Search

Skip to Search Results
  • Spring 2015

    Das Gupta, Ujjwal

    Much of the focus on finding good representations in reinforcement learning has been on learning complex non-linear predictors of value. Methods like policy gradient, that do not learn a value function and instead directly represent policy, often need fewer parameters to learn good policies....

  • Spring 2015

    Rayner, David Christopher Ferguson

    Heuristic search is a central problem in artificial intelligence. Among its defining properties is the use of a heuristic, a scalar function mapping pairs of states to an estimate of the actual distance between them. Accurate heuristics are generally correlated with faster query resolution and...

  • Spring 2015

    White, Martha

    This dissertation explores regularized factor models as a simple unification of machine learn- ing problems, with a focus on algorithmic development within this known formalism. The main contributions are (1) the development of generic, efficient algorithms for a subclass of regularized...

  • Fall 2015

    Davis, Trevor

    Extensive-form games are a powerful framework for modeling sequential multi-agent interactions. In extensive-form games with imperfect information, Nash equilibria are generally used as a solution concept, but computing a Nash equilibrium can be intractable in large games. Instead, a variety of...

1 - 4 of 4