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Abstract

Heuristic search is a central problem in artificial intelligence. Among its defining

properties is the use of a heuristic, a scalar function mapping pairs of states to an

estimate of the actual distance between them. Accurate heuristics are generally

correlated with faster query resolution and higher-quality solutions in a variety of

settings, including GPS road navigation and video game pathfinding. Effective

methods for defining heuristics remain at the forefront of heuristic search research.

This research puts the task of constructing good heuristics under the lens of opti-

mization: minimizing a loss between the true distances and the heuristic estimates,

subject to admissibility and consistency constraints. Starting with first principles

and well-motivated loss functions, we show several instances where performing

this optimization is both feasible and tractable. This novel approach reveals pre-

viously unobserved connections to other computing subfields (e.g., graph embed-

ding), gives new insights into previous approaches to heuristic construction (e.g.,

differential heuristics), and proves empirically competitive in a number of domains.

ii



Acknowledgements

Certainly not an exhaustive list, but my heartfelt thanks goes to:

My supervisors, Michael Bowling and Nathan Sturtevant, for their guidance

and inspiration; and for helping me transform a curious observation into a

deep, exciting, and significant research project.

Rob Holte, Dale Schuurmans Martin Müller, and Kilian Weinberger – each

went above and beyond his duties as a supervisory and/or committee member,

and each provided me with valued guidance along the way.

Vadim Bulitko and Rich Sutton – both inside and outside of their past super-

visory roles – for numerous fruitful and interesting discussions.

A sampling of the fellow researchers who inspired me along the way: Ariel

Felner, James Neufeld, Rick Valenzano, Thomas Degris, Nolan Bard, Ramon

Lawrence, David Thue, Marc Bellemare, Marc Lanctot, Joel Veness, Nelson

Amaral, David Wingate, and Mike Barley.

My ever-supportive friends: Tom Williams, Senthil Ponnusamy, Ryan Zaari,

Kenya Kondo, Suneth Leelananda, and Jason Treit.

And to my family – my parents, for their constant support, and my wife, Julia,

for her incredible warmth, patience, and unwavering encouragement.

iii



Table of Contents

1 Introduction 1
1.1 State-Space Search . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Solution Criteria . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 The Heuristic Function . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Defining Good Heuristics . . . . . . . . . . . . . . . . . . 5

1.3 Research Theme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 An Intuitive Guide . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9
2.1 Memory-Based Heuristic Construction . . . . . . . . . . . . . . . . 9

2.1.1 All Pairs Shortest Paths . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Pattern Databases . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Canonical Heuristics . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Differential Heuristics . . . . . . . . . . . . . . . . . . . . 12
2.1.5 Portal Heuristics . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.6 Approximate Distance Oracles . . . . . . . . . . . . . . . . 14

2.2 Statistical Approaches to Heuristic Construction . . . . . . . . . . . 14
2.2.1 Approximate Linear Programming . . . . . . . . . . . . . . 15
2.2.2 Neural Backpropagation . . . . . . . . . . . . . . . . . . . 16
2.2.3 Bootstrap Learning . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Large Margin Prediction . . . . . . . . . . . . . . . . . . . 17

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Euclidean Heuristic Optimization via Semidefinite Programming 20
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Euclidean Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Optimization Approach . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.1 Semidefinite Formulation . . . . . . . . . . . . . . . . . . . 26
3.4.2 Recovering a d-dimensional Embedding . . . . . . . . . . . 27
3.4.3 Maximum Variance Unfolding . . . . . . . . . . . . . . . . 28

3.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.1 Admissibility and Consistency . . . . . . . . . . . . . . . . 29
3.5.2 Complexity of Optimization . . . . . . . . . . . . . . . . . 30

3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6.1 Cube World . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6.2 Word Search . . . . . . . . . . . . . . . . . . . . . . . . . 31

iv



3.6.3 Pathfinding . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Enhanced Differential Heuristics via Semidefinite Programming 39
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Differential Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Optimization Interpretation . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Visual Interpretation . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Equivalence to Differential Heuristics . . . . . . . . . . . . . . . . 42
4.4.1 Trivial Case . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.2 Collinearity with Pivot at Boundary . . . . . . . . . . . . . 43
4.4.3 Maximum Distances from the Pivot . . . . . . . . . . . . . 44

4.5 Optimization Approach . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5.1 Visual Interpretation . . . . . . . . . . . . . . . . . . . . . 47
4.5.2 Enhanced Objective . . . . . . . . . . . . . . . . . . . . . 47

4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Line Heuristic Optimization via Alternating Maximization 52
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Line Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.3 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Bounded Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.1 Lipschitz Embeddings . . . . . . . . . . . . . . . . . . . . 59
5.4.2 Probabilistic Approach due to Bourgain/Linial et al. . . . . 61

5.5 Optimization Approach . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5.1 Sign Matrix Formulation . . . . . . . . . . . . . . . . . . . 62
5.5.2 Alternating Maximization . . . . . . . . . . . . . . . . . . 63

5.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.6.1 Integer Embedding Theorem . . . . . . . . . . . . . . . . . 66
5.6.2 Convergence and Termination . . . . . . . . . . . . . . . . 67

5.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.7.1 Spider Search . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.7.2 Word Search . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.7.3 Pathfinding . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Hinge Heuristic Optimization for Asymmetric Domains 76
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Hinge Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 Bounded Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4.1 Directed Lipschitz Embeddings . . . . . . . . . . . . . . . 84
6.4.2 Probabilistic Approach Extending Bourgain/Linial et al. . . 86

6.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.5.1 Computer Science Web Graph . . . . . . . . . . . . . . . . 90
6.5.2 Terrain Navigation . . . . . . . . . . . . . . . . . . . . . . 92
6.5.3 Platformer . . . . . . . . . . . . . . . . . . . . . . . . . . 94

v



6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Subset Selection of Heuristics via Submodular Maximization 98
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.2 Heuristic Subset Selection . . . . . . . . . . . . . . . . . . . . . . 99
7.3 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.3.2 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.4.1 Submodularity . . . . . . . . . . . . . . . . . . . . . . . . 102
7.4.2 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.4.3 Approximation Algorithm . . . . . . . . . . . . . . . . . . 103

7.5 Sampling Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.5.1 A Partitioning Approach . . . . . . . . . . . . . . . . . . . 104
7.5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.6.1 Undirected Domains . . . . . . . . . . . . . . . . . . . . . 108
7.6.2 Directed Domains . . . . . . . . . . . . . . . . . . . . . . 110

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8 Conclusion 117

Bibliography 119

vi



Chapter 1

Introduction

On a break from work, the mathematician Timothy J. Pennings observed dozens of

trials of his dog Elvis fetching a ball from a lake. Elvis could run quickly, but only

swim slowly; when chasing the ball, Elvis had to make a difficult tradeoff between

the two, and decide where to cross the beach line. But over the course of several of

these trials, Pennings noticed that Elvis was choosing paths that “agreed remarkably

closely with the optimal path” [46], and with minimal deliberation, suggesting Elvis

had good judgment about how to efficiently fetch from the lake.

At the highest level, this thesis is about constructing computational analogs to

“good judgment” called heuristics. These heuristics can help computer problem

solvers, called agents, solve arbitrary state-space search problems in rapid suc-

cession. Throughout, the studies into how to build these data structures will be

grounded in the methodology of optimization. This introductory chapter presents

these concepts in summary detail, and concludes with an overview of the research

contributions that will be described in subsequent chapters.

1.1 State-Space Search

In state-space search, a problem solver (i.e., agent) is tasked with generating low or

minimal cost sequences of actions, through a space of connected and discrete states,

that deliver the agent from its start state to a given goal state. In our earlier example,

the actions could involve the movement of Elvis between adjacent locations along

the beach and water, and the costs could simply be the time Elvis needs to per-
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Figure 1.1: A simple example of a search graph, comprised of four states and five
directed edges, labelled with various associated costs.

form each action (which might be greater when moving between water states than

when moving between states on the beach). But more practical examples of the

applications of state-space search include planning paths or other strategic action

sequences in video games, GPS routing for road networks on portable, low-power

devices with goals of minimizing time and/or fuel consumption, solving combina-

torial puzzles (e.g., the Rubik’s Cube or the Sliding Tile Puzzles), and designing

carefully constrained international flight itineraries across multiple airlines.

1.1.1 Formalism

Formally, a state-space search problem is defined as P = (G, δ, s, g). The param-

eter G = (V,E) is a directed or undirected finite graph with a set of vertices, V

(states), and a set of edges, E ⊆ V × V (actions) with associated costs, δ (an

illustration of an example search graph is shown in Figure 1.1).

Each state i ∈ V in the graph can have significant representative power. A state

might denote a geographic location such as a city or set of coordinates, a specific

arrangement of pieces in a puzzle, or a robot’s joint angles; it might also include

vital side information like time (modulo some schedule), remaining fuel, or the

positions of other entities that are beyond the agent’s direct control. While states

are discrete, fine-grained ranges of continuous values can be represented.

Each action (i, j) ∈ E links one state to another with some associated cost (or

weight or distance) given by δ(i, j). This cost might represent time, effort, fuel

consumption, etc. In general, we can define δ : V × V → R+ as a mapping

2



from any pair of states (not necessarily neighboring states) to the total cost of the

shortest (i.e., lowest-cost) path between them.1 Note (V, δ) therefore defines a finite

quasimetric space - that is, a finite metric space in which the symmetry axiom is

relaxed. It is worth noting that, in practice, δ is rarely given explicitly; rather, only

the distances between action-linked states are known a priori.

Finally, the states s ∈ V and g ∈ V are the agent’s start and goal states respec-

tively, and so a feasible (if not cost-minimal) solution to P is a state sequence:

〈p1, p2, ..., p`−1, p`〉, (1.1)

originating at the start state (p1 = s), terminating at the goal state (p` = g), and

comprised of valid actions from E (i.e., for all 1 ≤ i < `, (pi, pi+1) ∈ E).

1.1.2 Solution Criteria

There are many automated methods for finding good solutions to state-space search

problems. But what does it mean for a solution to be “good?” There are multiple

criteria. Cost minimization is the simplest and most intuitive goal. In particular, we

say that a solution is optimal if it minimizes the sum of costs in the action sequence;2

and any suboptimality in a solution is usually measured as a multiplicative ratio of

the optimal solution cost. Nevertheless, several alternative measures do exist.

Another criterion is whether a solution can even be found at all – this is a ques-

tion of tractability. In traditional applications of heuristic search (in particular, in

the case of combinatorial puzzles), as well as in planning, simply being able to solve

a state-space search problem (either to optimality or not) can be considered a sig-

nificant success. In fact, a traditional indicator of progress in state-space search has

been to deliver a new, optimal solution to some previously intractable state-space.

Yet another criterion, related to but not identical to the previous, is that of solu-

tion time. Indeed, this is the one we are most interested in addressing in this thesis.

Now, more than ever, it has become an important application of state-space search

to very quickly find high-quality paths between arbitrary states in small graphs that

1Unless stated otherwise we assume G is connected (or strongly connected in the directed case)
and, correspondingly, δ(i, j) is always defined and finite for all states i and j.

2A method guaranteed to find a solution if one exists, and fail otherwise, is called complete.
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might otherwise be considered trivial. This can be linked to search’s prolifera-

tion in end-user consumer products, such as computer games [4] (which drive a

multi-billion dollar industry) and the road networks [23], stored on point-to-point

GPS applications which are now ubiquitous. While the problems on these graphs

are trivial to solve, the difference between 1ms and 0.1ms to solve is significant be-

cause it influences battery life and the end-user experience, with empirical evidence

suggesting “that reading the data dominates the running time” [25].

This emerging context presents us with the unique opportunity to train an agent

on its search graph, (i.e., to develop its “intuition”) during what might be called an

offline pre-deployment phase, a period during which there is access to far greater

computational resources than there is during the online post-deployment phase.

From a practical standpoint, the cost of this training is more or less unimportant, as

long as it remains tractable, because end-users never experience it. More specifi-

cally, we will explore using this training time to optimize the heuristics.

1.2 Heuristics

All sound techniques for solving state-space search problems maintain a list of

states generated but not yet explored, (i.e., an “open list”) but the agent might also

have access to side information about which states on this list are more promising

than the others. For instance, A* [28] and IDA* [33], which are among the most

popular state-space search algorithms, iteratively expand states from a start node,

generating and pruning their candidate paths under the direct influence of the values

given by a heuristic, a fundamental way of coding this side information.

1.2.1 The Heuristic Function

The heuristic function is a subject of significant study, and many novel variations

on the concept have been developed. The traditional and most common definition

of the heuristic is as a scalar function that estimates the cost-to-go from any state

to the goal. A more general definition defines the heuristic as a function of any two

states, i ∈ V and j ∈ V . That is, h : V × V → R+ is a function that gives an

estimate of the cost of traversal between arbitrary states s ∈ V and g ∈ V .

4



1.2.2 Defining Good Heuristics

Designing a heuristic function is just a proxy for a search algorithm’s state selection

(or generator) rule, but research has focused more on heuristic construction than on

directly learning a better state selection rule. Why is this? The answer mostly lies

in the heuristic function’s solid theoretical backing: asserting modest properties on

a heuristic give general guarantees before search even begins.

In particular, a heuristic is admissible when it underestimates true shortest path

distances; when this property holds, an admissible search algorithm like A* will al-

ways return optimal (i.e., cost-minimal) solutions through the state space. A heuris-

tic is consistent if it obeys a form of the triangle inequality; consistent heuristics can

keep an A* agent from evaluating any state more than once [44], thereby evading

A*’s worst-case exponential time cost [39].

Generally, the more accurate the heuristic is, the better. Accurate heuristics can

significantly improve search efficiency by enabling a search algorithm to drastically

reduce the number of nodes that need to be examined during search. This also has

the effect of keeping the open list (i.e., the subset of the state space comprising

the solution frontier) small, which can have a significant impact in practice – es-

pecially in performance-critical, real-time applications. Even algorithms that trade

path optimality for speed, like weighted A* [48] and other real-time heuristic search

variants [8, 9], tend to produce better solutions when a good heuristic is available.

The construction of better heuristics remains an important field of ongoing research.

But in an effort to have the heuristic sustain the properties of admissibility and

consistency, much of the research into building heuristics has involved what has

been described as the human-driven “discovery” of a heuristic [45], which requires

careful human analysis on a per-problem basis. Nevertheless, research spanning the

past two decades shows a progression toward automating the process of construct-

ing heuristics, and the work in this thesis continues this new line of inquiry.

5



(a) (b)

Figure 1.2: A video game map from BioWare’s Dragon Age: Origins (a) is shown
to be topologically closer to a long hallway, or open plane (b).

1.3 Research Theme

This thesis studies new, optimization-driven representations of the heuristic func-

tion with the goal of improving search performance. The specific representation

used to store the heuristic in this work is a cloud of points in (quasi-metric) spaces

of varying dimension. One can imagine moving these points around in different

ways, producing a different heuristic function with each manipulation. But what is

the best way to arrange these points? Should they be free to move around in high-

dimensional spaces, or constrained to a lower-dimensional space? This problem

can be interpreted in a principled fashion as a constrained optimization problem.

1.3.1 An Intuitive Guide

An intuitive guide to this approach follows. Many search domains, such as video

games and road networks, specify an underlying geometry (or embedding) that can

be used to define a default heuristic. An example is the straight-line Euclidean

distance between the geographic coordinates in a road network or the cells in a grid.

Unfortunately, this underlying geometry – while typically being of small enough

size to keep in memory – can actually poorly represent the true distances that must

be traversed to move between two points. This point can be illustrated by looking

at a map of one floor of a tower from the video game Dragon Age: Origins in

6



Figure 1.2.

The original configuration shown in Figure 1.2 (a) has a wall at the top that pre-

vents the walkable (white) portions of the map from forming a complete loop. The

default heuristic given by the underlying or “default” geometry is therefore very

poor, as two points at the top of the map that look close are actually far apart. Fig-

ure 1.2 (b) demonstrates what would happen if the map were somehow “unrolled”,

while still occupying two dimensions. The unrolled configuration contains the same

rooms and obstacles as the original, but rearranged in such a way that the heuristic

given by taking straight-line distances is far more accurate. Given this new layout,

search queries to this domain could be made faster and more efficient.

One way to interpret this work is as an investigation into how a search graph can

be (re-)arranged geometrically, in one or many dimensions, so that the underlying

distances are more accurate – while still maintaining admissibility and consistency.

1.3.2 Thesis Outline

A high-level outline of the chapters to come is as follows: First, Chapter 2 will

launch our study by presenting a summary overview of some different existing

methods for heuristic construction. Highlighting the benefits and drawbacks of

these methods will clarify some of the distinguishing and novel properties of the

optimization-driven approaches we consider in the chapters that follow.

Chapter 3 will break ground on the use of optimization to generate geometric

heuristics, and will detail a method for constructing good heuristics out of points

in a multidimensional metric (Euclidean) space. A careful choice of weighted loss

will enable us to rewrite this optimization as a semidefinite program, which will

facilitate a tractable optimization. It will also reveal an exact correspondence to

a recently proposed method for manifold learning in the field of dimensionality

reduction [60]. This chapter is based on work published in 2011 [52].

Chapter 4 analyzes a special form of the optimization described in Chapter 3 by

carefully parametrizing the weights on the loss. This will reveal that the semidefi-

nite program generalizes an existing method for automatically constructing search

heuristics [56], and moreover can be used to improve that approach. This chapter is

7



based on a key result in the aforementioned 2011 publication [52].

Motivated to address the computational expense associated with solving the

semidefinite programs of the preceding chapters, and inspired by the successes

achieved when building low dimensional heuristics, Chapter 5 turns to building

heuristics directly on the line using an iterative, convergent sequence of linear pro-

grams. Chapter 6 follows up on this effort by using the a similar optimization

approach to drive the construction of a new kind of directed heuristic for domains

in which the costs between states are asymmetric. This heuristic can be flexibly

parametrized to address different kinds of directed domains – the first of its kind.

Having introduced a number of novel techniques for building search heuristics,

Chapter 7 will then turn to the problem of selecting a best subset among them.

This study relies on the theory of submodular function maximization, which will

provide strong approximation guarantees on the resulting heuristic subsets. This

chapter is based on work published in 2013 [53].

8



Chapter 2

Background

Before presenting several new ways to perform heuristic construction, we summa-

rize some prominent existing methods – both fundamental and the state of the art.

The primarily focus is on point-to-point pathfinding settings in which multiple prob-

lem instances need to be solved in rapid succession online, but where substantial

flexibility is given in the time required to precompute data structures offline. But

several relevant methods that are not specifically designed for this purpose will be

included to paint a more complete picture.

This survey is divided into two distinct categories, which are called the memory-

based and the statistical approaches respectively. Beyond giving a background

summary, this survey will conclude by drawing the reader’s attention to a gap ex-

isting between these two categories, one which this thesis aims to bridge.

2.1 Memory-Based Heuristic Construction

Some of the most popular approaches to heuristic construction rely on the care-

ful and complete analysis of an explicitly given, or at least tractably enumerable,

search graph (or its abstraction).1 The information resulting from such an analysis

is stored and possibly compressed into some kind of fixed data structure that can be

efficiently queried from memory at runtime, hence “memory-based”.

In what follows, key instances of memory-based approaches from the litera-

ture are examined. These are tabulated in Table 2.1 for comparison: the rows of

1The work in this thesis is no exception!
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Table 2.1: Instances of memory-based heuristics (here, n is the number of nodes in
a given search graph, m is the number of edges, and k a flexible parameter).

Name Offline Space Online Admiss. Any goal References
APSP O(n3) O(n2) O(1) yes yes [19, 59]
PDBs O(kn) O(k) O(1) yes no [13]
CH-k O(k2 + kn) O(k2 + n) O(1) yes yes [56]
DH-k O(kn) O(kn) O(k) yes yes [24, 41, 56]
PH-k O(k3) O(k2) O(k) yes yes [26]
ADO O(kmn

1
k ) O(kn1+ 1

k ) O(k) no* yes [57]
* Inadmissibility is bounded by a multiple of 2k + 1.

this table index different techniques, and the columns enumerate different algo-

rithmic properties: offline indicates the time complexity of running the algorithm

(e.g., computing the data structure) before deployment, space indicates the space

complexity of the resulting data structure, and online indicates the per-query time

complexity of using the method during deployment. Meanwhile, admiss. refers to

whether or not the algorithm produces admissible heuristics, and any goal indicates

whether the method can supply heuristics for any goal.

2.1.1 All Pairs Shortest Paths

The facile memory-based approach is to precompute the n×n table of shortest paths

between all pairs of n states. Such a table can be obtained by dynamic programming

(e.g., by using what has come to be referred to as the Floyd-Warshall algorithm [19,

59]) in O(n3) time. This approach is commonly called all-pairs shortest paths

(APSP), and the resulting distance information defines a perfect heuristic.

If we are given a perfect heuristic, an admissible search algorithm (e.g., A* [28],

IDA* [33], Fringe Search [5]) can be used to give perfect search performance, in

the sense of having minimal node expansions (in particular, only states lying on an

optimal path will be expanded) and, potentially, much lower execution time.

APSP’s obvious drawback is the amount of memory it requires, which in general

is quadratic in the number of points. And while storing all of the APSP matrix is not

necessary for undirected graphs due to symmetry, but this does nothing to alleviate

its large asymptotic memory requirements. This is problematic even when dealing
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with relatively small search graphs, since many of the real-world applications of

heuristic search (such as video games or GPS route planners) contain other high

priority subsystems that compete for main memory. Moreover, empirical evidence

suggests reading from memory can dominate search time on mobile devices [25],

suggesting large structures like an APSP table may not be ideal, even in those rare

cases that it is feasible. Essentially, every byte of memory that can be saved is

important, and APSP leaves substantial room for improvement in this regard.

2.1.2 Pattern Databases

A common approach for reducing the memory required to store a memory-based

heuristic is abstraction. A popular and effective method following this design,

which is also considered fundamental to the heuristic search literature, is that of pat-

tern databases (PDBs) [13]. Rather than store distances between individual states,

PDBs store distances measured over k abstracted states, and use these k values as

the basis for admissible heuristics to a single goal state. This approach is powerful

enough to render intractable search problems tractable, as demonstrated on com-

binatorial problems [13, 21], and can serve as features in some of the statistical

models [1, 47] that will be described later in Section 2.2.

As noted, pattern databases are typically designed with only a single goal state

in mind. This restriction is natural when looking at the kinds of problems to which

pattern databases typically apply (combinatorial puzzles like the Rubik’s Cube or

the Sliding Tile Puzzle – often thought of as having a single “solved” state). While

it is feasible that a pattern database could be generated for every possible goal state,

this would lead to asymptotic memory requirements of the same order as APSP.

Although it has been observed that many small PDBs can be more effective together

than a single monolithic PDB [31], how to best choose among them appears to lack

a clear optimization interpretation in the literature.

2.1.3 Canonical Heuristics

When memory limits are coupled with the possibility of having to determine a path

to an arbitrary goal state (as with online trip planners, road networks, mobile GPS
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on low-power devices, and video games), heuristic functions tend to be examples of

true-distance heuristics, which work by precomputing and storing a small fraction

of the entries in the APSP matrix. By appealing to simple geometric arguments,

heuristics between any pair of states can then be computed, on-the-fly, using just

these stored values. Precisely which pairs of states and which geometric arguments

are used differ with the technique, but all “true-distance” methods share a common

core of somehow storing a subset of the “true” distance information.

One true-distance technique that resembles the aforementioned PDBs is that of

canonical heuristics (CHs) [56], since its selection of canonical states resembles a

sort of abstraction. In particular, every search state i in the graph is assigned to a

nearby representative (or “canonical”) state, ci, and all that is stored is (i) the APSP

distances between the k � n canonical states and (ii) the n distances between each

state and its nearest canonical neighbor. Admissible and consistent heuristics can

then be determined between two states i and j by subtracting the sum of the dis-

tances to their respective canonical states, δ(i, ci) and δ(j, cj), from the true distance

between their canonical states, δ(ci, cj), i.e.:

h(i, j) = |δ(ci, cj)− δ(i, ci)− δ(j, cj)| ≤ δ(i, j) (2.1)

Online, these heuristic lookups can be done in constant time. Offline, the placement

of the canonical states is typically done to maximize some semblance of “coverage”,

though once again appears to lack an optimization interpretation in the literature.

Note that multiple, complementary sets of CHs can be generated and then maxi-

mized over; naturally this would come with greater memory requirements.

2.1.4 Differential Heuristics

Sturtevant et al. (2009) observed that canonical heuristics are in fact a general

case of differential heuristics (DHs) [56], the likes of which have made numerous

independently-driven appearances in the research literature [24, 37, 41].2 Empiri-

cally, differential heuristics have been observed performing better than their canon-

ical cousins under identical memory constraints [56].
2These are extremely closely related to ALT heuristics [24] (A* with Landmarks and the Triangle

inequality) and are a special case of metric embedding theory’s Lipschitz embeddings. [37].
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A single DH is built by designating a pivot state p, from which the true path

lengths to all other states are cached. In an undirected graph, these path lengths

necessarily come from a finite metric space, and so the triangle inequality can be

used to give a lower bound on the distances between any two states i and j:

h(i, j) = | δ(i, p)− δ(j, p)| ≤ δ(i, j) (2.2)

Another way to view the construction of a DH is to think of the search graph being

“folded” over the pivot. The resulting distances between points gives the same

heuristic values. (For more detail on this interpretation, see Chapter 4.)

DHs are cheaply computable, high performing in practice, and can be deployed

in sets of k, implying a heuristic lookup that maximizes over all k available heuris-

tics (in O(k) time). Each DH corresonds to a row (or column) in the APSP distance

matrix; if k = n, the DH heuristics together comprise the full APSP matrix, facing

similar drawbacks to that approach for building heuristics. The best way to arrange

k < n pivots is an open optimization problem, as noted by Sturtevant et al. [56]:

“More insights are also needed into the nature of these heuristics to

give guidance to an application developer as to which heuristic (and its

parameters) to choose for a given problem”.

A number of practically effective approaches have been proposed [25] to provide

such insight, but these approaches tend to lack a solid optimization interpretation.

This is a problem that we explore later in this thesis.3

2.1.5 Portal Heuristics

Another memory-based approach is that of portal heuristics (PHs). These resemble

canonical heuristics, but involve a domain-specific partitioning of the state space

into disjoint regions separated by transition bottlenecks [26]. The k states on the

borders between these regions are designated “portals”, and the true distances be-

tween all pairs of portal states are stored in memory. The idea is that if an agent

must pass between regions, it will necessarily cross a portal state, so an admissible

heuristic can be made from the precomputed distances between portals.
3For more detail on this, the reader is directed to Chapter 7.
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Portal Heuristics can do exceptionally well in domains that have significant bot-

tlenecks, but can do poorly, e.g., compared to DHs, when this is not the case. In

borderline cases, it might be important to know whether the competing set of DHs

is at or near-optimal, but without an optimization interpretation this is not possible.

2.1.6 Approximate Distance Oracles

The effective use of a mere subset of the true distances is also present in Thorup

& Zwick’s Approximate Distance Oracle (ADO) framework [57]. The first step

in building an ADO is to define a random hierarchical nesting of depth k over the

nodes in the graph. Then the distance between each node and the nearest node on

each nested level is stored in a hash table (accessible in time linear in k). Distance

queries between states are then answered by searching down the nested levels for a

node to which both states are closest. Once this node is found, its distances to the

query states are summed to give a bounded distance estimate.

It is worth emphasizing that Thorup & Zwick do not consider these values to

be search heuristics per se, and they cannot be guaranteed admissible. In practice,

ADOs tend to perform poorly when used as a search heuristic as compared to al-

ternatives (for instance, differential heuristics). But the technique is included here,

before we move on to statistical approaches to heuristic construction, to illustrate

the asymptotic possibilities of memory-based heuristics, and point to the potential

for formalzed approaches to be useful in generating and analyzing heuristics.

2.2 Statistical Approaches to Heuristic Construction

A radically different approach to heuristic construction is what we term the sta-

tistical approach.4 Rather than treat the entire search graph as a cohesive unit of

analysis (note this may not be possible if the graph is very large), these approaches

involve using training data from solved problem instances to infer some kind of a

function with which to describe the stochastic link between the states’ description

variables (“features”) and their heuristic values to a fixed goal state.

4Note: what we are calling the “statistical approach” in this chapter has also been referred to as
the “subsymbolic” approach to heuristics elsewhere in the literature [18].
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Table 2.2: Statistical models of the heuristic function.

Name Model Admiss. Training Method Reference
ALP Linear yesa Linear Programming [47]

Neural Heuristics ANN no Neural Backprop. [18]
Bootstrap + Neural ANN no Bootstrap Learning [1]

MMP Linearb noc Quadratic Programming [51]
a This approach is only admissible when it has been exposed to all states.
b It is possible to use the kernel trick to build nonlinear models for MMP.
c Although not a heuristic per se but a bias term (see text).

To provide a summary overview, the properties of each method described in

this section are shown in Table 2.2: the rows of this table index techniques, and the

columns list algorithm properties. The model heading indicates whether a linear

or nonlinear relationship between features and the heuristic is modelled, admiss.

refers to whether or not the algorithm produces admissible heuristics, and training

method indicates the specific procedure used to train the underlying model.

2.2.1 Approximate Linear Programming

Even simple linear models can give effective heuristics given an adequate set of fea-

tures to describe each state. One such method is Petrik & Zilberstein’s Approximate

Linear Programming (ALP) [47]. ALP capitalizes on the basic connection between

learning a value function for an MDP and learning a heuristic to a pre-specified goal

state. Heuristics are determined by linearly combining the vector of a given state

i’s features, xi, with a learned weight vector w:

h(i, goal) = w>xi ≈ δ(i, goal) (2.3)

Each state’s feature summary x can include domain-specific properties, including

traditional heuristics values as well as abstract state indicators. To determine the

vector w, ALP extends earlier work [49] on formulating the solution to a Markov

decision problem (MDP) as a convex and efficiently5 optimizable linear program.

Clearly, the engineering of good features plays an important role and, in this

case, both optimal and suboptimal solutions can be given as training data (with the

5To be solved “efficiently” in this case means solvable in asymptotically polynomial-time.
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former being used to help bias the model toward admissibility). Petrik & Zilberstein

provide approximation bounds on the largest possible heuristic error and, unusually

for a statistical method, show that it can also produce admissible and consistent

search heuristics, albeit under the restrictive condition that it has seen every state’s

cost to the goal state before learning the model.

2.2.2 Neural Backpropagation

More flexible, nonlinear models of the heuristic have also proven effective in ren-

dering heuristic search more efficient. However, to be useful in reducing the com-

putational effort required to complete a search, determining the model output needs

to be inexpensive. This can preclude some nonlinear approaches, like kernel meth-

ods, due to the cost of recombining the training data.6 Perhaps as a result, research

so far has mostly focused on neural networks, which can be difficult to train but

quick to answer queries. One such approach by Ernandes & Gori is to use a multi-

layer articial neural network (ANN), equipped with a loss function skewed to bias

the learner toward admissibility [18]. This yields so-called “Neural Heuristics”.

The typical optimization approach is neural backpropagation, where, for a given

training example, the network’s output is propagated backward through the network

to determine gradients along which to modify the network’s weights. Once again,

good feature engineering plays an important role, as does the user’s ability to have

enough data to train the network with so that it can generate good, general search

heuristics. However, the objective space of most complex neural networks are typ-

ically and infamously nonconvex; moreover, determining a good topology for the

network can also be extremely challenging. Nevertheless, careful training methods

(of which there are many) can often help to reduce the effects of local minima.

2.2.3 Bootstrap Learning

One obstacle to training the preceding statistical heuristics, at least on large prob-

lems, is the data acquisition problem. These models require training data contain-

ing numerous examples of (possibly large) solved problem instances. But such

6See, for example, De Bie et al. [14] for an accessible overview detailing kernel methods.
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instances may not be available a priori: a powerful heuristic may in fact be needed

to generate such examples. This leads to some circular argumentation: if one can

obtain these examples, why is there a need to learn such a heuristic in the first place?

Toward addressing this data acquisition problem, recent work by Arfaee et al.

shows that even a weak starting heuristic can be parlayed into a more formidable

one through a novel training procedure [1]. This “bootstrap” learning of heuristic

functions was successfully used to train Ernandes & Gori’s aforementioned Neural

Heuristics into being able to solve nontrivial problem instances. But this method

is general enough to be applied to other statistical models of the heuristic function,

and it is a distinct possibility that this approach will see wider adoption in the future.

2.2.4 Large Margin Prediction

Another linear method applicable to efficient heuristic search is Ratliff et al.’s Max-

imum Margin Planning (MMP) [51]. Unlike the preceding approaches, MMP is

uniquely motivated by the problem of imitative pathfinding: the search algorithm’s

goal is to create a path that is most similar to a path or set of paths given by a domain

expert, in terms of the features of the states visited (for instance, risk-avoidance be-

havior). A naive, ad hoc approach to solving such problems would be to generate

many (optimal and suboptimal) paths to the goal state, and to select among them

the one that most resembles the expert path(s). The more efficient solution used by

MMP is to learn bias terms that can be added to the heuristic to coax the solver into

reproducing the expert-demonstrated behavior. Note that while the bias term is not

a heuristic heuristic per se, and can lead to a loss of admissibility and consistency,

we include this example as another instance in which the optimization of a linear

model can help make search more efficient.

The specific optimization approach MMP uses falls into a category of (struc-

tured) large-margin prediction methods. It uses the same loss framework as support

vector machines [12], a popular and highly effective approach to classification. The

objective space is correspondingly convex, and therefore globally optimal solutions

are efficiently obtainable; moreover, its quadratic programming solution is rendered

unnecessary by an efficient subgradient descent.
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2.3 Summary

Common among the “memory-based” approaches is their use of memory to store

distance information between a subset (or abstraction) of the state-space, their treat-

ment of the entire search graph as the fundamental unit of analysis, and their use of

geometric arguments to derive distance estimates between any pair of states. Unfor-

tunately, these methods tend to lack a true optimization interpretation. Asymptotic

bounds on what might be achieved by using memory [57] and ad-hoc selection

strategies [25] do exist in certain cases, but in general this means that there is no

quantifiable way (in terms of a formalized objective) to describe what the resulting

heuristics are striving to accomplish. The lack of an optimization interpretation can

also make it difficult to describe their failure modes. That is, if a heuristic is failing,

it is beneficial to know whether this is because the approach is flawed, or because

there is room for improvement with respect to some objective function.

Meanwhile, the “statistical” approaches share a common core of optimization:

each has a clearly defined scalar objective. Unfortunately, this optimization is not

performed on any explicit representation of the search graph, and relies heavily on

the existence of good training data. Because the models can be built from just a

sample of solved problem instances, all of these approaches have the advantage

that they require that only a “relevant” subgraph be generated before a heuristic can

be learned.7 But this is also a weakness: it is unclear what defines such a relevant

subgraph, and without good training data, the resulting model cannot be expected to

be very good (although this is somewhat ameliorated by the bootstrapping approach

described in Section 2.2.3). Moreover, with only partial knowledge of the search

graph, there is a trend among these methods to sacrifice the key properties of ad-

missibility and consistency. Indeed, admissibility and consistency are infrequently

discussed in the supervised learning literature, where these approaches draw from.

Some modest guarantees do exist, for example by appealing to “overestimation

frequency” in restricted domains [18]; and, despite the absence of such bounds,

heuristics of this type have been successful in driving search to affordable solutions

7Interestingly, this also happens to also be one of the oft-cited benefits of tree search [45]: that
is, that only a relevant subgraph needs to be generated to determine a solution.
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on combinatorial puzzles. But they come nowhere near the solid admissibility and

consistency guarantees common to the memory-based approaches of Section 2.1.

But there are clear benefits to both the memory-based methods and the statistical

methods. One question we will explore in this thesis is whether we can find success

in building approaches that combine elements of both.
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Chapter 3

Euclidean Heuristic Optimization
via Semidefinite Programming

This chapter introduces Euclidean Heuristics alongside a tractable, globally solv-

able optimization problem for finding the best such heuristics via semidefinite pro-

gramming, and is is based on work published in 2011 [52]. Our approach turns out

to correspond to a recently proposed method for dimensionality reduction and, as a

result, the ideas described in this chapter have impacted the literature by exposing

a key connection between the AI subfields of search and machine learning.

3.1 Motivation

The preceding chapter divided existing heuristic building methods into two cate-

gories: the memory-based approaches easily achieved admissibility and consistency

but lacked optimality criteria, while the statistical approaches achieved optimality

according to some explicit objective but used implicit search graph representations

that rendered admissibility and consistency elusive, to say the least. Motivated by

the apparent gap between the two, this chapter investigates a new approach that

Representation/data structure Points in Rd (Y ∈ Rn×d)
Heuristic lookup h(i, j) = ‖yi − yj‖2

Optimization method(s) Semidefinite programming, the SVD
Solution optimality Global+

+ Followed by dimensionality reduction using PCA.

Table 3.1: Key characteristics of the Euclidean Heuristic framework.
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capitalizes on the strengths of both memory-based and statistical approaches.

First, the search graph will be represented as a malleable configuration of points

in a Euclidean space. Like many prior memory-based approaches, the distance be-

tween points in this space will be used to represent the heuristic values. Unlike

prior approaches, this space will also be specifically multidimensional. This ex-

plicit representation of the search graph enables the approach to inherit many of the

benefits of the memory-based approaches, including easy proofs of admissibility

and consistency under simplified assumptions.

Next, we borrow from the statistical approaches and pose the best way to situate

these points relative to one-another as an optimization problem. This formalism

will reveal an exact correspondence to a recently proposed method for manifold

learning in the field of dimensionality reduction [60], yielding empirical results

with competitive or even significantly-improved search performance compared to

the popular and effective differential heuristics [56]. Later in Chapter 4, we will

also see that the proposed technique actually generalizes and can be used to improve

differential heuristics. construction.

3.2 Euclidean Heuristics

We begin with a formal description of Euclidean Heuristics.

Definition 3.2.1 (Euclidean Heuristic). A Euclidean Heuristic is a heuristic func-

tion whose values are given as distances between points in a Euclidean space of d

dimensions. In particular, each state i in a search graph of size n is represented as a

vector yi ∈ Rd, and the heuristic value between two states is

h(i, j) = ‖yi − yj‖2 =

√∑
k

(
y
(k)
i − y

(k)
j

)2
, (3.1)

where y(k)i denotes the kth entry in the vector yi.
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For convenience, define Y as an n by d matrix whose rows are these vectors:

Y =


y>1
y>2
...
y>n

 =


y
(1)
1 y

(2)
1 . . . y

(d)
1

y
(1)
2 y

(2)
2 . . . y

(d)
2

...
... . . . ...

y
(1)
n y

(2)
n . . . y

(d)
n

 (3.2)

Y therefore determines Euclidean distances between all pairs of states, and so en-

codes heuristic values between all pairs of states as defined on line 3.1.

The problem then is to determine a (preferably low-dimensional – i.e., where

d is small) configuration Y that best expresses the shortest path distances between

each state represented. We will consider an optimization formulation for achieving

this, and through a series of algebraic manipulations will show how to write this

objective in a way that reveals it to be efficiently solvable.

3.3 Optimization Problem

By manipulating the location of the points in Y, we propose to construct a consis-

tent and admissible Euclidean heuristic as the solution to an optimization problem:

minimize
Y

L(Y) (3.3)

subject to Y is admissible and consistent.

where L is a loss function, measuring the error in the heuristic values in Y com-

pared to the true shortest path distances. This problem can be thought of as looking

among all admissible and consistent Euclidean heuristics, as encoded by Y, for the

one with lowest error under L. Such a Y is called an optimal Euclidean heuristic,

and the constraints and objective defining (3.3) will be examined in turn.

3.3.1 Constraints

The constraints on the admissibility and the consistency of the heuristic encoded by

Y are respectively formalized with the following:

∀ i, j ‖yi − yj‖ ≤ δ(i, j) admissibility (3.4)

∀ i, j, k ‖yi − yj‖ ≤ δ(i, k) + ‖yj − yk‖ consistency (3.5)
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Here, δ(i, j) is the true shortest path distance between i and j. These constraints

apply to all combinations of states in the search space, however we can drastically

simplify them by observing that satisfying a subset of them implies satisfying all of

them. On the way to showing this, an important supporting lemma is given.1

Lemma 3.1 (consistency under the triangle inequality). Let G = (V,E) be a di-

rected or undirected search graph and let h : V × V → R be any scalar function

over pairs of G’s vertices that obeys the triangle inequality:

∀ i, j, k h(i, j) + h(j, k) ≥ h(i, k) (3.6)

h gives admissible and consistent heuristics if and only if it is locally admissible:

∀(i, j) ∈ E h(i, j) ≤ δ(i, j) (3.7)

Proof. The reverse implication is trivially true as local admissibility conditions are

a subset of global admissibility conditions. The forward implication involves repeat

application of the triangle inequality. For states i, j, k, let p1, p2, ..., p` be states on

a shortest path from i to j with (pq, pq+1) ∈ E:

h(i, j) = h(p1, p`) ≤
`−1∑
q=1

h(pq, pq+1) (3.8)

≤
`−1∑
q=1

δ(pq, pq+1) = δ(i, j) (3.9)

Line 3.8 uses (repeated) application of the triangle inequality on h, and line 3.9

applies the local admissibility condition. Therefore local admissibility on h implies

global admissibility. Global consistency follows as a consequence of admissibility:

h(i, j) ≤ h(i, k) + h(j, k) (3.10)

≤ δ(i, k) + h(j, k) (3.11)

Line 3.10 is again the triangle inequality, and line 3.11 uses the global admissibility

condition proved on lines 3.8–3.9, proving the admissibility and consistency of h.

1A similar result of Passino and Antsaklis [43] applies specifically to metric space heuristics.
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Lemma 3.1 is very broadly applicable due to the ubiquity of the triangle in-

equality, which arises in metric spaces as well as a variety of other spaces that might

relax the axiomatic foundations of metrics (i.e., discernibility, symmetry, and non-

negativity). Furthermore, with this result in place, we can now return our attention

to simplifying the constraints on lines 5.4 and 5.5.

Theorem 3.1. The Euclidean heuristic Y is admissible and consistent if and only if

it is locally admissible (i.e., distances between neighbors are non-overestimating).

Proof. A Euclidean space is a trivial example of a space satisfying the triangle

inequality. It follows immediately from Lemma 3.1 that a Euclidean heuristic Y is

admissible and consistent if and only if it is locally admissible.

Consequently, when solving the optimization problem on line 3.3, it is only nec-

essary to require constraints on the local admissibility of Y. This requires just one

constraint per edge in the search graph, which greatly simplifies the optimization.

3.3.2 Objective

The loss function L combines the errors between the heuristic distances and the

true distances into a single scalar value. It specifies the relative importance of the

heuristic between each pair of states, and a trade-off between many small errors

versus a single large error. This chapter studies the following loss on Y:

L(Y) =
∑
i,j

Wij

∣∣δ(i, j)2 − ‖yi − yj‖2
∣∣ (3.12)

Each entry Wij in the weight matrix W specifies the importance of the heuristic

between two states. For example, if it is important that the heuristic value between

two states be accurate, the corresponding entries in W can be set to large values.2

The squaring of terms emphasizes heuristic errors on longer paths over the same

magnitude errors on shorter paths – which can often be desirable – and proves to be

computationally convenient, since it induces a convex objective function.

2Note that any asymmetric entries in W will simply end up being symmetrized by averaging.
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Figure 3.1: Curves showing how the error in a Euclidean heuristic between two

states interacts with loss. The heuristic is a Euclidean distance and cannot be less

than 0; the admissibility condition guarantees no negative loss can be incurred.

Examples. Some examples of the loss interacting with the errors in the heuristic

are sketched in Figure 3.1. If the true distance between a pair of states is 2, then

the loss follows the bottom curve; if the true distance is 4, the top curve. Note the

differences in magnitude: a heuristic value of 3 when the true distance is 4 will be

penalized by a significantly larger amount than a heuristic distance of 1 when the

true distance is 2, even though the absolute magnitude of the errors is the same.

This phenomenon is indicated by the dotted lines in Figure 3.1.

Simplification. In the context of the optimization problem (3.3), this loss can be

greatly simplified. Since Y must be admissible, the squared true distance must be

at least as great as the squared heuristic and it is therefore unnecessary to take the

absolute value. This enables the loss to be broken up as follows:

L(Y) =
∑
i,j

Wij

(
δ(i, j)

2 − ‖yi − yj‖2
)

(3.13)

=
∑
i,j

Wij δ(i, j)
2 −

∑
i,j

Wij‖yi − yj‖2 (3.14)

Since the first term of Equation 3.14 does not depend on Y, minimizing L(Y) is

equivalent to maximizing the weighted sum of squared distances between the points
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in Y. Altogether, we arrive at a specific optimization problem:

maximize
Y

∑
i,j

Wij ‖yi − yj‖2 (3.15)

subject to ∀(i, j) ∈ E ‖yi − yj‖ ≤ δ(i, j).

(Note that the dimensionality d of the Euclidean heuristic has not yet been specified.

Such a dimensionality constraint will be imposed in Section 3.4.2.)

3.4 Optimization Approach

The objective function (3.15) is not convex and so, unfortunately, it is not easy to

solve for Y efficiently. However, a change of variables allows the optimization

to be rewritten in terms of a kernel matrix, which results in a convex objective.

This section goes into the technical detail of how to accomplish this, however the

reformulated optimization is identical to the one above, and although necessary to

make the problem tractable, it adds little to the understanding of the problem.

3.4.1 Semidefinite Formulation

Let K = YY> be the matrix of inner products between the vector representations

of the states, so that entryKij = yi·yj = y>i yj . Note the squared distances between

points can be directly expressed in terms of the entries of this kernel matrix:

‖yi − yj‖2 = (yi − yj)
>(yi − yj) (3.16)

= y>i yi − 2y>i yj + y>j yj (3.17)

= Kii − 2Kij +Kjj (3.18)

Now, because the optimization on line 3.15 only refers to Y using the distances

between points (i.e., ‖yi− yj‖), the objective and constraints can both be rewritten

entirely in terms of this kernel matrix K:

maximize
K

∑
i,j

Wij(Kii − 2Kij +Kjj) (3.19)

subject to ∀(i, j) ∈ E, Kii − 2Kij +Kjj ≤ δ(i, j)
2,

K � 0.
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Here, since both sides of the inequality in each local admissibility constraint are

positive, an equivalent constraint has instead been imposed on the squared distances

(heuristic and true). Also note a positive semidefinite constraint K � 0 was added.

This importantly ensures that there exists some Y such that K = YY>, or in other

words that K represents inner products in some Euclidean space.

Lastly, since the optimization as stated is indifferent to translations of the points

in Y, a unique solution is forced (up to rotation) by adding a “centering” constraint.

This constraint is defined as
∑

i,jWijKij = 0 (or equivalently Tr(WK) = 0) which

also serves to further simplify the objective (3.19) by zeroing the cross term. Letting

∆W be a diagonal matrix with the sums of the rows of W on the diagonal, we arrive

at the following optimization problem:

maximize
K

Tr(K∆W) (3.20)

subject to ∀(i, j) ∈ E, Kii − 2Kij +Kjj ≤ δ(i, j)
2 local admissibility

Tr(WK) = 0 “centering”

K � 0 positive semidefinite

This rewritten optimization involves a linear objective and linear constraints, plus a

non-linear, but convex, semidefinite constraint. Such semidefinite programs can be

solved using a standard toolbox solver such as SDPT3 [58].

3.4.2 Recovering a d-dimensional Embedding

The optimization on line 3.20 produces a kernel matrix K, but we want the Eu-

clidean vectors in Y. This entails kernel principal component analysis, which in-

volves centering the kernel to get K′ = (I − 1
n
11>)K(I − 1

n
11>) then taking the

singular value decomposition (SVD) of K′:

YY> = K′ = UVU>, (3.21)
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Note the SVD is a fundamental matrix operation [27] and is available in many

numerical computing libraries. Subsequently we can determine Y as follows:

YY> = U
√
V
√
VU> (3.22)

= U
√
V
√
V>U> (3.23)

= U
√
V(U

√
V)> (3.24)

Y = U
√
V (3.25)

Line 3.23 uses the fact that V is diagonal, implying V = V>. The resulting eigen-

vectors U, scaled by their real-valued eigenvalues
√
V, correspond to the columns

of Y (3.25), thereby recovering the underlying Euclidean embedding.

The number of non-zero entries in V may be prohibitively large (n in the worst

case) but the optimization tends to keep this number small, as we will discuss in

the next section. Under precise memory constraints, a reasonable way to create a

representation with d values per state is to choose the d eigenvectors with the largest

associated eigenvalues (the top principal components). This is because eigenvec-

tors with small associated eigenvalues have small effects on the resulting heuristic

estimates, so less is lost by ignoring them.3

3.4.3 Maximum Variance Unfolding

This exact optimization problem is not new. It is a weighted generalization of Max-

imum Variance Unfolding (MVU) [60], which was originally introduced for non-

linear dimensionality reduction. True to its name, MVU has a nice visual interpre-

tation. Imagine neighboring states in the search graph being connected by rods. A

rod can pass through other rods, it can be compressed, or it can grow to a length no

greater than the edge cost. Once these rods are all in place, the structure is pulled

apart as far as the rods allow. The result is an embedding of points in Euclidean

space whose squared pairwise distances are maximized, thus maximizing the vari-

ance. The observation that maximizing variance often results in low-dimensional

embeddings (i.e., small d) corresponds to its proposed use in dimensionality reduc-

3This resulting d-dimensional heuristic is a linear projection of the high-dimensional source
heuristic to a lower-dimensional principal subspace.
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tion. As noted, this is a fortunate side-effect for our application. While MVU has

been applied in a number of dimensionality reduction applications, such as visual-

ization [60], sensor networks [61], and mapping [7], its connection to identifying

admissible and consistent heuristics in search had not been observed previously.

3.5 Analysis

Heuristic admissibility and consistency are vital to the guaranteed solution optimal-

ity of many search algorithms, like A* [28], IDA* [33] and their derivatives. Here

we prove these hold for the optimal Euclidean heuristics defined according to the

complete procedure described in the previous section, including the dimensionality

reduction step of Section 3.4.2. We then consider the complexity of the proposed

optimization, and cite some recent efforts to scale it.

3.5.1 Admissibility and Consistency

While the optimization is constrained to produce admissible and consistent heuris-

tics, the complete procedure took a subset of d principal components. We show this

reduction in dimensionality preserves admissibility and consistency.

Theorem 3.2. If Y is defined as the first d principal components of K then Y is

admissible and consistent.

Proof. According to Lemma 3.1, we only need to show that Y is locally admissible.

Let Ỹ contain all n principal components of K – as a result, K = ỸỸ>. Moreover,

since Y is the first d principal components, we can represent Ỹ as [Y Y′] for some

Y′ which contains the remaining principal components:

h(i, j)2 = ‖yi − yj‖2 = (yi − yj)
>(yi − yj) (3.26)

≤ (yi − yj)
>(yi − yj) + (y′i − y′j)

>(y′i − y′j) (3.27)

= (ỹi − ỹj)
>(ỹi − ỹj) (3.28)

= Kii − 2Kij +Kjj (3.29)

Line 3.27 holds since the dot-product of real-valued vectors is always non-negative

in value. Meanwhile, the constraints on K on line 3.20 guarantee for (i, j) ∈ E
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that Kii − 2Kij + Kjj ≤ δ(i, j)2. Thus, for any (i, j) ∈ E we have that h(i, j)2 ≤

δ(i, j)2, so h(i, j) ≤ δ(i, j) since both are non-negative.

3.5.2 Complexity of Optimization

The semidefinite program (3.20) scales linearly with the number of points, but has

a time complexity in O(N3), where N is the number of constraints, and space

complexity in O(n2) to store instantiations of the kernel matrix K ∈ Rn×n, where

n is the number of states. Recall that in our formulation one constraint is required

per edge in the search graph. In practical terms, performing the optimization on a

search graph with thousands of states with octile connectivity requires several hours

of computation, and therefore limits its broader applicability.

Note however the introduction of Euclidean heuristics has since led to attempts

to scale the underlying optimization to larger problems [11], rendering the approach

applicable to planning [10] and certain goal-oriented pathfinding problems [38].

3.6 Evaluation

In this evaluation of optimal Euclidean heuristics, we consider three experimental

domains exhibiting different dimensionality. The performance metrics are a) an

average count of the number of nodes the A* search algorithm [28] expands, buck-

eted by solution length, and b) the total CPU runtime required by A* to complete all

problems, including reconstructing the action sequence. Note that drastically more

computation is needed for longer paths than shorter ones (even though longer paths

tend to be less common) and so performance on long paths is a key detail here.

3.6.1 Cube World

The Cube World is a synthetic domain, generalizing the octile grid-world to three

dimensions. A perfect heuristic for this domain is obvious by its construction, but

for purposes of demonstration we examine building heuristics from scratch. The

specific graph considered is a large cube whose sides measure 20 units each, subdi-

vided into 8,000 unit cubes that can be transitioned between if they share a vertex, as
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Figure 3.2: Illustration of pairwise connections in the Cube World.

illustrated by the subgraph in Figure 3.2. The edge costs are the distances between

the cube centers. The embedding from a uniformly weighted optimal Euclidean

heuristic is simply the positions of the centers of the unit cubes, occupying three

dimensions (Euc-3). Meanwhile, two alternative heuristics are considered as base-

lines for comparison. The first is a set of differential heuristics with four pivots in

the four corner states on the bottom half of the large cube (CDH-4). The second is

a set of differential heuristics with four pivots chosen using the Farthest selection

algorithm [24] to situate the pivots (FDH-4) in a complementary fashion: the first

pivot is placed in a state farthest from a random seed state, and each subsequent

pivot is placed in a state most distant from the previous pivots.

The node expansions and runtime performance of these heuristics are compared

together in Figure 3.3, with Figure 3.3a additionally showing the distribution of

problems of different lengths. This search space is intrinsically multidimensional,

and a heuristic based on the three-dimensional embedding significantly, although

not surprisingly, outperforms the heuristics from the combined one-dimensional

embeddings (i.e., differential heuristics) – all in fewer dimensions.

3.6.2 Word Search

The Word Search domain is a unit-cost state space of four-letter words taken from

a computer dictionary. The goal is to change a start word into a goal word by

changing one letter at a time. For example, there is an edge between the words

‘corn’ and ‘cord’, but no edge between the words ‘cord’ and ‘worm’, as illustrated

in Figure 3.4. The largest connected subgraph of these words is used to define a

search graph which has 54,752 edges spanning 4,820 states.
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(a) A* average node expansions.

(b) A* total CPU runtimes.

Figure 3.3: Cube World results comparing differential heuristics with the pivots

placed in the four corners (CDH-4), differential heuristics with the pivots placed

using the Farthest algorithm (FDH-4), and the optimal Euclidean heuristic in 3 di-

mensions (Euc-3). Figure 3.3a shows the average node expansions bucketed by so-

lution length, and indicates the distribution of problems of different lengths with the

shaded area. Figure 3.3b shows the runtime totals required by each of the heuristics.
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ward worm

. . . lard word corn . . .

lord cord

Figure 1: Kalman filter system model

This is the system model of the (linear) Kalman filter. At each time step
the state vector xk is propagated to the new state estimation xk+1 by multi-
plication with the constant state transition matrix A. The state vector xk+1
is additionally influenced by the control input vector uk+1 multiplied by the
input matrix B, and the system noise vector wk+1. The system state cannot
be measured directly. The measurement vector zk consists of the information
contained within the state vector xk multiplied by the measurement matrix H,
and the additional measurement noise vk.

1

Figure 3.4: Illustrative sketch of a subgraph of the Word Search domain.

A Euclidean heuristic is determined under a uniform weight matrix (with the

first three dimensions of this embedding shown in Figure 3.6) and we evaluate its

6 and 18 dimensional variations. Note since the transitions are all of unit cost, the

ceiling of any fractional Euclidean heuristic value can be taken (denoted EucC-6

and EucC-18), which retains admissibility and consistency. To quantify the effect

this has, we also evaluate the heuristic while rounding (up or down) to the nearest

integer, also admissible and consistent (denoted EucR-6 and EucR-18). As a base-

line for comparison, the Farthest algorithm is used to situate pivots for differential

heuristics in sets of 6 and 18 (denoted FDH-6 and FDH-18).

The results in Figure 3.5 show that, across the vast majority of paths, the mul-

tidimensional Euclidean heuristic offers a substantial improvement over both com-

bined sets of differential heuristics. Moreover, the EucC heuristics show a pro-

nounced advantage over the EucR heuristics, both in terms of node expansions and

runtime. Differential heuristics do tend to excel on the longest problems, but this is

common when using the Farthest algorithm. Here, for example, over half of these

longest problems (of which there are roughly 180) start or end on the state for the

word ‘upas’, which is often chosen as a pivot point.

3.6.3 Pathfinding

A final evaluation looks at a grid-based map from BioWare’s 2009 Dragon Age:

Origins with 5,129 states. Cardinal transitions between adjacent open cells are de-

fined as having unit cost, while diagonals cost 1.5, but the agent cannot cut corners

(move diagonally between cells which are not in a 4-clique).
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(a) A* average node expansions.

(b) A* total runtimes.

Figure 3.5: Word Search results for A* across 10,000 random problems comparing

sets of 6 and 18 differential heuristics placed using the farthest algorithm (FDH)

to Euclidean heuristics in 6 and 18 dimensions. Euclidean heuristics are used both

with and without the ceiling operator (EucR and EucC respectively). Figure 3.5a

shows average node expansions and an indication of the distribution of the problems

of each length, and Figure 3.5b shows the total runtimes.
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Figure 3.6: Embedding showing the top (in terms of total variance) 3 dimensions
of the optimal Euclidean heuristic for the Word Search domain. Subsequent dimen-
sions continue to show significant variance.

The multidimensional Euclidean heuristic for this domain is determined under

a uniform weight matrix yielding an embedding as shown in Figure 3.7b, and is

mapped to 1 and 3 dimensions. Since the distance between any two states must

be some multiple of 0.5, any fractional Euclidean heuristic can be rounded up to

the nearest full half. Competing sets of differential heuristics in sets of 1 and 3 are

situated using the Farthest algorithm. Note that grid-world domains come equipped

with a default octile heuristic – the distance between points in the original layout

(Figure 3.7a) assuming no obstacles. This heuristic is combined with each of the

preceding by taking the maximum, and is also evaluated on its own.

Results on a standard set of 530 benchmark problems are tallied in Figure 3.8.

It turns out that ORZ200D, like most Dragon Age maps, has low intrinsic dimen-

sionality, featuring one long (albeit curved) central “corridor.” As most paths only

require good heuristics between the states in this corridor, a good one-dimensional

heuristic suffices to capture the most crucial pairwise distances. In this case, the Eu-

clidean heuristic in one dimension (Euc-1) achieves significant gains over a single

differential heuristic (FDH-1), both in terms of node expansions and runtime.

Unfortunately, the Euclidean heuristic in 3 dimensions (Euc-3) gives negligi-

ble gains over Euc-1; both of these optimal Euclidean heuristics are marginally
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(a) Original graph layout for ORZ200D.

(b) Euclidean heuristic, first two dimensions.

Figure 3.7: Dragon Age: Origins’ ORZ200D, default (i.e., original) and optimal
Euclidean layouts, with colors showing the corresponding regions in each figure.
Note the scale of the y axis in Figure 3.7b is magnified to show detail.

36



(a) A* average node expansions.

(b) A* total runtimes.

Figure 3.8: A* pathfinding results for standard benchmark problems in Dragon
Age’s ORZ200D. We compare the default (Octile) heuristic to sets of 1 and 3 dif-

ferential heuristics (FDH) and Euclidean heuristics (DH) in 1 and 3 dimensions.

Figure 3.8a shows average node expansions as well as the distribution of the differ-

ent problem lengths, and Figure 3.8b shows runtime totals for each heuristic.
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outperformed by a set of 3 differential heuristics (FDH-3). This is because the

associated embedding essentially has only one descriptive dimension, as shown in

Figure 3.7b, corresponding to the aforementioned corridor. Storage of the less de-

scriptive dimensions is wasteful compared to storing another differential heuristic.

Since Euc-3 took hours to compute (as compared to miliseconds for FDH-3), this

is an area that invites targeted improvements in the next chapter.

3.7 Summary

This chapter presented a novel approach to constructing admissible and consistent

heuristics as the solution to a constrained optimization problem – one that has al-

ready been studied in the field of dimensionality reduction. Since the optimization

provides information about the fundamental dimensionality of a search space, it

shed new light on the nature of heuristic construction. In particular, it was observed

that search graphs with higher intrinsic dimensionality (such as 2, 3, or more dimen-

sions) tend to achieve poor coverage with a low number of differential heuristics

using a standard placement algorithm, but we found good multidimensional heuris-

tics with our approach. Conversely, graphs with a low fundamental dimensionality

are particularly suited to low-dimensional heuristics.

The observed connection between heuristic search and dimensionality reduc-

tion appears highly profitable. Agent-specific transition restrictions (spatial, legal,

bureaucratic) which can globally alter the flow of feasible and optimal paths are

accommodated by local constraints. Even problems with intuitively challenging

topologies – such as a difficult to visualize state space, variable transition costs, or

teleportation – pose no added challenge to the design of the semidefinite program

we described. Heuristic construction is a natural application for manifold learn-

ing techniques and optimization methods, and the ensuing chapters will continue to

explore their intersection.

38



Chapter 4

Enhanced Differential Heuristics
via Semidefinite Programming

This chapter extends the ideas in the preceding chapter, placing the popular and

successful approach of differential heuristics (also known as Lipschitz embeddings)

under the lens of optimization. We will explore in detail a specific result published

in 2011 [52], and in doing so will reveal a new way to view differential heuristics,

as well as a preliminary approach for defining an enhanced differential heuristic.

4.1 Motivation

The empirical comparisons of Chapter 3 showed Euclidean heuristics can outper-

form differential heuristics, but those experiments were most successful on inher-

ently multidimensional domains – to which Euclidean heuristics are well suited.

In some domains, a multidimensional Euclidean heuristic will fare worse than

a carefully chosen set of differential heuristics. Section 3.6.3 showed just such

an instance, where 3 differential heuristics together gave better heuristics than a

monolithic 3-dimensional Euclidean heuristic for grid-based pathfinding. In par-

Data structure/representation Points on the line (y ∈ Rn)
Heuristic lookup function h(i, j) = |yi − yj|

Optimization method(s) Semidefinite programming and the SVD
Solution optimality Global+

+ Followed by dimensionality reduction using PCA.

Table 4.1: Key characteristics of Enhanced Differential Heuristics.
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ticular, the Euclidean heuristics stretched and flattened the map along its central

corridor – an effect that can be linked to MVU’s aggressive dimensionality reduc-

tion tendencies [60] – while the remaining 2 dimensions were merely wasted space.

The differential heuristics captured distance information that the Euclidean heuris-

tic was forced to sacrifice, thereby achieving better search performance.

This inspires an attempt to somehow combine those two approaches, and so

this chapter sets out to “reverse engineer” differential heuristics by reinterpreting

them as an optimal configuration of points under a well-defined objective. The

analysis yields a counterintuitive result, but facilitates the design of a new enhanced

differential heuristic that can be built using the semidefinite program of Chapter 3

(c.f. Table 4.1). An empirical evaluation on the standard pathfinding benchmarks

of over 50 maps from BioWare’s 2009 Dragon Age: Origins shows that this new

approach to building heuristics can outperform its unoptimized counterpart.

4.2 Differential Heuristics

Recall that a differential heuristic consists of the cached distances δ(i, p) from all

states i in a search space to a pivot state p. An admissible heuristic between any

states i and j is the difference between their distances to p:

h(i, j) ≡ |δ(i, p)− δ(j, p)| (4.1)

Differential heuristics are an effective and popular class of memory-based heuris-

tics, and are typically described as an application of the triangle inequality to cached

search data, which simplifies proofs of admissibility and consistency. But they can

also be viewed as a one-dimensional graph embedding y. Let y be a n-vector with

the ith entry yi defined as δ(i, p). Then the heuristic lookup (4.1) can be written:

h(i, j) ≡ |yi − yj| (4.2)

i.e., y is defined as having the pivot point yp at the origin, and every other state

on the same side of the same axis at its true shortest path distance from the pivot.

Pursuant to this interpretation, this chapter proves differential heuristics are in fact

optimal Euclidean heuristics under a carefully chosen weight matrix Wdiff. They

are therefore a special case of the optimization framework presented in Chapter 3.
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4.3 Optimization Interpretation

Differential heuristic are conventionally built using Dijkstra’s algorithm [17] to

compute and store the true shortest path distance from the pivot to every other state,

or a breadth first search when the transition costs are uniform. But what is the

specific optimization problem being solved?

4.3.1 Visual Interpretation

One way to view differential heuristics is as if every point yi being moved “away”

from the pivot until it is at its true distance to the pivot. This is accurate, but incom-

plete: it must also be true of Y that all of the points lie on the same straight line

(and therefore occupy a single dimension) and moreover that all of the points lie on

the same side of the pivot (and as such they are not distributed to either side of the

pivot). The visual interpretation of this phenomena is that the search graph is being

“folded” at the pivot to occupy one dimension (Figure 4.1).

Differential heuristics therefore appear to be the result of a combination of two

forces. The first force pushes all of the points as far as possible away from the pivot,

and the second force draws all of the non-pivot points toward each other. Corre-

spondingly, an optimizer trying to emulate a differential heuristic should maximize

the distances between the pivot and the other states but also somehow – and with

less emphasis – minimize the pairwise distances between the non-pivot states. The

next section will go into formalizing these intuitive notions.
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Figure 4.1: A differential heuristic can be thought of as “folding” the search graph
onto the line, yielding the rightmost configuration of points on a line.
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4.3.2 Objective

Let Y specify a multidimensional Euclidean heuristic, E the set of edges in a given

search graph, and W a weight matrix. Recall the optimization of Chapter 3:

maximize
Y

∑
i,j

Wij ‖yi − yj‖2 (4.3)

subject to ∀(i, j) ∈ E ‖yi − yj‖ ≤ δ(i, j),

where Y is a d by n matrix of real values, as defined in Section 3.2.

The claim is that a differential heuristic will arise when this optimization is

parametrized by a special weight matrix Wdiff, with zeros on the diagonal, ones

on the non-diagonal entries of the pivot’s row and column (thereby rewarding the

optimizer for maximizing ‖yi − yp‖, where p is the pivot) and negative values of
−1
n−1 elsewhere (thereby rewarding the optimizer for minimizing ‖yi − yj‖ for all

i 6= p, j 6= p). If index 1 refers to the pivot, then this matrix appears as follows:

Wdiff =



0 1 1 1 · · · 1
1 0 −1

n−1
−1
n−1

· · · −1
n−1

1 −1
n−1

0 −1
n−1

· · · −1
n−1

1 −1
n−1

−1
n−1

0
. . . −1

n−1

...
...

... . . . . . . −1
n−1

1 −1
n−1

−1
n−1

−1
n−1

−1
n−1

0


(4.4)

The next section proves that solving the optimization (4.3) with Wdiff will yield

a differential heuristic up to translation and rotation. The reader can also safely

advance to Section 4.5, which suggests a simple enhancement to Wdiff.

4.4 Equivalence to Differential Heuristics

In this section, we will prove an equivalence between differential heuristics (for a

given pivot state) and the optimal Euclidean heuristic of Chapter 3. First, without

loss of generality, assume the state index 1 always refers to the pivot state.

Theorem 4.1. Any solution Y to the optimization problem (4.3) with weight matrix

Wdiff (4.4) is collinear (one-dimensional) with the following heuristic values:

h(i, j) = |yi − yj| = |δ(i, 1)− δ(j, 1)| (4.5)
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i.e., Y meets the definition of a differential heuristic (4.1).

The proof of Theorem 4.1 is broken up in the following sections. As a summary

overview, the trivial border case of zero-weighted search graphs is first dismissed.

Next, if y is not collinear (i.e., “rank 1” or one-dimensional up to rotation) then an

alternative embedding can be found that strictly improves the objective. Finally, for

any one-dimensional y, unless yi = δ(i, 1) the objective can be improved.

4.4.1 Trivial Case

Theorem 4.1 is immediate if ∀i, j δ(i, j) = 0; here the only feasible solution to

the optimization (4.3) is y = 0, and the differential heuristic and optimal Euclidean

heuristic (which is of rank 0 in this particular case) are the same.

All other cases will assume there is at least one point k where ∀i, δ(i, k) > 0.

4.4.2 Collinearity with Pivot at Boundary

Next it will be shown that the optimal embedding y must be collinear with the

pivot y1 on a boundary by proving that any embedding without this property can be

strictly improved simply by rotating the points about the pivot.

Lemma 4.1. Any solution y to the optimization problem (4.3) with weight matrix

Wdiff must be collinear with the pivot on a boundary.

Proof. Without loss of generality, let y1 = 0. For purposes of contradiction, sup-

pose y is not collinear or does not have the pivot y1 at a boundary.

Let y′ ∈ Rn be a one-dimensional embedding where y′i = ‖yi‖. This simple

operation can be thought of as the result of rotating the points in y about the origin

so they lie on the same side of the same axis, thereby ensuring both that y′1 is a

boundary point and that y′ is collinear. For particular states i and j:

|y′i − y′j| = |‖yi‖ − ‖yj‖| ≤ ‖yi − yj‖ ≤ δ(i, j) (4.6)

The first inequality is the reverse triangle inequality, and the second is the admis-

sibility condition on y, proving y′ is admissible and so a feasible solution to (4.3).
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Next, the change in the objective between y′ and y is:

f(y′)− f(y) =
∑
ij

Wij|y′i − y′j|2 −
∑
ij

Wij‖yi − yj‖2 (4.7)

=
∑

i>1,j>1

Wij

(
|y′i − y′j|2 − ‖yi − yj‖2

)
(4.8)

=
−1

n− 1

∑
i>1,j>1

(
|y′i − y′j|2 − ‖yi − yj‖2

)
(4.9)

Line 4.8 restricts the indices to reflect that the only distances that change are be-

tween non-pivot states (i > 1, j > 1) and line 4.9 swaps in the associated weights

of −1
n−1 . If yi and yj are not collinear with y1, the reverse triangle inequality is strict:

|y′i − y′j| = |‖yi‖ − ‖yj‖| < ‖yi − yj‖ (4.10)

⇒ |y′i − y′j|2 − ‖yi − yj‖2 < 0 (4.11)

And if yi and yj are collinear with y1, but y1 is not a boundary point:

|y′i − y′j| = |‖yi‖ − ‖yj‖| < ‖yi‖+ ‖yj‖ = ‖yi − yj‖ (4.12)

⇒ |y′i − y′j|2 − ‖yi − yj‖2 < 0 (4.13)

Together (4.11) and (4.13) imply the sum over all i > 1, j > 1 must be negative,∑
i>1,j>1

(
|y′i − y′j|2 − ‖yi − yj‖2

)
< 0 (4.14)

and therefore substitution into (4.9), which is scaled by a negative factor of −1
n−1 ,

implies strict improvement in the objective:

f(y′)− f(y) =
−1

n− 1

∑
i>1,j>1

(
|y′i − y′j|2 − ‖yi − yj‖2

)
> 0 (4.15)

y′ therefore has a greater objective value than y under Wdiff, contradicting the opti-

mality of y and proving the lemma.

4.4.3 Maximum Distances from the Pivot

Having established that y must be one-dimensional with y1 on a boundary, it re-

mains to show that the distance between any point yi and the pivot y1 must take

on the largest admissible value δ(i, 1), resulting in heuristic values of h(i, j) =

|δ(i, 1)− δ(j, 1)| – thus exactly matching the DH definition (4.1).
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Lemma 4.2. A solution Y to (4.3) under weight matrix Wdiff embeds every state i

at its true distance from the pivot; i.e., yi = δ(i, 1).

Proof. Without loss of generality, assume y1 = 0 and therefore yi ≥ 0. For pur-

poses of contradiction, suppose there exists a state k 6= 1 such that yk 6= δ(k, 1).

Then yk < δ(k, 1), since otherwise it would violate local admissibility.

Let y′ be the one-dimensional embedding with y′i = yi (for all i 6= k) but where

yk has been increased to y′k = δ(k, 1). Denote by ε = y′k− yk the distance by which

yk is off from k’s true distance to the pivot. The difference in the objective is:

f(y′)− f(y) =
∑
ij

Wij|y′i − y′j|2 −
∑
ij

Wij|yi − yj|2 (4.16)

= 2
∑
i

Wik|y′i − y′k|2 − 2
∑
i

Wik|yi − yk|2 (4.17)

= 2

(
y
′2
k − y2k +

∑
i>1

Wik

(
|y′i − y′k|2 − |yi − yk|2

))
(4.18)

= 2

(
(yk + ε)2 − y2k +

∑
i>1

Wik

(
|y′i − y′k|2 − |yi − yk|2

))
(4.19)

= 2

(
ε2 + 2εyk −

1

n− 1

∑
i>1;i6=k

(
|yi − y′k|2 − |yi − yk|2

))
(4.20)

Here, line 4.17 isolates the nonzero differences (i.e., between k and every other

state), line 4.18 extracts the distance between the pivot and k from the summation,

and line 4.20 applies the definition of Wdiff and the fact that y′i = yi.

Suppose the only point not equal to y1 = 0 is yk. For a particular yi:

|yi − y′k|2 − |yi − yk|2 = |y′k|2 − |yk|2 (4.21)

= ε2 + 2y′kyk − 2y2k (4.22)

= ε2 + 2(ε+ yk)yk − 2y2k (4.23)

= ε2 + 2εyk, (4.24)

where line 4.22 is just an application of the equality ε2 = |y′k|2 + |yk|2−2y′kyk. This
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implies a strict inequality on the summation over all i > 1; i 6= k:∑
i>1;i6=k

|yi − y′k|2 − |yi − yk|2 =
∑

i>1;i6=k

ε2 + 2εyk (4.25)

= (n− 2)(ε2 + 2εyk) (4.26)

< (n− 1)(ε2 + 2εyk) (4.27)

The term (n − 2) on line 4.26 is due to i being neither the pivot nor k. Otherwise,

there exists a point ys > y1 where s 6= k. For a particular yi:

|yi − y′k|2 − |yi − yk|2 = (y′k − yi)2 − (yk − yi)2 (4.28)

= y
′2
k − 2yiy

′
k + y2i − y2k + 2yiyk − y2i (4.29)

= (yk + ε)2 − 2yi(yk + ε)− y2k + 2yiyk (4.30)

= y2k + 2εyk + ε2 − 2yiyk − 2yiε− y2k + 2yiyk (4.31)

= 2εyk + ε2 − 2yiε (4.32)

= ε2 + 2ε(yk − yi) (4.33)

For i = s then yi > 0, giving a strict upper bound on (4.33) of ε2 + 2εyk. For all

other i this bound is not strict, but altogether the sum over all i > 1; i 6= k is:∑
i>1;i6=k

|yi − y′k|2 − |yi − yk|2 =
∑

i>1;i6=k

ε2 + 2ε(yk − yi) (4.34)

<
∑

i>1;i6=k

ε2 + 2εyk (4.35)

< (n− 1)(ε2 + 2εyk) (4.36)

Substituting (4.27) or (4.36) into (4.20) shows strict improvement in the objective,

f(y′)− f(y) > 2
(
ε2 + 2εyk − (ε2 + 2εyk)

)
= 0

and therefore Y is not optimal since y′ satisfies the constraints and has a higher

objective value. This is a contradiction and therefore yi = δ(i, 1) for all i.

Thus the heuristics arising from the optimization (4.3) under weight matrix Wdiff

contain the same points as a differential heuristic, up to translation and rotation.
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4.5 Optimization Approach

The design of Wdiff (4.4) suggests that differential heuristics optimize a strange

objective. The negative weights reward the optimizer for minimizing all pairwise

distances, except for the small fraction of distances to the pivot. This effect can in

part be mitigated by careful pivot selection, but the fact remains that DHs are, in

some sense, designed to give poor heuristic values between a majority of the states.

4.5.1 Visual Interpretation

How can this insight be used to enhance differential heuristics? To facilitate creating

complementary heuristics based on multiple pivots, the optimizer should still move

all points far from the pivot. But it should also be rewarded, rather than penalized,

for any gains made in the other heuristic values. The visual interpretation is that

this could prevent the graph from being unnecessarily folded together as illustrated

in Figure 4.1, and instead flattened uniformly to the line as illustrated in Figure 4.2.
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Figure 4.2: Visual interpretation of an enhanced differential heuristic: this simple
search graph is “flattened” evenly onto the line, rather than “folded” around a point.

4.5.2 Enhanced Objective

This interpretation suggests enhancing a differential heuristic by solving the opti-

mization problem (4.3) using an alternative weight matrix W+
diff, where the negative

entries of −1
n−1 in Wdiff (4.4) are replaced with small positive values ε > 0. If index
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1 refers to the pivot, then this matrix appears as follows:

W+
diff =



0 1 1 1 · · · 1
1 0 ε ε · · · ε
1 ε 0 ε · · · ε

1 ε ε 0
. . . ε

...
...

... . . . . . . ε
1 ε ε ε ε 0


(4.37)

The corresponding optimization problem is simply:

maximize
Y

∑
i,j

(W+
diff)ij‖yi − yj‖2 (4.38)

subject to ∀(i, j) ∈ E ‖yi − yj‖ ≤ δ(i, j)

This problem (4.38) can no longer be solved with Dijkstra’s algorithm, but it is a

special case of Euclidean heuristic optimization and so can still be solved tractably

– and optimally – by converting it into a semidefinite program as in Section 3.4.1.

While the semidefinite formulation has the potential to create high-dimensional

heuristics, it retains its dimensionality reducing tendencies. As a result the results

can typically be projected down to a single dimension via principal component anal-

ysis, all while retaining admissibility and consistency – as proved in Section 3.5.1.

4.6 Evaluation

This evaluation considers a total of 59 maps from BioWare’s 2009 Dragon Age:

Origins. Three representative examples of these maps are shown in Figure 4.3.

Each such map is based on a grid with between 168 and 6,240 contiguous open

cells, among which an agent can travel cardinally (at unit cost) or diagonally (at

cost 1.5, enabling any heuristic to be rounded up to the nearest full half), and cutting

corners is once again disallowed to mimic restrictions on an agent with volume. A

third-party set of standard benchmark problems which span varying lengths and

degrees of difficulty is associated with each individual map [55].1

Five sets of heuristics are compared on this domain. First are sets of 1 and 3

differential heuristics (denoted FDH-1 and FDH-3) where the Farthest placement
1Map data and benchmark problems are publically available at http://www.movingai.com/.
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(a) HRT001D. (b) DEN312D. (c) DEN900D.

(d) BRC300D. (e) ORZ301D. (f) ORZ200D.

Figure 4.3: Example Dragon Age: Origins maps used in the evaluation. The agent
can move freely between the open (white) cells, with darker cells blocked off and
inaccessible. Most maps feature open rooms and long “central corridors”.

algorithm is used to situate the pivots: the first pivot is placed in a state farthest

from a random seed state and each subsequent pivot is placed in a state most distant

from the previous pivots. Next are sets of 1 and 3 enhanced differential heuristics

(denoted EDH-1 and EDH-3). Each EDH set uses the same pivots as the corre-

sponding FDH set, but here the nth EDH uses weights W+
diff based on the nth DH

pivot to solve the optimization problem (4.38), where the non-pivot ε entries in

W+
diff are set2 to 10−3 Finally, the default octile heuristic is evaluated on its own,

and is combined with each of the preceding by maximizing over all heuristic values.

Figure 4.4 shows the node expansions and elapsed runtime of A* [28]. In Fig-

ure 4.4a, there is a clear trend of EDHs leading to fewer node expansions than either

the default or differential heuristics, especially on longer paths. On average, FDH-3

appears to have a slight edge over EDH-3 on the shortest paths (i.e., those whose

2It can often be better to tune these augmented values to the map in question. Nevertheless, the
use of a fixed value of 10−3 yielded generally good results across the entire test suite.
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(a) A* node expansions for each heuristic.

(b) A* runtimes for each heuristic.

Figure 4.4: A* pathfinding results for standard benchmark problems on 59 Dragon
Age maps. We compare the default (Octile) heuristic to sets of 1 and 3 differential

heuristics (FDH) and sets of 1 and 3 enhanced differential heuristics (EDH). Fig-

ure 4.4a shows average node expansions as well as the distribution of the different

problem lengths, and Figure 4.4b shows runtime totals for each heuristic.
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solution length is less than 142), and there are individual maps for which FDH-3

provides better heuristics overall than EDH-3, but these counterexamples are in the

minority. Meanwhile, the elapsed runtime results shown in Figure 4.4b mirror these

gains shown in the node expansions, although somewhat less dramatically. This is

possibly due to the relative infrequency of long paths in the benchmark problems

but, in sum, optimal Euclidean heuristics based on W+
diff show a marked improve-

ment over differential heuristics, and represent an approach worth pursuing.

4.7 Summary

This chapter “reverse engineered” the popular and effective approach of differen-

tial heuristics by identifying their implied optimality criterion. This analysis con-

sequently showed the Euclidean heuristic optimization of Chapter 3 generalizes

differential heuristics beyond a single dimension. It also revealed an unobserved

distance minimizing bias in the implied objective of differential heuristics. And

lastly, it facilitated an “enhanced”, optimization-driven approach to building one-

dimensional heuristics: modifying the differential heuristic objective to give small

rewards (rather than penalties) to the optimizer for moving all points apart.

While differential heuristics can be built more quickly and can scale to larger

problems than the enhanced counterparts that have been introduced here, an empir-

ical study showed that the concept of differential heuristics can be improved upon,

at least in the important target domain of video game pathfinding. This success mo-

tivates the forthcoming investigations into alternative ways to construct strong one-

dimensional heuristics, which also forgo the need to truncate a higher-dimensional

embedding to a single dimension.
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Chapter 5

Line Heuristic Optimization
via Alternating Maximization

This chapter introduces Line Heuristics, and an efficient local search procedure

based on successive linear progams for defining good heuristics in this space. Later,

these heuristics will turn out to be a special case of a more general framework – a

case that will be addressed in detail Chapter 6. However, for purposes of clarity, it is

helpful to first address this special case and identify its connections in the literature.

5.1 Motivation

The methods of the preceding two chapters are two-step: high-dimensional ‘source’

embeddings are determined as the result of semidefinite programs, and then are

dimensionality-reduced post factum using principal component analysis (PCA).

Computationally hard problems are neatly avoided by so separating these two steps,

but when PCA is forced to discard dimensions with nonzero variance, the separa-

tion can cause lost optimality with respect to the original objective (i.e., PCA will

find the optimal linear projection, but cannot find a superior nonlinear projection).

Data structure/representation Points on the line (y ∈ Rn)
Heuristic lookup function h(i, j) = |yi − yj|

Optimization method(s) Local search (successive linear programs)
Solution optimality Local+

+ With logarithmic bounds under the uniformly weighted objective.

Table 5.1: Key characteristics of the Line Heuristic framework.
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The stricter the dimensionality constraint (e.g., when d = 1, yielding what we will

call line heuristics), the greater the potential for lost optimality. This warrants de-

veloping a better understanding of how to construct line heuristics directly, without

separating the embedding and dimensionality reduction steps.

Working within a single dimension will induce an NP-hard optimization prob-

lem, but some guarantees on optimality can still be established. In particular, we

will find it possible to state modest probabilistic bounds on a line heuristic by

adopting efficient methods from the metric embedding theory literature [6, 37].

Moreover, a novel algorithm will be presented to incrementally improve a one-

dimensional embedding until it is locally optimal via a succession of linear pro-

grams. Table 5.1 shows a summary overview of this framework.

The proposed approach has a number of appealing properties, including its ten-

dency to scale better than SDPs even as it achieves the anytime property, its mono-

tonic convergence, and its propensity to create integer embeddings. Later, in Chap-

ter 6, it will also serve as the basis for constructing strong directed heuristics, as

represented by points on the line. Empirical results will also show that it can give

large search performance enhancements on several undirected graphs.

5.2 Line Heuristics

We start with a formal introduction of Line Heuristics as they appear in this chapter.

Definition 5.2.1 (Line Heuristics). Line heuristics are heuristic values that can be

computed as absolute distances between points on the real line. Each state i in

a search graph with n states is associated with a single real number yi, and the

heuristic lookup is defined as:

h(i, j) ≡ |yi − yj| (5.1)

As in previous chapters, we define y as the n-vector whose entries are these points:

y =


y1
y2
...
yn

 (5.2)
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This vector determines a set of heuristic values between all pairs of points, becom-

ing our optimization variable and the primary unit of analysis in this chapter.

Note that heuristics using this lookup (5.1) already exist in the literature (e.g.,

differential heuristics [56], where each yi is defined as the optimal path length from

state i to a single pivot state, as well as the enhanced differential heuristics of Chap-

ter 4 that relied on our framework of Euclidean Heuristic Optimization).

5.3 Optimization Problem

The general problem of arranging points on the line to best match some given dis-

tance data has been studied from several perspectives in computing, including data

mining [29], bioinformatics [32], and combinatorics [50]. The heuristic construc-

tion setting presents a new set of challenges and considerations.

In particular, to determine the “best” line heuristic y, we will follow the pattern

of the preceding two chapters and define it as a solution to the following:

minimize
y

L(y) (5.3)

subject to y is admissible and consistent

That is, y should be arranged in such a way that the resulting heuristic values encode

the search graph distances with the least amount of loss, while being admissible and

consistent. These constraints and the objective will be examined in turn.

5.3.1 Constraints

The admissibility and consistency conditions for a line heuristic y are as follows:

∀ i, j |yi − yj| ≤ δ(i, j) admissibility (5.4)

∀ i, j, k |yi − yj| ≤ δ(i, k) + |yj − yk| consistency (5.5)

where δ(i, j) is the cost of the shortest path from i to j. These constraints apply to

all pairs and triples of states, but can be simplified by applying Lemma 3.1:

Theorem 5.1. A line heuristic is admissible and consistent if and only if it is locally

admissible (i.e., distances between neighbors are non-overestimating).
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Proof. The space of absolute distances between all pairs of a set of n points on the

line is a simple example of a finite metric space, well-known to satisfy the triangle

inequality.1 It follows by Lemma 3.1 that a line heuristic y is therefore admissible

and consistent if and only if it is locally admissible.

Consequent to Theorem 5.1, global admissibility and consistency can be achieved

by imposing just one nonlinear constraint per edge in the search graph:

∀(i, j) ∈ E |yi − yj| ≤ δ(i, j) (5.6)

For convenience, each such constraint (5.6) will be rewritten as a pair of equivalent

linear constraints as follows:

∀(i, j) ∈ E |yi − yj| ≤ δ(i, j) ⇔

{
yi − yj ≤ δ(i, j)

yj − yi ≤ δ(i, j)
(5.7)

Further, if we represent each undirected edge as two directed edges of equal weight

(i.e., (i, j) ∈ E ⇔ (j, i) ∈ E) then line 5.7 can be written more concisely as:

∀(i, j) ∈ E yi − yj ≤ δ(i, j), (5.8)

which is the constraint set that will be used throughout this chapter.

5.3.2 Objective

It is well known that an admissible search algorithm must expand every state en-

countered whose heuristic is low enough to suggest it may be on an optimal path

to the goal [2]. A suitable loss is therefore the weighted sum of errors between the

resulting heuristic values and the true distances, for all pairs across n states:2

L(y) =
n∑
i=1

n∑
j=1

Wij |δ(i, j)− h(i, j)| (5.9)

=
∑
i,j

Wij |δ(i, j)− |yi − yj|| (5.10)

As before, the entries in the weight matrix W enable specifying the relative impor-

tance of each pair of states. A good general heuristic arises from defining W as the
1This space is also a Euclidean space, and so Theorem 3.1 applies as well.
2Throughout this chapter, i and j always index the summations from 1 to n, as on on line 5.9.
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Figure 5.1: Lines showing how the error in a line heuristic between two states

interacts with loss. Since the heuristic is an absolute distance, it cannot be less than

0, and the admissibility condition guarantees no negative loss can be incurred.

uniform weight matrix Wunif, which is 1 everywhere but 0 on the diagonal:

Wunif ≡ ee� − I (5.11)

where e is the vector of ones. This special case allows us to cite existing proba-

bilistic bounds, which will be discussed in detail later in Section 5.4. But, as usual,

W can also be used to indicate specific points of interest such as common start and

goal locations. Alternatively, since many more nodes are expanded during search

on longer paths, weight can be added to far away pairs of points.3

Example. The sensitivity of this loss to errors in the heuristic is shown by exam-

ple in Figure 5.1. If the true distance between two states is 2, the loss follows the

bottom line and becomes 0 when the heuristic meets its target value of 2. If the true

distance is 4, the loss similarly follows the top line. Note the same magnitude of

error in both cases contributes equally to the loss, whatever the true distance. In

other words, if both heuristics have an error of 1, both contribute 1 to the total loss,

which is indicated by the dashed lines in the figure.

3Note the following distinction: the optimal Euclidean heuristics in Chapter 3 already implicitly

upweight longer paths, since the loss is computed by comparing squared distance values.
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Figure 5.2: Plot showing a comparison to the loss used in Chapter 3.

This loss should be contrasted with the quadratic loss used in Chapter 3 (Fig-

ure 5.2), which grows in magnitude as the underlying true distance increases; the

maximum error when the true distance is 4 is significantly greater in the latter case.

Simplification. Due to the admissibility condition, the heuristic between states i

and j, h(i, j) is always less than their true distance, δ(i, j), and the loss (5.10) can

be simplified by breaking it up as follows:

L(y) =
∑
i,j

Wij |δ(i, j)− |yi − yj|| (5.12)

=
∑
i,j

Wij (δ(i, j)− |yi − yj|) (5.13)

=
∑
i,j

Wij δ(i, j)−
∑
i,j

Wij|yi − yj| (5.14)

Since the first term on line 5.14 does not depend on y, it can be safely ignored

without affecting the choice of y, implying minimizing the following is equivalent:

L(y) ≡ −
∑
i,j

Wij |yi − yj| (5.15)
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Therefore L(y) can be minimized by maximizing the sum of weighted pairwise

absolute distances. Combining this newly simplified objective and the constraints:

maximize
y

∑
i,j

Wij |yi − yj| (5.16)

subject to ∀(i, j) ∈ E yi − yj ≤ δ(i, j)

5.3.3 Hardness

Even though both the objective and constraints have been simplified to some extent,

there is unlikely to be an efficient, polynomial time method for finding optimal so-

lutions to this optimization problem (5.16). In fact, many linear graph arrangement

problems are NP-hard [16], and this case will prove to be no exception.

Theorem 5.2. The optimization problem (5.16) is NP-hard.

Proof. Saxe proved in 1979 that deciding whether an undirected, integer-weighted

graph G can be losslessly embedded to the line is NP-hard [54]. Reducing this

decision problem to the optimization problem (5.16) is straightforward. If G can

be losslessly embedded to the line, then by definition an optimal embedding y∗

can achieve zero loss under (5.10). It can then be verified in polynomial time that

y∗’s pairwise distances exactly match the graph’s true distances, thereby answering

Saxe’s decision problem in polynomial time.

It should be emphasized that Theorem 5.2 is not due to our choice of loss (5.10),

but is due to our choice to work directly with a rank-constrained target space (i.e.,

the line). Any loss function that accounts for the errors between all pairs of states,

including the loss introduced in Chapter 3, enables a similar reduction.

5.4 Bounded Solutions

Theorem 5.2 implies determining a globally optimal line heuristic can become

intractable for large graphs. Fortunately, the optimization problem (5.16) resem-

bles the known problem of finding contractive embeddings of undirected weighted

graphs. Many forms of this problem have been studied,4 but a solution can be based
4See work by Dhamdhere, Håstad et al., and Rabinovich [15, 32, 50].
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Figure 5.3: Illustration of a Lipschitz embedding. The top figure shows a typical
arrangement of a graph for visualization purposes. The bottom figure shows how a
Lipschitz embedding aligns those same vertices to the line.

on a popular and broadly applicable approach studied by Bourgain [6] and subse-

quently Linial et al. [37]. The result is a polynomial time algorithm that produces

admissible and consistent heuristics with a probabilistic bound on solution quality.

5.4.1 Lipschitz Embeddings

The main tool used is an easily computed embedding that is often referred to as a

Lipschitz embedding. These embeddings have been used, for instance, in similarity

search [29] and bioinformatics [36], and can be viewed as a generalization of dif-

ferential heuristics [56]. In a Lipschitz embedding, each yi is defined as vertex i’s

shortest path distance to the nearest vertex in a subset of the vertices R ⊆ V called

a reference set:

yi ← δ(i, R) ≡ min
j∈R

δ(i, j) (5.17)

In practice, this vector y can be efficiently computed by modifying Dijkstra’s algo-

rithm [17] to solve the multi-source shortest path problem rooted at the setR (rather

than the canonical single-source shortest path problem).
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Example. An example Lipschitz embedding is shown in Figure 5.3. The depicted

graph (Figure 5.3a) has unit edge costs, and the reference set R is defined as con-

taining the two filled vertices,A andC. The shortest-path distance from each vertex

i to the nearest reference vertex – either A or C – defines a point on the line yi to

which that vertex i is mapped (Figure 5.3b). The heuristics resulting from taking

pairwise distances are admissible and consistent, which the following will establish.

Lemma 5.1. For every two points i, j, and an arbitrary reference set R ⊆ V , the

following “generalized” form of the triangle inequality holds:

δ(i, R)− δ(j, R) ≤ δ(i, j) (5.18)

Proof. Let q = arg mink∈R δ(j, k) for an arbitrary point j and reference set R:

δ(i, R)− δ(j, R) = δ(i, R)− δ(j, k) (5.19)

≤ δ(i, k)− δ(j, k) (5.20)

≤ δ(i, j) (5.21)

where the inequality on line 5.21 is just the triangle inequality applied to the true

shortest path distances. A trivial extension, assuming symmetric distances (i.e.,

δ(i, j) = δ(j, i)), is that reordering the indices also gives the following:

δ(j, R)− δ(i, R) ≤ δ(j, i) = δ(i, j) (5.22)

Thus proving this generalization of the triangle inequality.

Theorem 5.3. A one-dimensional Lipschitz embedding y based on reference set R

(defined as on line 5.17 gives admissible and consistent heuristics on the line.

Proof. Simple substitution as well as applying Lemma 5.1 implies:

h(i, j) = |yi − yj| = | δ(i, R)− δ(j, R)| (5.23)

= max{δ(i, R)− δ(j, R), δ(j, R)− δ(i, R)} ≤ δ(i, j) (5.24)

where line 5.24 is implied by the inequalities on lines 5.21 and 5.22 together. This

establishes admissibility, and therefore Theorem 5.1 implies the heuristic defined

by the distances between the points in y must also be consistent.

Having proved admissibility and consistency must always hold, the main difficulty

in generating good Lipschitz embeddings lies in choosing the reference set R.
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Algorithm 5.1: Returns a line heuristic with bounded average distortion.
Input: An undirected search graph G = (V,E).
Output: y ∈ Rn, an admissible and consistent embedding to the line.

1 q ← randInt(1, log n);
2 R← randSubset(V, q);

3 for i from 1 to |V | do
4 yi ← minj∈R δ(i, j) ;

5 return y;

5.4.2 Probabilistic Approach due to Bourgain/Linial et al.

Suppose R is selected from among a certain distribution (2k vertices chosen at ran-

dom, where k is chosen from [1, 2, ..., log n]), as summarized in Algorithm 5.1.

Linial et al. [37], following work by Bourgain [6], prove that every pairwise dis-

tance in the resulting Lipschitz embedding can be expected to achieve:

∀i, j E [|yi − yj|] ≥
δ(i, j)

40 log n
(5.25)

Substituting line 5.25 into the objective (5.16) under Wunif (5.11) yields the bound:

E

[∑
i,j

Wij|yi − yj|

]
= E

[∑
i,j

|yi − yj|

]
(5.26)

≥
∑
i,j

δ(i, j)

40 log n
(5.27)

Observe that the bound (5.27) is at least as strong as an approximation guarantee –

that is, it is with respect to the true distances, not just the best obtainable distances.

Algorithm 5.1 achieves a probabilistic bound on the objective while never con-

sidering that objective explicitly; it also requires nothing more than the solution of a

multi-source shortest path problem through the state space. This simplicity is to the

algorithm’s credit, and it is therefore worth citing and studying empirically. Nev-

ertheless, in practice, most embeddings generated using this method can be greatly

improved by conducting a local search. , as described in Section 5.5.
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5.5 Optimization Approach

This section gives an efficient algorithm for finding at least locally optimal line

heuristics. This necessitates a simple reformulation of the objective that adds an

extra optimization variable, but will show that any given line heuristic can be im-

proved upon until it is at least locally optimal by way of a succession of linear

programs interwoven with a sorting operation. Subsequent analysis of this method

will reveal a number of novel properties.

5.5.1 Sign Matrix Formulation

Define S ∈ {−1, 0, 1}n×n as an auxiliary sign matrix with the following conditions:

∀i 6= j Sij ∈ {1,−1} unit entries (5.28)

∀i 6= j Sij = 1⇔ Sji = −1 antisymmetric (5.29)

∀i Sii = 0 “hollow” (5.30)

Note for any pair i, j that the term Sij(yi − yj) is maximized whenever:

Sij(yi − yj) = sign(yi − yj)(yi − yj) = |yi − yj| (5.31)

where the sign operator gives −1 if its argument is negative, 1 if its argument is

positive, and 0 otherwise. Thus S implies a permutation of the points, and can be

used to rewrite the optimization objective (5.16) as follows:

maximize
S,y

∑
i,j

Wij Sij (yi − yj) (5.32)

subject to ∀(i, j) ∈ E yi − yj ≤ δ(i, j),

S obeys conditions (5.28) through (5.30).
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Condition 5.29 can be used to rewrite the objective as follows:∑
i,j

WijSij(yi − yj) =
∑
i,j

WijSijyi −
∑
i,j

WijSijyj (5.33)

=
∑
i

yi
∑
j

WijSij −
∑
i

yi
∑
j

WjiSji (5.34)

=
∑
i

yi

(∑
j

WijSij +
∑
j

WjiSij

)
(5.35)

=
∑
i

yi
∑
j

(Wij +Wji)Sij (5.36)

Line 5.33 splits the sum into a difference of two terms, while line 5.34 swaps the

labels of the indices i and j in the second term. Next, line 5.35 factors the sum over

y out of both terms. Line 5.36 finally applies the antisymmetric property (5.29).

This expression can also be further simplified using vector notation:

= y>((W + W>) ◦ S)e (5.37)

≡ c>y (5.38)

Here the operator denoted ◦ is a Hadamard (entrywise) product, e is the vector of

ones, and on line 5.38, c = ((W + W>) ◦ S)e is a vector in n dimensions. This

reformulation will prove essential to the following local search algorithm.

5.5.2 Alternating Maximization

Since the optimization problem is NP-hard (Theorem 5.2) there is unlikely to be an

efficient (i.e., polynomial-time) solution for y and S simultaneously. But indepen-

dent of the other, each variable has a polynomial-time solution. These imply simple

update rules, together comprising the local search procedure in Algorithm 5.2.

Note there are a number of efficient ways to initialize the local search, with

example seeds including random/zero configurations, differential heuristics,5 and

Lipschitz embeddings (Section 5.4). More involved graph embedding methods,

including the Euclidean heuristic optimization of Chapter 3 are also possibilities.

5If the optimization is parametrized with the enhanced differential heuristic weight matrix W+
diff

(Chapter 4) an appropriate choice may be the corresponding differential heuristic.
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Update Step 1: Updating the Sign Matrix S

Given any line heuristic y, an optimal sign matrix S can be determined by sorting

the entries of y and using the resulting (strict) ranking r to define S as:

Sij =


0 if i = j

1 if ri > rj

−1 else
(5.39)

Defining S as on line 5.39 only involves a sorting operation followed by determin-

ing the entries in S, and so the problem can in general be solved in O(n2) time.

This step corresponds to lines 3 through 9 in Algorithm 5.2.

Example. Let y = [5, 2, 0, 4, 2]> be a line heuristic. Although two sorted order-

ings of y are feasible due to the repeat entries in y, one possible strict ordering is

r = [4, 1, 0, 3, 2]>, yielding the sign matrix:

S =


0 1 1 1 1
−1 0 1 −1 −1
−1 −1 0 −1 −1
−1 1 1 0 1
−1 1 1 −1 0

 (5.40)

If W = Wunif as defined on line 5.11 then the linear coefficient vector is:

c = ((W + W>) ◦ S)e = [4,−2,−4, 2, 0]> (5.41)

Thus establishing the first half of the iterative algorithm.

Update Step 2: Updating the Embedding y

Given a feasible sign matrix S, the best heuristic y is a solution to the following:

maximize
y

c>y (5.42)

subject to ∀(i, j) ∈ E yi − yj ≤ δ(i, j)

y1 = 0

where once again c = ((W + W>) ◦ S)e. Note a “centering” constraint has been

imposed on y1 to resolve translation invariance, but does not affect the resulting

heuristic values. This update step corresponds to lines 11 and 12 in Algorithm 5.2.
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Algorithm 5.2: Defines a line heuristic that is at least locally optimal.
Input: A search graph G = (V,E), an initial (“seed”) embedding y ∈ Rn,

and a weight matrix W ∈ Rn×n.
Output: y ∈ Rn, an admissible and consistent heuristic.

1 repeat

2 // Update step for S
3 Define r as a sorted ordering of y;
4 for i from 1 to n do
5 Sii ← 0 ;
6 for j from i+ 1 to n do
7 if ri > rj then Sij ← 1;
8 else Sij ← −1;
9 Sji ← −Sij;

10 // Update step for y
11 c← ((W +W>) ◦ S)>e ;
12 Define y as a solution to the linear program (5.43);

13 until convergence;
14 return y

This optimization problem (5.42) is in fact a linear program, and can be solved

in polynomial time using widely available standard toolbox solvers such as the IBM

CPLEX optimizer. The canonical LP formulation is as follows:

maximize
y

c>y (5.43)

subject to Ay ≤ b

with A ∈ R|E|+1×n. The first |E| rows of A define the admissibility constraints

for each edge (i, j) ∈ E, enumerated by index p. That is, Aik is 0 everywhere

except: Api = 1 and Apj = −1, with bp = δ(i, j). The last row of A captures the

“centering” constraint on y1: that is, A1,p+1 = 1 and Ai>1,p+1 = 0, with bp+1 = 0.

Note each row of A contains no more than two nonzero entries, and when there are

two nonzero entries, they are of opposite opposite sign.
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5.6 Analysis

Algorithm 5.2 has some useful properties, including its propensity to generate in-

teger embeddings. It can also be interrupted after any iteration without violating

admissibility or consistency, and so is an anytime algorithm. Due to the constraints

on the linear program, the resulting heuristic will always be admissible and consis-

tent, but its monotonic convergence implies it finds better solutions over time.

5.6.1 Integer Embedding Theorem

The following describes cases in which the optimization method of Section 5.5.2

is guaranteed to produce integer embeddings. From a practical standpoint, integer

values are well suited to storage and compression, and their use circumvents the

inefficiency and imprecision that often accompanies floating point arithmetic.

Theorem 5.4. If the transition costs in the search graph are all integer valued, then

a solution to the linear program (5.43) will only have integer coordinates (y ∈ Zn).

Proof. Given the linear program maxy c
>y : Ay ≤ b, an important result in com-

binatorial optimization is the following: if A is totally unimodular (TU) and b

is integral, then said linear program has integral optima for any c. But note the

LP (5.43) defines the entries of b as the transition costs between neighbors (or 0 in

the case of the constraint y1 = 0). Therefore b is integral whenever the transition

costs are integral. Moreover, a useful result by Hoffman and Kruskal [30] can be

used to prove the constraints on y imply A is a TU matrix, since the following suf-

ficient conditions hold: a) each entry of A is either 0, 1, or −1; b) each row6 of A

has at most two nonzero entries; and c) any two nonzero entries in a given row of

A have opposite signs, altogether proving the proposition.

6Hoffman and Kruskal’s result is commonly quoted as referring to the columns of A, but this
is without loss of generality since the TU property is a property of the determinants of all square
submatrices of A. Transposing a matrix does not change its determinant.
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5.6.2 Convergence and Termination

Assuming the pairwise distance between any two points is defined and finite and W

is non-negative, the following shows that Algorithm 5.2 must converge to a local

optimum, and moreover that it must terminate in finite time.

Theorem 5.5. Algorithm 5.2 is monotonically convergent.

Proof. The proof will show both update rules monotonically increase the objec-

tive (5.38), toward a finite maximum. First, let S and S′ be sign matrices before and

after the sign update (Algorithm 5.2, lines 2–9). The difference in the objective is:∑
i,j

WijS
′
ij(yi − yj)−

∑
i,j

WijSij(yi − yj) (5.44)

=
∑
i,j

Wij

(
S ′ij(yi − yj)− Sij(yi − yj)

)
(5.45)

Whenever Sij = S ′ij it must be the case that Sij(yk− y`) = S ′ij(yk− y`). Moreover,

Sij 6= S ′ij implies Sij(yk − y`) = −|yk − y`| ≤ S ′ij(yk − y`), since the offdiagonal

entries of S and S′ must be 1 or −1 as stated in (5.28). Altogether, S ′ij(yk − y`) −

Sij(yk − y`) ≥ 0, for all i, j, and substituting into line 5.45 gives∑
i,j

Wij

(
S ′ij(yi − yj)− Sij(yi − yj)

)
≥ 0 (5.46)

if W is non-negative. Thus the sign update rule leads to monotonic gains. Next, the

update rule for y maximizes c>y by definition (5.42), so is at least as good as any

feasible alternative, proving monotonicity of the second update rule.

Since the admissibility condition upper bounds the objective by a constant C,

∀ i, j |yi − yj| ≤ δ(i, j) (5.47)

⇒
∑
i,j

Wij|yi − yj| ≤
∑
i,j

Wij δ(i, j) < C, (5.48)

then Algorithm 5.2 must be monotonically convergent.

Theorem 5.6. Algorithm 5.2 terminates in finite time.

Proof. The sign matrix S is a discrete matrix variable, and so if the search graph

contains a finite number of states n, then the number of unique n-by-n sign matri-

ces m must also be finite. By the pigeonhole principle, at least one sign matrix will
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be repeated after m + 1 iterations of the update rules. Assuming the LP solver is

deterministic, the same y will then be generated at least twice as well. According

to Proposition 5.5, the objective improves monotonically across iterations, so rep-

etition of y implies the objective value must not have changed in the intervening

steps, which would cause the algorithm to terminate (line 13).

5.7 Evaluation

The next section explores three empirical issues. First, a synthetic Spider Search do-

main is used to compare a locally optimal line heuristic to some alternatives, while

also evaluating different ways of seeding that optimization. Next, the Word Search

domain of Chapter 3 is revisited, examining key issues vis a vis Proposition 5.4. Fi-

nally, we explore parametrizing the weight matrix W by drawing inspiration from

the enhanced differential heuristics of Chapter 4, and build multiple complementary

line heuristics for a larger suite of pathfinding domains.

5.7.1 Spider Search

A t-spider is a tree whose root node is of degree t ≥ 3, while all other nodes

– comprising the “legs” – have degree 1 or 2 (Figure 5.5). The agent’s task is to

transition from a start node in the tree to a goal node in the smallest possible number

of steps. This domain serves as a simple but illustrative example of a search graph

that does not map perfectly to the line; we therefore cannot expect a line heuristic to

exactly capture all of the distances, but our optimization approach is hypothesized

to outperform existing alternatives.

The specific graph we experiment with is a 15-spider whose legs have between

1 and 1,000 states determined uniformly at random, yielding a total of 7,459 states.

Several alternative heuristics are compared. First is the best7 of ten differential

heuristics selected using the Farthest algorithm (FDH); next is the best of ten using

the probabilistic approach of Linial et al. as in Section 5.4 (LLR); finally, local

search as described in Section 5.5, parametrized by a uniform weight matrix, and

seeded with both of the former (LS-FDH and LS-LLR respectively).
7Here, the “best” is determined as the heuristic resulting in the fewest total node expansions.
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(a) Bucketed average node expansions.

(b) A* total CPU runtime.

Figure 5.4: Spider Search results for A* across 10,000 random problems. A dif-

ferential heuristic placed using the farthest algorithm (FDH), the probabilistic ap-

proach of Linial et al. (LLR), and locally optimal variants of each (LS-FDH and

LS-LLR respectively) are compared. Figure 5.4a shows average node expansions

and the distribution of problem lengths, and Figure 5.4b shows runtime totals.
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Figure 5.5: Illustration of a 4-spider and an 8-spider.

The average node expansions and total runtime by A* [28] (including the time to

reconstruct the optimal move sequence) are tallied across a suite of 10,000 random

problem instances in Figure 5.4. The local search variations outperform their seeds

in terms of both of these metrics, and the choice of of starting seed appears negli-

gible in this domain. Local optimality alone appears to be the greatest contributing

factor influencing performance, albeit on a very simple domain.

5.7.2 Word Search

Next we revisit the Word Search domain of Chapter 3, a densely connected state

space of 4,820 four-letter words with edges connecting words differing by one

letter. The Euclidean heuristic optimization in Section 3.6.2 suggested this do-

main was inherently multidimensional; correspondingly, Euclidean heuristics in six

and eighteen dimensions strongly outperformed sets of six and eighteen differential

heuristics. But what if we are restricted to a one-dimensional heuristic?

The following compares several one-dimensional heuristics, including the best

of ten differential heuristics using the Farthest algorithm (FDH); the best of ten

of Linial et al.’s probabilistic approach (LLR); locally optimal variations of each

of the former; and an optimal Euclidean heuristic in one dimension (EH). Any

fractional heuristics given by the latter are rounded up to the next integer value.

Average runtimes and node expansions by A* on a suite of 10,000 random prob-

lems are shown in Figure 5.6. Overall, the results mimic those for the Spider Search

domain, with the two LS variations outperforming their unoptimized counterparts.

But the EH outperforms both by a significant margin. Its success may be due to

its use of a different objective, which was solved to global optimality, but we also
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(a) Bucketed average node expansions.

(b) A* total CPU runtime.

Figure 5.6: Word Search results for A* across 10,000 random problems. A differen-

tial heuristic placed using the farthest algorithm (FDH), the probabilistic approach

of Linial et al. (LLR), Euclidean heuristics using a ceiling operator (EH), locally

optimal variants of each FDH and LLR (LS-FDH, LS-LLR), and a ‘perturbed’ vari-

ant of LS-LLR (LS-pert) are compared. Figure 5.6a shows average node expansions

and the distribution of the problem lengths, and Figure 5.6b shows runtime totals.
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(a) LAK303D. (b) LAK304D. (c) LAK506D.

(d) DEN005D. (e) DEN011D. (f) RMTST01.

Figure 5.7: Example Dragon Age: Origins maps used in the evaluation. Most maps
are several times larger than the maps used in the evaluation in Chapter 4.

know from Section 3.6.2 that rounding its fractional values up is having a signifi-

cant impact. Proposition 5.4 implies that the LS variants cannot benefit from this

effect since they must give integer heuristics – but can it be induced?

To answer this, we perturb one of the locally optimal heuristics (LS-LLR) off its

integer coordinates by selecting a random entry ys and adding or subtracting 10−3

as long as this: a) preserves admissibility; and b) increases the sum of pairwise

heuristics when a ceiling is applied. This is repeated 107 times. No claims can be

made to to this procedure’s optimality, and its incremental effect is smaller than that

of the local search procedure. Moreover, its use should be weighed against the ben-

efits of pure integer representations. But the resulting heuristic (LS-pert) performs

significantly better and achieves comparable runtimes to its EH competitor.

5.7.3 Pathfinding

The last problem set returns to the domain of grid-based pathfinding. The parame-

ters are as originally laid out in Section 3.6.3: the agent can move between any adja-
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cent open cells, cardinal moves have unit cost, diagonals cost 1.5, and corner-cutting

is disallowed as a means to emulate volume restrictions. Because Algorithm 5.2

scales better than the semidefinite programs of Chapter 4, we consider some larger

maps: the problem set is comprised of all standard benchmark problems [55] on

contiguous maps with between 168 and 18,890 and states (see Figure 5.7).

Guided by Section 4.6, we consider the problem of building multiple comple-

mentary line heuristics. In that section we observed that enhanced differential

heuristics (EDHs) chosen with the Farthest placement algorithm were high per-

forming in this domain. The following attempts to repeat that success by parametriz-

ing the optimization (5.16) with W+
diff, yielding an iterative linear programming

approach to EDHs. While the optimization is nonconvex, each unoptimized differ-

ential heuristic provides a good seed for the search for its corresponding EDH.

The following heuristics are compared. Baseline sets of 3 and 10 differential

heuristics are built using the Farthest selection algorithm to select pivots (denoted

FDH-3/10). Next are sets of 3 and 10 enhanced differential heuristics (denoted

EDH-3/10). The nth EDH uses weights W+
diff based on the nth FDH pivot to solve

the optimization problem (4.38), where the ε entries in W+
diff are set to 1/n. The

“default” octile heuristic is combined with each of the preceding heuristics by max-

imizing over all heuristic values, and is also evaluated on its own.

The results, tallied in Figure 5.8, show significant improvements of the EDH

variants over their FDH seeds, both in terms of node expansions and runtime.

5.8 Summary

This chapter presented a novel, optimization-driven approach to building admissible

and consistent heuristics represented by points on the line. This is akin to an embed-

ding problem with a dimensionality constraint (i.e., one dimension), resulting in an

NP-hard optimization problem, but this chapter presented an efficient, approximate

solution based on two insights. The first was that, as with the Euclidean heuristics

of Chapter 3, local admissibility constraints imply global admissibility and consis-

tency guarantees. The second was the reformulation of an intuitive objective (i.e.,
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(a) Bucketed average node expansions.

(b) A* total CPU runtime.

Figure 5.8: A* pathfinding results for standard benchmark problems on Dragon Age
maps. We compare sets of 3 and 10 differential heuristics (FDH) to sets of enhanced
differential heuristics (EDH). Figure 5.8a shows average node expansions as well

as the distribution of the different problem lengths, and Figure 5.8b shows runtime

totals for each heuristic.
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sum of errors) as a function of two variables, each with a simple, independent up-

date rule. Together these insights fostered a monotonically convergent, anytime

algorithm that terminates on locally optimal solutions.

A subsequent empirical evaluation showed competitive search performance over

alternatives; these successes furthermore carried over into a setting requiring mul-

tiple complementary line heuristics, which was achieved by adopting Chapter 4’s

scheme for improving a set of differential heuristics based on an effective pivot lay-

out. Significantly, the ideas in this chapter pave the way for a new type of general

directed heuristic in one dimension, which will be introduced in the next chapter.
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Chapter 6

Hinge Heuristic Optimization
for Asymmetric Domains

Without departing from the special but fundamental case of representing a heuris-

tic as a set of points embedded on the line, we will now launch an investigation

into a more general family of asymmetric heuristics. We call this family of heuris-

tics hinge heuristics, and show that these heuristics capture and generalize the line

heuristic optimization of Chapter 5, as well as a wider family of directed heuristics.

6.1 Motivation

In a directed search graph, the transitions between two states can be one-way or

have differing cost depending on the direction the agent is travelling. Examples

include moving a mass across terrain (Figure 6.1), navigating road networks where

traffic laws can disproportionately affect the travel distances between points [24],

or imitative pathfinding resulting from some machine-learned cost map [51].

Unfortunately, undirected (or symmetric) heuristics of the kind studied in the

preceding chapters may be ineffective in such domains, because an accurate un-

Data structure/representation Points on the line (y ∈ Rn)
Heuristic lookup function h(i, j) = (yi − yj)+

Optimization method(s) Local search (successive linear programs)
Solution optimality Local+

+ With logarithmic bounds under the uniformly weighted objective.

Table 6.1: Key characteristics of the Hinge Heuristic framework.
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Figure 6.1: Mesh plot and contour map of a 100m-by-100m “terrain” domain.

derestimating heuristic in one direction can be arbitrarily poor in the other. For

instance, if the cost for travelling from state a to b is 100 and the cost from b to a is

1, a symmetric admissible heuristic can (at best) give h(a, b) = h(b, a) = 1.

As a step toward addressing this vital issue, this chapter will introduce a new

family of asymmetric heuristics. This family generalizes the line heuristic optimiza-

tion of Chapter 5 and, accordingly, this chapter can be viewed as a logical extension

of that chapter. While the resulting optimization problem is shown to be NP-hard,

the bounds established by Linial et al. [37], as summarized in Section 5.4, are ex-

tended to cover this new case. Moreover, the alternating maximization technique of

Section 5.5.2 remains fully applicable while retaining its convergence and integer

embedding properties. We tie these developments down with empirical results on

a number of demonstrative asymmetric domains, which show the practical benefits

of such an approach and the value in building strong asymmetric heuristics.

6.2 Hinge Heuristics

Hinge heuristics describe a family of asymmetric heuristic functions: a heuristic

value between two states is simply the difference between a pair of points on the real

line, but is scaled by a constant factor depending on the pair’s left/right orientation.

In particular, let each state i in a search graph G = (V,E) be associated with a point
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yi ∈ R in the vector y. Given a constant “scaling” parameter σ ≥ 1, the heuristic

between two states i and j is defined as:

hσ(i, j) = max {yi − yj, (yj − yi)/σ} (6.1)

The lookup can equivalently be written as:

hσ(i, j) =

{
|yi − yj| if yi > yj

|yi − yj|/σ else
(6.2)

that is, it is simply an absolute value that gets scaled down by a factor of σ, depend-

ing on whether yi appears to the left or to the right of yj on the line.

The variable σ gives hinge heuristics the ability to express varying degrees of

asymmetry to best fit a specific target domain. Note that when σ > 1, the distance

between half of the pairs of points will necessarily be scaled down, but this could

enable the points in y to move much farther apart from one-another while remain-

ing admissible. In other words, a hinge heuristic can forfeit representing a small

heuristic value for a short path from states b to a so as to better represent a large

heuristic value for a long path from a to b. (It is up to the optimizer to make this

tradeoff across all pairs of states, negotiating which pairs to best express.)

Consider some examples. If σ = 1, the heuristic is the absolute distance be-

tween two points, and is well-suited to undirected domains; this precisely matches

the definition of line heuristics studied in Chapter 5. When σ takes on finite values

greater than 1, the heuristics are only “partially” directed, which can befit certain

target domains that, likewise, only have “partial” asymmetries in the distances be-

tween states (we note partially directed heuristics seem relatively untouched in the

literature). Finally, as σ →∞, the heuristic becomes a difference thresholded at 0;

this particular lookup appears in the literature in the contexts of “directed differen-

tial heuristics” [53], or the individual components of the ALT algorithm [24].

6.3 Optimization Problem

We present a general optimization approach to defining good admissible and con-

sistent hinge heuristics. We assume σ has been defined a priori (and otherwise that
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a line search will be performed to find a suitable value). As in earlier chapters, the

admissibility and consistency constraints and objective are examined in turn.

6.3.1 Constraints

Recall the following define the admissibility and consistency of a hinge heuristic:

∀i, j hσ(i, j) ≤ δ(i, j) (6.3)

∀i, j, k hσ(i, j) ≤ δ(i, k) + hσ(j, k) (6.4)

where δ(i, j) is the shortest path distance between i and j. These conditions apply

to all pairs and triples in the state space but, as in preceding chapters, we can show

that satisfying a subset of them satisfies all of them for any σ.

Theorem 6.1. A hinge heuristic defined by any vector y and scaling parameter σ

is globally consistent if and only if it is locally admissible.

Proof. This proof relies on Lemma 3.1, which showed that any heuristic obeying

the triangle inequality is globally consistent if and only if it is locally admissible.

While the heuristic lookup (6.2) relaxes the metric axioms of discernibility and

symmetry, it does retain the triangle inequality.1 To show this, (i.e., hσ(i, j) ≤

hσ(i, k) + hσ(k, j) for all i, j, k), let yi, yj , and yk be any three points on the line.

We will exhaustively enumerate all possible cases. First, if yi ≤ yj:

hσ(i, j) = |yi − yj|/σ ≤ |yi − yk|/σ + |yk − yj|/σ (6.5)

≤ hσ(i, k) + hσ(k, j), (6.6)

where the inequality on line 6.5 is the triangle inequality on absolute differences.

Similarly, if yj ≤ yk ≤ yi then:

hσ(i, j) = |yi − yj| ≤ |yi − yk|+ |yk − yj| (6.7)

= hσ(i, k) + hσ(k, j) (6.8)

Furthermore, if yj ≤ yi ≤ yk then:

hσ(i, j) = yi − yj ≤ yk − yj = hσ(k, j) (6.9)

≤ hσ(i, k) + hσ(k, j) (6.10)

1It also retains non-negativity, yielding what is sometimes called a quasimetric.
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where the inequality on line 6.9 holds since yi ≤ yk. Using a similar argument, if

yk ≤ yj ≤ yi then:

hσ(i, j) = yi − yj ≤ yi − yk = hσ(i, k) (6.11)

≤ hσ(i, k) + hσ(k, j) (6.12)

thus proving, through exhaustive examination, that the triangle inequality holds. By

Lemma 3.1, a hinge heuristic is globally consistent if it is locally admissible.

From the optimizer’s standpoint, Theorem 6.1 implies that global admissibility

and consistency of hσ can be achieved simply by local constraints on y:

∀(i, j) ∈ E hσ(i, j) ≤ δ(i, j) (6.13)

By substitution into the heuristic lookup (6.2), this implies two linear constraints

for every one of the directed2 edges in the search graph’s set of edges, E:

∀(i, j) ∈ E yi − yj ≤ δ(i, j), and (6.14)

∀(i, j) ∈ E yj − yi ≤ σ δ(i, j), (6.15)

representing an enormous reduction over the constraints between all pairs and all

triples of states originally implied by lines 6.3 and 6.4.3

6.3.2 Objective

The objective is once again captured by a scalar loss function, L : y → R+, which

maps all of the errors in the heuristic to a single real value. As in Chapter 5, we will

use a weighted sum of the absolute errors in the heuristics values:

L(y) =
∑
i,j

Wij |δ(i, j)− hσ(i, j)| (6.16)

where W ∈ Rn×n is the pairwise weight matrix, a user-specified parameter that

can be used to code the relative importance of certain routes and goal (which also

facilitates the building of sets of multiple complementary heuristics, per Chapter 4).
2We assume undirected graphs are coded as directed graphs with symmetric edges everywhere.
3Note if σ = 1, lines 6.14 and 6.15 simply constrain the absolute distance between two points.

Conversely, as σ →∞, the second inequality is vacuous and can be omitted from the constraint set.
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Figure 6.2: Sketch of how loss (i.e., |δ(i, j)− hσ(i, j)| + |δ(j, i)− hσ(j, i)|) inter-

acts with the difference between two points yi−yj when their true distances to each

other are δ(i, j) = 1 and δ(j, i) = 2 respectively.

Examples. A sketch of how this loss interacts with the difference between two

points, yi − yj , is shown in Figure 6.2. In this example, we assume the true (asym-

metric) distances between the two points are δ(i, j) = 1 and δ(j, i) = 2, and assume

the weight on the errors for this pair of points is Wij = Wji = 1. Only the domain

for which the heuristic is admissible is shown and, for completeness, we also show

the loss for different values of σ:

• When σ = 1, the heuristic lookup (6.2) defines an absolute value of the dif-

ference between yi and yj . Note there is no arrangement of the two points for

which the loss (6.16) can reach 0, and a loss of 1 must be incurred even

in the optimal case. The best strategy is to place the points as far apart

as admissibly possible so that hσ(i, j) = hσ(j, i) = 1, implying a loss of

|hσ(i, j)− δ(i, j)|+ |hσ(j, i)− δ(j, i)| = |1− 1|+ |1− 2| = 1.

• As σ → ∞, the heuristic lookup defines a difference thresholded at 0. Once

again, we are unable to arrange these two points in such a way that the loss

incurred is 0. Instead, the best strategy is to express the larger of the two

distances (i.e., δ(j, i) = 2) by placing yi at a distance of 2 units to the left
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of yj so that hσ(i, j) = 0 and hσ(j, i) = 2, once again implying a loss of

|hσ(i, j)− δ(i, j)|+ |hσ(j, i)− δ(j, i)| = |0− 1|+ |2− 2| = 1.

• However, when σ = 2, there is in fact an arrangement of the points yi and yj

under which the loss incurred reaches 0. In particular, we can place yi two

units to the left of yj so that hσ(i, j) = 1 and hσ(j, i) = 2. The loss incurred

is |hσ(i, j)− δ(i, j)|+ |hσ(j, i)− δ(j, i)| = |1− 1|+ |2− 2| = 0 – a perfect

heuristic in both directions, suggesting the choice of σ can matter.

Simplification. Having established our objective function, we can now work on

simplifying it using the same transformation that we have used in previous chapters.

Since y is constrained to be admissible (i.e., δ(i, j) ≥ hσ(i, j)), taking an absolute

value on line 6.16 is unnecessary, and we can rewrite the loss as:

L(y) =
∑
i,j

Wij (δ(i, j)− hσ(i, j)) (6.17)

=
∑
i,j

Wij δ(i, j)−
∑
i,j

Wijh
σ(i, j) (6.18)

Note the first term on line 6.18 does not depend on y, so the optimizer can therefore

ignore that term, and instead simply attempt to maximize the second term. Further-

more, observe that for all i, j, each hinge heuristic value hσ(i, j) and its converse

hσ(j, i) always sum together (without loss of generality) to the following:

hσ(i, j) + hσ(j, i) = |yi − yj|+ |yi − yj|/σ =
(
1 + 1

σ

)
|yi − yj| (6.19)

Thus the weighted sum of heuristics over all such pairs can be equivalently written:∑
i,j

Wijh
σ(i, j) =

∑
i,j

(
1 + 1

σ

)
Wij|yi − yj| (6.20)

=
(
1 + 1

σ

)∑
i,j

Wij|yi − yj| (6.21)

From the optimizer’s standpoint, the multiplicative term
(
1 + 1

σ

)
is just a constant

that can also be safely ignored. Combining the constraints (6.14, 6.15) and this ob-

jective yields the following optimization problem, which is linear in its constraints

82



but nonlinear in its objective:

maximize
y

∑
i,j

Wij|yi − yj| (6.22)

subject to ∀(i, j) ∈ E yi − yj ≤ δ(i, j)

∀(i, j) ∈ E yj − yi ≤ δ(i, j)σ

Fortunately, this is exactly the optimization objective given for the line heuristic

optimization of Chapter 5. The local search procedure described in Section 5.5 can

therefore be applied without modification, implying any given hinge heuristic can

be incrementally improved via a terminating succession of linear programs until

it is locally optimal. The approach inherits the propensity for integer embeddings

(Theorem 5.4), its convergence and termination properties (Theorems 5.5 and 5.6)

and, unfortunately, the following hardness result.

Theorem 6.2. The optimization problem (6.22) is NP-hard.

Proof. LetG be an arbitrary, undirected search graph, and let σ = 1. The optimiza-

tion problem on line (6.22) is now the line heuristic optimization problem studied

in Chapter 5; by Theorem 5.2, this problem is NP-hard. But this describes a special

case of the optimization (6.22), and so that problem must also be NP-hard.

Despite Theorem 6.2, it is indeed possible to generate bounded, approximate solu-

tions to our general optimization problem (6.22).

6.4 Bounded Solutions

In general, the implication of Theorem 6.2 is that we will generally require time

exponential in the size of the input search graph to find an optimal solution to the

problem (6.22). However, in this section we show it is still possible to design a

simple and efficient algorithm to generate solutions with a modest probabilistic

bound on their quality. The following result builds upon the work of Bourgain [6]

and Linial et al. [37] (first summarized in Section 5.4), and begins by extending

standard Lipschitz embeddings with a notion of direction.
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6.4.1 Directed Lipschitz Embeddings

Our bound will rely on a new kind of embedding that can be used to construct ad-

missible and consistent hinge heuristics. A directed Lipschitz embedding is a basic

extension of a standard Lipschitz embedding4 to the case of directed graphs. Much

like standard Lipschitz embeddings, a directed Lipschitz embedding is defined in

terms of the true shortest path distances from each state to the nearest state in a ref-

erence set. But in this case, the meaning of the term “nearest” takes on additional

semantics. In particular, for a given reference set R, two unique (and possibly very

different) directed Lipschitz embeddings can be defined:

1. Each point yi is defined as the true distance from state i to the reference set,

yi = δ(i, R) = min
j∈R

δ(i, j). (6.23)

2. Each point yi is defined as the true distance from the reference set to i,

yi = − δ(R, i) = −min
j∈R

δ(j, i). (6.24)

Note the negation of the values (6.24), which will be necessary to prove admissibil-

ity and consistency in the resulting heuristic values.

Once such an embedding y has been built using one (and only one) of the above

rules, a heuristic between two points can be defined by the hinge distance (6.2).

For certain values of σ, these resulting heuristics are also admissible and therefore

consistent. Before proving this statement, we provide a simple lemma.

Lemma 6.1. For any two points i and j in an embedding y of the directed graph

G = (V,E), and a reference set R ⊆ V , the following inequality holds:

δ(R, i)− δ(R, j) ≤ δ(j, i) (6.25)

Proof. Let q = arg minq∈R δ(q, i):

δ(R, i)− δ(R, j) = δ(q, i)− δ(R, j) (6.26)

≤ δ(q, i)− δ(q, j) (6.27)

≤ δ(j, i) (6.28)

4Refer to Section 5.4.1 for an introduction to Lipschitz embeddings, with a detailed example.

84



where the inequality on line 6.27 arises since δ(R, j) ≤ δ(q, j) (by definition 6.24),

and the inequality on line 6.28 is simply due to the basic form of the triangle in-

equality applied here to the true shortest path distances in G.

(Note that Lemma 6.1 is similar to, but not the same as, the result in Lemma 5.1.

We will use both of these Lemmas to construct a proof for the following theorem.)

Theorem 6.3. Let y be a directed Lipschitz embedding of a search graph G =

(V,E) defined using either rule (6.23) or rule (6.24). If σ ≥ δ(i, j) for any pair of

states i, j, then y defines an admissible and consistent hinge heuristic over G.

Proof. Lemma 3.1 states any heuristic obeying the triangle inequality is consistent

as long as it is admissible; Theorem 6.1 established that the triangle inequality holds

for hinge heuristics, and so it remains to show that y is admissible for any states i

and j and any reference set R. We consider each rule (6.23 and 6.24) in turn:

1. Suppose the rule on line 6.23 is used and yi = δ(i, R). There are now two

independent possibilities. In the first, yi ≥ yj , yielding:

hσ(i, j) = |yi − yj| = (yi − yj) (6.29)

= δ(i, R)− δ(j, R) (6.30)

≤ δ(i, j) (6.31)

where line 6.29 is a result of the definition of the heurustic lookup (6.2), and

line 6.31 is due to the “generalized” triangle inequality proved in Lemma 5.1.

Otherwise yi < yj , which gives:

hσ(i, j) = |yi − yj|/σ = (yj − yi)/σ (6.32)

= (δ(j, R)− δ(i, R))/σ (6.33)

≤ δ(j, i)/σ (6.34)

≤ δ(i, j) (6.35)

where line 6.32 follows the heuristic lookup (6.2), line 6.34 is due to Lemma 5.1,

and line 6.35 is due to our working constraint that σ ≥ δ(j, i)/ δ(i, j).
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2. Next, suppose the rule on line 6.24 is used and yi = − δ(R, i). Again, there

are two independent possibilities. In the first, yi ≥ yj , yielding:

hσ(i, j) = |yi − yj| = (yi − yj) (6.36)

= (− δ(R, i))− (− δ(R, j)) (6.37)

= δ(R, j)− δ(R, i) (6.38)

≤ δ(i, j) (6.39)

where line 6.36 is the heurustic lookup (6.2), and line 6.39 is due to the in-

equality proved in Lemma 6.1. Otherwise yi < yj , which gives:

hσ(i, j) = |yi − yj|/σ = (yj − yi)/σ (6.40)

= ((− δ(R, j))− (− δ(R, i)))/σ (6.41)

= (δ(R, i)− δ(R, j))/σ (6.42)

≤ δ(j, i)/σ (6.43)

≤ δ(i, j) (6.44)

where line 6.40 follows the heuristic lookup (6.2), line 6.43 once again fol-

lows from Lemma 6.1, and line 6.44 is a result of our constraint on σ (i.e.,

that σ ≥ δ(j, i)/ δ(i, j) for any i, j).

The preceding exhaustively enumerate all possible cases, and so y must define an

admissible and – as a result of Lemma 3.1 – globally consistent hinge heuristic.

6.4.2 Probabilistic Approach Extending Bourgain/Linial et al.

Recall in Section 5.4.2 where we described how Linial et al. [37], following work by

Bourgain [6], proved that the pairwise distances in a specific Lipschitz embedding

can be expected to exceed a logarithmic bound. In this section we show how this

result can be extended to cover the case of directed Lipschitz embeddings.

Let R be a reference set selected from among 2k vertices chosen uniformly at

random, where k is chosen from [1, 2, . . . , log n] inclusive.5 Next, define a directed

5This is the same random sampling method used in Chapter 5’s Algorithm 5.1.
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Algorithm 6.1: Returns a hinge heuristic with bounded average distortion.
Input: A directed search graph G = (V,E).
Output: y ∈ Rn, an admissible and consistent hinge heuristic.

1 q ← randInt(1, log n);
2 R← randSubset(V, q);

3 if randInt(0,1) = 0 then
4 // Compute distances to the reference set
5 for i from 1 to |V | do
6 yi ← minj∈R δ(i, j);

7 else
8 // Compute distances from the reference set
9 for i from 1 to |V | do

10 yi ← −minj∈R δ(j, i);

11 return y;

Lipschitz embedding y from R, using either the rule on line 6.23 or 6.24 with

equal probability. This simple procedure is formalized in Algorithm 6.1, and the

following proposition proves a probabilistic bound on the resulting hinge heuristics:

Theorem 6.4. Algorithm 6.1 generates a hinge heuristic y which is expected to be

within a logarithmic factor of optimal, or more specifically:

E

[∑
i,j

hσ(i, j)

]
≥ 1 + σ

σ

∑
i,j

δ(i, j)

80 log n
(6.45)

Proof. Let R ⊆ V be a randomly chosen reference set of 2k vertices, and k ∈ Z

chosen uniformly at random from [1, 2, . . . , log n]. Let y ∈ Rn be a directed Lips-

chitz embedding of G, defined with equal probability using either (6.23) or (6.24).

This y has effectively been generated by Algorithm 6.1. Moreover, if we assume

σ ≥ δ(i, j), then y is an admissible and consistent hinge heuristic by Theorem 6.3.

Next, define a new graph G′ as the “symmetrization” of G as follows:

β(i, j) = β(j, i) = 1
2
(δ(i, j) + δ(j, i)) (6.46)

Under this definition, (β, V ) now defines a finite metric [42]: the pairwise dis-

tances between the points in G′ are symmetric, non-negative, and obey the triangle
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inequality. Still, the sum of pairwise distances across G′ is the same as across G:∑
i,j

δ(i, j) =
∑
i,j

1
2
(δ(i, j) + δ(j, i)) (6.47)

=
∑
i,j

β(i, j) (6.48)

Now let y′ be a standard Lipschitz embedding of G′ also based on reference set R:

y′i = β(i, R) (6.49)

Note the embedding y′ has effectively been generated by Algorithm 5.1.

We approach the proof by relating y′ (which we have bounds on) to y. In

particular, to prove the bound (6.45), note for any i, j ∈ V we can write the expected

sum of the heuristic values in both directions, E [hσ(i, j) + hσ(j, i)], as follows:

E
[
max

{
yi − yj,

yj − yi
σ

}
+ max

{
yj − yi,

yi − yj
σ

}]
(6.50)

Since at most only one of (yi − yj) and (yj − yi) can be greater than zero, this

expression can be rewritten equivalently and simplified into the following:

E
[
max

{
yi − yj +

yi − yj
σ

, yj − yi +
yj − yi
σ

}]
=

1 + σ

σ
E [max{yi − yj, yj − yi}] (6.51)

1 + σ

σ
E [|yi − yj|] (6.52)

We further make the computation of this expected value explicit (6.53), express it

as a sum of halves (6.54), and lower bound it using the triangle inequality (6.55):

1 + σ

σ

(
1
2
| δ(i, R)− δ(j, R)|+ 1

2
| δ(R, i)− δ(R, j)|

)
(6.53)

=
1 + σ

2σ

(
1
2
|δ(i, R)− δ(j, R)|+ 1

2
|δ(R, i)− δ(R, j)|

)
+

1 + σ

2σ

(
1
2
|δ(j, R)− δ(i, R)|+ 1

2
|δ(R, j)− δ(R, i)|

)
(6.54)

≥ 1 + σ

2σ

(
1
2
|δ(i, R) + δ(R, i)− δ(j, R)− δ(R, j)|

)
+

1 + σ

2σ

(
1
2
|δ(j, R) + δ(R, j)− δ(i, R)− δ(R, i)|

)
(6.55)
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Using the definitions of β (6.46) and y′ (6.49) allows line 6.55 to be written as:

1 + σ

2σ
|β(i, R)− β(j, R)|+ 1 + σ

2σ
|β(j, R)− β(i, R)| (6.56)

=
1 + σ

2σ

∣∣y′i − y′j∣∣+
1 + σ

2σ

∣∣y′j − y′i∣∣ (6.57)

=
1 + σ

σ

∣∣y′i − y′j∣∣ (6.58)

Altogether implying the following holds:

E [hσ(i, j) + hσ(j, i)] ≥ 1 + σ

σ

∣∣y′i − y′j∣∣ (6.59)

1

2

∑
i,j

E [(hσ(i, j) + hσ(j, i))] ≥ 1 + σ

2σ

∑
i,j

|y′i − y′j| (6.60)

And therefore:

E

[∑
i,j

hσ(i, j)

]
≥ 1 + σ

2σ
E

[∑
i,j

|y′i − y′j|

]
(6.61)

≥ 1 + σ

2σ

∑
i,j

δ(i, j)

40 log n
(6.62)

=
1 + σ

σ

∑
i,j

δ(i, j)

80 log n
(6.63)

where the inequality on line 6.62 is because G′ is a symmetric graph and y′ was

effectively generated by Algorithm 5.1, implying Linial et al.’s classical bound [37]

applies; thus completing the proof by proving the proposed bound (6.45).

6.5 Evaluation

The forthcoming evaluation compares our newly derived Hinge Heuristic optimiza-

tion to a number of competitors, on three directed search domains. As in preceding

chapters, the performance metrics under consideration are a) an average count of

the number of nodes the A* search algorithm [28] expands, bucketed by solution

length, and b) the total CPU runtime required by A* to complete all problems,

which includes reconstructing the action sequence.

The first of these asymmetric domains is a synthetic Web Graph domain, which

is a connected digraph of webpages based on real-world network data. The next is
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a Terrain domain, which is a procedurally-generated landscape comprised of cliffs

and valleys, and wherein physically-inspired rules are used to dictate the action

costs (e.g., travelling uphill is more expensive than travelling downhill). The third

domain is the Platformer domain, a video-game inspired two-dimensional grid in

which the agent moves left, right, up, and down, using platforms and ladders to

negotiate with an artificial gravity and reach various goal locations.

For each of these three domains, we consider four different approaches to con-

structing directed and undirected search heuristics. First, Line-OPT is an undi-

rected, locally optimal line heuristic, generated as described in Chapter 5. It is

defined on an undirected version of the digraph in which each directed edge of cost

δG(i, j) is replaced by an undirected edge of cost min{δG(i, j), δG(j, i)}, which

yields consistent undirected heuristics for the original directed graph. This ap-

proach outperforms all other types of undirected heuristics in the same amount of

memory, and so can be seen as a representative of the “undirected” approach. Sec-

ond, ALT-Farth may be thought of as two directed differential heuristics placed us-

ing the Farthest algorithm [24, 53]. Note that this heuristic uses double the memory

of any line or hinge heuristic, but still serves as a useful baseline for comparison.

Third, Hinge-LLR is the directed probabilistic method described in Section 6.4.

Because the generating algorithm is stochastic, ten instances are generated and the

results of the best (in terms of nodes expanded) are reported (we report the best, and

not the average, establish a more aggressive baseline). Fourth and finally, Hinge-

OPT is a directed locally optimal hinge heuristic, seeded using the corresponding

Hinge-LLR heuristic, and improved until it is at least locally optimal by way of the

search method described in Section 5.5.2, which is run until termination.

6.5.1 Computer Science Web Graph

The Web Graph domain is a synthetic but demonstrative domain, where the search

graph’s nodes represent web documents sampled from the WebKB dataset.6

This directed generated by deploying a web crawler to recursively follow the

6WebKB is a publically available snapshot of the interconnected web networks of four American
universities including departmental pages, faculty pages, student pages, course pages, etc.
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(a) Bucketed average node expansions.

(b) A* total CPU runtime.

Figure 6.3: A* results across 10,000 randomly chosen problems in the Web Graph
domain. Figure 6.3a shows average node expansions as well as the distribution of

the different problem lengths; Figure 6.3b shows runtime totals for each heuristic.
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links on every page it encounters, using the index pages for the four computer sci-

ence departments as start seeds (Cornell University, the University of Texas, the

University of Washington, and the University of Wisconsin-Madison). This yields

a total of 4,933 pages, with each page becoming a node. Next, the web links con-

necting the pages become unit-cost directed edges from the originating page to the

destination page; meanwhile, weighted edges in the backward direction are added if

no such link already exists with a cost7 of 3. Having defined the directed search, our

agent is tasked with determining “relatedness” scores between 10,000 random pairs

of documents: here, relatedness is defined as the minimum number of hops (i.e.,

links or backlinks) required to reach the second document from the first. The tally

of problem lengths shown in Figure 6.3a reveals that most of these documents are

highly related, and none are greater than a distance of five away from each other.

In this domain, it is most congruent to set σ = 3 for the hinge heuristics, since

back-edges cost three times as much as forward edges.

Results comparing the four competing heuristics are tallied in Figure 6.3. While

locally optimal, the undirected line heuristic optimization of Chapter 5 is least-

suited to this directed domain. Meanwhile, the ALT-Farth and Hinge-LLR heuris-

tics perform on par with each other (however, it is worth noting that the latter is

using half the memory of the former). Lastly, running our local optimization on the

hinge heuristic (yielding the heuristic labelled Hinge-OPT) yields significant gains

over the baselines, which is reflected in a modest CPU-time speedup as well.

6.5.2 Terrain Navigation

The Terrain domain is a state space defined over a 100m by 100m tract of terrain,

procedurally generated using the Diamond-Square algorithm [20] followed by ten

passes of local averaging (i.e., for each state, its height is redefined as the average

of its current height and its neighbor’s heights).

An illustration and contour map of this space is shown in Figure 6.1. States are

defined on every square meter, and the edges between vertices are defined in both

7Note the directed nature of this graph: while a link may exist from one page to another, the latter
may contain no link to the former. Also note that increasing the relative cost of these backward edges
can serve to dramaticize the importance of using directed heuristics.
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(a) Bucketed average node expansions.

(b) A* total CPU runtime.

Figure 6.4: A* pathfinding results across 10,000 randomly chosen problems in the

Terrain domain. Figure 6.4a shows average node expansions and the distribution of

the problem lengths; Figure 6.4b shows runtime totals for each.
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directions along cardinals and diagonals, essentially yielding an octile grid-world

with topographic features. The cost of an edge is defined as the work (in Joules)

to move a mass of one kilogram between the two points in an idealized physical

simulation (there is no friction, the agent’s one kilogram mass is assumed to be

moving at fixed velocity, and braking to maintain a constant velocity on a downhill

slope has no cost). Because of the asymmetry between the work to go downhill and

uphill, a symmetric admissible heuristic cannot capture any distance information

at all (travelling downhill is always free). But the flexibility afforded by a hinge

heuristic enables us to make headway on representing the distances in this space: in

this domain, we achieved the best results by setting σ =∞ for the hinge heuristics

(that is, the hinge heuristics we evaluate here are fully one-directional).

Results are shown in Figure 6.4. In general, we see that using one-sided heuris-

tics in this domain leads to significantly fewer nodes expanded during search: while

locally optimal, the undirected line heuristic optimization of Chapter 5 cannot com-

pete, and is more than twice as expensive (both in terms of node expansions and

CPU-time) than the best methods. Here, the ALT-Farth heuristics outcompete

Hinge-LLR, but the result of our local optimization (Hinge-OPT) is significant

gains over all the baselines, including ALT-Farth (which, it is worth emphasizing

again, uses twice the memory).

6.5.3 Platformer

The Platformer domain is a video-game inspired domain. The agent moves on a

two-dimensional grid with specific motion laws, and must determine paths between

start and goal states which minimize the number of elapsed timesteps.

Two simple examples of this domain are shown in Figure 6.6, and the particular

environment we deploy the agent into is the randomly generated 200 × 200 plat-

former depicted in Figure 6.6, right. A basic set of rules dictate the agent’s motion:

it can walk left and right on platforms, and it can ascend and descend ladders. Note

these kinds of actions only permit cardinal movement of the agent: left, right, up,

and down. However, if the agent should move off the edge of a platform and into a

mid-air tile, it begins a downward descent moving down by one row each timestep,
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(a) Bucketed average node expansions.

(b) A* total CPU runtime.

Figure 6.5: A* pathfinding results across 10,000 randomly chosen problems in the

Platformer domain. Figure 6.5a shows average node expansions and the distribution

of the different problem lengths; Figure 6.5b shows runtime totals for each heuristic.
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Figure 6.6: Platformer examples. Dark cells are platforms/ladders, grey are mid-air,
and white are out of reach. The platformer on the right is used in the experiments.

until it lands on the ground, on a platform, or touches a ladder. As it descends, it

can optionally control the direction of its descent to the left and right, effectively

achieving off-cardinal, diagonal movement. This domain features a great deal of

asymmetry in the pairwise distances between states, since the agent is able to de-

scend (even diagonally) through mid-air states, but cannot ascend through them;

accordingly, we find good results by setting σ = 10 for our hinge heuristics.

Results comparing the four competing heuristics in terms of node expansions

and CPU-time are tallied (Figure 6.5). The locally optimal undirected line heuristic

optimization of Chapter 5 fares the worst of the four methods; it is more than twice

as expensive (both in terms of node expansions and CPU-time) than the locally

optimal hinge heuristic (Hinge-OPT, which fares the best of the four). Meanwhile,

as with the Terrain domain, the ALT-Farth heuristics outcompete Hinge-LLR, but

we reiterate, once again, that the former require twice the memory of the former.

6.6 Summary

This chapter introduced hinge heuristics: an optimization-driven, directed approach

to defining good heuristics. The approach we have proposed has three defining

features. It uses a one-sided “hinge” lookup with a user-definable parameter σ

that can be tuned to specific target domains; it has a probabilistic lower bound on

the average distortion, the likeness of which pivots off of work by Bourgain and

Linial et al.; and with some careful rephrasing of the objective, it accommodates an

efficient local search which can be used to improve hinge heuristics until they are

at least locally optimal. Accompanying numerical experiments on three different
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domains showed that this method is effective at representing asymmetric distances,

suggesting overall that local search and the optimization interpretation continues to

be a vital part of generating good heuristics.

Thus concludes our use of numerical optimization for heuristic generation. In

the next chapter, we will turn to combinatorial optimization, examining the problem

of how to best choose subsets of heuristics when many are available.
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Chapter 7

Subset Selection of Heuristics
via Submodular Maximization

This chapter presents a study of the problem of choosing a subset of a larger set of

heuristics in the face of memory or computational constraints. While following a

similar methodology, this topic can be viewed as complementary to those discussed

in earlier chapters, and is based on work published in 2013 [53].

7.1 Motivation

In addition to the methods introduced in the previous chapters, the literature de-

scribes many other approaches to heuristic construction. Examples include pattern

databases [13], a variety of memory-based and true-distance heuristics [56], and re-

gressors [18]. Each of these is capable of generating a number of different heuristic

functions based on input parameters, and can be combined by taking a maximum.

But if a limit is placed on the number of heuristics one can combine (due to memory

or computational requirements), then a subset selection problem arises.

This chapter presents one way in which such a subset selection problem can be

viewed as an optimization problem. Loss will once again be defined as a weighted

Representation/data structure A subset of heuristics (H ⊆ C)
Heuristic lookup hH(i, j) = max

hx∈H
hx(i, j)

Optimization method(s) Greedy search
Solution optimality Approximate (within 0.63 of optimal)

Table 7.1: Key characteristics of the Euclidean Heuristic framework.
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sum of the differences between the true distances and the heuristic estimates. When

the candidate heuristics are admissible, this loss can be translated into a submodular

and monotonic utility function, implying that greedy selection is near-optimal. A

sample utility function will also be proposed, under which greedy selection retains

provable optimality guarantees, if the heuristics are consistent.

An empirical evaluation of this approach will show that it can outperform exist-

ing selection methods. It will also be shown to be useful for accurately comparing

the use of directed and undirected heuristics, lending insight into the problem of

constructing heuristics for highly directed domains.

7.2 Heuristic Subset Selection

Heuristic subset selection entails choosing a “good” subset H of a larger set of

candidate heuristics C:

H ⊆ C = {h1, . . . , h|C|} (7.1)

It is assumed that the heuristics in H are to be combined with a set of default

heuristics D by maximizing over the values given across both H and D. For states

i and j, this heuristic lookup is denoted:

hH(i, j) = max
hx∈H∪D

hx(i, j) (7.2)

In the simplest case, D contains only the zero heuristic, which gives 0 for any

pair of states queried. It is further assumed that any default or candidate heuristic

hx ∈ D ∪ C is admissible (i.e., never overestimating):

∀i, j, hx(i, j) ≤ δ(i, j) (7.3)

Here, δ(i, j) is the true distance between states i and j, and thus the combined

heuristic lookup hH is guaranteed to be admissible.
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7.3 Optimization Problem

Choosing the heuristic subset H can be viewed as an optimization problem:

minimize
H∈2C

L(H) (7.4)

subject to |H| = d

The constraint |H| = d simply limits the capacity of H to a fixed-size subset of C,

and the loss L(H) is a scalar quantity summarizing the quality of a given subset H .

7.3.1 Objective

The following scalar function is proposed to summarize the errors in H:

L(H) =
n∑
i=1

n∑
j=1

Wij

∣∣δ(i, j)− hH(i, j)
∣∣ (7.5)

That is, a weighted sum of errors between the resulting heuristic values and the true

distances. As in previous chapters, the non-negative weight matrix W ∈ Rn×n is

a free parameter that can be used to define the relative importance of each pair of

states, perhaps based on knowledge of frequent start and goal locations.

This loss (7.5) can be rewritten as a utility function U . First, all of the heuristics

in H ∪D are admissible, so for all states i and j, hH(i, j) ≤ δ(i, j). Therefore the

absolute value is unnecessary and the sum can be split as follows:

L(H) =
∑
i,j

Wij

(
δ(i, j)− hH(i, j)

)
(7.6)

=
∑
i,j

Wij δ(i, j)−
∑
i,j

Wij h
H(i, j) (7.7)

The leftmost term on line 7.7 does not depend on H , so minimizing L(H) is equiv-

alent to maximizing the term on the right. A corresponding utility function is

U(H) =
∑
i,j

Wij h
H(i, j)− α, (7.8)

where α is a normalizing constant that has no effect on the choice of H , but will

help to clarify some of the forthcoming analysis by ensuring that U(∅) = 0. In

100



particular, α is a weighted sum of the contributions of the default heuristics:

α =
∑
i,j

Wij h
∅(i, j) (7.9)

=
∑
i,j

Wij max
hd∈D

hd(i, j) (7.10)

In summary, a specific utility maximization problem is faced:

maximize
H∈2C

U(H) (7.11)

subject to |H| = d

7.3.2 Hardness

Unfortunately, solutions to (7.11) are unlikely to be efficiently computable.

Theorem 7.1. The optimization problem (7.11) is NP-hard.1

Proof. A simple reduction is from the NP-complete Vertex Cover problem over an

undirected graph (V,E). This is the problem of finding a subset of d graph vertices

T ⊆ V such that all edges in E are incident to at least one vertex in T .

By definition, a heuristic is a scalar function over all pairs of vertices in a

(search) graph. A special case of such a function is one that only gives 1 between

a vertex and its neighbors, and 0 for any other input. To reduce vertex cover, the

default set of heuristics D can be defined as containing only the zero heuristic, and

the candidate set C can be defined as the set C = {hv : v ∈ V } where hv ∈ C

gives a value of 1 between vertex v and its neighbors, and 0 otherwise, i.e.:

hv(i, j) = 1((i, j) ∈ E ∧ (i = v ∨ j = v)) (7.12)

where 1 is the indicator function, giving 1 when its argument is true and 0 otherwise.

This implies a maximum attainable utility (7.8) of 2|E|, corresponding to having

heuristic values of 1 between every vertex and its neighbors. But if a subset of d

heuristics from C captures 2|E| utility, then d vertices must be incident to all |E|

edges in the search graph, and therefore there is a vertex cover of size d as well.

1A distinct result is the NP-hardness of ALT preprocessing under an edge-covering objective [3].

101



7.4 Approach

Despite Theorem 7.1, greedy selection yields a solution to the optimization prob-

lem (7.11) with a near-optimality guarantee since U is submodular and monotonic.

7.4.1 Submodularity

Submodularity is a diminishing returns property, aptly describing settings where

marginal gains in utility fall away as more elements are added to a set. Let A ⊆

B ( S, let x ∈ S \B, and let φ be a function over 2S . φ is submodular if:

φ(A ∪ {x})− φ(A) ≥ φ(B ∪ {x})− φ(B) (7.13)

That is, the same element newly added to a subset and its superset will lead the

subset to gain at least as much in value as the superset.

Lemma 7.1. U is submodular.

Proof. Let A ⊆ B be sets of heuristics, and let hc ∈ C be a particular but arbitrary

candidate heuristic function which is in neither A nor B (i.e., hc ∈ C \ B). The

inequality on line 7.13 can be reproduced as follows:

U(A ∪ {hc})− U(A) =
∑
i,j

Wij h
A∪{hc}(i, j)−

∑
i,j

Wij h
A(i, j) (7.14)

=
∑
i,j

Wij (hA∪{hc}(i, j)− hA(i, j)) (7.15)

=
∑
i,j

Wij(hc(i, j)− hA(i, j))+ (7.16)

≥
∑
i,j

Wij(hc(i, j)− hA∪B(i, j))+ (7.17)

= U(B ∪ {hc})− U(B) (7.18)

Line 7.14 twice expands the definition of utility (7.8) with the α terms cancelling,

and line 7.15 rewrites this difference of sums as a sum of differences between hc

and hA together versus hA alone. Line 7.16 equates this to a sum of the positive

differences between hc and hA, where (x)+ = max{0, x}. Line 7.17 holds since

hc’s individual gains over hA∪B cannot exceed its gains over hA. But A ∪ B = B,

altogether proving submodularity.
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7.4.2 Monotonicity

Monotonicity implies that adding an element to a set never leads to a decrease in

value. U(H) is a weighted sum of maximal heuristic values, suggesting monotonic-

ity holds. More formally, let A ⊆ B ⊆ S be sets and let φ be a function over 2S . φ

is monotonic if φ(A) ≤ φ(B).

Lemma 7.2. U is monotonic.

Proof. Let A ⊆ B be sets of heuristics. It must be shown that U(A) ≤ U(B).

U(A) =
∑
i,j

Wij h
A(i, j)− α (7.19)

≤
∑
i,j

Wij h
A∪B(i, j)− α (7.20)

=
∑
i,j

Wij h
B(i, j)− α = U(B) (7.21)

Where line 7.20 assumes non-negativity of W , thus proving monotonicity.

7.4.3 Approximation Algorithm

Together, submodularity and monotonicity are exploitable properties that reveal

simple approximation algorithms to hard problems. A reference including details

for speeding up greedy selection under such functions is by Krause & Golovin [34].

In particular, Lemmas 7.1, 7.2, and a key result by Nemhauser et al. [40] imply:

Theorem 7.2 (approximation ratio). InitializeH0 = ∅ and incrementally add heuris-

tics by greedy selection from a set of admissible heuristics C,

Ht = Ht−1 ∪
{

arg max
h∈C
U(Ht−1 ∪ {h})

}
. (7.22)

U(Hd) is greater than a factor of (1− 1/e) ≈ 0.63 of optimal.

A similar bound has been previously observed for the problem of selecting

heuristics by Fuchs [22]. However, it applies to an edge covering measure of utility

that can only be used with a specific type of heuristic, and does not incorporate

an arbitrary default heuristic. While such an edge covering objective is compared

to later, Theorem 7.2 applies to any – possibly heterogeneous – set of candidate

heuristics C for which this measure of utility can be efficiently determined.
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7.5 Sampling Method

Greedy selection can be further sped up by measuring utility with a simpler ap-

proximation to U . The approach considered is to sum the heuristic values between

only a sample of the states. Intuitively, if this sample is densely and uniformly dis-

tributed throughout the state space, then the heuristics between sample states should

be strongly correlated with the heuristics between all states.

7.5.1 A Partitioning Approach

One of the many possible ways to implement sampling is to partition the state space

into m mutually exclusive and collectively exhaustive regions, represented by sets

of state indices, Z1, . . . , Zm. Within each region, a single sample state is nominated,

zi ∈ Zi. Based on these sample states, a new sample utility function is defined as

U(H) =
m∑
p=1

m∑
q=1

W pq h
H(zp, zq)− α, (7.23)

where the weight between sample states p and q is the sum of the weights between

the states in partitions Zp and Zq,

W pq =
∑
r∈Zp

∑
s∈Zq

Wrs, (7.24)

or W pq = |Zp| |Zq| if W specifies a uniform weighting, and

α =
m∑
p=1

m∑
q=1

W pq h
∅(zp, zq) (7.25)

is a normalizing constant ensuring U(∅) = 0.

Choosing the best partitioning for a specific search graph remains an open prob-

lem. In the experiments in Section 7.6, sample states are incrementally selected so

as to cover the largest number of uncovered states; a state is covered if it is within t

steps of a sample. When all states are covered, partitions are defined by assigning

states to the nearest sample state as measured in an undirected version of the search

graph, where the transition costs are replaced with δ(i, j) ← min {δ(i, j), δ(j, i)}.

This approach can be likened to some existing methods for specifying canonical

heuristics [56] and choosing pathfinding subgoals [9].
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7.5.2 Analysis

This section analyzes the effect sampling has on optimality with respect to the true

utility function (7.8). The foundation of this analysis is heuristic consistency. If

each default and candidate heuristic hx ∈ D ∪ C is consistent,2 i.e.,

∀i, j, k, hx(i, k) ≤ hx(j, k) + δ(i, j), (7.26)

then local distance information in the search graph can be used to bound the differ-

ence between U(H) and U(H) for any H .

Lemma 7.3 (bound on sample utility). The sample utility’s error is bounded by a

weighted sum of the distances between samples and states in the same partition:

∀H ∈ 2C , |U(H)− U(H)| ≤ ε (7.27)

with:

ε = 2
m∑
p=1

m∑
q=1

∑
r∈Zp

∑
s∈Zq

Wrs(δ(r, zp) + δ(zq, s)) (7.28)

Proof. Since the partitions are mutually exclusive and collectively exhaustive, U(H)

is equivalent to a sum over pairs of states between pairs of partitions:3

U(H) =
∑
i,j

Wij h
H(i, j)− α (7.29)

=
∑
p,q,r,s

Wrs h
H(r, s)−

∑
p,q,r,s

Wrs h
∅(r, s) (7.30)

Since the heuristics in H are consistent, it must be true for states p, q, r, and s that:

hH(r, s) ≤ hH(zp, s) + δ(r, zp) (7.31)

≤ hH(zp, zq) + δ(r, zp) + δ(zq, s) (7.32)

Reversing the consistency inequality similarly gives:

h∅(r, s) ≥ h∅(zp, s)− δ(zp, r) (7.33)

≥ h∅(zp, zq)− δ(zp, r)− δ(s, zq) (7.34)

2Consistency also implies admissibility.
3p and q always iterate from 1 to m, and r and s over the indices in Zp and Zq as on line 7.28.
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Substituting lines 7.32 and 7.34 into line 7.30 establishes an upper bound on U(H):

U(H) ≤
∑
p,q,r,s

Wrs(h
H(zp, zq) + δ(r, zp) + δ(zq, s))

−
∑
p,q,r,s

Wrs(h
∅(zp, zq)− δ(zp, r)− δ(s, zq)) (7.35)

By separating the terms that refer to the heuristics from those that do not refer to

the heuristics, line 7.35 can be rewritten to recover the definitions of W , U and ε:∑
p,q,r,s

Wrs h
H(zp, zq)−

∑
p,q,r,s

Wrs h
∅(zp, zq)

+
∑
p,q,r,s

Wrs(δ(r, zp) + δ(zq, s)) +
∑
p,q,r,s

Wrs(δ(zp, r) + δ(s, zq)) (7.36)

=
∑
p,q

W pq h
H(zp, zq)−

∑
p,q

W pq h
∅(zp, zq) + ε (7.37)

= U(H) + ε (7.38)

where the last two terms of line 7.36 are identical but with transposed indices, to-

gether equating to ε; thus proving U(H) ≤ U(H) + ε. The lower bound proceeds

similarly, and together these bounds give |U(H)− U(H)| ≤ ε.

Lemma 7.3 implies a modified greedy algorithm could be used to optimize U

and still retain an approximation guarantee to optimal under U [35]. However,

this modification entails a polynomial increase in the number of iterations over

the candidate set, which may be unacceptable when the set is large. Fortunately,

solutions of known optimality under U have a provable optimality ratio under U .

To see this, first consider the following general lemma.

Lemma 7.4 (additive/relative bound). Let θ and φ be set functions over 2S with

min
A:|A|=d

θ(A) = 0, min
A:|A|=d

φ(A) = 0, (7.39)

∀A ∈ 2S |θ(A)− φ(A)| ≤ ε, (7.40)

for some ε, and finite maxima at cardinality d denoted

θ∗ = max
A:|A|=d

θ(A), φ∗ = max
B:|B|=d

φ(B). (7.41)
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For any set G with |G| = d, G’s optimality with respect to φ is tied to its optimality

with respect to θ:

φ(G)

φ∗
≥ b⇒ θ(G)

θ∗
≥ b

φ(G)− ε
φ(G) + bε

(7.42)

Proof. The bound given on line 7.40 implies that θ∗ and φ∗ must also have bounded

difference: θ∗−ε ≤ φ(arg(θ∗)) ≤ φ∗. This reveals an inequality relating θ∗ to φ(G),

φ(G) ≥ bφ∗ ≥ b(θ∗ − ε)⇔ θ∗ ≤ φ(G) + bε

b
, (7.43)

which lets us bound the optimality of θ(G) as

θ(G)

θ∗
≥ φ(G)− ε

θ∗
≥ b

φ(G)− ε
φ(G) + bε

, (7.44)

thus proving the inequality.

Next, by duplicating the reasoning in Lemmas 7.1 and 7.2, it can be easily

shown that the sample utility function U is both submodular and monotonic, and so

it follows – just as in Theorem 7.2 – that greedy selection under U finds solutions

that score greater than a factor of (1 − 1/e) of U’s optimal value. Together with

Lemma 7.4, this implies the following result:

Theorem 7.3 (approximation ratio under sampling). Initialize H0 = ∅, and incre-

mentally add heuristics by greedy selection from a set of consistent heuristics C,

Ht = Ht−1 ∪
{

arg max
h∈C
U(Ht−1 ∪ {h})

}
. (7.45)

U(Hd) is within a factor of (1− 1/e) of optimal, implying U(Hd) is within a factor

of (1− 1/e) U(Hd)−ε
U(Hd)+ε−ε/e

of optimal.

Under the assumption that both U(H) and ε can be efficiently computed, it is there-

fore easy to determine an optimality bound on H post factum. Note that this bound

improves as U(H) increases (i.e., as more heuristics are added to the set H).

7.6 Evaluation

The approach of greedy utility maximization under U and U is tested on optimal

search with A∗ [28], with a focus on selecting true-distance heuristics. The num-

ber of nodes expanded during search and the total CPU time are used as general

performance measures by which to make comparisons.
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The evaluation is subdivided into two studies. The first is to compare existing

selection methods on undirected search domains; the second is to use greedy utility

maximization to benchmark a new type of directed differential heuristic for strongly

directed domains, revealing encouraging results over alternative heuristic sources.

7.6.1 Undirected Domains

Greedy utility maximization is first applied to the selection of differential heuris-

tics [56] for undirected domains. Recall a single DH consists of the precomputed

distances from each state to a specific landmark state p and, from these distances,

hp(i, j) = |δ(i, p)− δ(j, p)| gives consistent heuristics. Each DH requires the same

amount of memory, so a cardinality constraint doubles as a constraint on memory.

Word Search

As before, the four-letter Word Search domain is comprised of states representing

four letter words from an English dictionary. A word can be changed into another

by substituting one letter at a time, resulting in 54,752 edges across 4,820 states.

Coal could be turned into gold by taking the path 〈coal; goal; goad; gold〉.

In Chapter 3, Euclidean heuristics were shown to outperform DHs that used the

Farthest selection algorithm [24] on precisely this search graph. In Chapter 5, a

larger number of enhanced differential heuristics was shown to be competitive in

terms of node expansions, but not runtime. Nevertheless, it remains unclear whether

DHs or the algorithm that was used to select them are to blame. This distinction is to

be emphasized: a strong class of heuristics may be undervalued in the absence of a

good selection algorithm. This motivates testing whether DHs are powerful enough

to outperform Euclidean heuristics when driven by greedy utility maximization un-

der U (note utility is not sampled using U here). The experiment tests sets of 6 and

18 DHs (DH-6 and DH-18), and uses the same Euclidean heuristics of dimension

6 and 18 (EH-6 and EH-18). The default heuristic is the zero heuristic.

The results across 50,000 problems are shown in Figure 7.1. Greedily maxi-

mizing utility (MaxU) gives a set of 6 DHs that are still not competitive with a

6-dimensional Euclidean heuristic. The 18 greedily chosen DHs are significantly
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(a) Word Search A* node expansions.

(b) Word Search timing results.

Figure 7.1: Word Search node expansion and timing results comparing multidi-

mensional Euclidean heuristics (EH) and differential heuristics chosen using the

Farthest selection method (FDH) and the utility-maximizing objective (MaxU).
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more competitive, but fall behind on the longer solution lengths. Meanwhile, the

DHs placed using the Farthest algorithm excel only on a minority of the longest

paths. This is expected of Farthest, since such paths tend to start or end on the land-

mark states. The timing results underscore these results, with the more efficient

Euclidean heuristic lookup clearly dominating in terms of solution time.

Pathfinding

Next are the standard pathfinding benchmarks [55] on BioWare’s Dragon Age: Ori-

gins’ grid-based maps. The agent can move cardinally at cost 1 or diagonally at cost

1.5 among open grid cells, as long as doing so does not cut the corner of any closed

grid cell. All benchmarks on fully connected maps with between 168 and 18,890

states are considered, using the straight-line octile distance as the default heuristic.

Three selection algorithms are compared. First is greedy utility maximization

under U , where the partitions are defined using a radius of 1 when a map has

less than 10,000 states, and a radius of 2 otherwise (MaxU). Next, a greedy edge-

covering approach [22] is considered (MaxC). This measure of utility is also sub-

modular monotonic, so greedy selection gives a similar optimality guarantee with

respect that objective. But to improve its efficiency and facilitate an even compar-

ison, this approach is modified to use the same sample states used by U . Last, the

Farthest algorithm is used, which has tended to be very effective on these bench-

mark problems (FDH). Each approach is used to define sets of 3 and 10 DHs.

Figure 7.2 shows greedy utility maximization achieving marked improvements

on the vast majority of problems. Though all three approaches have access to the

default heuristic during search, our approach benefits from explicitly incorporating

it into how the subset is chosen. While these results are not as great as seen in

Chapter 5 on the same problems, the optimization – greedy utility maximization –

finished in considerably less time and is much more easily implemented.

7.6.2 Directed Domains

Since utility maximization can be applied to any class of heuristics, an important

practical use is to compare competing classes of heuristics on a level playing field.
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(a) Pathfinding A* node expansions.

(b) Pathfinding timing results.

Figure 7.2: Pathfinding node expansion and timing results comparing differential

heuristics chosen using the Farthest selection method (FDH), an edge-covering ob-

jective (MaxC), and a utility-maximizing objective (MaxU).
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In the following, three kinds of heuristics for directed search graphs are compared.

Recall a search graph is directed if, for any two states i and j, δ(i, j) 6= δ(j, i).

DHs can still generate consistent heuristics on such graphs if the distances are com-

puted on an undirected version of the graph with δ(i, j)← min{δ(i, j), δ(j, i)}, but

a new approach of directed differential heuristics will also be considered.

Directed differential heuristics (DDHs). DDHs use a pivot state p too, but each

pivot defines two distinct heuristic functions. If distances are computed to the pivot:

h←−p (i, j) = (δ(i, p)− δ(j, p))+ (7.46)

If they are computed from the pivot:

h−→p (i, j) = (δ(p, j)− δ(p, i))+ (7.47)

A search graph with n states defines 2n DDHs. DDHs are essentially a decoupling

of the heuristics used by the ALT algorithm [24], which always stores both the to

and from distances for each pivot. Given fixed memory, the space of possible DDH

subsets encapsulates and is exponentially larger than the space of possible ALT

subsets, but the greedy algorithm will only experience a doubling in effort.

Each of the three has a defining drawback. A DH built on the undirected graph

risks being based on inaccurate distances; a DDH suffers from returning 0 for at

least half of the state pairs; and a single ALT heuristic occupies twice the memory

of any one DH or DDH. Note that the optimality bound on our subset selection

approach applies in each case, despite these major idiosyncrasies.

Oriented Pathfinding

In the first comparison of these three heuristics, a state variable is added to the

Dragon Age map, LAK101D, to describe the agent’s current heading. The agent

can advance along its current heading or turn left and right in 45 degree increments,

as depicted in Figure 7.4. This results in 7,342 directed edges across 2,544 states.

The cost to advance is 1, and the cost to turn is a variable which offers control over

the difference in cost between an action and its reverse. The default heuristic is the

travel cost assuming no closed cells and no cost to turn.
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(b) Oriented timings when cost to turn is 10.

Figure 7.3: Oriented Pathfinding node expansion and timing results on 10,000 prob-

lems comparing ALT heuristics, differential heuristics (DH), and directed differen-

tial heuristics (DDH), all chosen greedily under a utility maximizing objective.
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Figure 7.4: In an oriented game map, an east-facing agent turns before going south.

How does the cost to turn affect the performance of sets of 1 and 2 ALT heuris-

tics, and sets of 2 and 4 DH and DDH heuristics? Each set is selected using greedy

utility maximization without sampling (that is, utility is measured directly using U),

and each set uses the same amount of memory. The results across 10,000 bench-

mark problems are shown in Figure 7.3. The search problems become more expen-

sive to solve as the cost to turn increases, but DDHs seem least affected by this. A

tradeoff between DHs and DDHs is also evident: when the cost to turn is small, 2

DHs are preferred over 2 DDHs, but this changes as the cost increases.

Platformer

The last test domain is defined on a grid of three types of cells: platforms, ladders,

and mid-air. Examples are shown in Figure 7.5. If the agent is on a platform

or ladder, it can move left and right, or up and down onto ladders. If the agent

occupies a mid-air state, it automatically moves down one cell per turn, but can

optionally control its descent left or right. The default heuristic is the number of

steps assuming the agent can travel freely between any adjoining cells. This domain

is modelled on a popular genre of video games which has received relatively little

attention as a pathfinding benchmark, but is an extreme example of a cost structure

that occurs in domains with actions that are difficult to reverse.

Figure 7.5: Platformer examples. Dark cells are platforms/ladders, grey are mid-air,
and white are out of reach. The platformer on the right is used in the experiments.
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(a) Platformer results.

(b) Platformer timings.

Figure 7.6: Platformer node expansion and timing results on 10,000 problems com-

paring ALT heuristics, differential heuristics (DH), and directed differential heuris-

tics (DDH), all chosen greedily under a utility maximizing objective.
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A random platformer is defined on a 200 × 200 grid with 16,248 accessible

states. The states are partitioned into regions whose radius is approximately 2, and

greedy maximization of U is used to choose sets of 1 and 2 ALT heuristics, and

sets of 2 and 4 DH and DDH heuristics. Figure 7.6 shows the results on 10,000

random problems. These results reveal DHs to be ineffective at representing costs

in this domain, due to the disparity between the cost of an action and its reverse.

Meanwhile, the DDH subsets consistently outperform their ALT counterparts. With

the knowledge that both are near-optimal under the same objective, one can infer

that DDHs are well worth considering as an alternative class of search heuristics in

domains with highly directed costs.

7.7 Summary

This chapter introduced a novel approach to the widespread problem of selecting

search heuristics. It was shown that greedy selection is nearly optimal under a

natural measure of utility, and furthermore that provable optimality is not sacrificed

when utility is measured on just a sample of the states. These two points rely on the

admissibility and consistency of the heuristics respectively – but such properties are

commonly satisfied by many existing classes of heuristic functions.

The empirical study emphasized the importance of optimality under a well-

motivated objective. Approximate (greedy) utility maximization partially redeemed

an underperforming class of heuristics in one domain, outcompeted existing selec-

tion algorithms in another, and was instrumental in a pilot study of a promising new

type of heuristic which excels in directed domains. This work has the potential to

be extended in several new directions, such as by defining new measures of utility,

more efficient sampling methods, and wider application to domains where heuristic

subset selection defies domain expertise.
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Chapter 8

Conclusion

Heuristic search algorithms rely on the presence of an accurate heuristic function to

be most effective. This thesis cast the problem in a new light by defining the heuris-

tic as the solution to an optimization problem. Several novel heuristic construction

settings were considered, generally revolving around the idea of using the distances

between points to encode the true shortest-path distances in a search graph.

Chapter 3 begun by considering a multidimensional Euclidean representation.

Its careful choice of loss enabled us to rewrite the associated optimization problem

as a semidefinite program, which facilitated tractable solutions. We also observed

this optimization to be identical to one studied in the field of manifold learning,

exposing a new connection between AI subfields. Empirically, this method showed

strong results on inherently “multidimensional” search domains compared to differ-

ential heuristics, but gave weaker results on inherently low-dimensional domains.

Chapter 4 showed that the same optimization problem, carefully parametrized,

could be used to reproduce differential heuristics. Not only did this result reveal the

generality of that optimization formulation, but it also suggested a novel strategy for

improving upon a given set of differential heuristics. This turned out to be crucial

for building a competitive class of enhanced differential heuristics, which proved

to be well-suited to inherently low-dimensional domains.

Motivated by the empirical success of these low-dimensional heuristics, Chap-

ter 5 turned to building good heuristics directly on the line, rather than by truncat-

ing a high-dimensional heuristic as the previous chapters had. While citing existing

bounds in the literature, we also developed a scalable local optimization technique
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for this setting with several appealing properties. Chapter 6 continued the inves-

tigation of this special but fundamental case of building heuristics on the line, but

focused on a new, flexible type of directed heuristic whose points lie in a quasimet-

ric space. Empirical studies showed both of these low-dimensional heuristics to be

effective in a number of illustrative search domains.

Having introduced several new techniques for building search heuristics, Chap-

ter 7 turned to selecting a best subset among them. Despite the selection problem

being NP-hard, we appealed to key results in the discrete optimization literature to

find good approximations – approximations expected to be within a factor of two

of optimal. This solution provided a common interface to the heuristic construc-

tion techniques that preceded, and an empirical study once again emphasized the

importance of striving for optimality under a well-defined objective function.

Each of these cases followed the methodology of optimization: posing the prob-

lem as the minimization of a constrained and precise loss function, identifying ex-

ploitable properties in that loss function, and coming away with tractable solutions

that can be justifiably be described as “good” in a concrete, quantitative sense. It is

hoped that the effective use of this methodology, as described in this dissertation,

will inspire future research into heuristic construction.
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