation _center;
smajorAxis implementation _majorAxis;
sminorAxis implementation _majorAxis;
T_Length _minorAxis;
minorAxis implementation _minorAxis;
};
Then, since there are two distinct definitions of the behavior minorAxis. the marked
(inherited) one is discarded. Finally, the extends clause is removed and the resulting
class takes the form

class C_Ellipse implements T_Ellipse {
T_Point _center;
T_Length _majorAxis;
center implementation _center;
majorAxis implementation _majorAxis;
T_Length _minorAxis;
minorAxis implementation _minorAxis;
};
Note that unmarked (native) definitions take precedence over marked (inherited) defini-
tions. Note aiso that identical definitions never cause errors, even if there are no native
ones: additional copies are simply discarded. This makes it possible to have diamond-
shaped extensions; its behavior is similar to that of the mechanism of virtual classes in
C++ [Str91].

IMarked (inherited) definitions are identified by .

103

Field elimination: Field definitions in classes are translated to behavior definitions. Before
it is done, the check for subclass conformance is performed; if subclass dependencies
are cyclic, it is an error. Otherwise, classes form a DAG with respect to the relationship
subclass of and for every class, there are finitely many superclasses in the graph. Then,
for each class and each superclass, it is verified that if a field is defined in a superclass, its
definition is either absent from the subclass, or has the same type, or the field is constant
in the superclass and its definition in the subclass specifies a type (class) that is a subtype
(subclass) of the one specified in the superclass. This rule is based on the observation
that constant (non-updatable) fields are covariant, while updatable fields are novariant.
For example, the following specification is legal

type T_SmallNatural subtype of T_Natural;

class C_Person {
const T_Natural _age;

I

class C_Child subclass of C_Person {
T_SmallNatural _age;

i

while the one below is not:

type T_SmallNatural subtype of T_Natural;
class C_Person {
T_Natural _age;
};
class C_Child subclass of C_Person {
T_SmallNatural _age;
};
After the check above has been successfully performed, constant field definitions of the
form
const <type> <name>
are translated into
<name>() : <type> implementation fun(x) <system-defined-code>
Each non-constant field definition is translated into two behavior definitions:
<name>() : <type> implementation fun(x) <system-defined-code>
set_<name>(<type>) : T_Unit
implementation fun(x,y) <system-defined-code>
The implementation clauses that refer to fields are translated as follows:
<name> implementation <field-name>
is translated into
<name>(): <field-type> implementation fun() { return <field-name>; }
if <£ield-name> denotes a constant field and into

<name>(): <field-type> implementation fun() { return <field-name>; }
set_<name>(<field-type>) : T_Unit
implementation fun(x) { set_<field-name>(x); }

if it denotes a non-constant field. For example, the (expanded) specification of C.E1lipse
given above will be translated into

class C_Ellipse implements T_Ellipse {
_center() : T_Point implementation <system-defined>;
set__center(T_Point) : T_Unit implementation <system-defined>;
_majorAxis() : T_Length implementation <system-defined>;
set__majorAxis(T_Length) : T_Unit implementation <system-defined>;

104

center() : T_Point implementation fun() { return _center(); };
set_center(T_Point) : T_Unit

implementation fun(x) { set__center(x); };
majorAxis() : T_Length

implementation fun() { return _majorAxis(); };
set_majorAxis(T_Length) : T_Unit

implementation fun(x) { set__majorAxis(x); };
-minorAxis() : T_Length implementation <system-defined>;
set__minorAxis(T_Length) : T_Unit implementation <system-defined>;
minorAxis() : T_Length

implementation fun() { return _minorAxis(); };
set_minorAxis(T_Length) : T_Unit

implementation fun(x) { set__minorAxis(x); };

};

Translation to types: Upon completion of the class expansion and field elimination dis-
cussed earlier, classes are translated into types. This translation proceeds by changing
the keyword selfclass into selftype, changing subclass of and implements clauses
into subtype of clauses, and changing each class specifier into a type specifier. Then,
the standard type specification translation is performed with the following changes:

1. Instead of a type specification, an concrete type specification is produced;

2. The generation of reflexive constants is done according to the rules below, rather
than according to the rules specified for type translation.

Note that there are no classes in the target language, only abstract and concrete types.
Types in the target language that correspond to the classes in the source language have
names of the form C_X in order to keep names consistent across the two languages. This is
done to simplify typechecking; it does not have any effect on the semantics of the notions
of type and class. For example, the class C_E11ipse defined above will be translated into

concrete type C_Ellipse;
C.Ellipse <= T_Ellipse;

association (C_Ellipse -> T_Point) _center <system-defined>;
association ((C_Ellipse, T_Point) -> T_Unit)
set__center <system-defined>;

At this point, the classes have been translated into types. The only difference between
types and classes remaining at this point is the difference between concrete type and
type type specifiers and between T X and C_X names.

Reflexive constants: Since classes, as well as types, can be used in expressions as objects,
this translation step adds appropriate constant definitions for every class defined in the
program. There are four cases:

Infinite classes If a class C_T implementing a type T_T has been specified as infinite,
the following constant definition is added to the program:
const T_InfiniteClass(T_T) C_T;
An infinite class does not have an extent and can not create objects.
Finite classes If a class C_T implementing a type T.T has been specified as finite, the
translation adds
const T_FiniteClass(T_T) C_T;
A finite class can not create objects, but it has an extent. The type T FiniteClass(X)

defines behavior extent()—T_Set(X) that returns a set of objects (the extent) of the
class.

105

Manual classes Classes specified as manual can create objects and do not maintain
extent. For each manual class C_T implementing a type T_T, the following definitions
are generated:

const T_ManualClass(T.T) C_T;

association (T_ManualClass(T_T),
const-field-1-type,...,const~field-n-type) -> C_T
new_C_T <system-defined>;
where each const-field-k-type is a type assigned in the class specification to the
k-th constant field (including inherited fields). The behavior defined here creates a
new object of class C_T. For example, the class specifications

manual class C_Person implements T_Person {
const T_Natural _age;

};

manual class C_Child subclass of C_Person implements T_Child {
const T_Set(T_Toy) _favoriteToys;

I

will eventually generate the definitions
const T_ManualClass(T_Person) C_Person;

association (T_ManualClass(T_Person), T_Natural) -> C_Person
new_C_Person <system-defined>;

const T_ManualClass(T_Child) C_Child;

association (T_ManualClass(T_Child),
T_Natural, T_Set(T_Toy)) -> C_Child
new_C_Child <system-defined>;

Regular classes If a class is specified as a regular class or without an explicit specifier,
the definitions being generated are the same as for the manual class. The only change
is in the name of the parametric type being assigned to the class constant, namely
T_Class(T.T) instead of T ManualClass(T.T). Regular classes maintain extents and
are capable of object creation, therefore the type T_Class(X) is a subtype of both
T FiniteClass(X) and T_ManualClass(X). The class type hierarchy is depicted in
Figure 3.5.

Function code translation In addition to the translation of type, behavior, and class specifica-
tions, the translation of function code also has to be performed. Translation of all interesting
features will be presented here; translation of standard language operators is trivial and is
therefore omitted.

Return elimination: If the function code has the form
<exprl> return <expr2>
it is translated into
<expri>; <expr2>
Otherwise (no explicit return) it has the form (expr) and is translated into
<expr>; unit
where unit is a predefined object of type T_Unit

Operator elimination: All operators present in the code are translated into their equivalent
behavioral form with an explicit receiver. For example, the code

a+b /¢

106

will be translated into
a.plus(b.divide(c))
Local variables: Every local variable declaration
<type> <name>;
is transformed into

let T_Var(<type>) <name> = new C_Var(<type>) in
{ ..the rest of the function code up to the closing }.. }

Also, every occurrence of a local variable name x in the simple assignment context
x := <expr> is translated into x.set(<expr>), while every occurrence outside of the
simple assignment context is translated into x.get(). Thus, the code

T_Integer k, 1;
k := k.add(1l);
will be translated into

let T_Var(T_Integer) k = new C_Var(T_Integer) in
{ k.set((x.get()).add(l.get())); }

Assignment elimination: Simple assignments of the form

<name> := <expr>

are transformed into the equivalent behavioral form
set_<name> (<expr>)

All the other assignments have the form
<expri>.<name>[<args>] := <expr2>

and are transformed into the equivalent behavioral form
<expri>.set_<name>(<args>, <expr2>)

Since all local variable assignments have already been eliminated, all the simple assign-
ments left are assignments to settable behaviors of the implicit receiver. The implicit
receiver will be made explicit later on in the translation process.

If there are any assignments left at this stage, the program is invalid and is rejected. For
example, during assignment elimination the following code

aString.substr(k,l) := aString2;
age := k.add(1);

is translated into

aString.set_substr(k,l,aString2);
set_agae(k.add(1));

Explicit receiver: Every function that participates in an association is transformed to take
its explicit receiver as the first argument. The identifier self is used to represent the
receiver. In the function code, all behavior names <name> that are neither preceded
by a dot nor appear in the construct protect(<name>) are replaced by self.<name>.
Names that appear as protect (<name>) are replaced by <name>. The protect construct
is designed to protect behaviors from being interpreted as behavior applications to the
implicit receiver. For example, function

tun(x) { return fun(r) { return age.minus(r).minus(x) ; }; }
will be transformed into

fun(self, x) {
return fun(r) { return self.age.minus(r).minus(x); }; }

provided it is a part of an association. On the other hand, the function

107

fun() { return map(protect(negate)); }
will be transformed into

fun(self) { return self.map(negate); }
rather than into

fun(self) { return self.map(self.negate); }
because of the presence of protect.

Multiple argument elimination: Functions are made to accept a single argument of a prod-
uct type rather than multiple arguments. This transformation is done to simplify type-
checking. It is possible because both the source and the target language have multiple
dispatch. The code is transformed in the following manner: all definitions

fun(al,..,aN) { <expr> }
where N > | are translated into

fun(0x) { let al = Ox_1 in let a2 = ... let aN = @x_N in <expr> }
where @x is a fresh variable. For example, the code

fun(self, x) {
return fun(r) { return self.age.minus(r).minus(x); }; }

is translated into

fun(0x) { let self = €x_1 in let x = @x_2 in
return fun(r) { return self.age.minus(r).minus(x); }; }

Object creation: Object creation in the source language is done by using operator new on
classes. The translation process transforms the operator new. whose syntax is given below,

<new-operator> ::= "new" <class-name> ["(" (<initializers>] ")"]
<initializers> ::= <initializer> {"," <initializer>}#
<initializer> ::= <name> "=" <expr>

into a series of behavior applications in the following manner. First, the template for the
code is generated:

{let €n = <class-name>.new_<class-name>(<args>) in {<tail>; on}}
where @n is a fresh variable, and the meaning of <args> and <tail> is defined below. For
each initializer <name> = <expr> used in a given new operator, two cases are considered:

1. There is a constant (immutable) field <name> defined on or inherited by the class
<class-name>. Then, the expression <expr> is added to <args> in the position
corresponding to the number assigned to the field by the class translation process
described earlier.

2. Otherwise, the expression €n.set_<name>(<expr>); is added to the <tail>.

Consider the specification

class C_Circle implements T_Circle
T_Point _center;
const T_Length _majorAxis;
class C_Ellipse implements T_Ellipse extends C_Circle
const T_Length _minorAxis;
and the code
new C_Ellipse(_center = aPoint,
_majorAxis = axisl, _minorAxis = axis2)
It will be translated into
{let ¢n = C_Ellipse.new_C_Ellipse(axisi,axis2) in
{6n.set__center(aPoint); en}}

108

since the field _center is updatable, while the other fields are not.
typeif expressions: These expressions are designed for type-safe reflection and have a (sim-

plified) syntax:

<typeif-expr> ::=

"typeit" " (" <name> "is' <type> ")" "then' <expr> ";"

They check if the run-time of <name> is a subtype of <type> and execute the expression
<expr> only if it is. In the expression <expr> it can therefore be assumed that the type
of <name> is at least <type>. This last feature makes the typeif expressions special in
terms of their typing.
During the translation, for each typeif expression, the behavior association

association T_Object -> <type> Qas_<type> fun(x) <system-defined>
is added to the target language program, and the expression itself is transformed into

let <name> = <name>.Q0as<type> in {

if <name>.notEqual(UNDEFINED) then { <expr> } }

The behavior @as_<type> has the following semantics: it returns an object UNDEFINED
(of type TNull) if its receiver has a type that is a subtype of <type>, and returns the
receiver otherwise. Therefore. its result type is always at least <type>.
For example, as a result of the translation of expression

typeif (anObject is T_Person) then { anObject.age; };
the association

association T_Object -> T_Person Qas_T_Person fun(x) <system-defined>
will be added to the program, while the expression itself will be translated into

let anObject = anObject.@as_T_Person in {

if (anObject.notEqual(UNDEFINED)) then { anObject.age; }; };
Dot elimination: Finally, the dot notation used in the code so far is dropped in favor of

functional notation. The behavior application expressions of the form

<expro> n‘n <exprB> [n(n <expr1> n’u . u'n <prrN> u)n]
are transformed into

<exprB> u(u <expro> " 'n (expr1> ") w ooo.omn , " <exprn> u)u
For example, the expressions

aString.substring(s, 6)

aPerson.age
are transformed into

substring(aString, 5, 6)

age(aPerson)

Final touch: The final step of the translation from the source to the target language consists of
adjustment of the global program structure. First, type, subtype, behavior, and constant
definitions of the basic system are added. Second, all definitions are grouped together in the
target program sections: types, subtypes, constants, behaviors, and associations. Third, dupli-
cate definitions are discarded (two definitions are duplicates of each other if they are identical
up to whitespace elimination and free variable renaming). Finally, the named definitions are
analyzed. If there are two different definitions for the same name, it is an error unless both
conflicting definitions are behavior definitions.

In this section, the target language has been described. The target language presented is a simpli-
fied version of the full language that is specifically tailored for typechecking purposes. Then, the
translation from the source language into the target language was described and illustrated. In the
next section, typechecking algorithms for the target language will be presented.

109

4.2 Consistency

Typechecking a program in the target language, though significantly simpler compared to a source
language program, is still a complicated task. There are several aspects to the issue of correctness
of a target language program that will be considered in this section. Some of those aspects are
local in that they can be verified by considering a single definition; others are global and deal with
interactions between various definitions given in the program.

The entailment algorithm described in Section 4.3 forms the basis of the algorithms presented
here; in a sense, target language program typing is simplified even further before this core algorithm
is used. This section will provide the description of this simplification process.

This section is organized as follows. First, a formal notation for reasoning about types and certain
basic notions (such as types, constrained types, entailment, and variance annotations) are introduced
in Section 4.2.1. The remaining sections describe various steps of program verification in the order
they are to be performed. First, local monotonicity checking is described in Section 4.2.2. Then the
set of type specifications given by the user is checked for acyclicity and complexity. This process is
described in Section 4.2.3. After these conditions are checked, type expansions (which is a form of
type expression simplification) can be performed. This is described in Section 4.2.4. After this task
is completed, the main algorithms of Section 4.3 can be applied. These algorithms are used in all
subsequent steps of the verification process. Section 4.2.5 describes verification of the user-supplied
constraints. After these are verified, global behavior specification consistency is tested. This step
is described in Section 4.2.6. The next step, described in Section 4.2.7, performs type derivation
and checks consistency of function and program bodies with respect to their specifications. This is
where most of the typechecking occurs. Finally, on the last step, the dispatch consistency (absence
of “message not understood” and “message ambiguous” errors) is verified. This last step is described
in Section 4.2.8.

4.2.1 Notation

Formal reasoning about types has an established notation. For instance, [AC96, BM96a, GM96,
QKB96, AW93], as well as many others use notations based on the common principles that will be
described in this section.

This section presents an informal overview of the theoretical notions behind the typechecking
algorithms. It gives sufficient information to implement and use the typechecking algorithms pre-
sented in this chapter. The formal treatment of all the concepts presented here will be given in
Chapter 5.

Type constructors are represented by either lowercase Latin letters a,b,... or by type names
TA,TB,.... Type variables are represented by Greek letters a, 3,7,... and arbitrary type expres-
sions are represented by uppercase Latin letters A, B,C,.... The notation A[a] is used to denote a
type expression with free variables a,, as, . .., an, and the notation 4[5/&'] denotes a type expression
A in which type expressions B; have been substituted for variables a;. The shortcut (Ay, ..., An)
will be used for product types T_Productn(Ay,...,An), and the shortcuts A—R and A—,R will be
used for functional and behavior types T_Function(A, R) and T_Behavior(A, R), respectively. The
type operators lub(...) and glb(...) will be used to denote the least upper bound and the greatest
lower bound of a given set of types. The syntax of type expressions is given below:

As=ala|a(Ar,... A) | A=Az | A=A | (A1, -, As) | lub(Ay,..., An) | glb(Ay, ..., An)

The type a(Ay,..., An) is considered valid iff a has arity n. The type expression a is a shortcut for
a() and thus requires a to be of arity 0.

For example, both A = a(b(a,d),a—a) and B = d(b, a(c)) are type expressions. A has a set of
free variables FTV(A) = {a} and is open, while B has an empty set of free variables and is therefore
closed. The term primary functor (pfunctor) will be used to denote the outermost type constructor
of a simple type. For example, pfunctor(A) = a and pfunctor(B) = d.

In the theoretical part of this dissertation, closed types are modelled as regular trees over the
alphabet defined by the set of all type constructors plus the type operators lub and glb. Intuitively,

110

a regular tree is a closed, possibly infinite, type expression that can be described in a finite form.
For every closed (ground) type there is a corresponding regular tree that represents it. An example
of an infinite regular tree is a solution of the type equation a = b—+a, which is an infinite closed
type expression b—+b—b—.... There is a subtyping relationship (denoted <) defined on regular
trees (defined in Chapter 5) by the relationships specified by the user in the user type graph G (see
Section 3.1.7, page 62; see also Definition 4.6 below). Subtyping is a partial order over the domain
of ground types.

Constraints and entailment

Constraints are inequalities between type expressions. For example,
a(a) < a(B)

is a constraint. Constraint satisfiability is defined over the domain of regular trees described earlier.
Namely, a constraint is satisfiable if there is a set of regular trees (valuation) such that when these
regular trees are substituted for variables, the constraint in question becomes true. A special case
of a constraint is a constraint denoted as TRUE(ay, ... ,an) which is considered to be satisfied for
all values of ay,...,a,.

A constraint set, or a constraint conjunction, is defined as a conjunction of a finite number of
constraints. Satisfiability of a constraint set is defined as existence of a valuation that turns the
constraint conjunction into a true formula. T-Integer < a—/ is an example of an unsatisfiable
constraint, while

a < AP =<T.Integer

is an example of a satisfiable constraint set (conjunction). Constraint sets will be denoted C in the
rest of this dissertation.
Entailment is a relationship between two constraint sets defined as follows:

(C) F Ca) &L (va, (C[d] = 362 Taldr, @2)))

In other words, a constraint set entails another if for each valuation of the first set that turns it into
a true statemnent there exists a valuation of the second that turns it into a true statement such that
these two valuations give the same values to variables that participate in both of them.

The relationship F can be intuitively understood as follows. If there are two sets of constraints,
C; and C,, then C, F C, is true if and only if the second constraint set follows from the first. The
statement + C therefore has a meaning that C is satisfiable. Use of subscript § in g means that
the entailment is checked in the context of the type system defined by the user type graph G.

For example, @ < 8,3 < v+ @ < v, but a < § ¥ 8 < a. Another example of true entailment is

F a < T.Integer
as it states that there exists a type a that is a subtype of T_Integer. However, the formula
TRUE(a) - a < T_.Integer

is false since it states that any type a is a subtype of T_-Integer which is obviously false.

The verification algorithm for g will be given in Section 4.3.

The notion of entailment introduced above is central to the typechecking mechanism presented
in this dissertation. All typechecking tasks are ultimately formulated in terms of entailment.

Constrained types

The types and constraints described above are used in the construction of constrained types. A
simple constrained type has the following form:

Vai,...,as (C).A

111

where C is a constraint set, A is a type, and a),...,a, are type variables free in A and C. The
syntax of simple constrained types is as follows:

X 2=Vay,...,a,; (0).A
Co=4 < As | CAAL =< Al

We will often omit the quantification and write (C).A instead of Vay,...,an (C).A. When the
constraints are empty, they will also be omitted. For example, both X =b and Y = (6 X a).a are
simple constrained types. Their unabbreviated form is ().b and Ya (b < a).a, respectively.

The intuitive meaning of a simple constrained type Yai,...,an (C).A can be understood as
follows. Let S be the set of all closed types A[T/&] such that T; are closed types satisfying the
subtyping constraints (C[f/r?] Then, the simple constrained type Vaj,a, (C).A denotes the set
of all greatest lower bounds of S. For example, consider the simple constrained type Va (b X a).a.
The set S is the set of all types that are supertypes of b. The greatest lower bound of S is b and
therefore Va (b < a).a = b. This can be directly verified by using Definition 4.1.

Subtyping defined on ground types induces subtyping on simple constrained types defined as
follows.

Definition 4.1 (Subtyping of simple constrained types).

(V&1 (C1). Ay < V&2 (C2).A2) €5 V@ (G = 3@, CL A 4, < Ao)

where the quantification is over the domain of ground types. u]

This defines subtyping as a partial order over the domain of simple constrained types factored
by the equivalence relationship = defined as (.X = Y) &L (Y Y AY <X). I[ntuitively, the
equivalence relationship allows one to identify syntactically different, but semantically equivalent
simple constrained types, like Ya (b < a).a and ().b considered above.

"The following is the intuitive meaning of the above subtyping definition. If X, and .X are simple
constrained types denoting respectively sets S and Sa, then .X; < X iff for each element s, of S»
there is an element s; of Sy such that s; < s2. For example, consider the simple constrained type

X; = Va (a < T.Integer).(a—a)

X/ denotes all function types that accept an argument of any type which is a subtype of T_Integer
and produce the result of the same type as the argument supplied. What is the relationship between
X; and the function type X; = T_Integer—T.Integer? The type .X; corresponds to a singleton set
consisting of T_Integer—T.Integer itself. This element belongs also to the set denoted by .X;y and
therefore X; < X;, but X; £ X;. In order to see why this is the case, consider using a function f of
type X; where X; is expected. f accepts arguments of type T_Integer, and produces the result of
type at least T_Integer, and thus conforms to the specification given by X;. On the other hand, an
attempt to use a function i of type .X; where X is expected leads to a type error, since .X; not only
requires its result type to be T.Integer, but also to be of at least the same type as its argument.
The specification X; guarantees the first of these two requirements, but not the second.

Note that if C is an unsatisfiable set of constraints, then X < (C).A for any X and A. Thus
constrained types with unsatisfiable constraint sets play the role of the top type in the hierarchy
(denoted T). Types of the form ().a, on the other hand, play the role of the bottom type (denoted
L),

The notion of a primary functor is generalized for simple constrained types. The primary functor
of a simple constrained type X = (C).A is defined to be the primary functor of A.

Note that the notation used for types and simple constrained types introduced in this section
is parallel to the notation used to specify types, subtypes, and constraints in the target language
(Section 4.1.1). This property of the target language will enable the description of consistency
conditions directly in terms of the notation defined here, with no additional translation steps.

112

Simple constrained types are further generalized to constrained types. A constrained type has a
form X = glb; X;, where X; are simple constrained types. The intuitive meaning is that if each of
X; denotes a set of types S;, then X denotes a set of types S which is the set of all lower bounds
of the union {J; Si. Subtyping is also trivially generalized for the constrained types as given in the
following definition.

Definition 4.2 (Subtyping of constrained types).

(glb; X} < glb; X7) &5 (Vi3 X! < X))

For example,
glb(T.Integer—T Integer,Va (TReal < a).(a—a)) X TReal—T Real
even though
T.Integer—T.Integer £ T_.Real—T Real

This generalization is useful in describing behavior types for behaviors that have several types
(signatures) defined for them. For example, cat (concatenation) can have both signatures

(TList(a),TList(a))—TList(a)
and
(T.String, T_String)—T.String
Then the type of cat can be precisely described by the constrained type
glb((T_List(a), TList(a))—TList(a), (T-String, TString) T String)
Constrained types will be denoted by the uppercase Latin letters X, Y, Z, WV, ... in the rest of this
dissertation.

Variance annotations

Variance annotations are variable annotations that are drawn from the set {—,+,0}. An anno-
tated type expression is a type expression with variables annotated by one of + (covariance), —
(contravariance), or 0 (novariance). For example, a(b, c(a®)) is an annotated type expression.

If a particular occurrence of a variable in a type expression is annotated by + (—, 0), it means
that the type expression changes covariantly (contravariantly, novariantly) with types substituted
for that occurrence of the variable. For example, consider a type expression Ala] that consists of
just a variable a, i.e. Ala]= a. Let ¢ and { be some types. When we use ¢ for a in Ala], we obtain
A =t; when we use {, we obtain A =1. Since

t<f=>4=<14

the only occurrence of a in A[a] is covariant and should be annotated by +: Afa] = a*. A more
complicated example is the type expression Bla] = a—a. Here the two occurrences of a have
different variances. Namely, consider the first occurrence. B = t—a and B = t—a and therefore

txi=>B=<B

Thus, the first occurrence of a in B[a] is contravariant. Consider the second occurrence. In this
case, B = a—t and B = a— and therefore

<i=>B=<B

113

Table 4.1: Variance combination

-0

+
0

o +|G
o 4+
oo o

Thus, the second occurrence is covariant. Therefore, the annotated expression will be Bla] =
a”=at

The following algorithm formalizes the process of annotating a given type expression. Given a
type, its canonical annotated form is defined as follows.

Definition 4.3 (Canonical annotated form (CAF)). Given a type expression A, its canonical
annotated form is given by the annotation algorithm given below, with the call annotate(1, +).

(a ifAd=a

a’ ifd=a

a(Af, A}) if A =a(A1,...,Aq)
annotate(A, v) = | where A! = annotate(4;, Var(a,) © v) '

lub(Af,..., AL) if A=lub(A,...,4,)

where A] = annotate(A;, v)

glb(A}, ..., AL) if A =glb(Ay,...,An)

| where A} = annotate(4;, v)

Here, Var(a,i) is defined according to the predefined variance of the i-th parameter of the type

constructor a as follows: it is + if the parameter is defined as covariant, — if it is defined as con-
travariant, and 0 if it is defined as novariant, The commutative binary operation % on variances is
defined by Table 4.1. o

For example, the CAF of the expression (a, b, (a—f—a)) is

annotate((a,b, (aog—a)), +)

= (annotate(a, + ® +), annotate(b, + © +), annotate(a—g—ra, + 2 +))

= (annotate(a, +), annotate(b, +), annotate(a—F—a, +))

= (a, b, annotate(a, — @ +)—>annotate(f—a,+ O +)

= (a, b,annotate(a, —)—annotate(f—a, +)

= (a,b,a”—annotate(3, - © +)—annotate(a, + @ +})

=(a,ba" =" —at)
since the first argument of — is defined as contravariant (—), while the second one is defined as
covariant (+); at the same time, all arguments of a product type (...) are defined as covariant.

Once a CAF C of a type is computed, its variance set V is defined as a set of tuples of the form

(a,S), where a is a type variable and S is a set of all variances assigned to a in C. S can be also

thought of as a map from a variable name to a set of all its annotations in a given expression. For
example,

V((a,b, (a=+f—a))) = V((a,b,a™ =" =a¥)) = {{a, {=,+]), (8. {-D}

There is a partial order (strength) defined on variance sets. A variance set V; is stronger then a
variance set V> (denoted V; > Va) iff for each type variable a such that (a, Sa) € V, there exists
(@, S1) € V; such that either Sa C S;, or 0 € 51, or {+,—} C S1.

114

For example,

{(av {0})’ (ﬂr {_7 +}>v (‘71 {_})! (K, {+}>} > {(av {+v —})' (ﬁv {0}>1 (‘7v {_})}

but

{{a, {=h} ® {{e, {0})}

The “strength” relationship defined above has the following meaning. Assume that there are two
type expressions, A and B, that share some type variables ay, ..., a,. Then, if the variance set Vi
of A is stronger then the variance set Vg of B, the following holds:

A[/&) % AlF/&) = B(7/a) < B(7/4) (4.1)

for all closed type expressions ry,...,rn,7,...,r,. Forexample, let TList(.X) be a novariant type.
Let A = TList(a) and B = a—a. Then V4 = {{o,{0})} and Vg = {{a, {+,~})} and therefore
Va4 > Vg. Let us check the property (4.1). Indeed,

A[/d] < Al7/a] = TList(r') < TList(r)
=r=r
= (r'=r') = (ror)
= (r'=r') < (ror)
= B[r'/e] % B[r/a]

On the other hand, if we take A = a, then V4 = {{e, {+})} and Vi » V3. In this case, A[7/&] =1’
and A[F/@] = r. The property (4.1) is then formulated as

r<r=(r'ar) L (ror)

which is false (e.g., take r' = T_Integer and r = TReal).
The notion of a canonical annotated form is generalized for simple constrained types. The
canonical annotated form for a simple constrained type X = (C).A is defined as follows:

Definition 4.4 (Canonical annotated form (CAF) for simple constrained types).

CAF((Ly < Uy, ..., Ln < Un).A) &
(annotate(L,,+) < annotate(Uy,-),...,
annotate(L,, +) < annotate(Uy,, —~)).annotate(A, +)

a

For example, the CAF of the constrained type (a—g < a}.f—a is (a~ =8 2 a”).d~—=at. The
notion of a variance set is trivially generalized to constrained types as well.

The above definition states that expressions on the left side of the subtyping relationship are
considered to be in covariant positions, while those on the right are considered to be in contravariant
positions. The following is the intuitive reason for this to be true. Let C' = a < J be a constraint,
and let ¢, and ¢, be such types that C[t,/a,ty/(] is satisfied. Then

(ta S ta Ao 2 th) = Clta/a.ti/]

In other words, a constraint remains true when the expression on the left changes covariantly and
the expression on the right changes contravariantly.

115

Conclusion

In this section, the notation for dealing with types, constrained types, and variance annotations
has been established. In the following sections, this notation will be used to establish consistency
conditions placed on the type system.

In the following discussion, the concrete type specifiers will be omitted, as they are not relevant to
type definition consistency. Also, associations will be treated like behavior definitions (their function
part will be ignored). Function associations are only relevant to Section 4.2.7 and Section 4.2.8, while
the distinction between abstract and concrete types is only relevant to Section 4.2.8.

4.2.2 Local monotonicity

All type and behavior definitions present in the program are required to be locally monotonic. Local
monotonicity corresponds to the intuition that a parametric type (behavior) definition has to ensure
that the type (behavior) being defined maintains its validity in the presence of covariant changes in
its parameters. The conditions for local monotonicity are outlined below.

Definition 4.5 (Local monotonicity).

1. A type definition of the form

type (C) a(al!, ... ap")

is locally monotonic iff
{{ai, {vih)} > V(Q)
2. A behavior definition of the form
behavior(C) A— R (name);
is locally monotonic iff

V(d4) » V(CUV(R)

For example, consider the type specification
type (X <= T_Ordered(X)) T_OrderedSet(covar X);

Its constraint set is C = a <T.Ordered(a). The CAF of the constraint set is & =
a* < T.O0rdered(a(~©-)), i.e. at < T.Ordered(a*). The variance set of constraints is therefore
V(C) = {{a,{+})}. On the other hand, the variance set of the body is V = {{(a,{+})} and
therefore V 3> V(C). Therefore the type specification under consideration is monotonic.

On the other hand, the type specification

type (T_Natural <= X) T_SpecialSet(covar X);

is not monotonic, since CAF of the constraints is ' = T.Natural < a~, the variance set of con-
straints is V(C) = {{a, {=})}, the variance set of the body is V = {{a, {+})}, and V % V(C).
Therefore, the type definition above is rejected.

In the presence of type definitions

type c(at);
type n(a®);

116

the behavior definition
behavior c(a)—a pick;
will be monotonic:
V(4) = V(ele)) = {a, {+}} > {e, {+}} = 0UV(a)
while the behavior definition
behavior a—n(a) createRef;

will not be considered monotonic:
V(A) = V(a) = {a, {+}} » {a,{0}} = BUV(n(a))

and will therefore be rejected.

The local monotonicity condition is never used in the theory and can be lifted without impacting
its correctness. The reason for introduction of this restriction is not a theoretical, but a practical
one. Namely, while typechecking will work just as well in the presence of non-monotonic type
specifications, interpreting its results would be a challenge. To illustrate this point, consider the
following example. Let a type T_List of updatable lists be defined as

type T_List(novar X);

and let inject be the behavior with the following intended semantics: inject applied to an object
o of any type X produces a list of type T_List(.X) that contains a single element o. The specification
of inject will therefore be as follows:

behavior X -> T_List(X) inject;
The type of inject will therefore be
T = Va.(a—»T List(a))

which is not monotonic. The meaning of this type as interpreted by the type system is drastically
different from what the user might expect. Namely, the type system assumes that inject has all the
types denoted by T for different values of a. This means that a function that implements inject
is required to produce an object of the type R = glb, < x T-List(a) for any receiver object of type
X . Clearly, no object can simultaneously possess types T List(a) for all a below .X and therefore a
function implementing inject can never be written. Thus, even though typechecking of expressions
involving inject proceeds (almost) as expected, the assumptions that the type system makes about
the meaning of the type T are counterintuitive at best. In order to avoid situations like these, the
monotonicity restrictions are placed on all type specifications appearing in a program.

In this section, the concept of local monotonicity has been constructively defined. The local
monotonicity definition is at the same time an algorithm for checking local monotonicity of type,
behavior, and function definitions.

4.2.3 Simplicity and the user type graph

The type system and the systems of type constraints used in the program should define subtyping
as a partial order. In addition to that, the defined order should be “simple enough” to guarantee
the termination of the algorithms described in Section 4.3. In this section, it will be shown how the
above conditions are formulated and verified.

In order to formulate and deal with these conditions, the notion of the user type graph G is
introduced. It will be used later to define and check acyclicity and simplicity conditions.

117

Definition 4.6 (User type graph (G)). G is a directed graph with labeled edges. Vertices in §
are the type definitions of the given program. G has an edge from a to b iff there is a subtype
definition of the form

(©) a(A) < b(B)
in the program. The edge is labeled by the subtype definition above. o

Thus, the user type graph is a directed graph with labeled vertices and edges.

It is required that G be acyclic. This is a sufficient condition for the subtyping defined by the
set of definitions to be a partial order, as will be shown in Chapter 5. For the theoretical treatment
of types and subtyping this is all that is needed. However, this is insufficient to ensure termination
of the core (entailment) algorithm used for type checking.

In order to see why this is the case consider the following definitions:

type T_List(novar X);
(T_SpecialList(X) <= T_List(X)) T_SpeciallList(X) <= T_List(X);

What this definition is saying is that T_SpecialList(.X) is a subtype of TList(X) if
1_Speciallist(.X) is a subtype of T_List(.X) — an apparent recursion. When an algorithm at-
tempts to establish whether a given type T_SpecialList(A) is a subtype of another type T.List(),
it checks the condition first, thus going into infinite loop. Of course, this is a trivial example, but it
does show that acyclicity of the type graph alone does not guarantee termination.

Therefore it is also required that G has a valid ranking. A valid ranking is informally an as-
signment of different positive “complexity” indices to all type constructors in the graph. One type
constructor is “more complex” than the other if the second one can be used to test some subtyping
hypothesis involving the first one. As long as this “more complex” relationship does not have any
cycles in the graph, assignment of complexity indices is possible. Considering the above example
with TList and T_SpecialList, we can see that T_List is “more complex” than T SpeciallList
since the later is required to verify the hypothesis T_SpecialList(A) < T.List(B). For the same
reason, T.SpecialList is “more complex” than T.List, and therefore the type graph defined by this
example does not have a valid ranking.

The formal definition of valid ranking as well as the algorithm that checks whether a given graph
G has a valid ranking is given below.

Definition 4.7 (Ranking and valid ranking). Ranking is an assignment of positive integer num-
bers (ranks) @ to all type constructors with non-zero arity a in G. A valid ranking is a ranking such
that

1. For each path P between two constructors a and b in the user type graph G the following
condition holds:

max(EUR) < min({a, b} \ /)

Here, E is a union of rank sets for all edges in the path P, R is a union of rank sets for all
vertices in the path P, and [is the set of all O-ary type constructors in G. It is assumed that
max(#) = —oc and min(@) = +co. The operation \ denotes set-theoretical difference.

2. For non-0-ary type constructor a in G the following condition holds:
max(E,;) < a
where E, is the rank set of the vertex a in G.

A rank set for an edge is defined as a set of ranks of all non-0-ary type constructors that participate
in the label of that edge in positions other than primary functors of the principal inequality. In other
words, if the label of the edge is

(C) a(A) < b(B)

118

then the rank set for this edge includes ranks of all non-0-ary type constructors participating in
C, A, and B.

A rank set for a vertex is defined as a set of ranks of all non-0-ary constructors participating in
conditions placed on the label of the vertex. In other words, if a vertex a is labeled with

type (C) a(...);

then the rank set for this vertex will include ranks of all non-0-ary type constructors that participate
in C. m]

Given a set of type and subtype definitions, the set of inequalities between constructor ranks
that defines a valid ranking is constructed. Each inequality has the form

max(set of ranks 5;) < min({a;, b;})
and can be represented as
/\(s<d,~l\s<i),~)
I€S,
A valid ranking is a ranking that satisfies all inequalities, i.e. satisfies the formula
A Ns<ains<b) (4.2)
i s€s,
This formula has the form
@1 <@ Adz<dqN..an- <ap

where @; are (not necessarily distinct) rankings. Such a conjunct defines a directed graph G with
vertices @; and edges @;—a; for all inequalities @; < @; in the conjunct. If G is acyclic, there exists
a ranking such that the formula is satisfied. Such ranking is a valid ranking.

Thus checking for the existence of a valid ranking is done as follows:

1. A formula of the form described in Equation 4.2 is constructed
2. The graph G is constructed and checked for acyclicity. If it is acyclic, succeed; otherwise, fail
As an example, consider the set of type and subtype definitions

type T_Printable;

type T_Set(covar X);

(X <= T_Printable) T_Set(X) <= T_Printable;
type T_OutputStream(contravar X);

type T_Set0S(novar X);

T_Set0S(X) <= T_Set(T_OutputStream(X));

For brevity, p will be used for T_Printable, s for T_Set, o for T QutputStream, and ¢ for T_Set0S.
The above definition can be represented in theoretical notation as

type p;

type s(at);

(a X p) s(a) <p;
type o(a”);
type g(a’);

g(a) < s(o(a));

119

type p; type o(a™);

(o 2 p)s(a) 2 p;

type s(at);
)

q(a) 2 s(o(a));

type q(a’);

Figure 4.1: Example user type graph ¢

The user type graph G for this hierarchy is presented in Figure 4.1.

There are three possible paths in this graph: s—p, ¢—s, and ¢—p. Ouly these paths contribute
to the resulting formula since all vertex rank sets are empty. Edge rank sets are {p} for s—p and
{5} for g—s. The inequalities are as follows:

-0 < § for s—p
6 < min(q, §) for g—s
0<q for g—p

and the formula (Equation 4.2) is
6<{AG<S

This fromula defines an acyclic graph G and therefore a valid ranking exists.

[n this section, acyclicity and simplicity conditions have been described. The notions of the
user type graph and a valid ranking were defined and used to formulate the above conditions. The
algorithm for checking the simplicity condition has been presented and exemplified.

4.2.4 Type expansion

In order to perform the necessary checking, the concept of type ezpansion is used. Informally, a type
expression is ezpanded if it explicitly lists all the constraints implicit in the definitions of types that
participate in the expression. For example, if we have the definition

type (X <= T_Person) T_PersonList(novar X);
then the following type expression is not expanded:
TLlist(a)
while the next one is:
(a < T_Person).T List(a)

The following is the formal definition of an expanded type.

Definition 4.8 (Expanded type). A simple constrained type (C).A (a constraint set C) is called
ezpanded if for every subexpression of the form a(B) that occurs is (C).A (a constraint set C) the

following holds:
if

type (G,) a(a);

120

is the type definition of a, then C;[B/d] € C. 0

The process that transforms a type into its expanded form is called ezpansion and is performed
by recursively adding appropriate constraints to the constraint set. This process is described by the
following algorithm.

Algorithm 4.1 (Type expansion).

Initialize Set S to be the set of all subexpressions in C and A which are neither variables nor 0-ary
constructors; set R to be equal to C; set S’ to be the empty set

Add For each expression a(B) in S, do the following:
1. Add C,[B/&) to R

2. Add all subexpressions in C; [B/&] which are neither variables nor 0-ary constructors to
Sl

where
type (Ci) a(d);
is the type definition of a

Iterate S := S’ \ S; if the resulting set S is empty, succeed with the result R.A; otherwise, let
S’ := @ and continue from step Add

0

Expansion is guaranteed to terminate if there exists a valid ranking as will be shown in Chapter 5.
For example, given the type definitions

type (p < a) s(a”);
type (a <X s(a)) g(a™);

the following type expression is not expanded:

9(8)

However, it can be transformed into expanded form as follows:

9(8) = (B < 5(8)).9(8) = (B % s(8),p 2 B).q(P)

The expansion function ezpandg provides the expanded form of a type expression. For exam-
ple, expandg(q(B)) = (8 < s(B),p < B).¢(B). Since the type expansion step is performed after the
existence of a valid ranking for the user type graph has been established, the function ezpandg is
well-defined.

Convention. From now on, all types in the program are considered to be expanded. a

This can be done by means of the syntactic transformations:

1. Each type definition
type (C) a(a);
is transformed into
type (C') a(d);
where ezpandg((C).a(a)) = (T).a(a)

121

2. Each subtype definition

(© A=A

is transformed into

(CaUCx) A= 4

where ezpandg ((C).A) = (Ca).A and expandg((C).A) = (C3).A
3. Each behavior definition

behavior (C) A+ R;

is transformed into

behavior (CoUCr) A= R;

where ezpandg ((C).A) = (C4).A and ezpandg((C).R) = (Cr).R

4. Each behavior association is transformed analogously to the behavior definition
Note that neither constant definitions
const A (name);
nor the typed let expression
let A (name) =...;

are transformed since A in both cases is not allowed to contain type variables; thus, the resulting
constraints C are either inconsistent (which will be rejected by consistency checking) or, if consistent,

(C).4 = ().A.

The expansion process is described here since it can only be done after the user type graph is
successfully checked for simplicity (existence of valid ranking}.

4.2.5 Constraint consistency

Constraint consistency checking is needed to identify erroneous unsatisfiable constraints, i.e. con-
straints that can not be satisfied by any possible type. This section provides the aigorithm for
constraint consistency checking in the given type system.

An intuitive reason for consistency checking is the fact that constrained types of the form (C).A
are equivalent to the top type T in the hierarchy when their constraint sets C are unsatisfiable.
Since it is the purpose of typechecking to ensure that data of the type T can never be generated by
the program, the initial conditions described by type specifications given explicitely in the program
are also required to specify types strictly less than T. The last requirement is equivalent to the
requirement of satisfyability of constraints of all types specified by the user.

Definition 4.9 (Constraint consistency). Each of the following constructs:
1. A type definition of the form
type (C) a(a@);
2. A subtype definition of the form
(O a(4) 2 b(B);
3. A behavior definition of the form
behavior (C) A—R

has a consistent constraint iff

g €

122

It is required that all type, subtype, and behavior definitions in the program have consistent
constraints.

Note that this step can only be done after simplicity checking, since only in a sufficiently simple
type system is the algorithm of Section 4.3 guaranteed to terminate.

Consider the following specification:

type T_Person;

type T_Child;

T_Child <= T_Person;

type (T_Child <= X) T_Array(novar X);

behavior (X <= T_Person) T_Array(X) -> X getOldest;

For brevity, p will be used for T_Person, ¢ for T_Child, a for T_Array, and b for getOldest. The
above definition can be represented in theoretical notation as

type p;

type c;

c2p

type (c X a) s(a’);

behavior (a < p) a(a)—=a b;

Consider the question of constraint consistency for the behavior specification present in the above
fragment. The expanded form is

type p;

type c;

c2p

type (¢ < @) s(a’);

behavior (a <X p,c < a) a(a)=a b;
and the behavior constraint set is therefore

C=za<pAcXa
The formula
F¢C =Fga<XpAc<a

is satisfied since there exists an a such that all constraints in C are satisfied (for example, a = c}.
Therefore, the constraint is consistent.
On the other hand, if the subtype definition

T_Child <= T_Person;

was removed, the above constraint would be inconsistent. The reason for that is that now it is
impossible to find an a to satisfy the formula

a<phAc=<Xa
since the latter requires that
c2p
and this is no longer the case. Therefore, the formula
bg C

is not satisfied and the constraint is inconsistent.
In this section, the notion of constraint consistency was introduced. The procedure for checking
constraint consistency has been established and exemplified.

123

4.2.6 Global behavior consistency

Behavior definitions have to be consistent. Since several behavior definitions can collectively define
a single behavior, there are two aspects of consistency: local monotonicity (a single definition) and
global monotonicity (a set of all definitions for the same behavior). The local monotonicity has been
defined in Section 4.2.2. The global consistency related to interaction between different definitions
of the same behavior is described in this section.

Note that local monotonicity conditions are not essential for the theory to be applicable. They
are designed to reject the specifications that have a counterintuitive meaning, but in their absence
typechecking algorithms will still be valid and subject reduction will be provable. On the other hand,
the global monotonicity considered here is crucial. Without it, a correctly typechecked program can
produce type errors during its execution.

Definition 4.10 (Global behavior consistency). A behavior b is globally consistent iff for every
two definitions

behavior (C;) A1—=R, b;
and

behavior (C;) Aa—>Ra b;
the following holds:

(‘C[U‘C’_)U{A[=< .‘12} Fs Ry =< Ra)

All behaviors are required to be globally consistent. The algorithm for checking the entailment
will be presented in Section 4.3.
Consider the following specifications:

type T_Real;

type T_Integer;

T.Integer <= T_Real;

behavior (T_Real, T_Real) -> T_Real add; // 1
behavior (T_Integer, T_Integer) -> T_Integer add; // 2

For brevity, r will be used for T_Real, i for T_Integer, and b for add. The above definition can be
represented in theoretical notation as

typer;
type i;
i<r;
behavior (r,r)—r b;// 1
behavior (i,i)—=¢ b;// 2
In order to check the consistency, it is neccessary to check both directions: 1—=2 and 2—1.

1. 1-2. Here, C; = C; = 0, and (r,r) < (i,1) is unsatisfiable. Therefore, the consistency
condition is trivially satisfied.

2. 2-31. Here, C; = C; =0, and (i, i) < (r,r) is trivially satisfied. It is left to show that
Fgi<r

which is immediately true. Therefore, the consistency condition in this case is also satisfied.

124

Thus, the above behavior specifications are globally consistent.
A more complicated example dealing with parametric types will be considered next.

type T_Set(covar X);

type T_Array(novar X);

T_Array(X) <= T_Set(X);

behavior T_Set(X) -> T_Set(X) someSubset; /71
behavior T_Array(X) -> T_Array(X) someSubset; // 2

For brevity, s will be used for T_Set, a for T_Array, and b for some3ubset. The above definition can
be represented in theoretical notation as

type s(at);

type a(a’);

a(a) X s(a);

behavior s(a)—s(a) b;// 1

behavior a(a)—a(a) b;// 2

Again, it is necessary to check both directions:

—
w

1. 1-2. Here, C; = C; = 0, and s(a) < a(J) is unsatisfiable. Therefore, the consistency

condition is trivially satisfied.

2. 21. Here, C, = G = 8, and a(a) < s(9)
a(a) < s(0)). It is left to show that

a < 43 (since for any &« and 4, a <4 =

a X 8Fg a(a) 2 5(9)
which is immediately true. Therefore, the consistency condition in this case is also satisfied.

Thus, the above behavior specifications are globally consistent.
An example of an inconsistent behavior specification is given below.

type T_Set(covar X);

type T_MySet;

type T_Person;

T_MySet <= T_Set(X);

behavior T_Set(X) -> X pick; /71
behavior T_MySet -> T_Person pick; // 2

For brevity, s will be used for T.Set, m for T_MySet, p for T_Person, and b for someSubset. The
above definition can be represented in theoretical notation as

type s(at);

type m;

type p;

m < s(a);

behavior s(a)—=a b;// 1

behavior m—p &; // 2

Checking both directions:

1. 152. Then, C; = C> = @, and s(a) < m is unsatisfiable. Therefore, the consistency condition
is trivially satisfied.

125

2. 21. Then, C, = C; =0, and m < s(a) = TRUE(a) (since the constraint m < s(a) trivially
holds for all a). It is left to show that

TRUE{(a)bgp L a

which is not true, since there exist a such that p < « does not hold. Note that the presence
of TRUE(a) on the left side of the turnstyle is crucial:

(TRUE(e)Fg p<a)=(Va: p=<a)=FALSE
while
(Fgp<a)=(3a: p=<a)=TRUE
Therefore, the consistency condition in this case is not satisfied.

Thus, the above behavior specifications are not globally consistent and will be rejected. In order to
see why these specifications are incorrect, consider an application of the behavior pick to an object
of type TMySet statically declared to be of type T_Set(T_Student). Statically, the result type will
be inferred to be T_Ctudent according to the first specification. However, at run-time the call will
be dispatched to the second association (as TMySet is more specific than T_Set). However, the
second association is only required to produce an object of type T_Person, and not necessarily of
type T.Student. Thus, a run-time type error will occur.

In this section, the algorithm for checking global behavior consistency was described and exem-
plified. The next section deals with the issue of functional consistency, i.e. checking whether the
specified function code corresponds to the type specifications given for that function.

4.2.7 Functional consistency

In this section, typechecking of function code will be described. All code in the target language
(except for the “main” expression of the program) is contained in functions, and functions are
associated with behaviors by associations. The algorithm presented in this section ensures that
associations are locally consistent, i.e. that the function being associated indeed conforms to the
type specified for it in the association.

Function consistency checking proceeds as follows. First, the initial environment ©q associating
constants in a program with their declared types is constructed. Then, for each function association
its type is inferred and its validity is verified. Finally, the “main” expression of the program is
typechecked. These verification steps are described below.

Definition 4.11 (Initial environment ©¢). An environment © is defined as a set of name-to-
type bindings of the form v : glb;(C').4;. The initial environment ©q for a program is defined as
follows:
1. For each constant definition of the form
const Av
the association v : A is added to G¢
2. For each behavior b, the association v : glb(Xj,..., Xn) is added to ©g, where there is
Xi = (C).Ai—R; for each behavior definition
behavior (C) Ai—=R; b
and for each behavior association

association (C) A;—R; b fun ...

126

The denotation ©(v) will be used to denote T if v is unbound in © and the type X if v is bound
and its binding in © has the form v : X. The operation & : ©,W0, constructs the new typing
environment that includes all bindings in ©2 and those bindings of ©, that are not overridden in
©,. Formally,

’ _[ou(v) f@(n)# T
(©1602)(v) = {Ol(v) ifOa(v) =T

For example, for a set of definitions

const T_Integer MaxAge
behavior (T_Real, T_Real)—T Real add
behavior (T_-Integer,T_Integer)—T_Integer add

the initial environment will be

©g = {MaxAge : T_Integer, add : glb((T_Real, T_Real)—,T Real,
(T-Integer, T_Integer)—,T_Integer)}

Definition 4.12 (Functional consistency). A program is functionally consistent ift
L. For each function association of the form
association (C) A—»R b fun(x) (expr)
the following holds:
e X < (C)(A—=R)
where ©g > fun (x) (expr) :.X =glb;((G).A;).
2. For the main expression (expr) of the program, the following holds:

Fg G for at least one §

where ©g > (expr) : glb;((Ci).4:)

Note that the condition for the functional expression can be equivalently written as
3i: Chkg G A (A < A-R)

The inference algorithm computing the relationship o is presented in Figure 4.2. The intuitive
meaning of the statement of the form

Ovexpr: X

is that the expression expr has type X when all constants are typed according to ©. The denotation
gb;, . E(j1,...,Jn) (where E(ji,..., jn) is some type expression depending on ji,...,jn) is
defined as

glby, o Eige = gIb{Ej, | (G1seee 1 dn) € (dom(ji) x -+ x dom(jn))} (4.3)

127

O(u) = glb;((C).A") Ou) #T , .
9o u: gl ((C).A) Axiom

Ow{x : a} > (expr) : glb;((C).A) Abs
© v tun (x) (expr) : glb,((C).a—A*)
where a is a fresh type variable

O o (expr), : glb;((C).A}) O > (expr), : glb; (). A})

Appl
&> (expr), ((expr)) - glbs (G, AG, A {AL < Abal)a 7
where « is a fresh type variable
O b (expr), : glb; ((C]').4%") © > (expr), : glb; ((Cr)-AX) p_yuct

© o ({(expr),,...,(expr),) : glb;, ; JNCE) (A, AR))

O b (exprs) : glb, ((C1).4) 0 v (expr) : glb; ((T}).A43) Seq
O o (exprs); (expr) : glb; ;((C] ACS).A3)

0> (expr), : ghhi((Cl).41) ©u{x:glb,((T))-41)) > (expr), :glb; (Ch).4) |,
O b let x = (expr), in (expr), : glb; ;((C} A). A7)

O b (expr), : glb;((C1).41) Ow(x: T} o (expr), : glb;(C}).4)

TypedLet
O > let T x = (expr), in (expr), : glb; ;((C ACH A { AL < T}).Ad) ypecte

Figure 4.2: Typing rules for the target language

Ezample 4.1. Consider the following set of specifications:

const T_Integer MaxAge

behavior (T_Real, T_Real)—T Real add

behavior (T.Integer,T.Integer)—T.Integer add

association (T.Integer)—T.Integer addMaxAge
fun(x) {return add(x,MaxAge);}

The initial environment is
B¢ = {MaxAge : T_Integer,
add : glb((T_Real, T Real)—sT Real,

(T-Integer, T_Integer)—,T_Integer),
addMaxAge : glb((T-Integer—;T_Integer))}

In order to typecheck the body of the behavior addMaxAge, it is necessary to find .X such that
©g > fun(x) add(x, Maxige) : .X (4.4)
Let
X = glb;((G) - 4p) (4.5)

Using the rules in Figure 4.2, the following derivation is constructed.
Using the rule Abs, (4.4) is true if

glb; ((C}).Af) = glbi(C}).a— A} (4.6)
and

Qow{x : a} o add(x, MaxAge) : Xo

128

where
Xo = glb;((C)).A}) (47)
Using the rule Appl, the above is true if
glbi((C)-A1) = glb ;(G' A A {47 < 457>} .8 (4.8)
and (branch I)
OowW{x : a} > add : glb;((C5').AY")
and (branch 2)
Oow{x : a} > (x, MaxAge) : glb;((C5*). 457
Following branch 1: using rule Axiom (since add is in @), the following is proven:
glb,-(((f.'.‘-._,'I).Af_,'l) = glb((TReal, T Real)—,T Real, (T-Integer, T_Integer)—,T_Integer) (4.9)
Following branch 2: using rule Product:
glb; ((Ch%).A447) = glby, ;, (G ACH®).(A45", 49%) (4.10)
where (branch 2.1)
Qow{x :a} b x:glb; (C51).44"")
and (branch 2.2)
O¢w{x : a} > MaxAge : glbja((tC{;"z)..ﬂl{;“'g)

Following branch 2.1: using the rule Axiom (since x is in the set of assumptions), it is proven
that

g, (G H). Ay = a (4.11)
Following branch 2.2: using the rule Axiom (since MaxAge is in ©g), it is proven that
glbh(('C{;"z).A{,"z) = T_Integer (4.12)

All branches have successfully terminated. Now it is possible to synthesize the resulting type
expression X by following the derivation tree bottom-up:

from (4.11):
glh; (G4 .44y = a (4.13)
from (4.12):
glb;, ((CF'*).A$?) = T_Integer (4.14)
from (4.13), (4.14), and (4.10):
glb; ((G;*).A%?) = (a, T-Integer) (4.15)

from (4.9):

glb; ((C;').A5") = glb((T-Real, T_Real)—,T-Real,
T_.Integer, T_Integer)—»T.Integer) {(4.16)
g

129

from (4.15), (4.16), and (4.8):
glb,((C).A}) = glb(((T-Real, T Real)—»,T Real < (a,T_Integer)—4).3,
((T-Integer, T_Integer)—;T_Integer < (@, T-Integer)—/3).5) (4.17)
From (4.7) and (4.17):

Xo = glb(((TReal, T-Real)—,T Real < (a, T_Integer)—y).3,
((T-Integer, T_Integer)—;T_Integer < (a, T_Integer)—3).3) (4.18)
The type Xy is the type inferred for the function body.
Finally, from (4.18), (4.7), (4.6), and (4.5)
X = glb(((T-Real, T_Real)—,T Real < (a, T_Integer)—4).(a—4),
((T-Integer, T_Integer)—,T_Integer < (a, T_Integer)—0).(a—73)) (4.19)

According to Definition 4.12, one of the following conditions should be satisfied for the specifi-
cation under consideration to be functionaily correct:

ko ((T-Real, T.Real)—,TReal < (T_Integer, T_Integer)—s)
A (=3 < T.Integer—T_Integer) (+.20)

or

¢ ((T-Integer, T-Integer)—,T.Integer < (T_Integer, T_Integer)—/3)
A (a—3 < T_Integer—T_Integer) (4.21)

where the premises are empty since
ezpandg (T.Integer—T_Integer) = T.Integer—T.Integer
Formula (4.20) is false since

¢ ((T-Real, T _Real)—,T Real < (T-Integer, T_Integer)—/)
A (a—[< T_-Integer—T_Integer)
k¢ ((T-Integer, T_Integer) < (T_Real,TReal))
A (T-Real < 3) A (T-Integer < a) A (3 < T_Integer)
¢ (T-Integer < T_Real) A (T_Real <) A (T.Integer < a) A (3 < T-Integer)
k¢ (T-Real <) A (8 < T_Integer) A (T_Integer < a)
FALSE

since TReal £ T_Integer.
However, formula 4.21 is true since

Fg((T-Integer, T-Integer)—,T Integer < (T_Integer, T.Integer)—73)
A (a—f < T_Integer—T_Integer)
= b¢ ((T-Integer, T_Integer) < (T-Integer, T_Integer))
A (T-Integer < 3) A (T_-Integer < a) A (3 < T_Integer)
(T_Integer < T_Integer) A (T-Integer < J) A (T_-Integer < o) A (3 < T-Integer)
(@ = T-Integer) A (T_Integer < a)
= TRUE

=kg
_=.|‘g

and therefore there is a and 3 such that the above constraint is satisfied.
Therefore, the definition of addMaxAge is considered to be functionally consistent. a

130

In this section, the notion of functional consistency was introduced and the algorithm for its
checking has been described. The type inferencing rules used in functional consistency checking
were defined. The type inferencing rules presented in this section together with the entailment
verification algorithm given in Section 4.3 constitute the core of the type and consistency checking.

4.2.8 Dispatch consistency

A uniform behavioral system in which every action is performed via a behavior application has to
support an efficient run-time dispatch mechanism. In theory, a dispatch mechanism can be similar
in expressibility to the type specification mechanism of a language. However, the expressiveness
of a dispatch mechanism is inversely proportional to its complexity and, therefore, to its efficiency.
Considering the fact that the dispatch mechanism is the main run-time engine of a behavioral system,
a certain compromise between expressiveness and efficiency is necessary.

The material in this section is related to a particular dispatch mechanism that has been chosen for
the described system. This mechanism supports multiple dispatch, but ignores differences between
different parametric types from the same parametric type family. For example, it is possible to
dispatch the calls equal(aPoint,aPoint) and equal(aPoint,aColorPoint) to different functions.
However, the dispatch of the calls aStudentSet.pick and aPersonSet.pick is required to yield the
same code.

Note that the validity of the calls can depend on a particular type parameter (e.g the call
aNumberList.sort is type-correct while anObjectList.sort is not). Once the call is valid, however,
its dispatch should only depend on the primary functors of the types involved.

There are several aspects related to the dispatch consistency. First, for every concrete type and
any type-correct behavior application involving that type, the code to dispatch to should be defined
(no “message not understood” errors on statically type-correct calls). Second, the code to execute
should be unambiguous (no “message ambiguous” errors). Finally, the dispatch should always yield
a function that was type-checked with respect to types of actual arguments (or their supertypes).

The last issue is the consequence of the compromise being made between the expressive power
of dispatch mechanism and its efficiency. Namely, if the expressiveness of the dispatch mechanism
was equivalent to the expressiveness of the rest of the type system, this issue would not arise.

The following material describes the algorithms used to check all three aspects of dispatch con-
sistency.

Since the dispatch occurs at a coarser level (concrete, primary-functor only types) than a type
definition does, for dispatch consistency checking it is necessary to be able to deal with the behavior
associations at both levels. While the type specification is given directly in a behavior association,
the concrete form of the type has to be inferred. The following algorithms are used to derive that
form from the type specification given.

Definition 4.13 (Concrete type constructors). A type constructor c in § is called concrete iff
its corresponding type definition is of the form

concrete type (C) c(...};
The set of all concrete type constructors in a given user type graph G is denoted Concreteg. a
Definition 4.14 (Constructor products). A tuple (c;....,c,) is called a constructor product

over G if each of ¢; is a type constructor in G. The relationship <¢g defined by the graph G on type
constructors is extended to constructor products in the following way:

—- - def -
(s 16n) S (B, Tm) T (n=mA g <o)

The set of all constructor products of arity n is denoted Constrg”". a

131

Definition 4.15 (Primary form). A primary form of a simple constrained type X =
(€).(Ay,...,An) is a constructor product (denoted primaryg(.X)) defined as follows:

primaryg (X) def {e1,...,¢en) ;= {

pfunctor(A;) if & #a
glbg {pfunctor(ul) [{a < u]} € C}; otherwise if A; = a
a

Here the usual convention for unary products ((A) = A) is used.

The primary form is basically a simplification of a given type. The given type is simplified up to
a point when it can be presented as a constructor product. This simplified form is the one used for
dispatch. As an example, consider the type

X = (a < T_Integer A @ < T_Real).(a, TList(a)) (4.22)

Its primary form is (T-Integer,TList). Indeed, for the first component we must compute the
greatest lower bound of T_Integer and TReal, which is T_Integer. For the second, the primary
functor T_List is taken according to the definition above.

Definition 4.16 (Abstract form). An abstract form of a constructor product ¢ = (ty,...,tn)
(denoted abstractg(t)) is defined as follows:

abstractg(t) af expandg ((t (e}, ... af ™) L ta(ah, ... afTHER)))
where o' are fresh type variables. a

)

Computing an abstract form of a constructor product is, in a sense, an inverse to taking a primary
form of a type. The latter transforms a constrained type into a constructor product, while the former
transforms a constructor product into a constrained type. However, since some information is lost
when the primary form is obtained, abstract form of a primary form of a given constrained type
is in general different from the original. For example, the abstract from of a constructor product
(T_Integer, T List) is

(T Integer, TList(a))
which is not the same as X (4.22).

Definition 4.17 (Concrete set). A concrete set for a set of simple constrained types {X; =
(G).Ai}, (denoted concreteg({.X;}=,)) is defined as follows:
If A; = (A},...,A™) for all i, then

concreteg(X) & {c| c € Concreteg™
Ac <g primaryg(X1) A --- Ac <g primaryg(Xn)
A B’ € concreteg(X): ¢ #cAe<g

A (/\(C. ACe g Co AAc < Ao A \(Aer = A,—))}

otherwise

concreteg(X) et

where (C.).A. = abstractg(c) and (C.). Ao = abstractg(c’) a

132

Informally, a concrete set is a set of concrete constructor products c that are the “maximal”
ones below all of the types .X;. Maximality here is understood in the following sense: ¢ dominates
¢ in the concrete set if it is above ¢/, and its abstract form (which is a type .X) has the property
X! < X. < glb; X;, where X/ is the abstract form of ¢’.

Consider the following example. Let the following be the specifications given in the program

type T_Ordered(contravar X);

type T_Numeric subtype of T_Ordered(T_Numeric);
concrete type T_Char subtype of T_Ordered(T_Char);
concrete type T_Real subtype of T _Numeric;
concrete type T_Integer subtype of T _Real;

and the constrained types X, and Y. given by

X, = (o < T_Ordered(a)).(a, a)
X2 = (T-Integer, T_Ordered{a))

The primary form of X is

(T-Ordered, T Ordered)
while the primary form of X5 is

(T.Integer, T.Ordered)
The concrete set for ., is

{{T-Real, T.Real), (T_Real, T_Char), (T_Char, T_Real), (T_Char, T.Char)}
and for X, (as well for (X, X2))
{{T_Integer, TReal), (T_Integer, T_Char)}

Another example that shows how the last condition in Definition 4.17 works is given below.

type T_Al;

type T_A2;

type T_B;

type (X <= T_A1) T_Ci(covar X);
T_C1(X) <= T_B;

type (X <= T_A2) T_C2(covar X);
T_C2(X) <= T_C1(X);

The concrete set for the type TB will be {T_C1,T.C2}. In order to see why T_C2 is in this set even
though it is below T_C1, we write the elimination condition from Definition 4.17 (here ¢ = T_C2 and
d =TLC1):

a <TA2Fg 8 < TALATLC2(a) < T-C1(B) ATLC1(F) X TB

This is not true (e.g., take a = T_A2 and the left-hand side becomes unsatisfiable as it implies
T_A2 < T.A1 which is not the case). Therefore, T_C2 can not be eliminated from the concrete set for
T_B even though T_C2 is below T_C1 in the graph. Informally, it is not eliminated because there are
types of the form T_C2(a) that are subtypes of T_B, but not subtypes of any of the types T.C1(J).

The behavior coverage condition ensures that for every behavior definition and for every concrete
product that satisfies its conditions there is at least one association for this behavior that has its
conditions satisfied by the same concrete product. [nformally, it means that every behavior definition
is covered by at least one behavior association.

133

Definition 4.18 (Behavior coverage). A behavior b satisfies coverage condition iff
Vie([l,..., N4Vt € concreteg((C¢).A%) Fj € [L,..., No]:
CAG A A 2 AT} g (A 2 AT 2 A ACG
where (C;).A; = abstractg(t),
behavior (C) AY—RY (iell,..., Ng)
are the behavior definitions for b, and
association (C7) A} R{ ... (fe[t,...,Na])

are the behavior associations for b.)

Consider the following example. Let the following be the specifications given in the program:

type T_Ordered(contravar X);

type T_Numeric subtype of T_Ordered(T_Numeric);

concrete type T_Char subtype of T_Ordered(T_Char);

concrete type T_Real subtype of T_Numeric;

concrete type T_Integer subtype of T_Real;

behavior (T_Ordered(X), T_Ordered(X)) -> T_Boolean compare;
association (T_Char, T_Char) -> T_Boolean compare implementation funi;
association (T_Real, T_Real) -> T_Boolean compare implementation fun2;

Then, according to the definition, we have to find an appropriate association for each type in the
concrete set of the type X| = (T.Ordered(a), T-Ordered(a)) (using a for the free type variable X).
The concrete set is

{(T_Real, T-Real), (T.Real, T_Char), (T_Char, T-Real), (T_Char, T_Char)}

For the constructor product (T_Real, T _Real) and the second association the condition is

(TReal, T Real) < (T_Ordered(a), T_-Ordered(a)) Fg
(T_Real, T_Real) < (T.Ordered(a), T.-Ordered(a)) < (T-Ordered(a), T_-Ordered(a))

and is immediately satisfied. For the constructor product (T_Char,T_Char) and the first association
the condition is

(T-Char, T_Char) < (T-Ordered(a), T-Ordered(a)) g
(T-Char, T_Char) < (T_Ordered(a), T-Ordered(a)) < (T_Ordered(c), TOrdered(a))

For the constructor product (T_Real, T_Char) and the first association the condition is

(TReal, T-Char) < (T_Ordered(a), T_-Ordered(a)) k¢
(T_Char, T-Char) < (T.Ordered(a), T_Ordered(a)) < (T-Ordered(a), T -Ordered(a))

which is satisfied since

(T-Real,T_Char) < (T_Ordered(a), T Ordered(a))
= a < T Numeric A a < T_Char
=> (T-Char, T_Char) < (T_Ordered(a), T Ordered(a))

The conditions for the constructor product (T_Char, T_Real) are satisfied in the same way.

134

Thus, there is at least one association covering each constructor product in the concrete set
and therefore the coverage condition for the above specification is satisfied. Note that we were
able to confirm coverage even though there is no association for (T Numeric, T Numeric) since this
constructor product is abstract and therefore does not need to be covered.

The next condition guarantees that there is only one most specific association for each concrete
type. This in turn guarantees the absence of “message ambiguous” errors at run-time. This condition
is standard for the systems with multiple dispatch and is formulated in terms of constructor products,
not types.

Definition 4.19 (Behavior unambiguity). A behavior b satisfies unambiguity condition iff

Vi,je€L,..., Na]:
primary((G').Af) <g primaryg((C}).AJ) V primaryg (G}). A}) <g primaryg (G}). A7)
V Vt € concreteg((CF). A7, (G).AF):
Jke(l,...,Nq]: t <g primaryg((C;).AR)
A primaryg ((G;).A) <g primaryg((G').A7)
A primaryg((CR).Ag) <g primaryg((C5). A7)
where (C;).A; = abstractg(t) and
association ((') A{—R{ ... (ie(l,...,Ng])

are the behavior associations for b. u

The correctness condition is designed to check whether all type-correct behavior applications of
a particular behavior are dispatched to a function that was type-checked in accordance with the
actual argument types. This condition is necessary because dispatch occurs at a coarser granularity
than does type specification. All behaviors in the system are required to satisfy this condition.

Definition 4.20 (Behavior correctness). A behavior b satisfies correctness condition iff

Vij€(l,... NoJ: primarg((GF).A%) <g primaryg((C}).A2) =
((Vt € concreteg((C;). A§, abstractg (primaryg ((C).A{))):
CoAGE A A< A8 g ©F A {A < A4 < AT))

where (C;).A, = abstractg(t) and
association (C7') A?—R? ... (ie[l,...,Nd])

are the behavior associations for b. a

Consider the following set of specifications:

concrete type T_Set(covar X);

concrete type T_SpecialSet(covar X) subtype of T_Set(X);

association T_Set(X) -> T_Boolean isEmpty funi;

association (X <= T_Person) T_SpecialSet(X) -> T_Boolean isEmpty fun2;

The second function is only supposed to be invoked for special sets of persons (or their subtypes).
However, since dispatch uses only primary functors of argument types, it is unable to distinguish
between T_SpecialSet(T_Person) and T_SpecialSet(T_Object) and dispatches to the second func-
tion (as the more specific one) in both cases. This causes the body of the second function to be
executed under more liberal assumptions then the ones used when its body was typechecked and can
therefore cause run-time type errors. Therefore the above set of specifications is disallowed. Indeed,

135

the behavior correctness condition in this case is (for the type constructor T_SpecialSet which is
in the concrete set of (T_Set,T_SpecialSet)):

T.SpecialSet(a) < T Set(a) g
a < TPerson A T_SpecialSet(a) < T_SpecialSet(a) < T_Set(a)
which is equivalent to
TRUE(a) g a < T_Person
and is false as there exists an « such that a < T_Person does not hold.

Definition 4.21 (Dispatch). The function dispatchg(b,q) : B x RTypg—[0, ..., Na] is defined as
follows:

.. . . ~b . ’b_ -
dispatehg (b, q) { 35 (.)€ Shnlt) i 1S% (0] =1

0 otherwise

where B is the set of all behaviors,

t £ primaryg (q)

(0 {(s,i) | s = primaryg (T7).4) At <g 5}
Stinlt) E {(5,0) | (5. € S (VAN) € S°(1): &' <g s}
and
association (C7) A{ =R} ... (i€l,....Nad])
are the behavior associations for b. o

In this definition, the notion of run-time type (Definition 5.20, domain RTypg) has been used
along with the appropriate extension of primaryg(-) given in Definition 5.3.3. Intuitively, a run-time
type is a type of an object that is present during program execution. Every run-time type is also
a type, but the opposite is not true. For example, an abstract type is not a run-time type because
an object of such a type can never be created and thus can not be present at run-time. Some other
restictions also apply.

The dispatch process chooses the most specific association with respect to the type
that is obtained by taking the argument type and cutting off its leaves. For ex-
ample, the type T_Collection(TPerson) becomes T-Collection, while the product type
(T_Collection(T Person), T_.Integer) becomes (T_Collection, T-Integer). If the most specific
association does not exist (either there are no suitable associations, or there are several suitable
associations that are incomparable to each other), then the dispatch fails and returns 0. This can
never happen in a successfully typechecked program, as will be proven in Chapter 5.

In this section, the notion of dispatch consistency was introduced. The algorithms testing various
aspects of dispatch consistency were presented and illustrated by examples.

The next section introduces the core algorithm of the presented type system.

4.3 Entailment

The algorithms and notions presented in this section constitute the core of the presented consistency
checking algorithms. The algorithms of this section always deal with ezpanded types and constraints.
The entailment relationship \/; C! + V; C? can be understood as a logical formula

va(\/C =35 \/C)
i i

136

where
& = U; FTV(C}) \ U; FTV(C?)

and f = U_,-FTV(C;")‘ The task of the main entailment algorithm is to determine whether a logical
formula of this form is satisfied in a type system defined by the given user type graph G.

Algorithm 4.2 (Deciding entailment). Let \/; C! kg \/ ; C’j be the entailment that is necessary
to check. The algorithm operates as follows:

1. For each i, check C} Fg V/; C;} in the following manner:

(a) Check whether g C} as follows: attempt to flatten C} w.r.t G. If it fails, the formula
¢ C} can not be proven and the algorithm ends with success (a contradiction implies
everything); otherwise, continue to the next step

(b) Change all variables o € FTV(C}) into 0-ary type constructors ax. Form the extended
type graph G! by adding edges corresponding to constraints from C{ and vertices corre-
sponding to type constructors ax to G.

(c) If Gi does not have a valid ranking, end the algorithm with the result UNKNOWN.

(d) For each j, attempt to flatten C3{d@/a] w.r.t G:. If at least one of themn succeeds, succeed;
otherwise, fail.

2. If all checks above succeed, succeed; otherwise, fail

For example, in order to check the entailment
aX8,p3yFazy

the entailment - a < 3,3 < v is checked first. Since the formula on the right of the turnstyle is
already flattened, the check succeeds and the algorithm proceeds to the next step. Here, the “types”
a, b, and g are introduced into the type graph G. with the following relationships between them:

a<bb=<yg
G. thus obtained has a valid ranking, and the algorithm now attempts to prove
Fg.azyg

by flattening the formula a < g w.r.t. G.. The flattening succeeds, and therefore the algorithm
finishes with success.

Algorithm 4.3 (Flatten). Let C is the constraint formula to be flattened.
Initialization
1. Create an initially empty set D of already checked constraints
2. Create an initially empty set E of eliminated variables
3. For each variable a;, create initially empty sets of lower and upper bounds (L; and U;).

4. Create a directed graph G with vertices a; and initially no edges

5. Create a list of complex constraints C. Set C to C (arbitrarily ordered).
Process For each constraint A < B in C, do:

1. Remove the constraint from C

137

2. Clear the set of new constraints N
3. If A= B or A< B € D, continue to the next constraint
4. Otherwise, add the constraint to D and do the following:
(a) If A =ay, B = aj, and there is no path from a; to a; in G, then do the following:

i. Add the edge a;—a; to G.

ii. If the addition of the edge creates cycles in G, replace all variables a;,, ..., a;,
involved in the cycles in all expressions used in the algorithm by the variable o, .
Collapse vertices a;,,...,a;, into the single vertex a;, in G. New sets U], and
L;, for this vertex are constucted as follows: U] := U;U;, and Li := U;Ui,.
For each pair (I, u) € (L}, x U/,), add the constraint { < u to N. Add the set
{C!,'l = aj, }:=2 to E.

iii. Otherwise (no cycles) form sets

Sy = Ui L, where k € {k | there is a path from ax to a; in G}
Su = UmnUn, where m € {m | there is a path from a; to a,, in G}

For each pair (I, u) € S; x Sy, add the constraint { <u to N.
(b) Otherwise, if A = lub;(A;), add constraints of the form A; <X Bto V.
(c) Otherwise, if B = glb,(B;), add constraints of the form A < B; to N
(d) Otherwise, if A = a;, add B to the set U;. Form the set

S = Uk Lk, where k € {k | there is a path from ax to a; in G}

Add constraints of the form { < B ({ € §;) to V.
(e) Otherwise, if B = a;, add A to the set L;. Form the set

Sy = UgUx, where k € {k | there is a path from a; to ax in G}

Add constraints of the form A < u (u € Ux) to N.

(f) Otherwise, if A = a(.»-f) and B = a(g), add the constraints 4; < Y37(@ B, to V. Here
Var(a,i) € {+, —,0} is the defined variance of the i-th parameter of type constructor
a, <t = <, <~ = >, <% = = and addition of a constraint 4 = B is
treated as addition of two constraints 4 < B and B < A.

(g) Add constraints in N \ (CUD) to the tail of C

(h) If the current constraint was not processed on this step, remove it from D and put
it back into the head of C (so that the algorithm does not try to process it now).

Resolution Empty the set of sets T. For each constraint A < B in C, do:
1. Remove the constraint from C and add it to D
2. If A =glb;(A;), add the set {A; < B} to T.
3. Otherwise, if B = lub;(B;), add the set {A < B;} to T
4. Otherwise, A = a(A;) and B = b(B;). Do the following:

(a) If there is no path from a to b in G, fail
(b) Otherwise, for each path P = (a = cq,¢1,... ,cn = b) from a to b in G, add C” to set

138

T. Here C’ is the set of the following constraints:

A; < Var(co,i)C@—vl,
(o4 [C“('J—H]
(Co—vl[éo—»i].

C [Cv'O—vi],
Cp-vi < Var(cl,i)ci—v:'.
i =< :
C [C‘wi—b'_’];
Cl—»?[c"l—vf."l.
2 [C'v‘l—vf.’];
C}—)f! < Var(c;,i)Cﬁ—»S.

C?—l-m.j B;
where
(C=1%) 04mt (CF71) < e (CH=1F)
are the labels of the edges in P and
type (C°) ck (Ve i)

are the labels of vertices in P. All new variables introduced on this step are considered
to be fresh.

Subgoals Create a cross-product of all sets in T: T’ = x;ert. Empty the result set R. For each
t' €T, do:

1. Clone the state of the algorithm (G’ = GUFTV(t'), D' = D, U! = U;, L} = L;, C' = CUt/,
E' =). The lower and upper bounds sets for the variables in FTV(t') \ vertices(() are
set to empty sets.

2. Solve the resulting task starting from the step Process.

3. If there was a success, add the result to R
If none of the tasks above succeeds, fail.

Finalization If C is empty, succeed; the flattened form is

(Vr)V(/\(/\lja;/\/\a;ju)/\ /\ a; L aj) A /\e)

reR i leL, uel, (ai=a;)EG 13

Otherwise, continue from step Process.

Erample 4.2. Consider the following specification:

type T_Set(covar X);
type T_List(novar X);
T_List(X) <= T_Set(X);

and the formula T List(a) < T_Set(J3).

139

Initialization D = 8, Lo = Ly = Us = Uy = 0, vertices(G) = {a,8}, C :=
{TList(a) < TSet(A))

Process Skip as the first and only condition in C does not have the form suitable for processing at
this step

Resolution 7T := 0. Since the constraint has the form T_List(A) < T_Set(B) and there is a path
from T_List to T_Set in G, the following conditions form the set C’:

C'={ax%73*"8t={az17 5725}
where 7 is a fresh variable. Now, T := TUC' = (',
C:=(\{TLlist(a) < TSet(y)} =9
and

D := DU{TList(a) < TSet(8)} = {TList(a) < TSet(s)}

Subgoals R :=0; the new subtask is formed:

G = GU‘Y, D = D, U: = L[,(l € {}3‘0}), Li = L'(le {,U,G}),
L; =U4 =0,C'=CUT: {a <77 jav‘yj’g}

Subgoal 1
Process Processing the first constraint ¢ = a < 4: adding edge a—7 to G, removing ¢ from
C, inserting c in D.

Process Processing the second constraint ¢ = ¥ < a: an attempt to add the edge y—=a to G
leads to a cycle. Collapsing @ and v to a. Removing ¢ from C, inserting c in D, adding
{a=+9}to E.

Process Processing the second constraint ¢ = @ < 4 (note that due to the change made in
the previous step, the variable on the left was changed from v to a): adding the edge
a—F to G.

Finalization (Skipping to finalization since C is empty): The result is
atfha=y
The subgoal is achieved - returning one level back
There was a success. R:= RU{a <f Aa=7v}={a<X8Aa=1}
Finalization Set C is empty; succeed with the result

asfAha=4

Thus, the flattened form of T_List(a) < T_Set(s) in the given type system was found to be
F=a=<BAa=4. Since v is a fresh variable which is not used anywhere else, F is equivalent to
a<g o

In this section, the core (entailment/flattening) algorithm was presented. A simple example was
used to illustrate the algorithm.

140

4.4 Conclusions

In this chapter, the typechecking algorithm for the proposed type system has been presented. The
algorithm works in several stages. First, the source language program is translated to a simpli-
fied target language. Second, the target language program is analyzed and typechecked. During
typechecking, several aspects of program consistency are verified. For aspects related to dispatch, a
separate algorithm is used. The algorithm described in Section 4.2.8 is a generalization of algorithms
developed in [ADL91, Ghe9l, MHH91, BSG95, Cas95b, CGL95, CL95, CL97, QKB96, Sha97].

The core of the rest of the typechecking system is the entailment/flattening algorithm presented
in Section 4.3, which is a generalization of algorithms presented in [BM96b] and [Pot96].

In the next chapter, the formal aspects of the type system presented so far will be discussed.

141

Chapter 5

The Type System Theory

The set of rules and algorithms described in the previous chapter defines a procedure for typechecking
a program in the target language. As with any type system, two main questions arise:

1. Does the typechecking algorithm always terminate? (decidability)

2. If a program is successfully typechecked, does it guarantee the absence of type errors at run-
time? (correctness)

In this chapter, both of these questions will be answered. It will be proven that the type system
presented in this dissertation is both decidable and correct. Decidability of the algorithms will be
discussed in Section 5.1.

Section 5.2 presents a theoretical framework for reasoning about types. It will be proven that
the core entailment algorithms give correct results with respect to this framework.

In Section 5.3, the natural semantics of the target language is presented. Using the framework
established in the previous section, the subject reduction theorem for the given semantics of the tar-
get language will be proven. This will establish correctness of the typechecking algorithms presented
in the previous chapter.

Section 5.4 describes introduction of imperative types in the type framework established so far,
gives semantics to the objects of these types, and proves that the correctness of the typechecking
is not affected by the introduction of such types. This section serves a dual purpose. First, it
demonstrates how the type-theoretical framework established so far can be extended to deal with
types not present in the basic type set of the framework. Second, it shows that the addition of
imperative types to the target language does not affect any aspects of the typechecking, including
algorithms and the correctness results.

Section 5.5 discusses various possible extensions to the natural semantics and its handling by the
type system. While the primary purpose of this chapter is to develop and present the type system
theory rather than an object-oriented language semantics, it is important to address the typing
issues that might arise during the development of the full-fledged version of such semantics.

In Section 5.6, various features of the presented theory are discussed and the main results of this
chapter are summarized.

5.1 Decidability

In this section, decidability of Algorithms 4.1 and 4.3 will be proven. All the other algorithms in
Chapter 4 are trivially terminating as they are either non-recursive or their recursion is based on
the structure of a given finite expression.

The decidability proofs in this section are based on Lemma 5.1 that will be proven in the following
section.

142

5.1.1 Finite evolution

Definition 5.1 (Evolution system). The evolution system £ is a tuple (E,R,[,r: E=R, So),
where E is a set (elements of this set will be called e-atoms), R is a totally ordered set of ranks, r
is a ranking function that assigns a rank from R to each element of E (r(e) = r.), [is a finite set
of indices, and Sy is the initial state {Sy is a finite subset of £, S C F}).

The evolution process is a process of transforming the state of the evolution system:

(S, S1,59,...)

It consists of evolution steps which transform the current state of the system Si into its next state

Sk+1-
Each evolution step consists of zero or more reproductions and exactly one survival, where
reproductions and survival are defined below:

Individual Reproduction A single e-atom (parent) e is chosen from Sy and a single index i is
chosen from /. Their pairing (e, i) results in one or more children {c;}}L, such that

miax{r(c,-)} < r(e)

The set of children is added to Sk4i.

Paired Reproduction Two e-atoms (parents) ey, e, are chosen from S. Their combination results
in one or more children {c;}/L, such that

ml_ax{r(c;)} < min{r{e,),r(ea)}

The set of children is added to Si4,.
Survival A subset of surviving e-atoms S’ is chosen from Sk (S’ C Sk) and added to Sk41.

In addition, each evolution process has the following property:
During an evolution process each pair

(01,00) E(Ex E)U (E®)

can participate in reproduction no more than once. Here

A9BE (Ax B)u (B x A)

An evolution system can be thought of as a system of living creatures that evolve in discrete
time. These creatures possess some genetic property (rank) that diminishes after each reproduction.

Since each evolution step must decrease the ranking, there can be a state in which the system can
no longer evolve. If all strictly decreasing sequences in R are finite, it is intuitively obvious that any
evolution system will eventually (in a finite number of steps) come to the point when the evolution
stops. This intuitive observation is supported by Lemma 5.1. The following definition gives precise
meaning to the notion of a downward-finite set which is intuitively equivalent to an ordered set with
no infinitely decreasing sequences.

Definition 5.2 (Downward-finite set). A set E is downward-finite if
1. E is totally ordered

2. There are no decreasing infinite sequences in E, i.e. there are nosets ¢; (i =1,...,00,¢; € E)
such that the following holds: i < j = €; > ¢;.

143

]

For example, the set of natural numbers is downward-finite, while the set of all real numbers
between 0 and 1 is not.

Lemma 5.1 (Finite evolution). If £ = (E,R,I,r: E2R,Sg) is an evolution system and the
rank set R is downward-finite, then

1. the number of evolution steps involving reproduction is finite,
2. the union of all states of any given evolution process contains a finite number of e-atoms

3. if £ is such that there can be no infinite sequence of survival-only steps, then there is no infinite
evolution process for £, i.e. each evolution process contains a finite number of steps.

W]

Proof. The second statement of the lemma follows from the first one, the finiteness of the initial
state, and the fact that each evolution step adds no more than a finite number of e-atoms.

The third statement of the lemma also trivially follows from the first one.

Thus, it is sufficient to prove the first statement. The proof will proceed by constructing a series
of finite sets Uy and Tj such that

Sk C Uk (5.1)

Ukgr = UpUT (5.2)

To =0 Thp =0 (5.3)

Tet1 =0 vV max{r(e) | e € Tkt1} < max{r(e) | e € Ti } (5.4)

Once such sets are constructed, the following reasoning is used. Let

r. = max{r(e) | e € Tx}
Then, ry > rr4y and (since R is downward-finite)

IN: Vi>N: T;=0
and therefore

Vi>N: Ui=Un
thus
Vi: 5;CUn
from which
Vir (S x S)USi @ 1)) C ((Un x Un)U(Un © 1)) = U

U is finite since Uy and [are finite. Each evolution step “uses up” at least one pair from U.
Therefore, there can be no more than A reproduction steps, where K is the cardinality of U. Thus,
the total number of reproductive evolution steps is finite.

In order to complete the proof it is sufficient to show that the series of sets Tj; and Uy satisfying
the conditions (5.1)—(5.4) can be constructed for any given evolution process.

Assume P = (Sy,S),...) is an evolution process for the evolution system £. Construct sets T;
and U; in the following way:

1. Ug =50

144

2. Upyr = U UT 41
3. To = So

4 T = U(ol.oﬂ)e(TkQUk)U(Tk®[) C(01,02)

where C(01,07) is the set of children that was produced when the pair (01,02) was used in re-
production during the evolution process P. If the pair was never used, C(o1,02) = @. C(oy,02)
is well-defined, since each pair can be used no more than once during a given evolution process
according to the definition of the evolution system.

Now it will be shown that the sets constructed above satisfy the conditions (5.1)-(5.4).

Condition (5.1) First, an auxiliary statement will be proven. It will be shown that

U C(o1,02) C Uk 41 (5.5)
(01,02) (U xUr)U(Ux@TI)

Proof by induction.

Base (k =0):

C(0y,02)
(01,02)€(UaxUg)W(Ua®I)
= U C(o1,02)
(01,03)€(S0x Sa)U(SedT)
=Ty C (l/LUTY) =U,

Induction Assumption:

U Clo1,02) C Uk41
(01,02) € (Ui xUr)V (U ®I)

Then,

U C(o1,02)

(01,02) €(Un41 XUk 41)9 (U1 Q1)
= U Cl(oy,02)
{01,02)E(Us xU)U(Ux @Th41)U(Thp1t X Tap 1 WU @ NU(Ta 51 OT)
= U C(o1,02)
(01,02)€(Un xUs)U(Ux®])
U U C (o1, 02)
{01,02) E(Uk®@Ths 1)W (Thpt X Tt JU(Un B 1U(Th 41 1)
C U1 U U C(o1,02)
(01,02) E(Uk@Tap1) (Ta i1 XTi 1 O Us @ TNI(Ti 11 S 1)
=Ugp1 U U C(o1,02)
01,02) E((UxUTk41)8Tx41)U(Tu4:191)
= Uk 41UTk 42 = Uk42

Now it is possible to show that the condition (5.2) is satisfied. The proof is again by induction:

Base (k=0): So C So =Uq

145

Induction Assumption: S; C Ukx. Let Py, be the set of parent pairs of reproductions at
the (k + 1)’st step, and Ci41(01,02) be the set of children produced by the pair (o, 02)
at the (k + 1)'st step. Then, Ck41(01,02) = C(01,02) and

Pey1 C (Sk x Sk)U(Sk @ 1)
Thus
Sk =(Sk U U Cr41(01,02)) \ Sk

(01,02)EPx+1
=(S%u | Clooa))\ S

(01,02)€Prs
csu |J Clo00)
{01,02) € Pry
cvu |J Clor0m)
(01,02)EPr4t

CUz U U C(o1,02)
{01,02)€(Se xSk JU(Sk@J)
C Uk U U C(or,02)

{01,02)E(Us xUn)V(Ux @)
C UrUUk 4y = U4
Condition (5.2) Immediate from definition of Uy
Condition (5.3) Immediate from definition of T}

Condition (5.4) By definition of reproduction,
max{r(c) | ¢ € C(o1,02)} < min{r(o1), r(o2)}
Therefore (provided Tk # @ and Ti 4, # 0),

max{r(o) | 0 € Th41}

= max{r(o} |0 € U Cl(oy,02)} < max{r(o) | o € Tk}
(O[,OQ)E(Th®Uk)U(Tk®[)

Thus, it has been shown that a sequence of sets Uy and Ti satisfying the conditions (5.1)-(5.4)
can be constructed for any evolution process. Therefore, the lemma has been proven. O

5.1.2 Termination of expansion algorithm

Algorithm 4.1 is used to find an expanded form for a given simple constrained type (€).A w.r.t the
given user type graph G. The following theorem establishes the termination of this algorithm for
any constrained type provided G has valid ranking (see Definition 4.7).

Theorem 5.1 (Termination of expansion algorithm). Algorithm 4.1 terminates for any con-
strained type (C).A provided G has a valid ranking. o

Proof. Let 7(-) be a valid ranking in G. Define ranking r(-) for each type A that is not a type variable
or a O-ary constructor as r(-) = #(pfunctor(A)). The rank set will be a set of natural numbers less
or equal to the maximum rank in #(-). The set S used in Algorithm 4.1 is an evolution system and
each iteration of the algorithm is its reproduction step. Therefore, according to Lemma 5.1, the
algorithm terminates for any simple constrained type (C).A. a

146

5.1.3 Termination of flattening algorithm

Algorithm 4.3 is used to find a flattened form for a given constraint set C w.r.t the given user type
graph G. The following theorem establishes the termination of this algorithm for any finite constraint
set provided G has valid ranking (see Definition 4.7).

Theorem 5.2 (Termination of flattening algorithm). Algorithm 4.3 terminates for any finite
constraint set (C) provided G has a valid ranking.]

Proof. First, the finiteness of the step Process will be demonstrated. The step Process is a cycle
that adds new constraints to the list of constraints C it iterates over; it only passes through newly
added constraints that were added to the tail of the list. It also modifies the graph G and the sets
U; and L; of upper and lower bounds for each participating variable. For each constraint that is
added to the tail of the list, the algorithm checks whether this constraint has already been processed
(processed constraints are stored in set D). Consider the set W of all type expressions participating
in constraints in CU (U;U;)U (U;L;). Assume the initial set C is finite. Then, W is finite as well
and therefore therc is only a finite number of possible constraints w; < wy such that w; and wy
are subexpressions of some type expressions from W. Such constraints constitute a (finite) set .X.
The algorithm for the step Process never creates new expressions; it only decomposes the type
expressions in W to produce new constraints. Thus,

1. One constraint is eliminated from the remainder of C on every iteration;

2. Every constraint in C is processed no more then once (due to the usage of the set of already
processed constraints D);

3. Constraints that are added to the remainder (tail) of C are taken from the finite set .X;
4. The set X is the cycle invariant.

Therefore, the iteration must stop no later than on its z-th step, where & is the cardinality of .X.
Thus, the finiteness of the step Process is proven.

Next, the finiteness of the whole algorithm will be shown. First, a ranking of type expressions will
be introduced. This ranking will later be used to define an evolution system related to the algorithm.
Lemma 5.1 will then be applied to the resolution system to yield the algorithm termination.

Let #(-) be a valid ranking in G. Let N(i) be the number of type constructors ¢ in G such that
7(¢) = i. To each type constructor c, assign a number M (c) in the range (1. N(#(c))] in such a way
that

c#dAi(c) =F(d) = M(c) # M(d)
Define a new ranking

2+ M(a) + Z;f_fl)-mi"‘“ Meltl j « N(j) ais a type constructor

F'(a)d: 1 a=glb
2 a=Ilub

This new ranking has two properties:

1. It is a valid ranking since it does not change relative ordering of constructor ranks, i.e.
i(a) < 7(b) = #(a) < F'(b)

2. It assigns a unique number to each non-0-ary type constructor in G as well as to type operators
lub and glb.

147

Let ,,, be the maximum rank in this new ranking. Define a simplified tree representation of a

type as its tree representation stripped off 0-ary type constructors, and define ranking r(-) for each
type A as a tuple (ng___,...,n;), where n; is the maximum height of the vertices corresponding to
the type constructor a; with the rank #(a;) = i in the simplified tree representation of type A or zero
if the constructor a; does not participate in A. For example, if #(a) = 3, #(b) = 4, and F(c) =5,
then #(a(a, a(b(5(8)),a))) = (0,3,5,0,0), #(a(c(a))) = (2,0,3,0,0), and #({a) = (0,0,0,0,0). Let
the tuples be lexicographically ordered. Then the set of such tuples comprises the ranking set R
which is downward-finite.

Let I be the (finite) set of O-ary type constructors in G. Let the connector set of type expressions

A= a(.;f) and B = b(l;) along the path P = (a=cq,c1,...,¢cn = b) in G be the set N(A, B, P)
defined as follows:

{AI\ 1 C N(4, B, P)
{CO7YI\NIC N(A,B,P)
(all type expressions in C° [C."é"l]) \ICN(4,B,P)
(all type expressions in i(',o"’l[C-'.O"i]) \ICN(4,B,P)
(all type expressions in C' [Cﬂo"i]) \IC N(4,B,P)
(CI7INTC N(A, B, P)
{C'™*}I\ I C N(4, B, P)
(all type expressions in C' [C-'.i"z]) \ITC N4, B, P)
(all type expressions in lCl""’[C-"l"é])\ I CN(A,B.P)
(all type expressions in C? [(-fl"ﬂ])\ I C N(A,B,P)
{CIINTC N(A, B, P)
{C**I\IC N(A, B, P)
{CP=173}\ I C N(A, B, P)
{B;}\ICN(AB,P)
where

(CF-1%) ck_l(c':k’-“l-m) < Ck(C"k-l-.é)

are the labels of the edges in P and

type (C°) ck(Ve.i)

are the labels of vertices in P. All new variables introduced here are considered to be fresh.
From the definition of valid ranking, the definition of r(-) above, and the definition of connector
set it follows that

{A, B}\I #0 = min{r(t:;) | t, € {4, B}\ [} > max{r(t2) | t2 € N(A, B, P)}

for any path P from a to b.

Each Resolution step either completes the given branch of the algorithm or creates several
new branches. In order to show the algorithm termination, it is sufficient to demonstrate that all
branches terminate. Consider any single branch. Consider the sets

S: = (all type expressions in Tj) \ [

for T that occur on i-th step in the branch under consideration. Each step of the algorithm either
adds one or more of the following to S; to produce S;4+; or terminates its branch:

148

1. If lub; w; = w € §;, add {w;} \ I to Sis1;

2. If glb; w; = w € S;, add {w;} \ I to Si41;

3. Ifa(A)=A€S;,ieand Pisapath fromatoiinG, add N(4,i, P) to Sit;

4. Ifa(A)=A€ S;,i€ [and Pisa path fromitoainG, add N(i, A, P) to Si41;

5 Ifa(A)= A€ S;, (B) = B€S;, and P is a path from a to b in G, add N (4, B, P) to Si4.

Thus, each transition from S; to Si4; is a reproduction step of the evolution system & =
(E,R, I,r(-),So), where E is the set of all possible type expressions. Reproduction steps never
repeat in a single branch due to the presence of the set of already processed constraints D. There-
fore, the conditions of Lemma 5.1 are satisfied and the branch under consideration terminates. Due
to the arbitrary choice of the branch, this proves the algorithm termination.

a

5.1.4 Termination of entailment algorithm

Algorithm 4.2 is used to decide entailment on type constraint sets. [t transforms the task of deciding
entailment into the question of possibility of flattening. The transformation is done by creating a new
user type graph that is obtained from the original one by adding certain vertices and edges to it. Since
flattening algorithm terminates whenever the user type graph has a valid ranking (Theorem 5.2) and
Algorithm 4.2 always checks whether a newly generated graph has a valid ranking before it makes
an attempt to flatten against it, the following theorem has been proven:

Theorem 5.3 (Termination of entailment algorithm). If the graph G has a valid ranking then
Algorithm 4.2 terminates. O

Thus, the termination of all non-trivial algorithms described in Chapter 4 has been proven. The
next section formally introduces the notions related to types and type constraints and applies them
to establish correctness properties of the main algorithms. These properties will be used in the proof
of subject reduction theorem in Section 5.3.

5.2 Types

In this section, the basic notions of the type system theory will be formally defined. These notions
are:

1. Ground types represented as regular trees over a finite alphabet (a set of type constructors).
These will be introduced in Section 5.2.1.

2. Subtyping defined as a partial pre-order on the domain of ground types. Subtyping is defined
in Section 5.2.2.

3. Entailment as a relationship between sets of subtyping constraints will be introduced in Sec-
tion 5.2.3.

4. Constrained types that denote certain sets over the domain of ground types will be defined
in Section 5.2.5. The notion of subtyping as well as other notions presented so far will be
extended to deal with constrained types.

In Section 5.2.4 these notions will be used to prove that the entailment and flattening algorithms
of Chapter 4 are correct with respect to the regular tree model developed so far. The flattening
algorithm is also proven to be complete.

149

5.2.1 Regular trees

The model that is used for type theory developed in this dissertation is the model of regular trees
defined below.

Definition 5.3 (Regular trees). Let L be a finite ranked alphabet L = {a;}; with a (total)
ranking function Arity(-) : L—(NU{0}). Then a tree w over L is a partial function w : N*—=L from
sequences d of natural numbers into elements of L that satisfies the following conditions:

L. () € domw, where () denotes the empty sequence;
2. If w(d) = a; then w(dj) is defined for all j € {l,..., Arity(a,)} and undefined for all
j > Arity(ai);
3. fw(dj) is defined, then w(d) is also defined.
A subtree T of a tree w at § where w(d) exists is defined as
(&) L w(dd")

A regular tree is a tree that has a finite number of subtrees. The domain of all regular trees over L
is denoted Tree(L). A regular tree w that has an additional property that

IN: Vo eN" |8 > N: w(d) is undefined

is called a finite tree. The domain of all finite trees over L is denoted as Treeq,(L).]

Definition 5.4 (Contractive regular system of equations). Let L be a ranked alphabet and
TyVar be a set of (0-ary) type variables (TyVarnL = @). Then

a; =E;‘(Ql,... vaﬂ) (56)
where a; € TyVar, e;(ay,...,an) € Treeg,(LU{a, ... ,an}) is called a regular system of equations
over Tree(L). If, in addition to the above, e;(ay,...,a,) € TyVar for all i, then (5.6) is called a
contractive regular system of equations. A tuple (t|,...,t,) is called a solution of (5.6) iff

ti = ei[ti/ay, ... ta/an](*)
where
a(d”) ifd =096" and e(d’) =
e(d) otherwise

ela/a](d) & {

o

Algebraic and topological properties of the domain Tree(L) have been studied in [AN80] and
[Cou83). Properties of systems of contractive regular equations over such domains have been inves-
tigated in [Cou86]. Regular trees were also used to model recursive types in [AC93]. The following
result from the abovementioned papers will be used later in this chapter.

Theorem 5.4 (Contractive regular system solution). If E is a contractive regular system of
equations over Tree(L), then E has a unique solution in Tree(L). a

In [AC93] it is also shown that Trees,(L) is isomorphic to the domain of finite ground types (fat)
defined by the grammar

fgt n= a(fgtl yeo- ’fgt.»\nty(a))
where a € L, while the domain of recursive ground types (rgt) defined by the grammar
rgt ::= ala(rgty, ..., 19t gyey(a)) B2 r9E

(where @ € TyVar, a € L) is a subdomain of Tree(L). From now on, the above relationships between
tree and type domains will be used to give meaning to the usage of types in contexts requiring trees
and vise versa.

150

5.2.2 Subtyping

This section defines subtyping as a partial pre-order over the domain of ground pre-types which
are regular trees satisfying certain conditions. Subtyping is defined with respect to the type graph
that is given by the set of constructors, their arities and variances, and subtyping relationships
between them. These subtyping relationships are expressed as constraint systems that are defined
below. This way of defining subtyping relations is due to [Pot98], but is generalized here to allow
significantly more flexibility in the definition of the basic type system.

Definition 5.5 (Constraint system). Let L be a ranked alphabet and TyVar be a set of (0-ary)
tree variables (TyVarNL = @). Then

Aeilar, ... aq) 2 &ilar, ... ,an))
i
where a; € TyVar, ei(ay,... ,an) € Treez,(LU{ay,... ,an}) is called a constraint system over
Tree(L) (denoted C). An empty constraint system with free variables «,...,a, is denoted
TRUE(xy, ... ,an).
a

For example, both TRUE(a) and « < c(a—a) A a < 3 are constraint systems.

Definition 5.6 (Constraint formula). A logical formula F built with logical connectives A and
V is called a constraint formula over L iff every atom in F has one of the forms:

e(ay, ... an) < &(ay,...,an)
or
TRUE(ay,...,an)
or
FALSE(ay,... . an)
where a; € TyVar and €;(ay, ..., a,) € Treeg,(LU{ay, an}) a

Each constraint system is a constraint formula. Moreover, each constraint formula can be repre-
sented in the form V;C; where each of {C; 1s a constraint system.

The satisfiability of a constraint formula (system) can only be defined with respect to the se-
mantics of a given subtyping relationship < (defined below).

Definition 5.7 (Type graph). A type graph G is a directed acyclic graph with vertices from a
ranked alphabet L = L(G) (with ranking function Arity(-)) and marked edges together with variance
function Var(-,-) : L,N—={+,—,0} such that Var(a,i) is defined for all i from 1 to Arity(a). Edges
of the graph a—a are marked with constraint systems C over L such that

FTV(C) = {g.la .o vQAnty(ﬂ)yaly" . 1aAnty(E)}

The following defines ground pre-types as regular trees with no infinite sequences of bound
operators (lub and glb).

Definition 5.8 (Ground pre-types). If G is a type graph, then the domain of ground pre-types
PreTyp(G) over G is defined as the domain of regular trees over L(G)U{glb, lub} where Arity(glb) =
Arity(lub) = 2 restricted by the following condition: if w is 2 pre-type and {j;}{Z, is an infinite
sequence such that Vi: (ji,...,J;) € dom(w), then ¥ndi > n: w((j1,...,Ji)) € L. a

151

The last condition is designed to eliminate the “nonsense” trees like
lub(lub(luby. . .)}, lub(lub(. . .})).

Subtyping is defined below as a binary relation on ground pre-types. It is defined as the limit of
the infinite series of decreasing relations < ,..., <n ,.... These relations are defined recursively
below.

Definition 5.9 (k-subtyping). k-subtyping (for & € NU{0}) is a binary relationship over
PreTyp(G) x PreTyp(G) (denoted <) defined recursively as follows:

0-subtyping: w <o @ forallw,&

_ - d -
Structural: a(w,,... ,Q_A",y(a)) <k a(@y,... . Tanty(a)) &L /\f‘zrity(a) Fi(w; @)

W =<g-1 @ if Var(a,i) =+
where @ € L(G) and fA(w,&) =T =<k-1 w if Var(a,i) = -
W <k—t WAT <4~y w if Var(a,i) =0
Constructors:
Q.(&.Jla cee v“i,\ruy(g)) <k a(wly cee 1UAr1ty(E))
el
def
PESN \/le, eyt /\ CPl <k=1 J[wi,- -]
P i=1
where ¢ # @, p = (a = ag,ay,... .a)p) = @) is a path from g to @ in G with edges labeled with

S GEel,...,lpl), np = |UPl FTV(CP)], and C? is defined as

Case i = 0:

Arsty(ao)
def -0
S N)
j=1

Case i €[1,...,|pl}

Arity(ag)
def i ;
S N)
j=1

ANCE [a'i-l/ﬁlv e 'a-';_nlly(a,_l)/Q-Arﬂy(d._;)' 9_5/51, e ’g-‘/lruy(a,)/a_f"'lly(ﬂ-)]
where Elipl = Wi, and Q_;- and &‘; (i # |p|) are fresh type variables.
Lub:
lub(wy,wy) <k TEDw, <k TAwy 2k T
and
w <k lub(@,@2) Ebw <k T Ve =% @2
Glb:
glb(w; wo) <k @ SDw, <k TVwy % @
and

w <k gb(@, @) Ebw <% TiAw <% @

(]

The series =< is a decreasing sequence of symmetric and transitive relations on PreTyp(G).
This fact immediately follows from case analysis of Definition 5.9.

152

Definition 5.10 (Subtyping). Subtyping is a binary relation over PreTyp(G) x PreTyp(G) (de-
noted <) defined as

gng\ik: w <k T

Subtyping is a symmetric and transitive relationship on PreTyp(G).

Definition 5.10 defines a generalization of the traditional notion of subtyping of recursive type
trees for the case of variance-annotated, non-structural graph G with conditional subtyping.

Definition 5.10 does not state that subtyping should be a partial order, it is only required to
be a pre-order. Indeed, lub(a,a) < a and a < lub(a,a) while a £ lub(a, a) as trees. Given a type
graph G, the domain of types Typ(G) is defined as (PreTyp(G)/ =) where (w; = w2) &L (wy SwaA
w2 <w;). From now on, equality (w; = wa) will be used to denote the relationship just defined,
while equivalence (w; = wa) will be used to denote equality between w, and w» as regular trees.
The equivalence classes of ground pre-types will be called ground types and will be denoted (with
a slight abuse of notation) by their representatives. For example, both a and lub(a, a) denote the
same ground type. The subtyping relationship over PreTyp(G) induces partial order (subtyping)
over Typ(G).

5.2.3 Entailment

The entailment relationship between constraint systems introduced in this section is central for the
presented type theory. Entailment expresses the fact that one constraint system (formula) follows
from the other in the sense of first-order logic.

Definition 5.11 (Entailment). If Clay,... . @y] and Cla;,...,ay,@1,... ,a5] are constraint
C) iff

A g]
formulae over L(G)U{lub, gib}, then T implies C w.r.t. G (denoted T kg

V71, ..., Ty € PreTyp(G): T[Fi/ay, ..., Ty/dx) = 31, ... Iy € PreTyp(G):

Y
Clri/ay,... . Tyan, T1/@, Tx/aF]

For example,
aXfAG2rFazy

is a true statement since for any a and v such that @ < 3 and 3 < v, @ < also holds. Another
example of a true statement is

a < T_Integertg J <T.Real Aa < 3

(provided that T_Integer <g T_Real). Indeed, for any a that is less than T_Integer it is possible
to take # = a which will automatically satisfy

3 <TRealAa < j
An example of a false entailment is
TRUE(a) a < T_Integer

since not every type is a subtype of T_Integer. Note however that - a < T_.Integer is a true
statement as there erists an a such that a < T_Integer.

The following are the properties of the entailment relationship defined above. All of them trivially
follow from Definition 5.11.

153

Reflexivity: CFg C for any constraint set C

False premises: If /g C; then C; g G, for any G,

Right elimination: If C; +5 G AT, then C, +g G

Restricted transitivity: If C; g G, A C. and G, kg Cy, then C; Fg TG A T A Cy provided that

(FTV(C)\ FTV(C)N(FTV(C)UFTV(G)) = @

The following lemma establishes the relationship between the constraints on the left-hand side
of the turnstyle and the set of constraints implicit in the construction of the graph G.

Lemma 5.2 (Extended graph entailment). IfG is a type graph, C' has a solution in PreTyp(G),
and (Ce[a;/a,-] has a solution in PreTyp(G.), then C' Fg C?, where G, is defined as follows:

1.GCG.

2. For every type variable a; € FTV(C') there is a 0-ary type constructor a; € G. such that
a; ¢ L(9)

3. For every constraint ¢ = (T} < Ta) in C', there is an edge from pfunctor(T\[a;/a]) to
pfunctor(Ta(a;/a;]) in G, labeled with ca;/a;].

Proof. Assume M! is a solution of C! in PreTyp(G) and M? is a solution of C* in PreTyp(G.). It
will be shown that M = M?*[M!(a;)/a;JuM! is a solution of C*[a;/a;] in PreTyp(G). Once this
is done, the entailment C' kg C* will follow directly (as it will follow that for any solution M' of
C! there exists a solution M of C? such that M' C M). In order to show that M is a solution of
C%[ai/ai] in PreTyp(G.), it is sufficient to prove that

t =g, t=>t[{M"(a;)/a; for all i] <g I[M'(a;)/a; for all i] (5.7)
for all t,t € PreTyp(G.). Indeed, if (5.7) is satisfied, then
C?la;/ai][M] = Clai/a][M*[M" (a;)/ai]uM?]] = CP[M?|[M " (a;)/ai]

which follows from the fact that M? is a solution of C* in PreTyp(G.) and from (5.7).
The proof of (5.7) is by induction.

Basis:
t <g. L= t{M'(a;)/a; for all i] <og [M!(a;)/a; for all i]
is trivially satisfied since £ <o ¢ y is true for all z and y.
Induction step: From k to k + L: If
t <g. I=>t{MYa;)/a; for all i] <k g [[M'(a;)/a; for all i] (5.8)
then
t <g. [=>t[M'(a;)/a; for all i] <41 ¢ {M'(a;)/a; for all i] (5.9)
There are several possible cases:

1. pfunctor(t) = pfunctor(t) € L(G.) \ L(G). In this case, t = = a; and the subtyping is
immediate for all k including & + 1.

154

2. pfunctor(t) = pfunctor(t) € L(G). According to the Structural clause of the subtyping
definition,

t{M(a;)/a; for all i] <441 ¢ E[M'(ai)/a; for all i]

= /i fia'g[<k J(w;, @) [M (@) /a; for all i

i=1

where n, = Arity(a), t = a(w,,... ,w,,) and { = a(@y,... ,@s,). On the other hand,
since t <g, I, the following is true:

n,

N £9° 0 2m N @3) for all m

i=1

and therefore (by induction assumption for k) Al, SO = Nwy, @) [M(ai)/ai for all d].

3. pfunctor(t) # pfunctor(t), {pfunctor(t), pfunctor(l)} C L(G.). According to the clause
Constructors of the subtyping definition and to the assumption t =g, , there exists a
path p from a = pfunctor(t) to @ = pfunctor(t) in G. such that |p| > I and

il

wy, . Wy /\ CHl =g, Jlwi, - - - ywn,]
j=t

where C; are defined as in the definition of subtyping. This is equivalent to

lpf-1
. » -1 i—1 P(nd J
3{a‘:rl} /\ aj-l(al trey Artty(uf_i)) 2. aj(a e 'ari”ly(ﬂf))
j=2
pr .l 1 P Ipl-1 lpl-1 7
At =g, ax(axw-»“,\my(a';))’\“lm-l("l vt ’O’Amy(af,,,-‘)) Zo. £ (5:10)

where aJ, € PreTyp(G.) and for each j, a? is a type constructor located in j-th position
of the path p. By induction assumption

[pl
g, W, /\ CPl 2kg llwi, - wn,][M " (a;)/a; for all a;] (5.11)

j=1

In order to show (5.9), it is sufficient to demonstrate that

lp'l-1
i Pl j-1 P (ol
Ial,}: (/\ (e el) Sk d (ol)
Jj=2
L l 1
At Zksr6 af (ap,... 'a,\n,y(at;'))
P’ Ip’l-1 lp'l-1 Lin N n. ;
A aIp/|_1(al g ,aA"tV(“f;ll_l)) jk-f—l.g Z)[A/I (ai)/a' for a'u l] (512)

where p’ = pNL(G). This will be done by separately considering each constraint. Each
constraint in (5.10) corresponds to a single edge e; = af_;—a’ in the path p. Each
constraint in (5.12) corresponds to a single edge ¢; = a?l_l—mg’ in the path p’ which
corresponds to a segment of the path p. There are several possible cases:

(a) ej €G. In this case, the constraint is immediately satisfied by (5.11)

(b) e; ¢ G, {aj—1,a;} C L(G). By construction of G., constraint C' marking this edge
in G. has the following properties: FTV(C) = @ and C[M'(a;)/a; for all i] is true.
From this, assumption (5.11), and the construction of C¥

C¥ < i g)[M*(i)/a; for all i]
From the above and the definition of subtyping

(a‘]?_l(a{'l,... ,a{‘-nl‘!/(ﬂ‘,’_l)) k41,8 a?(a{,... ,a";‘my(a,’,))[Ml(a;)/a; for all i
{c) aj—1 ¢ L(G) Va; ¢ L(G). In this case, consider the minimal segment s of the path p
such that:

e €S
e €Eshaj, ¢ L(G)=>ej +1ESs
jm ESNaj,—1 € L(G) > €j, -1 €S

Let s have the length M'. Then all M’ — 1 vertices inside s are the “additional”
type constructors a; and therefore do not belong to p’. All constraints marking the
internal edges of s therefore have the form g; < @; and are satisfied in

(g; <¢ @)[M"(ai)/a; for all i]

by construction of the graph G, and the solution M!. Since all additional constructors
are 0-ary, this also implies that C¥[< 4 g][M'(a;)/a; for all i] for all internal edges.
For the external edges, C?[< ;. g}[M'(a;)/a; for all i is satisfied by (5.11). Thus,

P (a7t -t ; af (of J Yai)/a; for all i
@l el) S o ol M o forall

p

J

4. Otherwise, {pfunctor(t), pfunctor(f)}N{lub, glb} # 8. Since the clauses Lub and Glb are
independent of the user type graph and the trees under consideration are in PreTyp(G.),
the subtyping clause under consideration can be equivalently formulated as

where a’;_, is the first and a?l is the last constructor in s. Therefore (5.11) is satisfied.

N
A A S ker6d;
j=1

where
{pfunctor(4;), pfunctor(A;)}n{lub, glb} = @

For each of these subtyping constraints (5.9) holds by one of the previously considered
cases, and therefore (5.9) holds for this case as well.

0

In this section, the notion of entailment was introduced and its properties were studied. In the
following section, correctness and completeness of the flattening algorithm and the correctness of
the entailment algorithm will be demonstrated.

5.2.4 Properties of entailment and flattening algorithms

Before the algorithm properties can be established, it is necessary to specify how the user type graph
defined by the program according to Definition 4.6 can be translated into the type graph defined
and used in this section (Definition 5.7).

Let G, be a user type graph (defined by Definition 4.6). The type graph G is constructed from
G, as follows:

156

1. For each type definition in G, there is a type constructor in L(G) (and, respectively, a vertex
in G) with arity and variance defined by the type definition

2. For each edge in G, from a to @ marked with constraints C there is a corresponding edge in
G marked with CA C; A Gz, where Gy and Cz are constraints in type definitions of a and @,
respectively

G is then a type graph in terms of Definition 5.7.

Theorem 5.5 (Correctness and completeness of Algorithm 4.3(flattening)). If G, is the
user type graph, G is its corresponding type graph and C is a constraint system over G, then:

1. If F = flatteng(C), then

(a) The set of solutions of C is the same as the set of solutions of F (in PreTyp(G))
(b) Each disjunct in F has a solution in PreTyp(G)

2. If FAIL = flatteng(C), then there is no solution to C in PreTyp(G)

Proof.

Point 1la: Follows from the definition of subtyping and the algorithm by a simple induction on
all cases, since each step of the algorithm replaces a constraint by an equivalent constraint
formula.

Point 1b: The formula F has the from

F=\/(NA {25 A AN ejze)n A axzen A A ak=an) (5.13)

[} leL u€U} ax—+am€G’ arz=am€EE"*
where
Yi,j,s € L;—UU}: s=a(...),a € L(G)
Vi,j,s € LU FTV(s) C vertices(G})
Vi: G'is acyclic
(Vke(l,....n=1]: (am, =am,,,) € Ei)
A {amlvamn} g Uj..vEL;UUl‘ FTV(S)

Vidn> lLam,, .. .0m,:

(5.14)

It will be shown that each disjunct in (5.13) has a solution. Let D; be a disjunct in (5.13).
The presence of subformula

A a=anm
ar=am€E"

does not change the set of solutions of D due to the condition (5.14). Thus, it is sufficient to
demonstrate that

D=(ANA1=2ain A\ aizu) A N azoam (5.15)
i lel, uel, ax—ram€G
where
Vi,s € LiuU;: s=a(...),a € L(G) (5.16)
Vi,s € LiUU;: FTV(s) C vertices(G) (5.17)
G s acyclic (5.18)

157

admits a solution.

Let L; = UJ-:

as follows:

L; and I’ = {i| L} # 8}. Let E be the system of equations constructed

aj<ga,

E = {a; = lubier: ()[L/aj,j ¢ I'}ier
It will be shown that

1. E has a solution in PreTyp(G)
2. Any solution of E can be extended to form a solution of D
Let S° be the set of all such subexpressions s® of Uiel' L; that fiel': s¢=a; Let B be

the set of fresh variables such that there is one variable for every subexpression s¢ € S¢. Then
E can be equivalently rewritten as

B = a; = lub(ﬂk.'l, e vﬂk..n,) forallie I’
- /3/::0/‘(/3[‘;“,...,}3/,) for all &

'
k,Anitg(ag)

where ay is the primary functor of the expression s§ that corresponds to the variable J;. The
above system of equations is regular and contractive and therefore (by Theorem 5.4) admits
a solution M'. M’ is a map from the set {a;}ieU{8k}x to the domain of regular trees over
L(G)U{lub, glb}. Let ¢; be the regular trees mapped to the variables a; by this solution. Then,
they satisfy E (since £’ and E are equivalent) and therefore

/\ (t; = lub,ef_:‘ (Ofti/ai])
iel’

Since | € L} = ;. a,<ga, Li and D is a disjunct in the resulting formula produced by
Algorithm 4.3, each [has the form a(...), where a € vertices(G). Thus

/\ t; = lub(s},... %)

iel’

where each s§ has the form a_';-(‘ ..). Therefore each path in ¢; consists of a (possibly infinite)
number of segments such that

1. The length of each segment is less then or equal to the maximum depth of type variable
in the expression lub(s}, ..., s});

2. Each segment contains at least one of a}.

Therefore, by Definition 5.8, t; € PreTyp(G). Since this argument works for all ¢,
M' = {{ai,t:)}ier, Vi: b € PreTyp(G)

is a solution for F.

Now it is left to prove that M’ can be extended to a solution for D. Let’s form the map
M = M'U{(ai,L)}igr-- This map is a variable assignment for all variables in D. It will be
shown that M satisfies all constraints in D.

Constraints of the form ! < a;: Since [€ L;, | € L} is true and therefore L{ # @, thus
i € I'. Therefore

I[M(ak)/ﬂk,fOl' all k] =< a.'[M(ak)/ak, for alt k] = M(a;) =t;
= lub,eL:‘(l)[M(ak)/ak, for all k]

which is true by definition of subtyping for lub.

158

Constraints of the form a; < aj: Ifi € [’ then @ # L; C L} and therefore L; # 8= j € I'.
Thus there are three possible cases:

l.i ¢ [')j ¢ I'. Then the constraint under consideration becomes L < L which is
trivially satisfied.

2. i ¢ I',j € I'. Then the constraint under consideration becomes L < M(a;) which is
trivially satisfied.

3.iel',je ' Then the constraint under consideration becomes
J

M(a;) = t; = luber: (O)[M (ak)/ax, for all k]
< lubleL;(l)[A/[(ak)/ak, for all k] = tj = M(a;)

which is true by the definition of subtyping and the fact that L} C L.
Constraints of the form a; < u: There are two possible cases:

1. i ¢ I'. Then the constraint under consideration becomes L < u[M (ax)/ax, for all k]
which is trivially satisfied.
2. i € I'. The constraint under consideration becomes

M(ai) = t; = lubiep (1)[M (ak)/a, for all k] < u[M (ak)/ak, for all k]
which is equivalent to

/\ (I[M(ak)/ak, for all k] < u[M(ak)/ak, for all k])
teL’

Consider a single conjunct of the above constraint
[[M(ax)/ak, for all k] < u[M(ak)/ak,for all k})

where { € L} = ;. 4 ,<qa, Lj- Since u € Ui and the above constraint is a part of
the disjunct D produceJ by t.he final step of the algorithm, there must exist a step
Process(4) of the algorithm on which the constraint [< u is produced and added to
N. This implies that at some point of the algorithm execution the constraint { < u is
in the set C. Since ! = a;(...) and u = a,(...) where a, a,, € L(G) and the algorithm
has terminated, the constraint had to be processed on the step Process(4.f) (if a; =
ay) or on step Resolution(4) (if a; # ay). The step Process(4.f) is parallel to the
case Structural of the subtyping definition and thus produces the constraint set "
such that every k-solution of C' is a (k+1)-solution of { < u. The step Resolution(4)
is parallel to the case Constructors of the subtyping definition and therefore it also
produces the set of constraints C’ such that every k-solution of C” is a k + [-solution
of | < u. Since each step of the algorithm produces equivalent constraint sets, and all
steps of the algorithm except Resolution(4) and Process(4.f) produce k-equivalent
constraint sets for all &, the following statement is true:

if Mp is a k-solution of D, it is a k + L-solution of { < u and therefore (since the
above argument works for all { and {) Mp isa k+ 1-solution of all constraints of the
form a; < uin D.

Proof by induction: The solution M is a 0-solution of D (since < g is universal). Assume M
is a k-solution of D. Then, M is a {k + 1)-solution of all constraints of the form a; < u in D.
It has been shown already that A is a solution of all the constraints other then those of the
form a; < u(*). Thus, M is a (k + 1)-solution of all constraints in D (all constraints except
(*) by the statements already proven, constraints (*) by induction assumption). Therefore, M
is a solution of D for all & which is equivalent to the statement that M is a solution of D.

Thus, it has been shown that D has a solution in PreTyp(G).

159

Point 2: Follows from point la and the definition of subtyping, as the algorithm only fails when an
unsatisfiable constraint is produced in all conjuncts of the resulting formula.

O

Thus correctness and completeness of Algorithm 4.3 have been demonstrated.

Theorem 5.6 (Correctness of Algorithm 4.2(entailment)). If G, is the user type graph, G is
its corresponding type graph and C}, EC;’-' are constraint systems over G, then:
If Algorithm 4.2 succeeds on input \/; C} ¢ \/; C3, then \; C} g V; G5 0

Proof. Assume Algorithm 4.2 has succeeded. It means that for each i one and only one of the
following is true:

1. Algorithm 4.3 fails while trying to flatten C! w.r.t G.

2. Algorithm 4.3 successfully flattens C! w.r.t G and also successfully flattens at least one of <C'J'7
w.r.t Gi.

In the first case, the constraint set C! has no solutions (by Theorem 5.5) and can therefore be
removed from the set of constraints on the left of the turnstyle without changing the truth value
of the entailment. If this is the case for all i, the constraint formula \/; C! has no solutions and
therefore the entailment is trivially satisfied. Thus it is left to prove that

Ve Ve
‘ J

under the assumption that for each i C! has a solution in PreTyp(G) and there exists j; such that
(C;'?_ has a solution in PreTyp(G:). However, the above statement follows directly from Lemma 5.2,
Theorem 5.5, and the definition of entailment.]

Note that while the flattening algorithm is both correct and complete, the entailment algorithm
is correct, but not complete. There are two reasons for the incompleteness. First, the extended type
graph produced by the algorithm at some point might not have a valid ranking. I[n this case, the
algorithm returns the UNKNOWN answer which is interpreted as FALSE by the type system even
though the entailment might be true. Second, the formula on the left-hand side of the turnstyle is
not flattened before the construction of the extended graph which leads to rejection of certain types
of correct formulae. This is intentional as it makes this algorithm invariant to covariant type system
transformations which play a major role in type system evolution (see Section 5.6.2).

5.2.5 Constrained types

In this section, the theory of constrained types will be developed. Constrained types are sometimes
called type schemes (e.g. in [Pot98]).

Definition 5.12 (Simple constrained pre-type). A simple constrained pre-type over a graph G
is defined as

VC![,... yQn (C)A

where C is a constraint system over G, FTV(C) C {ai,...,an}, and A is a type over

L(G)U{a1,...,an}.
a

The quantification part of the simple constrained pre-type specification will often be omitted in
cases when the context determines the set of variables bound in the constrained type. For example,
Ya (t < a).a will often be written as (¢ < a).a.

A simple constrained pre-type can be interpreted as the lower bound of the set of ground types
that it denotes. For example, if ¢ is a ground type, then ¢ and (¢ < a).a are equivalent.

160

Definition 5.13 (Constrained pre-type). A constrained pre-type X over a graph G is defined as
follows:

X =glbl_,(Vai,..., ak, (C').4%)

where Ya!, ... ,a:l. (C').A are simple constrained pre-types. o

Thus a constrained pre-type is a greatest lower bound of a finite number of simple constrained
pre-types.

Definition 5.14 (Subtyping of constrained pre-types). If

X, =glb;(T)).A}
X2 =glb;(G). 44

are constrained pre-types, the subtyping relationship between them is defined as follows:

(X1 < Xo) &5 (vi3i: O kg C A AL < Ad)

This subtyping relationship is transitive and reflexive on the domain of constrained pre-types.
As with types, the domain of constrained pre-types is factored by the equality relationship defined
as follows:

(X1 = X2) B (X < 2 A X2 < XY)

Thus, each constrained pre-type falls into one and only one equivalence class. These equivalence
classes will be called constrained types. The subtyping relationship defined above is a partial order
over the domain of constrained types. Again, by a slight abuse of notation, these equivalence classes
will be denoted by their representatives.

A constrained pre-type with n = | is a simple constrained pre-type since glh(A) = A. Therefore,
simple constrained pre-types form a subset of constrained pre-types. Ground types can also be
viewed as a subset of constrained types. Namely, if ¢ is a ground type, a constrained type glb(().t)
can be formed. Let ¢; and t» be ground types. Then

(glb(()-t1) = glb(().t2)) = (Fg t1 X ta)

by the definition of subtyping and entailment.

Note that all constrained types with unsatisfiable sets of constraints are equivalent and play a
role of the “top” type (denoted T) in the constrained type hierarchy. Indeed, let .X = (C).A and
X' = glb;(C;). A} where C is unsatisfiable. Then,

(ty < ta)

X' <X =3 (Crg QAA,<A) = TRUE

for all C;, A, and A} by the definition of entailment.

The equivalence class T therefore has “invalid” or “empty” types as its representatives. The
statement that a particular (constrained) type X = gib;(C;).A; does not belong to this class will be
written as

Fg X

with the interpretation

Fe XEX#£T) = (3 Fg C)

161

(the last equivalence follows from the definitions of equality, subtyping, and the class T).
On the other hand, a constrained type of the form ().a plays a role of the bottom type (denoted
1) since for any constrained type X = glb; (). A;

(0.a<X) = (ViC Fg a < A;) = TRUE

since a ¢ FTV(C;)JUFTV(A;) and thus it is possible to choose a = A; to satisfy the entailment.

In order to emphasize that a subtyping relationship between two constrained types X; and X
depends on a given type graph G, the entailment will often be written as g X; < X» instead of
just X; < Xa.

So far all the basic notions of the type system theory have been defined and the validity of the
core entailment algorithms with respect to the given interpretation of subtyping constraints has been
demonstrated. In the following section, these results and notions will be used to prove the subject
reduction theorem that establishes correctness of the typechecking.

5.3 Subject reduction

The subject reduction theorem is the most important result of this chapter as it proves that a
successfully typechecked program does not generate type errors at run-time.

One of the preliminary results that is needed to prove subject reduction is the static subsumption
theorem. It states that a more precise type specification leads to a more precise typing of the result
of the computation. This result is proven in Section 5.3.1.

In order to prove the correctness of a typechecking algorithm for any language, its semantics has
to be formally defined. This is done in Section 5.3.2.

The definition of “type errors” and the way reduction interacts with typing is determined by the
types of the run-time objects that are processed during program execution. Questions related to
run-time object typing, its definition and semantics, are considered in Section 5.3.3.

Issues related to semantics and correctness of the behavior dispatch process are formally devel-
oped in Section 5.3.4. A theorem stating that a correctly typechecked behavior application always
dispatches correctly (no “message not understood” or “message ambiguous” errors) is also proven
in this section.

Finally, Section 5.3.5 presents the proof of the subject reduction theorem.

5.3.1 Static subsumption

In this section, the static subsumption theorem will be proven. The intuitive meaning of this theorem
is as follows:

Assume that an expression is given a type by the typing rules in Figure 4.2 under certain assumptions
© about the types of variables participating in the expression. Assume further that a new set of
assumptions © is formed in such a way that for every variable it gives the same or lesser type then
the old assumption set did. Then, the theorem states, the same expression will also be typable in the
new environment ©. In addition to that, the type inferred for the expression in the new environment
© will be a subtype of the type inferred for the expression in the old environment 0.

Before the proof of the static subsumption theorem can be given, two additional lemmas have to
be proven. The first one simply states that different branches of type inference algorithm introduce
independent sets of type variables. The next one shows how subtyping relationship between individ-
ual simple constrained types that take part in two different constrained types leads to a subtyping
relationship between the constrained types themselves.

Lemma 5.3 (Independent free variables). Sets of free type variables introduced by different

branches of type inference process have an empty intersection. a

Proof. Immediate from the rules in Figure 4.2. a

162

Lemma 5.4 (Entailment conjunction). If
Vii CA{g; <@} Fglbjey (C).A < glb; 7, AW (5.19)
CANB, <Bi}F X[a/By,- . van/By.B,/Bur- - By /Bn]

< X[a1/B),an/Bxn.Bi/Br, Bn/BN] (5.20)
FTV(X)={B1,..- .BNn, b1, BN} (5.21)
FTV(QO)n{ay, ... ,an,q),an, a1, ... ,EN,QI,... ,/EN,;—}[, . ,EN} =0 (5.22)
Vi, i (_E,»U{g_,-})n(f,-lu{ap}) =0 (5.23)
vi,i' # & (Fu{@})nFiy =0 (5.25)
where
(E Y FTV(E) A\ FTV(O) (5.26)
j€d,
Fo ¥ | FTV(@).A)\ FTV(O) (5.27)
jeJ.
then

Crglb,, . jwie(d xxdn)l U‘C’). Xle /8L, an/Bh A /B AN 8]

= glb(_jl,.,.,_jN)e(-flx~ ijN)(U—(ﬁ')‘X[El/ﬂ'l,... vaN/ﬁva-Tﬁ‘/ul, e vX{\'IV/,dN] (5.28)

a
Proof. Let X = (Cx).Ax. Then the conclusion of the lemma is equivalent to
V A (CACKk[@ /B,an/By. & [B1,. .. . A [8n]
(o JEL X xdN) (7 T) €T x o x T)
A AT wcxtgl/m....,Q.N/ﬂfv.d’r‘/m,..-,Aj-w/m]u/\g%')
/\AX[-a-l/ﬂiv"'12N/ﬁ,,’V1A%l/ﬂly"'vé_i‘v/ﬂN]ij[al/ﬂ; QN/.BNy"‘J[l/,dlw-' 1 /JN]
(5.29)
In order to prove this, it is sufficient to show that
3(j - i) €Ly x - x L)
A (CACx[@ /B, @n/Bn, A} /Br,... . AN /BNIA AT
Gur- In)ET1 % xT) i
F Cxle /B, an/Bn, AT/, ..., AR /BN A N\ CF
AAxlay/B,an /B, AT /By, ... A5 [BN) < Ax([@ /B, ... & /B, A [Py, AN /BN])
(5.30)
On the other hand, condition (5.19) is equivalent to
vie: \/ ACAla <EGIAT FChA (Al < &) (5.31)

i€d, 5¢7,

163

from which

vigjed: N Cale <m}ATFCh (4l <T) (5.32)

Thus

o B €Ly x - xdy): Vi N\ CAfm 2@IATIFChA (AR <) (5.33)
7€7,

In order to prove (5.30), it is sufficient to show that for each (31,... ,Jy) € (Jyx--x Ja) and
any type variable assignment S that satisfies

CACx(@/B,. @n/By, A /B1,... . AN [BN] A \T (5.34)
there exists an extension S, that satisfies

Cxlay /B an/Br, A2 /81, .. Ak B3] A N\ CE

A Axlay /Bl an/ B A5 /B0, A 8] < Ax@ /B TN B B B E’X?/x(f;]} |
5.35

Let (3},....7v) € (71 x ---x Jy) be arbitrary indices and S an arbitrary type assignment that
satisfies (5.34). If no such S exists, the statement is trivially true. Define

oy _)S(@) ify=g
Sitn) = {5(7) otherwise (5.36)

S} is an extension of S since
o ¢ (FTV(C)U U (pTvm?)upmrd))
jed,
from conditions (5.22) and (5.23) of the lemma. Furthermore, S} satisfies
CAT" A (g < &) (5.37)

for all i (from (5.34) and (5.36)). From this and (5.33) there exists an extension Si' of S; that
satisfies

Choaad <) (5.38)
Let
s"(n) = {S!(x) ifye€dom(sy) (5.39)
This definition is valid since
Vi,i' #i: dom(S!')Ndom(Sj!) = dom(S)
(from conditions (5.24) and (5.25) of the lemma) and

Vy € dom(S),i.i": S{'(y) =Si(v) = S(v)

164

since S are extensions of S. S” thus defined is an extension of S and S} for each i. It also
satisfies (5.38) by definition of " and S}'.

Let g‘ = A%‘, E,. = H‘T‘, and a; = @;. Then condition (5.20) implies that
(CAA{A:-' j I?}AC’VX[ZI_I/,‘?IIY vaN/,ijvZ{l/ﬁly"' 1211\7/[35/] +

Cx[@/B,,... . an/By, AT /By, ..., AR /BN] A

(Ax[@ /B B A By, .. A5 18] < Ax(@ /B, ... Gn /B T B B 18N])
(5.40)

The variable assignment S” satisfies
CA N < TV ACKE /B BB B By T [8N]
i
(by (5.34) and (5.38)) and therefore there exists an extension S, of S” such that S, satisfies

Cxl@ /Bl ... an/Bv. A /81, A% /8N A

(Ax[al/ﬂ11'~- |EN/ﬂf\I|_A';%ll/ﬂly"~ vi-%;N/ﬁN] j Ax[a—l/ﬂ’l,... ,O—N/ﬁ, |;T-Zl‘/,dly... ,715'1\;’//31\[])
(5.41)

(it follows from (5.40)). However,
Vi Sela;) = S.(a;)

(by definition of S} and from the fact that S. is an extension of S} for all i). Therefore, since S,
satisfies (5.41), it also satisfies

Cxlay /B, van /B, A Br,. . A% [BN] A

(Axlas/Br . an/ B A5 /B0, A 18N < Ax(@ /8, 3O B B T 8])
(5.42)

From this and (5.38) S, satisfies (5.35).

Thus, it has been shown that for any (3},...,7y) € (J1 x --- x Ju) and any type variable
assignment S that satisfies (5.34) there exists an extension S that satisfies (5.35) if the conditions
of the lemma are satisfied. This proves the statement of the lemma. a

The following defines subtyping relationship between typing environments as a straightforward
extension of subtyping relationship between types.

Definition 5.15 (Typing environment ordering). If © and © are typing environments, then

(CF O <0) &L (V(name) € [d: CH O((name)) < O((nane)))
a
Theorem 5.7 (Static subsumption). If
O 0o (expr): X (5.43)
Cre<©6 (5.44)

165

then

O (expr): X (5.45)
CHX<X (5.46)
O

Proof. The proof is done by transforming the derivation of (5.43) into the derivation of (5.45). This
is done by induction on the depth of the derivation tree. Since the expression is the same in both
cases, it is possible to apply the same rules in the same order to obtain the necessary derivation.

Base: The derivation of (5.43) has depth 1. Thus the derivation includes only one application of
the rule Axiom, the expression (expr) consists of a single variable u, and 8(u) = X. Then,
Ou) = X and C+ X <X since C+ 9 < ©. Thus, it is possible to build the derivation
of (5.45) as a single application of the rule Axiom, where the derived type is .X. Since CF
X < X, the base case is proven.

Induction step: Assume that for all derivations of (5.43) of depth less or equal ton — 1 (n > 1)

the statement of the theorem is proven. It will be shown that in this case the statement of
the theorem is also true for all derivaiions of depth n. The proof is by cases depending on the
first (root) rule applied in the derivation of (5.43).
The general schema is as follows: first, it is shown that the typing environments in the premises
of each rule have the same relationships as the ones in the rule conclusion. Then the induc-
tion assumption is used to establish the subtyping relationship between types inferred for the
premises of the rule. Finally, Lemma 5.4 is used to derive the subtyping relationship between
the types derived in the conclusion of the rule. In all cases, conditions (5.22), (5.25), (5.24),
and (5.23) of Lemma 5.4 follow from Lemma 5.3 and the fact that new variables introduced
in the derivation are always fresh. Condition (5.19) is always a consequence of the induction
hypothesis. Condition (5.21) is satisfied by the appropriate choice of .X. The only condition
that has to be proven individually for each case is the condition (5.20). The set of indices i
for each rule is the set of numbers from 1 to N, where N is the number of premises in the rule
under consideration.

Rule Axiom: Can’t happen, since if the root rule is Axiom, then n = L.

Rule Abs: The detailed proof will be given for this case only, since all other cases are similar
and differ primarily in definition of .X used in Lemma 5.4.

Since this rule is the root one, the expression under consideration is fun (x) (expr).
First, it will be shown that if C+ 9 < O, then

Qu{a <@}t (@ =0uw{x:a} <Ou{x:a}= 9) (5.47)

where a, @ are fresh. Since 8'(y) = ©(y) and @l(y) = O(y) for all y # x, it is sufficient
to show that Qu{a <a} F (a = &'(x) < §'(x) =a), i.e. Qw{a <a}+ a<a, which is
always true as {a, @a}NFTV(C) = 0. Thus, equation (5.47) has been proven.

Since the rule Abs has been successfully used, its conditions are satisfied and therefore

(S (expr) : X (5.48)

where the derivation of equation (5.48) has depth n — 1. By induction assumption and
from equation (5.47)

@' v (expr) : X' (5.49)

166

and
_—

Os{e<a}F X' <X (5.50)
Therefore,
©o fun (x) (expr):.X (5.51)
where
X =glb;((C).a—4") (5.52)
X' = glb((C).4") (5.53)
From the original derivation, it is also known that
Ob tun (x) (expr):Y (5.54)
Y = ghb,(T).a— I‘) (5.55)
X' =gl ((T).T) (5.56)
The only thing left to prove is therefore
CrX=<X (5.57)

This can be obtained by using Lemma 5.4 with ¥ =1 and
Xa, 8] £ ().a~s
In order to use Lemma 5.4, it has to be shown that condition (5.20) is satisfied, i.e.
CA(J < D) F Xla/a,3/8] < Xla/a,B/8)
This follows from the fact that
(B = a) F a—=g8 < a=g
=S(B=B)F(a=za)A(g=2D)

which is immediately true.
Rule Appl: Here N = 2 and X is chosen to be

‘([ol,ag,ﬂl,ﬂo] (31 < gh—ray).ay
Condition (5.20) necessary for the applicability of Lemma 5.4 follows from
(B, 2B A(B, 2 Ba) b (8, 2 B,—an).ar X (B) X Fa—rar).a
= (8, 2B)AB, 2Ba) A (B = m—ml) F (8, X B,—ar) Al S o)
= (8, 2 BN (B, 2 Ba) A(By R Bamen) (8, 2 B,—ran)
which is immediately true as
B, % By % Ba—a; X g,oay
Rule Product: Here N =n and .X is chosen to be
X[en, - e B B E 081, -2 Bn)
Condition (5.20) necessary for the applicability of Lemma 5.4 follows from

NGB 2BIF @B, 8,) 2By . Bn)

=\, 2B r N8, B

which is immediately true.

167

Rule Seq: Here N =2 and X is chosen to be

def

X(ay, aa,B1,8:] = ()52
Condition (5.20) necessary for the applicability of Lemma 5.4 follows from
(El jﬁl) A(gz jﬁ'.!) P-ég j ﬁ'.’

which is immediately true.

Rule Let: Before Lemma 5.4 can be used here, it has to be shown that
0<0=0u{x: X} <0u(x: X}
where

@0 (expr), : X,
© o (expr), : X,

However, if © < O, then

Ou{x: X,} <Ouw{x: X,}

(5.58)

follows from equations (5.59), induction hypothesis, and the definition of w. Thus (5.58)

is proven and it is now possible to use Lemma 5.4. Let

X{ay, @, b1, 52 & ().

Then condition (5.20) necessary for the applicability of Lernma 5.4 follows from

(B, XBIAB, 2 82)F 8, <3,
which is immediately true.

Rule TypedlLet: Before Lemma 5.4 can be used here, it has to be shown that
0<0=20u{x:T'}<0uw{x: T}
where T & expandg (T). However, if © < O, then

Ou{x:T'} <Ouw{x: T}

(5.60)

follows from the definition of . Thus (5.60) is proven and it is now possible to use

Lemma 5.4. Let

X[ay, a, 81, Ba] &of (B X T').02

Then condition (5.20) necessary for the applicability of Lemma 5.4 follows from

8, % By) A (8, % Ba) F (8, 2 T').8, X @, =2T).
=(8, 2B)A(B, 2B A (B

which is immediately true as

QIjBIjT'

B,
B, < T)F (8, 2 T)A(8, < F)

Thus, for all cases it has been shown that the induction assumption for all n < N where N > |
implies the statement of the theorem for N. The induction base (for N = 1) has also been proven,

and therefore the statement of the theorem is true for all N.

168

o

5.3.2 Natural semantics

This section defines the natural semantics of the target language that will be used to show the
soundness of the presented type-checking algorithm.

The run-time objects (rt-objects) of the language comprise the set O. Rt-objects will be denoted
as a, b, c, Each rt-object of the language has a type. This will be written as object : T_Type.
Rt-objects of the language are:

Atomic constants These are constants explicitly defined by the program and the initial environ-
ment, such as 5, unit etc. Behaviors declared in the program are considered to be atomic
constants as well. The set B C O is the set of all behaviors declared by the program.

Products A product object is an ordered list of run-time objects:
(ar,---,an)
where a; € P(0). Products of rt-objects comprise the set P(O0). As usual, it is assumed that
(a)=a
and therefore O C P(Q).

Closures Closures are function abstractions together with the environment they are defined in.
They are denoted as closure(E, x, expr). Here E is the environment, x is the formal argument,
and expr is the body of the abstraction.

Run-time objects are irreducible and can appear as the final result of a successful program execution
(reduction).

The run-time environment (rt-environment) E is a set of name-to-rt-object bindings of the form
(name) = a, where name € /d (set of identifiers) and a € 0. Given an rt-environment E, E({name))
denotes the rt-object a in the binding of the form (name) = a in E or § if (name) is unbound in £.
The operation ¥ : E\WE, constructs the new rt-environment that includes all bindings in E» and
those bindings of E) that are not overridden in E2. Formally,

Es((name)) if E2({name)) # @

(E1WE3)((name)) = {EI((name)) if £({name)) =9

The store S is an unspecified entity that represents the storage space of the program. For the
purposes of this section, it is sufficient to state that there exists a predicate Valide(S) defined on
all possible stores; an initial store S such that Valide, (S) = TRUE; and a set of primitive functions
{primitive;}. The validity of a store may or may not depend on the typing environment ©.

Primitive functions are introduced to model low-level system primitives. Each primitive function
is a partial function that maps pairs (S, a) to (§',a’). This mapping has the following meaning: if
primitive;(S,a) = (S',a’), then the primit.ive function primitive; applied to an rt-object a in the
presence of the store S produces the result a’ and changes the store to become 5'.

Primitive functions are the most basic execution primitives and correspond to low-level implemen-
tation functions. Their correctness is not checked; rather, it is assumed. The right set of primitive
functions along with their definitions and the proof of their correctness is the responsibility of the
language designer.

Before the natural semantics can be defined, certain assumptions about the underlying user type
graph G need to be established. It is assumed that G has the following properties:

Products: [t is assumed that the following definitions are given:
concrete type T_ProductN(covar X1, ..., covar N);

for all N from 2 to M, where M is the maximum arity of product expressions in the program
(M is finite since every program is a finite text; at the same time, products can not grow
dynamically in the proposed semantics). Existence of the type definition

169

concrete type T_Unit;

is also assumed. The type T.Unit can be thought of as a O-ary product type. It is further
assumed that none of the above product types has any subtypes or concrete supertypes. The
existence of a predefined rt-object unit of type T_Unit is also assumed.

Functionals: It is assumed that behavior and function types are defined as

concrete type T_Function(contravar A, covar R);
concrete type T_Behavior(contravar A, covar R)
subtype of T_Function(A, R);

It is assumed that there are no concrete subtypes of T _Behavior and that the only concrete
subtype of T_Function is T_Behavior. Instead of T_Function(.A, R) and T_Behavior(, R) the
denotations A~ R and A—,R, respectively, will be used.

The assumptions about the product types play a crucial role in definitions of behavior corsistency
and the treatment and typing of product expressions. Assumptions about functional types are
used in typing and treatment of abstraction and application expressions. The assumptions about
non-existence of concrete subtypes of the functional types can be lifted provided the appropriate
reduction rule for application expression is added.

The natural semantics of the target language is defined in Figure 5.1. The statement of the form

(S, E, (expr)) Yg (5. a)

means that the expression (expr) evaluated in the environment E with the store S reduces to
rt-object a and changes the store to become S’.

The function dispatch(b,a) (B x O@—O) is defined by Definition 4.21.

In this section, natural semantics of the target language has been defined. The next section
discusses issues related to run-time object typing.

5.3.3 Execution state typing

In this section, typing of run-time objects and correctness of a particular state of program execution
will be defined. The correctness condition placed upon primitive functions and their associations
will also be formulated.

Definition 5.16 (Extended typing environment). An extended typing environment © is a set
of pairs a : X where X is a type and a € ([dUO). a

An extended typing environment is a straightforward extension of typing environment designed
to handle typing of run-time objects. In this section, the term “typing environment” will be used
to mean “extended typing environment”. The notion of initial extended typing environment Oy is
defined as a straightforward extension of initial typing environment (Definition 4.11).

Definition 5.17 (Run-time object typing). If © is a typing environment (Definition 5.16) and
a is an rt-object, then its typing is defined by the rules depicted in Figure 5.2 which augment the
rules in Figure 4.2. Here ©(©, E) denotes the environment obtained as follows:

X if E((name)) # @ and © > E((name)) : X
T otherwise

0(0, E)((nme)) = {

o

Definition 5.18 (RT-similarity). Two types A; and A, are called rt-similar iff one of the fol-
lowing is true

170

E((name)) # @

(S, E, (name)) Ug (S, E((name))) RedAxiom

RedFunction

(S,E,tun (x) (expr)) Ug (S, closure(E,x, (expr)))

(SQ,E.(OXPr)) Ug (Si,a1) (Sn—l,E,(expr)")Ug (S, an)
(SoylE. ((expr),, .- ..(expr),)) Ug (Sn, @1, ... ,2n)) RedProduct

(So, E. {expr),) Ug (51,) (Si. Ew{(name) = a,}.{expr),) Ug (S52,a1) RedLet
(So, E,let [T] (name)=(expr), in (expr),) Ug (S»,a»)

(So, E, (exprs)) Ug (S1,a1) (S, E, (expr)) Ug (S2,20)

(So, E, (exprs) ; (expr)) g (Sa, a2) RedSequence

(50! E’ (expr)[) U’G (Slv CIOSUY‘E(E', X, (expr))) (Sl ’ Ev (pr!‘)g) Ug (S'.’| a'-’)
(S2, EWE"W{x = a2}, (expr}) Yg (53, a3)
(So, E, (expr), (expr),) Ug (S3,aa)

(So. E, (expr),) g (Si,behavior) behavior € B
(81, E, (expr),) Ug (S2,22)
dispatch(behavior, a)) = fun (x) (expr)

(52, E,(fun (x) (expr)) a)lg (Ss, a3)

(So, E, (expr), (expr),) Ug (53,2a)

RedFuncApplication

RedBehApplication

(So, E, (expr),) Ug (51, behavior) behavior € B
(51, Ev (e!pt)r_,) UG (S'-’l a’l)
dispatch(behavior, az) = primitive;
primitive;(Sa, a2) = (Sa3, az)

(5o, E',(expr)l(expr)._,) Ug (S5, 33) RedBehPrimApplication

Figure 5.1: Natural semantics of the target language

O(a)=X
——9(:)21 X RTAxiom

O b a, : glb; ((C).A]") ... 9o a, :glb;, ((Gr)-4) pTProduct
O (al,...,an) 1 glbj, ; (UT).(A7 ..., AR))

Owe(O, E) > fun (x) (expr):.X
O o closure(E, x, {expr)) : X

RTClosure

Figure 5.2: Typing rules for rt-objects

171

2. Ay =a(Al, ... APTYEN A, = a(Al, L L AZr¥(@)y “and for each i A} is rt-similar to A}

3. Ay =a(Al, ... APYON Ay = a(Ab,..., AF™C)) and a € (=,)

Rt-similarity requires that two types be identical when their leaves related to functional types
are cut off. For example, (a,(b—c,d),e) is rt-similar to (a, (f—g,d),e), but (a,(b,c,d),e) is not
rt-similar to (a, (f,g,d),€).

Definition 5.19 (Run-time pre-types). Run-time pre-type p over G is defined recursively as fol-
lows:

1. If p = A where A is a type over GUFTV such that pfunctor(A) € Concreteg and
pfunctor(A) ¢ {—,—3p} = FTV(A) =0
then p is a run-time pre-type.
2. If p=(p1,...,pn) where p; are run-time pre-types such that
Vi,j#i FTV(p)NFTV(p;) =9

then p is a run-time pre-type.

Thus a run-time pre-type can contain variables in the leaves of functional types only. Thus
(a(b), a—c) is a run-time pre-type while (a(b), c(a)) is not.

Definition 5.20 (Run-time types). Run-time type q over G is defined as follows:

g =glb;(C).pi
is a run-time type iff the following holds:
Yi: p; is a run-time pre-type (5.61)
Vii kg T (5.62)
¥i,j: pi and p; are RT-similar (5.63)
The set of all run-time types is denoted RTypg. a

Run-time types are thus greatest lower bounds of a finite number of rt-similar consistent run-time
pre-types. For example,

glb{(a < a).a—f,a—b) (5.64)
is a run-time type while
glb{(a < a).a—f,a)

is not.
Definition 4.15 (Primary form of run-time types; extended from page 132 above).
primaryg is extended to work for run-time types in the following manner:

primaryg(q) def {(c1,--- ,ca) | cj = pfunctor(q}) for some i}

172

where

g =glb(C).(q}, qh)
o

This definition is valid since pfunctor(q;-) is independent of i according to (5.63). For example,
the primary form of the type (5.64) is (—).

Having defined the run-time object typing, it is now possible to formally specify the requirements
placed on primitive functions. The primitive functions are assumed to be correct in the following
sense:

Definition 5.21 (Primitive function correctness). A primitive function primitive; is correct
w.r.t O iff for every behavior association of the form

behavior (T} A—= R (name) : primitive;

-

for any store S such that Valide(S) = TRUE, for each rt-object a such that ©va : X, X? =
glb; (C}).A;, and

Ji: Fg G ACAA <A
the following holds:

primitive;(S,a) = (S',r)
Validg (S') = TRUE
Oor: X" =glb;(C).R;
Vidj: CAG A(Ai < A)Fg G A(R; X R)

In other words, the primitive functions are required to behave just as good as type-checked non-
primitive ones w.r.t their type specifications. Note that there is no definition of store consistency
here as it depends upon the semantics of primitive functions. However, the results of this chapter
do not depend on the definition of store consistency. It is only required that correct applications
of primitive functions do not disturb it (as stated in the above definition). An example of a set of
primitive functions satisfying these conditions is given in Section 5.4.

In this section, execution state (run-time object) typing was defined. Next section proves a set
of correctness properties for behavior dispatch process.

5.3.4 Dispatch correctness

In this section, several properties of dispatch function used in Figure 5.1 are proven. The ultimate
goal is to prove that in a correctly typechecked expression the dispatch is always valid and correct
(no “message not understood” or “message ambiguous” errors).

Lemma 5.5 (Argument property). If ¢ € RTypg then

(Fi: kg CAC A(A] <X A)) = primaryg(q) <g primaryg((C).4) (5.65)
Vi: CACIA(A! A Fg CIPAA] AP < A (5.66)
Vi: 3t € concreteg((C).4): CACIA(AT<A)Fg T AAT A <A (5.67)

where g = glb;(C?).A?, abstractg(primaryg(t)) = (C*).A* and abstractg(primaryg(q)) = (C7P).A%P.
a

173

Proof. The statement (5.65) can be equivalently formulated as follows:
Vi: (g CACE A (A7 < A) = primaryg (q) <g primaryg((C).4))
Then, all three statements of this lemma have to be proven for all i. Let ¢ be such that
Ve CACEA(A] = A)

For such i, all three statements are trivially satisfied (false premises imply any conclusion). In the
rest of the proof, it will be assumed that i is such that

kg CACT A (A] 2 4)
is satisfied. The above condition is equivalent to the following statement:
36,5 C1@] A A A AT < A@)

Let A’ %S A[G]. Assume (without loss of generality) that A7 = (A7y,...,Afq). Then A’ =

(A,..., A) and
A?j[ﬁ] < A% for all j from | to n

(from the definition of subtyping and the variance of the product). Since A7 is an n-arity product, its
primary form is also an n-arity product. Let primarys(q) = (t{,....t%). Note that t] € Concreteg
from the above definition, the definition of a run-time type, and the fact that ¢ € RTypg. Then,
At = (A, ..., AL) by definition of abstractg(-).

Each AY;, by definition of a run-time type, has a primary functor which belongs to Concreteg.
Thus AY; =¢(ry, ... yTArty(c)), where ¢ is a concrete type constructor. Then t;l = ¢ and therefore

A} =¢(...). At the same time, A} = ¢(...) for some € and since A:-'_,'[E] < A’ and from the definition
of subtyping ¢ <g €. Since A} = ¢/(...), either 4; = ¢/(...) or 4; = ai for some k. If A; = ax,
then (since C[&] is true by definition of &) the following is true:
pfunctor(A}) <¢ glbg{c’ | (ax < ¢'(...)) € C}
and therefore (since AY;[F] < AL
t <g glbg{c'| (ax <(...)) €C}

On the other hand, if A} =2(...), then t] = ¢ <g €. To sum up, the following statement have been
shown to be true:

Py e .
@ <g {glbg { | (ax < (...)) €C} if Aj is a variable (5.68)

c if Aj =c(...)
and the above case analysis is exhaustive w.r.t. the form of A4;. The above is equivalent to
0 =g primaryg((C).4;)
and, due to the fact that j was arbitrary, to

primaryg(q) = (t],...,t1) <g (primaryg((C).A1), ..., primary((C).An)) = primaryg((C) '(fsi)sg)

which proves (5.65).
In order to show that (5.66) is true, it is sufficient to put

Vik = Tk

174

where
ALIB = e(rin, - T aneye)
Then the following is satisfied (by definitions of primaryg(-), abstractg(-), and a run-time type):
A = A%
I8 = P]
from which
AJ[B) = A7) A (C] 4] = (7))
Since & and 3 were chosen under the only assumption that
Cla) A CB) A AT (8] = Ald]
was satisfied, the following is true:
va, f: (Cl@) ACI[A) A AY[A) < Ala) = 37 AY[G] = ATP[F] A C7P(F])
This implies (5.66).

Consider primaryg(g). Since primaryg(q) <g primaryg((C).A) and according to the definition
of concreteg(-) there are only two possibilities:

1. primaryg(q) € concreteg((C).A) In this case, the statement (5.67) is immediate.

2. 3t € concreteg((C).A): primaryg(q) <g t A(CACIP g C A AP < Af < A) where (C°).Af =
abstractg(t). In this case (by (5.66))

3t € concreteg((C).A): CACIA(A! < A)Fg CPAA! < AP <AAT AAP < A7 < A
which implies
3t € concreteg((C).4): CACTIA(A! < A)Fg CAAT <A <A

that is equivalent to (5.67).
a

The following theorem shows that indeed a dispatch of a type-correct behavior application yields
a correctly dispatched function.

Theorem 5.8 (Dispatch correctness). If ¢ € RTypg is a run-time type, b is a behavior that
satisfies coverage, unambiguity, and correctness conditions,

behavior (C?) A¢—R? (Gell,...,Ng)
are the behavior definitions for &,
association (C7) ARy ... (iell,...,Nd)
are the behavior associations for b,
vz e{a,d},i€fl,... N]: Fg&§
and

Ire{a,d},i€(l,...,Ne], j: Fg GG AC A (A} X A])

175

then the following holds:

k = dispatchg(b,q) # 0 (5.70)

Veze{a,d}, i€[l,...,N;:], j1 CIAGAAIRATH & ANAT AL 2 AT (5.71)

3j: Fg Ce ACIA(A] < AY) (5.72)

where ¢ = glb;(C]).A? and t = primaryg(q). a

Proof.

Point (5.70) According to definition 4.21, in order to show k # 0, it is necessary to show that

St(t) #0 (5.73)

[Smun(8)] = 1 (5.74)

Point (5.73) There are two possible cases:

1. 3,5: Fg & AC} A (A‘J{ =< A?) In this case, the statement (5.65) of Lemma 5.5 can
be applied to deduce that

t <g primaryg ((T). A7)

which ensures that S°(t) # 0.
2. 3,j: Fo ¢ /\(C‘} A (A;? < A9). The statement (5.67) of Lemma 5.5 can be applied
to deduce that

3t € concreteg((CF).4f): CEACIA(AY AN Fg T AAT A 2 A! (5.75)
where (C*).A* = abstractg(t). From the behavior coverage condition 4.18
CACHA(A 2 Af) kg § A (A 2 A7 2 A])
From this and (5.75)
CACIA(AT A Fg A" 2 AF A AT A AT 2 A
Thus
U CACTAAT AN g TIAAT < AF 2 A9AT (5.76)
and since
Fg CF ACH A (AT < Af)
by the condition of this case the following is true:
A Fg OANAILAIANT
The statement (5.65) of Lemma 5.5 is then used to deduce
3: t <g primaryg (). A7)

which proves the statement under consideration.
Point (5.74) In order to show |S2. (¢)| = 1, it is sufficient to show that S°(t) # @ (which has
already been proven) and
Vi,j #i: t <g primary((G).A7) At <g primaryg((C7). A7)
=3kt <g primarg((C}).A2)
A primaryg((C3).AR) <g primaryg((C7).A7)
A primaryg((C}).AR) <g primaryg((C3).A7) (5.77)

176

where t = primaryg(q). From the definition of run-time type
q € RTypg At = primaryg(q) = t € Concreteg™ for some n
Let ¢t be such that the premises of (5.77) are satisfied. Then,
t <g primaryg ((G}). A7) At <g primaryg((C}). A7) AL € Concreteg™
From this and the definition of concreteg(-)
Ju € concreteg((C7). A7, ((F).A7): t<gu
From this and the behavior unambiguity condition
primaryg ((C}).A?) <g primaryg((C}).A3) V primaryg ((C}). A7) <g primaryg ((CF). A7)
V3K u<g primangg((CF). A7)

A primaryg((C3). AR) <g primaryg((G).A})

A primaryg((CF).A2) <g primaryg((C?).45)
There are three possible cases:

1. primaryg((C}).A{) <g primaryg((C}).A}). Let k' = i. Then, k' satisfies (5.77).

2. primaryg ((C}).A3) <g primaryg (). A{). Let &' = j. Then, &' satisfies (5.77).

3. 3k u<g primaryg((CF).49) A primaryg((C}).A8) <g primaryg((CF). A7)
Aprimaryg((C2).A%) <g primaryg((C?).A?). In this case, let ¥ = k. Then, &'
satisfies (5.77).

In all cases k' that satisfies (5.77) has been found. Thus, |SZ,,(¢)| = | has been shown.

It has been shown that under the conditions of the theorem |S2, (¢)| = 1. Thus the point (5.70)
has been proven.

Point (5.71) Assume that z, ¢, j are such that
e CAG Ag =47

Then the statement (5.71) is trivially satisfied. In the rest of the proof it will therefore be
assumed that =z, i, j are such that

o CTACT Aq =]
is satisfied. There are two possible cases:
1. £ = a. In this case,
Fg (C‘} A /\A} < A?

Then k # 0 (from statement (5.70)). If k = i, the statement (5.71) is immediate. Let
k # i. Then

t <g primaryg((C}).A7) <g primaryg((C?).47) (5.78)
from the definition of dispatch(-,-) and S8, (). From the statement (5.66) of Lemma 5.5
CAGAAI LA g TP AAT < AT < 4 (5.79)

where abstractg(primaryg(q)) = (C97).A%. Let X = abstraclg(primaryg((C}).Ag)).
Then

t <g primaryg((Cp).Ag) <g primaryg(Xi)
t <g primaryg ((C7).A7)

(from (5.78) and the definition of primaryg(-) and abstractg(-)) and therefore there are
(by definition of concreteg(-)) two possible cases:

177

(a) primaryg((C?P).A%) € concreteg((CF).A¢, Xi¥). From this and (5.79)
3t € concreteg((CF). A2, Xi): CIACEAAT AT g O AAT < A" < A2 (5.80)

(choose t' = primaryg ((CIP).A9P)).

(b) 3t" € concreteg((C?).A%, XE): t <g t" A(CP ACE kg T A AP < A < 48)
where ¢t = primaryg ((C7P).A%) and (C”).A‘” = abstractg(t”). From (5.79) and the
entailment above

CIAGAAT R AP g O AAT A% <A < Af

which is equivalent to (5.80) (choose t' =¢").

Thus it has been shown that in both cases (5.80) is satisfied. From the behavior correct-
ness condition and (5.78)

COAG A R AP g CEA(AY < A 2 AY)
From this and (5.80)
CIACEAAT < AfFg CEA AT <A < AR 2 A

which proves statement (5.71) of the theorem for this case.

. £ =d. From the proof of the second case of (5.73) (statement (5.76))
3: CACA 2 AN R CIAAT 2 A7 X APAT (5.81)
From the previous case (let £ = d,i = {)
CIANGAAT R AP FG GEAAT < AR 2 A
From this and (5.81)
3 CIACIA(AT 2 AD) Fg CEAAT < AF < AF 2 A
which implies
CEACIA (AL < A kg CEAAT 2 A 2 A

that proves (5.71) in this case.

Point (5.72) Immediate consequence of statement (5.71) and the theorem conditions.

a

In this section it has been proven that in a correctly typechecked expression the dispatch is always
valid and correct (no “message not understood” or “message ambiguous” errors). Next section is
the proof of the subject reduction theorem.

5.3.5 Subject reduction

The subject reduction theorem that is proven below is the main result of this chapter. It shows that
a correctly typechecked program does not produce type or dispatch errors during execution.

Lemma 5.6 (Expanded type propagation). If all types in © are expanded (Definition 4.8), £
is an rt-environment, o € EzpressionsU(Q, and OwWO(O, E) o o : X, then X is expanded. a

178

Proof. By simple induction on the derivation of QWO(O, E) o o : X. Follows from the fact that none
of the rules in Figure 4.2 and Figure 5.2 can produce non-expanded types provided their premises
do not contain them. O

A consistent triple defined below can also be termed as a consistent computation state.

Definition 5.22 (Consistent triple). A triple (S, E, (expr)) is called consistent in a given typing
environment © if the following conditions are satisfied:

1. Valide(S) = TRUE

2. (E((name)) = a) => (O (name) : X, A Ova: XA Fg Xo X Xp)
3. 30€ IdUO: OWO(O.E)po:X)=> kg X

4. OwWO(O,E) > (expr) : XY A g X

This definition requires that all types of rt-objects that participate in a given environment are
valid, and so is the type derived for the expression expr. It also requires the validity of the store S.
Finally, the subject reduction theorem can be formulated and proven.

Theorem 5.9 (Subject reduction). If © does not contain non-expanded types and a triple
(S, E, (expr)) is consistent in © then the following holds:

1. The next reduction step for (S, E, (expr)) exists and is unique. The reduction step is under-
stood as a step from the conclusion of the rule to its premise or from one of the premises of
the rule to the next one in the order these premises are listed.

2. If in addition (S, E, (expr)) Y¢ (S5,a’), then the following holds:
(a) Valide(S') = TRUE
(b) @ a": X’
(c) Fg X’ < .X where OWO(O, E) > (expr) : .X

Proof.

Point 2: The proof is by induction over the derivation of (S, E, (expr)) Ug (S’,a’). It will be
shown that if the theorem is satisfied for the premises of a reduction rule and the triple in the
conclusion of the rule is consistent, then the pair that this triple reduces to according to the
conclusion of the rule in question will also satisfy the theorem.

Rule RedAxiom: Since (S, E, (name)) is consistent, Validg(S) = TRUE. Let E((name)) = a
(E((name)) exists since otherwise the rule in question would not be applicable). Then

© o (name) : X, (5.82)
Ova:X, (5.83)
Fo Xa < Xn (5.84)

from the definition of triple consistency. It is left to show that OwO(©, E) > (name) : .X'
and Fg X’ < X,,. Since O((name)) = X,, and (name) € /d, OWO(O, E) > (name) : X, by
definition of ©(0, E) and the operation &. Thus, X’ = X,. From this and equation (5.84)

*‘g 1Y, j xYn

Thus, the pair (S, a) satisfies the conclusions of the theorem.

179

Rule RedFunction: Immediate from the rule RTClosure in Figure 5.2.

Rule RedProduct: First, it will be shown that if (So, E, ({expr),, ..., (expr),)) is consistent
and Valide(S’) = TRUE, then (S', E, (expr);) is consistent. It is sufficient to show that
under these conditions

OwO(0, E) o (expr), : X' (5.85)
Fg X7 (5.86)

From the definition of consistency,

Owo(O, F) o ((expr),,...,(expr),) : X" (5.87)
Fo X (5.88)

Consider the derivation of (5.87). It follows the rules of Figure 4.2, and the last applied
rule has to be the rule Product. Thus,

OwO(0, E) > (expr), : XI (5.89)

where
Xi= glbj:((‘q'j"l)-"1?j"‘) (5.90)
Xt =glbjn a (WCH).(APT, . ARIm)) (5.91)

Thus, equation (5.85) is proven. Since

Fg X7 =g glbjp ja (UCH7).(ADE, L. AR TR))

= A R (WGH).(AMT, L AR
IPeedhy

= A reuqs (5.92)
Qi

= [\ re ¥ (5.93)
PN L

= /\l’g lq-‘j'n
LI I

= A\ Fe (G97).Ap7 (5.94)
LI I

= Ao glbja(CF77).APY

= Abe X7 (5.95)
i

the equation (5.86) is proven as well (equivalences (5.92) and (5.94) are due to the fact that
all types are expanded which follows from Lemma 5.6 and the conditions of the theorem).
Therefore, (S’, E, (expr);) is consistent as long as Validg(S’) = TRUE. Since So =
TRUE by assumption, (So, £, (expr),) is consistent. Therefore, by induction assumption,
Valide(S,) = TRUE. This makes (S, E, (expr),) consistent and S, valid. After n —1
steps, it is shown that all triples (S;-,, E, (expr);) are consistent. Then, by induction
assumption,

Orva;: X{ (5.96)
Fo X! < X7 (5.97)

180

It is left to show that

O (ar,...,a,) : X° (5.98)
kg X < X" (5.99)
(5.100)

From equation (5.96) and the rule RTProduct (Figure 5.2)

O (ar,...,a,) : .X° (5.101)

where
X7 = glb ((C}97).AFY) (5.102)
Y0 =glbja o (UGHY).(AT, ... ART)) (5.103)

Thus equation (5.98) is proven. Equation (5.99) is equivalent to

Foglbyy, s (UG)(ATT L ABIR)) < glbjp jn (UCTHIP).(APIT L ARI%)

§

= V /\ g (Us (q‘J. 4.11‘ e ‘Agnj‘.’..) < (U,C}‘f-").(A’l‘f?',__ 'Anmj,’:‘)
T dmdtedm

= /A (GG R UG U (AN, AR < (AT AR}
SN [R 1

= VA (GO R (GG U LA 2 40T
Jg- Jmh T A

= VA (AGF rg GrU(Al 2 A7) (5.104)

Jtedmdteedm ¥

= /\V/\@j'n Fg CHIVU{ASY < AP}

ot ar

= AV AFs (GF).A87 2 (G7). AP

i

= [\ Fo glbja (GFF).AF) 2 gl (GHF)-APF)
= [\re X2 2 (5.105)

However, the equation (5.105) is the same as (5.97) and therefore the equation (5.99) is
proven. The above derivation used equations (5.90) and (5.102). The step (5.104) is a
direct consequence of Lemma 5.3 and the fact that the derivation of X* (.X{) occurs in
a branch different from the one used to derive X7 (X7) if i # j.

Thus it has been shown that (S,, (ay,...,a,)) satisfies the conclusion of the theorem.
Rule Redlet: First it will be shown that if

(So, E,1et [T] (name)=(expr), in (expr),)
is consistent, then so is
(So. E, (expr),)
Store validity is immediate; thus it remains to show that

Owo (O, E) > (expr), : X7 (5.106)
kg XD (5.107)

181

under the conditions that

OwO(O, E) b 1et [T] (name)=(expr), in (expr), : X" (5.108)
kg X7 (5.109)

The outermost rule in the derivation of (5.108) is either Let or TypedLet. Therefore
OwO(O, E) b (expr), : X7 =glb;((C}").4}") (5.110)
OwO (O, E)y{(name) : Y} > (expr), : X5 = glbj(((f.‘ﬁ_;").A?_;") (5.111)
where

V= glb,(Ci").Ai™ if the rule Let was used
= | expandg (T) if the rule TypedLet was used

which proves (5.106). On the other hand,

X" =gl j(C"AC™ Ac). A" (5.112)
where
_) TRUE if the rule Let was used
P71 (AL® < expandg(T)) if the rule TypedlLet was used

and therefore {from (5.109))
kg X" = kg glb, (G AC™ Aci). AY"
= A Ate (CLPAT" Aci). A"

i

= AA\Fe (€7 AT Ac)
i

= /\l"g cor

= /_*‘g (C")-Ay"

=g glb((C1").41")
=g X{l
which proves (5.107). Therefore,
(SO) Ev (prr) 1)

is consistent and by the induction assumption

Valide(S1) = TRUE (5.113)
Oba : X? (5.114)
Fg X8 < X7 (5.115)

From this and the conditions of the theorem it will be shown that
(S1, Ew{(name) = a, }, (expr),)
is also consistent. Indeed, S is valid by (5.113). It remains to show that

OwO(O, Ew{(name) = a,}) > (expr), : Xg» (5.116)
k¢ X2 (5.117)

Cousider two possibilities:

182

Rule Let was applied: In this case, Y = X and therefore g XT <Y.
Rule TypedlLet was applied: In this case, Y = ezpandg(T) and

Fg X™ =Fg glb; j(CL" AC™ A (A(" < ezpandg(T))). 45"
= AFs (C" A (A" X ezpandg(T))

=tg XT < ezpandg(T)

Thus, in both cases Fg XT < Y is satisfied. However, from (5.115), kg X{ < X', and
therefore F¢ X8 < Y. This together with (5.114) proves that

OwO(O, Fw{(name) = a,}) < OWO(O, E)¥{(name) : Y} (5.118)

From this, (5.111), and the static subsumption theorem 5.7 the following is true:

1. The statement (5.116) is true.
2. The following statement is true:

Fg X72 < X2 (5.119)

from which (5.117) is also true.
Thus,

(St, Ey{(name) = a, }, (expr),)

is consistent and therefore by induction assumption

Validg (S2) = TRUE (5.120)
Obvar: X (5.121)
Fg X3 < X2 {5.122)
It remains to show that
Fo X§< X" (5.123)

where X" is defined by (5.112). Since kg X§ < .X72 by (5.122) and kg Y72 < X7
by (5.119), it remain to show that g X7} < X". Indeed,

X" =glb, ;(C" A" Aci). 44"
X7 = glb;((C").AF")
and since
CPAC" Aci kg G A (A" < A3™)
for all i, j, by Definition 4.2 F¢ X} < X™ which proves (5.123).
Rule RedSequence: First it will be shown that if

(SOr E, (expr)l H (expr>2)
is consistent, then so is

(So, E, (expr),)

183

Store validity is immediate; thus it remains to show that

OwO(O, E) > (expr), : XT
kg XT

under the conditions that

OwO(O, E) o (expr), ; (expr),: X"
Fg X7

The outermost rule in the derivation of (5.126) is Seq; therefore,

OWO(O, E) o (expr), : X =glb;((C1").A1")
Owe (O, E) b (expr), : X7 =glb;((C4").A3")

which proves (5.124). On the other hand,
X" = glbl,_)((cln A {").."l{;n
and therefore (from (5.127))
kg X" =g glb j(C° AC"). 43"
= A A\Fe (" AC). A
i
=AAFre (G AG")
i
=> Ar Q"
= A\ ke (C7).41"
i

= kg glb;((C").AY")
=kg X7

which proves (5.125). Therefore,
(S0, E, (expr),)
is consistent and by the induction assumption

Valide(S,) = TRUE
Ooa;: X¢
ke XT 2 XT

From this and the conditions of the theorem it will be shown that

(51, E, (expr),)

is also consistent. Indeed, S; is valid by (5.131). It remains to show that

Owe(8, E) o (expr), : X3
Fe X7

184

(5.124)
(5.125)

(5.126)
(5.127)

(5.128)
(5.129)

(5.130)

(5.131)
(5.132)
(5.133)

(5.134)
(5.135)

The statement (5.134) is equivalent to (5.129) and is therefore true. From (5.127)
Fg X™ =g glb; ;(C\" AGS").A4"
= AArs (CHAGH).A"
i
= AAFe (C"AG")
i
= A\ G"
= A\ ke (G).A]"
=tkg X3
which proves (5.125). Thus

(51, E, (expr),)

is congistent and therefore by induction assumption

Valide(S2) = TRUE (5.136)
Opvar: X§ (5.137)
Fg X3 < X7 (5.138)
[t remains to show that
Fg X7 =< xn (5.139)

where X" is defined by (5.130). Since Fg X$ < X7 by (5.138), it remain to show that
Fg X2 < X", Indeed,

X" =glb (C" ACE").A"
X3 = glb; ((C5").43™)
and since
CPAT" kg G A (A" < 44"
for all 7, j, by Definition 4.2 g X7 < X" which proves (5.139).
Rule RedFuncApplication: First it will be shown that if

(So, E, (expr)l (expr)._,)
is consistent, then so is
(So, E, (expr),)

Store validity is immediate; thus it remains to show that

Owo(0, E) o (expr), : X7 (5.140)
ko XT (5.141)
under the conditions that
OwO (0, E) o (expr), (expr),: X" (5.142)
Fg X (5.143)

185

The outermost rule in the derivation of (5.142) is Appl; therefore,

OwO(O, E) b (expr), : X7 =glb;((T}").4}") (5.144)

QWO(O. E) o (expr), : X3 = glb;((C4").A3") (5.145)
which proves (5.140). On the other hand,

X" =glb, j(C" AG™ A (A}" < A" —a)).a (5.146)

and therefore (from (5.143))
Fg X" =k glb, (G AG™ A (A" < AL a)).a
= AA\Fe (AT A (A" 2 A)"—a)).a
LI

= AAFs (G7 AT A (A 2 48" 5a)
i

= /\f‘g (c'ln

= A ke (C").A"

= kg glby((C17).A41")
=tg .\T
which proves (5.141). Therefore,
(So. E,(expr),) is consistent (5.147)

and by the induction assumption

Valide(S,) = TRUE (5.148)
O o closure(E', x, (expr)) : X} (5.149)
Fg X < XD (5.150)

From this and the conditions of the theorem it will be shown that
(S1. E, (expr),)
is also consistent. Indeed, S is valid by (5.148). It remains to show that

WO (O, E) > (expr), : X (5.151)
kg X7 (5.152)

The statement (5.151) is equivalent to (5.145) and is therefore true. From (5.143)
Fg X" = kg glb; (G " AG™ A (Ai" < Al oa)).a
= AAFe (C" AT A (A" < 4" =a)).a

i

= A\ Fe (C" AT™ A (A" 2 4" =a))
i g

= /\l"g (C'-?;."
J

= /\ kg (C3"). A"

= kg glb; (G).A3")

=tg X3

186

which proves (5.141). Thus
(S1, E, (expr),)
is consistent and therefore by induction assumption

Valide (S2) = TRUE
Opvas: X7
kg X3 2.3

Now it is possible to demonstrate that
(S2. EWE'"w{x = a1}, (expr))
is consistent. S is valid by (5.153). [t has to be shown that

OwO(0, EWE'W{x = a}) o (expr) : X3
ke X7

From (5.149)
O o closure(E', x, (expr)) : X}
and therefore by the rule RTClosure for rt-objects (Figure 5.2)
Owe(O, E') o fun (x) (expr): X}

The outermost rule in the above derivation must be the rule Abs and therefore

OwO(0, E)w{x : 3} o (expr) : X. = glb;(CL). AL

X} = glbi((CL).0-Ac)
where 3 is a fresh type variable. From (5.143) and (5.146)

Fg X" =glb (G AC" A (A" X Af"—a)).a

and therefore
A, kg CIPACIM A (A" 2 A" 5a)

By definition of subtyping

and therefore (since (5.154) is true)

(X2 < B) g OWO(O, EYE'"W{x = az}) < OwO(O, E')w{x : ().5}

From this, (5.158) and the static subsumption theorem

OwO(0, EWE'Ww{x = a}) o (expr) : X3
(X3 < 8) ke X < X.

which implies (5.156). (5.157) is equivalent to
Bkt I‘g Qn

Since (5.162) is equivalent to

Vi j3k: GO A(AL* X B) AT kg C§" A (A" < Al)

187

(5.153)
(5.154)
(5.155)

(5.156)
(5.157)

(5.158)
(5.159)

(5.160)

(5.161)
(5.162)

by definition of subtyping, in order to prove (5.157) it is sufficient to show that
3i,j: kg GO A (AP A AC (5.163)
From (5.155)
vii G kg NG A4S AL
J

and from (5.150) and (5.159)

vi: C" kg \(C A B—AL < A7)
i
From the above two equations and (5.160)

Fg CIP ACT™ A (A" < A" —a) A N\(C2 A A < A A AT A B—AL 2 47
J J
which implies
Fg CI" ATI™ A (A" < A" 5a) ACTO A (43° S AT ACL A (B4 2 A

which is equivalent (due to the variance of — and transitivity of subtyping) to

Fg CIPACIP ACIO AT A(AI® < AJPa) A (A2 < AT A (B AL < Al

AAT" <) A (AL) A (A3° 2 8) (5.164)
This implies
Fg CIPA (43 XA AC

and therefore (5.163).
Thus

(Sa, EWE"w{x = a»}, (expr))

is consistent and therefore by induction assumption

Vaiidg (S3) = TRUE (5.1658)
Obaz: X3 (5.166)
Fo X3 < X3 (5.167)
It remains to show that
Fg X3 < X7 (5.168)

where X" is defined by (5.146). Since Fg X§ < X7 by (5.166) it is sufficient to demon-
strate that

Fg X3 2 X7 (5.169)
From (5.150) by definition of subtyping
Vidi': Cmhg CUoAaAl® < A"
which is by (5.159) equivalent to
Vidi: G kg O A (B—AL 3 A7)

188

From the above and the definition of subtyping, the following is true:
Vi, i3 CPACGRA (A" < AlPoa) kg G A (B— A < ALY
Using the properties of entailment
Vi, i3 CPAGA (A" < At a) kg
CO AT A (B—=AL < APV A (A" 3 ASP—a)
from which (by transitivity of subtyping)
Vi,j3i: CPACR A (A" < A sa) kg T AT A (B—AY < AS"—a)
and by variance of the type constructor —
Vi,j3i": CPACGPA(A® < A sa) kg C AGPA AT K JAAL <a (5.170)
On the other hand, from (5.155) and (5.162) it follows that
(X3 <A kg X5 2 X
which is equivalent to
Vi j3k: G A (AR < B) ACFg G5 A (A" < AL
from which and (5.170)
Vi, j3i' ke CPAGM A (A" < A" a) kg
CAC AAR <BA A <aACE" A (A" < AY)
which implies (by transitivity)
Vi,j3i k: CPACGPA (A" < A 5a) kg
COAC AT <FAAY <aATE" A (A" < AV) A (A" < a)
which, in turn, implies
Vi,j3k: CPACGPA(A" < A"aa) kg G A (A" < a)
which is equivalent to
Fg X3 < X"

due to (5.146). Thus (5.169) and therefore (5.168) are proven.

Rule RedBehApplication: The first two premises of this rule are the same as those in the

rule RedFuncApplication. Therefore, the equations (5.141)-(5.155) are proven in the same
way. Since (expr), reduces to a behavior (behavior), the following is true:

QwO(O, E) > behavior : X}
where
X§ = glb (T}). A4}
and

0 = AjRf

189

From this and (5.150)
Xe<XP=vVidl: ChbgCon(al® <4
= Vidl: C"Fg G0 A(AL2sRY < ALY (5.171)
From (5.143) and (5.146)
Vi g (G AT A (A" X A)"—a))
and from this and (5.171)
Vi,j3l: Fg CPAT™ A (A" < A 5a) ACE A (Ah—e Ry 2 AL™)
from which (due to variance of — and —, and their subtyping relationship in g)
Vi,j3l: kg CP AT ACEA (A" < AL A (R} < a) (5.172)
From (5.155)
Vidm: G kg CFO A (AD® < A447) (5.173)
and from this and (5.172)
Vi, jll,m: kg CPACGP ACSACPEA (AT < A" < A)A(Ry < @)
which implies
IH.om: Fg COACTOA (AP < 4})

From this and the dispatch correctness theorem 5.8

k = dispatchg(behavior,az) # 0 (5.174)
Vim: CPOACOAAP <AL Fg CHOAATY < AF < 4y (5.175)
Im: g CEOACPEA (AT < AF) (5.176)

There are two possibilities: the dispatch might produce a function or a primitive. The
first case is handled by the rule RedBehApplication, while the second is handled by the
rule RedBehPrimApplication. Here only the first alternative is considered; the second one
will be considered later on. Assume that the dispatch produced a function F. Then, by
the functional consistency condition,

Qo> F: X} (5.177)
kg X} < (CF).(AF—RY) (5.178)

Since © < O for any valid ©, by the static subsumption theorem

OQWO(E, Q)b F: Xy = glbp((C’}).A‘} (5.179)
Fg Xy < X} (5.180)

and therefore
Fg Xy % (CF°).(A§ - RE) (5.181)

By using the rule Appl it is concluded that
OWO(E,0) b (F az) : X7 =glb,, ,(CF*AC) A Af 2 AT).y (5.182)

190

where 7 occurs in X$ only in places denoted explicitly above (as it is fresh when the
rule Appl is applied).
It is now left to show that

(82, E, (tun(x) (expr)) as)

is consistent and that the result type conforms to the third condition of the theorem. Sa
is valid by (5.153). In order to show triple consistency it is left to demonstrate that

Owo(O,E)e (F az) : X3 (5.183)
Fg XD (5.184)

where F = (fun (x) (expr)).
(5.183) follows from (5.182). (5.184) is equivalent to

Im.p: b CPOACH AA] ATy (5.185)
From (5.181)
Ip: Cfkg & A AL < Af—RE
and from this and (5.176)
Im,p: kg CEOACPON (AT < AF) AT A A 2 A5 R
which implies (5.185) (let v = RF). Thus the triple
(S2, E, (fun(x) (expr)) a:2)

is consistent and therefore (by induction assumption)

Valide(S3) = TRUE (5.186)
Oovag: X7 (5.187)
Fe X8 < X7 (5.188)

In order to complete the proof of this case, it is necessary tc show that
Fo X3 X"

Since F¢g X3 < XJ by (5.188), it is sufficient to show that
e X3 < X"

which is equivalent to

Vi,jam,p: C\" /\(C{;" AA < A{;"—m Fo GFPACH A A’} < ATy Ay <a
(5.189)

By the definition of subtyping,
Vi,j: CPAGPAA" < A"sakg CGPAGTAA" < A" e
From this and (5.171)
Vi,jal: G AG"AA" < A" aa kg

CPACG" A A < A" a AC A (A RE < AL

191

from which and (5.173)

Vi,jl,m: C"ACG"AA" < AJ"sa kg

CPACPA A" < A" aa AC A (AL RY < AIP) ACRE A (ATC < A
2 1 2t 1 = 2 2 2

from which and (5.175)

Vi,jalbm: C"AC"AA™ < A"sakg

CPACGPAA < A" sa AC S A (Abop R < AP AP A (AT < AY7)
ACESAATE <AL 2 4

From this and (5.181)

Vi, jll,mp C"AC"AA" < A"sakg
1 2 1 2 2 &

CPACT A AR < AP o AT A (AR < AP ACTS A (AP < AJ")
ACESAATS < AF S QAT A4S S ASRE

From this and the global behavior consistency condition 4.10

Vivjal)mvp: C[nAC’_)"/\A‘lnj.‘tén—)G'_g

CPACTA AN < Ao AT A (AL R < AIP) ACP S A (AT < A4")
ACEOA AT < Al < ALACH A AL < AFREARE X R,

From this, transitivity, and relationship between — and —

Vi, jalm: CPAG AA” <A aakg CPOAC A AL S ATSRIAR, < a

which implies (5.189) (put v = R}).

Rule RedBehPrimApplication: This rule is identical to RedBehPrimApplication up to the point
where the dispatched function is applied. Therefore, the equations (5.141)-(5.155)

and (5.171)-(5.176) are proven in the same way.
[t now remains to show that under these conditions

primitive;(Sa, ap)

is defined, the resulting store S5 is consistent, and the type of the resulting object is less

then the type derived initially for the expression:

O a5 : X3 = glb, (CF 4). AP
Fg X3 2 X"

S, is valid by (5.153). Since
O az: X§ =glb,(C*).AT*
Im: kg TEOACPEA (AT < Af)
(by (5.154) and (5.176) respectively), and

primitive;(Sa,az) = (S3,a3)
Validg(Sa) = TRUE

O o ag: X§ =glb, (G5"). 45"
Vm3p: CF*ACP® A(AT® X Af) Fg G5 A (A5% < RY)

192

(5.190)
(5.191)

(5.192)
(5.193)

(5.194)
(5.195)

by the primitive function correctness condition 5.21. Now it is left to show that
Fo X3 < X"
which is equivalent to
Vi,j3p: CPACGMAAI" < A"aakg (B2 A A% <a (5.196)
From the definition of subtyping
Vij: CPAGPAA" < A" oabkg CPAG" AA™ < A" oa
From this and (5.171)
Vi, jll: CPAGPAA" < A" sa kg
CrACAAI® < A 5a AC S A (Ab—5pRE < A7)
From this and (5.173)
Vi,jllm: C"AG"AA" < A"sakyg
CPAGY A A < A" oa AT A (Ab—osRE < AP ACPS A (AP < 44")

From the above, the transitivity of subtyping, relationship between — and —; and their
variance

Vijdm CPAGR ALY X APk
CiPACACEACE A (AT < A" A (47 2 AL) A (R S a)
from which and (5.175)
Vi, j3m CPACGR AL 2 Ao kg
Qn A(C!_;" /\xc‘ld /\(c.,ﬂa A(Agm f A‘-l_;")/\(.‘l‘-f-,'." j 416)/\ (R:, f_ (])
ACE* A AT < AF 24

From this and (5.195)
Vi,j3l,mp: C"ACGPAA" < A" satg
CP AT AT ACT A(AT® < AY") A (43" S A A(RL 2 a)
ACEONAT® < AF < ALATES A (A5° 2 RY)
From the above and the global behavior consistency condition 4.10
Vi,j3l,m,p: CiI"ACIAA™ < A" aatyg
CrAC AC ACT A(AT® X A)A (A R A A (RS a)
ACEEAATS < Af < ALACE A (AR S REVARE X RY
from which and the transitivity of subtyping
Vi,jll,mp: C"AC AA" < Al"satkyg

Cm G AT ATT® A (AT < AP A (A7 < A) A CE A AT < 4f 5 4
ACEEAAR < a

which implies (5.196).

193

Point 1: Since the triple (S, E, (expr)) is consistent, {expr) is syntactically valid. The reduction
rules are structural with the following exceptions:

1. Rule RedAxiom additionally requires that E((name)) # 0

2. An application expression can be processed by one of the rules RedFuncApplication, Red-
BehApplication, or RedBehPrimApplication. These rules have additional (non-structural)
premises.

Assume that (expr) = (name) (as is required for the rule RedAxiom to be applicable). Assume
E((name)) = @. Then OWO(E, O) > (name) : T which contradicts the assumption about triple
consistency (since /g T). Thus, the rule RedAxiom works for all correctly type-checked names.

Assume that (expr) = (expr), (expr),. The first premise of all three rules is identical. It will be
shown that under these conditions, the first expression, if it reduces, reduces to either a closure
(in which case the rule RulFunApplication is applicable and its second premise is checked) or a
behavior (in this case an additional analysis is needed). Indeed, by triple consistency

Fo X" = A Ao (CPAGT AA™ 2 AL —a)
i

= A\ Fg (C" AAA® < B—a) (5.197)

where 3 is a fresh type variable and equation (5.144) is satisfied. Also from triple consis-
tency (5.147) is true and therefore

(So, E, (expr),) Ug (S1,a1) (5.198)
Valide (S;) = TRUE (5.199)

O a; : X =glh(C%).4}° (5.200)
Fg XE< XD (5.201)

From (5.197), (5.201), and transitivity
vidl: b AP < g-a

Since X? is a concrete type, the primary functor of X{ must be concrete. The only concrete
types ¢ such that (¢ <g —) are (=) and (—) itself. Thus, the primary functor of X{ is either
() or (=%). The only rt-objects that can have a type with a primary functor of (=) are clo-
sures. At the same time the only rt-objects that can have a type with a primary functor of (—)
are behaviors. Thus, a; must be either a closure (in which case the rule RedFuncApplication is
applicable) or a behavior.

If o is a behavior, its dispatch (fourth premise of the rules RedBehApplication and RedBeh-
PrimApplication) can:

1. Produce a function. In this case, the rule RedBehApplication will work.

2. Produce a primitive. In this case, the rule RedBehPrimApplication will work.

3. Produce an error (0). In this case, no rule is applicable.
Thus it is sufficient to show that under these conditions, the dispatch will never yield 0.
However, this statement has already been proven in (5.174).

Thus, the statement 1 of the theorem has also been proven.

a

In this section, the main result of this chapter (the subject reduction theorem) has been proven.
The next section describes incorporation of imperative types into the type system developed so far.

194

5.4 Imperative types

In this section, it will be shown that it is possible to consistently introduce state in the frame-
work described above. Interestingly, state does not require any special type treatment. The set
of appropriate primitive functions along with a particular treatment of store and store validity is
sufficient.

This is in sharp contrast to ML-based type system where imperative types (type constructor
ret) are treated specially by the type system. This special treatment has two main disadvantages:

1. It restricts the use of imperative types by applying less permissive type discipline to them.

2. It significantly complicates the development of a system with several different imperative types,
as for such a system the base type theory has to be modified.

The family of imperative types T_Var(X) is introduced as follows:

type T_Var(novar X);
behavior T_Var(X) -> X get : primitivel;
behavior (T_Var(X),X) -> T_.Unit set : primitive2;

with the additional constraint that there are no concrete types below T_Var.
Let

V={o|o€OAOy>o:TVar(...}}

be the set of all objects with imperative types. The store S is then defined as a partial function from
V into O. For each “variable” (an object of type T_Var) the store gives its “contents” (an object
stored in it).

The store validity predicate Validg(S) is defined in the following manner:

Valid (S) <5 (@b v:V =glb(CY).V; A3i: kg C' AV; < TVar(a) =

S(v) =0
AObo: 0 =glb;((7).0;
AVi3j: G AV, 2 TVar(e) Fg G AQj 2 a) (5.202)

An intuitive meaning of the above definition is that a store is valid if for every variable there is a
value stored in it and that value is of the same (or smaller) type as the type of the variable.
The semantics of primitive functions is then defined as follows:

primitive, (S, v) = (S, S(v)) (5.203)
{getting the value of a variable v) and
primitive,(S. (v,a)) = (SW(S(v) = a), unit) (5.204)

(setting the value of a variable v to a). In the latter case

(Se(S(v) = a))(o) & {S(o) fo#v
a ifo=vw

In order to show that this definition is valid and that in the system extended with imperative
types in this manner the subject reduction theorem still holds, it is sufficient to demonstrate that
the above primitives obey the primitive function correctness condition 5.21.

Getting a value: It is necessary to show that if S is a store and v is an rt-object such that

Valide (S) = TRUE (5.205)
O v: X' X¥ = glb(CY). 4 (5.206)
Ji: kg O A A; < TVar(a) (5.207)

195

then the following holds:

primitive, (S, v) = (S, a) where a = S(v) {(5.208)
Valide (S) = TRUE {5.209)

Ova: X?=glb;((}).R; (5.210)

Vi3j: G A (A X TVar(a)) kg G A(R; 2 a) (5.211)

In order to show (5.208), it is sufficient to demonstrate that S(v) exists. From (5.207), the
fact that X" is an rt-type, and the condition that there are no concrete types below T_Var it
follows that

XY =T Vvar(T) (5.212)

where T is some type expression. From this and the validity of S (by (5.202))

S(v)=a (5.213)
Ova: . X*=¢glb;(C).R; {5.214)
3j: T.Var(T) X TVar(a) g C; A (R; X a) (5.215)

By (5.213) S(v) exists, and therefore (5.208) is proven. (5.210) is equivalent to (5.214). The
validity of S is trivial by (5.205) (getting a value does not change the store). (5.211) is
equivalent to (5.215) and is therefore proven.

Thus, consistency of the first primitive (getting a value) has been demonstrated.

Setting a value: It is necessary to show that if S is a store and p is an rt-object such that

Validg (S) = TRUE (5.216)
Obop: XP,XP =glb,(CF).P (5.217)
3i: g & AP < (TVar(a),a) (5.218)
then the following holds:
primitive(S, p) = (S', unit) (5.219)
Validg (S') = TRUE (5.220)
O > unit : (¢ (5.221)
vi: ¥ AP < (TVar(a),a) ¢ X* < T.Unit (5.222)

The statements (5.221) and (5.222) are immediately true as ©g > unit : T.Unit. Thus it
remains to show the validity of (5.219) and (5.220).

Since XP is a run-time type and there are no concrete types below T_Products, the following

is true:
Vi: P=(Vi,Si) (5.223)
At the same time, from (5.223) and the definition of a run-time object
p=(v, s) (5.224)
On the other hand, from (5.218) and (5.223} it follows that
3i: kg € AV; < TVar(a) (5.225)
and from the rule RTProduct
Ovv: X' =¢glb(Q).V/ (5.226)
Ovs:X° =gb,(C,).Sm (5.227)
XP =glb, ., (G AG,)(V,Sh) (5.228)

196

From this and (5.217)

P = (V/,S,,) for some {,m

& =G AG, for somel,m
from which and (5.223)

V; = V/ for somel
Si = S;, for some m

Let us denote the indices that satisfy the above equations as {; and m;. To sum up, the
following statements have been proven:

Oop: P =gl (T AC,).V, Sm,) (5.229)
p=(v, s8) (5.230)

Oov: X" =glb,(C).Y, (5.231)
Oobs: X' =glb (],).Sm, (5.232)

From this, (5.225), and the fact that there are no concrete types below T Var it follows that
vi: Vi, =TVvar(l;) (5.233)
From this and the semantics of primztive,

primitive,(S,p) = (S', unit) (5.234)
where §' = SW(S(v) = s) (5.235)

Thus, (5.220) is true. It remains to show that ' is valid. Since S is valid and S’ can only be
different from it on v, it is sufficient to demonstrate that

vidm: G AV <TVar(a)Fg C, AS,, <a (5.236)

X" is a run-time type with primary functor T_Var (from (5.233)) and therefore FTV(U;) =@
for all i. Also from the definition of a run-time type U; = U for some U and all i. From this
and satisfiability of run-time type constraints (&).V}’ = T-Vax(U/). Thus (5.236) (that we are
attempting to prove) is equivalent to

Im: TVar(U) <TVar(a)rFg G, AS, < a
which is equivalent to
Im: a=Urg G, AS, Xa
due to novariance of T_.Var. This is in turn equivalent to
dm: kg G, AS,, U (5.237)

by definition of entailment and the fact that a ¢ FTV((C:,).Sh,) and FTV(U) = 0.
At the same time, (5.218) (the condition) is equivalent to

3: kg C,, A(TVar(U),Sm,) X (T-Var(a),a)
which implies (by variance of product and definition of m;)

Im: kg, ATVar(U) < TVar(a) ASm < a

197

which is equivalent to
Im: FgC . AU=aAS,n <«
by variance of T_Var. This is equivalent to
Im: g C,ASm XU

due to the fact that a ¢ FTV((C:,).Sm). However, the last statement is equivalent to (5.237).
Thus (5.236) has been proven.

It has been demonstrated that imperative types can be treated consistently in the framework
presented in this dissertation. The definitions of the type T_Var, behaviors get and set along
with their related primitives given at the beginning of this section were proven to comply with the
requirements set forth for type system consistency. It follows that the subject reduction theorem
holds for the type system with imperative types introduced in this manner.

5.5 Extensions

In this section, I will describe several extensions to the simple semantics considered above. All these
extensions will be considered from the point of view of their impact on the type system.

5.5.1 Errors, nulls, and exceptions

While the typechecking algorithm guarantees the absence of type errors at run-time, other errors
may still arise. A practical programming language has to be able to deal with these errers in a
consistent and sound manner.

Erample 5.1. Consider a primitive function that implements an integer division:
associate (T_Integer, T_Integer) -> T_Integer divide : primitiveIntDiv ;
Division of some number by zero is certainly type-correct:

var T_Integer i,j;
i:=65;
j =0
i.divide(j).print;

What should be the result of such a program? Apparently, there is no integer number that could
meaningfully be printed by the last statement. o

If primitive functions were not allowed, this problem would not arise, since in the absence of
primitives every terminating computation is valid as long as the program is typechecked. In real
programming, however, the ability of a program (and, ideally, the formal semantics and the type
systemn) to deal with this kind of errors is crucial. There are several possible solutions to this problem.
These solutions are not mutually exclusive, but usually the presence of one of them is sufficient.

The notion of a “null value” is a well-established notion in the database community. Surprisingly,
in the programming languages community it did not receive nearly as much theoretical attention,
even though it is constantly utilized in practical programming. A null value is, in a sense, a common
placeholder for missing, insufficient, or incorrect information. Thus, there can be many different null
values (e.g. uninitialized, incorrect or absent). In Example 5.1, for example, the division func-
tion would return some null value indicating incorrect result. That value will be printed (probably
as a string) and the program will proceed normally.

This approach is in fact adopted by the IEEE standard for floating arithmetic [IEE85]. The role
of null values is played by such entities as NaN. Unfortunately, no such standard exists for integer
arithmetics.

198

From the point of view of the type system, the following question needs to be answered: what are
the types of the null values? The simplest consistent approach would be to create a concrete type
T_Null at the bottom of the type hierarchy and make all null objects to share that type. Then, every
function and/or behavior would be able to produce such a value without violating the type discipline.
There are, however, certain problems related to this approach. First, the natural semantics has to
be extended to deal with null values in functional positions (since T-Null is at the bottom of the
hierarchy, it is a subtype of all behavior and function types and therefore null values can legally
appear where functions and behaviors can). If the imperative types are present, the semantics of
extracting a value from a null value posing as a variable object also has to be specified. Finally,
since T_Null is also a subtype of all product types, the distinction between behaviors that take one
argument and the ones taking several arguments is blurred, which requires a significant additional
run-time support. For example, consider the following code:

behavior T_Point -> (T_Integer, T_Integer) intCoords;
behavior (T_Integer, T_Integer) -> T_Integer plus;

var T_Point p;

p.intCoords.plus.print;

The last statement is supposed to print the sum of the integer coordinates of the given point.
However, the variable p may contain a null value in which case p.intCoords is likely to produce
(by default) a single null value rather than a pair of them. From the point of view of typechecking,
this is correct. But now, the behavior plus is applied (in a type-correct manner!) to a single object
instead of a pair. Thus, a run-time systern has to be able to deal with situations like these.

The idea of null values and null types can be taken further. Namely, it is possible to introduce
several null types, each for its own purpose. For example, one can establish a common subtype of
all numeric types T _NumNull and make objects such as NaN instances of this type. This approach
allows one to specify precisely what kind of null values can be expected in a particular place in the
program. However, it still requires additional semantics for function/behavior applications if at least
one null type is a subtype of these functional types.

Going even further along this path, objects of null types can have some special behaviors defined
on them. These behaviors will depend on the type of nuils. These behaviors can be used, for example,
to extract some information stored in the null object at the time of its creation. The resulting null
objects will then behave much like exceptions in most modern programming languages.

Note that the main problems related to the introduction of various null types and values are
related to the language semantics and implementation. Type system issues can be neatly solved by
placing null types below the types of objects the null values are designed to replace. Thus, the type
system can handle not only null values, but also exceptions (or at least a mechanism quite similar
to them).

5.5.2 Local variables and dynamic scoping

The only difference between null values with attributes and the traditional exceptions is the lexical
scoping of the local variables in the exception processing code. This problem manifests itself in many
other (and more important) places as well. Namely, consider the following code:

Example 5.2.
a := fun (x) {
var T_Integer i;
i:=x;
return fun (y) { return i + y; }

}

i;is))(6).print;

199

O

This code first calls the anonymous function stored in a with the argument 5. The result is a
function, that is called with the argument 6. The result of that application is printed. According
to the semantics specified in this chapter, this code is valid and should print 11 since the closure
always keeps a copy of its environment. In practice, however, local variables are not kept beyond
the existence of the stack frame of their function invocation, and therefore an attempt to access i
will fail and return a garbage value. The situation can be even worse:

Erample 5.3.

a := fun (x) {
var T_Integer i;
i:=x;
var b := fun (y) { return i + y; };
i=2;
return b;

}
(a(8))(8) .print;

)

According to the specified semantics, this code should print 8 since the last value stored in i is
8. Even though it is possible to implement a language with such semantics (e.g. LISP and some
other functional languages), it usually comes at considerable execution and memory costs.

In order to avoid situations like these, it is possible to create a semantics in which all local
variable values accessed inside a local function in their scope will be evaluated eagerly rather than
lazily. At the same time, assignment to such variables within such functions would be disallowed.
Such semantics would correspond to the behavior of the most today’s imperative languages.

In order to see how this semantic change can be supported by the type system consider program
transformations of the program given in Example 5.2. The following is the standard transformation:

T_Var(T_Function) a := newT_VarT_Function;
a.set(fun (x) {

T_Var(T_Integer) i := newT_VarT_Integer;

i.set(x);

return fun (y) { return i.get.plus(y); }
)y

&;:get(s))(e) .print;

that corresponds to the original semantics. The following translation corresponds to the modified
semantics:

T_Var(T_Function) a := newT_VarT_Function;
a.set(fun (x) {

T_Var(T_Integer) i := newT_VarT_Integer;

i.set(x);

return { let ival = i.get in { fun (y) { return ival.plus(y); }; }; };
)

(a.get(5))(6).print;

200

Here the value of i is extracted eagerly. This allows the implementation to discard the variable i
while the function that refers to its value is still around. Note that this translation automatically
ensures that no assignments to i are made inside the body of the inner function, as the type of ival
is not a variable type.

Thus it has been shown that the type discipline presented can support both functional (lazy
evaluation) and imperative {eager evaluation) styles.

5.5.3 Non-local returns

Another common feature of imperative programming languages that has not yet been addressed is
the presence of non-local returns. In the presented semantics, the return expression has to be the
last expression in the function body. In imperative programming this restriction is too severe to be
practical. The semantic approach to non-local returns is the usage of continuations. Typing in the
presence of continuations is quite straightforward, however their presence unnecessarily complicates
the semantics. Since the primary purpose of this dissertation is the development of the type system,
continuations were not formally treated here.

5.5.4 Handling object creation

Object creation/deletion can be handled within the presented framework analogously to the handling
of imperative types (Section 5.4). An existential predicate has to be introduced as an additional
part of the state and the object creation primitive function semantics has to be specified to change
the value of that predicate at a particular point. Once this is done, no changes to the type system
are required to deal with object creation. The type system already in place will ensure absence of
type errors in a correctly typechecked program.

In this section, several possible semantical extensions and their influence on the type system have
been addressed. Next section discusses some key theoretical features of the proposed type system,
compares it to other works in the area, and outlines future research direction with respect to further
development of the type system theory.

5.6 Discussion

In this section, several additional aspects of the presented type theory will be discussed. Section 5.6.1
describes the modularity of the theory presented so far. Section 5.6.2 discusses the effect that a type
system transformation may have on various stages of the type checking. It also uses the above
discussion to show how type system evolution can be supported by the presented type system.
Section 5.6.3 lists engineering trade-offs related to the usage of the presented type system. Finally,
Section 5.6.4 presents a summary of the major features of the presented type system from the
theoretical point of view.

5.6.1 Extensibility

One of the significant differences between the theory developed in this chapter and other type theories
developed so far is its modularity. The main part of the theory, including the entailment algorithms
and the subject reduction theorem, depend only on a very limited set of assumptions about. the user
type graph and the primitive function semantics. No assurnptions at all are made about the store
except for its initial validity. This property gives the language designer a very flexible and robust
systemn in which almost any store and primitive function semantics can be plugged in with very little
effort.

As an example, a type system that includes imperative types and state-preserving objects known
to be a challenge for type systems combining parametric and inclusion polymorphism has been fully
developed in Section 5.4. The only part of this theory that required some work was the proof of
consistency of the primitive functions. If a primitive function does not change the store, the proofs
of validity become even simpler.

201

5.6.2 Type system evolution

So far, the user type graph was considered to be constructed at the beginning of the program
analysis process and used later during program typechecking. This assumption might be valid in
theoretical settings, but it is quite impractical as big programs are usually built from smaller blocks
(libraries) that are typechecked and verified before the complete program is assembled. The question
that can be asked of a type system with respect to the above scenario is: what are the program
transformations that do not invalidate type checking or invalidate only a part of it?

In this section, various aspects of program verification presented in Section 4.2 will be evaluated
from this point of view. Before it is done, an important class of program transformations called
covartant transformations is introduced.

Covariant transformations include:

1. Adding a new type;

2. Adding a new sub/supertype link (under the condition that the user type graph remains
acyclic);

3. Adding a new behavior;
4. Adding a new behavior definition or association to an existing behavior;

5. Replacing an existing behavior definition (association) with a definition (association) with a
subtype of the original,;

6. Adding a new constant definition;
7. Replacing an existing constant definition with a definition with a subtype of the original;
8. Changing a function in an existing association.

These transformations are called covariant because they covariantly change the initial typing en-
vironment. They are important because covariant change of the initial typing environment gives
each expression the same or lesser type than the type given to that expression in the presence of
the original typing environment. In a sense, covariant transformations assure that all objects in the
program continue to conform to their original specifications.

Local monotonicity defined in Section 4.2.2 is invariant with respect to covariant transformations
in the following sense: if a new definition is added, it has to be checked for local monotonicity, but no
old definitions have to be rechecked. This notion of invariance will be used throughout this section
in the analysis of various aspects of type consistency.

Existence of a valid ranking for the user type graph defined in Section 4.2.3 is invariant with
respect to all covariant transformations except for type and subtype link additions. Type and link
additions do not affect existence of a valid ranking as long as the added types and links do not have
constraints and the added links do not introduce new paths between types in the original graph.
If any of the above conditions are violated, the existence of the valid ranking for the user type
graph needs to be rechecked. Note that since existence of the valid ranking is required for algorithm
termination, but not for its correctness, in some situations it may be feasible to skip this check as
long as there is a safeguard (such as a time constraint) that ensures termination of the type checker.

Constraint consistency as defined in Section 4.2.5 is invariant with respect to covariant transfor-
mations. This follows from the properties of entailment discussed later in this section.

Global behavior consistency (Section 4.2.6) describes the conditions placed on the relationships
between argument and result types of different definitions given for the same behavior. It is based
on entailment and is therefore invariant with respect to covariant transformations.

Functional consistency described in Section 4.2.7 is in a sense the typechecking proper as it checks
the conformance of the program to its specification. Functional consistency is also entailment-based
and thus invariant with respect to covariant transformations. This is in contrast to ML-style type
inference systems where a local change in a function body can potentially affect typing of other
functions in the program.

202

Dispatch consistency conditions (Section 4.2.8) are invariant to all covariant transformations
except for subtype/supertype link additions and behavior definition (association) additions and
changes. These conditions are the most volatile with respect to program transformations since they
are based on the notion of a concrete set which is in effect a set of concrete type constructors below
a given one. Thus, an addition of a subtype can change concrete sets for all its supertypes and
thus violate dispatch consistency conditions. The conservative approach to dispatch consistency
rechecking is as follows:

1. If a subtype link is added, let S be the set of type constructors that acquire new concrete
type constructors as children as a result of this addition. Then, every behavior that has type
constructors from S in the primary form of the argument of at least one of its definitions or
associations has to be fully rechecked for dispatch consistency. “Full rechecking” here means
that all definitions and associations for this behavior have to be rechecked.

2. If a behavior definition or association is added or its type is changed for a particular behavior,
that behavior has to be fully rechecked.

Thus adding a subtype link at the bottom of the hierarchy leads to full rechecking for a lot of
behaviors. This is unfortunate and most probably unnecessary. There are two possible approaches
to this problem. The first one is to create more precise rules about rechecking behaviors in this case
that would eliminate unnecessary rechecking in simple cases (which are likely to constitute at least
90% of all behavior definitions). The second one is to ignore the potential danger of not rechecking the
behaviors thus opening the possibility of “message not understood” and “message ambiguous” errors
in the program that is build incrementally. While this last approach clearly defeats the purpose of
type checking, it can be practical in prototyping stage of program development when the possibility
of run-time errors can be traded for faster development time. In this case the whole program will
have to be rechecked at the production stage. Other hybrid approaches are also possible.

Most of the consistency checks described above are invariant with respect to covariant type trans-
formations because they are based on the entailment algorithms of Section 4.3 that produce results
invariant with respect to covariant transformations. This follows from Lemma 5.2 and Theorem 5.3.1.

Note that the entailment testing algorithm 4.2 could have been made significantly faster (but
still correct) if it was allowed to use the flattened form of the premises (aiready computed on the
first step) for the construction of extended type graph. However, such modification would lead to
the loss of invariance with respect to covariant transformations. Consider the following example.
Let the following definitions be given:

type b(covar X);

type c(covar X);

type d;

(X <= d) c(X) <= b(X);

These specify that c(a) < b(a) if « < d. Let the entailment to be checked be
cla) gbla)Fa<d (5.238)
The current entailment algorithm after verifying that + c(a) < b(a) will attempt to prove that
cla) <b(a)Fa=<d

in a type graph with an additional type constructor e (and an additional subtyping relationship
c(a) < b(a)). This will fail as even I a < d is not true. Thus the algorithm will conclude that (5.238)
is not true.

The modified algorithm, on the other hand, will first infer the flattened form of c(a) < 4(a)
which is

a<fAB<LdrB<Ra

203

which is equivalent to
a<d
Thus the modified algorithm will attempt to prove
Fa<d

in a type system with an additional type constructor a and an additional subtyping relationship
a < d. This immediately succeeds, and thus the modified algorithm with conciude that (5.238) is
true.

Consider now the following covariant transformation of the original type system:

type b(covar X);

type c(covar X);

type d;

(X <= d) c(X) <= b(X);
type e;

e <= b(X);

c(X) <= e;

In other words, a new type e was inserted between b and ¢. Now the entailment (5.238) is false.
Indeed, consider & = ¢. Then

cla) = c(e) < e < b(e) = bla)
but

efd

Since both original and modified aigorithms are correct, they return negative answer to (5.238)
in this case. Thus, the modified algorithm returns the result different from that returned for the
original type system and therefore the modified algorithm is not invariant with respect to covariant
transformations.

In this section, the behavior of various stages of program verification with respect to covariant
program transformations was examined. The conditions under which these stages do not have to
be repeated for the modified program have been established. The next section briefly discusses the
main engineering trade-offs of the proposed type system.

5.6.3 Engineering trade-offs

The expressive power of this type system comes at a price. First, the proposed type system is
significantly more complex than most of the type systems reviewed in Section 2.7. The user is shielded
from this increased complexity by the layered design, but a language implementor or database
designer would still have to cope with it. System uniformity and orthogonality will reduce the
necessary education time, but it may still be quite substantial.

Second, the uniform treatment of all the objects in the system also has its price tag. Since every
entity (including numbers, characters, strings etc.) is an object and, therefore, can have behaviors
that are dynamically dispatched on its type, the type indicator sufficient for dispatch purposes has
to be maintained at run-time. This has an impact on memory requirements.

Third, multiple dispatch utilized in this type system has a negative impact on execution per-
formance. Even in the presence of efficient multi-method dispatch techniques, multiple dispatch is
still inherently slower than single dispatch. However, a good optimizing compiler can potentially
optimize away most of the necessary dynamic method dispatch by carefully analyzing the context
of the call sites or their run-time properties, as demonstrated in [DGC95, DDG*96, HU96].

In the next section, the brief summary of the important features of the theory developed in this
chapter will be presented.

204

5.6.4 Summary

The approach taken in this chapter can be summarized as follows. The program is analyzed to yield
a set of constrained types and relationships between them. These relationships are translated into
sets of subtyping constraints. A program typechecks if these sets admit a solution. This solution
does not have to be found, since mere fact of its existence is sufficient to ensure run-time correctness.
Thus the algorithms attempt to find inconsistencies in the given constraint sets rather than find their
solution. The constraints are interpreted in the domain of regular trees equipped with a subtyping
relationship and lower and upper bound operators.

The main features of the presented theory are:

1. Inclusion polymorphism (substitutability);

Parametric polymorphism;

Partial type inference (only behavior types need to be explicitly specified);
Provable decidability and correctness;

Explicit type constraints;

Support for union and intersection types;

Modularity (primitive functions and store semantics can be easily modified);

Support for imperative types;

© ® N o o oA e W

Support for type system evolution (covariant transformations);

._.
o

The ability to deal with subtyping between types of different variances;

p—
—

. Support for distinction between behavior definitions and associations;
12. Dispatch granularity different from the type specification granularity.

This concludes the presentation of the type system theory. In this chapter, decidability and
correctness of the algorithms and techniques presented in Chapter 4 has been proven. The effect of
various semantical extensions on the theory and the algorithms has been considered. Issues related
to the type system evolution and its effect on typechecking were also discussed. Finally, a summary
of the major theoretical features of the presented type system has been given. The review of various
theoretical type systems has been presented earlier in Section 2.7.1. The next chapter concludes the
dissertation and discusses its main contributions as well as directions for future research.

205

Chapter 6

Conclusions

6.1 Summary and contributions

In this dissertation, a type system for an object-oriented programming language has been developed.

Analysis of theoretical and practical requirements placed on the type system by the language and
database components of the system was performed to yield a set of requirements the type system
should satisfy. A number of existing and proposed type systems have been examined and evaluated
from the point of view of these requirements. This extensive analysis is the first contribution of
this dissertation as it covers a very broad spectrum of type systems, yet evaluates them from the
same uniform standpoint: the set of requirements obtained by the previous analysis. It is shown
that for each required feature there is at least one type system that has it. However, the desired
combination of features remains elusive in that no type system, theoretical or practical, existing in
a programming language or proposed, has all the features necessary for the consistent and uniform
treatment of object-oriented database programming.

Based on these requirements, a type system is designed and various aspects of it are discussed.
This feature-rich design of the type system is the second contribution of this work. The design process
yields a consistent and uniform type system that satisfies the requirements developed earlier and
successfully passes the tests from the type system expressibility test suite. The main design features
of the developed type system are consistent combination of parametric and inclusion polymorphism,
an elaborate and precise mechanism for behavior (message) typing, handling of precise and complex
types of database query operations, uniform integration of imperative features, provisions for schema
evolution, and a clean separation between interface, implementation (code), and representation
(data layout). The three-layer type system design provides additional flexibility in specification
and use of types, and facilitates better code reuse. A major motivation for the layered design is
understandability and usability of the type system by programmers. The system can be used at
all the three layers; the deeper the layer, the more power it provides, and the greater complexity it
involves.

The designed type system is used in a prototype object-oriented programming language (termed
source language throughout this dissertation). This language is more then just a testbed for the
developed type system, it is powerful enough to describe all the major components of object-oriented
programming and design, including type and function specification and verification, handling of
dynamic and imperative types and objects of these types, multiple dispatch, separation between
behavior declarations and definitions on both the type and implementation level, and encoding of
database queries via precisely typed behavior applications. This source language can be used as a
core of a real object-oriented database programming language as it includes the dispatch procedure
for multiple dispatch of behaviors defined in the language. A program written in the source language
is verified by first translating it into a more theoretical and simplified target language and then
applying the typechecking techniques and verification procedures to the resulting program. The
main typechecking algorithms (functional consistency checking) are local in that a code change
inside a function body does not affect the typing or validity of the other functions in the program.

206

The third contribution of this dissertation is the development of the source language along with the
algorithms and procedures for verification and typechecking of the programs written in it.

Finally, a theory has been developed to rigorously prove the validity of the presented typechecking
mechanisms. This theory includes a model of types as regular trees, formal treatment of subtyping,
constraint types, and entailment. It also includes a natural semantics of the target language designed
to formalize and reason about its run-time properties. Both algorithm termination and subject
reduction have been proven. The theory was developed in a modular fashion so as to allow its
application to other languages and systems. The proof of the validity of the handling of imperative
types in the target language was presented as a non-trivial example of utilization of the power
inherent in this modular approach. The theory was further examined by looking at the ways it
can be extended to support semantic extensions needed for a full-fledged programming language.
Another point of discussion was related to the behavior of the presented algorithms in the presence of
type system changes. An important class of type system transformations (covariant transformations)
has been identified and their impact on typechecking and program verification has been carefully
examined. The theory has thus been shown to be modular, extensible, and incremental to a certain
degree. The developed theory also supports all major type system and design features of the source
and target language, including parametric and inclusion polymorphism, imperative, union, and
intersection types, type constraints, a very liberal notion of subtyping, different granularity for type
and dispatch specifications, and separation between interface (type) and implementation (code). It
also features partial type inference that is known to reduce the burden of writing type annotations
for every object in a program. At the same time, type inference is localized in order to contain
the effect of function code modifications. The development of this type theory and the proots of
decidability and correctness of the typechecking algorithms are the fourth major contribution of this
dissertation.

6.2 Future research

While significant work has been done to achieve the primary goal of this dissertation, there is still
a considerable room for future research.

On the practical side, making the main verification algorithms more efficient is quite important.
While the algorithms presented herein are correct, the main (entailment) algorithm appears to be
exponential and thus needs to be improved upon before it can be used in a practical language.
Implementation of the source and target languages as well as an efficient implementation of trans-
lation and verification algorithms remain to be accomplished. Another interesting and promising
research venue is related to the development of an efficient dispatch strategy at a finer granularity.
In this dissertation, the dispatch on parametric types does not depend on type parameter. This
is done to utilize the existing efficient multi-method dispatch techniques. However, if an efficient
mechanism capable of taking into account type parameters can be developed, it will greatly simplify
the theory and make the language more powerful. Finally, development of a database programming
language based on this type system presents a whole new set of challenges, such as the semantics of
persistence, handling of persistent types, behaviors, and functions, and efficient implementation of
database queries and updates.

From the design prospective, addition of exceptions into the language seems to be an interesting
and potentially rewarding research direction. Another design possibility worth pursuing is the addi-
tion of a module system to the source language. From the database prospective, adding transaction
support directly into the language seems to be a promising idea. Yet another interesting research
direction is incorporation of algebraic types (type constructors that serve also as value constructors,
as in Standard ML [MTH90]) into the type system.

From the theoretical point of view, there are a number of issues that warrant further study. One
of the most important theoretical research directions is a study inte the possibility of lifting or sig-
nificantly relaxing the valid ranking requirement placed on the user type graph. The author believes
it can be accomplished without sacrificing decidability. Another theoretical research possibility is
research into the complexity of the presented algorithms and its theoretical limits. Finally, develop-

207

ment of the full-fledged language semantics (with continuations) and the necessary modification of
the relevant proofs is a challenging task.

The last task is just one of the integral parts of a larger problem of developing a powerful,
theoretically sound, efficient, and practical object-oriented database programming language for the
next millennium. I believe such a development will be undertaken, and the result will probably
exceed the expectations of both research and industrial communities. My hope is that the research
presented in this dissertation is a step along this long and difficult road.

208

Bibliography

[AB87]

[ABD+92]

[AC93]
[AC96]
[ACO85]
[Ada95]
[ADL91]
[AFM97]

[AG89]

[AG96]

[AGO95]

[AMS95]

[ANSO]

[App92]

[App94]
[AVWW96]

M. P. Atkinson and O. P. Buneman. Types and persistence in database programming
languages. ACM Computing Surveys, 19(2):105-190, June 1987.

M. Atkinson, F. Banchilon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik. The
object-oriented database system manifesto. In F. Banchilon, C. Delobel, and P. Kanel-
lakis, editors, Building an Object-Oriented Database System: The Story of Oa, 1992.

R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM Transactions on
Programming Languages and Systems, 15(4):575-631, 1993.

M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer, 1996.

A. Albano, L. Cardelli, and R. Orsini. Galileo: A strongly-typed, interactive conceptual
language. ACM Transactions on Database Systems, 10(2):230-260, June 1985.

Ada 95 Reference Manual, 1995. Available electronically.
URL: http://www.adahome.com/rm96

R. Agrawal, L. G. DeMichiel, and B. G. Lindsay. Static type checking of multi-methods.
ACM SIGPLAN Notices, 26(11):113-128, November 1991. In Proc. of OOPSLA'9L.

O. Agesen, S. N. Freund, and J. C. Mitchell. Adding type parametrization to the Java
language. In Proceedings of the QOPSLA 97, 1997.

R. Agrawal and N. H. Gehani. ODE (object database and environment): The lan-
guage and the data model. [n Proceedings of the ACM-SIGMOD 1989 International
Conference on Management of Data, pages 36-45, 1989.

K. Arnold and J. Gosling. The Java Language Specification. Addison-Wesley, 4th
edition, 1996. ISBN 0-201-63455-4.

A. Albano, G. Ghelli, and R. Orsini. Fibonacci: A programming language for object
databases. VLDB Journal, 4:403-444, 1995.

M. Atkinson and R. Morrison. Orthogonally persistent object systems. VLDB Journal,
4(3):319-401, 1995.

A. Arnold and M. Nivat. The metric space of infinite trees. Algebraic and topological
properties. Fundamenta [nformaticae III, pages 445-476, 1980.

A. W. Appel. A critique of standard ML. Technical Report CS-TR-364-92, Princeton
University, November 1992.

Apple Computer, Inc. Dylan Interim Reference Manual, 1994.

J. Armstrong, R. Virding, C. Wikstrém, and M. Williams. Concurrent Programming
in Erlang. Prentice Hall, 2nd edition, 1996.

209

[AW93]

[AWL94]

[BBdB+93]

[BC95]

[BC97]

[BCC*96]

[BDG*88]

[BDMNTY]

[BFP96]

[BG93]

[BG96]

(BLRY6]

[BM96a]

[(BM96b]
[BOY6]

(BOSW98a]

A. Aiken and E. L. Wimmers. Type inclusion constraints and type inference. Technical
Report RJ 9454 (83075), IBM Research Division, August 1993.

A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing with conditional types.
In Conference Record of POPL '94, 21st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 163-173. ACM Press, 1994.

R. Bal, H. Balsters, R. A. de By, A. Bosschaart, J. Flokstra, M. V. Keulen,
J. Skowronek, and B. Termorshuizen. The TM Manual, December 1993. Version 2.0
revision C. Available electronically.

URL: ftp://ftp.cs.utwente.nl/pub/doc/T™

J. Boyland and G. Castagna. Type-safe compilation of covariant specialization: A
practical case. Technical Report UCB/CSD-95-890, University of California, Computer
Science Division {EECS), Berkeley, California 94720, November 1995.

J. Boyland and G. Castagna. Parasitic methods: An implementation of multi-methods
in Java. SIGPLAN Notices, 32(10):66-76, 1997. Proceedings of OOPSLA'97.
URL: £tp://ftp.ens.fr/pub/dmi/users/castagna/oopslad7.ps.gz

K. Bruce, L. Cardelli, G. Castagna, The Hopkins Object Group, G. Leavens, and
B. Pierce. On binary methods. Theory and Practice of Object Systems, 1(3):221-242,
1996.

D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, and D. A.
Moon. Common Lisp Object System specification, June 1988. X3J13 Document 38-
002R.

G. M. Birtwistle, O.-J. Dahl, B. Myhrhaug, and K. Nygaard. Simula Begin. Studentlit-
teratur (Lund, Sweden), Bratt Institute Fuer Neues Lerned (Goch, FRG), Chartwell-
Bratt Ltd (Kent, England). 1979.

K. B. Bruce, A. Fiech, and L. Petersen. Subtyping is not a good “match” for object-
oriented languages. In Informal Proceedings of The Fourth Workshop on Foundations
of Object-Oriented Languages (FOOL §), 1996. Contributed talk.

G. Bracha and D. Griswold. Strongtalk: Typechecking Smalltalk in a production
environment. In Proceedings of the ACM Conference on Object-Oriented Programming:
Systems, Languages, and Applications, 1993.

M. F. Barrett and M. E. Giguere. A note on covariance and contravariance unification.
ACM SIGPLAN Notices, 31(1):32-35, January 1996.

G. Baumgartner, K. Liufer, and V. F. Russo. Interaction of object-oriented design
patterns and programming languages. Technical Report CSD-TR-96-020, Deptartment
of Computer Sciences, Purdue University, 1996.

F. Bourdoncle and S. Merz. Type checking higher-order polyvmorphic multi-methods.
In Proceedings of the 24th ACM Conference on Principles of Programming Languages
(POPL’24), 1996.

F. Bourdoncle and S. Merz. Primitive subtyping V implicit polymorphism F object-
orientation. In Foundations of Object-Oriented Languages 3, 1996. Extended abstract.

P. Buneman and A. Ohori. Polymorphism and type inference in database programming.
ACM Transactions on Database Systems, 21(1):30-76, March 1996.

G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. GJ: Extending the Java pro-
gramming language with type parameters. Manuscript, March 1998. Revised August
1998.

210

[BOSW98b] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. GJ specification. Manuscript,

[BOSW98c]

[BOW9S]

(BP94]
[BP99]

(Bra92]

(Brug6]

[BSG94]

[BSG95]

[Car86a]

[Car86b]

[Car88]

[Car89]

[Car93]

[Car97)

[Cas95a]

May 1998.

G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for
the past: Adding genericity to the Java programming language. In Proceedings of the
13th Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA98), pages 183-200, October 1998.

K. B. Bruce, M. Odersky, and P. Wadler. A statically safe alternative to virtual
types. In Proceedings of the 1998 European Conference on Object-Oriented Program-
ming (ECOOP’98), 1998.

A. Black and J. Palsberg. Foundations of object-oriented languages. ACM SIGPLAN
Notices, 29(3):3-11, 1994. Workshop Report.

P. Buneman and B. Pierce. Union types for semistructured data. Technical Report
MS-CI1S-99-09, Department of CIS, University of Pennsylvania, 1999.

G. Bracha. The Programming Language Jigsaw: Mirins, Modularity And Multiple
Inheritance. PhD thesis, University of Utah, Department of Computer Science, March
1992,

K. K. Bruce. Typing in object-oriented languages: Achieving expressibility and safety,
1996.
URL: £tp://cs.williams.edu/pub/Kim/Static.ps

K. B. Bruce, A. Schuett, and R. V. Gent. A type-safe polymorphic object-oriented
language. Accessible by anonymous FTP, July 1994.
URL: ftp://cs.williams.edu/pub/kim/PolyTOIL.dvi

K. B. Bruce, A. Schuett, and R. V. Gent. PolyTOIL: A type-safe polymorphic object-
oriented language. In W. Olthoff, editor, Proceedings of the 9th European Conference
on Object-Oriented Programming (ECOOP'95), Aarhus, Denmark, August 1995. LNCS
952. Springer. Extended abstract.

L. Cardelli. Amber. In G. Cousineau, P.-L. Curien, and B. Robinet, editors, Combina-
tors and Functional Programming Languages. Springer-Verlag, 1986. LNCS 242.

L. Cardelli. A polymorphic A-calculus with Type:Type. Technical Report 10. DEC
SRC, 130 Lytton Avenue, Palo Alto, CA 94301, May 1986. SRC Research Report.

L. Cardelli. A semantics of multiple inheritance. Information and Computation, 76:138—
164, 1988.

L. Cardelli. Typeful programming. In E. J. Neuhold and M. Paul, editors, Formal
Description of Programming Concepts, IFIP State of the Art Reports Series. Springer-
Verlag, February 1989.

URL: http://www.luca.demon.co.uk/Bibliography.html

L. Cardelli. An implementation of F¢.. Technical Report 97, DEC Systems Research
Center, February 1993.

L. Cardelli. Type systems. In A. B. Tucker, editor, The Computer Science and Engi-
neering Handbook, chapter 103. CRC Press, 1997.
URL: http://www.luca.demon.co.uk/Bibliography.html

G. Castagna. Covariance and contravariance: Conflict without a cause. ACM Trans-
actions on Programming Languages and Systems, 17(3):431-447, May 1995.

211

[Cas95b)

[Cas96]

[CBB+97]

[CCH*89)

[CGL9S5)]

[Cha92a]

[Cha92b]

[Cha93]

[CL95]

[CL96)

[CL97]

[CMMO1]

[CMMS91]

[C094]

[Cou83]

G. Castagna. A meta-language for typed object-oriented languages. Theoretical Com-
puter Science, 151(2):297-352, November 1995.

G. Castagna. Object-Oriented Programming: A Unified Foundation, chapter Type
Systems for Object-Oriented Programming. Progress in Theoretical Computer Science.
Birkaiizer, Boston, 1996.

R. G.G. Cattell, D. Barry, D. Bartels, M. Berler, J. Eastman, S. Gamerman, D. Jordan,
A. Springer, H. Strickland, and D. Wade. The Object Database Standard: ODMG 2.0.
Morgan Kaufmann Publishers, Los Altos (CA), USA, 1997.

P. Canning, W. Cook, W. Hill, W. Olthoff, and J. C. Mitchell. F-bounded polymor-
phism for object-oriented programming. In Proceedings of the ACM Conference on
Functional Programming and Computer Architecture, pages 273-280, 1989.

G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded functions with sub-
typing. Information and Computation, 117(1):115-135, February 1995.

C. Chambers. The Design and Implementation of the SELF Compiler, an Optimuzing
Compiler for Object-Oriented Programming Languages. PhD thesis, Stanford Univer-
sity, March 1992.

C. Chambers. Object-oriented multi-methods in Cecil. In O. L. Madsen, editor, ECOOP
'992, European Conference on Object-Oriented Programming, Utrecht, The Netherlands,
volume 615 of Lecture Notes in Computer Sctence, pages 33-56. Springer-Verlag, New
York, N.Y., 1992.

C. Chambers. The Cecil language: Specification and rationale. Technical Report
TR 93-03-05, Department of Computer Science and Engineering, FR-35, University of
Washington, March 1993.

C. Chambers and G. T. Leavens. Typechecking and modules for multimethods. ACM
Transactions on Programming Languages and Systems, 17(6):805-843, November 1995.

C. Chambers and G. T. Leavens. BeCecil, A core object-oriented language with block
structure and multimethods: Semantics and typing. Technical Report 96-17, Depart-
ment of Computer Science, [owa State University, December 1996.

C. Chambers and G. T. Leavens. BeCecil, A core object-oriented language with block
structure and multimethods: Semantics and typing. In FOOL 4, The Fourth Interna-
tional Workshop on Foundations of Object-Oriented Languages, Paris, France, January
1997.

R. C. H. Connor, D. J. McNally, and R. Morrison. Subtyping and assignment in
database programming languages. [n Proceedings of the 3rd International Workshop
on Database Programming Languages, Napfilon, Greece, 1991.

L. Cardelli, S. Martini, J. C. Mitchell, and A. Scedrov. An extension of system F with
subtyping. In T. Ito and A. R. Meyer, editors, International Conference on Theoretical
Aspects of Computer Software, pages 750-770, 1991. Lecture Notes in Computer Science
526.

K. Chen and M. Odersky. A type system for a lambda calculus with assignment. In
Proc. Theoretical Aspects of Computer Science, Sendai, Japan, April 1994. Spinger
LNCS.

B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science,
25:95-169, 1983.

212

[Cou86]

(CT95]

[CTK94]

[DAS96]

[DCG94)

[DDG*96]

[DE97]

[DGCY5)

[DGLM95]
[EST95a]

[EST95b]

[ESTZ95]

[FM96]

[Fra97]
[Ghe91]

[GM6]

[GR89]

B. Courcelle. Equivalence and transformation of regular systems — applications to
recursive program schemes and grammars. Theoretical Computer Science, 42:1-122,
1986.

W. Chen and V. Turau. Multiple dispatching based on automata. Journal of Theory
and Practice of Object Systems, 1(1), 1995.

W. Chen, V. Turau, and W. Klas. Efficient dynamic look-up strategy for multi-methods.
In M. Tokoro and R. Pareschi, editors, ECOOP '94, European Conference on Object-
Oriented Programming, volume 821 of Lecture Notes in Computer Science, pages 408-
431, New York, N.Y., July 1994. Springer-Verlag.

E. Dujardin, E. Amiel, and E. Simon. Fast algorithms for compressed multi-method dis-
patch tables generation. ACM Transactions on Programming Languages and Systems,
1996.

J. Dean, C. Chambers, and D. Grove. Identifying profitable specialization in object-
oriented languages. Technical Report 94-02-05, Department of Computer Science and
Engineering, FR-35, University of Washington, February 1994.

J. Dean, G. DeFouw, D. Grove, V. Livinov, and C. Chambers. Vortex: an optimiz-
ing compiler for object-oriented languages. ACM SIGPLAN Notices, 31(10):83-100,
October 1996.

S. Drossopoulou and S. Eisenbach. Java is type safe — probably. In Proceedings of the
[Ith European Conference on Object Oriented Programming (ECOOP'97), June 1997.

J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented programs using
static class hierarchy analysis. [n W. Olthoff, editor, Proceedings of the 9th European
Conference on Object-Oriented Programming (ECOOP'95), Aarhus, Denmark. August
1995. LNCS 952. Springer.

M. Day, R. Gruber, B. Liskov, and A. C. Myers. Subtypes vs where clauses: Constrain-
ing parametric polymorphism. SIGPLAN Notices, 30(10):156-168, October 1995.

J. Eifrig, S. Smith, and V. Trifonov. Sound polymorphic type inference for objects.
SIGPLAN Notices, 30(10):169-184, October 1995.

J. Eifrig, S. Smith, and V. Trifonov. Type inference for recursively constrained types
and its application to OOP. Electronic Notes in Theoretical Computer Science, 1, 1995.
URL: http://uww.elsevier.nl/locate/entcs/volumel.html

J. Eifrig, S. Smith, V. Trifonov, and A. Zwarico. An interpretation of typed OOP in a
language with state. LISP and Symbolic Computation, 8(4):357-397, 1995.

K. Fisher and J. C. Mitchell. The development of type systems for object-oriented
languages. Theory and Practice of Object Systems, 1{3):189-220, 1996.
URL: £tp://theory.stanford.edu/pub/jcm/papers/tapos.ps

M. Franz. The programming language Lagoona — A fresh look at object-orientation.
Software — Concepts and Tools, 18:14-26, 1997.

G. Ghelli. A static type system for message passing. ACM SIGPLAN Notices,
26(11):129-145, November 1991. In Proc. of OOPSLA'91.

A. Gawecki and F. Matthes. Integrating subtyping, matching and type quantification:
A practical perspective. In Proceedings of the [0th European Conference on Object-
Oriented Programming, Linz, Austria, July 1996. Springer Verlag.

A. Goldberg and D. Robson. ST-80, The Language. Addison-Wesley, 1989.

213

[Har92]
[Hau93]

[HIW+92]

[HLPS99]
[Hol93a]
[H5193b]
[HSPL98]

[HU96]

(IEES5)

[JWT5]
[KCMS96]

[Kim93]

[KT92)

[LCD*95]

[Lit98]

[LM98]

S. P. Harbison. Modula-3. Prentice Hall, 1992.

F. J. Hauck. Towards the implementation of a uniform object model. In A. Bode and
M. D. Cin, editors, Parallel Computer Architectures: Theory, Hardware, Software, and
Applications - SFB Colloquium SFB 182 and SFB 342, number 732 in Lecture Notes
in Computer Science, pages 180-189. Springer, October 1993.

P. Hudak, S. P. Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M. M. Guzman,
K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Partain, and J. Peter-
son. Report on the Programming Language Haskell, March 1992. Version 1.2. Available
electronically.

URL: http://wuw.haskell.org/definition/haskell-report-1.2.ps.gz

W. Holst, Y. Leontiev, C. Pang, and D. Szafron. Multi-method dispatch using product-
type tries. Technical Report TR99-01, University of Alberta, 1999.

W. Holst. Modular Smalltalk: A first implementation. Technical Report TR 93-07,
Department of Computing Science, University of Alberta, 1993.

U. Holzle. Integrating independently-developed components in object-oriented lan-
guages. In Proceedings of ECOOP’'93, 1993.

W. Holst, D. Szafron, C. Pang, and Y. Leontiev. Multi-method dispatch using single-
receiver projections. Technical Report TR98-03, University of Alberta, 1998.

U. Holzle and D. Ungar. Reconciling responsiveness with performance in pure ob-
ject oriented languages. ACM Transactions on Programming Languages and Systems,
18(4):355-400, July 1996.

IEEE standard for binary floating-point arithmetic. ANSI/IEEE Standard 754-1985,
Institute of Electrical and Electronics Engineers, August 1985.

K. Jensen and N. Wirth. The Programming Language Pascal. Springer-Verlag, 1975.

G. N. C. Kirby, R. C. H. Connor, R. Morrison, and D. Stemple. Using reflection to sup-
port type-safe evolution in persistent systems. Technical Report CS/96/10, University
of St Andrews, 1996.

W. Kim. Object-oriented database systems: Promises, reality, and future. In Proceed-
ings of the 19th VLDB Conference, pages 676-687, 1993.

W. Klas and V. Turau. Persistence in the object-oriented database programming lan-
guage VML. Technical Report TR-92-045, International Computer Science Institute,
1947 Center St., Suite 600, Berkeley, CA 94704-1198, July 1992.

B. Liskov, D. Curtis, M. Day, S. Ghemawat, R. Gruber, P. Johnson, and A. C. Meyers.
Theta Reference Manual. MIT Laboratory for Computer Science, Cambridge, MA
02139, February 1995.

URL: http://wuw.pmg.lcs.mit.edu/papers/thetaret/

V. Litvinov. Constraint-based polymorphism in Cecil: Towards a practical and static
type system. In Proceedings of the 1998 Conference on Object-Oriented Programming:
Systems, Languages, and Applications (OOPSLA’98), 1998.

G. T. Leavens and T. D. Millstein. Multiple dispatch as dispatch on tuples. In Pro-
ceedings of the Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA '98), pages 374-387, October 1998.

URL: http://wuw.cs.washington.edu/homes/todd/papers/oopslad8.ps

214

[LML*94]

[LOS98]

[LP91]

[LRV92]

(LW94]
[LW95]
[MBC+96]
[MBL97)
[Mey88]
[MHH91]

[MMPN93]

[MMS94]

[MS91]

[MS92]

[MTH90]
[MW93]

[MW97]

[NP91]

V. G. Lutiy, A. B. Merkov, Y. V. Leontiev, E. J. Gawrilow, N. A. Ivanova, M. E.
lofinova, M. L. Paklin, and A. K. Hodataev. DBMS Modula-90K. RAN Data Processing
Center, Moscow, 1994. /in Russian: Sistema Programmirovaniya Baz Dannyh Modula-

90K /.

Y. Leontiev, M. T. Ozsu, and D. Szafron. On separation between interface, implemen-
tation, and representation in object DBMSs. In Proceedings of TOOLS-26'98, Santa
Barbara, California, August 1998.

W. R. LaLonde and J. Pugh. Subclassing # subtyping # is-a. Journal of Object-
Oriented Programming, 3(5):57-62, January 1991.

C. Lécluse, P. Richard, and F. Vélez. O2, an object-oriented data model. In F. Ban-
chilon, C. Delobel, and P. Kanellakis, editors, Building an Object-Oriented Database
System: The Story of Oa, 1992.

B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems, 16(6):1811-1841, November 1994.

G. T. Leavens and W. E. Weihl. Specification and verification of object oriented pro-
grams using supertype abstraction. ACTA Informatica, 32(8):705-778, November 1995.

R. Morrison, F. Brown, R. Connor, Q. Cutts, A. Dearle, G. Kirby, and D. Munro.
Napier88 Reference Manual. University of St. Andrews, March 1996. Release 2.2.1.

A. C. Myers, J. A. Bank, and B. Liskov. Parameterized types for Java. In Proceedings
of the 24th ACM Simposium on Principles of Programming Languages (POPL'97),
January 1997.

B. Meyer. Eiffel — the language. Prentice-Hall, 1988.

W. B. Mugridge, J. Hamer, and J. G. Hosking. Multi-methods in a statically-typed
programming language. In P. America, editor, ECOOP 91, pages 307-324, Geneva,
Switzerland, July 1991. LNCS 512.

O. L. Madsen, B. Mgller-Pedersen, and K. Nygaard. Object-Oriented Programming in
the BETA Programming Language. Addison-Wesley, 1993. ISBN 0-201-62430-3.

F. Matthes, S. MiiBig, and J. W. Schmidt. Persistent polymorphic programming in
Tycoon: An introduction. FIDE Technical Report Series FIDE/94/106, Department
of Computing Sciences, University of Glasgow, Glasgow G128QQ, August 1994.

F. Matthes and J. Schmidt. Bulk types: Built-in or add-on? In Proceedings of the
Third International Workshop on Database Programming Languages. Morgan Kauf-
mann Publishers, September 1991.

F. Matthes and J. Schmidt. Definition of the Tycoon language — a preliminary report.
Technical Report FBI-HH-B-160/92, Universitit Hamburg, October 1992.

R. Miller, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.

H. Mossenbok and N. Wirth. The programming language Oberon-2. Manuscript,
October 1993. Institut fiir Computersysteme, ETH Ziirich.

S. Marlow and P. Wadler. A practical subtyping system for Erlang. In Proceedings
of the Second International Conference on Functional Programming, Amsterdam, June
1997.

O. Nierstrasz and M. Papathomas. Towards a type theory for active objects. ACM
OOPS Messenger, 2(2):89-93, April 1991. Proceedings of the OOPSLA/ECOOP 90
Workshop on Object-Based Concurrent Systems.

215

[OBBT89]

[OL96]

[OPS*95]

[OW97]

[Pet94]

[PHLS99]

[Pot96]
[Pot98]
(PS94]

[QKBYS]

[RCS93]

[Reh98]
[RS97]

[RTL+91]

[RW92]
(Sar97]

[Seq98]

A. Ohori, P. Buneman, and V. Breazu-Tannen. Database programming in Machiavelli
— a polymorphic language with static type inference. SIGMOD Record, 18(2):46-57,
1989.

M. Odersky and K. Laufer. Putting type annotations to work. In Proc. 23rd ACM
Symposium on Principles of Programming Languages, pages 65-67, January 1996.

M.T. f)zsu, R. J. Peters, D. Szafron, B. Irani, A. Lipka, and A. Mufioz. TIGUKAT: A
uniform behavioral objectbase management system. The VLDB Journal, 4(3):445-492,
July 1995.

M. Odersky and P. Wadler. Pizza into Java: Translating theory into practice. In
Proceedings of the 24th ACM Simposium on Principles of Programming Languages
(POPL’97), January 1997.

R. J. Peters. TIGUKAT: A uniform behavioral objectbase management system. Tech-
nical Report TR 94-06, Department of Computing Science, University of Alberta, April
1994.

C. Pang, W. Holst, Y. Leontiev, and D. Szafron. Multi-method dispatch using multi-
ple row displacement. In Proceedings of the European Conference on Object-Orented
Programming (ECOOP’99), 1999.

F. Pottier. Simplifying subtyping constraints. ACM SIGPLAN Notices, 31(6):122-133,
June 1996.

F. Pottier. Type I[nference in the Presence of Subtyping: from Theory to Practice. PhD
thesis, Université Paris VII, April 1998.

J. Palsberg and M. I. Schwartzbach. Object-Oriented Type Systems. John Wiley &
Sons, 1994.

Z. Qian and B. Krieg-Brueckner. Typed OO functional programming with late binding.
In P. Cointe, editor, Proceedings of the 10th European Conference on Object-Ortented
Programming, volume 1098 of LNCS, pages 48-72. Springer, July 1996.

J. E. Richardson, M. J. Carey, and D. T. Schuh. The design of the E programming
language. ACM Transactions on Programming Languages and Systems, 15(3):494-534,
July 1993.

J. Rehof. The Complezity of Simple Subtyping Systems. PhD thesis, DIKU, Department
of Computer Science, University of Copenhagen, 1998.

P. Roe and C. Szyperski. Lightweight parametric polymorphism for Oberon. In Pro-
ceedings of the Joint Modular Languages Conference, 1997.

R. K. Raj, E. Tempero, H. M. Levy, A. P. Black, N. C. Hutchinson, and E. Jul. Emerald:
A general-purpose programming language. Software Practice and Ezperience, 21(1):91-
118, January 1991.

M. Reiser and N. Wirth. Programming in Oberon — Steps beyond Pascal and Modula.
Addison-Wesley, 1992.

V. Saraswat. Java is not type-safe. Available electronically, 1997.
URL: http://uuw.research.att.com/~vj/bug.html

D. Sequeira. Type Inference with Bounded Quantification. PhD thesis, Department of
Computer Science, University of Edinburgh, 1998. Also Technical Report ECS-LFCS-
98-403.

216

[Sha97]
[SM94]
[SO96]

[Strot)
[T2i96]

[Tho97]
[TNG92]

[TS96)

[TT94]

(Tur37]

[Wir83)
[Wri93]

D. Shang. Transframe: The Annotated Reference. Software Systems Research Labora-
tory, Motorola, Inc., Schaumburg, [llinois, January 1997. Draft 1.4.

J. W. Schmidt and F. Matthes. The DBPL project: Advances in modular database
programming. Information Systems, 19(2):121-140, 1994.

D. Stoutamire and S. Omohundro. The Sather 1.1 specification. Technical Report
TR-96-012, International Computer Science Institute at Berkeley, August 1996.

B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1991.

A. Taivalsaari. On the notion of inheritance. ACM Computing Surveys, 28(3):439-479,
September 1996.

K. K. Thorup. Genericity in Java with virtual types. In Proceedings of the 1997
European Conference on Object-Oriented Programming (ECOOP'97), 1997.

D. Tsichritzis, O. Nierstrasz, and S. Gibbs. Beyond objects: Objects. [nternational
Journal of Intelligent and Cooperative Information Systems, 1(1):43-60, March 1992.

V. Trifonov and S. Smith. Subtyping constrained types. In Proceedings of the 3rd
International Static Analysis Symposium, pages 349-365, May 1996. Lecture Notes in
Computer Science |145.

L. Thorup and M. Tofte. Object-oriented programming and Standard ML. In J. H.
Reppy, editor, Record of the 1994 ACM SIGPLAN Workshop on ML and its Applica-
tions, Orlando, Florida, number 2265 in Rapport de recherche, pages 41-49. INRIA,
June 1994.

A. M. Turing. Computability and A-definability. Journal of Symbolic Logic, 2:153-163,
1937.

N. Wirth. Programming in Modula-2. Springer-Verlag, 2nd edition, 1983.

A. K. Wright. Polymorphism for imperative languages without imperative types. Tech-
nical Report TR93-200, Department of Computer Science, Rice University, February
1993.

217

Appendix A
The Basic TIGUKAT Type System

This chapter gives a full description of the basic TIGUKAT type system. Classes and implementation
types are not fully described as their details are implementation-specific.

A.1 Common behaviors

behavior typelf(X) : T_ConstrainedType; // Object type

behavior classOf(X) : T.InfiniteClass(X); // Object class

behavior itypeOf(X) : T_ImplementationType; // Object implementation type
behavior OIDequal(X,X) : T_Boolean; // Object identity equality
behavior equal(X x,X y): T_.Boolean // Equality

// Shortcut: operator binmary "=="
implementation { return x.0IDequal(y); };
notEqual(X x,X y) : T_Boolean // Inequality
// Shortcut: operator binary "!="
implementation { return not (x == y); };

print(X,OutputStream(X)); // Print to an output stream
apply(X, (X):Y) : Y; // Function application
// Shortcuts: operator binary ".";
// juxtaposition

A.2 Product types

type T_ Unit;

type T_ProductN(covar X1, covar X2, ..., covar XN) {
projecti() : X1,
project2() : X2;
projectN() : XN;

}

for each N greater than 1.

218

A.3 Functional types

type T_Function(contravar A, covar R) {

nargs() : T_Natural; // number of arguments

code() : T_String; // function code (may be empty)
};
class C_Function implements T_Function(A, R) { ... };

type T_Behavior(contravar A, covar R) subtype of T_Function(A, R) {

name() : T_String; // behavior name
description() : T_String; // Documentation
definitions() : T_ConstrainedType; // all definitions
associations(): T_Set(T_BehaviorAssociation(A,R)); // all associations
dispatch(T_List(T_Type)) : T_Function(A, R); // dispatch

};

class C_Behavior implements T_Behavior(A, R) { ... };

The type T_Function(A,R) can be abbreviated as (A):Roras A -> R. The following is the type
necessary for behavior type definition:

type T_BehaviorAssociation(contravar A, covar R) subtype of T_Object {

type() : T_SimpleConstrainedType; // type

function() : T_Function(A,R); // associated function
}
class C_BehaviorAssociation implements T_BehaviorAssociation(A,R) { ... };

The following is the type of low-level, implementation functions

type T_ImplementationFunction subtype of T_Object {

description(): T_String; // Documentation
declaration(): T.String; // host language declaration
definition() : T_String; // host language definition
argtype() : T_List(T_ImplementationType);// required implementation types
// ot all arguments
3
class C_ImplementationFunction implements T_ImplementationFunction { ... }

A.4 Object types

A.4.1 Special types
type T_Object;

type T_Null subtype of <all object types>;

class C_Null implements T_Null { ... };

A.4.2 Atomic types

type T_Discrete subtype of T_Object {
pred(): selftype; // Return the previous element

219

succ(): selftype; // Return the next element

3
type T_PartiallyOrdered(contravar X) subtype of T_Object {
less(selftype) : T_Boolean; // Antisymmetric comparison.
// Shortcut: operator binary '<’
greater(selftype x) : T_Boolean // Antisymmetric comparison.

// Shortcut: operator binary ’>’
implementation { return x < self; };
lessOrEqual(selftype x) : T_Boolean // Symmetric comparison.
// Shortcut: operator binary ’'<=’
implementation { return x < self or x == self; };
greaterOrEqual(selftype x) : T_Boolean // Symmetric comparison.
// Shortcut: operator binary '>=’
implementation { return x <= self; };

};

type T_Ordered(contravar X) subtype of T_PartiallyOrdered(X) {
max(selftype x) : selftype // Maximum of the two
implementation {
return if x < self then self; else x; endif };
min(selftype x) : selftype // Minimum of the two
implementation {
return if x < self then x; else self; endif };

3
type T_Numeric subtype of T_Ordered(T_Numeric) {
abs() : T_Numeric; // Absolute value
negate() : T_Numeric; // Negation.
// Shortcut: operator unary '-’
add(T_Numeric) : T_Numeric; // Addition.

// Shortcut: operator binary ’+’
subtract (T_Numeric) : T_Numeric;// Subtraction.

// Shortcut: operator binary ’-’
multiply(T_Numeric) : T_Numeric;// Multiplication.

// Shortcut: operator binary ’s*’
divide(T_Numeric) : T_Numeric; // Division.

// Shortcut: operator binary '/’

};
type T_Boolean subtype of T_Object {
not() : T_Boolean; // Negation.
or(T_Boolean) : T_Boolean; // Logical OR.
// Shortcut: operator binary ’or’
and(T_Boolean) : T_Boolean; // Logical AND.
// Shortcut: operator binary ’and’
xor(T_Boolean) : T_Boolean; // Logical XOR.
// Shortcut: operator binary ’xor’
ifg(x, X) : X; // 1f-expression. Shortcut:
// 'if ... then ... else ... endif’

};

finite class C_Boolean implements T_Boolean {
implementation type short atomic int;

220

not() implementation function

not(int self) { return ~self; };
or(C_Boolean) implementation function

and(int self, int x) { return self || x; };

+;

type T_Character subtype of T_Discrete, T_Ordered(T_Character) {
ord : T_Natural; // Returns the ordinal value

};

finite class C_ASCIICharacter implements T_Character {
implementation type short atomic char;

};

finite class C_UnicodeCharacter implements T_Character {
implementation type short atomic Unichar;

3
type T_Real subtype of T_Numeric {
truncate(): T_Integer; // Truncate throwing away
// the fractional part
round() : T_Integer; // Round to the nearest
sign() : T_Integer; // Sign: 1 if positive, -1 if

// negative, O otherwise
// Refined from T_Numeric
abs() : T_Real;
negate() : T_Real;
add(T_Real) : T_Real;
subtract (T_Real) : T_Real;
multiply(T_Real) : T_Real;
divide(T_Real) : T_Real;
};

infinite class C_Real implements T_Real {
implementation type short atomic float;

};

infinite class C_LongReal implements T_Real {
implementation type long atomic double;

};

type T_Integer subtype of T_Real, T_Discrete {
div(T_Integer) : T_Integer; // Integer division

// Refined from T_Real

abs() : T_Natural;

negate() : T_Integer;
add(T_Integer) : T_Integer;
subtract(T_Integer) : T_Integer;

221

multiply(T_Integer) : T_Integer;
};

infinite class C_Integer implements T_Integer {
implementation type short atomic int;

};

infinite class C_LongInteger implements T_Integer {
implementation type long atomic long int;

};

type T_Natural subtype of T_Integer {
mod(T_Natural) : T_Natural; // Remainder

// Retined from T_Integer

truncate() : T_Natural;

round() : T_Natural;

sign() : T_Natural;

div(T_Natural) : T_Natural;

add(T_Natural) : T_Natural;

multiply(T_Natural) : T_Natural;
};

infinite class C_Natural implements T_Natural {
implementation type short atomic unsigned;

};

infinite class C_LongNatural implements T_Natural {
implementation type long atomic long unsigned;

};

A.4.3 Collection types
type T_Collection(covar X) subtype of T_Object {

hasElement(X) : T_Boolean; // Checks if the element
// is in the collection
cardinality() : T_Natural; // Collection cardinality
pick() : X // Pick an element
map((X):Y) : T_Collection(Y); // Apply the given function to all

// elements and return the

// collection of results
filter((X):T_Boolean) : T_Collection(X); // Filters the receiver

// collection using the

// argument function as a filter
sort() where (X subtype of T_Ordered(X)) : T_List(X); // Sorts

// the elements of the

// collection. Only applicable to

// collections of ordered elements
sort((X,X) : T_Boolean) : T_List(X);// Sorts the collection using

// the supplied sorting function

222

};

type T_Set(covar X) subtype of T_Collection(X) {

};

subset (T_Set(Y)) : T_Boolean; // Is the receiver a subset

// of the argument?
union(T_Set(Y)) : T_Set(lub(X,Y)); // Set union
intersect(T_Set(Y)) : T_Set(glb(X,Y)); // Set intersection
difference(T_Set(Y)): T_Set(X); // Set difference
addElement (X) : T_Set(X); // Add an element
removeElement (Y) : T_Set(X); // Remove an element
// Refined from T_Collection
map((X):Y) : T_Set(Y);

filter((X):T_Boolean) : T_Set(X);

infinite class C_Set implements T_Set(X) {

};

const T_List(X) _list;

type T_EmptySet subtype of T_Set(X);

finite class C_EmptySet implements T_EmptySet { ... };

type T_USet(novar X) subtype of T_Set(X) {

};

union():=(T_Set(X)); // Destructive set union
intersect():=(T_Set(Y)); // Destructive set intersection
difference():=(T_Set(Y)); // Destructive difference

addElement () :=(X); // Destructively add an element

removeElement():=(Y) : T_Boolean; // Destructively remove an element.
// Returns if it was removed

removeAll(); // Remove all elements

map:=((X):X); // Replace all objects in the set by their images

// obtained by application of the given function

manual class C_USet implements T_USet(X) {

};

const T_Array(X) _array;

type T_List(covar X) subtype of T_Collection(X) {

};

at(T_Natural) : X // Get at arg’s position
cat(X) : T_List(X); // Concatenation
slice(T_Natural, T_Natural) : T_List(X); // Slice from i-th

// to j-th element
// Refined from T_Collection
map((X):Y) : T_List(Y);
filter((X):T_Boolean) : T_List(X);

infinite class C_List implements T_List(X) { ... };

223

type T_EmptyList subtype of T_List(X);
finite class C_EmptyList implements T_EmptyList { ... };

type T_Array(novar X) subtype of T_List(X) {
// Retined from T_List
at(T_Natural) = X; // Set at arg’s position
slice(T_Natural, T_Natural) := T_List(X); // Slice set

};

manual class C_Array implements T_Array(X) { ... };

type T_String subtype of T_List(T_Character) {
// Refined from T_List
cat(T_String) : T_String;
slice(T_Natural, T_Natural) : T_String;
filter ((T_Character):T_Boolean) : T_String;
};

infinite class C_String implements T_String { ... };

infinite class C_UnicodeString implements T_String { ... };

A.4.4 Imperative types
type T_Var(novar X) subtype of T_Object {

get() T ¢ // Get the value
set(X); // Set the value
destructive((X):X); // See the note below
};
manual class C_Var(X) implements T_Var(X) { ... };

The behavior destructive is designed to replace the value stored in the variable by the value
generated from the old contents of that variable by the function passed in as an argument. In other
words,

v.destructive(f)
is equivalent to

v.set(v.get.f)
For example,

Integer v;

v :=85;
v.destructive(negate);
v.print(stdout);

will print —5 while

Integer v;

v :=5;

v.destructive(fun (x) { return x.plus(S); });
v.print(stdout);

will print 10.

224

A.4.5 Metatypes
type T_ConstrainedType subtype of T_PartiallyOrdered(T_ConstrainedType) {

components() : T_Set(T_SimpleConstrainedType); // Components of this type
I
type T_SimpleConstrainedType subtype of T_ConstrainedType {
constraints() : T_Set(T_TypeConstraint);// Constraints placed on this type
variables() : T_Set(T_TypeVariable); // Set of type variables
root() : T_OpenTypeOrTV; // Root of the type tree
3
type T.Type subtype of T_SimpleConstrainedType {
name () : T_String; // The name
description() : T.String; // Documentation
numParameters() : T_Natural; // Number of type parameters
var(T_Natural n) : T_Variance; // Variance of the n-th type parameter
classes() : T_Set(T_Class); // All associated classes
subtypes() : T_Set(T_Type); // Primary functors of immediate subtypes
supertypes() : T_Set(T_Type); // Primary functors of
// immediate supertypes
subtypings() : T_Set(T_TypeConstraint); // All subtype definitions
// 1involving this type
deepExtent () : T_Set(T_Object); // All enumerable objects of this
// type and its subtypes
|5
class C_Type implements T_Type { ... };
infinite class C_ConstrainedType implements T_ConstrainedType { ... };
infinite class C_SimpleConstrainedType implements T_SimpleConstrainedType { ... };

The partial order on types is subtyping.
The users only define types of the type T_Type that corresponds to a type explicitely declared in
the program. All the other types can only be generated automatically (usually during typechecking).
The types defined below are not metatypes as such, but are used in metatype construction. They
are here for completeness of the specification.

type T_OpenTypeOrTV subtype of T_Object;

type T_OpenType subtype of T_OpenTypeOrTV {
primaryFunctor() : T_Type; // Primary functor
children() : T_List(T_OpenTypeOrTV); // Children

¥

type T_TypeVariable subtype of T_OpenTypeOrTV;

type T_TypeConstraint {

left() : T.OpenTypeOrTV; // left side of the constraint
right() : T_OpenTypeOrTV; // right side of the constraint
|-
infinite class C_OpenType implements T_OpenType { ... };
infinite class C_TypeVariable implements T_TypeVariable { ... };
infinite class C_TypeConstraint implements T_TypeConstraint { ... };

The following is the type of implementation types:

225

type T_ImplementationType subtype of T_PartiallyOrdered(T_ ImplementationType) {

name() : T_String; // The name
description() : T_String; // Documentation
classes() : T_Set(T_Class); // All associated classes
subtypes() : T_Set(T_ImplementationType); // Immediate subtypes
supertypes() : T_Set(T_ImplementationType); // Immediate supertypes
layout() : T_String; // host language description
// of an object layout
};
class C_ImplementationType implements T_ImplementationType { ... };

A.4.6 Class types and the metaclasses
type T_ Int1n1teC1ass(covar X) subtype of T_Object {

name() : T_String; // The name
type() : T_Type; // Associated type
contains(T_Object) : T_Boolean; // 1Is this an object of this class?
itype() : T_ImplementationType; // Associated implementation type
extends() : T_Set(T_InfiniteClass(T_Object)); // Classes that
// this one extends
}
class C_InfiniteClass implements T_InfiniteClass { ... };

type T_FiniteClass(covar X) subtype of T_InfiniteClass(X) {
extent () : T_Set(X); // Shallow extent

};

class C_FiniteClass implements T_FiniteClass { ... };

type T_ManualClass(covar X) subtype of T_InfiniteClass(X) {
basicNew() 2 & // Object creation

bH

class C_ManualClass implements T_ManualClass { ... };

type T_Class(covar X) subtype of T_FiniteClass(X), T_ManualClass(X);

class C_Class implements T_Class { ... };

226

Appendix B

Implementation Notes

In this section, design considerations related to various aspects of implementation of a database
programming language with the type system described in this dissertation are presented. Most of
these design decisions were conceived, discussed, and tried out during implementation of the pilot
version of TIGUKAT OODBMS described in [OPS*95] and [Pet94].

One of the main goals of the TIGUKAT OODBMS is to provide a uniform object-oriented
environment. In this environment, every entity is an object that possesses a type that defines its
interface and an implementation type that defines its memory layout. An object is referred to by
its unique object identifier, or an OID. The only elementary actions are behavior applications and
(lower-level, invisible for the user) read/write operations on object components (attributes).

Section B.1 discusses in-memory OID structure and the object addressing in general. Section B.2
provides several references on efficient multi-method dispatch techniques. Section B.3 describes the
role implementation types play in the system. Finally, Section B.4 briefly discusses the effects of
adding persistence to the language.

B.1 Object identifiers

Since the only elementary action explicitly available in the proposed language is behavior applica-
tion, efficiency of the language is crucially dependent on the efficiency of the dispatch mechanism.
Since dynamic types of objects are required for the dispatch to operate, access to the object type
information sufficient for dispatch purposes should be made as efficient as possible. The most effi-
cient access to type information can be achieved when it is encoded directly within an OID. Then
in order to dispatch on a particular object, this object does not have to be accessed at all; in fact,
it may not be in the application memory as long as its OID is available.

Thus the first part of an OID is a type inder. A type index does not encode the complete object
type. Rather, it denotes a pair of which the first component is a primary functor of the object’s run-
time type and the second component is the object’s implementation type. Since only the primary
functors make a difference for the dispatch process, the information denoted by the type index is
sufficient to perform dispatch. The type index is in fact an index into a global type table (hence
the name). Each entry in the type table is a pair denoted by the respective type index. In the
current implementation, the size of the type index field is 2 bytes which allows for 65535 distinct
type indices. Since only concrete types receive type indices, this number is likely to be more than
sufficient.

The second part of the OID is the object identifier proper called contents. The first two bits
of this field identify one of three object varieties. For each variety the rest of the contents field is
interpreted differently. In the current implementation, the size of the contents field is 6 bytes.

Short atomic objects are the objects that do not maintain state (are immutable) and have small
enough size to fit into the contents field entirely. An example of such an object is an integer number.
By encoding short atomic objects in this manner their identity is automatically guaranteed. For
example, no matter how many times an object 5 appears in the program, all its occurrences will have

227

the same OID and will thus be indistinguishable from one another. An OID of a short atomic object
can be perceived as a reference into a constant infinite pool of predefined objects. The user can
introduce his own short atomic objects by defining an appropriate implementation type for them.

Long atomic objects are immutable objects, but with size large enough not to fit into the
contents field. For such objects, the contents field represents the address on the heap where the
object is located. Since long atomic objects are immutable, reference sharing problems do not arise.
Immutable sets and strings are examples of system-defined long atomic objects. The user can also
introduce his own long atomic objects.

Regular objects are mutable objects. For these objects, the contents field represents an index
into the global object table. An entry in the object table encodes (along with other information) the
address of the object on the heap. The advantage of this indirect approach is the ability to resize
and move objects freely (including moving to/from persistent storage) and delete objects in a safe
manner. The disadvantage is the impact on efficiency made by an additional indirection during each
access. Most if not all user-defined object types will fall into this category.

An implementation type can specify the desired interpretation of the contents field of its ob-
ject identifiers by using specifiers short atomic, long atomic, and regular. This specification is
placed in implementation types since it is a low-level property not essential for interface or structure
specifications.

In this section, the organization of OIDs was described. The next section outlines efficient
dispatch techniques suited for the language in question.

B.2 Multiple dispatch

Since the language under consideration features multiple dispatch that requires that dispatch be done
on the types of all arguments rather than on the type of the receiver only, some of the well-known
efficient dispatch techniques such as vtables do not apply.

Multi-method dispatch techniques can be separated into two broad classes: cache-based and
table-based. Cache-based techniques rely on a sort of a branch prediction mechanism to cache in
the most common case, but can take a while to dispatch if a cache miss occurs. The technique
used in Cecil language is cache-based [Cha92a], [DCG94]. [DGC95] offers some improvements in
non-reflexive case.

Table-based techniques rely on some sort of a table where all possible dispatch variants are stored.
The organization and access to this table is the differentiating factor between the techniques from
this group. These techniques are described in [CT95], [DAS96], [HSPL98], [HLPS99], and [PHLS99].
Out of these, the technique described in [HLPS99] is the simplest to implement and works very well
in the presence of type system changes. Techniques described in [HSPL98] and [PHLS99] are more
efficient (O(k) where k is the behavior arity), but an additional work is required to adapt them for
a reflexive system.

In the next section, the usage of implementation types in low-level specifications is described.

B.3 Implementation types and functions

An implementation type is a description of the object’s memory layout. A special predefined im-
plementation type IT_TgObject corresponds to the implementation of a regular TIGUKAT object.
The objects of this implementation type have an array of slots that can be accessed by a set of
primitive functions. Objects that have a number of specific fields in addition to the array of slots
are represented as instances of implementation subtypes of IT_TgObject.

Atomic objects that are represented directly by contents of OIDs, are instances of implementation
types that are not subtypes of IT_TgObject. The subtyping relationships between these types is
determined by their C++implementation. For example, IT Character and IT Natural are subtypes
of IT Integer because in C++ (the host language for our implementation) any character and any
unsigned number can be treated as an integer. On the other hand, C++ integers can not be treated
as C++ real numbers, and therefore IT_Integer is not an implementation subtype of IT Real.

228

Every implementation type provides a function to retrieve a full object type. This is necessary
as the type index only gives information necessary for dispatch purposes, which is in general less
then the full type (e.g. a list’s OID type index would tell this is an object of type T List(.X) for
some X, but it will not be able to produce the value of X).

B.4 Adding persistence

Persistence has an effect on both global tables and object representation. In order to make databases
machine-independent, the following approach was adopted. The representation of an object in the
database (on disk) and in memory are different. The translation is provided by a pair of functions
(pack and unpack) associated with an implementation type. Thus, each implementation type may
potentially have its own disk representation. Disk OIDs also differ from in-memory ones. On disk,
there are only regular OIDs as both short and long atomic OIDs are converted into in-line tagged
data. Another distinction lies in the size of type and object indices. Disk structures have much
larger index size!; indices are converted at the moment the object is packed (unpacked). Thus, each
entry of both object table and type index table contains, in addition to other information, the long
disk version of the index (or 0 if that index has been created by the program and does not have
any disk equivalent yet). Disk indices are assigned at the time a table entry is packed (usually at
transaction commit time).

Since schema objects like types, behaviors etc. can also be made persistent, they have their own
type indices and are packed and unpacked by their respective pack/unpack routines. Dependencies
between schema objects make it necessary to provide a set of rules that determine which objects
are to be made persistent when a schema object becomes persistent. For example, if an object is
made persistent, its type and class become persistent as well. These rules are described in detail
in [OPS*95].

In this section, various implementation and low-level system design issues were briefly discussed.
When completed, the full implementation of the TIGUKAT OODBMS and its language will most
probably produce much more elaborate texts (theses or otherwise) describing its design.

!In the current implementation, the disk version of an OID is 19 bytes long.

229

Appendix C

Module System

This chapter describes the module system proposed for the TIGUKAT OODBPL. [t manages name
spaces in a manner that is orthogonal to the type system, thus allowing the type system to be free
of name space management issues.

The concept of a module as a unit of name scoping and information hiding was first introduced
in Modula and its much better known offspring Modula-2 {[Wir83]. This concept is extensively used
in the modern language design.

Languages that make use of this powerful concept include those of Pascal/Modula family such
as Ada [Ada95] (under the name of packages), DBPL [SM94], Oberon [RW92], Oberon-2 [MW93],
Modula-90 [LML*94], and Modula-3 [Har92].

Languages from ML language family also make use of the modules. Modules in these languages,
however, are interface specifications rather than modules as such. It has been shown that ML
modules can be used in place of interface types in object-oriented programming [TT94]. This
family of languages includes Standard ML [MTH90], Galileo [ACO85], Amber [Car86a], and Haskell
(HIW+92].

Other languages that utilize modules include TM [BBdB*93], LOOM [BFP96], Theta [LCD*95],
Dylan [App94], Modular Smalltalk [Hol93a], TL [MMS94], BETA [MMPN93] (under the name of
fragments), Java [AG96], and Pizza [OW97] (the latter two use the name package).

In [CL95], the usage of moduies in BeCecil is described and their interaction with various object-
oriented constructs is investigated.

In Jigsaw [Bra92], modules are used as one of the central language concepts. It is argued that
modules be used instead of classes.

Modularity and the use of modules is also advocated in [TNG92].

This chapter is organized as follows. Section C.1 discusses the problems related to the coupling
of inheritance and name space management in the current object-oriented languages. Section C.2
illustrates the concepts of module export and import. Inner modules are introduced in Section C.3.
The algorithm for name resolution in the presence of inner modules is presented in Section C.4.
Finally, Section C.5 briefly discusses issues related to the module persistence.

C.1 Information hiding and sharing

Traditionally, in object-oriented languages classes were used as a unit of information sharing and
hiding. The best known example of this approach is C+-+ [Str91] with its use of public, private,
and protected keywords. Even though there are no compelling reasons for coupling inheritance
with name space management, this approach was also adopted in Java [AG96]. However, due to
well-known problems related to this approach, Java has a complementary mechanism for dealing
with name space management — namely, that of packages. Packages eliminate the need for cum-
bersome friend constructs that are used in C++ to overcome the problems related to the coupling
of inheritance and name space management units.

230

In order to illustrate the problems related to such coupling, consider the following example. Let
TBank, T_InvestmentCompany, and T_InsuranceCompany be the types that define interface of their
respective real-world entities. Consider a financial group that has a bank, an investment company,
and an insurance company as its components. Let FinancialRecords be a message that can be sent
to any bank or company to receive financial records of a given institution. We would like to make
FinancialRecords available inside the financial group, but not outside of it. In the absence of mod-
ules, there is no way to accomplish this functionality unless a new “wrapper” type T FinancialGroup
is defined. However, in this case, all access to the bank and the investment and insurance company
has to go through the financial group, which means that all public interfaces of the bank, investment
and insurance company has to be duplicated in T_FinancialGroup. For example, if banks and com-
panies have a publicly accessible method WithdrawFunds, that will necessitate the creation of three
methods in T_FinancialGroup, namely WithdrawFundsFromBank, WithdrawFundsFromInvestment,
and WithdrawFundsFromInsurance. This makes the interface definition unnecessarily complex and
any further interface modification complicated and error-prone. In the presence of modules, how-
ever, a financial group can be represented as a module rather than a class. That module may export
the bank, investment, and insurance companies together with their public interfaces, but not the
message FinancialRecords.

In the proposed type system, only the question of message (behavior) hiding is relevant, as all
instance variables are hidden and can not be directly accessed by any type. Thus, the following
discussion concentrates on the modular mechanisms for behavior hiding.

C.2 Export and import

Every module contains ezport and import lists. A module can be understood a membrane that stops
everything but the names listed in the import list from getting in, and it also stops all names except
for those listed in the export lists from getting out.

Every entry in the export table is organized as follows. It has a qualified name of the symbol to
export, its (possibly empty) alias that will be used outside the exporting module, and a flag that
indicates whether all names are to be exported. The flag only makes sense if this entry exports a
module.

An entry in the import table also consists of the qualified name of the imported symbol, its
(possibly empty) alias to be used inside the importing module, and a flag that indicates whether all
names are to be imported. The flag only makes sense if this entry imports a module.

Example:

module M_Bank {
import all M_Finance, M_Financiallnstitution;
import M_Financiallnstitution.T_Financiallnstitution as T_Root;
export M_Bank.T_Bank, M_Bank.WithdrawFunds, ...;
export all M_Financiallnstitution;
type T_Bank subtype of T_Root .
};

module M_Main {
import all M_Bank;

T_Bank bank;

bank.WithdrawFunds(...);

231

Here the module M_Bank imports everything that is exported by both M_Financiallnstitution
and M_Finance, (locally) renaming T _Financiallnstitution imported from
M_Financiallnstitution as T_Root. It exports the type T Bank, the behavior WithdrawFunds,
and all symbols exported by M_FinancialInstitution. The module M_Main imports all symbols
exported by M_Bank and can therefore use both T_Bank and WithdrawFunds.

Note that this arrangement allows one to define re-export of imported symbols, possibly renaming
them along the way. This makes it possible to define more restrictive versions of existing modules
(views). For example, the following defines a “customer view” of a bank:

module M_CustomerBank {

import all M_Bank;

export M_Bank.T_Bank, M_Bank.WithdrawFunds, ...
};

The difference between M_Bank and M_CustomerBank is that the latter only allows the usage of bank’s
methods, but not those of a financial institution.

C.3 Inner modules

In order to design hierarchical systems, a notion of inner module is introduced. An inner module
is defined inside another (parent) module; thus, the hierarchy of inner modules forms a tree. The
import list of the inner module contains a special entry named PARENT. If this entry has its “all”
flag turned on, the inner module imports all symbols from its parent module, including ones that
are not exported. Thus, an inner module has an access to the “internals” of its parent module.

On the other hand, the parent module has access to all symbols exported by the inner module.
It does not have access to the symbols that the inner module does not export.

There is an adcitional restriction placed on the inner module export list. An inner module can
not export imported symbols that are not explicitly exported by its parent module. This is done to
disallow bypassing export lists by using inner modules.

Example:

module M_Bank {
import all M_Finance, M_Financiallnstitution;
import M_Financiallnstitution.T_Financiallnstitution as T_Root;
export M_Bank.T_Bank, M_Bank.WithdrawFunds, ...;
export all M_Financiallnstitution;
type T_Bank subtype of T_Root ...
module M_Vault {
import all PARENT;
export T_Vault, Get, Put;
type T_Vault ... {
Get(T_Money request): T_Money received implementation {
SecurityStandBy();
};
I H

module M_Security {
import all PARENT;

232

export SecurityStandBy, ...;

};

Inside M_Bank only behaviors Get and Put of the type T_Vault can be used. However, inside M_Vault
all behaviors defined inside M_Bank can be used, including the behavior SecurityStandBy exported
into the name space of M Bank by the module M _Security.

The next section gives the algorithm for name search in the presence of inner modules.

type T_Module {
Parent () : T_Module; // Referance to the parent module.
NameTable() : T_NameTable; // Name table
ImportTable() : T_ImportTable; // Import table
ExportTable() : T_ExportTable; // Export table

};

type T_NameTable subtype of T_Set(T_NameTableEntry);
type T_NameTableEntry {

Name() : T_String; // Name being defined
NameDef () : T_NameDef; // The definition for use by compiler
Module() : T_Module; // Module reference (non-NULL

// if this is a name of an inner module)

};

type T_ImportTable subtype of T_Set(T_IETableEntry);
type T_ExportTable subtype of T_Set(T_IETableEntry);
type T_IETableEntry {

QName() : T_String; // Qualified name being imported (exported)
Alias() : T_String; // Its alias (can be NULL)
Al11() : T_Boolean; // Are all names imported (exported)?

// Only makes sense if this entry
// refers to a module

Figure C.1: Module data structures

C.4 Name search

Figures C.1, C.2, C.3, and C.4 define the algorithm and the data structures used for name search
in the presence of multiple modules. The entry point of the algorithm is the behavior FindSymbol
(Figure C.2). For the purposes of this algorithm, it is assumed that every module has a parent
module except for a special “root” module that has no imports or exports. This “root” module is
considered to be a parent of all modules defined in the global scope. It is also assumed that import
table of every module has an entry marked with a predefined name “PARENT" that refers to the
parent of the given module.

The algorithm either produces the variable definition along with the module it is located in or
one of two error conditions: UNDEFINED or AMBIGUOUS. There is a built-in ambiguity resolution that
assigns lower priority to symbols implicitly imported from inner modules. However, this is the only
case when one definition supersedes another. In all other cases, the AMBIGUOUS error occurs.

233

// Function: T_Module::FindSymbol
// Purpose: find a symbol in the given module

// Input:

// self (the receiver) - module to locate symbol in

// gname -~ qualified name of the symbol to search for
// Output:

// pair of (module,nameDef) where

// module - module where the found name definition is located
// nameDef - name definition for use by compiler
// Errors:

// Can throw one of:

// AMBIGUOUS - the name is ambiguous

// UNDEFINED - the name is undefined

T_Module: :FindSymbol(T_String qname) : (T_NameDef, T_Module) implementation
{

T_Set(T_Module,T_String) trace := {};

T_USet (T_Number, T_NameDef, T_Modtle) results := {};

T_NameDef resultND;

T_Module resultMod;

T_Number resultPri := MAXNUNM;

T_Boolean resultAmbiguous := FALSE;

FindHere(qname, 0, TRUE, trace, results);
if (results.IsEmpty) then { throw UNDEFINED; };

// Choose the result with the highest priority.
// 1f there is more than one, this symbol is ambiguous
for each e in results do {
T_Number priority;
T_NameDef nameDef;
T_Module module;
(priority, nameDef, module) := @;
if (priority < resultPri) then {
resultAmbiguous := FALSE;
(resultPri, resultND, resultMod) := (priority, nameDef, module);
} elseif (priority == resultPri) then {
resultAmbiguous := TRUE;
3
};

if (resultAmbiguous) then {
throw AMBIGUQUS;
} else {
return (resultND, resultMod);
};

Figure C.2: Name search

234

// Function: T_Module::FindHere
// Purpose: find all symbol definitions available in the given module

// Input:

// self (the receiver) - module to locate symbol in

// qname - qualified name of the symbol to search for

// priority - current search priority (0 is the highest)

// parentSearch - a boolean flag that indicates whether

// the enclosing module should be searched

// trace - set of (module,name) pairs already tried

// Input/Output:

// results - updatable set of results. Each result is a triple
// that consists of:

// priority - the priority of the successful search

// nameDef - name definition

// module - module where the found name definition is located

T_Module: :FindHere(T_String gqname, T_Number priority, T_Boolean parentSearch,
T_Set(T_Module, T_String) trace,
T_USet(T_Number, T_NameDef, T_Module) results) implementation

{
// Attempt to locate the symbol in the name table
// and inner modules
for each e in NameTable do {
it (e.Name == qname) then {
results.insert((priority,e.NameDef, self));
} elseif (e.Module != NULL) then {
it (e.Name.IsPrefixOf(qname)) then {
T_String nameTail := qname.RemovePrefix(e.Name);
e.Hodule.FindExternal(nameTail,priority,trace,results);
} else {
e.Module.FindExternal(qname,priority + 1,trace,results);
}
};
I
// Attempt to locate the symbol among imports
for each e in ImportTable do {
if (e.QName == "PARENT" and not parentSearch) then { continue; };
T_String name := if (e.Alias != NULL) then { e.Alias; } else { e.QName; };
if (name.IsPrefix0f(qname)) then {
T_String nameTail := qname.RemovePrefix(name);
iz (e.All or nameTail == "") then {
T_Set(T_Module,T_String) newTrace := {(self,qname)};
Parent.FindHere(e.(Name + nameTail,priority,TRUE.nevTrace,results);
};
};
};
};

Figure C.3: Name search in the given module

235

// Function: T_Module::FindExternal
// Purpose: find all symbol definitions exported by the given module

// Input:

1/ self (the receiver) - module to locate symbol in

// gname - qualified name of the symbol to search for

// priority - current search priority (0 is the highest)

// trace - set of (module,name) pairs already tried

// Input/Output:

// results - updatable set of results. Each result is a triple
// that consists of:

// priority - the priority of the successful search

/7 nameDef - name definition

// module - module where the found name definition is located

T_Module: :FindExternal(T_String qname, T_Number priority,
T_Set(T_Module, T_String) trace,
T_USet(T_Number, T_NameDef, T_Module) results) implementation

{
// Fail if already visited this place
it (trace.Includes((self,gname))) then {
return;
} else {
trace.Insert((self,qname));
};
for each e in ExportTable do {
T_String name := if (e.Alias != NULL) then { e.Alias; } else { e.QName; };
if (name.IsPrefix0Of(qname)) then {
T_String nameTail := qname.RemovePretix(name);
if (e.All OR nameTail = "") then {
FindHere(e.QName + nameTail, priority, FALSE, trace, results);
};
};
};
}

Figure C.4: External name search in the given module

236

Due to the restriction mentioned in the previous section (an inner module can not export symbols
from its parent), the behavior FindHere has an additional argument parentSearch which is set to
FALSE every time an “external” search is performed. This prevents the algorithm from searching the
parent hierarchy of a given module.

The trace is necessary to avoid infinite recursion. The reason why such a situation can occur
is the fact that there are no acyclicity restrictions placed on the import module hierarchy. This
significantly facilitates the design process. The trace is reset in FindHere when the search proceeds
to the parent module to reduce the amount of testing required. This optimization is valid since only
“internal” searches are allowed to look in the parent module, thus infinite cycles do not occur when
the algorithm goes “up” the parent hierarchy.

The data structures depicted in Figure C.1 are related to a single module. The name table
contains the set of names defined in the given module, including any inner modules present. The
import (export) table represents the set of all imports (exports) of the given module. Parent refers
to the parent module.

C.5 Adding persistence

Modules, types, behaviors, and all the other schema entities are objects and can therefore be stored
in the database and retrieved from it. In order to indicate that a particular module is persistent,
the PERSISTENT keyword can be added to its definition. If a module is persistent, then all types,
behaviors, classes, functions, and inner modules defined in it are also persistent. Only top-level
modules can be declared persistent. If a module is persistent, then all modules from which it imports
should also be declared persistent. These restrictions ensure that persistent module’s dependencies
persist along with the module itself.

In this chapter, the module system and the algorithm for name resolution have been described.
This module system is orthogonal to the type system and therefore does not affect typechecking. At
the same time, the elaborate import/export mechanism along with inner modules provides a powerful
way to deal with information hiding and sharing at the module level. The module system is also
capable of modeling views which is one of the major schema information management mechanisms
in traditional database management systems.

237

