Search

Skip to Search Results
  • Spring 2010

    White, Martha

    In this work, we present a unified, general approach to variance reduction in agent evaluation using machine learning to minimize variance. Evaluating an agent's performance in a stochastic setting is necessary for agent development, scientific evaluation, and competitions. Traditionally,...

  • Spring 2015

    White, Martha

    This dissertation explores regularized factor models as a simple unification of machine learn- ing problems, with a focus on algorithmic development within this known formalism. The main contributions are (1) the development of generic, efficient algorithms for a subclass of regularized...

  • Spring 2018

    Burch, Neil

    Decision-making problems with two agents can be modeled as two player games, and a Nash equilibrium is the basic solution concept describing good play in adversarial games. Computing this equilibrium solution for imperfect information games, where players have private, hidden information, is...

1 - 3 of 3