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Abstract

Heuristic search effectiveness depends directly upon the quality of heuristic evaluations 

of states in a search space. Given the large amount of research effort devoted to 

computer chess throughout the past half-century, insufficient attention has been paid to 

the issue of determining if a proposed change to an evaluation function is beneficial.

We argue that the mapping of an evaluation function from chess positions to heuristic 

values is of ordinal, but not interval, scale. We identify a robust metric suitable for 

assessing the quality of an evaluation function, and present a novel method for computing 

this metric efficiently. Finally, we apply an empirical gradient ascent procedure, also of 

our design, over this metric to learn feature weights for the evaluation function of a 

computer chess program. Our experiments demonstrate that evaluation function weights 

tuned in this manner give equivalent performance to hand-tuned weights.

This work enhances our ability to understand when a change to an evaluation function is 

beneficial, introduces a novel, efficient algorithm for computing ordinal correlation, and 

enables a machine to tune feature weights to effective values in a reasonable amount of 

time and without human intervention, using only a limited amount of imperfectly labelled 

data.
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1 Introduction
A half-century of research in computer chess and similar two-person, zero-sum, perfect- 
information games has yielded an array of heuristic search techniques, primarily dealing 
with how to search game trees efficiently. It is now clear to the AI community that search 
is an extremely effective way of harnessing computational power. The thrust of research 
in this area has been guided by the simple observation that as a program searches more 
deeply, the decisions it makes continue to improve (Thompson, 1982).

It is nonetheless surprising how often the role of the static evaluation function is 
overlooked or ignored. Heuristic search effectiveness depends directly upon the quality 
of heuristic evaluations of states in the search space. Ultimately, this task falls to the 
evaluation function to fulfill. It is only in recent years that the scientific community has 
begun to attack this problem with vigour. Nonetheless, it cannot be said that our 
understanding of evaluation functions is even nearly as thoroughly developed as that of 
tree searching. This thesis is a step towards redressing that deficit.

Inspiration for this research came while reflecting on how evaluation functions for 
today’s computer chess programs are usually developed. Typically, they are refined over 
many years, based upon careful observation of their performance. During this time, 
engine authors will tweak feature weights repeatedly by hand in search of proper balance 
between terms. This ad hoc process is used because the principal way to measure the 
utility of changes to a program is to play many games against other programs and 
interpret the results. The process of evaluation function development would be 
considerably assisted by the presence of a metric that could reliably indicate a tuning 
improvement.

Consideration was also given to harnessing the great deal of recorded experience of 
human chess for developing an evaluation function for computer chess. Researchers 
have tried to make their machines play designated moves from test positions, but we 
focus on judgements about the relative worth of positions, reasoning that if these are 
correct then strong moves will be selected by the search as a consequence.

The primary objective of this research is to identify a metric by which the quality of an 
evaluation function may be directly measured. For this to be convincingly achieved, we 
must validate this metric by showing that higher values correspond to superior weight 
vectors. To this end, we introduce an estimated gradient ascent procedure, and apply it to 
tune eleven important features of a third-party chess evaluation function.

We begin with a summary of prior work in machine learning in chess-like games as it 
pertains to evaluation function analysis and optimization. This is followed by a brief, but 
formal, introduction to measurement theory, accompanied by an argument for the 
application of ordinal methods to the analysis of evaluation functions. A novel, efficient 
implementation of the ordinal metric known as Kendall’s r is described in §4; also 
indicated is how to apply it to measure the quality of an evaluation function. Next, we 
present an estimated gradient ascent algorithm by which feature weights may be 
optimized, and the infrastructure created to distribute its computation. Issues touching 
upon our specific experiments are discussed in §6; experimental results demonstrating the 
utility of ordinal correlation with respect to evaluation function tuning are provided in §7. 
After drawing some conclusions, we remark upon further plausible investigations.

1
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It is our hope and intent that this thesis contributes to the scientific community by:

1. enhancing or clarifying our ability to understand when and why a change to an 
evaluation function is beneficial, by

a. showing that the effectiveness of selecting an evaluation function 
depends upon its ability to provide a correct linear ordering of states, 
and

b. demonstrating the suitability of Kendall’s r for determining the extent 
to which an evaluation function satisfies this criterion.

2. providing a novel implementation of Kendall’s r whose efficiency, depending 
upon the input data, meets or supercedes prior algorithms for computing 
ordinal correlation.

3. demonstrating a new way to enable a machine to tune feature weights to 
effective values

a. in a reasonable amount of time and processing power,

b. without human intervention, and

c. using only a limited amount of imperfectly labelled data.

2
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2 Prior Work on Machine Learning in Chess-Like Games
Here we touch upon specific issues regarding training methods for static evaluation 
functions. For a fuller review of machine learning in games, the reader is referred to
Fiimkranz’s survey (2001).

2.1 Feature Definition and Selection
The problem of determining which features ought to be available for use within an 
evaluation function is perhaps the most difficult problem in machine learning in games. 
Identification and selection of features for use within an evaluation function has primarily 
been performed by humans. Utgoff is actively involved in researching automated feature 
construction (Fawcett and Utgoff, 1992; Utgoff, 1996; Utgoff and Precup, 1998; Utgoff 
and Stracuzzi, 1999, 2002), typically using Tic-Tac-Toe as a test bed. Utgoff (2001) 
discusses in depth the automated construction of features for game playing. He argues 
for incremental learning of layers of features, the ability to train particular features in 
isolation, and tools for the specification and refactoring of features.

Hartmann (1987a, 1987b, 1989) developed the “Dap Tap” to determine the relative 
influence of various evaluation feature categories, or notions, on the outcome of chess 
games. Using 62,965 positions from grandmaster tournament and match games, he found 
that “the most important notions yield a clear difference between winners and losers of 
the games”. Unsurprisingly, the notion of material was predominant; the combination of 
other notions contributes roughly the same proportion to the win as material did alone. 
He further concluded that the threshold for one side to possess a decisive advantage is 1.5 
pawns.

Kaneko, Yamaguchi, and Kawai (2003) automatically generated and sieved through 
patterns, given only the logical specifications of Othello and a set of training positions. 
The resulting evaluation function was comparable in accuracy (though not speed of 
execution) to that developed by Buro (1999).

A common property of Tic-Tac-Toe and Othello that makes them particularly amenable to 
feature discovery is that conjunctions of adjacent atomic board features frequently yield 
useful information. This area of research requires further attention.

2.2 Feature Weighting
Given a decision as to what features to include, one must then decide upon their relative 
priority. We begin with unsupervised learning, following the historical precedent in 
games, and follow with discussion of supervised learning methods. It is worth noting that 
Utgoff and Clouse (1991) distinguish between state preference and temporal difference 
learning, and show how to integrate the two into a single learning procedure. They 
demonstrate using the Towers of Hanoi problem that the combination is more effective 
than one alone.

2.2.1 Unsupervised Learning

Procedures within the rubric of reinforcement learning rely on the difference between the 
heuristic value of states and the corresponding (possibly non-heuristic) values of actual or 
predicted future states to indicate progress. Assuming that any game-terminal positions

3
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encountered are properly assessed (trivial in practice), lower differences imply that the 
evaluation function is more self-consistent, and that the assessments made are more 
accurate.

The chief issue to be tackled with this approach is the credit assignment problem: what, 
specifically, is responsible for differences detected? While some blame may lie with the 
initial heuristic evaluation, blame may also lie with the later, presumably more accurate 
evaluation. Where more than one ply exists between the two (a common occurrence, as 
frequently either the result of the game or the heuristic evaluation at the leaf of the 
principal variation searched is used) the opportunities for error multiply. The TD(k) 
technique (Sutton, 1988) solves this problem by distributing the credit assignment 
amongst states in an exponentially decaying manner. By training iteratively, 
responsibility ends up distributed where it is thought to belong.

The precursor of modem machine learning in games is the work done by Samuel (1959, 
1967). By fixing the value for a checker advantage, while letting other weights float, he 
iteratively tuned the weights of evaluation function features so that the assessments of 
predecessor positions became more similar to the assessments of successor positions. 
Samuel’s work was pioneering not just in the realm of games but for machine learning as 
a whole. Two decades passed before other game programmers took up the challenge.

Tesauro (1995) trained his backgammon evaluator via temporal difference learning. 
After 300,000 self-play games, the program reached strong amateur level. Subsequent 
versions also contained hidden units representing specialized backgammon knowledge 
and used expectimax, a variant of minimax search that includes chance nodes. TD- 
Gammon is now a world-class backgammon player.

Beal and Smith (1997) applied temporal difference learning to determine piece values for 
a chess program that included material, but not positional, terms. Program versions using 
weights resulting from five randomized self-play learning trials each won a match versus 
a sixth program version that used the conventional weights given in most introductory 
chess texts. They have since extended their reach to include piece-square tables for chess 
(Beal and Smith, 1999a) and piece values for Shogi (Beal and Smith, 1999b).

Baxter, Tridgell, and Weaver (1998) named Beal and Smith’s application of temporal 
difference learning to the leaves of the principal variations as TD-leaf, and used it to learn 
feature weights for their program KnightCap. Through online play against humans, 
KnightCap’s skill level improved from beginner to strong master. The authors credit this 
to: the guidance given to the learner by the varying strength of its pool of opponents, 
which improved as it did; the exploration of the state space forced by stronger opponents 
who took advantage of KnightCap’s mistakes; the initialization of material values to 
reasonable settings, locating KnightCap’s weight vector “close in parameter space to 
many far superior parameter settings”.

Schaeffer, Hlynka, and Jussila (2001) applied temporal difference learning to Chinook, 
the World Man-Machine Checkers Champion, showing that this algorithm was able to 
learn feature weights that performed as well as Chinook’s hand-tuned weights. They also 
showed that, to achieve best results, the program should be trained using search effort 
equal to what the program will typically use during play.

4
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2.2.2 Supervised Learning

Any method of improving an evaluation function must include a way to determine 
whether progress is being made. In cases where particular moves are sought, a simple 
enumeration of the number of ‘correct’ moves selected is the criteria employed. This 
metric can be problematic because frequently no single move is clearly best in a position. 
Nonetheless, variations on this method have been attempted.

Marsland (1985) investigated a variety of cost functions suitable for optimizing values 
and rankings assigned to moves for the purposes of move selection and move ordering. 
He found tuning to force recommended moves into relatively high positions to be 
effective, but attempting to force desired moves to be preferred over all alternatives was 
counterproductive.

Tesauro (1989) devised a neural network structure appropriate for learning an evaluation 
function for backgammon, and compared states resulting from moves actually played 
against alternative states resulting from moves not chosen. “Comparison training” was 
shown to outperform an earlier system that compared states before and states after a 
move was played.

Tesauro (2001) applied comparison training to a database of expert positions to 
demonstrate that king safety terms had been u n d e rw e ig h te d  in Deep Blue’s evaluation 
function in 1996. The weights were raised for the 1997 rematch between Garry Kasparov 
and Deep Blue. Subsequent analysis demonstrated the importance of this change.

A popular approach is to solve for a regression line across the data that minimizes the 
squared error of the data. While this may be done by solving a set of linear equations, 
typically an iterative process known as gradient descent (a.k.a. hill climbing or gradient 
ascent) is applied. The partial derivatives with respect to the weights are set to zero, and 
the parameters are solved for via an iterative procedure. The error function is quadratic, 
so there will be a single, global minimum to which all gradients will lead. Solving 
regression curves (non-linear regressions) by gradient descent is also possible, but in 
these cases, converging to a global minimum may be considerably more difficult.

The Deep Thought (later Deep Blue) team applied least squares fitting to the moves of 
the winners of 868 grandmaster games to tune their evaluation function parameters as 
early as 1987 (Anantharaman, 1990, 1997; Hsu, 1990; Nowatzyk, 2000). They found 
that tuning to maximize agreement between their program’s preferred choice of move and 
the grandmaster’s was “not really the same thing” as playing more strongly. Amongst 
other interesting observations, they discovered that conducting deeper searches while 
tuning led to superior weight vectors being reached.

Buro (1995) estimated feature weights by performing logistic regression on 
win/loss/draw-classified Othello positions. The underlying log-linear model is well 
suited for constructing evaluation functions for approximating winning probabilities. In 
that application, it was also shown that the evaluation function based on logistic 
regression could perform better than those based on linear and quadratic discriminant 
functions.

5
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Buro (1999) used linear regression and positions labelled with the final disc differential 
of Othello positions to optimize the weights of thousands of binary pattern features. This 
approach yields significantly better performance than his 1995 work.

Buro’s work is an example of a supervised learning approach where heuristic assessments 
are directly compared with more informed assessments. The principal contribution of 
this thesis is to expand the applicability of this approach to include situations where least- 
square fitting would be inappropriate.

2.3 Miscellaneous
Levinson and Snyder (1991) created Morph, a chess program designed in a manner 
consistent with cognitive models, except that look-ahead search was strictly prohibited. 
It generalizes attack and defence relationships between chess pieces and squares adjacent 
to the kings, applying various machine learning techniques for pattern generation, 
deletion, and weight tuning. Morph learned to value material appropriately and play 
reasonable moves from the opening position of chess.

Van der Meulen (1989) provides algorithms for selecting a weight vector that will yield 
the desired move, for partitioning a set of positions into groups that share such weight 
vectors, and for labelling new positions as a member of one of the available groups.

Simulated annealing is distinguished from gradient descent in that it attempts to step in a 
random direction. Moves that appear to be beneficial are always accepted, but unlike hill 
climbing, sometimes moves that appear counterproductive are also accepted. The degree 
to which such moves will be accepted depends upon what is known as the temperature, 
which slowly lowers (albeit not monotonically) as the algorithm progresses. However, 
we are not aware of any tuning procedures for chess-like games that specifically apply 
this technique.

Evolutionary methods have also been applied to the problem. Kendall and Whitwell 
(2001) evolved intermediate-strength chess players from a population of poor players by 
applying crossover and mutation operators to generate new weight vectors, while 
discarding vectors that performed poorly. Usually, a gradient descent approach will 
converge significantly more quickly than a genetic algorithm or its like would, and 
therefore these methods are not much in favour. Specifics of our application suggest that 
such a method may nonetheless be appropriate for our problem. We discuss this issue in 
§ 8. 1.

6
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3 Measurement Theory
Sarle (1997) states: “Mathematical statistics is concerned with the connection between 
inference and data. Measurement theory is concerned with the connection between data 
and reality. Both statistical theory and measurement theory are necessary to make 
inferences about reality.” We are endeavouring to identify a direct way to measure the 
quality o f an evaluation function, so a familiarity with measurement theory is important.

3.1 Statistical Scale Classifications
The four standard statistical scale classifications in common use today to classify 
unidimensional metrics originated with Stevens (1946, 1951). He defined the following, 
increasingly restrictive categories of relations:

A relation R(x, y) is nominal when R is a one-to-one function. Let function/be such a 
relation that is defined over the real numbers: y  —fix). Then,/is nominal if and only if

Vi V /: i = y <=> / ( / )  = / ( j)  (3.1)

One common example of a nominal relation is the relationship between individuals of a 
sports team and their jersey numbers.

Additionally,/is ordinal w hen/is strictly monotonic: as the value of x  increases, either y  
always increases or y  always decreases. We will assume (without loss of generality, as 
we can negate /if necessary) thaty always increases. Formally:

V i V/ :/'<;<=> f ( i )  < f ( J )  0 -2)

The relationship of the standard five responses “strongly disagree”, “disagree”, “neutral”, 
“agree”, and “strongly agree” to many survey questions is ordinal. The mapping of chess 
positions to the possible assessments given in Table 1 in §3.3 is also ordinal.

Additionally,/is of interval scale w hen/is affine:

3 c > 0 V r Y/ : i - j  = c[f(i) -  f ( J )] (3.3)

The difference between two elements is now meaningful. Hence, subtraction and 
addition are now well-defmed operations. Time is of interval scale.

Additionally,/is of ratio scale when the zero point is fixed:

V /V y * 0 ,/C /)* 0 :-  = ^  (3.4)
J f O )

The ratio between two elements is now meaningful. Hence, division and multiplication 
are now well-defined operations. Temperature is an example of a ratio scale: the zero 
point is absolute zero, which is 0 kelvins.

These categories are by no means the only plausible ones. Stevens himself recognized a 
log-interval scale classification (Stevens, 1959), to which the Richter and decibel scales 
belong. It has a fixed zero, and a log-linear relationship. Every log-interval scale is 
ordinal, and every ratio scale is log-interval, but interval and log-interval are
incompatible. The absolute scale is a specialization of the ratio scale, where not only the

7
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zero point but also the one point is fixed. This scale is used for representing probabilities 
and for counting.

Figure 1: Partial Ordering of Statistical Scale Classifications

Interval

OrdinalNominal Ratio A bsolute

Log-interval

Figure 1 demonstrates the inheritance relationships between the various classifications. It 
is to be understood that this classification system is open to extension, and that it does not 
encapsulate all interesting properties of functions.

3.2 Admissible Transformations
Transformations are deemed admissible (Stevens used “permissible”) when they conserve 
all relevant information. For example, converting from kelvins to degrees Celsius (°C) 
by applying flx) = x + 273.16 would not be considered admissible, because the zero point 
would not be preserved. Such a transformation is not prohibited per se, but it does mean 
that usages involving ratios would no longer be justified. Three hundred kelvins is 
actually twice as hot as one hundred fifty kelvins. Clearly, then, 26.84°C cannot be twice 
as hot as 13.42°C.

The transformations deemed admissible for any category are those that retain the 
invariants specified by (2.1) through (2.4). A transformation is admissible with respect to 
the nominal scale if and only if it is injective. For the ordinal scale, the preservation of 
order is also required. For the interval scale, equivalent differences must remain 
equivalent, so only affine transformations are permitted (g(x) = af(x)+b, a>0). 
Admissibility with respect to the ratio scale also require the zero point to remain fixed 
(b = 0, in the prior equation).

Stevens argued that it is not justified to draw inferences about reality based upon non- 
admissible transformations of data, because otherwise the conclusions that could be 
drawn would vary depending upon the particulars of the transformation applied. “In 
general, the more unrestricted the permissible transformations, the more restricted the 
statistics. Thus, nearly all statistics are applicable to measurements made on ratio scales, 
but only a very limited group of statistics may be applied to measurements made on 
nominal scales” (Stevens, 1959).

Much discussion of this highly controversial position has taken place. Tukey opined that 
in science, the “ultimate standard of validity is an agreed-upon sort of logical consistency 
and provability” (Tukey, 1962), and that this is incompatible with an axiomatic theory of 
measurement, which is purely mathematical. Velleman and Wilkinson argue that the 
classifications themselves are misleading (1993). It is important to note that the notion of 
admissibility is relative to the analysis being performed rather than purely data-centric: it 
is perfectly valid to convert from kelvins to degrees Celsius, so long as one does not then 
draw conclusions based upon the ratios of temperatures denoted in degrees Celsius. 
Stanley’s classifications remain in widespread use, though in particular his stricture

8
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against drawing conclusions based upon statistical procedures that require interval-scale 
data applied to data with only ordinal-scale justification is frequently ignored.

3.3 Relevance to Heuristic Evaluation Functions for Minimax Search
Utgoff and Clouse (1991) comment: “Whenever one infers, or is informed correctly, that 
state A is preferable to state B, one has obtained information regarding the slope for part 
of a correct evaluation function. Any surface that has the correct sign for the slope 
between every pair of points is a perfect evaluation function. An infinite number of such 
evaluation functions exist, under the ordinary assumption that state preference is 
transitive.”

Throughout the search process of the minimax algorithm for game-tree search (Shannon, 
1950), and all its derivatives (Marsland, 1983; Plaat, 1996), a single question is 
repeatedly asked: “Is position A better than position B?” Not “How much better?”, but 
simply “Is it better?”. In minimax, instead of propagating values one could propagate the 
positions instead, and, as humans do, choose between them directly without using values 
as an intermediary. This shows that we only need pairwise comparisons that tell us 
whether position A is better than position B.

The essence of a heuristic evaluation function is to make educated guesses regarding the 
likelihood of successful outcomes from arbitrary states. This is somewhat obscured in 
chess by the tendency to use a pawn as the unit by which advantage is measured, a habit 
encouraged by the high correlation between material advantage and likelihood of success 
inherent in the game.

The implicit mapping between a typical evaluation scoring system (range: [-32767, 
32767], where the worth of a pawn is represented by 100) and the probability of success 
(range: [0, 1]), maintains the ordinal invariant of linear ordering, though not the interval 
invariant of equality of differences. This is interesting insofar as typically terms will be 
added and subtracted during the assessment of a position by a computer program, 
operations that according to Stevens require interval-scale justification. Furthermore, the 
difference between scores is frequently used as criteria to apply numerous search 
techniques (e.g. aspiration windows, lazy evaluation, futility pruning). How can we 
reconcile his theory with practice?

Firstly, a heuristic search is exactly that: heuristic. Many of these techniques encompass 
a trade-off of accuracy for speed, with the difference threshold set empirically. Thus, to 
some extent, compensation for the underlying ordinal nature of scores returned by the 
evaluation function is already present.

Secondly, it can be argued that the region between -200 and 200, where the majority of 
assessments that will influence the outcome of the game lie, is in practice nearly one of 
interval scale. This means that decisions made based on a difference threshold while the 
game is roughly balanced are relatively less likely to be faulty in important situations.

Finally, one may choose to agree with Stevens’ detractors, and indeed, many social 
scientists compute means on ordinal data frequently without much ado.

Does this mean that we should ignore the underlying ordinality of the problem? No. 
Everything of interval scale is of ordinal scale, while the converse is false. A metric

9
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capable of handling ordinal data is readily applicable to data that meets a more stringent 
qualification. In contrast, the application of a metric suited for interval scale data to data 
of ordinal scale is, at least to researchers who agree with Stevens, suspect, and requires 
justification. Such justification might take the form of the ability to predict and validate 
predictions that depend on the proposed interval nature of the variable.

Table 1 depicts seven of the symbols used by contemporary chess literature to represent 
judgements regarding the degree to which a position is favourable to one player or the 
other in a language-agnostic manner.1 Also provided are their corresponding English 
definitions as specified by Chess Informant (Sahovski, 1966). We have ordered them by 
White’s increasing preference, so the categories are montonically increasing, however, it 
would be nonsense to say that the difference between + - and = is three times that of the 
difference between ± and =. Therefore, they are of ordinal scale. It would be possible to 
label these with the numbers 1 through 7, and proceed from there as if they were of 
interval scale, but at least according to Stevens, doing so would require justification. 
Fortunately, it is unnecessary, as we will show in the next chapter.

Table 1: Symbols for Chess Position Assessment

symbol meaning

-+ black has a decisive advantage
+ black has the upper hand
¥ black stands slightly better
= even
+ white stands slightly better
± white has the upper hand

+- white has a decisive advantage

1 Two other assessment symbols, (the position is unclear) and g  (a player has positional compensation for 
a material deficit) are also frequently encountered. Unfortunately, the usage o f these two symbols is not 
consistent throughout chess literature. Accordingly, we ignore positions labeled with these assessments, 
but see §8.2.

10
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4 Kendall’s r
Concordance, or agreement, occurs where items are ranked in the same order. Kendall's r 
measures the degree of similarity of two orderings. After defining this metric, we will 
elaborate on a novel, efficient implementation of t, provide a worked example and 
complexity analysis, introduce a generalization of r, and contrast r  with alternative 
correlation methods.

4.1 Definition
Given a set of m items I  = (//, i'2, ..., im), let X  = (xj, X2, ..., xm) represent relative 
preferences for I  by analyst ae, and Y= (yi,y2 , •••, ym) represent relative preferences for I  
by analyst a0. Take any two pairs, (.xh y,) and (x*, yk), and compare both the x values and 
the y  values. Table 2 defines the relationship between those pairs.

Table 2: Relationships between Ordered Pairs

relationship 
between x, and Xk

relationship 
between y t and yk

relationship between
(Xj, xk) and (yh yk)

x ,< xk yi<yk concordant
X,<xk yt>yk discordant
X, > Xk yt<yk discordant
Xi> Xk yt>yk concordant
Xj = Xk y t^ y k extra y-pair
Xi ^  Xk 11 extra x-pair
Xi = Xk II duplicate pair

n, the total number of distinct pairs of positions, and therefore also the total number of 
comparisons made, is straightforward to compute:

m—1 m

i=\ k-i+\

Let S+ (“S-positive”) be the number of concordant pairs:

.  [ U < * t andy ,< y t

r  * Z  E  I !>*<>*» “ d •>'/>.>'»
0, otherwisei=1 k=i+l

Let S~ (“S-negative”) be the number of discordant pairs:

\ 1’ Xi < xk and y, > yk 
5 “ = Z S  ] h xi> x k andy ,< yk 

0, otherwise

(4.1)

(4.2)

(4.3)
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Then r, which we will also refer to as the concordance, is given by:

S +-S~
(4-4)r  = ------

n

Possible concordance values range from +1, representing complete agreement in 
ordering, to -1, representing complete disagreement in ordering. Whenever extra or 
duplicate pairs exist, the values o f +1 and -1 are not achievable.

Cliff (1996) provides a more detailed exposition of Kendall’s t, discussing variations 
thereof that optionally disregard extra and duplicate pairs. Cliff labels what we call r  as 
ra, and uses it most often, noting that it has the simplest interpretation of the lot.

4.2 Matrix Representation of Preference Data
In typical data sets, pairs of preferences will occur multiple times. We can compact all 
such pairs together, which allows us to process them in a single step, thereby 
substantially reducing the work required to compute S? and <5T.

Let Sx be the set of preferences {x;, X2, ..., xm), and Sy be the set of preferences 
{yi,y2, . . . ,ym}. Let U = |5̂ | and V=|5>,|. Let E = (ev e2,...,eu) such that V/ :ei e Sjand
ei<ei+i. Similarly, let O = (ol,o2,...,ov) such that \/i:oi e Sy and Oi<oi+i. We define
matrix A of dimensions U h y V  such that

A ’s definition ensures that there is at least one non-zero entry in every row and column. 
Let A ^ j  denote the sum of the cells of matrix A within rows x through z and columns y  
through w :

1, er = x, and ec = y t 
0, otherwise

(4.5)

w
(4.6)

Then, the contribution towards of the single cell Axy is
A C +  _  A(U,V)  a  
^ x y  ~  ■n ix + l,y + l) -n Xy

and S+ may be reformulated as

(4.7)

(4.8)

12
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Similarly,

ASW = 4 'X ’A,, (4.9)

s^ Y Z as;, (4.10)
jc= 1 y = 1

Numerical Recipies in C (Press, 1992) is a standard reference to this algorithm.
However, we have reservations about the manner in which their sample implementation 
handles duplicate pairs.

4.3 Efficient Computation
The nai've algorithm to compute Kendall’s r computes the number of concordant and 
discordant pairs for each cell by looping over the preferences data directly; the 
straightforward algorithm loops over the cells in the matrix. However, due to the 
monotone ordering of both axes, the computation is replete with overlapping 
subproblems of optimal substructure. It is this fact that we exploit.

4.3.1 Dynamic Programming

Here is a more detailed exposition of the approach briefly described in Gomboc et al.
(2003). Be aware that it has been obsoleted by the method described in §4.3.2, and is
included primarily for the sake of completeness. With this formulation, it was convenient 
to pad our matrix representation to include two extra columns corresponding to 
preferences -oo and a>, and an extra row corresponding to preference -oo. We use the 
prime notation to indicate where are referring to a matrix of dimensions U+2 by V+l, for 
instance:

Ac = A-D(c-l) (4-11)

We constructed additional matrices B and R , both of size 17+2 by V+l, to represent the
sum of cells in A on or below (hence “jB”) a particular cell, and on or to the right (hence
“2?”) of a particular cell, respectively.

Ay = A(y+1) + Ay (4.12)

Ay = R(x+l)y + Ay (4.13)

From these two tables plus the table defined by (3.5), we can define one more table that 
gives us the sum of cells in A that are strictly below or to the right (hence “SBR”) of a 
particular cell.

13
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SBRxy =

n,

SBR(x_\)y ~ Bxy,

SBR-x(y-\) Rxy’
SBR{ -B .x ( y - 1)

x = 1 and y = 1

x 1 and y  -1  

x = 1 and y ^ l  

-R'(x-i)y + Axy> otherwise

(4.14)

Observe that A ^ ^  = BBR(x+1)(>,+1), allowing us to compute S* via (4.7) and (4.8).

Similarly, we can construct auxiliary tables leftward (“I ”, “SBL”) to compute S~ 
efficiently:

B xy R (x - \ ) y  +  A xy

SBL =xy

n,

SBL,\x + \ )y ~BXy,

SBLx(y_x) Lxy,

x = U + 2 and y = 1 

x * U  + 2  and y  = 1 

x = U + 2 and y ^1

(4.15)

(4.16)

SAL ■ ̂ (y-i) -  + Axy’ otherwise-'(x+lXy-X)

, 1} -  UJJiJ(;t+1)(},+1), which allows us to compute S~ via (4.9) and (4.10).

4.3.2 Partial-Sum Transform

Here, A ^ f  = SBC

While all of the above intermediary matrices were used while developing the algorithm 
and debugging the original implementation, when later returning to this work it became 
clear that it is possible to construct BR (on, or below, or to the right) and BL (on, or 
below, or to the left) without reference to intermediary results:2

A(x,y)) ~ BRxy — Axy + BRx(y+,) + BR(x+X)y BR^x+l̂ y+V)

4
(x,V)
■y) BLxy — Axy + BLX(yyV) + BL(x̂ )y ■BL,u-ix>+i)

(4.17)

(4.18)

BR and BL are both instances of partial-sum transforms of A. The sum of an arbitrary 
rectangular block of cells of the original matrix is conveniently retrieved from such a 
transformed version.3 For instance:

BLxy ~ BRly — BR(x+X)y

Axy ~ BRxy BR(xyX)y -BR■x(y+1) + BR(JT+l)(y+l)

(4.19)

(4.20)

(4.19) lets us compute BL from BR in constant time as necessary, so we need not 
construct both BR and BL. Additionally, we can construct BR in-place by overwriting A,

2 For convenience, we define BR^+^y to equal 0 when x  -  U, and BRx(y+1) to equal 0 when y  = V. 
Nonetheless, space need not be allocated for such cells. Similarly, BLXx.x)y = 0 when x  = 1, and B L ^ i )  = 0 
when y  = V.
3 This was brought to my attention in a personal communication by Juraj Pivovarov.
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even without recourse to (4.20), reducing the storage overhead of computing Kendall’s x 
in this manner rather than from the original matrix representation to zero.

The single dimension case of the partial-sum transform is well known, e.g. 
unidimensional versions of (4.17) and (4.20) are provided by the partial sum and 
adjacent diffference algorithms in the C++ Standard Library. The partial-sum transform 
is readily applied to matrices of higher dimension also. However, each additional 
dimension involved doubles the number of terms required on the right-side expression of
(4.20) to maintain the equality.

4.4 Worked Example with Complexity Analysis
Here we provide sample data and work through the mathematics of the previous three 
subsections, with the exception of §4.3.1. The algorithm of §4.3.1 has the same 
asymptotic time complexity as that of §4.3.2, but poorer space efficiency.

4.4.1 Definition

We will use 14 states for our example, therefore m = 14. X  and Y represent the preference 
data for the 14 states, for which see Table 3. We could pre-order the positions so that 
they are ordered by Y, but in the interest of clarity, we will leave this for a later step.

Table 3: Sample Preference Data

X =  (x,, x 2, . ■5 %m) -0.1 -0.4 0.9 -1.2 0.0 -0.1 0.6 0.0 -0.1 -0.4 2.4 0.0 0.6 0.6
Y = ( y h y 2, ■■, y m) + + - -+ = + + = + - ¥ + + -+ +

From (4.1), we know that n, the total number of distinct pairs of positions, is 91. We can 
now loop through the data, accumulating S+ and S~. This process is depicted in Table 4.

For this data set, S'4" and S'" are 51 and 25 respectively, and x = 0.2857. The running time 
of this algorithm is 0 (m2).

4.4.2 Matrix Representation of Preference Data

Based on the definitions of X and Y, Sy = {+, ±, -I—, —h, =, +, =}, Sx = {-0.4, -0.1, 2.4, -
1.2, 0.0, 0.6, -0.2 }, and V -  U = l.  Then O = ( -+ , +, T, =, ±, ±, + - )  and E  = (-1.2, -0.4, 
-0.1, 0.0, 0.6 , 0.9, 2.4). The purpose of this exercise is to sort the preferences in 
ascending order, with duplicates removed, so that matrix A, as shown in Table 5, has its 
rows and columns in order of increasing preference, and has no empty rows or columns. 
If the axes were not sorted, then dynamic programming would not be applicable.

15
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Table 4: Sample Preference Data: Relationships Between Ordered Pairs

Items Compared (Vi, x,) (yk, xk) ViR-Vt Xi R xk (.xh xk) R ( y h y k) AS' AS
1 and 2 ±, -0.4 < > discordant 0 1
1 and 3 + -, 0.9 < < concordant 1 0
1 and 4 -+ ,-1 .2 > > concordant 1 0
1 and 5 = 0.0 < < concordant 1 0
1 and 6 +, -0.1 > = extra y-pair 0 0
1 and 7 ± 0 .6 < < concordant 1 0
1 and 8 +, -0.1 =, 0.0 < < concordant 1 0
1 and 9 +-, -0.1 < extra y-pair 0 0

1 and 10 +11 < O ip* - > extra x-pair 0 0
1 and 11 ±, 2.4 < < concordant 1 0
1 and 12 +,0.0 > < discordant 0 1
1 and 13 -+, 0.6 > < discordant 0 1
1 and 14 ±, 0.6 < < concordant 1 0
2 and 3 +-, 0.9 < < concordant 1 0
2 and 4 -+ ,-1 .2 > > concordant 1 0
2 and 5 =,0.0 > < discordant 0 1
2 and 6 +, -0.1 > < discordant 0 1
2 and 7 ±, 0.6 > < discordant 0 1
2 and 8 ±, -0.4 =, 0.0 > < discordant 0 1
2 and 9 +-, -0.1 < < concordant 1 0

2 and 10 ?, -0.4 > = extra y-pair 0 0
2 and 11 ± ,2 .4 < extra x-pair 0 0
2 and 12 +, 0.0 > < discordant 0 1
2 and 13 -+, 0.6 > < discordant 0 1
2 and 14 ± 0.6 > < discordant 0 1
3 and 4 + -, 0.9 -+ ,-1 .2 > > concordant 1 0

and so on...
12 and 13 +, -0.2 -+ , 0.6 > < discordant 0 1
12 and 14 ± 0.6 < < concordant 1 0
13 and 14 -+ , 1.0 ± 0.6 < > discordant 0 1

Table 5: Sample Preference Data: 
(machine, human) assessments

-1.2 -0.4 -0.1 0.0 0.6 0.9 2.4
—1- 1 1
+ 1 1
T 1 1

2
■ 2
2+ 1 1

-1— 1 1

In this and subsequent data preference tables, cells that would contain zero have been left 
blank.

The sorting takes time 0(m log m), while the duplicate entry removal takes 0(m). 
Zeroing the memory for the matrix takes time 0(UV), then populating it takes time 
0(m). Therefore, the time complexity of constructing A is 0(m log m + UV).
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Computing (4.6) takes time 0(UV), because each cell in A ^  is addressed to perform
the summations, so computing 5^ and S~ from A via (4.8) and (4.10) takes time 0(U2V2). 
Therefore, computing S+ and S~ from the preference data takes time 0(m log m + U2V2).

4.4.3 Partial-Sum Transform

To constmct matrix BR, we start with the bottom-right hand comer, and proceed 
leftwards, than upwards, applying (4.17) at each cell.4 In the tables that follow, the 
shaded area represents the portion of the matrix that has already been converted.

Table 6 : Sample Preference Data:
BR being constructed overtop of A, at M 5 7

-1.2 -0.4 -0.1 0.0 0.6 0.9 2.4
-+ 1 1
+ 1 1
% 1 1
= 2
+ 2
+ 1 1

+ - 1 1

The first cell to change value is BR57 -  column 5, row 7; see (4.5). We continue sliding 
left until the entire row is transformed, after which we return to the right edge of the 
matrix, and continue with the preceding row.

Table 7: Sample Preference Data:
BR being constructed overtop of A, at BRS6

-1.2 -0.4 -0.1 0.0 0.6 0.9 2.4
—h 1 1
+ 1 1

1 1
= 2
+ 2
± 1 2

+ - '■'Wa 1

For this sample data, BR56 is the first cell for which the wrong value would have been 
computed if the final term within (4.17) were not present. Both BRee and BRsj include 
BRtf, but we want to count it only once, so we must subtract it out.

4 One may fill forward in memory by reversing the element order o f the table axes.
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Table 8: Sample Preference Data:
BR  fully constructed overtop of A

-1.2 -0.4 -0.1 0.0 0.6 | 0.9 2.4
-+ y v m 13 . 11 5 1 2 -  I X
+ 12 10 XM a . 4 2 1

urn. ..m - X u
= ■-if-' ■ 8 7 ■ m u 4 2
± 5 4 4 2 -:Tv
+ 3 : 2 : j ; 2"-

+ - n u m x
BR may be constructed from A in @(UV) operations via (4.17). Once this has been done,
(4.7) can be performed by table lookup, which in turn allows the computation of S+ via
(4.8) given A to be performed in &(UV) steps.

Table 9: Sample Preference Data: 
BL, which is deducible from BR

-1.2 -0.4 -0.1 0.0 0.6 0.9 2.4
-+ 1 3 6 9 12 13 14
+ 2 5 8 10 11 12

2 4 6 8 9 10
= 1 2 4 6 7 8
± 1 2 2 4 5 6
± 1 2 2 2 3 4

+ - 1 1 1 2 2

Values are retrieved from BL, which is implicitly available from BR via (4.19), in 
constant time, so the computation of S~ via (4.10) given A may also be performed in 
0(UV) steps. Therefore, the time complexity of computing x via the partial-sum 
transform is 0(m log m + UV).

What have we achieved? The naive algorithm runs in time 0(m2), so when U and V 
equal m, the partial-sum transform gives us no advantage in terms of asymptotic 
complexity. The work is useful nonetheless because we can reduce U and V at will by 
merging nearby preference values together. This enables approximate values for r to be 
found quickly even when an exact value would be prohibitively expensive to compute. 
The improvement from 0(m log m + U2V2)  to 0(m log m + UV) substantially decreases 
the amount of approximation required when m is large.

That said, most of the time U and V will be much smaller than m. When either U or V is 
constant, applying dynamic programming is asymptotically more time-efficient than prior 
methods. For the experiments in §7, U is about 0.4m, and V = l .

Furthermore, r  is computed many times on similar data. In our application, Y  remains 
constant, so, as mentioned in §4.4.1, this sort could be performed only once, ahead of 
time. X  does change, but the difference between successive X  vectors are small. It would 
be worthwhile to try sorting indirect references to the data, so that successive sorts would 
be processing data that is already almost sorted: this may yield a performance benefit.
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4.5 Weighted Kendall’s t

As described, each position contributes uniformly to Kendall’s r. However, it can be 
desirable to give differing priority to different examples, for instance, to increase the 
importance of positions from underrepresented assessment categories, as described in 
§6.2, or to implement perturbation as described in §8.2.

Weighted Kendall’s x involves, in addition to the preference lists X  and Y, a third list 
Z=(zj ,  Z2, ..., zm) that indicates the importance of each position. The degenerate case 
where all z t = 1 gives Kendall’s r. Integer z, have the straightforward interpretation of the 
position with preferences (x„ y,) being included in the data set zt times, though the use of 
fractional z t is possible.

Computing Weighted Kendall’s x is similar to computing the original measure. When 
populating A, instead of adding 1 to the matrix cell corresponding to (x*, yi), we add z,. 
Computation of S+ and S~ remains unchanged. The denominator of (4.4) is adjusted to be 
the total weight of all positions, rather than the total number of them.

Values for weighted x will not be limited to the range [-1, 1] if weights less than 1 are 
used. All example weights can be uniformly scaled, so there is no need to use such 
weights. For certain applications, such as the optimization procedure described later in 
this thesis, the denominator of (4.4) is irrelevant, so this guideline need not be strictly 
adhered to.

The implementations developed actually compute weighted r. However, these 
implementations have not been thoroughly tested with non-uniform weights.

4.6 Application
Earlier, we defined analysts ae and a*, and tuples E and O without explaining their names. 
Analyst a<, represents an oracle: ideally, every position is assessed with its game-theoretic 
value: win, draw, or loss. Analyst ae represents an imperfect evaluator. Then, the 
concordance of the assessments E and O is a direct measurement of the quality of the 
estimates made by analyst ae.

We usually will not have access to an oracle, but we will have access to values that are 
superior to what the imperfect evaluator provides. In practice, a*, might be collected 
human expertise (and depending on the domain, possibly error-checked by a machine), or 
a second program that is known to be superior to the program being tuned. When neither 
is available, ao can be constructed by conducting a look-ahead search using ae as its 
evaluation function. In all cases, x measures the degree of similarity between the two 
analysts.

4.7 An Alternative Ordinal Metric
Pearson correlation is the most familiar correlation metric. It measures the linear 
correlation between two interval-scale variables. When the data is not already of interval 
scale, it is first ranked. In this case, the correlation measure is referred to as Spearman 
correlation, or Spearman’s p.

There is a special formula for computing p  when the data is ranked; however, it is exact 
only in the absence of ties. In our application, we have seven categories of human
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assessment, but orders of magnitude more data points, so ties will be abundant.

The value computed by this least-square mean error function will be affected greatly by 
outliers. While ranking the data may reduce the pronouncement of this effect, it will not 
eliminate it. Changing a data point can change the correlation value computed, but there 
is no guarantee that an increase in value is meaningful. In contrast, the structure of 
Kendall’s r is such that no adjustment in the value of a machine assessment yields a 
higher concordance unless strictly more position pairs are ordered properly than before.

The asymptotic time complexity of computing Spearman’s p is 0(m log m). As we noted 
earlier, the time complexity of computing Kendall’s x is 0(m logm  + UV). Both 
algorithms sort their inputs, but afterwards, Spearman’s p takes time 0(m), while 
Kendall’s x takes time 0(UV): for our intended use, these are equivalent. Not only does x 
more directly measure what interests us (“for all pairs of positions (A, B), is position B 
better than position A?”), it is no less efficient to compute than the plausible alternative. 
Therefore, we use x in our experiments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Therefore, it is most appropriate to apply Pearson’s formula directly to the ranked data.

(4.21)
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5 Feature Weight Tuning via KendalPs t
We will now attempt to tune feature weights by maximizing the value of Kendall’s r. 
After describing the gradient ascent procedure by which new weights are selected, we 
discuss our distributed implementation of the hill-climber, and conclude with a discussion 
of the database layout.

The decision to implement a form of gradient ascent was made not because it was 
thought to be the most efficient method to attempt to learn effective weights, but because 
the behaviour of gradient ascent is well understood and predictable, allowing inferences 
from tuning attempts using the proposed optimization metric, Kendall’s r, to be made 
from the results of hill-climbing. Once some success had been achieved, inertia led to the 
complete system described in this chapter.

A discussion of problems related to the practical application of gradient ascent for tuning 
evaluation function weights (notably: performance) is deferred to §8.1.

5.1 Estimated Gradient Ascent
We wish to apply gradient ascent to find weights that maximize Kendall’s r. However, 
this metric is non-continuous, and so not differentiable. Therefore, we must measure the 
gradient empirically. The procedure is:

1. determine r  for the current base vector

2. for each weight w in the current base vector

a. select a value e by which to perturb the weight w3

b. create two delta weight vectors by replacing the weight w from the current 
base vector with w+e and w-e, while leaving other weights alone

c. determine z for these test weight vectors

d. determine a new value for w for the base vector of the next iteration based 
upon the three known values for r.

In each iteration, the concordance of the current base vector -  that is to say, the weight 
vector currently serving as a base from which to explore -  is measured. In addition, for 
each weight being tuned, we generate two test weight vectors by perturbing that weight 
higher and lower while holding the other weights constant. We refer to these as delta 
weight vectors because they are only slightly different from the base weight vector.

The two generated weight values are equidistant from the original value. The values of x 
at these test vectors are also computed, after which a decision on how to adjust each 
weight is made. The cases considered are illustrated in Figure 2.

5 In our most recent implementation, e begins at 1% o f the current value o f w, and the percentage used is 
gradually lowered in successive iterations. However, if  a random value between 0 and 1 is larger that e, it 
is used instead (for that weight and iteration only). This prevents an inability o f a weight to move a 
meaningful distance whenever w  is close to zero.
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Figure 2: Distinct Cases to be Handled during Estimated Gradient Ascent
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If there is no significant change in concordance between the current (base) vector and the 
test vectors, then the current value of the weight is retained. This precautionary category 
avoids large moves of the weight where the potential reward does not justify the risk of 
making a misstep.

When x either ascends or descends in the region as the weight is increased, the new 
weight value is interpolated from the slope defined by the sampled points. The maximum 
change from the previous weight is bounded to 3 times the distance of the test points, to 
avoid occasional large swings in parameter settings.

When the points are concave up, we adopt the greedy strategy of moving directly to the 
weight value known to yield the highest concordance. Of course, this must be one of the 
tested values.

When the points are concave down, we can be even greedier than to remain with the 
weight yielding the highest measured concordance. Inverse parabolic interpolation is 
used to select the new weight value at the apex of the parabola that fits through the three 
points, in the hope that this will lead us to the highest r in the region.

Once this procedure has been performed for all of the weights being tuned, it is possible 
to postprocess the weight changes, for instance to normalize them. However, this does 
not seem to be necessary. The chosen values now become the new base vector for the 
next iteration.

As with typical gradient ascent algorithms, the step size made along the slope calculated 
when the concordances are clearly ascending or descending slowly decreases throughout 
the execution of the algorithm.

It remains to be said that simpler variations of this hill climbing algorithm that sampled 
only one point per weight or that did not specially handle the roughly flat and concave 
cases fare more poorly in practice than the one presented here.
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5.2 Distributed Computation
The work presented in §4.3 allows us to compute r from two lists of preferences in 
negligible time. However, establishing the level of concordance at sampled weight 
vectors nonetheless dominates the running time of the gradient ascent, because 
computing the machine assessments for each of the training positions is expensive.

Distributing the work for a single weight vector would lead to a large communication 
overhead, because all of the preferences must be made available to a single machine to 
compute r. Instead, we compute all assessments for a weight vector on a single 
processor, after which the concordance is immediately computed.

A supervisor process queues work in a database table to be performed by worker 
processes. It then sleeps, waking up periodically to check if all concordances have been 
computed. By contrast, worker processes idle until they find work in the queue that they 
can perform. They reserve it, perform it, store the value of x computed, and then look for 
more work to do. Once all concordances have been computed, the supervisor process 
logs the old base vector and its concordance. Additionally, when any tested weight 
vector’s concordance exceeds the best concordance yet present in the work history, the 
tested weight vector with maximum concordance is also recorded. The supervisor 
process then computes the new current base vector, computes the new test weight vectors, 
and replaces the old material in the work queue with the new.

Occasionally a worker process does not report back, for instance, when the machine it 
was running on has been rebooted. The supervisor process cancels the work reservation 
when a worker does not return a result within a reasonable length of time, so that another 
worker may perform it.

The low coupling between the supervisor and worker processes is based upon Pinchak’s 
(2002) work on placeholder scheduling.

5.3 Database Layout
A substantial amount of code was written to automate the communication of work and 
results between multiple, distributed instantiations of Crafty and the PostgreSQL 
database. The database schema is given in Figure 3; the legend is in its bottom-left.

Primary keys are denoted “PK”; foreign keys are denoted “FK”; arrows lead from tables 
containing foreign keys to the tables where those keys are primary. Required fields are 
bolded; others are in normal text.

The weights table labels individual (program weight id, weight value) pairs, for instance 
(1499, 295.32) indicates the value of a bishop is 2.9532 pawns. The weight vector table 
groups a set of weights together. Different weight vectors do not necessarily refer to the 
same program weight IDs, or even have the same cardinality. However, only one weight 
value per program weight ID should be associated with a particular weight vector. Delta 
weight vectors allow for space-efficient overriding of a single (program weight ID, value) 
pair of a weight vector. The representation chosen allows different optimization 
problems to tune different weight vectors.

The analysts’ table establishes constraints upon how assessments are formed: which 
program is used, how long may it search for, et cetera. Null values are interpreted as
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“don’t care”. Data in the workers table indicates the ability of a machine to perform as a 
particular analyst. Work from an optimization task can only be processed by a worker 
that is compatible with the analyst specified by the task. When a worker has a choice of 
tasks for which it can perform work, it selects the work corresponding to the task with the 
highest priority.

Figure 3: Database Table Layout
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The analysts’ table establishes constraints upon how assessments are formed: which 
program is used, how long may it search for, et cetera. Null values are interpreted as 
“don’t care”. Data in the workers table indicates the ability of a machine to perform as a 
particular analyst. Work from an optimization task can only be processed by a worker 
that is compatible with the analyst specified by the task. When a worker has a choice of 
tasks for which it can perform work, it selects the work corresponding to the task with the 
highest priority.

The optimization problem table defines the weights that will be optimized, and the 
method by which they will be optimized. The latter enables the use of alternate 
algorithms that select a new weight value from sampled points differently than the 
manner described in §5.1.

The optimization states table contains the current state of defined tasks. The current base 
vector is a delta weight vector that represents the weights at the start of a new iteration. 
The delta tau step ratio indicates the value that each weight value in the current base 
vector is multiplied by to select one of the two test weight values. The delta tau 
multiplier is used when concordance is ascending or descending to scale a change in 
concordance into a change in weight value. After each iteration, it is multiplied by the 
delta tau multiplier scaling factor, a constant slightly less than one, so that the rate of 
change of weight values gradually slows during the hill-climbing process.
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6 Application-Specific Issues
Here we detail some points of interest of the experimental design.

6.1 Chess Engine
Many chess programs, or chess engines, exist. Some are commercially available; most 
are hobbyist. For our work, we selected Crafty, by Robert Hyatt (1996) of the University 
of Alabama. Crafty is the best chess engine choice for our work for several reasons: the 
source was readily available to us, facilitating experimentation; it is the strongest such 
open-source engine today; previous research has already been performed using Crafty. 
Most of our work was performed with version 19.1 of the program.

6.2 Training Data
To assess the correlation of t  with improved play, we used 649,698 positions from Chess 
Informant 1 through 85 (Sahovski, 1966). These volumes cover the important chess 
games played between January 1966 and September 2002. This data set was selected 
because it contains a variety of assessed positions from modem grandmaster play, the 
assessments are made by qualified individuals, it is accessible in a non-proprietary 
electronic form, and chess players around the world are familiar with it.

The 649,698 positions are distributed amongst the human assessment categories and side 
to move as shown in Table 10.

Table 10: Distribution of Chess Informant Positions

human black is white is total
assessment to move to move positions

+- 153,182 1,720 154,902
+ 123,261 6,513 130,134
+ 65,965 15,543 81,508
= 35,341 72,737 108,078

5,205 32,775 37,980
+ 2,522 55,742 58,264

-+ 889 78,303 79,192

It is evident from the distribution of positions shown that when annotating games, 
humans are far more likely to make an assessment in favour of one player after that 
player has just moved. (When the assessment is one of equality, the majority of the time 
it is given after each player has played an equal number of moves.) It is plausible that a 
machine-learning algorithm could misinterpret this habit to deduce that it is 
disadvantageous to be the next to play. We postpone a discussion of the irregular number 
of positions in each category until §7.2.2.

The “random sample” is a randomly selected 32,768-position subset of the 649,698 
positions. The “stratified sample” is a stratified random sample of the 649,698 positions, 
including 2,341 positions of each category and side to move. In two categories, where 
2,341 positions were not available, 4,194,304-node searches were performed from 
positions with the required assessment but the opposite side to move. The best move 
found by Crafty was played, and the resulting position was used. It is not guaranteed that
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the move made was not a mistake that would change the human’s assessment of the 
position. However, it is guaranteed that no position and its computationally generated 
successor were both used.

There are alternate ways that the positions could have been manipulated to generate the 
stratified sample, none appearing to have significant benefits over the approach chosen 
here. However, adjusting the weight assigned to each example in inverse proportion to 
the frequency of its human assessment, as is possible via the weighting procedure given 
in §4.5, is a serious alternative. This was not done because it was deemed worthwhile to 
learn from more positions, and because our code to compute Kendall’s r has not been 
frequently exercised with non-uniform weights.

6.3 Test Suites
English chess grandmaster John Nunn developed the Nunn (1998) and Nunn II (2000) 
test suites of 10 and 20 positions, respectively. They serve as starting positions for 
matches between computer chess programs, where the experimenter is interested in the 
engine’s playing skill independent of the quality of its opening book. Nunn selected 
positions that are approximately balanced, commonly occur in human games, and exhibit 
variety of play. We refer to these collectively as the “Nunn 30”.

Don Dailey, known for his work on the computer chess programs StarSocrates and 
CilkChess, created a collection of two hundred commonly reached positions, all of which 
are ten ply from the initial position. We refer to these collectively as the “Dailey 200”.

The positions that comprise the Nunn 30 and Dailey 200 may be found in Appendix B.

6.4 Use of Floating-Point Computation
We modified Crafty so that variables holding machine assessments are declared to be of 
an aliased type rather than directly as integers. This allows us to choose whether to use 
floating-point or integer arithmetic via a compilation switch. When compiled to use 
floating-point values for assessments, Crafty is slower, but only by a factor of two to 
three on a typical personal computer. Experiments were performed with this modified 
version: the use of floating-point computation provides a learning environment where 
small changes in values can be rewarded. However, all test matches were performed with 
the original, integer-based evaluation implementation (the learned values were rounded to 
the nearest integer): in computer chess competition, no author would voluntarily take a 
2% performance hit, much less one of 200%.

It might strike the reader as odd that we chose to alter Crafty in this manner rather than 
scaling up all the evaluation function weights. There are significant practical 
disadvantages to that approach. How would we know that everything had been scaled? 
It would be easy to miss some value that needed to be changed. How would we identify 
overflow issues? It might be necessary to switch to a larger integer type. How would we 
know that we had scaled up the values far enough? It would be frustrating to have to 
repeat the procedure.

By contrast, the choice of converting to floating-point is safer. Precision and overflow 
are no longer concerns. Also, by setting the typedef to be a non-arithmetic type we can
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cause the compiler to emit errors wherever type mismatches exist. Thus, we can be more 
confident that our experiments rest upon a sound foundation.

6.5 Search Effort Quantum
Traditionally, researchers have used search depth to quantify search effort. For our 
learning algorithm, doing so would not be appropriate: the amount of effort required to 
search to a fixed depth varies wildly between positions, and we will be comparing the 
assessments of these positions. However, because we did not have the dedicated use of 
computational resources, we could not use search time either. While it is known that 
chess engines tend to search more nodes per second in the endgame than the middlegame, 
this difference is insignificant for our short searches because it is dwarfed by the 
overhead of preparing the engine to search an arbitrary position. Therefore, we chose to 
quantify search effort by the number of nodes visited.

For the experiments reported here, we instructed Crafty to search either 1024 or 16,384 
nodes to assess a position. Early experiments that directly called the static evaluation or 
quiescence search routines to form assessments were not successful. Results with 1024 
nodes per position were historically of mixed quality, but improved as we improved the 
estimated gradient ascent procedure. It is our belief that with a larger training set, calling 
the static evaluation function directly will perform acceptably.

There are positions in our data set from which Crafty does not complete a 1-ply search 
within 16,384 nodes, because its quiescence search explores many sequences of captures. 
When this occurs, no evaluation score is available to use. Instead of using either zero or 
the statically computed evaluation (which is not designed to operate without a quiescence 
search), we chose to throw away the data point for that particular computation of r, 
reducing the position count (m). However, the value of r for similar data of different 
population sizes is not necessarily constant. As feature weights are changed, the shape of 
the search tree for positions may also change. This can cause Crafty to not finish a 1-ply 
search for a position within the node limit where it was previously able to do so, or vice 
versa. When many transitions in the same direction occur simultaneously, noticeable 
irregularities are introduced into the learning process. Ignoring the node count limitation 
until the first ply of search has been completed may be a better strategy.

6.6 Performance
Experiments were first performed using idle time on various machines in our department. 
In the latter stages of our research, we have had (non-exclusive) access to clusters of 
personal computer workstations. This is helpful because, as discussed in §5.2, the task of 
computing r for distinct weight vectors within an iteration is trivially parallel. Examining 
32,768 positions at 1024 nodes per position and computing r takes about two minutes per 
weight vector. The cost of computing r is negligible in comparison, so in the best case, 
when there are enough nodes available for the concordances of all weight vectors of an 
iteration to be computed simultaneously, learning proceeds at the rate o f 30 iterations per 
hour.
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7 Experimental Results
After demonstrating that concordance between human judgments and machine 
assessments increases with increasing depth of machine search, we attempt to tune the 
weights o f 11 important features of the chess program Crafty.

7.1 Concordance as Machine Search Effort Increases
In Table 11 we computed r for depths 1 through 10 for n = 649,698 positions, performing 
work equivalent to 211 billion (109) comparisons at each depth. S+ and S - are reported 
in billions. As search depth increases, the difference between S+ and S-, and therefore x, 
also increases. The sum of S+ and S- is not constant because at different depths different 
amounts o f extra y-pairs and duplicate pairs are encountered.

Table 11: r Computed for Various Search Depths, n = 649,698

depth S + /109 S -/ 10y r
1 110.374 65.298 0.2136
2 127.113 48.934 0.3705
3 131.384 45.002 0.4093
4 141.496 36.505 0.4975
5 144.168 34.726 0.5186
6 149.517 30.136 0.5656
7 150.977 29.566 0.5753
8 152.792 22.938 0.6153
9 153.341 22.368 0.6206
10 155.263 20.435 0.6388

It is difficult to predict how close an agreement might be reached using deeper searches. 
Two effects come into play: diminishing returns from additional search, and diminishing 
accuracy of human assessments relative to ever more deeply searched machine 
assessments. Particularly interesting is the odd-even effect on the change in r as depth 
increases. It has long been known that searching to the next depth of an alpha-beta 
search requires relatively much more effort when that next depth is even than when it is 
odd (Marsland, 1983). Notably, t tends to increase more in precisely these cases.

This result, combined with knowing that play improves as search depth increases 
(Thompson, 1982), in turn justifies our attempt to use this concordance as a metric to 
tune selected feature weights of Crafty’s static evaluation function. That the concordance 
increases monotonically with increasing depth lends credibility to our belief that t is a 
direct measure of decision quality.

7.2 Tuning of Crafty’s Feature Weights
Crafty uses centipawns (hundredths of a pawn) as its evaluation function resolution, so 
experiments were performed by playing Crafty as distributed versus Crafty with the 
learned weights rounded to the nearest centipawn. Each program played each position 
both as White and as Black. The feature weights we tuned are given, along with their 
default values, in Table 12.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 12: Tuned Features, with Crafty’s Default Values

feature default value
king safety scaling factor 100

king safety asymmetry scaling factor -40
king safety tropism scaling factor 100

blocked pawn scaling factor 100
passed pawn scaling factor 100

pawn structure scaling factor 100
bishop 300
knight 300

rook on the seventh rank 30
rook on an open file 24

rook behind a passed pawn 40

The six selected scaling factors were chosen because they act as control knobs for many 
subterms. Bishop and knight were included because they participate in the most common 
piece imbalances. Trading a bishop for a knight is common, so it is important to include 
both to show that one is not learning to be of a certain weight chiefly because of the 
weight of the other. We also included three of the most important positional terms 
involving rooks. Material values for the rook and queen are not included because trials 
showed that they climbed even more quickly than the bishop and knight do, yielding no 
new insights. This optimization problem is not linear: dependencies exist between the 
weights being tuned.

7.2.1 Tuning from Arbitrary Values

Figure 4 illustrates the learning. The 11 parameters were all initialized to 50, where 100 
represents both the value of a pawn and the default value of most scaling factors. For 
ease of interpretation, the legends of Figures 4, 5, and 6 are ordered so that its entries 
coincide with the intersection of the variable being plotted with the rightmost point on the 
x-axis. For instance, in Figure 4, bishop is the topmost value, followed by knight, then x, 
and so on. x is measured on the left y-axis in linear scale; weights are measured on the 
right y-axis in logarithmic scale, for improved visibility of the weight trajectories.

Rapid improvement is made as the bishop and knight weights climb swiftly to about 285, 
after which x continues to climb, albeit more slowly. We attribute most of the 
improvement in x to the proper determination of weight values for the minor pieces. All 
the material and positional weights are tuned to reasonable values.

The scaling factors learned are more interesting. The king tropism and pawn structure 
scaling factors gradually reached, then exceeded Crafty’s default values of 100. The 
scaling factors for blocked pawns, passed pawns, and king safety are lower, but not 
unreasonably so. However, the king safety asymmetry scaling factor dives quickly and 
relentlessly. This is unsurprising, as Crafty’s default value for this term is -40.

Tables 13 and 14 contain match results of the weight vectors at specified iterations during 
the learning illustrated in Figure 4. Each side plays each starting position both as White 
and as Black, so with the Nunn 30 test, 60 games are played, and with the Dailey 200 
test, 400 games are played. Games reaching move 121 were declared drawn.
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Figure 4: Change in  Weights from 50 as t  is Maximized, Random Sample
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Table 13: Match Results: random sample; 16,384 nodes per assessment; 11 weights
tuned from 50 vs. default weights; 5 minutes per game; Nunn 30 test suite.

iteration wins draws losses percentage score
0 3 1 56 5.83

100 3 9 48 12.50
200 14 21 25 40.83
300 21 26 13 56.67
400 19 28 13 55.00
500 18 26 16 51.67
600 18 23 19 49.17

Table 14: Match Results for random sample; 16,384 nodes per assessment; 11 weights 
tuned from 50 vs. default weights; 5 minutes per game; Dailey 200 test suite.

iteration wins draws losses percentage score |
0 3 13 384 2.38

100 12 31 357 6.88
200 76 128 196 35.00
300 128 152 120 51.00
400 129 143 128 50.13
500 107 143 150 44.63
600 119 158 123 49.50

The play of the tuned program improves dramatically as learning occurs. Of interest is 
the apparent gradual decline in percentage score for later iterations on the Nunn 30 test 
suite. The Deep Thought team (Anantharaman, 1990 and 1997; Hsu 1990; Nowatzyk, 
2000) found that their best parameter settings were achieved before reaching maximum 
agreement with GM players. Perhaps we are also experiencing this phenomenon. We 
used the Dailey 200 test suite to attempt to confirm that this was a real effect, and found 
that by this measure too, the weight vectors at iterations 300 and 400 were superior to 
later ones.

We conclude that the learning procedure yielded weight values for the variables tuned 
that perform comparably to values tuned by hand over years of games versus 
grandmasters. This equals the performance achieved by Schaeffer et al. (2001).

7.2.2 Tuning from Crafty’s Default Values
We repeated the just-discussed experiment with one change: the feature weights start at 
Crafty’s default values rather than at 50. Figure 5 depicts the learning. Note that we 
have negated the values of the king safety asymmetry scaling factor in the graph so that 
we could retain the logarithmic scale on the right y-axis, and for another reason, for 
which see below.

While most values remain normal, the king safety scaling factor surprisingly rises to 
almost four times the default value. Meanwhile, the king safety asymmetry scaling factor 
descends even below -100. The combination indicates a complete lack of regard for the 
opponent’s king safety, but great regard for its own. Table 15 shows that this 
conservative strategy is by no means an improvement.
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Figure 5: Change in Weights from Crafty's defaults as t  is Maximized, Random Sample
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Table 15: Match Results: random sample; 16,384 nodes per assessment; 11 weights
tuned from defaults vs. default weights; 5 minutes per game; Nunn 30 test suite.

iteration wins draws losses percentage score
25 19 23 18 50.83
50 16 31 13 52.50
75 11 32 17 45.00

100 14 28 18 46.67
125 9 23 28 34.17
150 8 35 17 42.50

The most unusual behaviour of the king safety and king safety asymmetry scaling factors 
deserves specific attention. When the other nine terms are left constant, these two terms 
behave similarly to how they do when all eleven terms are tuned. In contrast, when these 
two terms are held constant, no significant performance difference is found between the 
learned weights and Crafty’s default weights. When the values of the king safety 
asymmetry scaling factor are negated as in Figure 5, it becomes visually clear from their 
trajectories that the two terms are behaving in a codependent manner.

Having identified this anomalous behaviour, it is worth looking again at Figure 4. The 
match results suggest that all productive learning occurred by iteration 400 at the latest, 
after which a small but perceptible decline appears to occur. The undesirable 
codependency between the king safety and king safety asymmetry scaling factors also 
appears to be present in the later iterations of the first experiment.

Table 10 in §6.2 shows that there are a widely varying number of positions in each 
category. Let us consider the effect this has upon our optimization metric. Our procedure 
maximizes the difference between the number of correct decisions made and the number 
of incorrect decisions made. Each position is thought to be of equal importance, but there 
are more positions in certain categories. Our optimization does not take into account that 
with a lopsided sample, correct decisions involving human assessments that occur less 
frequently will be sacrificed to achieve a higher number of correct decisions involving 
those that occur more often. Undesirably, weights will be tuned not in accordance with 
strong play over the complete range of human assessments, but instead to maximize 
decision quality amongst the overrepresented human assessments.

Accordingly, we retried tuning weights from their default values, but using the stratified 
sample so that the learning would be biased appropriately. Additionally, a look-ahead 
limit of just 1024 nodes was used, trading away machine assessment accuracy to gain an 
increased number of iterations, because we desire to demonstrate playing strength 
stability. We can see that the codependency is no longer present in Figure 6. Validating 
our thought experiment regarding the reason for its previous existence, the match results 
in Table 16 demonstrate that the learner is now performing acceptably.
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Figure 6: Change in Weights from Crafty's Defaults as t is Maximized, Stratified Sample
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Table 16: Match Results: stratified sample; 1024 nodes per assessment; 11 weights
tuned from defaults vs. default weights; 5 minutes per game; Nunn 30 test suite.

iteration wins draws losses percentage score
0 14 36 10 53.33

200 17 26 17 50.00
400 9 26 25 36.67
600 18 21 21 47.50
800 14 25 21 44.17

1000 17 28 15 51.67
1200 18 26 16 51.67
1400 16 30 14 51.67
1600 21 19 20 50.83
1800 9 34 17 43.33
2000 14 33 13 50.83
2200 13 27 20 44.17
2400 15 30 15 50.00
2600 11 31 18 44.17
2800 14 30 16 48.33
3000 13 33 14 49.17
3200 15 29 16 49.17

Compared against earlier plots, the trajectory of t has a relatively jagged appearance. 
Unlike in the other two graphs, here the concordance is not climbing at a significant rate. 
Consequently, the left y-axis has been set to provide a high level of detail. In addition, 
because only 1024 nodes of search are being used to form evaluations instead of 16,384, 
changes in weights are more likely to affect the score at the root of the tree, causing r to 
fluctuate more. This effect can be countered by using a larger training set.

Most weights remained relatively constant during the tuning. The king tropism term 
climbed quickly to the neighbourhood of 125 centipawns, then remained roughly level; 
this is in line with previous tuning attempts. Also, both placing a rook on an open file 
and posting a rook upon the seventh rank again reached the region of thirty-five to forty 
hundredths of a pawn.

The value of placing a rook behind a passed pawn descended considerably over the 
learning period, which is interesting insofar as this is thought to be an important feature 
by humans. Probably the reason is that its application is insufficiently specific: there are 
many positions where it is slightly beneficial, but occasionally it can be a key advantage. 
Rather than attempt to straddle the two cases, as Crafty’s default value for the weight, 40, 
does, it could be preferable to give a smaller bonus, but include a second, more specific 
feature that provides an extra reward when its additional criteria are satisfied.

Finally, we are left with the blocked pawns scaling factor. For a long time, this weight 
remained near its default of 100, but as of approximately iteration 2200 it began to fall, 
and continued doing so for 1000 iterations thereafter, with no clear indication that it 
would stop doing so anytime soon. The purpose of this term is for Crafty to penalize 
itself when there are many pawns that are blocked, so that it avoids such positions when 
playing humans, who have a comparative skill advantage in such positions.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



It is no surprise that when tuning against human assessments, this feature weight would 
go down, because it is not bad per se for a position to be blocked. Here we have not 
merely a case where the program author has a different objective than the metric 
proposed, but a philosophical difference between Dr. Hyatt, the program’s author, and 
myself. The author has set his weights to provide the best performance in his test 
environment, which is playing against humans on internet chess servers. This is an 
eminently reasonable decision for someone who feels that their time is better expended 
on improving their program’s parallel search than its static evaluation function. We 
believe that a better long-term strategy is to tackle the evaluation problem head-on: do 
not penalize playing into perfectly acceptable positions that the machine subsequently 
misplays. Instead, accept the losses, and implement new evaluation features that shore up 
its ability to withstand such positions against humans. In the end, the program will be 
stronger for it.

The match results do not indicate a change in playing strength due to this weight 
changing, which is unsurprising given that if such positions were reached, neither the 
standard nor the tuned Crafty would have any advantage over the other in understanding 
them. Both would be at a relative disadvantage when playing a program that included 
additional evaluation features as suggested above.
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8 Conclusion
We have proposed a new procedure for optimizing static evaluation functions based upon 
globally ordering a multiplicity of positions in a consistent manner. This application of 
ordinal correlation is fundamentally different from prior evaluation function tuning 
techniques that attempt to select the best moves in certain positions and hope that this 
skill is generalizable, or to bootstrap from zero information.

If we view the playing of chess as a Markov decision process, we can say that rather than 
attempting to learn policy (what move to play) directly, we attempt to learn an 
appropriate value function (how good is the position?), which in turn specifies the policy 
to be followed when in particular states. Thus, we combine an effective idea behind 
temporal difference learning with supervised learning. Prior, successful supervised 
learning work by Buro (1995, 1999) and Tesauro (1989, 2001) also shares this property.

Alternatively, we can view the preferences over the set of pairs of positions as 
constraints: we want to maximize the number of inequalities that are satisfied. As shown 
in §4, our method powerfully leverages m position evaluations into m(m-l)/2 constraints.

A cautionary note: we tuned feature weights in accordance with human assessments. 
Doing so may simply not be optimal for computer play. Nonetheless, it is worth noting 
that having reduced the playing ability of a grandmaster-level program to candidate 
master strength by significantly altering several important feature weights, the learning 
algorithm was able to restore the program to grandmaster strength.

8.1 Reflection
While some weights learned nearly identical values in both experiments, other features 
exhibited more variance. For cases such as the blocked pawns scaling factor, it appears 
that comparable performance may be achieved with a relatively wide range of values.

The amount of training data used is small enough that overfitting may be a consideration. 
The program modification that would most readily allow this to be determined is to have 
the program compute x on a second, control set of positions that are used only for testing. 
If the concordance for the training set continues to climb while the concordance for the 
control set declines, overfitting will be detected.

The time to perform our experiments was dominated by the search effort required to 
generate machine assessments. Therefore, there is no significant obstacle to attempting 
to maximize Spearman’s p (or perhaps even Pearson correlation, notwithstanding 
Stevens).

Future learning experiments should ultimately use more positions, because the 
information gathered to make tuning decisions grows quadratically as the position set 
grows. We believe that doing this will reduce the search effort required per position to 
tune weights well. If sufficient positions are present for tuning based only upon the static 
evaluation can be performed, much time can be saved. For instance, piece square tables 
for the six chess pieces imply 6 * 64 = 384 features, but for any single position, only a 
maximum of 32 can have any effect. Furthermore, Crafty’s evaluation is actually more 
dependent upon table lookup than this simple example shows.
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Furthermore, it is not necessary to use the entire training set at each iteration of the 
algorithm. One could select different samples for each iteration, thereby increasing the 
total number of positions that strong weight vectors are compared against. Alternatively, 
one can start with very few positions, perhaps 1024, and slowly increase the number of 
positions under consideration as the number of iterations increase. This would speed the 
adjustment of important weights that are clearly set to poor values on the basis of a few 
examples before considering more positions for finer tuning. Combining these ideas is 
also possible.

Precomputing and making a copy of Crafty’s internal board representations for each of 
the test positions could yield a further significant speedup. When computing the 
concordance for a weight vector, it would be sufficient to perform one large memory 
copy, then to search each position in turn. If the static evaluation function is called 
directly, then it is even possible to precompute a symbolic representation of the position. 
A training time speedup of orders of magnitude should be possible with these changes.

On the other hand, it was not originally planned to attempt to maximize r only upon 
assessments at a specific level of search effort. Unfortunately, we encountered 
implementation difficulties, and so reverted to the approach described herein. We had 
intended to log the node number or time point along with the new score whenever the 
evaluation of a position changes. This would have, without the use of excessive storage, 
provided the precise score at any point throughout the search. We would have tuned to 
maximize the integral of r over the period of search effort. Implementation of this 
algorithm would more explicitly reward reaching better evaluations more quickly, 
improving the likelihood of tuning feature weights and perhaps even search control 
parameters effectively. Here too, precomputation would be worthwhile.

The gradient ascent procedure is effective, but convergence acceleration is noticeably 
lacking. It is somewhat of an arduous climb for parameters to climb from 50 to near 300, 
not because there was any doubt that they would reach there, but simply because of the 
number of iterations required for them to move the requisite distance. Fortunately, this is 
less likely to be a factor in practical use, where previously tuned weights likely would be 
started near their existing values.

Perhaps the most problematic issue with the gradient ascent implementation occurs when 
weights are near zero, where it is no longer sufficient to generate a sample point based on 
multiplying the current weight by a value slightly greater than one. Enforcing a strict 
m inim um distance between the existing weight and its test points is not sufficient: the 
weight may become trapped. We inject some randomness into the sampling procedure 
when near zero, but it would be premature to say that this is a complete solution.

It would be worthwhile to attempt approaches other than gradient ascent. The original 
motivation for implementing the hill-climber was to be able to observe how our fitness 
metric performed. It was felt that a gradient ascent procedure would provide superior 
insight into its workings relative to an evolutionary method approach due to its more 
predictable behaviour. As previously mentioned in §7.2, Crafty uses weights expressed 
in centipawns, so when we test weights with Crafty, we round them to the nearest 
centipawn. Sometimes much time is spent tuning a weight to make small changes that 
will be lost when this truncation of precision occurs. If an alternative method, for
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instance an evolutionary method, can succeed while operating only at the resolution of 
centipawns, strong feature weight vectors could be identified more quickly.

Schaeffer et al. (2001) found that when using temporal difference learning, it is best to 
tune weights at the level of search effort that one will be applying later. We believe this 
is because the objective function is constantly updated as part of that learning algorithm. 
In contrast, with the procedure presented in this thesis, the objective function is 
determined separately, in advance. Therefore, if one chooses to use a specific level of 
search effort to determine the pseudo-oracle values of states as described in §4.6, then 
directly tuning the static evaluation function should yield values that perform well in 
practice when the program plays with a similar level of search effort.

It may be argued that deeper searches would lead to different preferred weights because 
more positions of disparate character will be reached by the search. However, this too 
can be mimicked by increasing the number of positions in the training set.

A pseudo-oracle is not an oracle, so when the value of r improves significantly, it makes 
sense to redetermine the objective function using the new weights that have been learned, 
and resume the gradient ascent procedure (without resetting the weight values, of course). 
Temporal difference learning elegantly finesses this issue precisely because the objective 
function is augmented at each learning step.

8.2 Future Directions
The use of positions labeled as “unclear” or “with compensation for the material” may be 
possible by treating such assessments as being in concordance with selected other 
categories, and in discordance with the remainder. The specific categories treated as 
equivalent for these two assessments would necessarily vary depending upon the source 
of the assessments. For example, with data from Chess Informant (Sahovski, 1966), an 
assessment of “unclear” likely indicates that neither side has a clear advantage, but for 
data from Nunn’s Chess Openings (Nunn, 1999), an unclear assessment may be treated as 
if it were an assessment of equality. In a third work, an unclear assessment may simply 
mean the annotator is unable or unwilling to disclose an informative assessment. Similar 
issues arise when handling the “with compensation for the material” assessment. 
Additionally, the use of additional, non-assessment annotation symbols (e.g. “with the 
attack”, “with the initiative”) could also be explored.

While our experiments used chess assessments from humans, it is possible to use 
assessments from deeper searches and/or from a stronger engine, or to tune a static 
evaluation function for a different domain. Depending on the circumstances, merging 
consecutively ordered fine-grained assessments into fewer, larger categories might be 
desirable. Doing so could even become necessary should the computation of r dominate 
the time per iteration, but this is unlikely unless one uses both an enormous number of 
positions and negligible time to form machine assessments.

Examining how concordance values change as the accuracy of machine assessments is 
artificially reduced would provide insight into the amount of precision that the heuristic 
evaluation function should be permitted to express to the search framework that calls it. 
Too much precision reduces the frequency of cut-offs, while insufficient precision would 
result in the search receiving poor guidance.
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Elidan et al. (2002) found that perturbation of training data could assist in escaping local 
maxima during learning. Our implementation of r, designed with this finding in mind, 
allows non-integer weights to be assigned to each cell. Perturbing the weights in an 
adversarial manner as local maxima are reached, so that positions are weighted slightly 
more important when generally discordant, and slightly less important when generally 
concordant, could allow the learner to continue making progress.

It would also be worthwhile to examine positions of maximum disagreement between 
human and machine assessments, in the hope that study of the resulting positions will 
identify new features that are not currently present in Crafty’s evaluation. Via this 
process, a number of labelling errors would be identified and corrected. However, 
because our metric is robust in the presence of outliers, we do not believe that this would 
have a large effect on the outcome of the learning process. Improvements in data 
accuracy could allow quicker learning and a superior resulting weight vector, though we 
suspect the differences would be small.

Integrating the supervised learning procedure developed here with temporal difference 
learning, as suggested by Utgoff and Clouse (1991), would be interesting.

A popular pastime amongst computer chess hobbyists is to attempt to discover feature 
weight settings that result in play mimicking their favourite human players. By tuning 
against appropriate training data, e.g., from opening monographs and analyses published 
in Chess Informant and elsewhere that are authored by the player to be mimicked, 
training an evaluation function to assess positions similarly to how a particular player 
might actually do so should now be possible.

Furthermore, there are human chess annotators known for their diligence and accuracy, 
and others notorious for their lack thereof. Computing values of t pitting an individual’s 
annotations against the assessments that a program makes after a reasonably amount of 
search would provide an objective metric of the quality of their published analysis.

Producers of top computer chess software play many games against their commercial 
competitors. They could use our method to model their opponent’s evaluation function, 
then use this model in a minimax (no longer negamax) search. Matches then played 
would be more likely to reach positions where the two evaluation functions differ most, 
providing improved winning chances for the program whose evaluation function is more 
accurate, and object lessons for the subsequent improvement of the other. For this 
particular application, using a least-squares error function rather than Kendall’s x could be 
appropriate, if the objective is to hone in on the exact weights used by the opponent.6

6 More than one commercial chess software developer was somewhat perturbed by this possibility after this 
material was presented at the Advances in Computer Games 10 conference, which was held in conjunction 
with the 2003 World Computer Chess Championship. Newer versions o f some programs will be attempting 
to conceal information that makes such reverse engineering possible. Ideas that were discussed included 
not outputting the principal variation at low search depths, truncating the principal variation early when it is 
displayed, declining to address hashing issues that occasionally cause misleading principal variations to be 
emitted, and mangling the low bits o f  the evaluation scores reported to users. Commercial chess software 
developers must walk a fine line between effectively hindering reverse engineering by their competitors 
and displeasing their customers.
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Identifying the most realistic mapping of Crafty’s machine assessments to the seven 
human positional assessments is also of interest. This information would allow Crafty (or 
a graphical user interface connected to Crafty) to present scoring information in a human- 
friendly format alongside the machine score.

We can measure how correlated a single feature is with success by setting the weight of 
that feature to unity, setting all other feature weights to zero, and computing Kendall’s z. 
This creates the possibility of applying x as a mechanism for feature selection. However, 
multiple features may interact: when testing the combined effective discriminating power 
of two or three features it would be necessary to hold one constant and optimize the 
weights of the others.

The many successes of temporal difference learning have demonstrated that it can tune 
weights equal to the best hand-tuned weights. We believe that, modulo the current 
performance issues, the supervised learning approach described here is also this effective. 
Learning feature weights is something that the AI community knows how to do well. 
While there are undoubtedly advances still to be made with respect to feature weight 
tuning, for the present it is time to refocus on automated feature generation and selection, 
the last pieces of the puzzle for fully automated evaluation function construction.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



References
Anantharaman, T. S. (1990). A Statistical Study of Selective Min-Max Search in 
Computer Chess. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA. University 
Report CMU-CS-90-173.

Anantharaman, T. S. (1997). Evaluation Tuning for Computer Chess: Linear 
Discriminant Methods. ICCA Journal, Vol. 20, No. 4, pp. 224-242.

Baxter, J., Tridgell, A., and Weaver, L. (1998). KnightCap: A Chess Program that Leams 
by Combining TD(A) with Game-tree Search. Proceedings of the Fifteenth International 
Conference in Machine Learning (IMCL) pp. 28-36, Madison, WI.

Beal, D. F. and Smith, M. C. (1997). Learning Piece Values Using Temporal Differences. 
ICCA Journal, Vol. 20, No. 3, pp. 147-151.

Beal, D. F. and Smith, M. C. (1999a). Learning Piece-Square Values using Temporal 
Differences. ICCA Journal, Vol. 22, No. 4, pp. 223-235.

Beal, D. F. and Smith, M. C. (1999b). First Results from Using Temporal Difference 
Learning in Shogi. Computers and Games (eds. H. J. van den Herik and H. Iida), pp. 
113-125. Lecture Notes in Computer Science 1558, Springer-Verlag, Berlin, Germany.

Buro, M. (1995). Statistical Feature Combination for the Evaluation of Game Positions. 
Journal of Artificial Intelligence Research 3, pp. 373-382, Morgan Kaufmann, San 
Fransisco, CA.

Buro, M. (1999). From Simple Features to Sophisticated Evaluation Functions. 
Computers and Games (eds. H. J. van den Herik and H. Iida), pp. 126-145. Lecture 
Notes in Computer Science 1558, Springer-Verlag, Berlin, Germany.

Cliff, N. (1996). Ordinal Methods for Behavioral Data Analysis. Lawrence Erlbaum 
Associates.

Elidan, G., Ninio, M., Friedman, N., and Schuurmans, D. (2002). Data Perturbation for 
Escaping Local Maxima in Learning. Proceedings AAAI 2002 Edmonton, pp. 132-139.

Fawcett, T. E. and P. E. Utgoff (1992). Automatic feature generation for problem solving 
systems. Proceedings of the Ninth International Conference on Machine Learning, pp. 
144-153. Morgan Kaufman.

Fiimkranz, J. (2001). Machine Learning in Games: A Survey. In Machines that Learn to 
Play Games (eds. J. Fiimkranz and M. Kubat), pp. 11-59. Nova Scientific Publishers. 
http://www.oefai.at/cgi-bin/get-tr?paper=oegai-tr-2000-31 .pdf

Gomboc, D., Marsland, T. A., and Buro, M. (2003). Ordinal Correlation for Evaluation 
Function Tuning. Advances in Computer Games: Many Games, Many Challenges (eds.
H. J. van den Herik et al), pp. 1-18. Kluwer Academic Publishers.

Hartmann, D. (1987a). How to Extract Relevant Knowledge from Grandmaster Games, 
Part 1: Grandmasters have Insights -  the Problem is What to Incorporate into Practical 
Programs. ICCA Journal, Vol. 10, No. 1, pp. 14-36.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.oefai.at/cgi-bin/get-tr?paper=oegai-tr-2000-31


Hartmann, D. (1987b). How to Extract Relevant Knowledge from Grandmaster Games, 
Part 2: The Notion of Mobility, and the Work of De Groot and Slater. ICCA Journal, Vol. 
10, No. 2, pp. 78-90.

Hartmann, D. (1989). Notions of Evaluation Functions tested against Grandmaster 
Games. In Advances in Computer Chess 5 (ed. D.F. Beal), pp. 91-141. Elsevier Science 
Publishers, Amsterdam, The Netherlands.

Hsu, F.-h., Anantharaman, T. S., Campbell, M. S., and Nowatzyk, A. (1990). Deep 
Thought. In Computers, Chess, and Cognition (eds. T. A. Marsland and J. Schaeffer), pp. 
55-78. Springer-Verlag.

Hyatt, R.M. (1996). Crafty -  Chess Program, ftp://ftp.cis.uab.edu/pub/hyatt/vl9/crafty- 
19.1.tar.gz.

Kaneko, T., Yamagucki, K., and Kawai, S. (2003). Automated Identification of Patterns 
in Evaluation Functions. Advances in Computer Games: Many Games, Many Challenges 
(eds. H. J. van den Herik et al.), pp. 279-298. Kluwer Academic Publishers.

Kendall, G. and Whitwell, G. (2001). An Evolutionary Approach for the Tuning of a 
Chess Evaluation Function. Proceedings of the 2001 IEEE Congress on Evolutionary 
Computation, http://www.cs.nott.ac.uk/~gxk/papers/cec2001chess.pdf.

Levinson, R. and Snyder, R. (1991). Adaptive Pattern-Oriented Chess. AAAI, pp. 601- 
606.

Marsland, T. A. (1983). Relative Efficiency of Alpha-Beta Implementations. IJCAI 
1983, pp. 763-766.

Marsland, T. A. (1985). Evaluation-Function Factors. ICCA Journal, Vol. 8, No. 2, pp. 
47-57.

Murray, H. J. R. (1913). A History of Chess. Oxford University Press.

Van der Meulen, M. (1989). Weight Assessment in Evaluation Functions. In Advances 
in Computer Chess 5 (ed. D.F. Beal), pp. 81-90. Elsevier Science Publishers, 
Amsterdam, The Netherlands.

Nunn, J., Friedel, F., Steinwender, D., and Liebert, C. (1998). Computer ohne Buch, in 
Computer-Schach und Spiele, Vol. 16, No. 1, pp. 7-14.

Nunn, J., Burgess, G., Emms, J., and Gallagher, J. (1999). Nunn’s Chess Openings. 
Everyman.

Nunn, J. (2000). Der Nunn-Test II, in Computer-Schach und Spiele, Vol. 18, No. 1, pp.. 
30-35. http://www.computerschach.de/test/nunn2.htm.

Nowatzyk, A. (2000). http://www.tim-mann.org/deepthought.html.

Pinchak, C., Lu, P., and Goldenberg, M. (2002). Practical Heterogeneous Placeholder 
Scheduling in Overlay Metacomputers: Early Experiences. 8th Workshop on Job 
Scheduling Strategies for Parallel Processing, Edinburgh, Scotland, U.K., pp. 85-105, 
also to appear in LNCS 2537 (2003), pp. 205-228. http://www.cs.ualberta.ca/ 
~paullu/Trellis/Papers/placeholders.jsspp.2002.ps.gz.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ftp://ftp.cis.uab.edu/pub/hyatt/vl9/crafty-
http://www.cs.nott.ac.uk/~gxk/papers/cec2001chess.pdf
http://www.computerschach.de/test/nunn2.htm
http://www.tim-mann.org/deepthought.html
http://www.cs.ualberta.ca/


Plaat, A., Schaeffer, J., Pijls, W., and Bruin, A. de (1996). Best-First Fixed-Depth Game- 
Tree Search in Practice. Artificial Intelligence, Vol. 87, Nos. 1-2, pp. 255-293.

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (1992). Numerical Recipies in 
C: The Art of Scientific Computing, Second Edition, pp. 644-645. Cambridge University 
Press.

Shannon, C. E. (1950). Programming a Computer for Playing Chess. Philosophical 
Magazine, Vol. 41, pp. 256-275.

Sahovski Informator (1966). Chess Informant: http://www.sahovski.com/.

Sahovski Informator (1994). Chess Informant, Vol. 59.

Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. 
IBM Journal of Research and Development, No. 3, pp. 211-229.

Samuel, A. L. (1967). Some Studies in Machine Learning Using the Game of Checkers. 
II -  Recent Progress. IBM Journal of Research and Development, Vol. 2, No. 6, pp. 601- 
617.

Sarle, W. S. (1997). Measurement theory: Frequently asked questions, version 3. 
ftp:// ftp. sas .com/pub/neuraEmeasurement.html. Revision of publication in
Disseminations of the International Statistical Applications Institute, Vol. 1, Ed. 4, 1995,
pp. 61-66.

Schaeffer, J., Hlynka, M., and Jussila, V. (2001). Temporal Difference Learning Applied 
to a High-Performance Game-Playing Program. Proceedings IJCAI 2001, pp. 529-534.

Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677-680.

Stevens, S. S. (1951). Mathematics, measurement, and psychophysics. In S. S. Stevens 
(ed.), Handbook of experimental psychology, pp 1-49). New York: Wiley.

Stevens, S. S. (1959). Measurement. In C. W. Churchman, ed., Measurement: 
Definitions and Theories, pp. 18-36. New York: Wiley. Reprinted in G. M. Maranell, ed., 
(1974) Scaling: A Sourcebook for Behavioral Scientists, pp. 22-41. Chicago: Aldine.

Sutton, R. S. (1988). Learning to Predict by the Methods of Temporal Differences. 
Machine Learning, Vol. 3, pp. 9-44.

Tesauro, G. (1989). Connectionist Learning of Expert Preferences by Comparison 
Training. Advances in Neural Information Processing Systems 1 (ed. D. Touretzky), 
pp. 99-106. Morgan Kauffman.

Tesauro, G. (1995). Temporal Difference Learning and TD-Gammon. Communications 
of the ACM, Vol. 38, No. 3, pp. 55-68. http: //www.research. ibm.com/massive/tdl .html.

Tesauro, G. (2001). Comparison Training of Chess Evaluation Functions. In Machines 
that Learn to Play Games (eds. J. Fumkranz and M. Kubat), pp. 117-130. Nova Scientific 
Publishers.

Thompson, K. (1982). Computer Chess Strength. Advances in Computer Chess 3, (ed. 
M.R.B. Clarke), pp. 55-56. Pergamon Press, Oxford, UK.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.sahovski.com/
http://www.research


Thompson, K. (1986). Retrograde Analysis of Certain Endgames. ICCA Journal, Vol. 9, 
No. 3, pp. 131-139.

Toumavitis, K. (2002). Mouse(p): A Self-Teaching Algorithm that Achieved Master- 
Strength at Othello. In Computers and Games: Third International Conference (CG 
2002) (eds. J. Schaeffer et al.), pp. 11-28.

Tukey, J. W. (1962). The Future of Data Analysis. In The Collected Works of John W. 
Tukey, Vol. 3 (1986) (ed. L. V. Jones), pp. 391-484. Wadsworth, Belmont, CA.

Utgoff, R E. and Clouse, J. A. (1991). Two Kinds of Training Information for Evaluation 
Function Learning. AAAI, pp. 596-600.

Utgoff, R E. (1996). ELF: An evaluation function learner that constructs its own 
features. Technical Report 96-65, Department of Computing Science, University of 
Massachusetts, Amherst, MA.

Utgoff, P. E. and D. Precup (1998). Constructive function approximation. In Feature 
Extraction, Construction, and Selection: a Data-Mining Perspective (eds. Motoda and 
Liu), pp. 219-235. Kluwer Academic Publishers.

Utgoff, P. E. and D. J. Stracuzzi (1999). Approximation via value unification. In 
Proceeedings of the Sixteenth International Conference on Machine Learning (ICML), 
pp. 425-432. Morgan Kauffnann.

Utgoff, RE. and D. J. Stracuzzi (2002). Many-layered learning. In Neural Computation, 
Vol. 14, pp. 2497-2539.

Velleman, P. and Wilkinson, L. (1993). Nominal, Ordinal, Interval, and Ratio Typologies 
are Misleading. http://www.spss.com/research/wilkinson/Publications/Stevens.pdf. A 
previous version appeared in The American Statistician, Vol. 47, No. 1, pp. 65-72.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.spss.com/research/wilkinson/Publications/Stevens.pdf


Appendix A: Labelled Chess Training Data
Chess is played around the globe -  indeed, the World Chess Federation has over 160 
member nations. Furthermore, the analysis of opening theory, tactical middlegame 
problems, and endgame strategy dates back at least a millennium (Murray, 1913). The 
combination of the wide diversity of native tongues and the importance of analysis has 
led to the creation of a set of symbols used for expressing chess concepts that are 
understood by tournament players around the world. Figure 7 depicts a subset of these 
symbols, together with their meanings in ten major languages.

Figure 8 contains annotations by Nigel Short to the eighth game of his 1993 world 
championship match versus Garry Kasparov (Sahovski, 1994). As is typical when 
annotating games, alternative plausible lines of play are embedded in parentheses, and 
position assessments are frequently made throughout, primarily at the end of lines of 
play, yielding an abundant supply of chess training data.

Grandmaster analysts make two types of errors when analysing games: they may 
misassess a position reached in their analysis, or they may fail to consider a possible line 
of play that is important. The first type of error yields suboptimal training data; the 
second type of error may or may not. An assessment may be overturned if one or more 
critical lines of play from the position assessed yield a conflicting assessment. However, 
usually in such cases an important alternative line of play prior to the assessed position 
has been missed, and in these cases the assessment itself remains valid.

Figure 9 contains a typical page from a (largely) language-independent opening book 
(Nunn, 1999). The title line of play, from which all variations on the page stem, is at the 
top of the page. The table in the middle panel provides major lines of play continuing 
from the position reached by the title line of play, and assesses the resulting positions in 
the rightmost column. Most tables are larger than the one in Figure 9, often causing 
relevant footnotes to appear on one or more subsequent pages. Footnotes contain 
additional relevant variations, some reached through past play, others via prior or new 
analysis. Here also, position assessments are liberally sprinkled throughout.
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Figure 7: Page 10 of Chess Informant 59 (Sahovski, 1994)

sistern znakova • cucmeMa 3mko6 • code system • zeichenerlclarung •
systeme de symboles • sistema de signos • spiegazione del segni •
teckenfdrklarmg * • j

±  beli stoji aelto bolje • y benwx HecKQjibJco itymyue • white stands slightly better • Weiss steht
etwas besser » les blancs sont un peu mieux » el bianco estl algo mejor • il bianco sta un
po’ meglio • vit stir nlgot bittre * • jggy • i-

”  crrti stoji neSto bolje • y nepHWX hccko/iuco jiyroie • black stands slightly better • Schwarz steht
etwas besser • les noire sont un peu mieux • el negro esta algo mejor • il nero sta un po’
meglio * svart stir Bigot bilttre • - S ®  * <- ue> i

±  beli stoji bolje • y Seawjc Jiyroie • white has the upper hand • Weiss steht besser • les blancs
soot mieux • el bianco esti mejor « il bianco sta meglio • vit stir battre • a  •

3F cmi stoji bolje • y nepsnwx jty w e *> black has the upper hand * Schwarz steht besser « les noire
sont mieux * el negro estl mejor • il nero sta meglio • svart stir bittre • H fit} •

—  beli ima odludujudu prednost • y Oejiwx pemaiomee npeHMymecTso » white has a decisive advan­
tage • Weiss hat entscheidenden Vorteil • les blancs ont un avantage decisif * el blaaco tiene 
una ventaja decisiva • il bianco 6 in vantaggio dedsivo « vit har avgprande fordel •
S HI® • a-*-.®*-

— j- crai ima odiu&tjucu prednost • y nepHbix petuatomee npeuMyutecTBO « black has a decisive advan­
tage » Schwarz hat entscheidenden Vorteil * les noire ont un avantage dlcisif » el negro tiene 
una ventaja decisiva « il nero i  in vantaggio dedsivo • svart har avgdrande fdrdei »
N » »  « "**- u  jj-ys

=  jednako • paBtto • even • ausgeglichen « dgalitl « igual • equivalente « tika * I S S S  ♦ ■>»'-&

oo neizvesno • hch3BCCTho » unclear • unklar • incertain » incierto » incerto • oklar • ® ® V W *

og kompenzadja za materijal « KOMne«cauna sa MaTepnaji • with compensation for the materia! •
mit Kompensation for den materiellen Nachteil * avee compensation pour te maforiel * con 
eompensactbn por el material * con eompenso per il vantaggio material® awersario » med 
kompensation for materiaiet • SjR/pfi!

C  razvojna prednost • npeitMyuiecTBo b pasBsmtM • development advantage ® Erttwicklungsvorsprung
* avantage de ddveloppement » ventaja de desarrollo * vantaggio di sviluppo • utveekitag- 
sfSrsprlng » 1 R  j: I  •

O  prostoma prednost * npetm ym ecTBO  »  npocrpaHCTBe •  greater board room « b eherrscht mehr
Raum « avantage d ’e sp a ee  • ventaja de espacio » maggior vantaggio spaziale « terr ln g fd rd e l »
IS; IH 9 ^  'v— 1

-* sa napadom • c araxofl • with attack • mit Angriff • avec attaque » con ataque • con attacco •
med angrepp « Jjt © * „— — •

t  sa inicijativotn • c uHHiptaTBBoft •  with initiative • mit Initiative • avec initiative • con initiative
• con iaiziativa « med initiativ • i # ! t &  0 » — -J> e—

£? sa protivigrom • c Kotrrpurpoft • with counter-play • mit Gegenspiel • avec contre-jeu * coo
contrajuego • «>« controgioco ® med motspei • S  ® ® —«. <—

O  iznudka « uynpaHr • zugzwang « Zugzwang • zugzwang • zugzwang * zugzwang • dragtvlng •
Z - ? ,  7 7 - / 7 ’ •

#  mat • war • mate • matt * mat • mate • matto • matt • /  4 i- •

10
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Figure 8: Page 161 of Chess Informant 59 (Sahovski, 1994)

gc7 25. Ac7 Ac7 26. b4±] 21. £)e7 Se7 
22. Ab6± fS? ( o  22... f6| 23. ef5 Ag2 
24. * f 2  Set 25. g e l I I  9/g] &f7?!
125... Ab7±l 26. a4! Ac6 27. * d 2  4>e7
28. 4>c3 &d6 29. &b4 Se8© 30. c4?l 
130. b3 A &a5, c44~) ba4? [30... bc4±l
31. c5 &d7 32. f6H— Ab7 33. Af5 <&c6 
34 fg7 1 : 0 [Wang Zili]

277.** !N B 86

l e g # )  20. £ic7 <&e7 21. Wc2 J.h6+; c) 
19. m 7  £>g4 20. Ac8 £jf2 21. Ab7 <&e7 
22. Aa8 & f6=; 15... Sh6! 16. «g5  (16. 
Ag5 B g6+) #g5  17. Ag5 lh 5  18. Af4 
Ab7+ Xg2, e5]

N. SHORT (2655) -  KASPAROV (2805) 

London (m/8) 1993

1. e4 e5 2. £)I3 d6 3. d4 cd4 4. £>d4 £)f6 
5. £jc3 a6 6. Ac4 e6 7. Ab3 [RR 7. a4 
Ae7 8. 0 -0  0 -0  9. * h l  5jc6 10. Ae3 a)
10... «fc7 II. We2 £sb4!? N (11... Ad7 -  
43/(306)) 12. Ab3 (12. f4 d5! 13. ed5 
5)bd5 14. 5)d5 ed5—) e5 13. «Sf3 h6 (13... 
As4 14. Ag5±) 14. a5! (14. 5)d2 b6 15. 
£jc4 Sb8 16. a5 b5 17. £>b6 Ab7 18. 
£)cd5 €sbd5 19. ed5 A c4±; 14... Ae6!7) 
Ag4 15. Jtte6 (15. h3 Ah5 16. g4 Ag6 17. 
Ab6 «Tc8 18. &h4 *h7oc) # c 8  16. ga4 
d5! 17. £)d5! (3 7. ed5 ± 6 6  A e 4 - )  % f d 5  

(17... 4)bd5 18. ± 6 5  m s  19. ed5±) 18. 
ed5 Ad6 al)  19. c3? e4! 20. 1fe4 ge8 21. 
«c4D  Wf5 22. Ad ID (V. Gurevic 2420 -  
Istrafescu 2505, Wattens 1993) Sac8 23. 
®d4 (23. Ash4 'gfeS 24. f4 H £el!-+) Se4 
24. Cih4D » f4  25. g3 Sd4 26. gf4 £ d l 
27. I d 3 A di 28. g a l Ab3 29. cb4 Ad5 
30. &gl Af4+; a2) 19. h3! Ah5 (19... 
Ah3? 20, gh3 m 3  21. %h2 e4 22. f4+-;
19... Af5? 20. iM 2±) 20. c3 Se8! (20... 
e4? 21. @e4 ge8 22. ®h4 Af3 23. gf3 
m 3  24. S g 4 + -)  21. ttc4! Af3 22. « c8  
Sac8 23. gf3 £)d3 24. ga2±; h) 10... £sd4 
N n .  Ad4 e5 12. Ae3 Ae6 13. W 6 3  

g c 8 14. Ab3 b6 (14... I?d7 15. Ag5± V. 
Gurevic) 15. a5± V G urevic 2420 — §er 
2535. Berlin 19931 % M 7  8. f4 facS 9. e5 
de5 10. fe5 £jfd7 11. Af4 b5 12. Wg4 h5! 
N 112... m s  -  57/(242)1 13. Wg3 h4 14. 
Wg4 g5 [14... h3!?l 15. 0-0-0ID |15. Ag5? 
fteST; 15. «Tg5? Wg5 16. Ag5 Ab7+] 
«Te7? 115... sf4 16. <S)e6 5)e6 17. Ae6 
«e7! (17... fe6 18. W g 6  ^ e ?  19. gd6  
m s  20. ® g 5 + -) 18. m s  m s  a) 19. 
Wc2 We,5l A  O ; b) 19. g h e l  We6l (19... 
«la4? 20. ®c7 Wc7 21. Ad7 * d 8  22.

»  m m .....■ m a i

mm a wm

Wm ass mm

16. £>c6!! £lb3 17. ab3 WcS 18. £)e4 
Wc6 19. AgS Ab7 20. Sd6! [20. £)d6? 
Ad6 21. gd6 Wg2 22. ge6  fe6 23. We6
*f8l Ad6 120... m s  21, m 6  '*e7 22.
g h d l!+ -  A 22... m 4  23. Sd7j 21. m e  
^>f8 22. Sfl m s  23. We6 ®d5 24. If7 ?  
124. m e  Sh7 (24... &g8 25. m s )  25. 
S f5 !+ -  Wg2 26. We5 (A 27. Ae71, 27, 
217; 26. Se5? * g l  27. <*d2 W64 28. ^>e2 
# g 4 = )  &g8 27. Af6 m i  28. ^ d 2  2h6
29. Sg5 Sg6 30. We?! f h 2  31. * e3  f h 3
32. ^d 4 l thf lO  [24... * g 8  25. 2g7! «^g7 
26. m s  <^f8 27. We7 A «Tg7#I 25. Ae7 
*g7 26. m e  *h7 27. Wh5 28. &g5 
^g8 29. #e6 <^g7 30. ®f6 ^g8  31. We6 
&g7 32. Af6 ^>h6D 132... &g6? 33. Ah8 
^ g 5  34. I»e5! ^?g6 (34... ^>g4 35. h3#) 
35. Wf6+-1 33. €)f7 <&h7 34. €lg5 ^h 6
35. Ah8 (35. ®e7!? Sag8! (35... Ws8 36. 
Wg? m s  37. m e\+ ~ )  36. a n  <&%e 37. 
ah8  2h8 38. Ah8 «g5  39. %gS 5 40. 
g3 hg3 41. hg3 ^ g 4  42. Ae5 Ad5! 43, 
ibd2 ^D ! 44. ^>d3 Ae4= Kasparov! ®g6
36, m 7  *h7 37. @e7 «g2? 137... *g8!!
38. wb? (38. m s  m en  s fe  39. m s  Sfl
40. &d2 ®d6 A ^h8oo] 38. Ae5? 138, 
Ad4! m i  39. &d2 ®g2 (39... t 'h 2  40. 
^>c3 Sc8 41. <̂ >b4 Ic 7  42. W 6 + -) 40. 
* c3  m e  41. ^ b 4  ge8 42. WgS! f?g6 43. 
# h 4  ^ g 8  44. £ # 6  ^>f8 45. Wf4 <&>e7 46. 
« c 7 + - l  Wfl  39. ^ d 2  1m  40. <&d3 WB
41. ^d2  Wf2 1/2 : 1/2 IN. Short!

11 Sahovski inform ator 59 161
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244

Figure 9: Page 244 o f N unn’s Chess Openings (Nunn, 1999) 

Sicilian: Velimirovic Attack: Main Line

Ie 4 c 5 2 fe f3 d 6 3 d 4 c«J44 fexd4fef65 fec3e66 Jkc4fec67 M 3 4te78 We20-090-0-0 a6
1 0 ± b 3 * c 7 H S h g l

1.1 12 13 14 15 16 17 18 19
1 g4 g5 axb3 f4i3 fe£5 fed5 exf5 A d4i3 ±

b5‘ 4 k 5 J €lxb3+ fed? b4 exf54 » d 8 Se8 1 1 6 6
2 g4 ® f57 M 5 f g5 S g 3 !1 • h 5 feh6+ *h4 =

4bd7 € k 5 b5‘ Ab7m SfcS!11 iLfB'3 §6 *h8M b4,s

1 I l...fexd4 12 J.xd4 b5 13 g4 fed7 14 g5 
fecS 15 « i 5  JLb7 (I5...fexb3+ 16 axb3 g6  17 
Wh6 rn 18 Sd3 t;  15.,.b4 16 fed5! fexb3+ 
{16...exd5 17 Axd5 i.e 6  18 * 1 6  + -}  17 axb3 
exd5 18 # h 6  f6  19 gxf6  + -) 16 Sg3 Sfc8  17 f3 
fexb3+ 18 axb3 e5 19 Sh3 h6  2 0  f ig i * h 8  2 1  g6  

t  Valenti-Toth, Reggio Emilia 1975; 13...M 14 
g5 fed7 15 * i5 '  (15 fed5 exd5 16 i.xd5 M 7  «) 
I5.„.bxc3 16 g6  cxb2+ 17*b l fxg6  (17...hxg6 18 
Sxg6  +-) 18 Axe6 + * h 8  19 Sxg6  fee5 (19.JL16 
2 0  Sxg7 * x g 7  2 1  Sgl+  * h 8  2 2  * 1 6  + -) 2 0  

Sxg7 *x g 7  21 B gl+  * h 8  22 # h 6  1-0 Pieri- 
Bemard, Paris 1994

2 12...b4 13 fexc6  * t c 6  14 fed5 exd5 15 
g5 fexe4 (15...dxe4? 16 gxf6  jfcxffi 17 M 5  t?a4 
18 * i5  j b 6  19 Bxg7+! iLxg? 2 0  S gl BfcS 2 1  
Sxg7+ *xg7 22 « j 6 + * g 8  23 JLxe4 b3 24 !xh7+  
* 6 8  25 Af5+ * g 8  26 «b7+ *18 27 Ab6 + * e 8  
28 # g 8 + *e7  29 i.g5+ *d7 30 ®fxf7+ * c 6  31 
±xe 6  ± Ostapenko-Yartsev, USSR 1969) 16 Axd5 
t a 4  17 JLd4 (17 JLxe4 J.e6  18 J,d4 g6  19 f4 
fifcS! «  Btunner-Wdndl, Switzerland-Badeo 1991) 
!7...iJf5 18 ±xe4 iLxe4 191Txe4 I f e 8  20 * b l  4  
Hennd-Dobrovolsky, Tmava 1979; 14...fexd5!? 
15 exd5 » c7  (15...«b7 16 dxe6  fxe6  17 M A  65
18 g5 Jfcd6  =) 16 dxe6  fxe6  17 f4?! (17 i.d4 =)
17.„a5 18 * b l a4 19 i.c 4  d5 2 0  Sxd5 exdS 2 1  
J.xd5+ Ae6  22 jtxe6 + * h 8  23 g5 &c5 ? Micid- 
Galliamova, Cheliabinsk 1989

3  15  S g 3 ;  1 5  t t t kS
4 16...fec5 17 fexe7+ * xe7  18 e5 bxc3 

(18.,.dxe5 19 i.xc5  #xc5  20 fee4 W&5 21 fef6 + 
* h 8  22 «h.5 gxffi 23 * h 6  ± b l  24 «Txf6 + * g g  
25 g6 ± Goldenberg-Szymczak, Sandomierz 1976)
19 exd6  cxb2+ 20 *xb2 fea4+ 21 bxa4 *>7+ 22 
* c l  t;  17 feh6 +! gxh6  18 gxh6 + * h 8  

19 i.d 4 + 105 20 % 4  fee5 21 fxe5 dxe5 22 ®f4!

5 19 g6  fxg6  20 fxg6  h6  (20...1f6 21 *h5  
hxg6  2 2  Sxg6  l b ?  23 l b 6  tfc8  24 Sb6  + -  
M.Hansen-Fawbush, corr 1983) 21 WcA * h 8  22 
ld 4  ± Velimirovid-B.Ivanovid, NikSid 1978

6 20 HxeS-f i l?xeB 21 gxf6  g6  22 fee7+
*18 23 Bd3 fexfS 24 l x f 6  « b 5  25 Sgdl ± Nij-
boer-Winants, Wijk aaa Zee 1988

7 13 g5 ld 7 ! (13...b5 14 fexe6 S -  10...«'e8) 
14 Bg3 fife! 15 * 1 5  g6  16 Vhfi l f 8  17 «h4  
fexd4 (17...1e7 18 f4 {18 * 1 6  - }  18,..b5 19 
fef5!? fexb3+ 20 axb3 h5 {20,..exf5 21 fed5 
*a5 22 ®xe7+ ®Sxe7 23 l d 4  fxe4 24 * 1 6  ± } 21 
©h6 + *h 7  22 f5 «le5 23 4lxf7i «5xf7 24 fxg6 + 
*xg 6  25 fifi ± Martin Gonzalez-Corral Bianco, 
Spanish Cht 1991) 18 Sxd4 (18 i.xd4 «3xb3+ 19 
axb3 e5 20 Sd2  A e6  2 1  Ae3 b5 =) 18,..b5 
(18...®xb3+ 19 axb3 Ae7 ») 19 f4 (19 Sh3 h5!
20 gxh6  *h7 ? Rot§agov-Lanka, Debrecen Edit 
1992) 19...a5 2 0  Bd2  ®xb3+?! (20...a4!? 2 1  Ad5 
® Rogaiewicz) 21 axb3 JLc6  2 2  f5 a4 23 Sh3 h5 
» Rogalewicz-Capuano, core 1993

8  13.„fesb3+ 14 axb3 b5 15 5lxe7+ &xe7 
(15..,Wxe7 16 MA Bd8  17 * 1 2  e5 18 «ld5 ±) 16 
Wm d5 17 exdS £ixd5 18 «Sxd5 exd5 *  13...exf5 
14 gxfS £>c5 15 £)d5 « d 8  16 f4 ±; 13 J d S  14 
«3xe7+ ttxe7?! (14...£ixe7 ±) 15 g5 b5 16 «h5!? 
A b7 17 Sg3 g6  18 * 1 6  ± Yudasin-Sher, St Pe­
tersburg 1996

9 14&xe7+«rxe7 =
10 14...exd5 15 «)xd5 *> 7  16e5!«ie6 17 exd6  

Ad8  18 f4 «  Hellers-Mednis, Copenhagen 1991
1 1  15,-b4?! 16 *h5 QeS 17 Bg3 exf5 18 ex£5 

bxc3 19 g6 cxb2+ 20 * b l  hxg6 21 fxg6  £sxg6  22 
Vxg6 +-; 15..,exl5?! 16 g6! hxg6 17 Sxg6  «)e5 
18 Bxg7+f! *xg7 19 S g l+  <S)g6 2 0  exf5 ± 
A,Sokolov-V,Salov, Nikolaev 1983

12 16 #h5i? ©e5?! 17 f4 ®lg6  18 Sg3 b4 19 
Bh3 20 M A  exd5 (20...bxc3 2 1  * 1 6  + -) 2 1  

i.xg7 M% 22 ld 4  f6  23 gxf6  % 6  24 f7+ 1-0 
G.Ginsburg-Lanka, Cappelle la Grande 1997

13 16_b4? 17 Bh3 g6  18 £sh6 + *g7 19 J.xc6  
bxc3 20 W B  cxb2+ 21 * b l 22 ?)g4! h5 
(2 2 -.Jl.xc6  23 Sxh7+! *xh7 24 * h 3 +  * g 8  25 
«fli6 + *g7 26 &f5+! + -) 23 gxh6 + *fa7 24 
* h 8  25 JLd4 ± Efimov-Starcdufetsev, USSR 1989; 
ML,£®5 17 Sh3 % 6  18 * i 5  ® f8  19 <S)xg7i! 
JtxdS 20 ®h6  e5 (Fedoaov-Lanka, Pula Edit 1997)
21 ®f5 ^3ce6 22 €lxe7+ » x e 7  23 «)xd5 + -

14 1 8 . . .* g 7 1 9 * 0 + -
15 2 0  «lg4 bxc3 21 Sh3 f5 2 2  Of6  h6  23 

# x h 6 + Axh6  24 Sxh6 + * g 7  25 Sh7+ *18 26 
Sh8 + = Onishchuk-Shirov, Bundesliga 1996/7
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Appendix B: Test Suite Positions
The initial positions for test games are provided here. Table 17 provides a key to 
interpret the symbols used below each board. No en passant captures are possible from 
any of the positions.

Table 17: Side to Move and Castling Indicators

white is to move
% black is to move

black may still castle queenside
* black may still castle kingside
w white may still castle queenside

white may still castle kingside

B.l Nunn 30
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Dave Gomboc

Sent:
To:
Cc:

From:

Subject:

Yana Lambert [Yana.Lambert@wkap.com]
Septem ber 8, 2003 10:40 AM
'dave@cs.ualberta.ca'
l.H iroyuki@ CS.unim aas.nl; Herik@ cs.unim aas.nl; M .T iessen@ CS.unim aas.nl; 
iida@ cs.inf.shizuoka.ac.jp
RE: ACG 10 paper #38: re: assignm ent o f rights to IFIP

Dear Dave,

I  have r e v i e w e d  your corresp on d en ce  w i th  t h e  e d i t o r s  o f  t h e  ACG-10 
c o n f e r e n c e  p r o c e e d in g s  reg ard in g  t h e  I F I P / K l u w e r  c o p y r ig h t  t r a n s f e r  form,  
and w i l l  t r y  t o  a d d ress  your co n c er n s  h e r e in :

we have used t h is  copyright t r a n s fe r  form since we s ta r te d  p u b l i s h i n g  the  
IF IP  conference proceedings s e r ie s  i n  1998; i t  s i g n s  over copyright to  
i f i p  which is  the  case w ith  a l l  i f i p  conference proceedings, and i t  
w a rra n tie s  to  Kluwer th a t  the m a te r ia l  i s  o r ig in a l  and does not in f r in g e  
on o th e rs ' c o p y rig h t. That is  the  essence o f  the form.

While i f i p  (y e s , t h e i r  web s i t e  i s  w w w .if ip .o rg  and /or w w w . i f ip .o r .a t ) is  
the  cop yrig h t h o ld e r , Kluwer has granted numerous permissions on i f i p ' s  
b e h a lf ,  f o r  p re c is e ly  the uses to  which you may choose to  put your work 
— i . e .  we would f r e e ly  g ran t you permission to  use the m a te r ia l in  your 
th e s is  and /or to  post a copy on your web page, on the simple cond ition  
th a t  the o r ig in a l  source o f  p u b lic a t io n  ( i . e .  the  ACG-10 proceedings 
volume) be f u l l y  acknowledged. ( I  can provide you w ith  the b ib l io g ra p h ic
in fo rm a tio n  fo r  the  book a f t e r  I  rece ive  the camera-ready manuscript in  
the next week or s o .)

You are c o r re c t  in  th a t  thousands o f  h ig h ly  i n t e l l i g e n t  people sign these  
forms every day — much the same as m il l io n s  o f  people sign mortgage 
documents f u l l  o f  le g a le s e  th a t  i f  they took the tim e to  read the  
b o i le r p la te  f in e  p r in t ,  I  suspect the  housing in d u s try  would slow to  a 
c ra w l. A t the  moment, th e re  is  not tim e to  nave K luw er' s and i f i p ' s  
le g a l departments review your proposed vers ion o f  the  form — we are  
a lre a d y  behind schedule to  d e l iv e r  p r in te d  books to  the  conference venue 
in  November, and I  suspect the e d ito rs  are w a it in g  on the  re s o lu t io n  o f  
your paper before f i n a l i z i n g  the  camera-ready manuscript fo r  the  
proceedings.

I  would propose th a t  you sign the  t r a n s fe r  form as i t  s tan d s , w ith  my 
assurances noted above, based on the spi r i t  o f  the  agreement ra th e r  than  
the  l e t t e r ,  i f  you instead  wish to  discuss the f in e  po in ts  ra ised  in  
your message below, perhaps we could do th is  on a phone c a l l?

I  look forward to  your response.

Kind reg ard s ,
Yana Lambert
IF IP  Publish ing E d ito r

Kluwer  Academic Publishers  
101 P h i l ip  D rive
N o r w e l l ,  MA 02061  
T e l : 7 8 1 /6 8 1 -0 6 0 4
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Dave Gomboc

From:
Sent:
To:
Subject:

Michael Buro [mburo@cs.ualberta.ca]
January 21, 2004 8:58 AM
Dave Gomboc
material in thesis from paper

Dave Gomboc w r i t e s :

> fg s r  t h i n k s  i t  would be a good i d e a  t o  i n c lu d e  w r i t t e n  p e r m is s io n  from 
> you both and a l s o  Kluwer when I  submit my t h e s i s .  (The la d y  d i d n ' t  
even > mention i t ,  but when I  asked about i t  s p e c i f i c a l l y  she  
recommended i t . )  > She t o l d  me t h a t  emai1 was f i n e ,  and ind eed  I  have  
email  from Yana > Lambert ( i f i p  P u b l i s h in g  E d ito r  f o r  Kluwer)  from 2003-  
Sep-08  which > i n d i c a t e s  i t ' s  no problem from t h e i r  p e r s p e c t i v e  f o r  me 
t o  use  t h e  > m a t e r ia l  i n  my t h e s i s , but I  o n ly  asked you both v e r b a l l y ,  
so  I 'm  a sk in g  > a g a in  i n  emai1 so  I  can p r i n t  out  your r e p l i e s  and 
submit them t o  FGSR > when I  hand i n .

i s  t h a t  s u f f i c i e n t ?

I  hereby grant Dave Gomboc permission to  use the m a te r ia l  presented a t  
the ACG-10 conference in  his  M aster ' s t h e s is .

/M ichae l Buro

i
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Dave Gomboc

F rom : Tony Marsland [tony@ cs.ualberta.ca]
Sent: April 14, 2004 4:56 PM
To: Dave Gomboc
Subject: Re: material in thesis from  paper

On Mon, 3an 26 ,  2004 a t  03:15:25PM - 0 7 0 0 ,  Tony Marsland w rote:
> I  a l s o  g r a n t  Dave Gomboc p e r m is s io n  t o  use  t h e  m a t e r ia l  p r e s e n te d  a t
> t h e  ACG-10 c o n f e r e n c e  in  h i s  M a s te r ' s  t h e s i s .
> Tony Marsland
> Springwood, NSW. A u s t r a l i a
>
> On Mon, 3an 26 ,  2004 a t  0 1 : 1 6 : 54AM - 0 7 0 0 ,  Dave Gomboc w rote:
> > I  t h i n k  s o ,  y e s . Tony, can you p l e a s e  send one as  w e l l ?
> >
> > Dave
> >
> >
> > On wed, 21 3an 2004 ,  Michael Buro w rote:
> >
> > > Date:  Wed, 21 3an 2004 0 8 : 5 7 : 5 4  -0 7 00
> > > From: Michael Buro <mburo@cs. u a l b e r t a . ca>
> > > t o : Dave Gomboc <dave@cs. u a l b e r t a . c a >
> > > S u b j e c t :  m a t e r ia l  in  t h e s i s  from paper
> > >
> > >
> > > Dave Gomboc w r i t e s :
> > >
> > > > FGSR t h i n k s  i t  would be a good i d e a  t o  i n c l u d e  w r i t t e n
> > > p e r m is s io n  from > you both and a l s o  Kluwer when I  submit my
> > > t h e s i s .  (The la d y  d i d n ' t  even > mention i t ,  but when I  asked
> > > about i t  s p e c i f i c a l l y  she  recommended i t . )  > She t o l d  me t h a t
> > > email  was f i n e ,  and ind eed  I  have email  from Yana > Lambert ( i f i p
> > > P u b l i s h in g  E d i to r  f o r  Kluwer) from 2 0 0 3 -S e p -0 8  which > i n d i c a t e s
> > > i t ' s  no problem from t h e i r  p e r s p e c t i v e  f o r  me t o  u se  t h e  >
> > > m a t e r ia l  in  my t h e s i s , but I  o n ly  asked you both v e r b a l l y ,  so  I'm
> > > a s k in g  > a g a in  i n  email  so  I  can p r i n t  o u t  your r e p l i e s  and
> > > submit them t o  FGSR > when I  hand i n .
> > >
> > > I s  t h a t  s u f f i c i e n t ?
> > >
> > > -------------------------------------------------------------------------------------------------------------------------------------------
>  >  >  -  
> > >
> > > I  hereby g ra n t  Dave Gomboc p e r m is s io n  t o  use  t h e  m a te r ia l
> > > p r e s e n t e d  a t  t h e  ACG-10 c o n f e r e n c e  i n  h i s  M a s te r ' s  t h e s i s .
> > >
> > > /Mi ch a e l  Buro
> > >
> > > -------------------------------------------------------------------------------------------------------------------------------------------
>  >  >  -  
> > >
> >
>  >  —
> > Dave Gomboc
> > M.Sc. S tudent  1 - 4 1  Athabasca  Hall

i
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Dave Gomboc

From: John Nunn [doccy@btopenworld.com]

Sent: March 17, 2004 1:39 AM

To: Dave Gomboc

Subject: NCO queries

Dear Dave,

Regrading your queries:

1) You may reproduce one page of NCO in your thesis.

2) You may reproduce the positions of the Nunn test suites. I do not know the precise details of when they were 
first published in CSS as I do not receive the magazine. You could try asking Frederic Friedel directly 
(frederic@chessbase.com).

3) There are no plans to make NCO available electronically.

Best wishes,

John Nunn
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Dave Gomboc

From:
Sent:
To:
Subject:

Don Dailey [drd@ m it.edu] 
March 23, 2004 5:58 AM
dave@ cs.ualberta.ca
Re: Dailey 200 test suite

Hi Dave,

You a r e  f r e e  t o  use  t h a t  s e t  o f  p o s i t i o n s . I  a c t u a l l y  have no memory o f  
t h a t  s e t  but i t  sounds l i k e  something I  probably  would have done.

C o n g r a t u la t io n s  on your t h e s i s !

Date: Mon, 22 Mar 2004 2 0 :1 9 :4 3  -07 0 0  (MST)
Sender: Dave Gomboc <dave@cs. u a l b e r t a . ca>
From: Dave Gomboc <dave@cs. u a l b e r t a . ca>
Content-Type:  t e x t / p l a i n ; c h a rs e t= u s -A S C ll

Hi Don,

I'm p r e p a r in g  t o  p u b l i s h  my M .sc.  t h e s i s  ( y a y ! ) .  Many y e a r s  ago you 
s e n t

me your s e t  o f  200 c h e s s  p o s i t i o n s  t h a t  are  10 p l y  o u t  from t h e  s t a r t
p o s i t i o n .  (T h is  i s  a l s o  t h e  s e t  t h a t  w ith  your p e r m is s io n  Yngvi 

Bjornsson
t e s t e d  w i th  and p r in t e d  i n  h i s  Ph.D. d i s s e r t a t i o n . )

I  wanted t o  d o u b le - c h e c k  t h a t  you d o n ' t  have any o b j e c t i v e  t o  me 
p r i n t i n g

your p o s i t i o n s  i n  my t h e s i s . T h ey 're  l a b e l l e d  as  t h e  " D a i ley  200" ( I  
a l s o

use  30 from Nunn).

Dave

Dave Gomboc
M .sc .  S tu d en t  1 - 4 1  Athabasca  Hall
Department o f  Computing S c i e n c e  Edmonton, A l b e r t a ,

Don

u n i v e r s i t y  o f  A l b e r t a Canada T6G 2E5
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