
Using Response Functions for Strategy Training and
Evaluation

by

Trevor Davis

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c⃝ Trevor Davis, 2015

Abstract

Extensive-form games are a powerful framework for modeling sequential multi-

agent interactions. In extensive-form games with imperfect information, Nash

equilibria are generally used as a solution concept, but computing a Nash equi-

librium can be intractable in large games. Instead, a variety of techniques are

used to find strategies that approximate Nash equilibria. Traditionally, an ap-

proximate Nash equilibrium strategy is evaluated by measuring the strategy’s

worst-case performance, or exploitability. However, because exploitability fails

to capture how likely the worst-case is to be realized, it provides only a limited

picture of strategy strength, and there is extensive empirical evidence showing

that exploitability can correlate poorly with one-on-one performance against a

variety of opponents. In this thesis, we introduce a class of adaptive opponents

called pretty-good responses that exploit a strategy but only have limited ex-

ploitative power. By playing a strategy against a variety of counter-strategies

created with pretty-good responses, we get a more complete picture of strategy

strength than that offered by exploitability alone. In addition, we show how

standard no-regret algorithms can me modified to learn strategies that are

strong against adaptive opponents. We prove that this technique can produce

optimal strategies for playing against pretty-good responses. We empirically

demonstrate the effectiveness of the technique by finding static strategies that

are strong against Monte Carlo opponents who learn by sampling our strategy,

including the UCT Monte Carlo tree search algorithm.

ii

Preface

Portions of this thesis were previously published in “Using Response Functions

to Measure Strategy Strength” at AAAI 2014 [9].

iii

Acknowledgements

First, I want to thank my supervisor, Dr. Michael Bowling. His guidance

and support were instrumental to me developing as a researcher and writer,

and at the same time he gave me the freedom to explore topics which I found

interesting. I am perhaps most grateful for his easygoing personality, which

helped me stay calm even at the most stressful of times.

Second, I want to thank my peers in the Computer Poker Research Group.

In particular, I thank Neil Burch for guiding me along my first complete

research project, from formation of a research problem to design of an algo-

rithmic solution and finally to writing a paper that was ultimately accepted

at AAAI. That research project led to this thesis, which wouldn’t exist in

its current form without Neil’s assistance. I also want to give special thanks

to Michael Johanson and Richard Gibson for giving me invaluable advice

and assistance with the CPRG code base when I was first starting my research.

All of the CPRG - Nolan Bard, Josh Davidson, Johnny Hawkin, Parisa

Mazrooi, Dustin Morrill, as well as Dr. Christopher Archibald, Dr.

Rob Holte, and Dr. Duane Szafron - has provided a wonderful environ-

ment for doing research and for getting feedback on my ideas.

Third, I want to thank the University of Alberta and Alberta Inno-

vates - Technology Futures for awarding me with generous scholarships

that supported by graduate studies, allowing me to focus on my research. In

addition, I thank WestGrid and Compute Canada for the computation

resources that they provided me and the rest of the CPRG on their supercom-

puter clusters. Without their support, many of the experiments in this thesis

wouldn’t have been possible.

Finally, I want to thank my parents Bruce and Mary. Without their

iv

support and encouragement, I never would have been able to pursue graduate

studies in the first place.

v

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Thesis Structure . 3

2 Background 5
2.1 Extensive-Form Games . 5

2.1.1 Strategies . 7
2.2 Poker Games . 9

2.2.1 Texas Hold’em . 10
2.2.2 Leduc Hold’em . 11

2.3 Nash Equilibria . 12
2.3.1 Two-Player Zero-Sum Games 13

2.4 Regret and Finding Equilibria 13
2.4.1 Counterfactual Regret Minimization 15
2.4.2 Sampling in CFR . 17

2.5 Abstraction . 18
2.5.1 Solution Concepts in Abstractions 20

2.6 Responding to an Opponent Model 21

3 Strategy Evaluation 23
3.1 Using Exploitability to Evaluate Strategies 24
3.2 Other Evaluation Techniques 26
3.3 A Generalized Evaluation Framework: Pretty-Good Responses 28
3.4 An Example Showing the Power of Pretty-Good Responses . . 30

4 Using Pretty Good Responses to Train Strategies 34
4.1 Regret Minimization with Pretty-Good Responses 35
4.2 Response Functions that Deviate from Pretty-Good 37

4.2.1 Bounded Utility Deviations 38
4.2.2 Stochastic Response Functions 40

4.3 A Generalization of Restricted Nash
Responses . 43
4.3.1 Regret Minimization and Best-Responses 46

5 Empirical Results: Learning to Beat Opponents that Learn 52
5.1 Monte Carlo Tree Search in Leduc Hold’em 53

5.1.1 Algorithm Design . 54
5.1.2 Results . 54

5.2 Frequentist Best-Response in Texas Hold’em 57
5.2.1 Algorithm Design . 58
5.2.2 Training with CFR-FBR 58
5.2.3 Results . 61

vi

6 Conclusion 63
6.1 Future Work . 64

Bibliography 66

vii

List of Figures

3.1 Comparison of a CFR strategy and a CFR-BR strategy using
various abstract game best-responses. 32

5.1 Performance of CFR-UCT-n strategies and a CFR strategy
against UCT-n counter-strategies, as the counter-strategy n
value is increased. 55

5.2 Performance of CFR-UCT-n strategies against a variety of op-
ponents as the n value is increased. 56

5.3 Performance of CFR-FBR-10k and CFR during training as mea-
sured by value against a FBR-10k adversary. 59

5.4 Abstract game exploitability of CFR-FBR-10k during training
as the training time is increased. 60

5.5 Performance of CFR-FBR-n strategies and a CFR strategy against
FBR-n counter-strategies, as the counter-strategy n value is in-
creased. 61

viii

Chapter 1

Introduction

Extensive-form games are a natural representation for sequential decision-

making tasks. By incorporating multiple agents, stochastic outcomes, and

hidden information, they provide a powerful framework for modeling real-

world situations and also generalize other popular models of decision making

such as simultaneous games and (finite-horizon) partially observable Markov

decision processes. This generality makes extensive-form games valuable as a

domain for developing and testing artificial intelligence techniques.

In extensive-form games with imperfect information, Nash equilibrium

strategies are generally used as a solution concept. Efficient algorithms ex-

ist for finding Nash equilibria in two-player zero-sum games, but even with

these tools finding Nash equilibria is intractable in the large games that of-

ten result from human interaction. For example, there exist commonly played

poker variants in which directly applying the most efficient algorithms for find-

ing Nash equilibria would require more bytes of RAM than there are atoms in

the observable universe [22].

In order to create agents in these large games, a variety of techniques

have been employed, often resulting in a static strategy that an agent can

use to play the game with simple table lookups. The most successful method

turns the large game into a smaller, abstract game by artificially preventing

the players from observing some information, and then uses state-of-the-art

algorithms to find a Nash equilibrium in the abstract game. One way to

evaluate these techniques is to measure how close the resulting strategy is to a

1

Nash equilibrium for the full game, but this raises the question of how such a

similarity should be measured, especially when no Nash equilibrium is known.

In two-player zero-sum games, Nash equilibrium strategies are guaranteed

to minimize worst-case losses. In other words, if a player must face an adver-

sarial opponent who both always knows her strategy and can perfectly respond

to it to maximize his own expected utility, she cannot do better than to play

a Nash equilibrium strategy. Because of this relation, the worst-case perfor-

mance, or exploitability, of a strategy is often used to measure its distance

from a Nash equilibrium and thus evaluate its strength [33, 24, 14].

Unfortunately, as Ganzfried et al. previously identified, there are concep-

tual issues with exploitability as an evaluation technique as well as computa-

tional limitations which prevent its use in very large games [14]. In addition,

empirical results have shown limited correlation between exploitability and ac-

tual one-on-one performance [32, 24, 4]. This leads us to propose two related

questions which motivate the work presented in this thesis:

1. How do we evaluate strategies in large extensive-form games?

2. Given an evaluation metric, how do we efficiently find a strategy that

performs well when evaluated by the metric?

1.1 Contributions

This thesis makes the following contributions:

• A class of strategy evaluation metrics which make use of “pretty-good

responses” to generate counter-strategies. These metrics generalize ex-

isting evaluation techniques such as exploitability and expected utility

against a static opponent.

• A family of computational techniques called CFR-f which find strate-

gies which are strong when evaluated by a particular response function

f . When f is a pretty-good response, CFR-f converges to an optimal

strategy as evaluated by f .

2

• Experimental results which demonstrate the effectiveness of evaluating

strategies with our generalized metrics as well as the effectiveness of

CFR-f at finding strategies which are strong against adaptive opponents.

1.2 Thesis Structure

In Chapter 2 of this thesis, we formalize the notion of extensive-form games,

introduce poker games as testbeds for extensive-form game techniques, and

present the necessary background in game theory and game-solving for us to

motivate and present our original contributions.

In Chapter 3, we examine methods for evaluating strategies in extensive-

form games. By looking at accumulated results from previous work, we argue

that exploitability fails to offer a complete picture of strategy strength. We

then propose a new class of evaluation metrics, which use techniques called

pretty-good response functions to find a counter-strategy to the strategy being

evaluated and measure the performance of the strategy against the counter-

strategy. Instead of the absolute worst-case opponent used in calculating ex-

ploitability, pretty-good responses generate “bad-case” opponents for different

degrees of “bad.” By comparing the results of different pretty-good response

evaluations, we can get a picture of not only a strategy’s worst-case perfor-

mance, but also how often the worst case is realized; in other words, not just

how exploitable a strategy is, but how difficult it is for an opponent to ex-

ploit it. We conclude by showing empirically that pretty-good responses can

measure dimensions of strategy strength not captured by exploitability.

In Chapter 4, we turn to question #2 and look at using our new evaluation

metrics to learn strong strategies. Any regret minimization algorithm can be

modified such that the opponent formulates his strategy as a response to the

player’s (regret-minimizing) strategy. When the adaptive agent is a pretty-

good response, we prove that the regret minimization algorithm will converge

to a strategy that is optimal when evaluated by the pretty-good response.

We further prove a bound on the optimality of the resulting strategy for the

cases where we can bound the adaptive player’s deviation from a pretty-good

3

response, including for stochastic responses. Finally, we show how an existing

framework for creating strategies that make a tradeoff between exploitation

and exploitability can be generalized using pretty-good responses.

In Chapter 5, we empirically test our algorithm for finding static strategies

which are optimal against adaptive opponents. In particular, we train against

opponents that use Monte Carlo sampling techniques to learn how to play well

against our strategy. In a small poker game, we learn to play against UCT,

a Monte Carlo tree search algorithm [28] which is used in strong agents in

complex games such as Go [15]. We show that we are able to generate strategies

which perform better against UCT opponents than a Nash equilibrium does

against the same opponents. We also test how our technique scales to large

poker games by training against Frequentist Best-Responses, a Monte Carlo

technique for quickly approximating a best-response which has been previously

applied to poker [23, 21].

4

Chapter 2

Background

In this chapter we will present the notation and concepts that will be used

in this thesis, and we will examine some previous work that our contributions

build on. In section 2.1 we formalize the notion of extensive-form games, and

in section 2.2 we describe the poker games that we will use in this thesis to

test our techniques. Sections 2.3, 2.4, 2.5, and 2.6 describe solution concepts

and algorithms used in previous work.

2.1 Extensive-Form Games

We can model any finite sequential, multi-agent interaction by using a game

tree. Each node represents a state of the game, with interaction beginning at

the root. At each internal node of the tree, one of the agents must choose an ac-

tion, represented by an edge, which results in a new game state corresponding

to the child node. At the tree’s leaves, the game ends with each agent assigned

a utility for this outcome. Stochastic events in the game are represented by

chance nodes, where each edge is taken with a predefined probability.

In many interactions of note, the agents can’t perfectly observe the state of

the game. For example, in poker games a player cannot observe the cards held

by her opponent, which are the outcome of a chance node. Games of this type

are said to exhibit imperfect information. We model them by partitioning

the game states of an extensive-form game into information sets, where

the acting player can only distinguish two game states if they are in different

information sets. We can model this formally as an extensive-form game.

5

Definition 1. A finite extensive form game Γ consists of:

• A finite set N of players.

• A finite set H of histories. H contains sequences of actions. For

h, h′ ∈ H, we write h ⊑ h′ if h is a prefix of h′. For all sequences h ∈ H,

any h0 ⊑ h is also in H. Thus H contains the empty sequence. Define

Z ⊆ H to be the set of terminal histories. Thus z ∈ Z if and only if

there is no h ∈ H such that z @ h (z ⊑ h and z ̸= h). For h ∈ H, define

A(h) = {a : (h, a) ∈ H} to be the set of actions available at h, where

(h, a) is the sequence that appends a to h. A(h) is the action set.

• A player function P : H \Z → N∪{c}. P (h) is the player who chooses

the action at h. If P (h) = c then chance chooses the action. We define

Hi = {h ∈ H : P (h) = i} for all i ∈ N ∪ {c}.

• A chance function σc which assigns a probability distribution over ac-

tions at every h ∈ Hc. We write σc(·|h) for the distribution and σc(a|h)

for the probability that a ∈ A(h) occurs at history h. Since σc(·|h) is a

probability distribution,
∑

a∈A(h) σc(a|h) = 1.

• For each player i ∈ N , a utility function ui : Z → R. When the game

reaches a terminal history z ∈ Z, each player i receives payoff ui(z) and

the game is over. If N = {1, 2} and u1(z) = −u2(z) for all z ∈ Z then

we call the game zero-sum.

• For each player i ∈ N , an information partition Ii of Hi. If Ii ∈ Ii we

call Ii an information set for player i. The partition must satisfy the

property that if h, h′ ∈ Ii, then A(h) = A(h′). We define A(Ii) = A(h)

and P (Ii) = i.

Any information partition results in a legal extensive-form game, but many

partitions result in unnatural models where a player can know something about

the current game state, but then forget that information in a later game state.

To avoid these complications, we assume an additional property known as

perfect recall, which requires that no player forgets information. For every

history h where there is some g @ h such that P (g) = P (h), define D(h) to be

6

the last predecessor of h where P (h) acted. Formally, let D(h) be the unique

history such that D(h) @ h, P (D(h)) = P (h) and there is no g such that

D(h) @ g @ h and P (g) = P (h).

Definition 2. An extensive form game exhibits perfect recall if for any two

histories h, h′ in the same information set I, either D(h) and D(h′) are both

undefined, or they are both defined and

• D(h), D(h′) ∈ I for some I ∈ Ii where i = P (h).

• For any a ∈ A(D(h)), (D(h), a) ⊑ h if and only if (D(h′), a) ⊑ h′.

If an extensive form game does not exhibit perfect recall, it is said to exhibit

imperfect recall.

By inducting backward, we see that perfect recall implies that a player

remembers each of his previous information sets, as well as the action she took

at each information set. This thesis will only consider games which exhibit

perfect recall.

2.1.1 Strategies

Informally, a strategy is a player’s plan for how to play a game. A pure

strategy specifies a single deterministic action at each of a player’s decision

points. For an extensive-form game, this takes the form of a function that

maps each of a player’s information sets to a legal action at that informa-

tion set. A mixed strategy is a probability distribution over pure strategies.

In extensive-form games with perfect recall, there is a one-to-one correspon-

dence between mixed strategies and behavioral strategies, which specify a

probability distribution over actions at every information set.

Definition 3. We call σi a behavioral strategy for player i if σi(·|Ii) is a

probability distribution over A(Ii) for every Ii ∈ Ii. We denote the probability

that σi chooses a ∈ A(Ii) at information set Ii by σi(a|I). We label the set of

all behavioral strategies for player i as Σi.

7

Because any pure or mixed strategy for a perfect recall extensive-form game

can be represented as a behavioral strategy, this thesis will deal strictly with

behavioral strategies unless otherwise specified. When we refer to a strategy,

we specifically mean a behavioral strategy.

A set of strategies for each player i ∈ N is called a strategy profile and

labelled σ. We label the set of all strategy profiles as Σ. The set of strategies

in σ except for that of player i is labelled σ−i. We define ui(σ) to be the

expected utility of player i if all players play according to σ, and ui(σi, σ−i) to

be the expected utility for player i if she plays according to σi and all other

players play according to σ−i.

Define πσ(h) to be the reaching probability for history h. This is equal

to the probability of history h occuring if all players play according to σ ∈ Σ.

This probability can be decomposed πσ(h) =
∏

i∈N∪{c} π
σ
i (h) where πσ

i (h) is

the probability that player i takes the necessary actions to reach h, irrespective

of the other players. Define πσ
−i(h) to be the contribution to πσ(h) from chance

and all players except player i. Also define πσ(h, h′) to be the probability of

reaching h′ from h.

Define σT to be the strategy profile that averages over the profiles σ1, ..., σT .

This can be defined at each information set:

Definition 4. [36] The average strategy for player i is

σT
i (a|I) =

∑T
t=1 π

σt

i (I)σt(a|I)∑T
t=1 π

σt

i (I)
(2.1)

where πσt

i (I) is the compound probability that player i takes each of the actions

necessary to reach I (under σt
i).

It is easy to show that in perfect recall games, for any set of opponent

strategies, this average strategy has expected utility equal to the mixed strat-

egy that randomly selects between each of σ1, ..., σT at the start of the game.

This can be stated formally as

1

T

T∑
t=1

ui(σ
t
i , σ−i) = ui(σ

T
i , σ−i) (2.2)

8

2.2 Poker Games

When we design techniques for extensive-form games, we need example games

in which to test the techniques. For much of the research community, poker

games fulfill this purpose, and this thesis will also make use of them. Poker

games have several key advantages:

• Poker games incorporate chance events (dealing cards from a random

deck) and imperfect information (hands of cards each visible to only one

player). They thus make use of extensive-game features that don’t exist

in other common games like chess and go.

• Poker games allow for a range of payoffs. This means that poker agents

must not only be concerned with whether they beat their opponent(s),

but also with how much they win from them. This opens research av-

enues to create poker agents which are specifically designed to exploit

certain opponents, which is a feature not found in other extensive-form

games like liar’s dice.

• Poker games are commonly played by humans. This means that there

is a wealth of domain information for researchers to draw on, there is

public interest in poker-related research, and researchers can test their

agents by playing against human experts.

• Poker games are easily customizable depending on the focus of the tech-

nique being tested. The number and branching factor of chance events

can be changed by modifying the size of the deck and the number of

cards dealt, the number and branching factor of player nodes can be

changed by modifying the number of betting rounds and the set of legal

bet sizes, and the games can be easily extended to allow for any number

of players.

In this thesis, we will concentrate on two poker games: Texas Hold’em and

Leduc Hold’em. We will concern ourselves with the versions of these games

that are two-player (also known as heads-up) and (fixed)-limit, which

9

means that the number of bets per round is limited and all bets are of a

predefined size.

2.2.1 Texas Hold’em

Two-player limit Texas Hold’em is the smallest poker game commonly played

by humans. Because of this, it has been the focus of the majority of artificial

intelligence research in poker so far, and has been used as a format in the

Annual Computer Poker Competition since its inception in 2006 [1].

Texas Hold’em is played with a standard fifty-two card deck of playing

cards, containing cards of thirteen different ranks in each of four suits. At

the end of each discrete game (called a hand in poker terminology), each

player will hold two private cards (also called a hand) and there be will five

community cards face up and visible to each player. Each player forms the

best possible five card poker hand from among the seven cards comprised of his

private cards and the community cards. Poker hands define a total ordering

(with ties) on the set containing all possible subsets of five cards. Whichever

player has the hand which ranks highest by this ordering wins the pot, which

is the sum total of all chips bet during the game. If there is a tie, the players

evenly split the pot.

The actions during Texas Hold’em take place over a series of five betting

rounds. Prior to the first betting round (called the preflop), the private

cards are dealt (two per player). Prior to the second betting round (called the

flop), the first three community cards are dealt. Prior to each of the third and

fourth betting rounds (called the turn and river respectively), one additional

community card is dealt.

At the start of each game, one player is designated as the dealer. In the

two-player game, the dealer is also called the small blind and his opponent

is called the big blind. At the start of the first betting round, the small

blind places a forced bet equal to half of the predefined bet size, and the big

blind places a forced bet equal to the total predefined bet size. During the

first betting round, action starts with the small blind, while during the rest,

it starts with the big blind. When faced with a bet, a player has three legal

10

decisions: they can fold, which forfeits the hand, they can call, which requires

them to place chips into the pot matching the bet, or they can raise, which

requires them to place chips into the pot matching the current bet plus an

extra bet that they make which the opponent will now be required to respond

to. When a player is not facing a bet, they have two legal actions: they can

check, in which they decline the opportunity to take an action, or they can

bet, which requires them to place chips into the pot to make a bet that must

be matched by the opponent. Because they are never possible at the same

decision point, we often identify check with call and raise with bet.

On each betting round, a maximum of four bet/raise actions can be made

between the players; after this limit has been reached, only fold and call are

legal actions. On the first betting round, the big blind’s forced bet counts as

the first of these bets. A betting round ends after each player has had at least

one opportunity to act and the last action was a call/check. All bets/raises

on a particular betting round are forced to be the same size. On the preflop

and flop betting rounds, this size is equal to the size of the big blind’s forced

bet. On the turn and river betting rounds, the size doubles to twice the big

blind’s forced bet.

2.2.2 Leduc Hold’em

Leduc Hold’em [31] is a small poker game designed to retain many of the

strategic complexities of Texas Hold’em, while allowing researchers to quickly

test techniques that either don’t scale to Texas Hold’em or would require

more computational resources than are available. In Leduc Hold’em, the deck

contains six cards, comprising three ranks and two suits. Only one private

card is dealt to each player, and only one community card is dealt. The best

two card poker hand wins, with a pair beating a non-pair, and highest card

deciding the winner otherwise.

At the start of a game of Leduc Hold’em, each player places a forced bet of

one chip called the ante and is dealt his private card. There is then a betting

round (called the preflop) which is identical to a Texas Hold’em betting round

except that the maximum number of bets/raises is two. Then the community

11

card is dealt and another betting round (called the flop) takes place, after

which the game is over. The bet size is two chips for the preflop round and

four chips for the flop round. Like in Texas Hold’em, one player is identified

as the dealer. On each of the two betting rounds, the non-dealer player acts

first.

2.3 Nash Equilibria

In an extensive-form game, a player’s goal is to maximize her expected utility.

If she knows the strategies that each of her opponents will play, she can do

this by playing a best-response strategy, which is a strategy that achieves

maximal expected performance against a particular set of opponent strategies.

Definition 5. σi ∈ Σi is a best-response to σ−i if

ui(σi, σ−i) ≥ ui(σ
′
i, σ−i), ∀σ′

i ∈ Σi

In general, a player will not know her opponent’s strategies, so she cannot

directly maximize her expected utility. Instead, our solution concept is aNash

equilibrium, which assumes that each player is rational and will attempt to

maximize her own expected utility, and thus requires that each player play a

best-response to her opponents.

Definition 6. A Nash equilibrium is a strategy profile σ ∈ Σ where

ui(σ) ≥ ui(σ
′
i, σ−i),∀σ′

i ∈ Σi,∀i ∈ N.

An ε-Nash equilibrium is a an approximation of a Nash equilibrium where

ui(σ) ≥ ui(σ
′
i, σ−i)− ε,∀σ′

i ∈ Σi,∀i ∈ N.

A strategy profile is a Nash equilibrium if and only if no player can gain

utility by unilaterally changing his strategy, and is an ε-Nash equilibrium if

and only if no player can gain more than ε utility by unilaterally changing his

strategy.

12

2.3.1 Two-Player Zero-Sum Games

All games considered in this thesis will have two players and a zero-sum utility

function. In such games, all Nash equilibria have the same expected utility,

which is known as the game value and is given by the minimax theorem.

Theorem 1 (Minimax Theorem). In any finite zero-sum game with two

players

v1 = max
σ1∈Σ1

min
σ2∈Σ2

u1(σ1, σ2) = min
σ1∈Σ1

max
σ2∈Σ2

u1(σ1, σ2).

v1 is called the game value for player 1.

Because the game is two-player and zero-sum, v2 = −v1 is the game value

for player 2. If σ is a Nash equilibrium in a two-player zero-sum game, then

ui(σ) = vi for each player.

In a two-player zero-sum game, the exploitability of a strategy is how

much expected utility a best-response opponent can achieve above the game

value:

exploit(σi) = max
σ∗
−i∈Σ−i

u−i(σi, σ
∗
−i)− v−i

= vi − min
σ∗
−i∈Σ−i

ui(σi, σ
∗
−i).

In large games, the game value may be intractable to compute, so we instead

consider the average exploitability of a strategy profile:

exploit(σ) =
1

2
(exploit(σ1) + exploit(σ2))

=
1

2

(
max
σ∗
2∈Σ2

u2(σ1, σ
∗
2) + max

σ∗
1∈Σ1

u1(σ
∗
1, σ2)

)
.

Because each strategy in a Nash equilibrum profile is a best-response to the

opponent, by definition exploit(σ) = 0 for any Nash equilibrium σ.

To adopt a convention, we will use female pronouns for player 1 and male

pronouns for player 2 whenever we talk about a two-player game.

2.4 Regret and Finding Equilibria

Consider a two-player extensive-form game that is played over a series of time

steps t = 1, ..., T . Let σt be the strategy profile played by the players at

13

time t such that player i will receive expected utility
∑T

t=1 ui(σ
t) over the

total time steps of the game. Because the other player’s strategies σt
−i are

not known, neither player knows which strategy is optimal to play against

her opponent. We can evaluate a player’s performance under these conditions

using the concept of regret, which measures how much expected utility she

lost by not playing the optimal strategy.

Definition 7. [36] The average overall regret of player i at time T is

RT
i =

1

T
max
σ∗
i ∈Σi

T∑
t=1

(
ui(σ

∗
i , σ

t
−i)− ui(σ

t)
)

(2.3)

This is the amount of utility that player i lost by playing according to σt

for t = 1, ..., T instead of playing the best static strategy σ∗
i . Minimizing regret

is clearly connected to maximizing expected utility, so it’s unsurprising that

each player minimizing his regret can lead to a Nash equilbrium. The exact

relation is given by a well-known theorem of unknown origin:

Theorem 2. In a two player zero-sum game played for T iterations, with

strategy profile σt played at time t, if RT
i ≤ εi for players i = 1, 2, then σT is

a (ε1 + ε2)-Nash equilibrium.

Proof.

u1(σ
T
1 , σ

T
2) =

1

T

T∑
t=1

u1(σ
t
1, σ

T
2) (2.4)

≥ 1

T
min
σ∗
2∈Σ2

T∑
t=1

u1(σ
t
1, σ

∗
2) (2.5)

≥ 1

T

T∑
t=1

u1(σ
t
1, σ

t
2)− ε2 (2.6)

≥ 1

T
max
σ∗
1∈Σ1

T∑
t=1

u1(σ
∗
1, σ

t
2)− ε1 − ε2 (2.7)

≥ u1(σ
′
1, σ

T
2)− ε1 − ε2 ∀σ′

1 ∈ Σ1 (2.8)

Steps 2.4 and 2.8 use the definition of average strategy and the linearity of

expectation. Step 2.6 uses the regret bound for player 2 and step 2.7 uses the

14

regret bound for player 1. An analagous proof can used to show

u2(σ
T
1 , σ

T
2) ≥ u2(σ

T
1 , σ

′
2)− ε1 − ε2 ∀σ′

2 ∈ Σ2 (2.9)

which completes the proof by Definition 6.

Efficient algorithms exist for minimizing an agent’s regret in the adversar-

ial multi-armed bandit setting, where at each time step the agent selects

an action from a set A and the adversary (without knowing the agent’s choice)

assigns payoffs to each element in A. This can be considered equivalent to an

extensive-form game where each player has only one information set, and the

agent’s strategies are exactly the elemets of A. Algorithms for minimizing re-

gret in this setting include (linear) regret-matching [20], which is derived

from Blackwell’s Approachability Theorem [5], and Hedge [10], which is a

generalized form of the Weighted Majority Algorithm [30]. These approaches

can be united under a regret-matching framework [19].

Regret minimization algorithms can easily be extended to extensive-form

games by considering the set of pure strategies as the set of actions. Unfortu-

nately, when we do so, we lose the efficiency these algorithms had in the bandit

setting, as their time and space complexity will now depend on the size of the

strategy set, which is exponential in the size of the game. The key insight that

allows efficient regret minimization in extensive-form games is that a player’s

overall regret can be decomposed into individual values at each information

set, allowing overall regret to be minimized by independently minimizing a

form of regret at every information set.

2.4.1 Counterfactual Regret Minimization

Counterfactual regret minimization (CFR) is an algorithm developed by

Zinkevich et al. [36] for minimizing regret in extensive form games. The algo-

rithm works by independently minimizing a player’s counterfactual regret

at every information set. Counterfactual regret is defined using counterfac-

tual value, which is a player’s expected utility for reaching a given information

set, assuming that player modifies his strategy to reach the information set

when possible.

15

Definition 8. [29] The counterfactual value (or counterfactual utility)

for player i under strategy profile σ at information set I is

vi(σ, I) =
∑
z∈ZI

πσ
−i(z[I])π

σ(z[I], z)ui(z) (2.10)

where ZI = {z ∈ Z : ∃h ∈ I, h ⊑ z} is the set of terminal histories that go

through I and z[I] ∈ I is the unique history in I such that z[I] ⊑ z.

Definition 9. [26] Consider a repeated extensive form game in which strategy

profile σt is played at time t. The counterfactual regret of player i at time

t for action a at information set I is

rti(I, a) = vi(σ
t
(I→a), I)− vi(σ

t, I) (2.11)

where σt
(I→a) is the strategy profile σt except at information set I, action a is

always played.

A player’s overall regret in a extensive-form game is equal to a summation

over counterfactual regrets. For any x, define x+ = max{x, 0}.

Theorem 3. [16, 36]

RT
i =

∑
I∈Ii

πσ∗

i (I)
∑

a∈A(I)

σ∗
i (a|I)

1

T

T∑
t=1

rti(I, a) ≤
∑
I∈Ii

max
a∈A(I)

(
1

T

T∑
t=1

rti(I, a)

)+

(2.12)

where σ∗
i = argmaxσ′

i∈Σi

∑T
t=1 ui(σ

′
i, σ

t
−i).

This theorem shows that if we independently minimize the counterfactual

regrets at each information set, then we minimize the average overall regret,

and the average strategy profile will converge to a Nash equilibrium. CFR

creates an iterated series of strategy profiles σ1, σ2, ... by using the linear regret-

matching update rule (with counterfactual regrets) to update σt
i(·|I) at each

information set [36]. This update rule is:

σT+1
i (a|I) =

⎧⎨⎩
∑T

t=1 r
t
i(I,a)∑

b∈A(I)

∑T
t=1 r

t
i(I,b)

if
∑

b∈A(I)

∑T
t=1 r

t
i(I, b) > 0

1
|A(I)| otherwise

(2.13)

16

Thus CFR assigns each action a probability proportional to accumulated coun-

terfactual regret from not playing that action. The values are updated by

walking the tree from the root.

We can use the linear regret-matching bound given by Gordon [18] in com-

bination with Theorem 3 to bound the average overall regret of the CFR

algorithm after T iterations. Define σ∗
i = argmaxσ′

i∈Σi

∑T
t=1 ui(σ

′
i, σ

t
−i). For

each player i, let Bi be the partition of Ii such that two information sets

I, I ′ are in the same B ∈ Bi if and only if player i takes the same sequence

of actions to reach I and I ′. Define the M-value of σi to be Mi(σi) =∑
B∈Bi

√
|B|maxI∈B πσi

i (I). Let ∆i = maxz,z′∈Z ui(z)− ui(z
′) be the range of

utilities for player i. Let |Ai| = maxh∈H:P (h)=i |A(h)| be player i’s maximum

number of available actions.

Theorem 4. [16] When using the regret matching update rule in CFR, the

average regret after T iterations is bounded as

RT
i ≤

∆iMi(σ
∗
i)
√
|Ai|√

T
(2.14)

Because the regret after T iterations is O(1/
√
T), we know from Theorem

2 that CFR takes O(1/ε2) iterations to compute a ε-Nash equilibrium. Also

worth noting is that Mi(σ
∗
i) ≤ |Ii|, so the bound is linear in the number of

information sets. In addition, the algorithm only needs to store regrets and

strategies for information sets, so the memory usage is linear in the number of

information sets.

2.4.2 Sampling in CFR

The traditional CFR algorithm walks the entire game tree, and updates the

regrets at each information set on every iteration. In practice, faster conver-

gence is seen when some sort of sampling is used to select which part of the tree

to walk on a particular iteration. For example, the original paper of Zinkevich

et al. proposed using chance sampling, in which one action is sampled for

each chance node on every iteration. Only information sets consistent with

the sampled chance events are updated on that iteration [36].

17

In this thesis, we will make particular use of another sampling scheme

called public chance sampling (PCS) [26]. Under PCS, chance events are

sampled only if the outcome is immediately visible to all players (meaning that

two histories with different outcomes for the chance event can never be in the

same information set). Instead of explicitly walking each private chance out-

come when a chance node is encountered in the tree, the algorithm defers the

evaluation of private chance events until a terminal node is reached. Under a

normal tree walk, if each player has n private chance outcomes, Θ(n2) terminal

evaluations must be performed. The public tree walk used in PCS exploits the

payoff structure of some games (such as poker games where payoffs depend on

a ranking of private chance outcomes) to speed this up to Θ(n) evaluations

(possibly with a Θ(n lnn) sorting step).

2.5 Abstraction

Even with the unprecedented scaling offered by CFR, there are many interest-

ing extensive-form games that are too large to solve with existing computing

resources. Two-player limit Texas Hold’em poker, the smallest poker game

which is regularly played by humans, has 1018 game states and 1014 informa-

tion sets [34], which means that traditional CFR would need over a petabyte

of RAM to solve the game, with time constraints being similarly limiting. 1

When working with games that are too large to solve directly with CFR,

the majority of research uses a method of abstraction to try to find a good

strategy for the game. Abstraction creates a smaller extensive form game

which is meant to approximate the full game. An equilibrium finding technique

such as CFR is used to find an optimal strategy for the abstract game. This

strategy is then translated back to the full game. It is hoped that the abstract

game equilibrium will be close to a full game equilibrium.

There are two commonly used methods for creating an abstract game from

a full game in a structured fashion. The first uses the full game’s underlying

1Recently, Bowling et al. were able to use a modified form of CFR to find an ε-Nash
equilibrium for two-player limit Texas Hold’em, but their technique used over 900 core-
years of computation time and 10.9 TB of disk space [6].

18

game tree for the abstract game, but shrinks the game’s information tree by

merging player information sets to create a coarser information partition. The

second shrinks the game tree itself by removing legal actions from the abstract

game. Waugh et al. formally defined abstraction that uses either or both of

these techniques:

Definition 10. [33] An abstraction for player i is a pair αi = ⟨αI
i , α

A
i ⟩,

where

• αI
i is a partitioning of Hi, defining a set of abstract information sets.

This partition must be coarser than Ii: if h, h′ ∈ I for some I ∈ Ii then

h, h′ ∈ I ′ for some I ′ ∈ αI
i .

• αA
i is function from histories to sets of actions, where αA

i (h) ⊆ A(h) and

αA
i (h) = αA

i (h
′) for all h, h′ ∈ H such that h ∈ I and h′ ∈ I for some

I ∈ αI
i .

An abstraction α is a set of αi, one for each player. The abstract game

Γα is the extensive form game obtained from Γ by replacing Ii with αI
i and

A(h) with αA
i (h) for all h ∈ Hi.

In general, we will assume that the abstraction maintains perfect recall in

the abstract game.

In limit Texas Hold’em, chance events have a very large number of possi-

ble outcomes (and thus branching factor), while player nodes have a relatively

small action set. Because of this, limit Texas Hold’em abstraction is focused

on merging information sets by making certain chance outcomes indistinguish-

able to the players. The chance actions in limit Texas Hold’em are the deal of

the cards, so by mergining information sets previously differentiated by chance

actions, we are causing players to be unable to differentiate hands (collections

of cards including private cards and community cards) that they could dif-

ferentiate in the full game. We will refer to this method of abstraction as

card abstraction. Conveniently, a strategy in such an abstract game can be

directly played in the full game (because every full game information set is a

subset of some abstract game information set).

19

This thesis is not concerned with how abstractions are created, but only

with how they are used. For examples of modern abstraction techniques, see

[34, 27, 13, 7].

2.5.1 Solution Concepts in Abstractions

The simplest way to find a solution strategy in a abstract game is to use a

technique such as CFR to find an ε-Nash equilibrium for the abstract game.

Because the abstraction is designed to be similar to the full game, it is hoped

that the the abstract equilibrium will be similar to the full game equilibrium.

However, there is no guarantee on the quality of an abstract game equilibrium

when played in the full game. Waugh et al. found that abstract game equilibria

for Leduc Hold’em can have widely varying exploitabilities in the full game,

and the sizes of these exploitabilities are not well-correlated with how closely

the abstraction approximates the full game [33].

One proposed alternative to finding an abstract game equilibrium is to find

an abstract game strategy which has minimal exploitability in the full game.

This can be done with the technique of CFR-BR, which runs CFR updates

for one player, but replaces the other CFR player with a best-response (BR)

player [25]. On each iteration of the algorithm, the BR player is updated to

play a full game best-response to the CFR player’s strategy (which is defined

in an abstract game). This guarantees that the CFR player’s strategy will

converge to a strategy that minimizes full game exploitability amongst the

strategies that are expressible in the abstract game.

The use of CFR-BR is limited in practice because it requires an efficient

method for computing a best-response in the full game. The output of the

CFR-BR computation is equivalent to solving for an equilibrium in an ab-

straction where one player (the CFR player) is abstracted and the other (the

BR player) plays in the full game. The advantage of CFR-BR is that it saves

on memory by not needing to store the regrets of the BR player, but it still re-

quires comparable computation time to when CFR is run with an unabstracted

player [8].

20

2.6 Responding to an Opponent Model

Many extensive-form games, including poker games, have more than a simple

binary outcome of winning or losing. Also important is the range of utility

outcomes; a zero-sum game is guaranteed to have one winner and one loser, but

the winner could win by many different amounts. While equilibrium strategies

are guaranteed to not lose against any opponent, they might not win as much

as other strategies could against exploitable opponents. This makes another

interesting research question for extensive form games: how can we create

agents that take advantage of exploitable opponents without giving up too

much?

Some research has looked at learning to take advantage of an opponent in

an online setting (for examples, see [11, 3]), but in very large games such as

poker games, it can be hard to learn an accurate opponent model quickly. The

majority of research has thus focused on offline techniques. These techniques

begin by creating a model of the opponent’s strategy (perhaps using action

records from previous play), and then learning a good counter-strategy. The

naive technique would be to simply learn a best-response strategy to the model,

but this is a poor idea in practice; a best-response strategy is very brittle,

meaning that if the opponent model is even only slightly inaccurate, the best-

response strategy can perform poorly against the actual strategy.

The technique of Restricted-Nash Response (RNR) was developed to

solve this problem [23]. RNR uses an input parameter p with 0 ≤ p ≤ 1,

called the mixing rate. It then runs a modified form of the CFR algorithm,

where one player is updated as usual, but the other player is replaced with

what is called a RNR mimic. The mimic does the normal CFR update with

probability 1 − p, but with probability p it plays the static strategy that we

are using to model the opponent. The CFR player’s strategy is the output. At

p = 0, the RNR mimic is a normal CFR player, and thus the RNR strategy

will be an equilibrium strategy. At p = 1, the RNR mimic always plays the

opponent model, and the RNR strategy will be a best-response. Using a p

between 0 and 1 allows the RNR strategy to exploit the opponent while giving

21

up comparatively little of its own exploitability.

It can be proved that RNR produces strategies that are optimal at exploit-

ing an opponent while limiting the strategy’s own exploitability.

Theorem 5. [23] For any σ−i ∈ Σ−i, let σi be the strategy produced by running

RNR with σ−i as the opponent model. Then there exists some ε such that

σi = argmax
σ∗
i ∈Σ

ε−safe
i

ui(σ−i, σ
∗
i)

Where Σε−safe
i = {σi ∈ Σi : exploit(σi) ≤ ε} is the set of strategies exploitable

for no more than ε.

22

Chapter 3

Strategy Evaluation

In Section 2.3, we presented Nash equilibria as a solution concept for extensive-

form games. In games which are too large for a Nash equilibrium to be easily

computed, various techniques are used in an attempt to find strategies that

approximate a Nash equilibrium; these techniques include running CFR (Sec-

tion 2.4.1) or CFR-BR (Section 2.5.1) in an abstract game (Section 2.5). In

order to compare these techniques, we would like to evaluate the strategies

that they produce.

The natural way to measure which of two strategies is stronger is to com-

pare them directly in head-to-head play. However, this method is hampered by

the fact that expected utility between strategies is not transitive. It is common

for σ1 to defeat (in expectation) σ2 and σ2 to defeat σ3, and yet still have that

σ3 defeats σ1 in expectation. Perhaps the issue can be avoided by compar-

ing performance against a variety of opponents, but this introduces additional

difficulties such as how the set of opponents is chosen and how performance

against each one is weighted; is it better to defeat one opponent by a lot and

lose to many by a small amount, or is it better to have uniformly small wins?

In this chapter we will discuss various ways that strategies can be eval-

uated. In section 3.1 we examine exploitability, a commonly used metric in

previous work, and discuss its limitations. In section 3.2 we look at other

evaluation techniques that have been suggested in previous work. In section

3.3 we introduce a new framework that can encompass both pre-existing and

new evaluation methods and present some examples. In section 3.4 we give

23

an example that shows how our framework can give an enhanced conception

of strategy strength.

3.1 Using Exploitability to Evaluate

Strategies

As we introduced in section 2.3.1, exploitability is a measure of how much

a strategy (or profile) loses against a worst-case opponent. Exploitability is

closely connected to the concept of ε-Nash equilbria; if exploit(σ) ≤ ε
2
then σ

is an ε-Nash equilibrium. Thus as the exploitability of σ decreases, it becomes

a closer and closer approximation of a Nash equilibrium. Because of this

connection, exploitability is a natural metric for evaluating strategies when we

use Nash equilibria as our solution concept.

Computing exploitability requires computing a best-response, which is not

possible in all domains. While best-response computation is simpler than

equilibrium computation, it is still intractable in many large games. Only

recent algorithmic advances have allowed the computation of best-responses

in two-player limit Texas Hold’em, and computation still takes 76 CPU-days

[24]. In larger games, we cannot compute a best-response, so we cannot use

exploitability to evaluate strategies.

Even in games where the exploitability calculation is tractable, its use is

limited. Using exploitability as a strategy evaluation metric was the inspira-

tion behind the CFR-BR algorithm (see section 2.5.1), as it finds a strategy

that minimizes exploitability (in the full game). However, strategies produced

by CFR-BR seem to perform poorly in practice. Not only does a CFR-BR

strategy lose to an abstract game Nash equilibrium from the same abstrac-

tion in one-on-one play, the Nash equilibrium also loses less than the CFR-BR

strategy does when each is played against a Nash equilibrium from a larger

abstraction [25].

The issues with CFR-BR are just part of a series of results which indicate

that exploitability is not a good predictor of one-on-one performance. Waugh

performed an experiment comparing abstract game equilibria from various

24

Leduc Hold’em abstractions [32]. Each pair of strategies was played against

each other to determine the expected utility for each strategy, and then the

strategies are ranked in two fashions. In the total bankroll ranking, strate-

gies are ordered by their average expected utility against all other strategies.

In the instant runoff setting, the strategy with the worst expected utility

is iteratively removed until one winner remains. Waugh found a correlation

coefficient between exploitability and ranking of only 0.15 for total bankroll

and 0.30 for instant runoff [32]. Furthermore, Johanson et al. evaluated several

of the strategies submitted to the limit Texas Hold’em event at the 2010 An-

nual Computer Poker Competition. The winner of the competition by instant

runoff ranking was more exploitable than three of the strategies it defeated,

and tended to have better performance than these less exploitable strategies

when playing against the other agents [24]. Bard et al. created abstract game

equilibria for a variety of Texas Hold’em abstractions and found that when

the size of an abstract game is varied for only one player’s information sets,

exploitability and one-on-one performance against the other equilibria were

inversely correlated [4].

These results can likely be explained by the fact that exploitability is a

pessimistic metric (previously discussed in [14]). Exploitability measures the

worst-case performance of a strategy, but not how common it is for the worst

case to be realized. For example, the always-raise strategy which always

makes the bet/raise action is almost five times as exploitable as the always-

fold strategy [24], but always-fold achieves its worst case against any strategy

that doesn’t immediately fold itself, while always-raise achieves its worst case

only against an opponent that makes a specific series of actions for each hand.

Even if an opponent is actively trying to exploit our strategy, exploitability

can be a poor metric. In the large games we are most concerned with, com-

puting a best-response is likely to be too resource-intensive for the opponent

to do online, even if he has access to our full strategy. If he doesn’t have access

to our strategy and must learn it during game play, the situation is even more

bleak. Thus, as long as our strategy is private, it is not clear that we need to

worry about opponents learning to maximally exploit it.

25

When we consider the pessimistic nature of exploitability, we can formulate

a hypothesis to explain why CFR-BR strategies tend to be weak. We should

note that the CFR-BR algorithm uses a form of exploitability that is even

more pessimistic than usual. The CFR player is abstracted, while the BR

player is not, so the CFR player isn’t just assuming that her opponent knows

how to best respond to her, but she is also assuming that her opponent has

more information than she does. Thus the CFR-BR strategy will learn to be

overly cautious, and will avoid taking actions that might have positive expected

value against many opponents in favor of actions that minimize losses against

all opponents.

3.2 Other Evaluation Techniques

The problems with exploitability have not gone unnoticed in previous work.

Some other evaluation techniques have been proposed to supplement the infor-

mation that exploitability gives. Most of these suggestions involve evaluating

a strategy in one-on-one play, either against a particular opponent or against

a group of opponents.

In small games, for example, abstract game equilibria have been evaluated

by playing them against a full game equilibrium [17, 14]. Of course, this is not

practical in most domains, since abstraction is used when finding a full game

equilibrium is intractable. It also isn’t clear how to choose the equilibrium in

games with multiple equilibria.

Another common approach is for strategies to be played against a set of

benchmark opponents, with the results presented in a crosstable that shows

the outcome between every pair of strategies. Opponents have often been

taken from past competitors in the Annual Computer Poker Competition [36,

14, 12, 3]. In other cases, researchers have tested an algorithm by running it

multiple times with different parameters1, and then put the resulting strategies

in a crosstable, possibly with a reference strategy [34, 4, 35]. The results of

a crosstable can be interpreted in numerous ways, but often strategies are

1For example, by running it in different abstract games.

26

compared by looking at their performance averaged across all opponents.

Waugh proposed a new metric specifically designed to replace exploitability

when predicting one-on-one performance against equilibrium-like (i.e. abstract

game equilibria) strategies. This metric, called domination value, measures

the performance of a strategy against a worst-case equilibrium opponent.

Definition 11. [32] The domination value of a strategy σi ∈ Σi is

Domi(σi) = max
σ−i∈Σ∗

−i

u−i(σi, σ−i)− v−i (3.1)

where Σ∗
−i is the subset of Σ−i containing strategies which are part of some

Nash equilibrium for the game Γ.

Domination value is thus analogous to exploitability, but with the opponent

limited to only playing (full game) Nash equilibrium strategies. The intuition

here is that a strategy with a low domination value will play fewer dominated

actions, and thus will make fewer mistakes that lose money against any strong

opponent, even one that doesn’t learn. Results showed that domination value

was better than exploitability at predicting one-on-one performance, at least

against abstract game equilibria. Using the same Leduc Hold’em abstract

equilibria described in the previous section, Waugh found that domination

value had a correlation coefficient of 0.84 with bankroll results, and 0.87 with

runoff results [32]. Unfortunately, computing a strategy’s domination value is

not practical in the large games that we are interested in, as it requires solving

a linear program with size proportional to the size of the game, and is thus at

least as hard as finding a (full game) equilibrium.

Finally, when we specifically evaluate abstract game equilibria, we can

also use techniques designed to evaluate the abstraction directly. One such

technique is to run CFR-BR in the abstraction and find the exploitability of

the resulting strategy. Johanson et al. found that the exploitability of the CFR-

BR strategy was better than the exploitability of the equilibrium strategy at

predicting the one-on-one performance of the equilibrium strategy [27]. In this

thesis, we are interested in techniques that can evaluate strategies in general,

as opposed to only evaluating abstract game equilibria, so this result is of

limited use.

27

3.3 A Generalized Evaluation Framework:

Pretty-Good Responses

So far, we have considered a variety of techniques for evaluating strategies. The

majority of these techniques take a common form. Given an input strategy

to be evaluated, some opponent strategy (or strategies) is chosen. For one-on-

one metrics, this is some predetermined static strategy, for exploitability or

domination value, it is a function of the input strategy. The input strategy

is then played against the response strategy, and is evaluated based on its

expected utility. We formalize this general technique by introducing notation

for response functions and response value functions.

A response function is a mapping from the strategy space of one player

to the strategy space of the other player. Throughout the rest of this thesis, we

will often assume without loss of generality that we are evaluating strategies

for player 1, with player 2 designated as the response player. Then a response

function is any function f : Σ1 → Σ2. A response value function is a real-

valued function that gives the expected utility of a strategy when it is played

against the output of a response function. We write the response value function

induced by a response function f as vf , and it is defined as vf = u1(σ1, f(σ1)).

Under this framework, exploitability is the response value function induced by

the best-response function (though the value is negated by convention), and

one-on-one performance against an opponent σ2 is the response value function

induced by the response function that returns σ2 for all inputs.

With the notation laid out, we now turn to the problem of creating a

metric that accounts for the deficiencies of exploitability. Above, we argued

that exploitability fails at predicting one-on-one performance because it gives

the opponent too much credit in regards to his ability to learn and respond to

our strategy. The other extreme is to assume that the opponent has no ability

to learn and respond to our strategy; instead, we require him to play a static

strategy that doesn’t respond to our strategy. This has its own issues, though,

as our best strategy under such a metric is a best-response to the opponent

strategy, but as we discussed in section 2.6, a best-response strategy is very

28

brittle. That means that a one-on-one evaluation technique is sensitive to even

small changes in our opponent strategy of choice, and can be a poor predictor

of one-on-one performance against opponent strategies that differ from the

evaluation strategy.

Instead, we would like an evaluation metric that is somewhere in between;

it should try to exploit the strategy being evaluated, but it shouldn’t be able

to do so with the perfect exploitive ability of a best-response. We thus intro-

duce a family of exploitative response functions that can be varied between

no exploitative strength (a static opponent strategy) and perfect exploitative

strength (a best-response).

Definition 12. A function f : Σ−i → Σi is called a pretty-good response

(PGR) if ui(σ−i, f(σ−i)) ≥ ui(σ−i, f(σ
′
−i)) for all σ−i, σ

′
−i ∈ Σ−i.

2

The pretty-good response condition requires that the responder maximizes

his utility when he responds to the correct opponent strategy; he can’t increase

his utility by responding to σ′ (and thus playing f(σ′)) when the opponent is

actually playing σ. This ensures that the responder is making an attempt to

exploit his opponent. To illustrate this, consider the modeling setting, in which

the response player in some way builds a model of his opponent’s strategy (e.g.

through online or offline sampling), and then applies a response function to

the model to choose his own strategy. If he uses a response function that is

not a pretty-good response, it can result in a situation where the responder

can exploit the opponent more if he has an inaccurate model for his opponent

strategy. Thus, pretty-good response functions can be viewed as the class of

functions that “correctly” exploit a model.

We can see the flexibility of the pretty-good response framework by estab-

lishing a connection to subsets of responder strategies.

Lemma 1. For every f : Σ−i → Σi such that f is a pretty-good response, there

is a corresponding Σf
i ⊆ Σi such that

f(σ−i) = argmax
σ∗
i ∈Σ

f
i

ui(σ−i, σ
∗
i)

2We use i and −i here because PGRs are defined even in games with more than two
players. In our WLOG framework for two-player games, i = 2 and −i = 1.

29

Similarly, for every Σf
i ⊆ Σi, there is a corresponding f : Σ−i → Σi such that

f(σ−i) ∈ Σf
i for all σ−i and f is a pretty-good response.

Proof. For the forward direction, let Σf
i = {f(σ−i) : σ−i ∈ Σ−i}. For the

reverse direction, define f(σ) = argmaxσ∗
i ∈Σ

f
i
ui(σ−i, σ

∗
i).

By defining Σf
i to be a singleton {σi}, we get an f that always generates

σi, and thus a vf that measures one-on-one performance. By defining Σf
i =

Σi, we get an f that produces a best-response, and thus a vf that measures

exploitability. By choosing any Σf
i that contains more than one strategy, but

not all strategies, we can get an f that is exploitative (i.e. it is a response

function that optimizes its utility based on the opponent’s strategy) but has

only partial exploitative power (i.e. it can’t generate a perfect best-response

to all opponents).

Other evaluation metrics also fit under the pretty-good response frame-

work. Domination value is generated by choosing a Σf
i which contains strate-

gies from Σi if and only if they are part of some Nash equilibrium. Worst-case

performance in a crosstable is generated by choosing a Σf
i corresponding to

the other strategies in the crosstable. Average performance in a crosstable is

generated by choosing a Σf
i corresponding to the singleton strategy that is an

average of all other crosstable strategies.3 Exploitability in an abstract game

α is generated by choosing Σf
i = Σα

i , which is the set of strategies for player i

that are consistent with α.4

3.4 An Example Showing the Power of Pretty-

Good Responses

One of the motivating examples for developing the PGR framework was the

difference between CFR and CFR-BR strategies. CFR-BR strategies are both

theoretically and empirically less exploitable than CFR strategies, but CFR

3Pretty-good response equivalence might fail for crosstables that contain players which
play something other than a static strategy.

4A strategy is consistent with an abstraction if it assigns zero probability to any actions
that don’t occur in the abstraction, and it assigns identical probability distributions to
information sets which are merged in the abstraction.

30

strategies seem to be “stronger” in practice, when we measure their strength in

one-on-one play. In this section, we evaluate a CFR-BR and a CFR strategy,

each created in an abstracted version of Texas Hold’em. When these strate-

gies are played against exploitative opponents with perfect exploitative power

(i.e. a best-response), we know that CFR-BR will come out ahead because

of its lower exploitability. Instead, we examine how the strategies fair against

exploitative opponents that have only partial exploitative power. We do this

by using the PGR framework.

In particular, we use abstract game best-responses as our pretty-good re-

sponses. As discussed in the previous section, an abstract game best-response

is a PGR because it maximizes the responder’s utility among a specific subset

of the responder’s strategies (i.e. the strategies consistent with the abstrac-

tion). We construct a series of abstract games from the full game of Texas

Hold’em, with each abstraction having a different size, and then compute best-

responses in these games.

We know that a CFR strategy is an abstract game equilibria, and thus is

guaranteed to be the optimal strategy when evaluated by an abstract game

best-response in the same abstraction. It’s reasonable to expect that CFR will

also be advantaged over CFR-BR in abstractions that are very similar to the

training abstraction. To minimize this effect when evaluating the strategies,

we used different abstraction techniques when creating the training abstraction

and when creating the evaluation abstraction. For training the CFR and CFR-

BR strategies, we used percentile bucketing with a combination of expected

hand strength (E[HS]) and expected hand strength squared ((E[HS2]),

where hand strength is the percentage of possible opponent hands that a

given hand beats after the river has been dealt. For the evaluation abstrac-

tions, we used k-means clustering with histogram-based distance measures as

described in [27].

The results can be seen in Figure 3.1. The two lines respectively represent

a single strategy produced by CFR and a single strategy produce by CFR-BR.

Each point on a line shows the amount of expected utility that the strategy

loses against an abstract game best-response; a smaller value thus corresponds

31

-50

 0

 50

 100

 150

 200

 250

 300

105 106 107 108 109 1010 1011 1012 1013

lo
ss

 a
ga

in
st

 a
bs

tra
ct

 g
am

e
be

st
-r

es
po

ns
e

(m
bb

/g
)

size of best-response abstraction (infosets)

size of CFR/CFR-BR
 abstraction

CFR
CFR-BR

Figure 3.1: Comparison of a CFR strategy and a CFR-BR strategy using
various abstract game best-responses.

to a better performance for the CFR or CFR-BR strategy. The values are

given in milli-big-blinds per game (mbb/g), which is the expected utility,

normalized with respect to the size of the big blind’s forced bet and multiplied

by 1000. The x-axis shows the size of the abstract game used when creating the

abstract game best-response. The rightmost point on each line was calculated

in a lossless abstraction5, and thus shows the exploitability of the strategy. The

vertical line shows where the abstract game best-responses were calculated in

an abstraction of the same size as the one used to train the CFR and CFR-BR

strategies.

As the far right of this graph shows, CFR-BR is much less exploitable

than CFR. By comparing the lines on the left side of the graph, however, we

see that the CFR-BR strategy is comparatively easier to exploit with sim-

5The lossless abstraction treats two hands as equivalent if they are isomorphic under a
permutation of card suits.

32

pler strategies. Even in an abstraction approximately twice as large as the

training abstraction, the CFR-BR strategy loses more to its abstract game

best-response than the CFR strategy does, and this difference becomes bigger

as the response abstraction gets smaller. Although the CFR-BR strategy loses

less in its absolute worse case, it loses amounts which are comparable to this

worst case against much weaker opponents. In contrast, the CFR strategy has

relatively poor worst-case performance, but only very complex opponents can

closely approximate the worst case.

When we use exploitability to evaluate these strategies, we are only look-

ing at the narrow slice on the far right of this graph. However, any particular

vertical slce of the graph can have predictive power against the right set of

opponents. Even when we give our opponent total access to our strategy

and allow him to exploit us, relative performance can differ from relative ex-

ploitability when the opponent’s computational power is limited. The graph

shows us that a CFR strategy is harder for our opponent to exploit if we as-

sume that he is limited to using an abstraction that is of comparable size to

our own. Pretty-good responses can thus help us to see a fuller picture of

strategy strength than we can get from exploitability alone.

33

Chapter 4

Using Pretty Good Responses
to Train Strategies

In the previous chapter we showed that pretty-good responses can be useful

for evaluating strategies. In particular, in Section 3.4 we used a variety of

pretty-good responses (PGR) to compare the strategies computed by CFR

and CFR-BR. These techniques were each designed to find an optimal strat-

egy given a particular evaluation metric; CFR finds the strategy with optimal

exploitability1 and CFR-BR finds the strategy with optimal full game ex-

ploitability. If we are going to use a PGR to evaluate strategies, then when

we are training a strategy in the first place, we should ideally use a technique

that optimizes with respect to the PGR.

In this chapter, we examine how PGRs can be incorporated into strategy

computation techniques. In Section 4.1 we look at how any regret minimization

algorithm can be used to find a strategy optimal under PGR evaluation. In

Section 4.2 we look at how the theoretical bounds change for response functions

that only approximate the PGR condition. In Section 4.3 we show how the

Restricted Nash Response technique can be generalized with PGRs.

1If CFR is run in an abstract game as it was in our example, it finds the strategy with
optimal abstract game exploitability.

34

4.1 Regret Minimization with Pretty-Good

Responses

In the CFR-BR algorithm, a regret minimization algorithm (i.e. CFR) is run

for one player’s strategy, while the other player is constrained to playing the

strategy specified by a response function (i.e. best-response). Similarly, we

can run any regret minimization algorithm to choose a series of strategies

σ1
1, σ

2
1, ..., σ

T
1 for player 1 while using any response function f to fix player

two’s strategy to be f(σt
1) on each iteration t. When we do this with CFR as

our regret minimization algorithm, we call the resulting algorithm CFR-f .

To analyze the results of running CFR-f , we introduce the notion of

no-regret learnable response functions.

Definition 13. Let f : Σ1 → Σ2 be a response function and define σt
2 = f(σt

1)

for t = 1, ..., T . f is called no-regret learnable if for every sequence of

strategies σ1
1, σ

2
1, ..., σ

T
1 ∈ Σ1 such that RT

1 ≤ ε (where ε > 0), we have that

u1(σ
T
1 , f(σ

T
1)) + ε ≥ max

σ∗
1∈Σ1

u1(σ
∗
1, f(σ

∗
1))

where σT
1 is the mixed strategy that mixes equally between each of σ1

1, ..., σ
T
1 .

The notion of no-regret learnable is important because many regret mini-

mization algorithms (i.e. CFR, adversarial bandit algorithms) are guaranteed

to achieve subconstant regret RT
1 against any opponent. Thus by running

CFR-f using a no-regret learnable f , the average strategy for the CFR player

is guaranteed to converge to a strategy that maximizes the corresponding re-

sponse value function vf . Although we use CFR-f as an example throughout

this chapter, it’s important to note that the theory applies if we replace CFR

with any regret minimization algorithm.

We show that all PGRs are no-regret learnable.

Theorem 6. Every f : Σ1 → Σ2 that is a pretty-good response is no-regret

learnable.

Proof. Let σ1
1, σ

2
1, ..., σ

T
1 ∈ Σ1 be a sequence such such that RT

1 ≤ ε (defined

35

using σt
2 = f(σt

1)).

max
σ∗
1∈Σ

u1(σ
∗
1, f(σ

∗
1)) =

1

T
max
σ∗
1∈Σ1

T∑
t=1

u1(σ
∗
1, f(σ

∗
1)) (4.1)

≤ 1

T
max
σ∗
1∈Σ1

T∑
t=1

u1(σ
∗
1, f(σ

t
1)) (4.2)

≤ 1

T

T∑
t=1

u1(σ
t
1, f(σ

t
1)) + ε (4.3)

≤ 1

T

T∑
t=1

u1(σ
t
1, f(σ

T
1)) + ε (4.4)

= u1(σ
T
1 , f(σ

T
1)) + ε (4.5)

Steps 4.1 and 4.5 use the definition of average strategy and the linearity of

expectation. Steps 4.2 and 4.4 use the PGR condition. Step 4.3 uses the fact

that RT
1 ≤ ε.

Thus for any PGR f , the average strategy generated by CFR-f is guaran-

teed to converge to a strategy that optimizes the evaluation metric that uses

f .

The fact that PGRs are no-regret learnable guarantees only that the aver-

age strategy of the CFR player in CFR-f converges. We now show that the

current strategies (σ1
1, ..., σ

T
1) generated by CFR-f converge with high proba-

bility if f is a PGR.

Theorem 7. Let f : Σ1 → Σ2 be a pretty-good response and σ1
1, σ

2
1, ..., σ

T
1 ∈ Σ1

be a sequence of strategies such that RT
1 ≤ ε when σt

2 = f(σt
1) for t = 1, ..., T .

Then if we select T ∗ uniformly at random from [1, T], we get that

u1(σ
T ∗

1 , f(σT ∗

1)) ≥ max
σ∗
1∈Σ1

u1(σ
∗
1, f(σ

∗
1))−

ε

p

with probability at least 1− p for any p ∈ (0, 1].

Proof. From (4.3) in the proof of Theorem 6, we have that

max
σ∗
1∈Σ

u1(σ
∗
1, f(σ

∗
1)) ≤

1

T

T∑
t=1

u1(σ
t
1, f(σ

t
1)) + ε (4.6)

36

From the definition of maximum, we also have that

1

T

T∑
t=1

u1(σ
t
1, f(σ

t
1)) ≤

1

T

T∑
t=1

max
σ∗
1∈Σ

u1(σ
∗
1, f(σ

∗
1)) (4.7)

= max
σ∗
1∈Σ

u1(σ
∗
1, f(σ

∗
1)) (4.8)

Let k be the number of indices t ∈ {1, ..., T} such that u1(σ
t
1, f(σ

t
1)) <

maxσ∗
1∈Σ u1(σ

∗
1, f(σ

∗
1))− ε

p
. Then

max
σ∗
1∈Σ

u1(σ
∗
1, f(σ

∗
1))− ε ≤ 1

T

T∑
t=1

u1(σ
t
1, f(σ

t
1)) (4.9)

<
1

T

(
k

(
max
σ∗
1∈Σ

u1(σ
∗
1, f(σ

∗
1))−

ε

p

)
+ (T − k)max

σ∗
1∈Σ

u1(σ
∗
1, f(σ

∗
1))

)
(4.10)

= max
σ∗
1∈Σ

u1(σ
∗
1, f(σ

∗
1))−

εk

pT
(4.11)

∴ k < pT (4.12)

The left part of step 4.10 comes from the definition of k and the right part

comes from (4.8). We thus have that there are at most pT strategies in

{σ1
1, ..., σ

T
1 } such that u1(σ

t
1, f(σ

t
1)) < maxσ∗

1∈Σ u1(σ
∗
1, f(σ

∗
1)) − ε

p
, so if T ∗ is

selected uniformly at random from {1, ..., T} there is at least a 1− p probabil-

ity that u1(σ
T ∗
1 , f(σT ∗

1)) ≥ maxσ∗
1∈Σ u1(σ

∗
1, f(σ

∗
1))− ε

p
.

Thus as long as CFR-f is run so as to stop stochastically, the final strategy

will be near optimal with high probability. In practical terms, this means that

a CFR-f implementation can cut memory usage in half because it doesn’t need

to track the average strategy.

4.2 Response Functions that Deviate from

Pretty-Good

We argued in Chapter 3 that the response value functions induced by PGRs

can be informative evaluation techniques; however, it is reasonable that we

might sometimes want to use response value functions which are not PGRs.

One motivating example that we will explore more in the next chapter is

Monte Carlo techniques. These response functions work by drawing some

37

number of samples from the opponent’s strategy, and using the results in some

way to generate a counter strategy. They thus meet both of the criteria we

were looking for in informative response functions: they in some way exploit

the opponent (by basing the response on the opponent samples), and they

do so with varying exploitative power (by varying the number of samples).

Unfortunately, we can’t guarantee that a Monte Carlo response will be a PGR

since their behavior is stochastic.

4.2.1 Bounded Utility Deviations

To characterize how much a response function deviates from a pretty-good

response, we introduce the concept of a δ-pretty-good response, which

bounds how much utility the responder can lose by using the response function

on the opponent’s actual strategy instead of some other opponent strategy.

Definition 14. A function f : Σ−i → Σi is called a δ-pretty-good response

if ui(σ−i, f(σ−i)) + δ ≥ u1(σ−i, f(σ
′
−i)) for all σ−i, σ

′
−i ∈ Σ−i.

It should be noted that, because utilites are bounded, every response func-

tion is a δ-pretty-good response for some δ. Because we are dealing with

functions that deviate from the PGR condition, we also need to handle devi-

ations from no-regret learnability. To do so, we classify response functions by

how close to an optimal response a regret minimization algorithm can get.

Definition 15. Let f : Σ1 → Σ2 be a response function and define σt
2 = f(σt

1)

for t = 1, ..., T . f is called no-regret δ-learnable if for every sequence of

strategies σ1
1, σ

2
1, ..., σ

T
1 ∈ Σ1 such that RT

1 ≤ ε (where ε > 0), we have that

u1(σ
T
1 , f(σ

T
1)) + ε+ δ ≥ max

σ∗
1∈Σ1

u1(σ
∗
1, f(σ

∗
1)).

We show that the bound on deviation from the PGR condition is directly

related to the bound on deviation from no-regret learnability.

Theorem 8. Every f : Σ1 → Σ2 that is a δ-pretty-good response is no-regret

2δ-learnable.

38

Proof.

max
σ∗
1∈Σ

u1(σ
∗
1, f(σ

∗
1)) =

1

T
max
σ∗
1∈Σ1

T∑
t=1

u1(σ
∗
1, f(σ

∗
1)) (4.13)

≤ 1

T
max
σ∗
1∈Σ1

T∑
t=1

(
u1(σ

∗
1, f(σ

t
1)) + δ

)
(4.14)

≤ 1

T

T∑
t=1

u1(σ
t
1, f(σ

t
1)) + ε+ δ (4.15)

≤ 1

T

T∑
t=1

(
u1(σ

t
1, f(σ

T
1)) + δ

)
+ ε+ δ (4.16)

= u1(σ
T
1 , f(σ

T
1)) + ε+ 2δ (4.17)

This also applies to the high probability bound for the current strategies.

Theorem 9. Let f : Σ1 → Σ2 be a δ-pretty-good response and σ1
1, σ

2
1, ..., σ

T
1 ∈

Σ1 be a sequence of strategies such that RT
1 ≤ ε when σt

2 = f(σt
1) for t =

1, ..., T . Then if we select T ∗ uniformly at random from [1, T], we get that

u1(σ
T ∗

1 , f(σT ∗

1)) +
ε+ δ

p
≥ max

σ∗
1∈Σ1

u1(σ
∗
1, f(σ

∗
1))

with probability at least 1− p for any p ∈ (0, 1].

Proof. We use (4.15) from the proof of Theorem 8 instead of (4.6) in a modifi-

cation of the proof to Theorem 7. We also change the definition of k to be the

number of indices such that u1(σ
t
1, f(σ

t
1)) < maxσ∗

1∈Σ u1(σ
∗
1, f(σ

∗
1))− ε+δ

p
.

The current strategy bound is only proportional to δ, and thus is tighter

than the 2δ in the average strategy bound. This is because the average strategy

bound has to account for a potential deviation between 1
T

∑T
t=1 u1(σ1, f(σ

t
1))

and u1(σ1, f(σ
T
1)), whereas the current strategy bound doesn’t have to ap-

ply f to an averaged strategy. If we know that f is a linear map, then

1
T

∑T
t=1 u1(σ1, f(σ

t
1)) = u1(σ1, f(σ

T
1)) follows by the linearity of expectation

and the 2δ term in Theorem 8 can be replaced by δ.

39

4.2.2 Stochastic Response Functions

Although every response function is captured under the δ-pretty good response

theory for some δ, the δ-PGR condition might not always be a good measure of

how far the function deviates from PGR behavior. For example, a stochastic

response function might violate the PGR condition by a large difference in

utility, but only with a small probability. We now consider functions that

meet the PGR condition in expectation or with high probability.

A stochastic response function maps a strategy σ1 to a probability dis-

tribution over Σ2. Equivalently, we can work with a probability distribution

over response functions F ∈ ∆{f : Σ1→Σ2}. The idea of a response value function

still holds for such distributions: vF (σ1) = Ef∼F [u1(σ1, f(σ1))]. The CFR-f

algorithm is extended to sample a response function ft ∼ F on each itera-

tion. We must also extend our notions of pretty-good response and no-regret

learnable.

Definition 16. Let F ∈ ∆{f : Σ−i→Σi} be a probability distribution over re-

sponse functions. We say that F is an expected pretty-good response

if

Ef∼F [ui(σ−i, f(σ−i))] ≥ Ef∼F [ui(σ−i, f(σ
′
−i))] (4.18)

for all σ−i, σ
′
−i ∈ Σ−i. We say that F is an expected δ-pretty-good re-

sponse if

Ef∼F [ui(σ−i, f(σ−i))] + δ ≥ Ef∼F

[
ui(σ−i, f(σ

′
−i))

]
(4.19)

for all σ−i, σ
′
−i ∈ Σ−i.

Definition 17. Let F ∈ ∆{f : Σ1→Σ2} be a probability distribution over response

functions, and define σt
2 = ft(σ

t
1) for t = 1, ..., T , where each ft ∼ F is

chosen independently. F is called no-regret learnable if for every sequence

of strategies σ1
1, σ

2
1, ..., σ

T
1 ∈ Σ1 such that RT

1 ≤ ε, we have that

Ef∼F

[
u1(σ

T
1 , f(σ

T
1))
]
+ ε ≥ max

σ∗
1∈Σ1

Ef∼F [u1(σ
∗
1, f(σ

∗
1))]

F is called no-regret δ-learnable if we choose f1, ..., fT ∼ F independently

and for every sequence of strategies σ1
1, σ

2
1, ..., σ

T
1 ∈ Σ1 such that RT

1 ≤ ε, we

40

have that

Ef∼F

[
u1(σ

T
1 , f(σ

T
1))
]
+ ε+ δ ≥ max

σ∗
1∈Σ1

Ef∼F [u1(σ
∗
1, f(σ

∗
1))]

Let umax = maxσ1∈Σ1,σ2∈Σ2 u1(σ1, σ2) be the maximum expected utility that

player 1 can achieve and umin = minσ1∈Σ1,σ2∈Σ2 u1(σ1, σ2) be the minimum

expected utility that player 1 can achieve (so ∆1 = umax − umin). We now

show that expected pretty-good responses are no-regret learnable.

Theorem 10. Every F that is an expected δ-pretty-good response is no-regret

(2δ + γ)-learnable with probability at least 1− 2 exp(−T 2γ2

2∆2
1
), for any γ > 0.

Proof. Let σ1
1, ..., σ

T
1 be a sequence of strategies such that RT

1 ≤ ε, and let

ft ∼ F be sampled independently for t = 1, ..., T .

Let σ∗
1 ∈ argmaxσ1∈Σ1 Ef∼F [u1(σ1, f(σ1))]. If we assume each of the following:

Ef∼F

[
1

T

T∑
t=1

u1(σ
∗
1, f(σ

t
1))

]
≤ 1

T

[
T∑
t=1

u1(σ
∗
1, ft(σ

t
1))

]
+

1

2
γ (4.20)

1

T

T∑
t=1

u1(σ
t
1, ft(σ

t
1)) ≤ Ef∼F

[
1

T

T∑
t=1

u1(σ
t
1, f(σ

t
1))

]
+

1

2
γ (4.21)

then it follows that F is no-regret (2δ + γ)-learnable:

max
σ∗
1∈Σ1

Ef∼F [u1(σ
∗
1, f(σ

∗
1))] =

1

T

T∑
t=1

Ef∼F [u1(σ
∗
1, f(σ

∗
1))] (4.22)

≤ 1

T

[
T∑
t=1

Ef∼F

[
u1(σ

∗
1, f(σ

t
1))
]]

+ δ (4.23)

= Ef∼F

[
1

T

T∑
t=1

u1(σ
∗
1, f(σ

t
1))

]
+ δ (4.24)

≤ 1

T

[
T∑
t=1

u1(σ
∗
1, ft(σ

t
1))

]
+ δ +

1

2
γ (4.25)

≤ 1

T

[
T∑
t=1

u1(σ
t
1, ft(σ

t
1))

]
+ ε+ δ +

1

2
γ (4.26)

≤ Ef∼F

[
1

T

T∑
t=1

u1(σ
t
1, f(σ

t
1))

]
+ ε+ δ + γ (4.27)

≤ Ef∼F

[
1

T

T∑
t=1

u1(σ
t
1, f(σ

T
1))

]
+ ε+ 2δ + γ (4.28)

= Ef∼F

[
u1(σ

T
1 , f(σ

T
1))
]
+ ε+ 2δ + γ (4.29)

41

Thus we can bound the overall probability that F is not no-regret (2δ + γ)-

learnable by the probability that either (4.20) or (4.21) is false. Because

f1, ..., fT are chosen independently, we can do this using Hoeffding’s Inequality.

Pr

[
Ef∼F

[
1

T

T∑
t=1

u1(σ
∗
1, f(σ

t
1))

]
− 1

T

T∑
t=1

u1(σ
∗
1, ft(σ

t
1)) >

1

2
γ

]

≤ exp

(
−T 2γ2

2∆2
1

)
(4.30)

Pr

[
1

T

T∑
t=1

u1(σ
t
1, ft(σ

t
1))− Ef∼F

[
1

T

T∑
t=1

u1(σ
t
1, f(σ

t
1))

]
≥ 1

2
γ

]

≤ exp

(
−T 2γ2

2∆2
1

)
(4.31)

The probability that either event is true is no more than the sum of their

individual probabilities, which gives us the result.

Even if F is not a pretty-good response in expectation, it can be no-regret

learnable if there is only a low probability p that a sample from it is not a

pretty-good response. In this case, however, CFR-f does not converge fully to

the optimal strategy according to vF , but is only guaranteed to converge to a

strategy that is within 2p∆1 of optimal.

Theorem 11. Let F ∈ ∆{f : Σ1→Σ2} be a probability distribution over re-

sponse functions such that for any σ1, σ
′
1 ∈ Σ1, we have that u1(σ1, f(σ1)) ≤

u1(σ1, f(σ
′
1)) with probability at least 1 − p given that f ∼ F . Then F is no-

regret (2p∆1 + γ)-learnable with probability at least 1− 2 exp(−T 2γ2

2∆2
1
), where γ

is a free parameter.

42

Proof.

Ef∼F [u1(σ1, f(σ1))]

≤ Ef∼F [u1(σ1, f(σ
′
1))|u1(σ1, f(σ1)) ≤ u1(σ1, f(σ

′
1))]

∗ Pr [u1(σ1, f(σ1)) ≤ u1(σ1, f(σ
′
1))]

+ umax (1− Pr [u1(σ1, f(σ1)) ≤ u1(σ1, f(σ
′
1))]) (4.32)

= Ef∼F [u1(σ1, f(σ
′
1))]

− Ef∼F [u1(σ1, f(σ
′
1))|u1(σ1, f(σ1)) > u1(σ1, f(σ

′
1))]

∗ (1− Pr [u1(σ1, f(σ1)) ≤ u1(σ1, f(σ
′
1))])

+ umax (1− Pr [u1(σ1, f(σ1)) ≤ u1(σ1, f(σ
′
1))]) (4.33)

≤ Ef∼F [u1(σ1, f(σ
′
1))]

− umin (1− Pr [u1(σ1, f(σ1)) ≤ u1(σ1, f(σ
′
1))])

+ umax (1− Pr [u1(σ1, f(σ1)) ≤ u1(σ1, f(σ
′
1))])

≤ Ef∼F [u1(σ1, f(σ
′
1))] + ∆1 (1− (1− p)) (4.34)

= Ef∼F [u1(σ1, f(σ
′
1))] + p∆1 (4.35)

Thus F is an expected p∆1-pretty-good response, and the result follows by

Theorem 10.

4.3 A Generalization of Restricted Nash

Responses

As we discussed in Section 2.6, Restricted-Nash Responses are a technique for

creating strategies that do well against an opponent model while limiting the

RNR strategy’s own exploitability. Theorem 5 shows what happens when we

have a best response to an opponent which mixes between a static strategy

and a best-response. We generalize this theorem to allow for any response

functions.

For two response function f, g : Σ1 → Σ2, define f ◦p g to be their mixture

such that (f ◦p g)(σ1) = f(σ1) with probability p and (f ◦p g)(σ1) = g(σ1) with

43

probability 1− p.2 Define

Σf,ε−safe
1 = {σ1 ∈ Σ1 : u1(σ1, f(σ1)) ≥ max

σ∗
1∈Σ1

u1(σ
∗
1, f(σ

∗
1))− ε} (4.36)

to be the set of strategies that achieve a utility within ε of optimal when played

against an opponent that responds with f . For a best-response function BR,

ΣBR,ε−safe
1 is the same as Σε−safe

1 , the set of ε-safe strategies as presented in

[23].

Theorem 12. For any response functions f and g and any p ∈ (0, 1], if there

is an φ > 0 and a σ1 ∈ Σ1 such that

u1(σ1, (f ◦p g)(σ1)) ≥ u1(σ
′
1, (f ◦p g)(σ′

1))− φ (4.37)

for all σ′
1 ∈ Σ1, then there is some ε such that σ1 ∈ Σg,ε−safe

1 and

u1(σ1, f(σ1)) ≥ max
σ∗
1∈Σ

g,ε−safe
1

u1(σ
∗
1, f(σ

∗
1))− φ (4.38)

Proof. Let ε = maxσ∗
1∈Σ1 u1(σ

∗
1, g(σ

∗
1)) − u1(σ1, g(σ1)). Clearly for this ε, we

have σ1 ∈ Σg,ε−safe
1 . Then we get:

u1(σ1, (f ◦p g)(σ1)) = pu1(σ1, f(σ1)) + (1− p)u1(σ1, g(σ1)) (4.39)

= pu1(σ1, f(σ1)) + (1− p)(max
σ∗
1∈Σ1

u1(σ
∗
1, g(σ

∗
1))− ε) (4.40)

Pluggin any arbitrary σ′
1 ∈ Σg,ε−safe

1 into (4.37), we also get:

u1(σ1, (f ◦p g)(σ1)) ≥ u1(σ
′
1, (f ◦p g)(σ′

1))− φ (4.41)

= pu1(σ
′
1, f(σ

′
1)) + (1− p)u1(σ

′
1, g(σ

′
1))− φ (4.42)

≥ pu1(σ
′
1, f(σ

′
1)) + (1− p)(u1(σ

∗
1, g(σ

∗
1))− ε)− φ (4.43)

By subtracting (4.40) from (4.43) and rearranging, we get u1(σ1, f(σ1)) ≥

u1(σ
′
1, f(σ

′
1)) − φ. Because this is true for every σ′

1 ∈ Σg,ε−safe
1 , we get our

desired result.

2As we saw when discussing an average strategy (Section 2.1.1), we can also find a
behavioral strategy equivalent to (f ◦p g)(σ1) by performing a weighted average of f(σ1)
and g(σ1) at each information set.

44

By choosing f to output a static strategy (f(σ1) = σ2) and g to be a

best-response (g(σ1) ∈ argmaxσ∗
2∈Σ2

u2(σ1, σ
∗
2)), we see that Theorem 5 is a

special case of Theorem 12. Theorem 12 thus allows us to generalize a tradeoff

between exploitation and exploitability to a tradeoff between performance by

any two response value functions. In order to find the strategies that allow such

a tradeoff, we must find strategies that satisfy the assumption in Theorem 12.

We can do this with a modified form of the RNR algorithm.

Corollary 1. Let σ1
1, ..., σ

T
1 be a sequence of strategies for player 1 such that

RT
1 ≤ φ (where phi > 0). For any pretty-good response functions f and g, let

the strategies for player 2 be defined such that σt
2 = (f ◦p g)(σt

1) for each time

step t = 1, ..., T . Then there is some ε such that σT
1 ∈ Σg,ε−safe

1 and

u1(σ
T
1 , f(σ

T
1)) ≥ max

σ∗
1∈Σ

g,ε−safe
1

u1(σ
∗
1, f(σ

∗
1))− φ (4.44)

Proof. Because f and g are pretty-good responses, so is f ◦p g:

u1(σ1, (f ◦p g)(σ1) = pu1(σ1, f(σ1)) + (1− p)u1(σ1, g(σ1)) (4.45)

≤ pu1(σ1, f(σ
′
1)) + (1− p)u1(σ1, g(σ

′
1)) (4.46)

= u1(σ1, (f ◦p g)(σ′
1)) (4.47)

Then by Theorem 6, we know that

u1(σ
T
1 , (f ◦p g)(σT

1)) ≥ max
σ∗
1∈Σ1

u1(σ
∗
1, (f ◦p g)(σ∗

1))− φ (4.48)

and the result follows by Theorem 12.

This corollary shows that if we run CFR-(f ◦p g) for pretty-good responses

f and g, the CFR player’s average strategy converges to a strategy that max-

imizes performance against f within a set of strategies with bounded loss

against g. Again, by using a static strategy for f and a best-response for g,

we get an algorithm which produces RNR strategies.

In Chapter 3 we showed that PGRs can be useful as an evaluation tool,

either replacing or supplementing exploitability. This corollary also shows how

we can use the response value function vf induced by a PGR f as a metric in

45

the RNR technique instead of exploitability. By having player 2 mix between a

static strategy σ2 and a pretty-good response f(σt
1), we see that σ

T
1 converges

to a strategy that is a best-response against σ2 within the set Σf,ε−safe
1 . Thus

we can find a strategy that exploits σ2 while bounding its loss against any

specific PGR, not just a best-response.

4.3.1 Regret Minimization and Best-Responses

Above, we showed convergence if player 2 mixes between a static strategy and a

best-response. In the actual RNR implementation, though, the RNR opponent

uses a regret minimization algorithm (i.e. CFR) instead of a best-response,

because CFR iterations are computationally cheaper and the algorithm con-

verges faster. Noting again that an f that always returns a static strategy

(f(σ1) = σ2) is a pretty-good response, we generalize the RNR algorithm by

having the response player mix between a regret minimization algorithm and

a pretty-good response. Ultimately, we show that this algorithm converges as

if the opponent had used a best-response whenever he actually used the regret

minimization algorithm. From the results in the previous section, this thus

lets us find ε-safe strategies that maximize performance against PGRs, while

avoiding the cost of running a best-response computation on each iteration.

Because we are now dealing with a regret minimization algorithm that

is only run probabilistically on each iteration, we introduce a new notation

instead of discussing sequences that minimize regret. During an iterated game

over T time steps, a regret minimization algorithm A operates by specifying

a strategy σt
i,A for player i at each time t = 1, ..., T . The choice of σt

i,A

is a function of each of the observed previous utilities ui(σ
t′
i,A, σ

t′
−i) for t′ =

1, ..., t− 1. In the original RNR implementation, the opponent only runs A on

each iteration with probability 1−p. Formally, we can say the RNR opponent

samples a set of time steps T ⊆ {1, ..., T} such that t ∈ T with independent

probability 1 − p for each t ∈ {1, ..., T}. We say K = |T | is the number of

such sampled time steps (so E[K] = (1 − p)T), and label the elements of T

as tj1 , ..., tjK . Then for the RNR opponent, σ
tjk
2 = σjk

2,A for each tj1 ∈ T , and

A only receives the inputs u2(σ
tjk′
1 , σ

jk′
2,A) for k′ = 1, ..., k − 1. On time steps

46

t /∈ T , the opponent sets σt
2 = σ′

2, where σ
′
2 is the fixed opponent model played

by the opponent with probability p, and A receives no input.

Using this notation, we prove the following lemma which is useful when

analyzing players that do regret minimization on each iteration with some

probability less than 1.

Lemma 2. Let A be a regret algorithm that guarantees RK
2 ≤ ε (where ε > 0).

Let σt
2 be chosen on each time step t = 1, ..., T such that with probability

0 < p ≤ 1, σt
2 is assigned by regret minimization algorithm A, and with

probability 1− p, σt
2 is set to any arbitrary strategy. Then the following holds

1

T
max
σ∗
2∈Σ2

T∑
t=1

(
u2(σ

t
1, σ

∗
2)− u2(σ

t
1, σ

t
2,A)
)
≤ ε (4.49)

where σt
2,A is the strategy that A would select on iteration t if A were queried.

Proof. Because T is a random sample of {1, ..., T} we have that for any σ′′
2 ∈ Σ2

1

K
max
σ∗
2∈Σ2

K∑
k=1

u2(σ
tjk
1 , σ∗

2) ≥
1

K

K∑
k=1

u2(σ
tjk
1 , σ′′

2) (4.50)

= ET

[
1

K

∑
t∈T

u2(σ
t
1, σ

′′
2)

]
(4.51)

=
1

T

T∑
t=1

u2(σ
t
1, σ

′′
2) (4.52)

Step 4.51 is due to the linearity of expectation, step 4.52 is because the ex-

pected mean of a sample is equal to the mean of the set sampled from. Because

this is true for every σ′′
2 ∈ Σ2, it must be the case that

1

K
max
σ∗
2∈Σ2

K∑
k=1

u2(σ
tjk
1 , σ∗

2) ≥
1

T
max
σ∗
2∈Σ2

T∑
t=1

u2(σ
t
1, σ

∗
2) (4.53)

Again, because the expected mean of a sample is equal to the mean of the set

sampled from, we have

1

K

K∑
k=1

u2(σ
tjk
1 , σ

tjk
2,A) =

1

T

T∑
t=1

u2(σ
t
1, σ

t
2,A) (4.54)

47

The regret minimization guarantee of A shows

1

K
max
σ∗
2∈Σ2

K∑
k=1

(
u2(σ

tjk
1 , σ∗

2)− u2(σ
tjk
1 , σ

tjk
2,A)
)
≤ ε (4.55)

By applying (4.53) to the left side of the sum and (4.54) to the right side of

the sum, we get the result.

Using the lemma, we can now analyze an algorithm that mixes between

regret minimization and a pretty-good response.

Theorem 13. Let A be a regret algorithm that guarantees RT
i ≤ εi (where

εi > 0 and εi = o(1)), and let f : Σ1 → Σ2 be a pretty-good response. For

t = 1, ..., T let σt
1 = σt

1,A be assigned by A, and let σt
2 be chosen such that

σt
2 = f(σt

1) with probability p ∈ (0, 1] and σt
2 = σt

2,A with probability 1 − p.

Then the average strategy for player 1 satisfies

u1(σ
T
1 , (f ◦p BR)(σT

1)) ≥ u1(σ
′
1, (f ◦p BR)(σ′

1))− |o(1)| (4.56)

for all σ′
1 ∈ Σ1, where BR is a best-response function defined as BR(σ1) =

argmaxσ∗
2∈Σ2

u2(σ1, σ
∗
2).

Proof. We start by proving the following:

u1(σ
T
1 , σ

T
2) ≥ max

σ∗
1∈Σ1

u1(σ
∗
1, σ

T
2)− |o(1)| (4.57)

u2(σ
T
1 , σ

T
2) ≥ pu2(σ

T
1 , f(σ

T
1)) + (1− p)(max

σ∗
2∈Σ2

u2(σ
T
1 , σ

∗
2))− |o(1)| (4.58)

These equations show that σT
1 converges to a best-response to σT

2 , and σT
2

converges to a mixture between f(σT
1) and a best-response.

48

We first prove (4.57).

u1(σ
T
1 , σ

T
2) =

1

T

T∑
t=1

u1(σ
T
1 , σ

t
2) (4.59)

=
1

T

T∑
t=1

(
pu1(σ

T
1 , f(σ

t
1)) + (1− p)u1(σ

T
1 , σ

t
2,A)
)

(4.60)

≥ p
1

T

T∑
t=1

u1(σ
T
1 , f(σ

T
1)) + (1− p)

1

T
min
σ∗
2∈Σ2

T∑
t=1

u1(σ
T
1 , σ

∗
2) (4.61)

≥ pu1(σ
T
1 , f(σ

T
1)) + (1− p)

1

T

T∑
t=1

u1(σ
t
1, σ

t
2,A)− (1− p)|o(1)| (4.62)

= p
1

T

T∑
t=1

u1(σ
t
1, f(σ

T
1)) + (1− p)

1

T

T∑
t=1

u1(σ
t
1, σ

t
2,A)− |o(1)| (4.63)

≥ p
1

T

T∑
t=1

u1(σ
t
1, f(σ

t
1)) + (1− p)

1

T

T∑
t=1

u1(σ
t
1, σ

t
2,A)− |o(1)| (4.64)

=
1

T

T∑
t=1

u1(σ
t
1, σ

t
2)− |o(1)| (4.65)

≥ 1

T
max
σ∗
1∈Σ1

T∑
t=1

u1(σ
∗
1, σ

t
2)− |o(1)| − |o(1)| (4.66)

= max
σ∗
1∈Σ1

u1(σ
∗
1, σ

T
2)− |o(1)| (4.67)

Steps 4.61 and 4.64 use the PGR condition on the left sum. Step 4.62 uses

Lemma 2 and that ε2 = o(1), and step 4.66 uses that RT
1 ≤ ε1 and ε1 = o(1).

49

We now prove (4.58)

u2(σ
T
1 , σ

T
2) =

1

T

T∑
t=1

u2(σ
T
1 , σ

t
2) (4.68)

≥ 1

T
min
σ∗
1∈Σ1

T∑
t=1

u2(σ
∗
1, σ

t
2) (4.69)

≥ 1

T

T∑
t=1

u2(σ
t
1, σ

t
2)− |o(1)| (4.70)

=
1

T

T∑
t=1

(
pu2(σ

t
1, f(σ

t
1)) + (1− p)u2(σ

t
1, σ

t
2,A)
)
− |o(1)| (4.71)

≥ p
1

T

T∑
t=1

u2(σ
t
1, f(σ

T
1))

+ (1− p)
1

T
max
σ∗
2∈Σ2

T∑
t=1

u2(σ
t
1, σ

∗
2)− (1− p)|o(1)| − |o(1)|

(4.72)

= pu2(σ
T
1 , f(σ

T
1)) + (1− p)(max

σ∗
2∈Σ2

u1(σ
T
1 , σ

∗
2))− |o(1)| (4.73)

Step 4.70 uses RT
1 ≤ ε1 and ε1 = o(1), and step 4.72 uses the PGR condition

on the left sum and Lemma 2 on the right sum.

Using (4.57) and (4.58) we now show the following for arbitrary σ′
1 ∈ Σ1:

pu1(σ
T
1 ,f(σ

T
1)) + (1− p)(min

σ∗
2∈Σ2

u1(σ
T
1 , σ

∗
2))

≥ u1(σ
T
1 , σ

T
2)− |o(1)| (4.74)

≥ max
σ∗
1∈Σ1

u1(σ
∗
1, σ

T
2)− |o(1)| − |o(1)| (4.75)

≥ u1(σ
′
1, σ

T
2)− |o(1)| (4.76)

=
1

T

T∑
t=1

(
pu1(σ

′
1, f(σ

t
1) + (1− p)u1(σ

′
1, σ

t
2,A)
)
− |o(1)| (4.77)

≥ 1

T

T∑
t=1

(
pu1(σ

′
1, f(σ

′
1)) + (1− p) min

σ∗
2∈Σ2

u1(σ
′
1, σ

∗
2)

)
(4.78)

= pu1(σ
′
1, f(σ

′
1)) + (1− p) min

σ∗
2∈Σ2

u1(σ
′
1, σ

∗
2) (4.79)

The result follows by linearity of expectation.

This shows that the average strategy for player 1 converges to a strat-

egy that maximizes performance against an opponent that mixes between the

50

pretty-good response f and a best-response.

Corollary 2. Let A be a regret algorithm that guarantees RT
i ≤ φ (where

φ > 0 and φ = o(1)), and let f : Σ1 → Σ2 be a pretty-good response. For

t = 1, ..., T let σt
1 = σt

1,A be assigned by A, and let σt
2 be chosen such that

σt
2 = f(σt

1) with probability p ∈ (0, 1] and σt
2 = σt

2,A with probability 1 − p.

Then there is some ε such that σ1 ∈ Σf,ε−safe
1 and

u1(σ
T
1 , f(σ

T
1)) ≥ max

σ∗
1∈Σ

ε−safe
1

u1(σ
∗
1, f(σ

∗
1))− |o(1)| (4.80)

Proof. The proof follows immediately from applying Theorem 12 with the

result from Theorem 13

From this corollary, we see that we can also generalize the RNR algorithm

to be able to find strategies that maximize performance against a PGR while

ensuring bounded exploitability.

51

Chapter 5

Empirical Results: Learning to
Beat Opponents that Learn

In the previous chapter we showed that we can use CFR-f to learn static

strategies that are close to optimal for playing against certain adaptive oppo-

nents. However, there are widely used response agents that do not fit neatly

into the pretty-good response framework. These responses are δ-pretty-good

responses for some δ, but it is hard to put a tight bound on δ. In this chapter,

we empirically examine whether CFR-f can learn strong strategies against

such response functions.

In particular, we want to examine response functions that are used in strong

adaptive agents. The response function framework assumes that the response

player has full access to the other player’s strategy; without knowledge of σ1,

they can’t compute f(σ1). However, typical play takes place in an online set-

ting, where the only knowledge that player 2 can gain about σ1 is by observing

the actions it takes during play. Thus, any practical response function for on-

line play must be able to take a set of samples as input, as opposed to a full

strategy.

In order to approximate how an adaptive agent works with samples in

the online setting, we examine Monte Carlo response functions. A Monte

Carlo response function f : Σ1 → Σ2 can be thought of as a composition of

two functions f1 : Σ1 → Ψ and f2 : Ψ → Σ2, where Ψ is the set of possible

observations of strategies in Σ1. f1 samples a set of observations of σ1, and

then f2 constructs a response strategy based on the observations. In the online

52

setting, the responder would simply use f2 based on the actual observations

from previous time steps.

In addition to their similarity to adaptive online agents, we want to use

Monte Carlo methods because they have properties which make them useful

for strategy evaluation. In general, a Monte Carlo method will make some

number of samples n of the opponent strategy σ1. As the number of samples

increases, the responder’s knowledge of σ1 increases, and thus he is better able

to exploit his opponent. Thus, by choosing different values of n in a Monte

Carlo method, we can actually generate a series of response functions which

vary in their exploitative strength. This gives us a convenient way to measure

multiple dimensions of strategy strength.

5.1 Monte Carlo Tree Search in Leduc

Hold’em

Monte Carlo tree search (MCTS) is an online learning framework for

extensive-form games. A MCTS algorithm builds an approximation of the

game tree through repeated sampling, during which it uses two components.

A selection rule is used to choose which action to make at player choice nodes

where data is available from previous time steps, and a rollout player is used

to make decisions once the game enters a state not encountered on previous

time steps. Monte Carlo tree search methods only converge in single-player

games or in games with perfect information (i.e., all information sets have size

1), and thus they can’t be applied directly to general extensive-form games.

UCT is a MCTS algorithm that uses a selection rule adapted from the

multi-armed bandit setting [28]. In particular, it selects the action with the

largest upper confidence bound, as defined in the UCB1 algorithm, which

achieves optimal regret in the bandit setting where each action results in a

utility sampled from a stationary distribution associated with the action [2].

As the number of training iterations goes to infinity, the strategy proposed by

the UCT selection rule converges to optimal. In practice, UCT has been used

to create strong agents in large extensive-form games, particularly Go [15].

53

5.1.1 Algorithm Design

By fixing a strategy σ1 for player 1, we can turn an imperfect information

two-player game into a perfect information one-player game. All of player

1’s choice nodes are turned into chance nodes with probability distributions

corresponding to σ1. Any actions or chance events that are unobserved by

player 2 can be thought of as happening only when player 2 observes the

result (e.g. at a terminal node); Bayes’ rule can be used to ensure all outcome

possibilities are unchanged.

In this way, we turn UCT into a response function UCT: Σ1 → Σ2. Given a

static player strategy σ1, UCT gets n iterations to explore the one-player game

tree and learn the utilities of different actions. For the rollout policy, we use

always call to rollout player 2’s actions, as it has been shown to outperform

other default policies [21, Figure 4.3]. At every information set, always call

selects the call/check action. After the n training iterations, we select the

strategy σ2 which plays the action with the highest observed average utility

during the training iterations. At information sets that the UCT training never

reached, we again have σ2 default to the call/check action with probability

1. Because the strategy output by UCT depends on the number of training

iterations n, we denote the fully specified response function as UCT-n.

Now that we have a UCT response function, we can plug it into CFR-f ,

resulting in CFR-UCT-n. For each iteration t of CFR-UCT-n, we run a CFR

update for player 1 create strategy σt
1, and then we apply response function

UCT-n to generate σt
2 = UCT-n(σt

1). In order to ensure that UCT-n depends

only on the current strategy σt
1, we wipe the UCT game tree on every CFR

iteration, before running n UCT iterations from scratch.

5.1.2 Results

We trained CFR-UCT-n strategies in Leduc Hold’em using a variety of n

values. To create a baseline, we also trained a strategy with CFR, resulting

in an ε-Nash equilibrium exploitable for only 2 milli-bets per game (mb/g).

Against each of these strategies, we ran the response function UCT-n with a

54

variety of n values to create counter-strategies, and then measured how well

the test strategies do when played against their respective counter-strategies.

To reduce variance caused by the random sampling in UCT, we used 100

independent runs of UCT-n for each n value and averaged performance over

the resulting strategies. 95% confidence intervals are not shown, but are on

the order of ±1 mb/g for all values.

-500

 0

 500

 1000

 1500

1 10 100 1k 10k 100k 1M

va
lu

e
ag

ai
ns

t U
C

T-
n

co
un

te
r-

st
ra

te
gy

 (m
b/

g)

n value for UCT-n counter-strategy (number of UCT samples)

CFR-UCT-1k
CFR-UCT-10k

CFR-UCT-100k
CFR

Figure 5.1: Performance of CFR-UCT-n strategies and a CFR strategy against
UCT-n counter-strategies, as the counter-strategy n value is increased.

Figure 5.1 shows the results of playing CFR-UCT-1k, CFR-UCT-10k,

CFR-UCT-100k, and the CFR strategy against UCT-n counter-strategies

trained using a range of n values. Each line represents one of the strategies be-

ing tested, and the x-axis shows how many iterations UCT-n is given to learn

a strategy for playing against each target strategy. Figure 5.2 shows much of

the same data, but now with more n values for CFR-UCT-n represented on

the x-axis, and also shows how the CFR-UCT strategies do in one-on-one play

against the CFR strategy and against a best response. Each line represents a

55

-1500

-1000

-500

 0

 500

 1000

100 1k 10k 100k 1M

va
lu

e
ag

ai
ns

t o
pp

on
en

t (
m

b/
g)

n value for CFR-UCT-n (number of UCT samples)

best-response
CFR

UCT-1k
UCT-10k

UCT-100k

Figure 5.2: Performance of CFR-UCT-n strategies against a variety of oppo-
nents as the n value is increased.

particular opponent that we play our CFR-UCT-n strategies against.

From the results we can see that for any n2 ≤ n1, the strategy produced

by CFR-UCT-n1 will achieve higher value than an ε-equilibrium in one-on-

one play against UCT-n2. We have thus shown that using CFR-f , we can

learn to do better against adaptive opponents than we would do by playing

an optimal strategy for the game. In addition, we have shown that CFR-f

can converge to an effective strategy against an opponent not covered by the

pretty-good response theory. Despite being highly exploitable, the CFR-UCT

strategies lose only a small amount in one-on-one play against an ε-equilibrium

(the CFR strategy), and do not lose to the weaker UCT counter-strategies

which are actively trying to exploit them, indicating that they are difficult

to exploit, a strength not shown via the exploitability metric. The UCT-n2

response strategies are able to exploit the CFR-UCT-n1 strategies only when

n2 is much larger than n1, which lends credence to our conjecture that using a

56

range of k values gives us a set of response functions which are able to exploit

the opponent with varying strength.

5.2 Frequentist Best-Response in Texas

Hold’em

The results using UCT in Leduc Hold’em were promising, and as a next step

we wanted to investigate how CFR-f would scale to a large game such as

Texas Hold’em. Preliminary tests showed that UCT doesn’t scale well to

Texas Hold’em. Even when we gave the UCT player over 50 minutes to learn

a counter-strategy, resulting in over 50 million UCT iterations, the UCT player

produced counter-strategies that still lost 41 mbb/g against a CFR strategy

which was exploitable for 282 mbb/g. In order to run CFR-f in a timely

manner, the f iterations would need to be faster than this, so UCT will be too

weak of a response function to be considered a reasonable exploitative agent.

Instead, we use the technique of Frequentist Best-Response (FBR),

first introduced for use in poker games by Johanson et al. as a method for

quickly approximating a best-response[23]. FBR works in two steps. First, it

uses some form of Monte Carlo sampling to construct a model of the target

strategy. Second, it computes a best-response to the model, thus approximat-

ing a best-response to the actual strategy. Because of sparsity and computa-

tion concerns, the model and best-response are generally constructed in some

abstract game. If the target strategy is consistent with the FBR model ab-

straction, the model converges to the target strategy as the number of samples

increases, and FBR thus converges to a (abstract game) best-response.

To compare how they scale, we ran FBR in a small abstraction to respond

to the same CFR strategy that UCT couldn’t beat after 50 million iterations.

The FBR strategy needed less than 100,000 iterations and less than a minute of

computation time to produce a strategy with positive expected utility against

the CFR strategy. We conclude that (abstracted) FBR is a better method

than (unabstracted) UCT for creating exploitative agents in Texas Hold’em.

57

5.2.1 Algorithm Design

Johanson explored different parameter choices for constructing a FBR [21].

Following his lead, we collect the sampled data for the model by playing sim-

ulated games between the target strategy and a probe strategy, which mixes

between the call/check and bet/raise actions with equal probability. We also

set the model’s default strategy to always call; this will be the strategy played

by the model in information sets that were never sampled from the target

strategy. We label the response function that results from running FBR with

n training iterations as FBR-n : Σ1 → Σ2. When FBR-n is called on σ1, it

plays n hands of probe against σ1, constructs a model from the resulting data,

and then outputs a best-response to the model.

Using an FBR-n response function in CFR-f results in the algorithm CFR-

FBR-n. Because a full tree walk is computationally infeasible in some abstrac-

tions, we make use of public chance sampling during the CFR iterations. This

has the added benefit of making the CFR iterations faster, but it also means

that the CFR iterations are much slower than the FBR-n iterations, which

must make a full tree walk in the best-response abstraction. To balance the

time spent on each player, we run 1200 PCS iterations parellelized over 24

CPUs to update the CFR strategy between each run of FBR-n.

5.2.2 Training with CFR-FBR

For computational reasons, we ran our CFR-FBR-n experiments in a small

Texas Hold’em abstraction which groups hands into five percentile buckets on

each betting round using expected hand strength squared. This abstraction

contains 3.6×106 information sets, as compared to 1116 in Leduc Hold’em, so it

is still useful for testing how CFR-f scales. In order to evaluate our techniques,

we ran CFR in the same abstraction in order to produce an abstract game ε-

Nash equilibrium, resulting in a strategy exploitable (in the abstract game)

for only 4 mbb/g. Running CFR in the same abstraction which we are using

to produce FBR makes sense not only because we can directly compare the

resources used by CFR-UCT to the resources used by CFR, but also because

58

we expect a CFR strategy specifically designed for our test abstraction to do

well against responses in the same abstraction, thus giving us the strongest

possible benchmark to compare against.

-300

-200

-100

 0

 100

 200

 300

 0 20 40 60 80 100

va
lu

e
ag

ai
ns

t F
B

R
-1

0k
 c

ou
nt

er
-s

tra
te

gy
 (m

bb
/g

)

training time (hours)

CFR-FBR-10k
CFR

Figure 5.3: Performance of CFR-FBR-10k and CFR during training as mea-
sured by value against a FBR-10k adversary.

We began by training a strategy with CFR-FBR-10k. Over the course of

running the algorithm, we had it periodically output the strategy it would

return if stopped at that time, and we used FBR-10k to evaluate these check-

point strategies. We similarly evaluated the CFR strategy at a number of

checkpoints during CFR training. The results are shown in Figure 5.3.

From the graph we see that CFR very quickly produces a strategy that

does well against the FBR-10k adversary, but then performance plateaus. In

contrast, CFR-FBR-10k takes a comparatively long time to find a strategy

that does not have very poor performance against the FBR-10k opponent;

through 24 hours of computation, it is still exploitable for positive utility by

this response function which loses 75 mbb/g to the CFR strategy after only

59

20 minutes of training. Given enough computation time, though, the CFR-

FBR-10k strategy eventually passes the equilibrium in performance.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100

ex
pl

oi
ta

bi
lit

y
(m

bb
/h

)

training time (hours)

Figure 5.4: Abstract game exploitability of CFR-FBR-10k during training as
the training time is increased.

Figure 5.4 shows the abstract game exploitability of the CFR-FBR-10k

strategy over time. Although the CFR-FBR-10k strategy achieves perfor-

mance comparable to CFR against FBR-10k, and eventually rates better by

that evaluation metric, we can see from this graph that the CFR-FBR-10k

strategy never even approaches the CFR strategy by the traditional metric

of exploitability. The CFR-FBR-10k plateaus with an exploitability above

1000 mbb/g; in contrast, an always fold strategy, which simply surrenders

its forced bet on every hand, is exploitable for 750 mbb/g. By comparing

the two graphs, we can also see that the CFR-FBR-10k strategy continues to

improve according to the FBR-10k metric even after its exploitability levels

off and even slightly degrades. This clearly demonstrates that exploitability

and the FBR metric are measuring different dimensions of strategy strength.

60

5.2.3 Results

-2000

-1500

-1000

-500

 0

 500

1k 10k 100k 1M

va
lu

e
ag

ai
ns

t F
B

R
-n

 c
ou

nt
er

-s
tra

te
gy

 (m
bb

/g
)

n value for FBR-n counter-strategy (number of FBR model samples)

CFR-FBR-3k
CFR-FBR-10k
CFR-FBR-30k

CFR-FBR-100k
CFR

Figure 5.5: Performance of CFR-FBR-n strategies and a CFR strategy against
FBR-n counter-strategies, as the counter-strategy n value is increased.

Similar to our evaluation of CFR-UCT, we ran CFR-FBR-n for a variety

of n values to produce a set of strategies. We then evaluated each of these

strategies, along with the CFR reference strategy, by running FBR-n with

a variety of n values to produce counter-strategies. Figure 5.5 shows the

results. Each line corresponds to one of the CFR-FBR-n strategies being

tested with the exception of one line which represents the CFR benchmark

strategy. The x-axis shows hows many sample iterations were used in FBR

to create a counter-strategy to a given test strategy. 95% confidence intervals

are not shown, but are on the order of ±5 mbb/g for all values.

For CFR-FBR-n strategies trained with low n values, we see results simi-

lar to CFR-UCT results in Leduc. For example, the CFR-UCT-10k strategy

outperforms the CFR strategy when each plays against the response strategy

61

it was trained to beat (FBR-10k), but it also has stronger performance when

played against FBR-3k or FBR-1k. Thus by training against a FBR-n1 oppo-

nent, the CFR-FBR-n strategies also learn how to play well against FBR-n2

opponents where n2 < n1. Even in large games, for at least some interesting

response functions f , CFR-f can be used to learn strategies that are strong

according to vf .

On the other hand, CFR-FBR-n does not create strong strategies for higher

n values. The CFR-FBR-30k strategy only gets a value approximately equal

to the CFR strategy against FBR-30k, and the CFR-FBR-100k strategy does

worse than the CFR strategy against FBR-100k. Despite this, the performance

of these strategies against FBR-1M show that they are still quite exploitable,

so they must differ greatly from the unexploitable CFR strategy. However,

there is some evidence that the CFR-FBR-n strategies are still improving; we

ran CFR-FBR-100k for approximately 5.8 million CFR iterations, and over the

last 1 million iterations its value against FBR-100k improved by approximately

23 mbb/g. Thus, it is possible that if CFR-FBR-n is run for long enough, it

will produce strategies that outperform a CFR strategy against FBR-n, even

for large n. On the other hand, if CFR-FBR-n never outperforms CFR against

FBR-n for large n, it simply shows that there are f for which CFR-f doesn’t

converge to a near-optimal strategy, which reinforces the importance of the

PGR framework for ensuring that CFR-f converges.

62

Chapter 6

Conclusion

In Chapter 3, we demonstrated that the exploitability metric leaves much

to be desired as a measure of strategy strength. By using other metrics to

complement it, we can measure not just a strategy’s worst-case performance,

but how likely it is that an opponent can effectively exploit it. The pretty-good

response condition allows us to create evaluation metrics which use adaptive

opponents which exploit a strategy but with varying degrees of exploitative

power. By using several metrics from this framework, including exploitability,

we can capture different dimensions of strategy strength. We demonstrated

this empirically in our comparison of a CFR strategy and a CFR-BR strategy.

CFR-BR is the clear winner by exploitability, but weaker PGRs measured

CFR as the stronger strategy, indicating that CFR strategies are harder to

exploit.

In Chapter 4 we introduced a new learning method for any multiagent

domain with regret minimization algorithms; in particular, CFR-f is an al-

gorithm for learning with adaptive opponents in extensive-form games. We

showed that CFR-f always converges to an optimal strategy when f is a

PGR. This means that no matter which PGR we decide to use as an evalua-

tion metric, we can efficiently find a strategy that is optimal under the metric.

In addition, we showed that the degree to which we can learn to play against

an adaptive opponent is directly related to the degree to which his response

function deviates from a PGR.

In Section 4.3, we generalized the idea of Restricted Nash Responses using

63

mixtures of PGRs. This allows us to efficiently combine evaluation metrics

when learning a strategy. In particular, by having the opponent mix between

any PGR and a regret-minimization player (i.e. CFR), we can search for PGR-

optimal strategies within the set of strategies with bounded exploitability. By

mixing between a PGR and a static strategy, we can compute different kinds

of robust responses. Where the original technique found best-responses within

the set of strategies with low exploitability, we can find best-responses within

the set of strategies that are hard to exploit.

In Chapter 5 we tested how CFR-f worked in poker games for learning

against adaptive opponents. With Monte Carlo responses, we showed how we

can use sampling during solving to learn how to play well against opponents

who will respond to actual observations of our strategy during online play.

The results with UCT in Leduc Hold’em were especially promising, showing

that we can find static strategies that do better than an equilibrium against

these adaptive opponents. Although we evaluated our strategies by letting

UCT learn offline and then only measuring the performance with the final

strategy produced by UCT, we also found that our CFR-UCT strategies did

well when we played against UCT opponents that use less samples than the

training opponent. This means that our CFR-UCT strategies would also do

well against an opponent who uses UCT to learn online.

6.1 Future Work

Although we hope that we provided broad answers to the questions of strategy

evaluation and learning with new metrics, there is still work to be done. We

showed how pretty-good responses are a powerful framework for evaluating

strategies, but the question still remains as to how this framework should

best be used. There are an uncountably infinite number of possible pretty-

good responses, but realistically we can only select a small subset with which

to evaluate strategies. Investigating how this subset should be chosen is an

interesting line of further work. This isn’t just a matter of empirically testing

PGRs; by investigating the similarities and differences in how PGRs evaluate

64

strategies, we might be able to find representative PGRs which best evaluate

different dimensions of strategy strength.

Although we have shown that CFR-f is an efficient algorithm for learning

against response functions, this efficiency is dependent on the computational

complexity of f . We know that best-responses, one example of a PGR, are

computationally expensive and thus intractable in very large games. In games

where the best-response is computable, CFR-BR takes longer to converge than

the standard CFR algorithm [25], and this is without considering the gains in

efficiency that sampling can give when used in CFR. In order for CFR-f to be

a competitive algorithm in large games, we must find a way to make it faster.

An obvious way to do this is to use an f that can be quickly calculated, but

it is not clear if response functions exist that are both computationally simple

and interesting as evaluation tools.

A different approach to the efficiency issue could be to change how f is

applied. In the CFR-f algorithm presented here, we calculate f(σt
1) from

scratch on every iteration. For convergence guarantees to hold, though, all

we need is for the CFR player to observe utilities as if the response player

used f(σt
1) on each iteration. It could be possible to maintain a convergence

guarantee while only partially generating the response player’s strategy, or

while only applying an incremental update on each iteration. For one specific

example of how this can work, consider CFR-BR where the CFR agent uses

some sampling scheme. In subgames which aren’t sampled, we know that the

CFR agent’s strategy will not change; this also means that the BR player’s

strategy in these subgames doesn’t have to change. Thus we don’t have to

apply a full best-response calculation on every iteration, but can get away

with only updating the sampled subgames.

65

Bibliography

[1] Annual Computer Poker Competition. http://www.
computerpokercompetition.org/. Accessed 2015-03-05.

[2] Peter Auer, Nicolo Ces-Bianchi, and Paul Fischer. Finite-time analysis of
the multiarmed bandit problem. Machine Learning, 47(2-3):235–256,
2002.

[3] Nolan Bard, Michael Johanson, Neil Burch, and Michael Bowling. On-
line implicit agent modeling. In Proceedings of the 12th Interna-
tional Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS), 2013.

[4] Nolan Bard, Michael Johanson, and Michael Bowling. Asymmetricab-
straction for adversarial settings. In Proceedings of the 13th In-
ternational Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2014.

[5] David Blackwell. An analog of the minimax theorem for vector payoffs.
Pacific Journal of Mathematics, 6(1):1–8, 1956.

[6] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin.
Heads-up limit hold’em poker is solved. Science, 347(6218):145–149,
2015.

[7] Noam Brown, Sam Ganzfried, and Tuomas Sandholm. Hierarchical ab-
straction, distributed equilibrium computation, and post-processing, with
application to a champion no-limit texas hold’em agent. In Proceedings
of the 14th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2015. to appear.

[8] Neil Burch. Private communication, 2015.

[9] Trevor Davis, Neil Burch, and Michael Bowling. Using response functions
to measure strategy strength. In Proceedings of the 28th AAAI
Conference on Artificial Intelligence (AAAI), 2014.

[10] Yoav Freund and Robert Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of Compute
and Science Systems, 55(1):119–139, 1997.

[11] Sam Ganzfried and Tuomas Sandholm. Game theory-based opponent
modeling in large imperfect-information games. In Proceedings of the
10th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS), 2011.

66

http://www.computerpokercompetition.org/
http://www.computerpokercompetition.org/

[12] Sam Ganzfried and Tuomas Sandholm. Action translation in extensive-
form games with large action spaces: Axioms, paradoxes, and the pseudo-
harmonic mapping. In Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI), 2013 (to appear).

[13] Sam Ganzfried and Tuomas Sandholm. Potential-aware imperfect-recall
abstraction with earth mover’s distance in imperfect information games.
In Proceedings of the 28th AAAI Conference on Artificial Intel-
ligence (AAAI), 2014.

[14] Sam Ganzfried, Tuomas Sandholm, and Kevin Waugh. Strategy purifi-
cation and thresholding: Effective non-equilibrium approaches for play-
ing large games. In Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems (AA-
MAS), 2012.

[15] Sylvain Gelly and Yizao Wang. Exploration exploitation in Go: UCT for
Monte-Carlo Go. In Advances in Neural Information Processing
Systems 19 (NIPS), 2006.

[16] Richard Gibson, Marc Lanctot, Neil Burch, Duane Szafron, and Michael
Bowling. Generalized sampling and variance in counterfactual regret min-
imization. In Proceedings of the 26th AAAI Conference on Arti-
ficial Intelligence (AAAI), 2012.

[17] Andrew Gilpin and Tuomas Sandholm. Expectation-based versus
potential-aware automated abstraction in imperfect information games:
An experimental comparison using poker. In Proceedings of the 23rd
Conference on Artificial Intelligence (AAAI), 2008.

[18] Geoffrey Gordon. No-regret algorithms for online convex programs. In
Advances in Neural Information Processing Systems 19 (NIPS),
2006.

[19] Amy Greenwald, Zheng Li, and Casey Marks. Bounds for regret-matching
algorithms. Technical report, Brown University, 2006.

[20] Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading
to correlated equilibrium. Econometrica, 68(5):1127–1150, 2000.

[21] Michael Johanson. Robust strategies and counter-strategies: Building
a champion level computer poker player. Master’s thesis, University of
Alberta, Edmonton, Alberta, Canada, 2007.

[22] Michael Johanson. Measuring the size of large no-limit poker games.
Technical Report TR13-01, Department of Computing Science, University
of Alberta, 2013.

[23] Michael Johanson, Martin Zinkevich, and Michael Bowling. Computing
robust counter-strategies. In Advances in Neural Information Pro-
cessing Systems 20 (NIPS), 2007.

[24] Michael Johanson, Kevin Waugh, Michael Bowling, and Martin Zinke-
vich. Accelerating best response calculation in large extensive games.
In Proceedings of the 22nd International Joint Conference on
Artificial Intelligence (IJCAI), 2011.

67

[25] Michael Johanson, Nolan Bard, Neil Burch, and Michael Bowling. Finding
optimal abstract strategies in extensive-form games. In Proceedings of
the 26th AAAI Conference on Artificial Intelligence (AAAI),
2012.

[26] Michael Johanson, Nolan Bard, Marc Lanctot, Richard Gibson, and
Michael Bowling. Efficient nash equilibrium approximation through
monte carlo counterfactual regret minimization. In Proceedings of the
11th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS), 2012.

[27] Michael Johanson, Neil Burch, Richard Valenzano, and Michael Bowling.
Evaluating state-space abstractions in extensive-form games. In Pro-
ceedings of the 12th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2013.

[28] Levente Kocsis and Csaba Szepsvari. Bandit based Monte-Carlo planning.
In Proceedings of the 17th European Conference on Machine
Learning (ECML), 2006.

[29] Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling.
Monte carlo sampling for regret minimization in extensive games. In
Advances in Neural Information Processing Systems 22 (NIPS),
2009.

[30] Nick Littlestone and Manfred K. Warmuth. The weighted majority algo-
rithm. Information and Computing, 108(2):212–261, 1994.

[31] Finnegan Southey, Michael Bowling, Bryce Larson, Carmelo Piccione,
Neil Burch, Darse Billings, and Chris Rayner. Bayes’ bluff: Opponent
modelling in poker. In Proceedings of the Twenty-First Conference
on Uncertainty in Artficial Intelligence (UAI), 2005.

[32] Kevin Waugh. Abstraction in large extensive games. Master’s thesis,
University of Alberta, Edmonton, Alberta, Canada, 2009.

[33] Kevin Waugh, David Schnizlein, Michael Bowling, and Duane Szafron.
Abstraction pathologies in extensive games. In Proceedings of the 8th
International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS), 2009.

[34] Kevin Waugh, Martin Zinkevich, Michael Johanson, Morgan Kan, David
Schnizlein, and Michael Bowling. A practical use of imperfect recall. In
Proceedings of the 8th Symposium on Abstraction, Reformula-
tion and Approximation (SARA), 2009.

[35] Kevin Waugh, Dustin Morrill, J. Andrew Bagnell, and Michael Bowling.
Solving games with functional regret estimation. In Proceedings of the
29th AAAI Conference on Artificial Intelligence (AAAI), 2015.

[36] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Pic-
cione. Regret minimization in games with incomplete information. In
Advances in Neural Information Processing Systems 20 (NIPS),
2007.

68

	Introduction
	Contributions
	Thesis Structure

	Background
	Extensive-Form Games
	Strategies

	Poker Games
	Texas Hold'em
	Leduc Hold'em

	Nash Equilibria
	Two-Player Zero-Sum Games

	Regret and Finding Equilibria
	Counterfactual Regret Minimization
	Sampling in CFR

	Abstraction
	Solution Concepts in Abstractions

	Responding to an Opponent Model

	Strategy Evaluation
	Using Exploitability to Evaluate Strategies
	Other Evaluation Techniques
	A Generalized Evaluation Framework: Pretty-Good Responses
	An Example Showing the Power of Pretty-Good Responses

	Using Pretty Good Responses to Train Strategies
	Regret Minimization with Pretty-Good Responses
	Response Functions that Deviate from Pretty-Good
	Bounded Utility Deviations
	Stochastic Response Functions

	A Generalization of Restricted Nash Responses
	Regret Minimization and Best-Responses

	Empirical Results: Learning to Beat Opponents that Learn
	Monte Carlo Tree Search in Leduc Hold'em
	Algorithm Design
	Results

	Frequentist Best-Response in Texas Hold'em
	Algorithm Design
	Training with CFR-FBR
	Results

	Conclusion
	Future Work

	Bibliography

