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Abstract

Decision-making problems with two agents can be modeled as two player

games, and a Nash equilibrium is the basic solution concept describing good

play in adversarial games. Computing this equilibrium solution for imperfect

information games, where players have private, hidden information, is harder

than solving perfect information games. Both domains may technically be clas-

sified as easy, with algorithms that require polynomial time and space, but the

difference in degree means that for extremely large games, both computation

time and storage requirements may exceed available resources.

In this thesis, I present four main contributions towards fast and memory

efficient techniques for solving extensive-form games, which describe a class

of imperfect information games with sequential decision making. First, the

thesis introduces an analysis of counterfactual regret minimisation (CFR), an

algorithm for solving extensive-form games, and presents tighter regret bounds

that describe the rate of progress. CFR is a popular, state-of-the-art algorithm,

and the improved bounds give some indication as to why the algorithm has

good practical performance.

Second, I describe and analyse a game-solving algorithm, CFR+, which

has faster empirical performance than CFR, and compare it to a number of

theoretically faster algorithms. We wrote and released an efficient, distributed

implementation of CFR+ to solve heads-up limit Texas hold’em, making it the

first competitively played imperfect information game to be solved.

Third, the thesis presents a series of theoretical tools for using decompo-

sition, and creating algorithms which operate on small portions of a game at

a time. I describe an algorithm, CFR-D, which can solve games without ever

storing a complete strategy, and an algorithm for re-solving a portion of a game
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to complete an incomplete equilibrium within the full game. Both algorithms

have a formal guarantee of correctness.

Finally, I describe continual resolving, an algorithm which is an imperfect

information analogue to heuristic search in perfect information games. Contin-

ual re-solving uses decomposition to play games by doing depth-limited solving

with a heuristic evaluation, with a theoretical bound on solution quality. We

implemented continual re-solving in the game of no-limit heads-up no-limit

Texas hold’em, and beat a group of 33 professional players in a human trial.
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I laughed. I cried. I fell down. It changed my life.
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Chapter 1

Introduction

From its inception, artificial intelligence research has been used to build com-

puter agents that play games. Babbage had plans for a machine that would

play tic-tac-toe [2]. Both Borel and von Neumann did theoretical work on

games, using poker as an example and motivation [6, 90, 91]. The reason

is that teaching a computer to play games is not frivolous, even if it is fun.

A game is a decision making problem, with clear rules and concrete way to

evaluate performance.

The challenges that appear in single-player puzzles like Sokoban also ap-

pear in problems like pathfinding and scheduling. The performance of heuristic

search algorithms for games like chess and checkers depends on the quality of

the heuristic evaluation [93], which is an example of function approximation

for a very complicated function. IBM’s Jeopardy-playing program Watson [25]

demonstrated advances in understanding natural language, and inference on

databases of knowledge about the world. DeepMind’s work on Atari [64] mod-

eled the game as a reinforcement learning problem, an approach which has

also been applied to motion control for robots.

These examples of success share a common factor: agents do not have

private, hidden information that is intrinsically part of the decision making

problem. You might have knowledge about good checkers strategy that I

do not have, and neither of us know what question lies behind a square in

Jeopardy, but there is nothing built into these situations where you know

something I do not as part of the rules of play. If both players are good
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enough, there is no reason to deviate from honest play where both players

pick the best action.

There is another class of problems, described by von Neumann: “Real life

is not like that. Real life consists of bluffing, of little tactics of deception, of

asking yourself what is the other man going to think I mean to do. And that

is what games are about in my theory.” [12] As suggested by von Neumann’s

quote, poker is one of these games where players have imperfect information.

In an imperfect information game, players have knowledge about the cur-

rent state of the game that is not available to their opponent. A player has to

reason under that uncertainty, but they can also act so as to take advantage of

their opponent’s uncertainty. Those two factors, added to the circular reason-

ing that defines optimal play, make it harder to choose a strategy for problems

with imperfect information than it is to choose a strategy for problems with

perfect information. Solving a problem is no longer a matter of picking the best

action at each situation, but picking a randomised, non-deterministic strategy

which balances exploiting our knowledge of what we think the opponent will

do, and deceiving our opponent by hiding our own information.

Early techniques [88] used a representation that grew in size exponentially

in the number of decision points, and could only be applied to very small

problems. Working out perfect play in a game with just 30 binary decisions

for each player would require a billion by billion matrix to represent the game,

and result in a randomised strategy which samples from a billion possibilities.

Storing the matrix requires too much space, and even if we could store it, a

computation that looked at each entry would take too much time.

Using too much time, too much space, or both has continued to characterise

algorithms for solving imperfect information games. Koller et al. introduced

an algorithm whose space and running time is polynomial in the number of

decisions [50, 51], letting us solve non-trivial games. Despite this enormous

improvement, the quadratic space requirements are too much for games like

poker, where the smallest commonly-played variant has 1014 decisions.

The next improvements were an algorithm by Zinkevich et al. called coun-

terfactual regret minimisation, that used the online learning technique of regret

2



minimisation [94], and an algorithm by Gilpin et al. based on accelerated gra-

dient descent methods [31]. Both algorithms produce a strategy which is an

approximation of optimal play, but can be implemented in a way that uses

linear space. The reduced space requirements, however, expose a worse-than-

cubic computation time.

The work described in this thesis is a series of practical and theoretical

improvements, pushing at the boundaries of space and time requirements.

• In Chapter 3, I give improved theoretical bounds on performance of the

CFR algorithm of Zinkevich et al., helping to explain the good empirical

performance of CFR in large games like poker.

• In Chapter 4, I provide performance bounds for CFR+, a new, faster

variant of CFR.

• In Chapter 4, I prove that the component algorithm regret-matching+

used by CFR+ has an online learning property not shared by commonly

used online learning algorithms.

• In Chapter 5, I introduce theoretical tools for saving space by decom-

posing imperfect information games into smaller problems.

• In Chapter 6, I give performance bounds for continual re-solving, a new

algorithm which uses both CFR and decomposition to get a theoretically

sound analogue of perfect information heuristic search.

The CFR+ and continual re-solving algorithms both led to landmark re-

sults. I was a significant part of a group effort using CFR+ to solve the game

of heads-up limit Texas hold’em poker, making it the first commonly played

imperfect information game to be solved. I was also a significant part of a

larger collaborative project using continual re-solving to play the more com-

plicated no-limit variant of Texas hold’em poker, and test it in a human study.

We had strong positive results, and our program DeepStack was the first to

beat professional human players at the no-limit game.

3



Chapter 2

Background

My research requires terminology from a number of areas. I use poker as an

experimental testbed, and game theory is the appropriate theoretical frame-

work for the game of poker. One of my main tools for dealing with games

rests on the online learning framework of regret minimisation, using one par-

ticular type of expected value called counterfactual value. The background

terminology in this chapter will be used throughout the chapters that follow.

2.1 Poker

Most of my work is experimentally verified using Texas hold’em, the most

popularly played variant of poker. The different variants of poker vary widely,

but they are all adversarial card games where players bet on having the better

set of cards, called their hand. The player’s hand is a subset of their own

private cards, often called hole cards, and shared public cards, often called

board cards. The player’s hand can also refer to just their private cards.

Each player has a certain number of chips called their stack, and each game

starts with a number of forced initial bets of fixed size, called the ante or the

blinds. There are then one or more betting rounds where some number of

private and public cards are dealt, and then players take turns making betting

actions. The anted chips, and any subsequent bets, go into a pool of chips

called the pot.

A round of betting proceeds by players choosing to either raise the current

bet by placing more chips in the pot, call the bet by matching the largest
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contribution to the pot, or fold their hand. If no bet has yet been made in the

round, a player is said to check rather than call. The first bet in a round is

said to be a bet, while subsequent betting actions are called raises. A round

of betting is over when all players have checked, or called the last bet or raise.

A player that folds forfeits their claim to the pot, and stops participating

in the game. If there is only one player still participating, the game is over

early and that player wins all of the chips in the pot. Otherwise, the game

ends in a showdown after the last betting round is finished. In the showdown,

players that are still participating show their private cards1 and the player

with the best hand claims all chips in the pot. In the case where there is a tie,

the chips in the pot are split between the tied players.

In poker as it is usually played by humans, the player’s winnings from

the previous game2 carry forward into the next game by affecting the player’s

stacks. This means the games are not independent, and are not a single

repeated game. My work focuses on a variant called Doyle’s game [34] where

the player’s stacks are reset at the beginning of each game. In this case, each

game of poker is an independent instance of the same repeated game.

2.1.1 Heads-up Texas Hold’em

Texas hold’em is a popular variant of poker that has four rounds of betting.

Players get two private cards in the first round, called the pre-flop. There are

three public cards added to the board in the second round, called the flop.

One more public card is added to the board in each of the third and fourth

rounds, called the turn and river, respectively.

In Texas hold’em, the initial forced betting actions are known as the small

blind and the big blind, where the big blind is twice as large as the small blind.

Heads-up Texas hold’em, the two player variant, is played with what is known

as reverse blinds, where the small blind player acts first on the first round and

the big blind player acts first in all subsequent rounds.

1A participating player might also choose to not show their cards, and forfeit their claim
to the pot, as if they had folded.

2Each game is usually called a hand, although I avoid this usage.
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When played by humans, at the end of each game, players swap between

the small and big blind. This is because there is a positional advantage,

and swapping ensures that a player does not always have the disadvantageous

position. From the point of view of game theory and this document, the term

player will refer to the position within the game and not an agent that swaps

between positions. That is, the first player will act first in every game.

Texas hold’em has two betting variants: limit and no-limit. In limit games,

there is a fixed size for bets and raises. Players can bet or raise the same

number of chips as the big blind in the pre-flop and flop rounds, and twice the

big blind in the last two rounds. In no-limit games, players can bet or raise

any number of chips in a range going from the last bet or raise in that round

(including the blinds) up to their entire stack. Betting all remaining chips in

the stack is known as going all-in. I will refer to heads-up limit Texas hold’em

as HULHE, and heads-up no-limit Texas hold’em as HUNL. HULHE is the

smallest variant of poker that is commonly played by humans, with around

3.19 ∗ 1014 information sets [9].

Because the big blind determines the bet sizes in HULHE and the minimum

bet size in HUNL, it is often more meaningful to use big blinds as a unit

rather than directly referring to chips. Winning 2000 chips after 1000 games

says something very different about my skill when the game had a 2 chip

big blind, than it does if the game had a 100 chip big blind: the former is

an astoundingly large win-rate of 1 big blind per game, while the latter is a

modest (but satisfying) 0.02 big blinds per game. For smaller numbers, I will

use mbb to denote a thousandth of a big blind. We could then say my 0.02

big blind per game win rate is 20mbb/g.

2.2 Imperfect Information

Games are decision making problems with fully described rules, specifying the

available actions and the values for all possible outcomes. Because games are

well-specified problems, we can partition them into a number of theoretically

different classes. One of the biggest distinguishing features is the number of
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players: single-player games, two-player games, and games with more than

two players all have different properties. Another important distinction can

be made between games where the players have identical information about

the current state, and those where players have different information about

the state.

Informally, the distinction between perfect information and imperfect in-

formation is often made in terms of whether all players exactly know the

current game state. For example, chess and checkers are perfect information

games, where the board and moves are all public information. In imperfect

information games, players may not know something about the current state.

For example, in rock-paper-scissors, we can say one player acts first and the

second player has incomplete information about the state and must choose an

action without knowing the first player’s action. In poker, all actions are made

without knowledge of the opponent’s privately held cards.

The informal “full knowledge” distinction is less useful when considering

the presence or lack of non-deterministic events, also called chance or random

events. The unknown outcome of dice rolls in backgammon or the not yet re-

vealed cards in solitaire games do not make those games imperfect information

games. Similarly, the inclusion of unknown face-down board cards in poker

games does not make them imperfect information games. It is the player’s

private cards that create the necessary information asymmetry. To be an im-

perfect information game, there must be at least one situation where a player

makes an action without knowing the same information as the player making

some earlier action. However, as long as we consider chance events to be un-

determined until some player learns the result, the informal “doesn’t know the

exact state” version of imperfect information is a satisfactory definition.

Reasoning about imperfect information games is different than reasoning

about perfect information games, because it requires circular reasoning. When

we act, we must think about the possible distribution over the unknown in-

formation that was used to make earlier actions. In turn, the earlier actions

must be made with an understanding of what information they reveal.

For example, the decision to bluff by betting with weak cards is a natural
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bet

Fold Call

Figure 2.1: Simplified poker situation which requires bluffing

consequence of the rules of poker. Consider the simplified poker situation in

Figure 2.1. The game starts with a chance state represented by a diamond,

where we have equal chance of being dealt J or K and the opponent is always

dealt Q. Our decision, represented by the squares, is whether we should bet

or check. We always bet with K and are choosing whether to check or bet

with J . At the circles, our opponent is choosing whether to fold or call to a

bet. Our opponent does not know our cards, an information set represented

by the dashed oval containing the two circles. Betting with J is a bluff, as we

lose by making the action unless the opponent responds as if we had K.

If we never bet with J , then our opponent knows that if we bet we must

have K, and will maximise their value by folding. Our expected value in this

case is 0.5 ∗ (−1 + 1) = 0. If we always bet with J , then our opponent knows

that if we bet that it’s equally likely we have J or K, and will maximise

their value by calling. Our expected value in this case is 0.5 ∗ (−2 + 2) =

0. However, if we bluff by betting J with probability 1/3, our opponent is

ambivalent about folding or calling, and our expected value is 1/3. Done

carefully, misrepresenting our cards increases our expected value.

The bluffing behaviour in poker also highlights another difference between

perfect information games and imperfect information games. Optimal play in

perfect information games can be described by picking one single best action

at every state, whereas optimal play in imperfect information game usually

requires the players to act stochastically.
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2.3 Extensive Form Games

An extensive form game is a tree-based formalism used to describe a large

class of imperfect information games3. As an extension of the classical idea

of a game tree, extensive form games are also capable of describing perfect

information games: perfect information games are a theoretically trivial (but

not practically trivial!) subset of imperfect information games.

Formally speaking, an extensive form game G is a tuple ⟨H,Z, P, p, u, I, σc⟩.

H is a set of states, including ∅, the initial state of the game. A state can also

be called a history, because a game state is exactly a history of the sequence

of actions taken from the initial state. I will use · to indicate concatenation,

so h · a is the sequence of actions in h, followed by action a. Z ⊂ H is the set

of terminal (leaf) states, and up : Z ↦→ R gives the payoff to player p if the

game ends at state z.

P is a set of all players acting in the game, and p : H \Z ↦→ P is a function

which describes which player is currently acting at a non-terminal state h.

The actions available at a non-terminal state h are defined implicitly by the

set of histories H, so that A(h) = {a|h · a = j, h ∈ H, j ∈ H}. For a history h

where a stochastic event is about to happen, like a die roll or card deal, p(h) is

a special “chance player” c. The value σc(h, a) gives the probability of chance

event a occurring if the game is in state h.4

I describes what information is hidden from the players in a game, defined

by a partition of all non-terminal, non-chance states. I must satisfy the con-

straints that ∀I ∈ I and ∀h, j ∈ I, we have p(h) = p(j) and A(h) = A(j). A

set I ∈ I is called an information set, and for every state h ∈ I the player

p(h) will only know that the current state of the game is one of the states in

I, but not exactly which one.

There are a number of notations of convenience. Because the player and

3Whether or not a decision making problem can be described as an extensive form game
depends on details like whether we allow trees to have an uncountably infinite number of
branches, or infinitely long branches.

4By convention, a game never ends in a chance event that only leads to terminal states,
because we can construct a strategically identical game by using a payoff which is an expec-
tation over the terminal chance event.

9



available actions are the same for all states in any information set I, we can

define p(I) = p(h) and A(I) = A(h) for an arbitrary h ∈ I. We can refer to

the set of information sets for a player p as Ip = {I ∈ I|p(I) = p}. Finally, it

is convenient to speak of I · a = {h · a|h∈I}, the set of states that a player can

be in after taking action a at information set I.

We will say that h ⊑ j, or h is an ancestor of j, if h is a prefix of j. h ⊏ j

and h is a strict ancestor of j if h ⊑ j and h ̸= j. h is the parent of j if

j = h · a for some action a, and j is a child of h if h is the parent of j. We

will let Z(S) be the set of terminal histories that can be reached from a set of

states S. Conversely, given a history h and set of states S, h[S] is the longest

prefix of h that is in set S, or ∅ if no such prefix exists.

2.3.1 Zero Sum

A game is said to be constant-sum if
∑

p∈P up(z) = k ∈ R for all z ∈ Z,

and zero-sum if the game is constant-sum with k = 0. These concepts are

functionally equivalent, because a game is strategically identical if we shift

or scale all payoffs by a constant value. The work in this thesis assumes a

zero-sum game.

2.3.2 Perfect Recall

Informally, a player is said to have perfect recall if they do not forget any

information they previously knew. Formally, a player p has perfect recall if for

all information sets I ∈ Ip and any states h, j ∈ I, h and j have passed through

the same sequence of player p information sets, and made the same action at

those information sets. That is, for any state s there is a sequence of states

s0 = ∅, ..., sm such that si+1 = si ·ai and sm ·am = s, which induces a sequence

of tuples ⟨Ii, ai⟩ such that si ∈ Ii, from which we can get a subsequence of

tuples ⟨Ii, ai⟩ where p(Ii) = p(s). If this subsequence is identical for all h, j ∈ I

and all I ∈ Ip, player p has perfect recall.

If a player does not have perfect recall, they are said to have imperfect

recall. If all players have perfect recall, the game is said to be a perfect-recall

game. All of the work in this thesis assumes a perfect-recall game.
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2.4 Player Strategies

A player’s strategy, also known as their policy, determines how they choose

actions at states where they are acting. The term strategy profile is used to

refer to a tuple consisting of a strategy for each player. I will use σp to refer

to a strategy for player p, and σ to refer to a strategy profile. The set of all

player p strategies will be denoted by Σp, and the set of strategy profiles will

be denoted as Σ.

Given a strategy profile σ and some player p strategy σ′p, I will use the

tuple < σ−p, σ
′
p > to refer to the strategy profile where player p’s strategy is

σ′p, and their opponent plays according to their strategy in σ.

2.4.1 Strategy Probabilities

It is useful to have terminology for frequently used probabilities. σp(I, a) gives

the probability of player pmaking action a given they have reached information

set I ∈ Ip, and σ(I, a) = σp(I)(I, a). I will use the vector σ(I) to speak of

the probability distribution σ(I, a) over A(I). πσ(h) gives the probability of

reaching state h if all players follow profile σ.

There are many more common conditional probabilities. πσ
p (h) gives the

probability of reaching state h if chance and p’s opponents make the actions

to reach h, and player p acts according to σ. In perfect recall games, we can

extend this to speak of πσ
p (I) as all states in I will have the same player p

probability.

We can also extend the π notation by flipping which players are following

σ and use πσ
−p(h) to refer to the probability of reaching state h if player p

makes the actions to reach h, and chance and p’s opponents act according to

σ. All of these π probabilities can also be extended to consider subsequences

of actions. We can speak of πσ
p (z|h) as the probability of player p making the

actions needed to move from state h to state z.

In perfect recall games, all of the π probabilities can be expressed as prod-

ucts of σ(Ik, a) terms. This gives us equivalences like πσ(h) = πσ
p (h)π

σ
−p(h) and

πσ(z) = πσ(h)πσ(z|h) for any h ⊏ z. We will define πσ
p (I, a) = πσ

p (I)σ(I, a).
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∅ → h1 → h2 → h3 → h4 → h5 → h6
3♣A♣/7♠Q♡ c B c 2♣4♢Q♣ B

Figure 2.2: Sequence of HUNL states and actions. Player two actions are
capitalised. Call and Bet have been abbreviated as c and b, respectively.

For example, consider the sequence of HUNL events in Figure 2.2. Given

the definitions above, we get the following relations between probabilities

πσ(h6) = σc(∅, 3♣A♣/7♠Q♡)σ1(h1, c)σ2(h2,B)

∗ σ1(h3, c)σc(h4, 2♣4♢Q♣)σ2(h5,B)

πσ
c (h6) = σc(∅, 3♣A♣/7♠Q♡)σc(h4, 2♣4♢Q♣)

πσ
1 (h6) = σ1(h1, c)σ1(h3, c)

πσ
2 (h6) = σ2(h2,B)σ2(h5,B)

πσ
−1(h6) = σc(∅, 3♣A♣/7♠Q♡)σ2(h2,B)σc(h4, 2♣4♢Q♣)σ2(h5,B)

πσ
−2(h6) = σc(∅, 3♣A♣/7♠Q♡)σ1(h1, c)σ1(h3, c)σc(h4, 2♣4♢Q♣)

πσ(h6) = πσ
c (h6)π

σ
1 (h6)π

σ
2 (h6)

πσ(h6) = πσ
1 (h6)π

σ
−1(h6)

πσ(h3) = σc(∅, 3♣A♣/7♠Q♡)σ1(h1, c)σ2(h2,B)

πσ(h6|h3) = σ1(h3, c)σc(h4, 2♣4♢Q♣)σ2(h5,B)

πσ
1 (h6|h3) = σ1(h3, c)

πσ(h6) = πσ(h3)π
σ(h6|h3)

2.4.2 Strategy Values

Given a strategy profile σ, player p’s expected value of a non-terminal state h

is uσp(h) =
∑

z∈Z,h⊏z π
σ(z)up(z). The player p value of a strategy profile is uσp =

uσp(∅) and the value of an information set I ∈ Ip is uσp(I) =
∑

h∈I u
σ
p(h). Note

that uσp(h) and uσp(I) are not conditional values, and include the probability

πσ(h) of reaching h or states h ∈ I.

My work makes frequent use of counterfactual values, introduced by Zinke-

vich et al. [94]. Counterfactual value differs from the standard expected value

in that it does not consider the player’s own probability of reaching the state

12



(thus the use of “counterfactual” in the name: instead of following σ, what

if the player had instead played to reach here?) The counterfactual value for

player p of state h is vσp (h) =
∑

z∈Z,h⊏z π
σ
−p(h)π

σ(z|h)up(z). Equivalently, we

could say vσp (h) =
∑

z∈Z,h⊏z π
σ
p (z|h)πσ

−p(z)up(z). Extending the idea to infor-

mation sets, the counterfactual value for player p of an information set I ∈ Ip
is vσp (I) =

∑
h∈I v

σ
p (h). Similarly, vσp (I · a) =

∑
h∈I·a v

σ
p (h).

Note the expected value of a state can be expressed as the product of the

counterfactual value of the state and the probability of reaching it, so that

uσp(h) = πσ
p (h)v

σ
p (h). With perfect recall, this also holds for information sets.

This relationship also means vσp := vσp (∅) = uσp(∅) because the probability

πσ
p (∅) of player p reaching the beginning of the game must always be 1.

2.4.3 Best Response

If we have a strategy profile σ, a player p best response is a strategy for p

that maximises their expected value if the other players play according to σ.

That is, brp(σ) = argmaxσ∗∈Σp
u
⟨σ−p,σ∗⟩
p . If we know our opponent’s strategy,

playing a best response is said to be rational play. We can similarly define the

best response value, vbrσp = maxσ∗∈Σp u
⟨σ−p,σ∗⟩
p = u

⟨σ−p,brp(σ)⟩
p .

A best response strategy is not necessarily unique, because there may be

information sets where there are multiple actions which have the same value. In

two-player, zero-sum games an opponent best response is a worst-case strategy

for us, and minimises our expected value.

We can compute a best response value or strategy recursively, using coun-

terfactual values. Roughly speaking, at some information set I, a player p’s

best response (counterfactual) value after taking an action a is the sum of best

response values across all player p child information sets that can be reached

by making action a. The best response value at I is the maximum of the

values across all a. A strategy can be recovered from values by choosing the

maximising action at all information sets.

We need to define a counterfactual version of the best response value:

cvbrσp = maxσ∗∈Σp v
⟨σ−p,σ∗⟩
p . As uσp = vσp , we have vbrσp = cvbrσp . As with all

other values, we could also consider the best response counterfactual value of
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information sets cvbrσp(I) = maxσ∗∈Σp v
⟨σ−p,σ∗⟩
p (I), with similar definitions for

states, or actions after information sets.

We also need to define the children of information set I after action a:

C(I · a) = {J ∈ Ip(I)|I · a ⊏ J,∄K ⊏ J s.t. I · a ⊏ K}, where I ⊏ J if and

only if ∃h ∈ I, j ∈ J such that h ⊏ j, and I · a ⊏ J defined similarly.

We can now describe the values recursively for I ∈ Ip and a ∈ A(I) as

cvbrσp(I · a) =
∑

I′∈C(I·a) cvbr
σ
p(I
′), and cvbrσp(I) = maxa∈A(I) cvbr

σ
p(I · a).

2.4.4 Optimal Play and Nash Equilibrium

A Nash equilibrium is a strategy profile where every player’s strategy is a best

response to the strategy profile. It is guaranteed to exist for any extensive-

form game [67]5, although it may not be unique. Because every player is

acting rationally in the sense that they are maximising their utility against

their opponents, the Nash equilibrium is the basic solution concept describing

optimal play in imperfect information games. I will say (exactly) solved to

mean we have found a Nash equilibrium profile, and will say a player has

(exactly) optimal play to mean they are following their strategy from a Nash

equilibrium profile.

In the two player, zero-sum, perfect-recall games that are used in this work,

a Nash equilibrium is equivalent to a solution to the max-min optimisation

problem maxσp∈Σp minσq∈Σq vp(⟨σp, σq⟩). While the Nash equilibrium might not

be unique, every equilibrium profile has the same player p value. This unique

value is called the game value for player p, and playing σp from any equilibrium

σ guarantees that p gets at least the game value against any opponent strategy,

including a perfect (best-response) opponent.

A player strategy σ in a Nash equilibrium profile does not necessarily make

rational (best-response) actions in all parts of the game. At any information

set I ∈ Ip that is not reached by σ−p (i.e., π−p(h) = 0 ∀h ∈ I) a Nash

equilibrium only has a guarantee that σp gets at least the game value against

an opponent strategy which does reach I, rather than guaranteeing that σp

5Existence is only guaranteed when using mixed strategies, described in Section 2.5.1, or
in perfect-recall games where the common strategy spaces are equivalent.
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makes rational decisions after I. Although I do not consider them in this work,

there are refinements of the Nash equilibrium solution concept, which address

this potentially irrational play in these unreached situations. For example, the

sequential equilibrium [52], the (normal form) trembling hand equilibrium [77],

and the quasi-perfect equilibrium [89] guarantee rational play.

There are additional issues with the Nash equilibrium in games which are

not constant-sum, or have more than two players. Max-min, min-max, and

Nash equilibrium strategy profiles are no longer equivalent, and there is no

unique game value. Nash equilibrium play might not seem sensible, as seen in

the traveler’s dilemma game [3]. Equilibrium strategies are not interchange-

able, so a player’s strategy might no longer be a best response if their opponents

are playing according to a different equilibrium. A Nash equilibrium is also

hard to compute (or even approximately compute) if the game has more than

two players [21], is not constant-sum [19], or is not perfect recall [50].

2.4.5 Approximately Optimal Play

Instead of exactly computing a Nash equilibrium, we are often satisfied with

an approximate solution, such as a strategy produced by an iterative algo-

rithm which produces successively better strategies. I will generally drop the

word approximate when talking about an approximate solution, and will use

solved to mean we have found a sufficiently good approximation of a Nash

equilibrium. I will use the term exactly solved or exact equilibrium profile to

distinguish the case where we have found a Nash equilibrium rather than an

approximation of a Nash equilibrium.

An ϵ-Nash equilibrium is an approximate solution, where for each player p,

vbrσp−uσp ≤ ϵ. I will use exploitability of a strategy profile to mean the average

of the players’ best response values: (1/2)
∑

p∈P vbrσp . An ϵ-Nash has at most

ϵ exploitability, and a profile with ϵ exploitability is a 2ϵ-Nash equilibrium. A

profile has 0 exploitability if and only if it is an exact Nash equilibrium.

I will use exploitability of a single player p’s strategy σp to mean the dif-

ference between the game value gp and the worst-case value: gp−u⟨σp,br−p(σp)⟩
p .

There is a connection to strategy profile exploitability: if both players have a
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strategy with ϵ exploitability, the strategy profile has ϵ exploitability.

With Bowling et al., I introduced the notion of essentially solved [9] to

answer the question of when an approximation is good enough. We say a

game is essentially solved if we have an approximate equilibrium that cannot

be distinguished from an exact equilibrium with statistical confidence after

observing a human lifetime of play. The minimum exploitability needed to

essentially solve a game depends on both the speed of human play, and the

variance of game outcomes.

2.5 Strategy Spaces

There are a number of different ways to express a strategy, including pure

strategies, mixed strategies, behaviour strategies, and sequence form strate-

gies. Somewhat surprisingly these different strategy spaces are not entirely

equivalent6 in general games, although they are equivalent in perfect-recall

games. Unless explicitly noted, I will be using behaviour strategies through-

out this thesis.

2.5.1 Normal Form and Mixed Strategies

The earliest methods of solving a two player, zero-sum game [23, 20, 88] in-

volved translating it into a different description, called a normal form game.

Given a game, for each player we construct a set of pure strategies. Each player

p pure strategy is a deterministic policy for p, mapping each information set

I ∈ Ip to a single action a ∈ A(I). The normal form of a game is a payoff

matrix indexed by the sets of all pure strategies for each player, with entries

that are the expected value of the row and column strategies.

Non-determinism in player actions is introduced by using a mixed strategy,

which is a probability distribution over the set of the player’s pure strategies.

Playing a mixed strategy means sampling a pure strategy from this distribution

at the beginning of the game, then using that pure strategy to select actions

6Any strategy profile induces a probability distribution of reaching each terminal state.
A set of strategies are equivalent if the set of terminal probability distributions are identical.
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at each information set.

In normal form, the constraints on the strategy space are linear (the prob-

abilities must sum to 1) and the expected value of a mixed strategy profile

⟨σp, σq⟩ is a bilinear function σ⊺
pUσq of the strategies and some payoff matrix

U . The problem of finding a mixed strategy Nash equilibrium can be expressed

as a linear program (LP), giving us an algorithm for solving an extensive form

game: translate it to normal form, generate and solve the appropriate linear

program, and use the resulting mixed strategy. While solving an LP is poly-

nomial [49], the first translation step is not. The number of possible pure

strategies is exponential in the number of information sets.

2.5.2 Sequence Form

Romanovskii [75] and later Koller et al. [51] introduced sequence form games,

which do not have the exponential blowup of normal form games, and gave

a polynomial time algorithm for solving two player, zero-sum, perfect-recall

extensive form games. Here, a player p sequence refers to an information set

I ∈ Ip and action a ∈ A(I), and the sequence of player p information sets and

actions required to reach I. In perfect recall games, the history to reach I is

unique, and every sequence can be represented just by I and a.

Sequences in sequence form play the role of pure strategies in normal form.

Like pure strategies, given a sequence for each player, there is an associated

expected value. Note that many tuples of sequences are not compatible and

have a value of 0, because a sequence might require the opponent to make a

move that does not match the player’s sequence. For example, a row sequence

might correspond to a choice after the opponent calls, but the column sequence

corresponds to the opponent folding. Unlike pure strategies, the number of

player p sequences is smaller than the number of game states, and is equal to

1 +
∑

I∈Ip |A(I)|.

Like mixed strategies and pure strategies, a sequence form strategy is de-

fined in terms of sequences, but is not a single probability distribution. Instead,

it specifies πσ
p (I, a) for each sequence, which is a set of probability distributions

that retains something of the tree-like structure of the extensive form game. In
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a sequence form strategy, the probability of a parent sequence7 must be equal

to the sum of the probabilities of the child sequences. To play a sequence form

strategy, we can normalise the sequence probabilities to get σ(I, a).

Continuing the parallels between normal form and sequence form, the pay-

off of a sequence form strategy profile ⟨σp, σq⟩ is again a bilinear function σ⊺
pUσq

of some payoff matrix U . Koller et al. showed that the set of sequence form

strategies can be described by linear constraints, that a sequence form Nash

equilibrium must exist in two player, zero-sum, perfect-recall games, and gave

a linear program for finding a sequence form Nash equilibrium [51].

2.5.3 Behaviour Strategies

A behaviour strategy σp directly specifies the probabilities σp(I, a). When

playing a game according to a behaviour strategy, at every information set

I the player samples from the distribution σ(I) to get an action. Similar to

sequence form strategies, the size of a behaviour strategy is
∑

I∈Ip |A(I)|. The

first down side of behaviour strategies is that the expected value is not linear

in the strategy probabilities, or even a convex-concave function.

The second problem is that computing the average of a behaviour strategy

is not a matter of computing the average of the specified action probabilities:

it is not entirely reasonable to give full weight to a strategy’s action probabil-

ities for an information set that is reached infrequently. Instead, to compute

the average behaviour strategy we must weight σp(I, a) by πσ
p (I), which is

equivalent to averaging the equivalent sequence form strategies.

2.6 Abstraction

We may want to use an approximation of a Nash equilibrium to play a game,

but many games are too large to solve. For example, even using some game-

specific knowledge to eliminate identical situations, storing a complete HULHE

strategy would require 131 TB using 4 byte floating point numbers [9], and

would require a correspondingly large computation time. While Chapter 4

7The parent of a sequence ⟨I1, a1⟩, ..., ⟨In, an⟩ is ⟨I1, a1⟩, ..., ⟨In−1, an−1⟩.
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discusses a method we used to solve HULHE, finding a solution to the game

had previously been intractable.

Shi and Littman suggested the use of abstraction [79] as one method used

to generate a strategy for very large games. By generating an abstraction of

the game and trying to capture the general form of the rules, we can create an

abstract game which is a small model of the original game. If the abstract game

is small enough, we can solve it, and then use the abstract strategy to guide

our play in the original game. Assuming our abstract game has captured the

strategically important properties of the original game, our abstract strategy

is hopefully a good policy in the original game.

Abstraction has been popular in game-theoretic poker research, and one

method of generating abstract poker games has involved grouping information

sets together into a collection called a bin or a bucket [79, 4, 32]. The quality

of the strategy depends on the similarity of the grouped situations [57], and

there has been a series of increasingly complicated algorithms for automati-

cally generating abstract poker games [33, 29, 13]. Grouping different card

situations together into buckets has been sufficient to generate strong HULHE

strategies [46], and was used to beat top human specialists [10].

It is easy to translate the abstract equilibrium strategy from a bucket-based

abstract game back into the original game. There was some mapping function

used to map an information set into a bucket when creating the game, and we

use this same mapping function to map an observed information set into an

abstract information set. Given the abstract information set, we directly use

the action probabilities from the abstract strategy.

The game of HUNL is much larger, and methods for generating an ab-

stract game for HUNL have generally involved a combination of bucket-based

abstraction for card information, as well as drastically pruning the game by

using a sparse subset of available player actions. Pruning the available actions

in the abstract game sets up a non-trivial problem in using the abstract strat-

egy [76, 27]. If the opponent makes an action that we pruned away, there is

no longer an obvious way to play after that action was made, because there is

no obvious mapping from the resulting state to a state in the abstract game.

19



We might hope for some guarantee of improvement by using a larger, bet-

ter informed abstraction, and this has generally been the case with poker

games. We have observed that, as we use finer-grained abstraction and bet-

ter mapping functions, one on one performance increases and exploitability

decreases [46]. There are, however, no general theoretical guarantees. It is

possible to see pathological behaviour where the exploitability of an abstract

strategy increases when using a larger abstraction, even if the larger abstrac-

tion is a strict refinement of the smaller abstraction [92]. It requires great care,

and an expensive computation, to generate an abstract game with any sort of

a-priori bounds on the exploitability within the original game [53].

2.7 Regret

Much of my work makes use of the mathematical concept of regret. In ordi-

nary use, regret is a feeling that we would rather have done something else.

The mathematical notion of regret tries to capture the colloquial sense of re-

gret, and is a hindsight measurement of how much better we could have done

compared to how we did do. Assume we have a fixed set of actions A, a se-

quence of probability distributions σt over A, and a sequence of value functions

vt : A ↦→ R8.Given some set of alternative strategies S, where s ∈ S maps time

t ∈ [1...T ] to a probability distribution s(t) over A, our regret at time T with

respect to S is RT
S = maxs∈S

∑
t s(t) · vt −

∑
t σ

t · vt.

In order for regret to be meaningful, we need bounded values, so that there

is some L that |vt(a)− vt(b)| ≤ L ∀t and ∀a, b ∈ A.

Using different sets S gives different regret measures. The most common,

external regret, uses S such that ∀s ∈ S, s(t) is a probability distribution

placing all weight on a single action A, and ∀t, t′ s(t) = s(t′). That is, external

regret considers how we would have done if we had always played a single,

fixed action instead. Unless specified otherwise, I will use regret to refer to

external regret.

I will often speak of the regret RT (s) of a choice s, by which I will mean

8While A is fixed, both σt and vt are free to vary over time.
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RT (s) =
∑

t s(t) · vt −
∑

t σ
t · vt. The regret can then be written in terms of

the choice regrets as RT
S = maxs∈S R

T (s). For external regret, this idea can

be simplified to the regret for an action a ∈ A.

2.7.1 Online Learning and Regret Minimisation

Let us say we have a repeated, online, decision making problem with a fixed

set of actions. At each time step, we must choose an action without knowing

the values in advance. After making an action we receive some value (also

known as reward), and also get to observe the values for all other actions.

The values are arbitrary, not fixed or stochastic, and might be chosen in an

adversarial fashion. The adversary has the power to look at our decision-

making rule for the current time step before we make the action, but if we

have a randomised policy the adversary does not have the power to determine

the private randomness used to sample from the distribution. This setting is

often called expert selection, where the actions can be thought of as experts,

and we are trying to minimise loss rather than maximise value.

Given such a problem, with arbitrary adversarial values, regret is a natural

measure of performance. Looking at our accumulated value by itself has little

meaning, because it might be low, but could still be almost as high as it would

have been with any other policy for selecting actions. So, we would like to

have an algorithm for selecting actions that guarantees we have low regret.

Because of the bounds on values, we can never do worse than LT regret.

Cesa-Bianchi et al. give a lower bound: for any ϵ > 0 and sufficiently large

T and |A|, any algorithm has at least (1− ϵ)L
√
T/2 ln(|A|) external regret in

the worst case [17].

We are often interested in the average behaviour, or the behaviour in the

limit, and so we might consider dividing the total regret by T to get the

average regret. If our total regret is sub-linear, average regret will approach 0

as T →∞, and our average value (or reward) approaches the best-case value.

Despite the arbitrary, potentially adversarial selection of values at each time

step, there are multiple algorithms which guarantee sub-linear external regret.
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2.7.2 Regret-Matching Algorithm

Blackwell introduced the Regret-matching algorithm [5], which can be used9

to solve the online learning problem discussed in Section 2.7.1. Given the

regrets RT (a) for each action, the regret-matching algorithm specifies a strat-

egy σT (a) = RT−1(a)+/
∑

b∈AR
T−1(b)+, where x+ = max(x, 0). That is, the

current strategy is the normalised positive regrets.

Rather than computing RT (a), an implementation of regret-matching will

usually maintain a single regret value for each action, and incrementally up-

date the regrets after each observation. We can rewrite the action regrets as

RT (a) = RT−1(a) + ∆RT (a), where ∆Rt(a) = vt(a) −
∑

b∈A σ
t(b)vt(b) and

R0(a) = 0. Using ∆RT (a), which depends only on the newly observed values

vT , we can update the previous regrets RT−1(a) to get RT (a).

Given T steps and a bound Lt on |vt(a)− vt(b)|, regret-matching has sub-

linear regret, with an upper bound RT ≤
√∑T

t=1(L
t)2|A|. With a single fixed

value bound L, the regret bound can be simplified to RT ≤ L
√
T |A|. Regret-

matching has two other desirable properties: it is simple, because the current

strategy is just the normalised positive regrets, and it has no parameters which

need to be tuned.

2.7.3 Hedge Algorithm

Based on the weighted majority algorithm of Littlestone et al. [61], Freund

and Schapire introduced the Hedge [26] algorithm to solve a variant of the

online learning problem10 of Section 2.7.1. Given a current strategy σt−1 and

observed values vt, Hedge(β) uses a new strategy σt = σt−1βvt/
∑

a β
vt(a). The

initial strategy σ0 is a uniform random distribution over A.

The Hedge algorithm can be written in a different, mathematically equiv-

alent way by storing action values V T (a) =
∑T

t=1 v
t(a) and using a strategy

9Blackwell used the algorithm as part of a constructive proof for an argument about opti-
mising multi-valued objectives. The application to minimising regret is a specific application
of the argument, using action regrets as the multiple objectives. I introduce the algorithm
here, as it is a component of the CFR game solving algorithm introduced in Chapter 3.

10The original setting considered experts which predict a value at each time, with the loss
being the difference from the observed value.
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σt = eγV
t−1
/
∑

a e
γV t−1(a). Hedge is shift-invariant, where adding a constant to

all values results in the same strategy, so we could also write the algorithm as

storing action regrets Rt(a) and using a strategy σt = eγR
t−1
/
∑

a e
γRt−1(a).

If we know ahead of time the total number of time steps T we will run,

and use β = 1 +
√
2 ln(|A|)/T , Hedge(β) has sub-linear regret with an upper

bound RT ≤ L
√

2T ln(|A|) + ln(|A|) [26]. If we do not know T , we can use a

doubling trick where we tune β for k steps, then 2k steps, then 4k steps and

so on. The asymptotic complexity remains the same.

Hedge is overwhelmingly more popular than regret-matching, due to its√
ln(|A|) dependence on the number of actions, compared to the

√
|A| be-

haviour of regret-matching. The parameterised nature of Hedge, however, is

a mixed blessing. In practice, we can drop the theoretically justified choice

of β and get significantly better performance by tuning the choice of β for

the problem. The promise of much better performance means there is now a

parameter to tweak, in order to chase that performance. Other algorithms,

like NormalHedge [18] and AdaNormalHedge [62], have the same
√
ln(|A|)

dependence without the free parameter.

2.7.4 Regret and Exploitability

Regret minimisation is relevant to game solving, because there is a connection

between regret and exploitability. If we have a sequence of strategy profiles,

we can say the player p regret is RT
p = maxσ∗

∑T
t=1 v

⟨σ∗,σt
−p⟩

p −
∑T

t=1 v
σt

p . The

max term is T times the best response value to the average opponent strategy

σ̄−p, so the exploitability of the average strategy profile σ̄ is (1/2)T (RT
1 +R

T
2 ).

The connection above means that we can solve games through self-play of

regret minimising algorithms. If each player minimises external regret over the

set of pure strategies, the profile of average strategies is a 1/
√
T -Nash equilib-

rium. Unfortunately, this is an impractical algorithm because the number of

pure strategies is exponential in the size of the extensive-form game.
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2.8 Setting for this Work

All of the theory in the work applies to two player, zero-sum, perfect-recall,

imperfect information games, described as an extensive form game. I have

used HULHE and HUNL as the full-size problems for experimental tests.
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Chapter 3

CFR: State of the Art

Counterfactual regret minimisation (CFR) is an algorithm for finding an ϵ-

Nash equilibrium in two player zero-sum games, developed by Zinkevich et

al. [94] in response to the high memory cost of earlier algorithms. CFR uses

memory on the order of the strategy size, rather than the game size. It is

necessary to examine CFR in detail, as the majority of my contributions extend

the CFR algorithm in some way.

My main contribution related to CFR is a tighter regret bound (not pre-

viously published). The bound is a strict improvement on the current best

known bound, and shows that CFR does not always pay a large performance

penalty for games with a large chance branching factor. I was also involved

on earlier shared work on a CFR regret bound (published in NIPS [30].)

3.1 CFR Algorithm

CFR is a self-play algorithm using regret minimisation. Zinkevich et al. in-

troduced the idea of counterfactual value, a new utility function on states and

information sets, and use this value to independently minimise regret at every

information set. By using many small regret minimisation problems, CFR

overcomes the prohibitive memory cost of directly using a regret minimisation

algorithm over the space of pure strategies.

Counterfactual values, defined in Section 2, can be combined with any

standard regret concept to get a counterfactual regret at an information set.

CFR uses external regret, so that the counterfactual regret at time T of an
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action a at a player p information set I is

RT (I, a) =
T∑
t=1

vσ
t

p (I · a)−
T∑
t=1

∑
a∈A(I)

σt(I, a)vσ
t

p (I, a)

Given the sequence of past strategies and values for I, any regret-minimising

algorithm can be used to generate a new strategy σt
p(I, a) over the actions A(I),

with a sub-linear bound on total external regret RT (I) = maxa∈A(I)R
T (I, a).

CFR uses the regret-matching algorithm. Combining σt
p(I, a) at each player p

information set gives us a complete behaviour strategy σt
p, and repeating the

process for all players gives us a strategy profile σt.

The CFR algorithm proceeds in an iterative fashion. At each iteration,

there are four conceptual steps:

1. Generate strategy profile σt from the regrets, as described above. For all

I ∈ I, a ∈ A(I), and p = p(I):

σt
p(I, a) =

{
Rt(I, a)+/

∑
b∈A(I)R

t(I, b)+
∑

b∈A(I)R
t(I, b)+ > 0

1
|A(I)| otherwise

2. Update the average strategy profile to include the new strategy profile.

For all I ∈ I, a ∈ A(I), and p = p(I):

σ̄t
p(I, a) =

1

t

t∑
t′=1

πσt

p (I)σt′

p (I, a)

=
t− 1

t
σ̄t−1
p (I, a) +

1

t
πσt

p (I)σt
p(I, a)

3. Using the new strategy profile, compute counterfactual values. For all

I ∈ I, a ∈ A(I), and p = p(I):

vσ
t

p (I, a) =
∑
h∈I·a

vσ
t

p (h)

=
∑
h∈I·a

∑
z∈Z,h⊏z

πσt

−p(h)π
σt

(z|h)up(z)

4. Update the regrets using the new counterfactual values. For all I ∈ I,

a ∈ A(I), and p = p(I):

Rt(I, a) = Rt−1(I, a) + vσ
t

p (I, a)−
∑

a∈A(I)

σt(I, a)vσ
t

p (I, a)
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The first and fourth steps are specific to the choice of regret-matching as an

online regret minimisation algorithm, and could be replaced with any other

regret minimising algorithm.

A general version of CFR with no performance improvements is given in

Algorithm 1. R and σ̄ are tables which store the regrets and average strategy,

respectively, for each information set I and action a. σ and v are tempo-

rary storage tables which store the current strategy and counterfactual values,

respectively. We ignore any player subscripts in the algorithm, as the infor-

mation set used as part of the table index is sufficient to determine the acting

player. For example, Algorithm 1 uses the table entry v(I, a) to refer to the

counterfactual value vp(I)(I, a).

It is important to note that while CFR deals with behaviour strategies

(separate probability distributions across actions at each information set), the

average must still be done in the space of mixed strategies or sequence form

strategies, as noted in Section 2.5.3. Using the more compact sequence form

representation, maintaining the average strategy for player p can be done by

incrementally updating σ̄p(I, a) =
∑T

t=1 π
t
p(I)σ

t(I, a) for each information set

I ∈ Ip and action a ∈ A(I). We can ignore the factor to turn the sum into

an average, because the process of turning a sequence form strategy into a

behaviour strategy involves normalising the probabilities at each information

set, canceling out the missing constant.

An implementation of CFR can be made more efficient by combining the

strategy computation, average strategy update, and value computation in a

depth-first traversal of states in the game tree. A version of CFR which does

this recursive traversal is given in Algorithm 2. While it still uses temporary

space v(I, a) for every information set I and action a, Algorithm 2 does not

store a complete copy of the current strategy σ. At each node h, sequence

probabilities πp(h) are passed in for both players, and values from the children

are used to compute the counterfactual values vp(h) for both players, which

are returned to the parent.

There are also a number of other game-specific implementation details

which are important for good performance, as mentioned by Johanson [43].
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input : Game G, Number of iterations T
output: ϵ-Nash approximation σ̄
foreach I ∈ I do

foreach a ∈ A(I) do
R(I, a)← 0
σ̄(I, a)← 0

for t← 1 to T do
σ ←RegretToStrategy(I,R)
UpdateAverage(I,σ,1,σ̄)
v ← StrategyToValues(I,σ)
UpdateRegrets(I,σ,v,R)

NormaliseAverage(I,σ̄)
return σ̄

function RegretToStrategy(UpdateSets,R):
foreach I ∈ UpdateSets do

σ(I)← RegretMatchingStrategy(I,R)
return σ

function RegretMatchingStrategy(I):
sum←

∑
a∈A(I)R(I, a)+

if sum > 0 then
foreach a ∈ A(I) do

s(a)← R(I, a)+/sum

else
foreach a ∈ A(I) do

s(a)← 1/|A(I)|
return s

function UpdateAverage(UpdateSets,σ,w,σ̄):
foreach I ∈ UpdateSets, a ∈ A(I) do

σ̄(I, a)← σ̄(I, a) + wπp(I)(I)σ(I, a)

function StrategyToValues(UpdateSets,σ):
foreach I ∈ UpdateSets, a ∈ A(I) do

v(I, a)←
∑

h∈I·a
∑

z∈Z,h⊏z π−p(I)(h)π(z|h)up(I)(z)
return v

function UpdateRegrets(UpdateSets,σ,v,R):
foreach I ∈ UpdateSets, a ∈ A(I) do

R(I, a)← R(I, a) + v(I, a)−
∑

b∈A(I) σ(I, b)v(I, b)

function NormaliseAverage(UpdateSets,σ̄):
foreach I ∈ UpdateSets do

sum←
∑

a∈A(I)
¯σ(I, a)

foreach a ∈ A(I) do
σ̄(I, a)← σ̄(I, a)/sum

Algorithm 1: CFR
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input : Game G, Number of iterations T
output: ϵ-Nash approximation σ̄
foreach I ∈ I do

foreach a ∈ A(I) do
R(I, a)← 0
σ̄(I, a)← 0

for t← 1 to T do
foreach p ∈ {p1, p2} do

s[p]← 1
RecursiveUpdate(∅, s[·])
UpdateRegrets(I,σ,v,R)

NormaliseAverage(I,σ̄)
return σ̄

function RecursiveUpdate(h,s[·]):
input : State and sequence probabilities πp(h) for all p
output: Counterfactual values for all p
if h ∈ Z then

return [s[p2]πc(h)up1(h), s[p1]πc(h)up2(h)]
I ← I ∈ I such that h ∈ I
r ← [0, 0]
if p(h) = c then

foreach a ∈ A(h) do
r ← r + RecursiveUpdate(h · a, s)

else
s′ ← s
opp← p ∈ P such that p ̸= p(h)
σ ← RegretMatchingStrategy(I )
foreach a ∈ A(h) do

s′[p(h)]← s[p(h)] ∗ σ[a]
r′ ← RecursiveUpdate(h · a, s′)
v(I, a)← v(I, a) + r′[p(h)]
r[p(h)]← r[p(h)] + r′[p(h)]σ[a]
r[opp]← r[opp] + r′[opp]

return r

Algorithm 2: Recursive Implementation of CFR
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For example, poker-like games can be split into a small amount of private

information (the private cards in a player’s hand) and a tree of publicly visible

actions and chance events. That is, a player’s information set is the public

state plus their private information. In this case, we can further extend the

ideas of Algorithm 2 and perform an entire iteration in a single depth-first

traversal. The recursive update now operates on public tree nodes t, takes as

an input a vector of sequence probabilities across the private information for

each player, and returns a vector of counterfactual values across the private

information for each player. Algorithm 3 gives a sketch of this style of game-

specific implementation for public trees, which no longer uses either v or σ

for temporary storage. Game specific details for handling chance events and

terminal evaluation are omitted.

3.1.1 Regret Bounds

Zinkevich et al. showed that the player p regret over pure strategies is bounded

by the sum of counterfactual regrets at all player p information sets [94].

RT
p := max

σD
p ∈ΣD

p

(
T∑
t=1

u
⟨σt
−p,σ

D
p ⟩

p −
T∑
t=1

uσ
t

p

)
≤
∑
I∈Ip

RT (I)

where ΣD
p is the set of all player p pure strategies. Because we can alway find

a value-maximising (best response) pure strategy, the regret over all strategies

is equal to the regret over pure strategies.

If the maximum difference in leaf utilities is L and A = maxI∈I |A(I)|, then

the bound on regret-matching performance gives us RT
p ≤ L|Ip|

√
ApT . Given

the connection between regret for a sequence of strategies and exploitability

of the average strategy, the average strategy profile σ̄ = (1/T )
∑T

t=1 σ
t is an

L|I|)
√
A/T -Nash equilibrium.

The CFR regret bound and the associated exploitability bound can be bro-

ken into pieces. T is the running time, if we are only counting iterations rather

than seconds. |I| is the number of information sets, which is one potential way

to measure the size of an extensive form game1. A gives the maximum branch-

1It is also reasonable to look at the number of states |H|, and the number of strategy
probabilities |{⟨I, a⟩|I ∈ I, a ∈ A(I)}|
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input : Game G, Number of iterations T
output: ϵ-Nash approximation σ̄
foreach I ∈ I do

foreach a ∈ A(I) do
R(I, a)← 0
σ̄(I, a)← 0

for t← 1 to T do
foreach p ∈ {p1, p2}, privatep do

s[p][private]← 1
Update(∅, s[·][·])

NormaliseAverage(I,σ̄)
return σ̄

function Update(t,s[·][·]):
input : Public state and πp(t · private) for all p and privatep
output: Counterfactual values for all p and privatep
if h ∈ Z then

foreach p ∈ {p1, p2}, privatep do
r[p][privatep]← vp(t · privatep)

return r

foreach p ∈ {p1, p2}, privatep do
r[p][privatep]← 0

if p(t) = c then
foreach a ∈ A(t) do

s′ ← ChanceChildSequenceProbs(s,t,a)
r′ ← Update(t · a, s′)
r ← ChanceGatherValues(r,t,a,r’)

else
s′ ← s
foreach privatep do

σ[privatep]← RegretMatchingStrategy(t · privatep)
foreach a ∈ A(t) do

foreach privatep do
s′[p(h)][privatep]← s[p(h)][privatep] ∗ σ[private][a]

r′ ← Update(t · a, s′)
foreach privatep do

v(t · privatep, a)← v(t · privatep, a) + r′[p(h)][privatep]
r[p(h)][privatep]←
r[p(h)][privatep] + r′[p(h)][privatep]σ[privatep][a]

foreach privateopp do
r[opp][privateopp]← r[opp][privateopp] + r′[opp][privateopp]

return r

Algorithm 3: Sketch of a Game-Specific Implementation of CFR
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ing factor of the game tree. L describes the range of terminal values, and can

be ignored if we are willing to re-scale the problem so that all terminal values

are in [0, 1]. So, the CFR regret bound of Zinkevich et al. shows that given an

ϵ > 0 we can find an ϵ-Nash equilibrium by running enough iterations, and for

a fixed ϵ the maximum number of iterations we need grows roughly linearly in

the size of the game.

Lanctot et al. give a tighter bound on the regret, showing better scaling

in the size of the game. They showed that RT
p ≤ LMp

√
AT , for a more

complicated constantMp that is smaller than |Ip| [58]. Let Bp be the partition

of Ip such that for any B ∈ Bp and any I, I ′ ∈ B, player p made the same

sequence of actions to reach both I and I ′. Then Mp =
∑

B∈Bp

√
B.

Note that the partition Bp is well defined because of perfect recall. As

described in Section 2.3.2, all states in an information set have passed through

the same sequence of player p information sets, and made the same action at

those earlier information sets. Loosely speaking, Mp is roughly the size of a

tree built out of player p actions (i.e., |B|), multiplied by the square root of

the size of a tree built out of chance and opponent actions (i.e., maxB∈Bp
√
B.)

Gibson et al. improve on the bound of Lanctot et al., further improving

the scaling with respect to game size. We showed that RT
p ≤ LMp

√
AT for

a smaller Mp constant [30]. I was involved with this work, starting with the

observation that the inequality of Zinkevich et al. in Theorem 3 [94] is an

equality, described in Theorem 4 of [30]. Given the same partition Bp described

above, letMp(σ
∗
p) =

∑
B∈Bp maxI∈B π

σ∗
p (I)

√
|B| for any player p best response

σ∗p to σ̄. Then Mp = maxσ∗p Mp(σ
∗
p).

Speaking loosely again, the improved Mp constant is roughly the depth

of a tree built out of player p actions (i.e., πσ∗
p (I) will only be non-zero for

a single sequence of player p actions), multiplied by the square root of the

size of a tree built out of chance and opponent actions. That is, we showed

that CFR self-play regret, and therefore exploitability, grows as a depth-like

quantity with respect to player actions, rather than a tree-size quantity.
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3.2 Updated Regret Bound

We can extend the technique used by Gibson et al. to get an even tighter bound

with respect to game size in many cases, and a significantly tighter bound for

games with many sequences of chance events. For the game of HULHE, the

bound using the work presented here is at least 26 000 times smaller than the

bound achieved by previous work. This result is previously unpublished.

The previousMp bounds work by partitioning Ip in such a way that we can

show that the
∑

I∈B

√∑T
t=1 x

2
B ≤

√
|B|T for all parts B. Gibson et al. used

the same partition as Lanctot et al., but improved the bounds by weighting

each partition by the player’s probability of reaching the information sets, and

then considering (pure) best response player strategies. I improve the bounds

by considering pure strategies earlier in the proof, and including the chance

probability in the weighting for each partition.

The updated regret bound partitions Ip by the number of actions p took

to reach the information set. In the general form, the bound requires an

additional user-provided way to sub-partition each part. Section 3.2.2 dis-

cusses some special cases that give specific ways to create these sub-partitions.

The intention of these sub-partitions is to group together states with different

chance events, and as few as possible different sequences of opponent actions.

Informally, for games where the information sets at every depth can be

exactly partitioned by chance events, theMp constant of this section is roughly

the depth of a tree built out of player p actions, multiplied by the square root

of the size of a tree built out of opponent actions. For this special case, the new

bound improves on the previous best bound by Gibson et al. by eliminating

the dependence on chance events. More generally, the dependence on chance

events is not eliminated, but can still be reduced (in a non-obvious way) from

the bound of Gibson et al..

3.2.1 Formal Description

The bound and its proof requires some additional terminology. The opponent

of player p is opp(p). Let χσ
−p(I) =

∑
h∈I π−p(h). For any set B ⊂ Ip,
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let ξp(B) = maxσ∗
opp(p)

∑
I∈B χ

σ∗
−p(I) give the chance probability of reaching

any information set in B if the opponent plays to reach information sets in

B. Let ΣD
p be the set of all pure player p strategies. Given σD

p ∈ ΣD
p , let

Np(σ
D
p ) = {I ∈ Ip|πσD

p (I) = 1}. It is convenient to talk about the depth of an

information set I, defined as |{k ∈ H|p(k) = p, k ⊏ h}| for any h ∈ I.

Let dmax
p be the maximum depth of any player p information set. For any

pure strategy σD
p ∈ ΣD

p , let Bp(σD
p ) = {B0

p , ..., B
dmax
p

p } be a partition of Np(σ
D
p ),

grouping information sets by depth. Let {B0
p(σ

D
p ),B1

p(σ
D
p ), ...} be a collection

of sub-partitions of each Bd
p ∈ Bp(σD

p ).

Theorem 1 Let L be a bound on values such that |up(h) − up(j)| ≤ L for

all h, j, p, and Ap = maxI∈Ip |A(I)| be the maximum number of player p ac-

tions. Say we are given partitions {B0
p(σ

D
p ),B1

p(σ
D
p ), ...} for any pure strat-

egy σD
p ∈ ΣD

p . Then after T CFR iterations, RT
p ≤ LMp

√
ApT , where

Mp = maxσD
p ∈ΣD

p

∑dmax
p

d=0

∑
B∈Bdp(σD

p ) ξp(B)
√
|B|.

Proof.

RT
p =

∑
I∈Ip

πσ∗

p (I)RT (I) Theorem 4 of [30]

= max
σD
p ∈ΣD

p

∑
I∈Ip

πσD

p (I)RT (I)

= max
σD
p ∈ΣD

p

∑
I∈N(σD

p )

RT (I)

= max
σD
p ∈ΣD

p

dmax
p∑
d=0

∑
I∈Bd

p

RT (I) using Bp(σD
p )

Up to this point, we have written things differently, but could still follow the

form of the proof for Theorem 5 in [30] to to get a bound similar to that of

Gibson et al. We can continue to split this sum using the sub-partitions.

RT
p = max

σD
p ∈ΣD

p

dmax
p∑
d=0

∑
B∈Bdp(σD

p )

∑
I∈B

RT (I)

From regret-matching bounds, given an Lt such that |vt(I, a)− vt(I, b)| ≤ Lt

≤ max
σD
p ∈ΣD

p

dmax
p∑
d=0

∑
B∈Bdp(σD

p )

∑
I∈B

√|A(I)| T∑
t=1

(Lt)2
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|vt(I, a)− vt(I, b)| ≤ Lχσt

−p(I), so use Lt = Lχσt

−p(I)

≤ max
σD
p ∈ΣD

p

dmax
p∑
d=0

∑
B∈Bdp(σD

p )

∑
I∈B

√|A(I)| T∑
t=1

(Lχσt

−p(I))
2

Multiply by ξp(X)/ξp(B)

= max
σD
p ∈ΣD

p

dmax
p∑
d=0

∑
B∈Bdp(σD

p )

∑
I∈B

√|A(I)| T∑
t=1

(Lχσt

−p(I)ξp(B)/ξp(B))2

Using |A(I)| ≤ Ap and pulling constants out of inner summations

≤ max
σD
p ∈ΣD

p

dmax
p∑
d=0

∑
B∈Bdp(σD

p )

Lξp(B)
√
Ap

∑
I∈B

√ T∑
t=1

(χσt

−p(I)/ξp(B))2

By the definition of ξp(B), for all I ∈ B, we have 0 ≤ χσt

−p(I)/ξp(B) ≤ 1. We

also know that for all I,
∑T

t=1

∑
I∈B χ

σt

−p(I)/ξp(B) ≤ T , so by Lemma 6 of [58],∑
I∈B

√∑T
t=1(χ

σt

−p(I)/ξp(B))2 ≤
√
|B|T and we have

RT
p ≤ L

√
ApT max

σD
p ∈ΣD

p

dmax
p∑
d=0

∑
B∈Bdp(σD

p )

ξp(B)
√
|B| = LMp

√
ApT

3.2.2 Simplified Special Cases

Theorem 1 gives a relatively complicated bound, and does not specify how the

depth d informations sets in Bd
p should be partitioned. To get the tightest

possible bound from Theorem 1 we would use the partition which minimises

Mp, but this is unlikely to be computable. In general, to get an improved bound

over the M(σ∗) bound of Gibson et al., we would like to split up Bd
p ∈ Bp(σD

p )

so that |Bd
p(σ

D
p )| is large and

∑
B∈Bdp(σD

p ) ξp(B) is small. There are at least two

special cases that provide a simplified regret bound.

First, for any game, we can choose to not refine any part Bd
p .

Corollary 2 RT
p ≤ L

√
ApT maxσD∈ΣD

∑dmax
p

d=0

√
|Bd

p |
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Proof. If Bd
p is not refined, we have Bd

p(σ
D
p ) = {Bd

p}. Noting that ξp(B
d
p) ≤ 1,

Theorem 1 gives us the desired result.

The bound of Corollary 2 is at least as tight as the bound of Gibson et

al. For any pure strategy σD
p , the information sets which have a non-zero

coefficient in the bound of Gibson et al. are exactly those information sets

which are in Np(σ
D
p ). If B′p is the partition of Gibson et al., then B′p is a

refinement of the partition Bp(σD
p ) when restricted to the information sets

Np(σ
D
p ). If two information sets I, I ′ ∈ B′ ∈ B′p have the same sequence of

player p actions, they are at the same depth, and there exists d such that

I, I ′ ∈ Bd
p ∈ Bp(σD

p ). Because
√
|C| ≤

∑
Ci∈C

√
|Ci| for any partition C of C,

the bound of Corollary 2 is no greater than the bound of Gibson et al.

Second, we can compute a tighter bound for the class of games where Bd
p

can be partitioned so that the parts are reachable by disjoint sets of chance

sequences. That is,
∑

B∈Bdp(σD
p ) ξp(B) = ξp(B

d
p). This occurs when there is some

chance event(s) where the player always knows the value of some function of

the chance event’s outcome.

Corollary 3 If
∑

B∈Bdp(σD
p ) ξp(B) = ξp(B

d
p) for each sub-partition Bp(σD

p ), then

RT
p ≤ L

√
ApT maxσD

p ∈ΣD
p

∑dmax
p

d=0 maxB∈Bdp(σD
p )

√
|B|

Proof. By assumption
∑

B∈Bdp(σD
p ) ξp(B) = ξp(B

d
p). It is always the case that

ξp(B
d
p) ≤ 1 so we get

∑
B∈Bdp(σD

p ) ξp(B)
√
|B| ≤ maxB∈Bdp(σD

p )

√
|B|. Applying

this to Theorem 1 gives us the result.

3.2.3 Application to HULHE

We demonstrate the utility of the improved regret bound by considering the

game of HULHE. Even though HULHE does not have disjoint chance events

at all depths, Theorem 1 can still be used to get a bound at least 26 000 times

smaller than the bound generated by the work of Gibson et al. [30].

We start by looking at the bound of Corollary 2 where we do not re-

fine Bd
p , recalling that this simplification is at least as tight as the bound

of Gibson et al. We must find the maximum over all pure strategies σD
p of

L
√
ApT

∑dmax
p

d=0

√
|Bd

p |, where Bd
p only contains information sets reachable by
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σD
p . The maximisation can immediately be simplified by considering only the

betting tree, because HULHE has a composite structure where the possible

chance events and the betting tree are independent of each other. The only

interaction is that the number of chance events in a game is determined by

the number of betting rounds, so the maximising choice will be the same for

all chance events.

In general, we cannot use the usual technique of recursively and inde-

pendently maximising within subtrees, because the “value” of a subgame is

a vector of sizes at different depths. Consider some game where the parti-

tion by depth produces three parts, and there are two top level information

sets X and Y . From X, depending on the strategy chosen, there are ei-

ther 1, 2, and 10 reachable information sets at depth 1, 2, 3 respectively,

or 1, 3, and 3 information sets. There are always 1, 1, and k information

sets reachable from Y . Depending on the strategy, this gives us a bound of

L
√
ApT (

√
1 + 1+

√
2 + 1+

√
10 + k) or L

√
ApT (

√
1 + 1+

√
3 + 1+

√
3 + k).

The decision of which bound is larger, which determines the strategy at X,

depends on the value of k, which is determined by the strategy at Y . If k

is 164 or less, the first choice at X is greater, otherwise the second choice is

greater. Fortunately this does not occur in HULHE, as there is always a choice

in each subtree which dominates all other choices, so we can efficiently find

the maximising strategy.

In HULHE, for both players Ap = 3 and the most they can win or lose

is 24 big blind units, so L = maxj,h∈Z |up(j) − up(h)| = 48. Reducing the

chance branching factor using suit equivalence [4], there are c1 = 169, c2 =

1286 792, c3 = 55 190 538, and c4 = 2428 287 420 information sets for each

betting sequence in rounds 1 to 4 respectively [44] due to different chance

events. Finding the pure strategy which maximises for the strategy gives us

the bounds
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RT
1 ≤ 48

√
3T (
√
2c1 +

√
2c1 + 2c2

+
√
4c2 + 3c3 +

√
4c2 + 6c3 + 2c4 +

√
2c2 + 10c3 + 8c4

+
√
10c3 + 18c4 +

√
6c3 + 24c4 +

√
2c3 + 26c4

+
√
18c4 +

√
8c4 +

√
2c4) ≈ 112 253 847

√
T

RT
2 ≤ 48

√
3T (
√
3c1 +

√
3c1 + 4c2 +

√
1c1 + 8c2 + 6c3

+
√
9c2 + 18c3 + 10c4 +

√
5c2 + 30c3 + 40c4 +

√
1c2 + 30c3 + 86c4

+
√
19c2 + 118c4 +

√
7c3 + 112c4 +

√
1c3 + 74c4

+
√
33c4 +

√
9c4 +

√
1c4) ≈ 241 016 303

√
T

We now consider a tighter bound using Theorem 1 and splitting by chance

events. Despite the convenient structure, HULHE is not an example of a

game where we can apply the simple bound of Corollary 3. For example,

when considering the first player to act, the depth 1 partition might contain

information sets with the betting sequences “raise call” and “raise raise”. The

sequences ending in call are now in the second round of betting where another

chance event has occurred, while the sequences ending in raise are still in the

first round of betting. Using Theorem 1 it is not possible to cleanly separate

the first round chance events and second round chance events.

One possible way to partition each Bd
p ∈ Bp(σD

p ) is to split the information

sets by both the betting round and the player’s view of the chance events.

That is, we get partitions Bd
p(σ

D
p ) for rounds r ∈ {pre−flop, flop, turn, river}.

While
∑4

r=1

∑
B∈Bdp,r(σD

p ) ξp(B) ≥ ξ(Bd
p) we do get

∑
B∈Bdp,r(σD

p ) ξp(B) = ξ(Bd
p,r).

Finding the maximising σD
p and applying Theorem 1 then gives upper bounds
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RT
1 ≤ 48

√
3T ((
√
2 +
√
0 +
√
0 +
√
0) + (

√
2 +
√
2 +
√
0 +
√
0)

+(
√
0 +
√
4 +
√
2 +
√
0) + (

√
0 +
√
4 +
√
6 +
√
2)

+(
√
0 +
√
2 +
√
10 +

√
8) + (

√
0 +
√
0 +
√
10 +

√
18)

+(
√
0 +
√
0 +
√
6 +
√
26) + (

√
0 +
√
0 +
√
2 +
√
26)

+(
√
0 +
√
0 +
√
0 +
√
18) + (

√
0 +
√
0 +
√
0 +
√
8)

+(
√
0 +
√
0 +
√
0 +
√
2)) ≈ 4230

√
T

RT
2 ≤ 48

√
3T ((
√
3 +
√
0 +
√
0 +
√
0) + (

√
3 +
√
4 +
√
0 +
√
0)

+(
√
1 +
√
8 +
√
6 +
√
0) + (

√
0 +
√
9 +
√
18 +

√
10)

+(
√
0 +
√
5 +
√
30 +

√
40) + (

√
0 +
√
1 +
√
30 +

√
86)

+(
√
0 +
√
0 +
√
19 +

√
118) + (

√
0 +
√
0 +
√
7 +
√
112)

+(
√
0 +
√
0 +
√
1 +
√
74) + (

√
0 +
√
0 +
√
0 +
√
33)

+(
√
0 +
√
0 +
√
0 +
√
9) + (

√
0 +
√
0 +
√
0 +
√
1)) ≈ 8292

√
T

The advantage of partitioning by chance events is evident in the large dif-

ference between the two pairs of bounds. Even though the chance partitioning

bound is increased by the overlapping chance events, compared to the previous

best bound of Gibson et al. the new bounds are at least 26 538 and 29 067

times smaller for player 1 and 2 respectively.

It is important to note that the bounds of Theorem 1 and previous work

are mostly informative about the asymptotic behaviour as the problem grows.

The new bounds represent a significant improvement, but they may still be

very loose. For example, in HULHE the absolute worst case we can add at

most 48 big blind units of regret per time step, even if we were not minimising

regret. We can therefore always say that RT
p ≤ 48T . It would require 7767 or

more iterations for the RT
1 ≤ 4230

√
T bound of Theorem 1 to be smaller than

the trivial non-regret-minimising bound.
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3.3 Complexity Analysis

Theorem 1 gives us a regret bound which we can use to compute a bound on

the running time of CFR. Surprisingly, this analysis of running time has not

appeared in any of the CFR papers, which only give the regret bound. As

before, let L be a bound on the difference in values so that |u(h)− u(j)| ≤ L

for all h, j, and let A = maxI |A(I)| be a player-independent bound on the

number of actions at any information set.

Theorem 4 CFR is guaranteed to produce an ϵ-Nash equilibrium with a run-

ning time of O(|H|AL2(
∑

pMp)
2/ϵ2), where Mp is defined as in Theorem 1.

Proof. Corollary 2 states that after T CFR iterations, a player p will have at

most LMp

√
AT regret. From the connection between regret and exploitabil-

ity, the profile of average strategies ⟨σ̄1, σ̄2⟩ is an L
√
A/T

∑
pMp-Nash equi-

librium. Re-arranging to find T for a fixed ϵ, we see that CFR might require

AL2
∑

p(Mp)
2/ϵ2 iterations to find an ϵ-Nash equilibrium.

At each iteration, CFR will have to do O(|H|) work to compute counterfac-

tual values and update regrets. Combining this with the number of iterations

gives a running time of O(|H|AL2(
∑

pMp)
2/ϵ2).

Theorem 5 CFR requires 2
∑

p(|Ip|Ap) +
∑

p(|Ip|Ap) space.

Proof. Storing the regrets and average strategy require us to store one value

for each action at every information set, requiring a total of 2
∑

p |Ip|Ap entries.

Algorithm 2 also uses temporary storage v to store the counterfactual values

for an iteration, for another
∑

p |Ip|Ap entries.

Both Theorem 4 and Theorem 5 apply to CFR in any extensive form game.

In games where Algorithm 3 applies, we can eliminate the temporary storage

requirements, at the cost of passing around vectors instead of scalars. For

example, in HULHE the vectors are on the order of thousands of entries (the

number of possible hands), which is extremely small compared to the size of∑
p |Ip|Ap, leading to an impression that CFR only requires 2 entries per action

at every information set, which is mistaken in the general case.
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3.3.1 Stopping Conditions

All of the descriptions of CFR list the number of iterations T as a value pro-

vided by the user. In general, however, we are more likely to choose the value of

T at run-time, as a side effect of some other desired stopping condition2. One

possibility is that we might have a limited amount of time, and will simply run

iterations until we run out of time. For example, when playing HUNL against

human professionals, described in Chapter 6, we had a limited computation

time, and selected a number of iterations to fit within those limits.

Another possibility is that we have a maximum exploitability we will accept

in an approximate solution, and want to run just enough iterations to reach

that target. For example, if the standard deviation of observed outcomes is

less than 0.5 and we are using the resulting strategy 10 000 times, we might

be satisfied with a 0.01-Nash equilibrium, as the exploitability is roughly as

large as the 95% confidence interval on the average observed result. We can

periodically measure the exploitability, and stop running iterations if the ex-

ploitability is low enough. Computing the best response value for each player

to calculate the exploitability is on the same order of effort as a CFR iteration,

so if we check infrequently we do not greatly increase the total running time.

We used this stopping condition when solving HULHE, described in Chapter 4.

3.3.2 Comparison to Other Algorithms

There are two main classes of alternatives to CFR variants when solving ex-

tensive form games: solving a linear program (LP), and fast techniques for

convex optimisation problems.

Solving an extensive form game as a matrix game [88] using mixed strate-

gies requires space and time that is exponential in the size |H| of the game.

Using an LP became practical after Koller et al. introduced the idea of a se-

quence form LP which could be solved to find behaviour strategies [51]. This

requires a sparse matrix of size roughly |I1|A1+|I2| by |I2|A2+|I1|, with O(|Z|)

non-zero entries. Using Karmarkar’s algorithm for solving an LP [49], which

2Changing T at run-time is reasonable for CFR and its variants, as there is no dependence
within the computation on T , other than the decision to run further iterations.
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has a low worst-case complexity, would require O((|Ip|Ap+ |I2−p|)3.5 log2(1/ϵ))

operations, choosing the primal player p ∈ P to minimise this work.

We can also consider convex optimisation within the framework where we

are restricted to local queries about the gradient at the current point. Nes-

terov et al. showed that accelerated techniques requiring smooth functions

could be applied to a non-smooth convex function to get a O(1/ϵ) rate of con-

vergence [71] to the optimum, and specifically could be applied to saddle-point

problems like finding a Nash equilibrium for matrix games with the Excessive

Gap Technique (EGT) [70].

Gilpin et al. extended EGT to the sequence form linear program of Koller et

al., providing the necessary strongly convex distance function between two

behaviour strategies [31]. EGT has the same O(|H|) cost per iteration as CFR,

for a running time of O(|H| log(A)L
∑

p∈P |Ip|dmax
p 2d

max
p M ′

p/ϵ) to guarantee an

ϵ-Nash equilibrium [54]. The M ′
p constant plays a similar role to the Mp

constant in Corollary 2, except that M ′
p “essentially measures the branching

factor over the other player and nature” [54]. Applying EGT to an extensive

form game requires storing 3
∑

p(|Ip|Ap) entries, plus temporary storage of∑
p(|Ip|Ap) entries, which is asymptotically identical to CFR.

The distance function for behaviour strategies can be used with other accel-

erated convex optimisation algorithms, like Nemirovski’s prox-method [68], or

any variants of Nesterov’s accelerated convex optimisation algorithm [71]. All

of these accelerated optimisation-based techniques have the same asymptotic

worst-case behaviour as EGT, with the same space requirements.

CFR uses regret-matching at each information set to guarantee low regret.

There is, however, no reason why other online regret minimisation algorithms

could not be used. For example, CFR could use the Hedge algorithm [26].

The operations for Hedge are more computationally expensive than regret-

matching, but Hedge also has an asymptotically better regret bound with

respect to the number of actions A: proportional to O(log(A)) rather than

O(
√
A).

While the different algorithm bounds are difficult to compare directly, there

is a general sense that CFR scales better to larger games, while other choices
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of algorithm perform better when high accuracy is needed. The theoretical

difference in accuracy over time is easy to show: the O(1/
√
ϵ) of CFR is worse

than the O(1/ϵ) of EGT or the O(log2(1/ϵ)) of Karmarkar’s algorithm.

The scaling with game size is harder to show. To get a rough sense, we

can consider a game with unit payoffs where for any player p and depth d

there are (ipjp)
d information sets, and jdp information sets reachable by a pure

player p strategy. This gives us |Ip| = (ipjp)
dmax
p +1−1

ipjp−1 andMp =

√
jp

dmax
p +1

−1√
jp−1

using

Corollary 2. If ip ≥ 2, jp ≥ 2, and dmax
p ≥ 3 then M2

p ≤ |Ip|. We also have

|H| ≤ |Ip|2, so for fixed ϵ Theorem 4 gives us O(A|Ip|3) which is better than

the O((A|Ip|)3.5) of Karmarkar’s algorithm or the O(log(A)|Ip|3dmax
p 2d

max
p M ′

p)

from the current best EGT bounds.

As a specific example, we can consider HULHE. From Section 3.2.3 we get

L
√
AM1 = 4230 and L

√
AM2 = 8292. |H| = 3.162 ∗ 1017 [58] so CFR has a

run time bound of 3.162 ∗ 1017AL2(
∑

p(Mp))
2/ϵ2 ≈ 4.96 ∗ 1025/ϵ2. Looking at

Karmarkar’s algorithm |I1|A + |I2| ≈ 2.48 ∗ 1013, giving it a run time bound

of 7.6 ∗ 1046/ log2(1/ϵ). Finally looking at EGT, |I1| = |I2| ≈ 6.90 ∗ 1012,

d1,max = 11, and d2,max = 12 giving it a run time bound of (3.74 ∗ 1036M ′
1 +

8.16 ∗ 1036M ′
2)/ϵ for some large constants M ′

1 and M
′
2. It must be noted again

that these bound are almost certainly loose upper bounds (especially for EGT),

so that the numbers do not necessarily correspond to actual performance, and

might still be improved with better theoretical work in the future3.

3.4 Monte Carlo CFR

Monte Carlo CFR (MCCFR) refers to a family of CFR variants that update a

randomly sampled subset of information sets at each information set [59]. The

general family of MCCFR uses a partition Q of terminal states Z. At each

iteration, it samples one block Qi ∈ Q and updates all information set based

on that block. For an intelligent choice of partition Q, each block will provably

have no effect on most information sets, making for very fast iterations. The

tradeoff is less progress per iteration.

3For example, using the dilated entropy prox function of Kroer et al.[55].
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3.4.1 MCCFR Regret Bound

The existing analysis of MCCFR [30] can be directly updated using the new

CFR regret bound of Theorem 1. Given a partition Q = {Q1, ...} where Qi is

sampled with probability qi, let δ = minz∈Z
∑

i:z∈Qi
qi. With probability 1− ρ

RT
p ≤

L

δ

⎛⎝Mp +

√
2|Ip|| ∪d Bd

p|

ρ

⎞⎠√ApT

As with the updated CFR bound, the only change in the updated MCCFR

bound is in the Mp constant describing the scaling with respect to game size.

The O(
√
T/ρ) bound means that for any ϵ > 0 and certainty 1 − ρ we can

probably find an ϵ-Nash equilibrium if we run enough iterations. The factor of

1/δ describes how the required number of iterations increases as the number

of outcomes sampled per iteration decreases.

3.5 Why is CFR Popular?

Following its introduction in 2007, CFR variants have become a popular choice

of algorithm for solving large extensive form games. Given that other algo-

rithms have better asymptotic behaviour with respect to solution quality, why

is CFR popular, and a state-of-the-art algorithm?

One of the most important factors in CFR’s success is that it performs

well in practice, taking advantage of the potential disconnect between asymp-

totic behaviour and real-world performance for a specific problem. Asymp-

totic worst-case bounds can hide two important properties. First, asymptotic

bounds often ignore multiplicative constants, and the constant factor for CFR

is small. CFR has fast iterations, few passes through the game per iteration,

and it uses simple addition and division operations rather than exponentiation.

Second, asymptotic worst-case bounds do not say anything about the per-

formance in all problem instances, only about the worst possible problem of

a given size. On many problems, CFR improves exploitability more quickly

than the 1/
√
T worst-case bounds; in some cases, the experimentally observed
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exploitability improvement over time for CFR is closer to the 1/T expected

from EGT, as seen in Section 4.3.2.

As the available running time or required accuracy increases, we would

expect to CFR eventually become less competitive than other asymptotically

faster algorithms, but that crossover point might be beyond the target time

or accuracy. CFR is a good choice for parts-per-thousand accuracy, and many

situations do not require a more precise equilibrium approximation.

One example of a situation where only moderate accuracy is needed arises

when we have limited play time. Chance events and mixed strategies add

variance to the expected utility of a strategy profile, so that the exploitability

might be well under what is statistically detectable during play. This variance-

based notion of “good enough” was formalised in our notion of a game being

essentially solved [9].

Low space requirements contribute to CFR’s popularity. For some prob-

lems, like solving games, it is acceptable to spend a long time for an offline

computation, and the limiting factor which determines whether the game can

be solved becomes the total space required. CFR requires less space than other

commonly used algorithms: 2 values per player sequence for CFR, 3 values

per player sequence for EGT, and roughly the product of the number of player

sequences for LPs.

As a final factor, CFR is easy to understand, modify, and implement, even

in a distributed computing environment. The flexible framework of regret

minimisation allows special purpose variants of CFR like CFR-BR [45] which

uses a best response for one player, or MCCFR using game specific sampling

schemes. Regret-matching theoretically scales more poorly than Hedge with

large numbers of actions, but the performance of Hedge is very dependent on

the step size parameter which would need to be individually tuned at every

information set. The projection step in EGT requires a similarly tuned step

size parameter. CFR is a parameter-free algorithm, which works well without

requiring any parameter tuning.
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Chapter 4

Using Less Time: CFR+

When solving a game offline, the computation time required is a soft limit

because for small factors k, we can always run for k times longer. Despite

this soft limit for computation compared to the hard limitation of available

space, time requirements increase faster than space requirements (Section 3.3)

so that CFR can still be runtime-limited on large machines. As hardware

improved and more space became available, it became possible to run game-

solving algorithms on games that were so large that the computation time was

unreasonable. To address the running time, Tammelin introduced CFR+ [84],

a new CFR variant that had the same space requirements as CFR, but empir-

ically faster convergence.

My contributions are worst-case bounds for CFR+ and two different worst-

case bounds for its component algorithm regret-matching+ (published at IJ-

CAI [85]), a comparison of CFR+ to game solving algorithms that have the-

oretically faster convergence rates, and the majority of a high performance

distributed implementation of CFR+ designed for the landmark result of solv-

ing the game of HULHE (published in Science [9]). Together, the worst case

bounds and empirical results provide a compelling reason for people to consider

using regret-matching+ over regret-matching, and CFR+ over non-sampling

variants of CFR.
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4.1 CFR+ Algorithm

This section gives a description of Tammelin’s CFR+ algorithm, and the regret-

matching+ algorithm it is based on.

CFR combines a regret minimising algorithm with an averaging step to

produce an ϵ-Nash equilibrium. CFR+ modifies both of these parts. CFR

uses the regret-matching algorithm, and returns a uniformly weighted average

strategy as the game solution. CFR+ uses a new regret minimising algorithm,

regret-matching+, and a non-uniformly weighted average strategy. Finally,

CFR+ specifies that players must be sequentially updated in alternation, rather

than the simultaneous update used by the original CFR paper. That is, we

update the regrets for player 1, then update the regrets for player 2 relative

to the new strategy for player 1, and so on.

4.1.1 Regret-matching+ Algorithm

Regret-matching+, a regret minimising algorithm, is an online algorithm for

action selection in a full information, adversarial setting. It operates very sim-

ilarly to the regret-matching algorithm and has a similar theoretical bound

on external regret. The difference between the two algorithms is that regret-

matching+ sets any negative regret values to zero at each iteration, while

the original regret-matching algorithm stores negative regret values but treats

them as zero when computing the current strategy. In short, an implemen-

tation of regret-matching can be updated to regret-matching+ by setting any

stored negative values to zero, and skipping the regret-matching sign check

when computing the strategy.

In a formal description of the setting there is a fixed set of actions A, and

at each time step t from 1 to time T , we commit to a probability distribution

σt() for selecting actions. An adversary knows σt() but does not know the

result of the private random source we will use to select an action from σt().

Each action a ∈ A has a value vt(a), all of which are unknown to the agent

until after time t.

As described in Section 2.7.2, an implementation of regret-matching stores
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the values Rt(a) = Rt−1(a) + ∆Rt(a) for each action a, where R0(a) = 0 and

∆Rt(a) = vt(a) −
∑

b∈A σ
t(b)vt(b). The strategy is the normalised positive

action regrets: σt(a) = Rt−1(a)+/
∑

b∈AR
t−1(b)+.

In regret-matching+, instead of using Rt(a)+ = max(Rt(a), 0) when com-

puting σt+1, we store it. Regret-matching+ stores the regret-like valuesQt(a) =

(Qt−1(a) + ∆Rt(a))
+

instead of the action regrets Rt(a) stored by regret-

matching. Note that regret-matching+ uses the same ∆Rt(a) value as regret-

matching. The value ∆Qt(a) = Qt(a)−Qt−1(a) is useful in the accompanying

theory, but it is not computed in a regret-matching+ implementation.

The regret-matching+ strategy is the normalised regret-like values: σt(a) =

Qt−1(a)/
∑

b∈AQ
t−1(b). In a regret-matching+ implementation this looks the

same as computing σt() for regret-matching, except regret-matching+ no longer

needs to check the sign of the stored values to treat negative numbers as 0.

Note that because the handling of negative values is the only difference

between regret-matching and regret-matching+, the two algorithms are almost

identical in terms of work per time step. Regret-matching+ checks the sign

of each stored value when updating the stored values, where regret-matching

checks the sign of each stored value when computing the strategy. In situations

where the strategy is computed multiple times before updating the regret

values, regret-matching+ is more efficient. There is no corresponding situation

where regret-matching is more efficient because the strategy must be computed

at least once in order to update the regret values.

4.1.2 CFR+ Average Strategy

CFR+ uses a different weighting scheme than CFR to produce an average

strategy that is returned as an ϵ-Nash equilibrium. Where the original CFR

algorithm uses uniform weighting across each time step, CFR+ instead uses

linearly increasing weight so that σt from step t is given weight t in the average,

which places more weight on recent strategies.

For each player p, the CFR+ algorithm returns an average strategy σ̄p =

2
T (T+1)

∑T
t=1 tσ

t
p. As with CFR, CFR+ is working with behaviour strategies

but must do the averaging within the space of sequence form strategies. The
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correct average can be maintained by storing and incrementally updating

acc(I, a) =
∑T

t=1 tπ
t
p(I)σ

t(I, a) for each information set and action. Using

the acc(I, a) values at information set I we can compute action probability for

action a in the average strategy as σ̄p(I, a) = acc(I, a)/
∑

a′∈A(I) acc(I, a
′).

4.1.3 CFR+ Alternating Update

The third change in CFR+ is the order in which regrets are updated. As

originally described by Zinkevich et al., the CFR algorithm simultaneously

updates the regrets for both players. That is, at time t for all information sets

I, Rt(I) is updated using σt
1 and σt

2.

CFR+ uses an alternating update. At time t, we first update all player 1

regrets. For all player 1 information sets I ∈ I1, Qt(I) is updated using σt
1

and σt
2. Using the updated player 1 regrets, we get a new strategy σ′t1 . Next,

player 2 information sets are updated using the new player 1 strategy. For all

player 2 information sets I ∈ I2, Qt(I) is updated using σ′t1 and σt
2.

In practice, some CFR implementations have also used alternating updates

rather than simultaneous updates. To handle large games, an implementation

of CFR or CFR+ must be efficient in time and space. To save space, regrets

must be used to compute values of σt(I, a) as they are needed, rather than

computing and storing a complete strategy. To save time, an efficient imple-

mentation should consider cutting off regret updates for any information sets

the opponent has no probability of reaching, and player p average strategy

updates for any information sets player p has no probability of reaching [43].

Both of these tricks are easier to implement when using alternating updates

that modify values for a single player.

4.1.4 Algorithm

A simple, un-optimised implementation of CFR+ is given in Algorithm 4. It as-

sumes the the two players are named p1 and p2. The functions UpdateAverage,

UpdateAverage, StrategyToValues, and NormaliseAverage are unchanged

from the CFR description of Algorithm 1 in Section 3.1. Alternating updates

are accomplished by running the four steps of an iteration on p1 information
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sets, and then again on p2 information sets. The linear weighted average uses

a weight of t instead of 1 for the current strategy σt.

input : Game G, Number of iterations T
output: ϵ-Nash approximation σ̄
foreach I ∈ I do

foreach a ∈ A(I) do
R(I, a)← 0
σ̄(I, a)← 0

σ ← RegretToStrategy(I,R)
for t← 1 to T do

foreach p ∈ {p1, p2} do
UpdateAverage(Ip,σ,t,σ̄)
vp ← StrategyToValues(Ip,σ)
UpdateRegrets+(Ip,σ,vp,R)
σp ← RegretToStrategy(Ip,R)

NormaliseAverage(I,σ̄)
return σ̄

function UpdateRegrets+(UpdateSets,σ,v,R):
foreach I ∈ UpdateSets do

foreach a ∈ A(I) do
R(I, a)← max(0, R(I, a) + v(I, a)−

∑
b∈A(I) σ(I, b)v(I, b))

Algorithm 4: CFR+

4.1.5 Modified Value Computation

The connection to optimisation methods, discussed in Section 4.4, suggests a

small change to the way CFR and CFR+ compute the counterfactual values

used in updating regrets. An implementation of CFR or CFR+ which uses a

depth first traversal, like Algorithm 2, returns a counterfactual value which is

the dot product of the child values and the current strategy. We could instead

update the regrets, get the new strategy, and return the dot product of the

child values and the new strategy. Algorithm 5 shows this modification.

None of the theoretical analysis presented here applies to the modified CFR

or CFR+ algorithm, but the modified versions have slightly better empirical

performance, as seen in Section 4.4.4. All other experimental results in this

chapter use the modified algorithms.
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function ModifiedRecursiveUpdate(h,s[·]):
input : State and sequence probabilities πp(h) for all p
output: Counterfactual values for all p
if h ∈ Z then

return [s[p2]πc(h)up1(h), s[p1]πc(h)up2(h)]
I ← I ∈ I such that h ∈ I
r ← [0, 0]
if p(h) = c then

foreach a ∈ A(h) do
r ← r + ModifiedRecursiveUpdate(h · a, s)

else
s′ ← s
opp← p ∈ P such that p ̸= p(h)
σ ← RegretMatchingStrategy(I )
foreach a ∈ A(h) do

s′[p(h)]← s[p(h)] ∗ σ[a]
r′ ← ModifiedRecursiveUpdate(h · a, s′)
v(I, a)← v(I, a) + r′[p(h)]
temp[a]← r′[p(h)]
r[opp]← r[opp] + r′[opp]

σ ← RegretMatchingStrategy(I )
foreach a ∈ A(h) do

r[p(h)]← r[p(h)] + temp[a]σ(a)
return r

Algorithm 5: Modified Value Computation
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4.2 Theoretical Analysis

This section presents my contributions to the theoretical analysis of the CFR+

algorithm and its components. I give an external regret bound for regret-

matching+ and an upper bound on exploitability for CFR+. Both bounds

show the worst case asymptotic behaviour of the variant algorithms to be the

same as the original regret-matching and CFR algorithms. These results were

originally published at IJCAI [85]. I also give an unpublished improved track-

ing regret bound for regret-matching+, updating the published bound [85].

Proofs of the bounds presented in this section are given in Appendix A.

All work in this section assumes there is a bounded difference between values.

Specifically, there is some L ∈ R such that for all times t and choices a and b,

|vt(a)− vt(b)| ≤ L.

4.2.1 External Regret Bound for Regret-matching+

The first result is that after T steps, regret-matching+ has the same L
√
|A|T

upper bound on external regret as regret-matching. As discussed in Sec-

tion 2.7, external regret is the most common regret measurement, based on a

hindsight value comparison against a single static choice: how well would we

have done with action a, compared to the expected value of the policies we

did choose.

Theorem 6 Given a set of actions A, any sequence of T value functions

vt : A ↦→ R, and bound L such that |vt(a) − vt(b)| ≤ L for all t and a, b ∈ A,

after playing the sequence σt of regret-matching+ strategies, the regret-like value

QT (a) ≤ L
√
|A|T for all a ∈ A. Moreover, this same bound applies to RT (a).

4.2.2 Tracking Regret Bound for Regret-matching+

The next result considers a different regret measurement that looks at non-

static strategies. Tracking regret [37] is based on a hindsight value comparison

against a piecewise static choice: how well would we have done with k static

segments of different actions a1, ..., ak, compared to the expected value of
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the policies we did choose. Tracking regret is one possible generalisation of

external regret, as external regret is tracking regret with k = 1.

Given an interval B = [Bs, Be] which is a subset of the T time steps [1, T ],

we can define the regret R[B](a) for action a in the interval B to be

R[B](a) =
Be∑

t=Bs

∆Rt(a) (4.1)

We can then write the k−tracking regret at time T as

Rk,T = max
B∈BT

∑
B∈B

max
aB

R[B](aB) (4.2)

where BT = {B|
⋃

B∈B B = [1, T ], |B| ≤ k} is the set of all partitions B of the

T time steps into at most k intervals.

Theorem 7 Given a set of actions A, any sequence of T value functions

vt : A ↦→ R, and bound L such that |vt(a) − vt(b)| ≤ L for all t and a, b ∈ A,

after playing the sequence σt of regret-matching+ strategies, there is a bound

on k-tracking regret of Rk,T ≤ kL
√
|A|T .

There are other regret minimising algorithms which have a better O(
√
kT )

bound on k-tracking regret, like AdaNormalHedge [62], but the kO(
√
T ) bound

is still a non-trivial property that is not guaranteed by standard algorithms

which minimise external regret. For example, the well known Hedge and

regret-matching algorithms both have O(T ) tracking regret bounds, even for

the simplest case where k = 2, which can lead to unbounded average regret.

The linear 2-tracking regret of regret-matching can be demonstrated with

a very simple problem. Consider the situation where A = {l, r}, T = 2N ,

vtl = 1 and vtr = −1 for the first N time steps, and vtl = −1 and vtr = 1 for the

last N time steps: action l is the best choice, then action r.

After the first time step where the strategy is P (l) = P (r) = 0.5, regret-

matching will always play action l, achieving a cumulative value of −1. For

action l the external regret Rt
l = 1 for all t. For action r the external regret

Rt
r = 1−2N+2|N−t| will decrease by 2 for N time steps and then increase for

N time steps. The maximum external regret is a constant, the best possible
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result. However, considering the 2-tracking regret we see 2N + 1 = T + 1

regret for the two part strategy which plays l for the first N steps and r for

the next N steps. This piecewise strategy would have achieved a value of 2N ,

compared to the cumulative value of −1 of the regret-matching policy, which

means it has a lower bound on the 2-tracking regret of T + 1.

Hedge has O(T ) 2-tracking regret in the same problem. As described in

Section 2.7.3, the strategy at time t is σt(a) = eγV
t−1(a)/

∑
a′ e

γV t−1(a′), where

V t(a) =
∑t

i=1 v
t
a(a). In this example, we have V t(l) = N − |t − N | and

V t(r) = |t−N | −N , so after simplifying we get σt(l) = 1/(1 + e2γ(|t−1−N |−N))

and σt(r) = 1/(1+e2γ(N−|t−1−N |)). Looking at the cumulative value
∑T

t=1 σ
t·vt,

canceling terms, and noting that σ1 · v1 = 0, we get the value σN+1(r) −

σN+1(l) = e−2σN−e2σN

2+e−2σN+e2σN . This quickly approaches −1 as N increases, giving

the Hedge policy a lower bound on the 2-tracking regret that is slightly less

than T + 1.

4.2.3 Exploitability Bound for CFR+

The final result is a bound on the exploitability of the weighted average strat-

egy returned by the CFR+ algorithm.

Zinkevich’s original proof that CFR generates an ϵ-Nash equilibrium had

three steps [94]: note that Blackwell proved regret-matching drives average

counterfactual regret towards zero [5] at each information set, show that the

regret is a function of the counterfactual regrets (updated by Theorem 1 in

this work), and exploit a well-known link between regret and exploitability.

The proof that CFR+ generates an ϵ-Nash equilibrium uses similar steps.

Theorem 6 gives us the first step. For the second step, we can reconstruct

a variant of Theorem 1 for the case where we have weighted the values at each

iteration in the same way as the average strategy. Using the standard link

between regret and exploitability gives us a bound on the weighted average

strategy. Partitions Bd
p(σ

D
p ) are defined as in Section 3.2.1.

Theorem 8 Let L be a bound on values such that |up(h)− up(j)| ≤ L for all

h, j, p, and Ap = maxI∈Ip |A(I)| be the maximum number of player p actions.
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Say we are given partitions {B0
p(σ

D
p ),B1

p(σ
D
p ), ...} for any pure strategy σD

p ∈

ΣD
p . Then after T CFR+ iterations, the linearly weighted average strategy

profile σ̄T
p = 2/(T 2 + T )

∑T
t=1 tσ

t
p is a 2

∑
p LMp

√
Ap/T -Nash equilibrium,

where Mp = maxσD
p ∈ΣD

p

∑dmax

d=0

∑
B∈Bdp(σD

p ) ξp(B)
√
|B|.

Note that this is the same bound as for CFR, with an additional factor of

2 that comes from the proof linking regret and the weighted average strategy.

While the regret bound of Theorem 8 offers no incentive for using the CFR+

linear weighted average, the experimentally observed behaviour suggests the

weighted average is a better choice, as seen in the example of Section 4.3.5.

4.2.4 Complexity Analysis

The space requirements of CFR+ are identical to CFR, and the upper bound

on running time is off by a constant factor of two.

Let L be a bound on the difference in values so that |u(h) − u(j)| ≤ L

for all h, j, and let A = maxI |A(I)| be a player-independent bound on the

number of actions at any information set. Using Theorem 8 to stand in for

Theorem 1, we can use the proof of Theorem 4 to get

Theorem 9 CFR+ is guaranteed to produce an ϵ-Nash equilibrium with a run-

ning time of O(|H|AL2(
∑

pMp)
2/ϵ2).

Because the underlying regret minimisation problems have identical space

requirements to CFR and the computation is so similar, we can directly use

the proof of Theorem 5 to get

Theorem 10 CFR+ requires 2
∑

p(|Ip|Ap +maxp |Ip|) space.

4.3 Experimental Analysis

The theoretical results give an upper bound on the worst-case running time

that is worse than CFR by a factor of 4. In practice CFR+ greatly outperforms

CFR on a range of games. The initial application of CFR+ was essentially

solving HULHE, using only 1579 iterations to produce a strategy, Cepheus,
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that was exploitable for less than 1mbb/g [9]. Surprisingly, Cepheus was the

current strategy described by the final regrets, rather than the average strategy

prescribed by Theorem 8.

To show that CFR+ has broader applicability than just HULHE, I compare

the performance of CFR and CFR+ on a wider range of games in Section 4.3.2.

Further exploring Cepheus’ use of the current strategy, results are included for

both the current and average strategies.

4.3.1 CFR and CFR+ Experimental Setup

With the exception of the specifically named simultaneous update results in

Figure 4.13, all CFR results use alternating updates like those specified by the

CFR+ algorithm.

Figure 4.1 describes the performance of CFR+ in HULHE as used in the

generation of Cepheus. The strategy was generated using publicly released

code [8], set up so that the average strategy discarded the current strategy for

the first 200 iterations. The values reported here for the average strategy are off

by a small amount (around 10% at iteration 1456), due to a bug in reporting

the exploitability values of the average strategy, discovered while validating

results with an independent codebase. Unfortunately, the computation is so

large that re-running to correct the values is not feasible, nor was it feasible

to produce comparable results for CFR.

In addition to HULHE, I use Rhode Island hold’em [79], Leduc hold’em

[82], and Kuhn poker [56], three synthetic poker games created for artificial

intelligence research. Results are given in Figure 4.2, Figure 4.3, and Fig-

ure 4.4 respectively. Rhode Island hold’em has 52 128 128 information sets, or

approximately 4×106 information sets when taking advantage of poker-specific

knowledge to eliminate strategically identical sets of cards. Leduc hold’em has

936 information sets, or 288 information sets using poker-specific knowledge

about the cards. Kuhn’s three-card poker variant has 12 information sets.

Between the four poker games, we have games with very different sizes.

To avoid using nothing but variants of poker, I also use two sets of matrix

games. The first set of matrix games are ten 1000×1000 random matrix games.
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Each game was independently generated, and payoffs for each pairing of the

1000 pure strategies in a game were identically and independently sampled

from a normal distribution with mean 0 and a standard deviation of 1. The

exploitability reported in Figure 4.5 is the average value across the 10 games.

While random matrix games generally result in uninteresting games for their

size, they have still frequently been used in the literature [68, 71, 87].

The second set of matrix games are a collection of small simultaneous

action games: matching pennies, rock-paper-scissors, and a Blotto game. The

matching pennies game is one of the simplest non-trivial games, described by

a 2× 2 payoff matrix. Each player has a single, simultaneous choice of picking

heads or tails. I used skewed payoffs where the row player wins 1 if both players

chose heads, wins 4 if both players chose tails, and loses 2 otherwise. Many

algorithms, including CFR, start with a uniform random strategy, and the

skewed payoffs let us avoid the uninteresting situation where the algorithm

starts at the exact equilibrium. Results for the matching pennies game are

given in Figure 4.8.

Rock-paper-scissors is a well known game played using hand gestures. Each

player picks rock, paper, or scissors and then simultaneously reveals their

choice. Rock beats scissors, scissors beats paper, paper beats rock, and the

same choice is a tie. As with matching pennies, I use a skewed version where

rock versus paper has a magnitude of 2, rock versus scissors has a magnitude

of 1, and paper versus scissors has a magnitude of 3. Results for rock-paper-

scissors are given in Figure 4.7.

Blotto games are parameterised games where each player selects a sequence

of non-decreasing integer values that has to add up to a specified value. The

player’s sequences are compared in pairwise fashion, and whichever player has

a larger value in more pairs wins. The game is a draw if no player wins. I use

the variant with sequences of length 3 that must sum to 16, which results in

a 21× 21 matrix game. Results for Blotto are given in Figure 4.6.

We can use log-log linear regression on the data to find the approximate

rate of convergence. For example, if exploitability ϵ is decreasing as 1/
√
T ,

then the best fit for log(ϵ) = β ∗ log(T ) + α will have β = −0.5. Similarly,
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1/T performance will show up as −1.0. To reduce the effect of the swings

in exploitability on the regression results, I only use the subset of points

{(T, ϵ)|∀(T ′, ϵ′) s.t. T ′ > T, ϵ′ < ϵ}. This set gives us an (observed) upper

bound on the exploitability at any future time.

The best fit β values are given in Table 4.1. Because the performance may

change after the initial few iterations, I also report the convergence rates over

the last 90% of the iterations in Table 4.2.

4.3.2 CFR and CFR+ Experimental Results

Figure 4.5 and Figure 4.8 were previously published in [85]. The current

strategy exploitability in Figure 4.1 was previously published in [9].

CFR avg CFR cur CFR+ avg CFR+ cur

HULHE -1.66 -1.49
Rhode Island -0.89 -0.22 -1.43 -0.91
Leduc -0.72 -0.18 -1.33 -0.48
Kuhn -0.80 -0.25 -0.84 -0.25
random -0.75 -0.22 -1.64 -0.78
Blotto -0.85 -0.22 -0.99 -0.26
RPS -0.76 -0.24 -0.94 -0.25
pennies -0.79 -0.27 -0.87 -0.25

Table 4.1: Convergence rates from log-log regression

CFR avg CFR cur CFR+ avg CFR+ cur

HULHE -1.41 -1.48
Rhode Island -0.85 -0.15 -1.50 -0.77
Leduc -0.66 -0.33 -1.52 -0.31
Kuhn -0.80 -0.26 -0.81 -0.27
random -0.74 -0.23 -1.69 -0.72
Blotto -0.83 -0.22 -0.95 -0.26
RPS -0.77 -0.20 -0.93 -0.29
pennies -0.81 -0.31 -0.83 -0.25

Table 4.2: Convergence rates from log-log regression in last 90%
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Figure 4.1: CFR+ convergence rates in HULHE

10-2

10-1

100

101

102

103

104

100 101 102 103 104

E
xp

lo
it
ab

ili
ty

 (
m

b
b
/g

)

Iterations

CFR cur
CFR avg

CFR+ cur
CFR+ avg

Figure 4.2: Convergence rates in Rhode Island hold’em
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Figure 4.3: Convergence rates in Leduc hold’em
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Figure 4.4: Convergence rates in 3 card Kuhn poker
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Figure 4.5: Convergence rates in 1000× 1000 random matrix games
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Figure 4.6: Convergence rates in 3,16 Blotto game
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Figure 4.7: Convergence rates in rock-paper-scissors
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Figure 4.8: Convergence rates in the matching pennies game
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4.3.3 CFR and CFR+ Experimental Conclusions

The results in Section 4.3.2 strongly support the conclusion that in practice,

CFR+ is faster than CFR. In all games except rock-paper-scissors and the

matching pennies game, the CFR+ average strategy is always less exploitable

than the CFR average after no more than 3 iterations. In rock-paper-scissors

and matching pennies, the CFR+ average strategy is usually less exploitable

than the CFR average strategy, and is always less exploitable after somewhere

between 100 and 1000 iterations.

Empirical rates of convergence for the average strategy are uniformly better

(larger negative number) for CFR+ than for CFR. For larger games like Rhode

Island hold’em, Leduc hold’em, and 1000 by 1000 matrix games, CFR+ pro-

ceeds almost quadratically faster. Given the rates for Rhode Island hold’em

in Table 4.2 we might expect to need around 200 000 CFR iterations to do

the work of 1000 CFR+ iterations, while both Leduc hold’em and 1000× 1000

matrix games would need more than 7 000 000 iterations.

We can say two things about the current strategy. First, the current CFR

strategy improves very slowly, although it may be a surprise to see that it

continues to improve at all. Second, there appears to be a correlation between

the size of the game and the performance of the CFR+ current strategy. It is

only in the larger games that the CFR+ strategy improved relatively quickly,

with the best performance observed in HULHE, the largest game. While the

choice to use the current strategy in Cepheus looked like a promising avenue to

save time and space by avoiding the average strategy computation, this choice

appears likely to be disastrously slower than using the average strategy.

4.3.4 Conjecture on CFR and CFR+ performance

Despite the empirically observed difference in convergence rates for CFR+

and CFR, I conjecture that the difference is transient, both algorithms have

asymptotically equivalent behaviour, and the length of the transient period is

determined by how long it takes to assign and retain a positive probability to

the iteratively non-dominated support of the equilibrium. Note that this is not
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a claim with much relevance to the practical choice of algorithm: practically

speaking, only the early performance is relevant, and CFR+ outperforms CFR

in that time.

The matching pennies game is so small that we can use it to make a few

observations supporting the conjecture. The two differences between CFR+

and CFR are the use of regret-matching+ versus regret-matching, which affects

the regrets and current strategy, and the use of linear versus constant weighting

for the average strategy, which affects only the average strategy. Because of

the asymptotically similar behaviour of the current strategy, we might expect

the difference in the variability of the average strategy exploitability to be due

to the averaging. We can verify this by running CFR with regret-matching+,

shown in Figure 4.9.
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Figure 4.9: Exploitability over time for CFR, CFR+, and CFR with regret-
matching+ in matching pennies game

If the difference in averaging is put aside as irrelevant, we are left with the

difference between regret-matching+ and regret-matching. Because there are

only two actions for a player in the matching pennies game, we can plot the

regrets for each of the row player’s action, as shown in Figure 4.10.
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Figure 4.10: Regret over time for both row-player actions in matching pennies
game, using CFR (left) and CFR+ (right)

While the frequency and amplitude of the oscillations are different, the

general behaviour is the same: oscillating regret values with a negative cor-

relation between heads and tails, and an overall trend of increasing as the

square root of the number of iterations. More importantly, after iteration

41, neither algorithm has negative regret for either action (for either player,

not shown in Figure 4.10.) With only positive regrets, regret-matching and

regret-matching+ are identical. Starting at iteration 42, CFR and CFR+ are

continuing from different points, but generating the new current strategy with

mathematically identical algorithms. If the difference in averaging is irrelevant

and the algorithm for the current strategy is identical, the initial 41 iterations

become irrelevant over time and both CFR and CFR+ will have asymptotically

equivalent behaviour.

If the maximum positive regret grows roughly as the square root of the num-

ber of iterations, we might expect that for all games, eventually the magnitude

of any cycles in the regrets and strategies will be smaller than the minimum

positive regret. The actions with O(
√
T ) positive regret must correspond to

actions taken by strategies in the support of all Nash equilibria.

4.3.5 Weighted Average

Section 4.1.2 describes how the CFR+ average strategy uses linearly increasing

weights, rather the uniform weights used in CFR. While there is no strong

theoretical justification for the linear average used by CFR+, Figure 4.11 and
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Figure 4.12 shows that CFR+ does benefit from that choice in practice. By

contrast, CFR does worse with the linear average than the uniform average.
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Figure 4.11: Convergence rates in Leduc hold’em with different methods for
averaging strategies
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Figure 4.12: Convergence rates in Rhode Island hold’em with different meth-
ods for averaging strategies
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4.3.6 Alternating Updates

As discussed in Section 4.1.3, CFR+ explicitly states that the regrets should

be updated in alternating fashion, whereas CFR is implicitly described as

simultaneously updating both players but might be implemented using alter-

nating updates. The use of alternating updates makes a very large difference

for CFR+, but still offers a substantial improvement in the convergence rate

of CFR. Figure 4.13 shows the performance of CFR+ and CFR with both

alternating update and simultaneous update versions.

updates CFR avg CFR cur CFR+ avg CFR+ cur

alternating -0.66 -0.33 -1.52 -0.31
simultaneous -0.52 -0.02 -0.60 -0.24

Table 4.3: Convergence in Leduc hold’em with simultaneous updates, last 90%
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Figure 4.13: Convergence rates in Leduc hold’em with simultaneous updates

With simultaneous updates, CFR does no better than the O(1/
√
T ) upper

bound described in Theorem 1, and CFR+ only does as well as CFR with

alternating updates. This performance difference between simultaneous and

alternating updates means there is an additional hidden cost to using Monte

Carlo variants of CFR or CFR+. If each iteration is only updating a small

portion of the tree, we are effectively doing simultaneous updates, even if we
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alternate between the players. For CFR, the lack of alternating updates is a

small penalty that might be outweighed by the advantages of sampling. For

CFR+, the lack of alternating updates removes almost all of the empirically

observed improvement in performance over CFR. A Monte Carlo variant of

CFR+ is unlikely to be effective in practice. We have tried and failed to

produce such an algorithm that outperforms MCCFR.

4.4 Comparison to Accelerated Techniques

CFR+ has good empirical performance, but its O(1/ϵ2) asymptotic guarantee

is worse than the O(1/ϵ) guarantee of an earlier method proposed by Gilpin et

al. [31]. CFR+ has the advantage of simplicity and no parameters that need to

be tuned, and in this section I demonstrate that the performance is empirically

competitive with, or better than, faster optimisation-based methods.

Trying to find a Nash equilibrium can also be looked at as a mathematical

optimisation problem, letting us apply the large body of knowledge from that

field. Of particular interest are the methods which are guaranteed to converge

at a rate of O(1/ϵ) when applied to non-smooth saddlepoint problems, as

it improves on the O(1/ϵ2) rate of CFR and CFR+. I will start with some

background, applied to the simple case of mixed strategies (i.e. matrix games)

and then consider sequence-form strategies.

4.4.1 Basic Optimisation Applied to Normal Form

Trying to find a player one strategy that is part of a Nash equilibrium in the

space of mixed strategies is finding a solution to the mathematical optimisation

problem minx∈∆m maxy∈Q x⊺Ay, where Q = ∆j = {v|v · 1j = 1, vi ≥ 0∀i} is

the j-simplex, m and n are the number of player 1 and player 2 pure strategies

respectively, and A is anm by n matrix describing the player 2 utility. Because

maxy∈Σ2 x
⊺Ay is a convex function of x and v ∈ ∆j is a convex constraint,

finding an optimal x is a convex optimisation problem.

To get an optimal player 2 strategy y, we can swap x and y, negate A, and

solve the new optimisation problem. There are also methods, including the
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standard LP formulations, which simultaneously find both x and y by taking

advantage of the fact that the objective is not just convex in x, but is also

concave in y.

For very large problems, it becomes important to reduce space require-

ments. For this reason, first-order techniques for solving general convex opti-

misation problems are often used for solving large convex optimisation prob-

lems. These methods use only a few points, and a local computation of the

gradient of the objective function to produce and use a linear lower bound

model around the point.

One of the simplest first-order methods, the classical gradient descent

algorithm, involves moving some distance in the direction of steepest de-

scent as measured from the current point, and finding the nearest strat-

egy. That is, with an objective function f , if we are at point xt we gen-

erate a new point xt − ηt∇f(xt), where ηt is a parameter controlling the

distance. Strategy constraints on x are handled by doing a projection step

argminx′∈Q ∥x′−x∥ after the gradient step, where a commonly used choice for

∥ · ∥ is the Euclidean distance l2 norm ∥ · ∥2. Putting the two steps together,

we get xt+1 = argminx′∈Q ∥x′ − (xt − ηt∇f(xt))∥.

With fixed η the sequence of points generated by gradient descent is guar-

anteed to converge towards an optimum if f is not just convex, but L−smooth:

∥∇f(x)−∇f(y)∥∗ ≤ L∥x−y∥ for some L > 0, where ∥z∥∗ = maxx,∥x∥≤1⟨z,x⟩

is the dual norm of ∥ · ∥. In this case, we get a quadratic upper bound

f(y) ≤ f(x)+⟨∇f(x),y−x⟩+L/2∥y−x∥2 which we can minimise to maximise

the guaranteed progress xt+1 = argminx′∈Q(⟨∇f(x),y− x⟩ + L/2∥x′ − xt∥2).

For the L2 norm, this corresponds to a step size of 1/L. Gradient descent on

smooth functions has a convergence rate of O(1/ϵ).

For non-smooth functions where the derivative may not be defined at x we

must use subgradients, a linear lower bound ∂f on the function such that ∀x′,

f(x′) ≥ f(x) + ∂f · (x′−x). We must also use a different scheme for selecting

the step size, either by selecting η as function of the desired error, or by using

a decreasing sequence ηt resulting in a convergence rate of O(1/ϵ2) [80, 35].

There is another class of O(1/ϵ2) methods for directly solving non-smooth
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functions, working within the dual space of the problem. Dual-descent al-

gorithms use a prox function d(x) [74] (also known as a distance generating

function) to map back and forth between the primal and dual spaces, and

handle projection in the primal space by using the associated distance-like

Bregman divergence D(x,y) = d(x) − d(y) − ⟨∇d(y),x − y⟩ [11]. The prox

function (and therefore the associated Bregman divergence) must be continu-

ous, strongly convex functions (relative to the chosen norm ∥ · ∥.)

Two simple first-order dual-descent methods are Mirror Descent [69] and

Dual Averaging [72]. Both methods produce successively better linear lower

bound estimates by averaging the gradient at a sequence of points, so that x̄t

converges to the minimum, in contrast to xt converging in primal methods.

Mirror Descent uses a step size η and picks

xt+1 = argmin
x′∈Q

(D(x′,xt) + ⟨η∇f(xt),x′ − xt⟩)

while the Dual Averaging scheme uses a sequence of weights ηt and picks

xt+1 = argmin
x′∈Q

(d(x′) +
t∑

t′=1

⟨ηi∇f(xt′),x′ − xt′⟩)

In order to be tractable, the prox function must be picked so that the

minimisation problem at each step can be efficiently computed. For example,

using the l1 norm over RN with a constraint set ∆n, the negative entropy

function d(x) = log(n) +
∑n

i=1 xi log(xi) and its associated KL divergence

function D(x,y) =
∑n

i=1 xi log
xi
yi

are strongly convex. The corresponding

Mirror Descent step xt+1 = argminx′∈Q(D(x′,xt) + ⟨ηv,x′ − xt⟩) has a closed

form solution xt+1
i = xtie

ηvi/
∑n

j=1 x
t
je

ηvj , giving the Hedge update rule.

4.4.2 Fast Optimisation

Extending on work showing a fast O(
√

1/ϵ) first-order method for smooth

objective functions, Nesterov introduced a fast O(1/ϵ) method for optimising

a class of non-smooth functions [71]. Given an objective function that is a

maximum over some space, this method uses a smooth approximation of the

objective function, generated by adding a continuous strongly convex func-

tion weighted by a smoothness parameter (the same conditions required for

70



a prox function.) As with the per-iteration minimisation problem involving

the Bregman divergence in dual-descent methods, Nesterov’s method and later

variants [87] require an almost-identical optimisation problem at each step, so

the norm and smoothing function must be chosen carefully to get a tractable

problem.

While these methods are sufficient to solve saddlepoint problems like find-

ing a game equilibrium, following Nesterov’s initial results there were methods

developed which specifically target saddlepoint problems. For example, Nes-

terov introduced the excessive gap technique [70] and Nemirovski introduced

a prox-method for saddlepoint problems [68].

4.4.3 Optimisation Applied to Sequence Form

There are two issues that arise when moving from normal form games to

extensive form games. First, we note that we cannot directly optimise for

behaviour strategies in an efficient way. The space of behaviour strategies is

convex (a set of simplex constraints at each information set), but the objective

function is not (involving products of variables.) We can, however, consider

optimisation using the sequence form strategy representation introduced by

Koller et al. [51].

Using sequence form, we get a problem similar to the normal form opti-

misation, minEx=e maxFy=f x
⊺Ay, where the constraints on x and y enforce

the tree structure of the sequences, m and n are the number of player 1 and

player 2 terminal sequences respectively, and A is an m× n matrix describing

the player 2 utility. Because the objective and constraints are still convex, this

sequence form version is another convex optimisation problem, much smaller

than the mixed strategy problem. This optimisation problem, in a modified

form more suitable for LPs, is the basis of the algorithm of Koller et al. [51].

The second issue is that all of the optimisation methods for non-smooth

problems discussed require a prox function, and the ability to efficiently solve

projection problems of the form argminx′∈Q(D(x′,xt) + ⟨η∇f(xt),x′− xt⟩) at

each iteration. Standard choices for d/D like negative entropy/KL divergence

are still strongly convex in Q, but the minimisation can no longer be computed
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efficiently, let alone have a closed form solution.

Hoda et al. solved this problem by introducing a recursively constructed

prox function for sequence form problems, based on a choice of a base prox

function at each information set [38]. The recursion builds from the root of

the game to the leaves, with ψi(x) = d(xi) +
∑

xi+1
p(xi+1)ψi+1(xi+1/p(xi+1))

being the base prox function at root information set at level i plus the recursive

construction at each level i+1 subtree xi+1, scaled by the value of the parent

sequence p(xi+1) ∈ xi. Hoda et al. also give an efficient recursively defined

solution for the projection problem which frequently occurs in optimisation.

Gilpin et al. used the recursively constructed prox function of Hoda et al.

to apply Nesterov’s excessive gap technique to poker-like games to find a Nash

equilibrium profile in O(1/ϵ) time [31]. They considered prox functions based

on both negative entropy and Euclidean distance, and found the entropy based

prox function to be the better choice.

4.4.4 Connection to and Comparison with CFR+

If we consider the Bregman divergence Φ(x′,x) of the recursive prox function

ψ(x) generated from a prox function d(x) with Bregman divergence D(x′,x),

we get Φi(x
′,x) = D(xi) +

∑
xi+1

p(x′i+1)Φ(x
′
i+1/p(x

′
i+1),xi+1/p(xi+1)). That

is, the divergence has the same recursive structure as the prox function. If we

consider using mirror descent with D(x′,x) being KL divergence, we get an

update which resembles CFR using Hedge. There are two differences. First,

instead of using the value from our children from the current strategy, we

use the new strategy. Second, we add the subtree’s distance function to the

returned value, giving the algorithm a preference for actions where the subtree

strategy has not changed.

While regret-matching does not correspond to a prox or divergence func-

tion, we can construct new regret-matching algorithms through analogy from

theoretically sound optimisation methods, by replacing Hedge-like operations

with regret-matching or regret-matching+ operations. We cannot easily copy

the preference of actions leading to subtrees with less change, but we can mod-

ify CFR and CFR+ to use the new strategy rather than the current strategy,
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as mentioned in Section 4.1.5. As shown in Figure 4.14 this change has a small

positive effect, and is used in the experimental results in this chapter.
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Figure 4.14: Convergence rates in Leduc hold’em when updating parent regrets
using the current strategy and the new strategy

There have been many different O(1/ϵ) methods developed [87] since the

introduction of Nesterov’s initial accelerated method for non-smooth convex

optimisation. I chose three simple accelerated algorithms for comparison to

CFR+: a version of Nesterov’s algorithm labeled as Algorithm 1 in the survey

by Tseng [87] using Nesterov’s suggestion for a smoothed approximation of

maxy xAy
⊺ [71], Nemirovski’s mirror prox saddlepoint method [68], and a more

recent technique that uses “optimistic” regrets to directly modify a self-play

regret minimisation algorithm [73, 83].

Along with CFR, CFR+, and the three optimisation-based algorithms,

I also use two theoretically unjustified algorithms constructed from the op-

timisation based algorithms: Nemirovski’s saddlepoint method with regret-

matching+, and optimistic regret updates with regret-matching+. I do not

include the two variants using regret-matching, as the results are virtually

identical to the regret-matching+ variants. I do not consider regret-matching+

or regret-matching versions of Algorithm 1 from Tseng’s survey, as both vari-

ants fail to converge.
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All of the experiments in this section will look at the change in exploitability

over increasing iterations. This is a slightly misleading measurement, as the

time per iteration varies over the different algorithms by some constant, but

it was not reasonable to generate separate high performance implementations

for all algorithms. Roughly speaking, the optimistic regret method has the

same cost per iteration as CFR or CFR+, and both Nemirovski’s saddlepoint

method and Algorithm 1 in Tseng’s survey do roughly twice the work per

iteration. As implemented, the Hedge variants are roughly ten times slower

than regret-matching or regret-matching+. While CFR and CFR+ store two

values per sequence, all the other algorithms store three values per sequence.

Figure 4.15 and Table 4.4 shows the behaviour of the seven algorithms in

Leduc hold’em, and Figure 4.16 looks at the behaviour of the current strategy.

Figures 4.17 and 4.18 and Table 4.5 shows the behaviour in Kuhn hold’em.

I draw two conclusions from these results. First, CFR+ is competitive with

accelerated algorithms. Looking at the average strategy, which all algorithms

use as their prescribed output, CFR+ significantly outperforms all other algo-

rithms in Leduc hold’em, and is faster at reaching any target exploitability up

to 10−2mbb/g in Kuhn poker (a hundred-thousandth of a chip.) Combined

with the results in Table 4.1, which show a rough trend of better CFR+ per-

formance in larger games, it is reasonable to say that CFR+ is a competitive

choice for finding ϵ-Nash equilibria in large games.

Second, the current strategy exhibits interesting behaviour when using Ne-

mirovski’s saddlepoint method, the optimistic regret method, and the regret-

matching+ variants of both algorithms. After some number of iterations, the

exploitability of the current strategy appears to drop geometrically, rather

than as T−k for some fixed k. For example, in Kuhn poker, after 125 iter-

ations the current strategy for optimistic regret-matching+ is a 10−16-Nash

equilibrium. If a very low exploitability is required, it may be worth some

hybrid method which combines the fast initial progress of CFR+ with a fast

optimisation method, watching for a phase change in the behaviour of the

current strategy.

74



Algorithm Convergence Rate Conv. Rate Last 90%

CFR -0.72 -0.66
CFR+ -1.33 -1.52
Tseng Alg. 1 -0.84 -0.87
Nemirovski (both variants) -1.0 -1.0
Optimistic (both variants) -1.0 -1.0

Table 4.4: Convergence rates in Leduc hold’em for multiple algorithms

Algorithm Convergence Rate Conv. Rate Last 90%

CFR -0.80 -0.80
CFR+ -0.84 -0.81
Tseng Alg. 1 -0.94 -1.04
Nemirovski (both variants) -1.0 -1.0
Optimistic (both variants) -1.0 -1.0

Table 4.5: Convergence rates in Kuhn poker for multiple algorithms
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Figure 4.15: Convergence rates in Leduc hold’em for multiple algorithms
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Figure 4.16: Current strategy behaviour in Leduc hold’em for multiple algo-
rithms
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Figure 4.17: Convergence rates in Kuhn poker for multiple algorithms
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Figure 4.18: Current strategy behaviour in Kuhn poker for multiple algorithms

4.5 Monte Carlo CFR+

The family of MCCFR algorithms introduced by Lanctot et al. [59] uses Monte

Carlo sampling to update a small subset of information sets at each iteration.

With a careful choice of sampling schemes, the update is both simple and

efficient. For example, the external-sampling scheme described by Lanctot et

al. samples opponent and chance events according to the current strategy, and

has an update rule that is arguably less complex than CFR. At the same time,

with high probability, external-sampling MCCFR has the same asymptotic

behaviour over iterations, but has asymptotically faster iterations.

MCCFR algorithms also have the benefit that they work well with abstrac-

tion. If we use a function to map real game states to abstract game states, we

can sample abstract states by sampling real states and then apply the mapping

function. In contrast, for CFR we need to compute exact chance probabilities

and leaf values for the abstract states. To avoid traversing the real game at

every iteration – exactly what we tried to avoid by using abstraction – we
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must precompute and store those probabilities and values, which can be a

non-trivial storage overhead.

We might naturally consider a new MCCFR+ algorithm, using the same

changes from CFR to CFR+, to get the benefits of sampling and CFR+. There

are no technical difficulties switching MCCFR from regret-matching to regret-

matching+, and we could still use linear weighting when computing the average

strategy. Unfortunately, MCCFR+ is outperformed by MCCFR.

Looking at the behaviour of MCCFR+, we can see a number of problems.

First, regret-matching+ sets Qt = max(0, (Qt−1 + ∆Rt)), so variance in the

value estimates may push the regrets above 0 for actions with a low average

value. Second, the progress per iteration seems to be too slow to justify a

linear weighting for the average strategy. MCCFR+ is not rescued by small

fixes like using a lower threshold than 0 for regret-matching+, and using
√
t

weighting or uniform weighting for the average. Improving the performance

of MCCFR+ only seems to bring it up to par with MCCFR.

There may be a less obvious set of changes that make MCCFR+ work,

but the similarity in behaviour of CFR+ and accelerated techniques suggests

that a fix might not exist. Devolder et al. show that in a setting where

there are inexact values, an accelerated method will accumulate errors over the

iterations [22], and “slow” algorithms may have better performance. Sampling

a subset of leaves does introduce error into the value computations, so there

may be no sampling algorithm which is asymptotically faster than MCCFR.
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Chapter 5

Using Less Space:
Decomposition

There is a common factor in most algorithms for perfect information games

that is missing in most algorithms for imperfect information games. Per-

fect information games are easy to decompose: we can split them into parts.

Traditionally, imperfect information games have been considered a generally

indivisible whole. The distinction is important, because decomposition can be

used to reduce the space requirements of an algorithm, and can be combined

with value estimates to trade reduced solution quality for reduced computation

time.

Using algorithms which rely on decomposition1 we have seen super-human

play in games like chess (with 1040-1050 reachable states [78]) and recently in

the game of go [81] (with somewhat less than 10171 reachable states [86].)

For imperfect information games, while abstraction can let us solve a hope-

fully similar game, directly applying general purpose game solving algorithms

limits us to games where the number of information sets is on the same order

of size as available memory (e.g., with roughly ten TB of available memory we

can solve a game with around 1014 information sets, if we compress the stored

regret values [9].) If space is tight, using decomposition to get around mem-

ory limitations is very appealing. Early game-theoretic approaches to HULHE

1Computing the value or the optimal action at a state without solving the entire game
requires decomposition. Note that the ability to split the game into parts is not seen as
novel or worthy of note, but rather is part of the accepted background of techniques for
perfect information games.
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used unsound, theoretically unjustified decomposition methods [4] to split the

game into 9 pieces, because at the time the alternative would be to not even

try solving the game due to lack of space.

My contributions are some fundamental tools for decomposition in imper-

fect information games, an algorithm CFR-D which uses decomposition to

solve games, an algorithm for re-solving a portion of a game (all published in

AAAI [15]), and some unpublished enhancements to the re-solving algorithm.

CFR-D and re-solving trade decreased space requirements for increased com-

putation time, letting us store fewer values than there are information sets.

While solving an imperfect information game the same size as go would re-

main computationally intractable, it would now be a computation that we

could run, even if it didn’t finish in our lifetime: reducing the space require-

ment is a fundamental difference when the game size is larger than the number

of particles in the observable universe.

5.1 Background: Decomposition and Perfect

Information Games

I will start by explaining decomposition in perfect information games, both

because perfect information games are a less complicated domain to introduce

the concepts, and to contrast this ease with the difficulties encountered in

imperfect information games.

We need a number of ideas and tools to use decomposition to solve games.

We need to define the trunk and subgame, the parts we get when we split

up a game. There must be some way to summarise a strategy in a subgame.

We must have a way to find the correct trunk strategy, using summaries of

subgame strategies. Finally, given a trunk strategy we need to be able to find

the appropriate subgame strategy to get a complete strategy for the game.

5.1.1 Subgames and Trunk

Decomposition involves splitting a game into parts, so we must define those

parts. A subgame is defined to be a state and all of its children. Put another
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way, the root of a subgame is a state, and the subgame is a set of states closed

under the relationship “is a descendant of”. That is, if a state s is in the

subgame, all states s′ which are descendants of s must be in the subgame.

This definition is sometimes extended to consider a set of states at the root,

and the descendants of all root states.

  

.

.

.

.

.

.
.
.
.

.

.

.

Figure 5.1: Perfect Information Game Tree with Subgames

The trunk of a game can be defined in two different, equivalent ways. First,

given a game and a set of subgames, the trunk can be defined through omission

as all of the states that are not in a subgame. Second, we could define the

trunk as some set of states starting at the beginning of the game, such that for

any state in the trunk other than the beginning of the game, its parent must

also be in the trunk. The subgames are implicitly defined, with a separate

subgame rooted at every state which is not in the trunk, but has its parent

state in the trunk. In either case, the trunk and subgames partition the set of

of states.

Consider the game tree depicted in Figure 5.1, where players have a se-

quence of binary decisions. By convention, the whole game tree is represented
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by a triangle, with the start of the game at the top. In this case, we also dis-

play a sequence of states represented by circles, and action choices represented

by arrows, with the chosen action being highlighted with a thicker arrow. The

dark shaded triangles are both subgames: some root state, and all states that

can be reached from the root. There are also 30 other subgames which we do

not show in the figure, which are reached by making different action decisions

in the light shaded triangle which depicts the trunk. In summary, there are 31

states in the trunk, 32 subgames, and if there are 3 binary decisions in each

subgame, then each subgame has 15 states.

If we are using behaviour strategies, which give a probability distribution

over actions for each state (perfect information games have information sets

with single states), a subgame or trunk strategy is a probability distribution

over actions for all states in the subgame or trunk, respectively. Because the

subgames and trunk partition the game, we can combine a strategy for the

trunk and all subgames to get a strategy for the whole game. It can sometimes

also be useful to consider modifying a full game strategy σ by using a new

subgame strategy σS, in which case we replace the probability distributions of

σ with σS for all states in the subgame.

Note that we can apply decomposition recursively. By the definition of a

subgame, the whole game can be considered a subgame. Similarly, a subgame

can be considered as defining a separate problem, which we could decompose

into a trunk and subgames.

5.1.2 Trunk and Subgame Strategies

When we are trying to find an optimal strategy for a game, we can summarise

our strategy within a subgame using a single value. Specifically, we need to

know the value we would expect to receive upon reaching that subgame, given

that we acted according to our strategy, and the opponent acted with a best

response. Once we have computed that value, we can discard our subgame

strategy, letting us save whatever space would have been needed to remember

the strategy.

Summarising a subgame strategy with our value against a best response is
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sufficient to compute the strategy in the trunk. Returning to Figure 5.1, if we

are trying to decide the best action to make at the final state (black circle)

in the trunk (light shaded triangle), we only need to know whether the left

subgame (dark shaded triangle) gives us a better value or the right subgame

gives us a better value. The maximum of these two subgame values would, in

turn, be the value of a subgame rooted at that final trunk state, which could

be used in the computation of the optimal action earlier in the trunk.

5.1.3 Re-solving a Subgame

If we already have a trunk strategy, and we wish to know how to play within a

subgame, we can use whatever algorithm we used to find the optimal subgame

strategy when computing the trunk strategy. In perfect information games,

it is irrelevant how likely we are to get to a subgame, or what either player’s

strategy is elsewhere in the game.

5.1.4 Putting the Tools Together

In practice, decomposition in perfect information games is often done recur-

sively, in the maximal fashion: the game is split up so that the trunk is the

single root state2, with each of the subtrees being treated as games which

are themselves split up with a single trunk state. For example, Alpha-Beta

search [36] is recursive algorithm for finding the optimal move at the current

state, with some pruning rules that allow to avoid considering entire subtrees.

If we ignore performance enhancements of various search algorithms, most

algorithms for perfect information games start from some current state, what-

ever it is, compute (or approximate) an optimal strategy for the subgame, and

only remember the next move. After making that move and any opponent

moves in response, we start again solving from some new state. For these

fully recursively decomposed algorithms, storage requirements can be drasti-

cally reduced to be linear in the remaining depth of the game. If we are okay

with approximations of unknown quality, we can also drastically reduce com-

2In some cases we may have an opening book of moves for the beginning of the game,
which could be thought of as the strategy in a larger trunk with multiple states.
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putation time by limiting the search depth and stopping the recursion early,

and replacing the computation after that depth with a heuristic evaluation

function.

5.2 Decomposition in Imperfect Information

Games

To make the conceptual tools of decomposition work within imperfect infor-

mation games, we must re-work the way we define subgames, solve subgames,

solve the trunk, and re-solve subgames to get a complete strategy. All of the

work in this section was published in AAAI 2014 [15].

5.2.1 Trunk and Subgames

The traditional definition of a subgame deals with single states and their de-

scendants, which can lead to impossible strategies in imperfect information

games. The problem is that a strategy in an imperfect information game is

defined on information sets, not states.

  

J/Q J/K Q/J Q/K K/J K/Q

Figure 5.2: Partial Depiction of the Kuhn Poker Game Tree

For example, consider the 3 card game of Kuhn poker, where each player

is dealt a single private card from a deck of J, Q, and K. There are six possible

ways the cards can be dealt to the two players, followed by some player betting

actions, as visualised in Figure 5.2. This means there are also six possible states
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where the first players makes their first action. There are, however, only three

information sets, indicated by the dashed ovals (later information sets are not

indicated.) The first player cannot distinguish between Q/J and Q/K (or J/Q

and J/K, or K/J and K/Q), because they only differ in the second player’s

card, which the first player does not see. If we were to consider the strategy

in the Q/J subgame and Q/K subgame independently, we might come to the

conclusion that we should bet with Q/J and check with Q/K, but it is not

possible for the first player to distinguish these situations and follow that

strategy.

In order to guarantee that a subtree strategy is plausible in the full game,

we need to guarantee that the subtree does not split up any information sets.

We define an imperfect information subgame with this additional requirement.

The root of an imperfect information subgame is now a set of states, and the

subgame has a set of states which is closed under both the “is a descendant

of” and the “is in the same information set” relationships. That is, if state

s is in the subgame and I is the information set such that s ∈ I, then all

descendants of s and all states in I are in the subgame.

In the game of Kuhn poker, shown in Figure 5.2, if the trunk is the single

initial pre-deal state, all 6 states after dealing the cards must be in a single

imperfect information subgame. The initial J/Q and J/K states must be in the

same imperfect information subgame, because they are in the same information

set. The initial J/Q and K/Q states must be in the same imperfect information

subgame, because J/Q and its descendants must be in the same subgame, K/Q

and its descendants must be in the same subgame, and for states where player

two acts (un-filled arrows) J/Q and K/Q are indistinguishable, so the two gray

states in Figure 5.2 must be in the same subgame. The same kind of reasoning

can be used to argue that the remaining states must also be grouped together.

Note that the argument above does not mean that there can only ever be

one imperfect information subgame. Publicly visible information can be used

to partition the game into multiple subgames. In Kuhn poker, if the trunk

was the pre-deal state and the 6 initial player one states, we can have two

subgames: one where the first player made the left action (corresponding to a
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“check” action) and one where the player made the right action (corresponding

to a “bet” action). Both subgames will include states that differ only in the

cards dealt to the player.

The imperfect information subgame can be viewed as an extension of the

traditional subgame, in the sense that in perfect information games the imper-

fect information subgame definition collapses to the traditional definition of a

subgame. In perfect information games, the “is in the same information set”

relationship has no effect because all information sets contain a single state.

Because imperfect information subgames are an extension of the traditional

subgame, and they are functionally useful in imperfect information games, I

will hereafter use subgame only to refer to an imperfect information subgame.

5.2.2 Subgame Strategy with Fixed Trunk Strategy

The hidden knowledge in imperfect information games, represented with infor-

mation sets, means subgames have drastically different properties from perfect

information subgames. Not only do subgames need to be larger so that they

do not break up information sets, there is now a probability distribution across

the root states, and that distribution affects the payoffs and consequently af-

fects the optimal subgame strategy. Unlike perfect information games, we can

no longer ask questions about subgame strategies independently of the trunk

strategy.

Figure 5.3 shows an extensive form game tree for the well known game of

rock, paper, scissors. Extensive form games do not have simultaneous moves,

so we arbitrarily choose one player to act first, but the second player does not

know what action the first player made. As is also shown in Figure 5.3, we

can split the game into a trunk containing the initial state, and one subgame

containing all three states where the second player acts.

Consider a strategy within the single rock, paper, scissors subgame: a

probability distribution over rock, paper, and scissors for a single player two

decision. For example, what is the value of player two playing rock? The an-

swer depends on the probability distribution over the states in the information

set, which is determined by player one’s strategy within the trunk. If player
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R P S
Trunk

Subgame

0,0 | 1,-1 | -1,1 -1,1 | 0,0 | 1,-1
r sp

1,-1 | -1,1 | 0,0

Figure 5.3: Rock Paper Scissors game tree decomposed into trunk and sub-
game.

one’s strategy was to always play paper, the initial distribution of states in the

subgame is 0%, 100%, and 0% for the “R”, “P”, and “S” states respectively,

and the value of player two playing rock is -1. If player one’s strategy was to

always play scissors, the initial distribution of states in the subgame is 0%,

0%, and 100% for “R”, “P”, and “S” respectively, and the value of player two

playing rock is +1.

If we have a fixed trunk strategy, the indeterminacy discussed above is

removed. The trunk strategy implies a fixed distribution over the states at the

root of the subgame, which turns the subgame into a well defined game3. As

a well defined game in its own right, the subgame (with fixed trunk strategy)

has at least one Nash equilibrium strategy, which can be found with any of

the usual game solving algorithms.

5.2.3 Trunk Strategy

At a high level, computing the trunk portion of an equilibrium strategy is

similar in perfect and imperfect information games. When we are computing

3We must also scale the game by a constant factor to ensure that the probability of the
initial states sums to 1. Scaling a game by a constant non-zero factor, however, does not
strategically change the game. Note that with N root states, there are then N − 1 free
parameters. With N = 1, we have 0 free parameters, which is why we do not care about
the trunk strategy for perfect information games.
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something in the trunk that requires a subgame value, we can use the value of

a subgame equilibrium strategy.

In more detail, if we are using an iterative game solving algorithm like CFR,

we have a complete trunk strategy profile at each iteration, which means we

have well defined subgames that can be solved. Using that same trunk profile,

we can compute the counterfactual values of the information sets at the root

of the subgame, which is the information needed to update the regrets within

the trunk, and generate a new trunk profile for the next iteration. This process

describes the CFR-D algorithm [15].

Conceptually, we can see that CFR-D is correct because it is a pair of

mutual best responses, and playing a best-response strategy does not increase

regret. A formal proof of correctness was published along with the algorithm,

and is included in Appendix B. The formal proof notes that we must use a

counterfactual best response, so that we are maximising counterfactual value.

A counterfactual best response is identical to a standard best response, except

where the probability of reaching an information set is 0. In that case, a best-

response strategy is unconstrained, but a counterfactual best response must

pick a (counterfactual) value maximising action.

We could also consider an optimisation based approach to finding the trunk

portion of an equilibrium strategy. Instead of considering maxxminy x
⊺Ay, we

could consider maxxminy maxxS
minyS

⟨x,xS⟩⊺A⟨y,yS⟩, with the entire inner

max-min as the objective function, x,y representing the trunk profile, and

xS,yS representing the subgame strategy profile. The objective function is

exactly the value of a solution to the subgame, given the trunk profile x,y. It

is interesting to note that because the objective function is not a C1 continuous

function Nemirovski’s saddle point algorithm does not apply, and preliminary

tests of CFR-D show the expected O(1/
√
T ) behaviour for a non-smooth prob-

lem even when using CFR+ instead of CFR to solve the trunk.

In perfect information games, which do not require iteration to find the

locally optimal choice, there is no significant cost in computation time if we

only generate a trunk strategy. This leads to the common use of algorithms

operating on recursively decomposed games. The iterative nature of imperfect
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information algorithms means that they pay a roughly quadratic computation

cost. If we require N iterations for an acceptable approximation error, then

we need to solve the subgames N times, and each subgame will require N

iterations to solve.

5.2.4 Re-solving a Subgame, in Theory

The final tool required for decomposition is some process for re-solving a sub-

game to get a strategy that is part of an equilibrium strategy when combined

with the trunk strategy. For example, CFR-D only produces a trunk strategy,

so in order to play a complete game, we need to recover a strategy within

subgames. Unlike in perfect information games, re-solving an imperfect infor-

mation subgame strategy is a different process than solving a subgame, and

slightly more complicated. First, like solving a subgame, re-solving a subgame

is always relative to a fixed, complete trunk strategy. Second, we need some

information about minimum necessary values. Third, the minimum values

come from knowledge about an existing strategy in the full game4.

We can see how the difficulties arise if we return to the rock paper scis-

sors decomposition example of Figure 5.3. In rock paper scissors, the unique

equilibrium profile has both players pick rock, paper, and scissors with equal

(1/3) probability. Let us say that we have found the trunk portion of this

strategy profile, which in this case is the complete strategy for the first player,

picking an action uniformly at random. Now, consider finding a profile in the

subgame, which in this case is the complete strategy for the second player5.

If we used the same process used for solving a subgame (Section 5.2.2) we

would use the trunk strategy to turn the subgame into a well-defined game

and then solve it. Continuing with the rock paper scissors example, this would

mean finding the equilibrium profile given that player one picks rock, paper,

and scissors uniformly at random, shown in Figure 5.4. In this very small

4The use of knowledge about an existing equilibrium is why I chose the name subgame
re-solving. We are not creating a subgame equilibrium strategy ex nihilo, we are computing
a strategy from existing knowledge of an equilibrium strategy.

5In general, we would expect both the trunk and subgames to contain strategic informa-
tion for both players. Rock paper scissors, with a single simultaneous action, has insufficient
structure for interesting decomposition.
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1/3 R 1/3 P 1/3 S

Trunk with fixed
strategy for player 1

Subgame

v(Rr)*P(R)+v(Pr)*P(P)+v(Sr)*P(S)
= 0*1/3+-1*1/3+1*1/3 = 0

Expected player 2
value of playing rock

0,0 | 1,-1 | -1,1 -1,1 | 0,0 | 1,-1
r sp

1,-1 | -1,1 | 0,0

Figure 5.4: Incorrect Re-solving of Rock Paper Scissors Subgame

example, player one has no actions in the subgame, and the problem collapses

down to finding a player two strategy which maximises utility against the fixed

player one strategy. One such strategy is to always play rock: it has an ex-

pected value of 0 against uniform random rock, paper, scissors (as does any

strategy.) We have gone wrong, however, because player two always playing

rock is not part of any equilibrium profile in the full game. Always rock max-

imises value against a fixed opponent trunk strategy, but does not maximise

value against an arbitrary opponent trunk strategy.

To get a subgame strategy that is part of an equilibrium strategy in the full

game, we need to meet or exceed some certain level of performance against an

arbitrary opponent. If our new strategy does as well as an actual equilibrium

strategy against a worst-case opponent, our new strategy must also be part

of an equilibrium strategy in the full game. We can get this guarantee by

ensuring the opponent’s counterfactual values at the root of a subgame are

no higher than opponent counterfactual values computed from an equilibrium

profile that uses our current trunk strategy. This is because, for any opponent

strategy, the subgame’s contribution to their expected value will be a product

of the counterfactual values at the root of the subgame and the opponent’s

probabilities of reaching the subgame.
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To re-summarise the fundamental point, given our fixed trunk strategy, the

opponent counterfactual values at the root of a subgame provide a summary

of the opponent’s best-case performance, for any trunk strategy they could

choose to play. If we compute opponent best-response values from an existing

subgame strategy, whether or not it is part of an equilibrium, we can use the

values as an upper bound constraint to find ourselves a new subgame strategy

that is no more exploitable than the original strategy.

  

R P S
Trunk

Subgame with equilibrium
strategy for player 2

Player 1 counterfactual
value of playing paper

0,0 | 1,-1 | -1,1 -1,1 | 0,0 | 1,-1

1/3 r 1/3 s1/3 p

1,-1 | -1,1 | 0,0

0 0 0
Player 1
counterfactual values

v(Pr)*P(r)+v(Pp)*P(p)+v(Ps)*P(s)
= 1*1/3+0*1/3+-1*1/3 = 0

Figure 5.5: Computing Opponent Counterfactual Values at Subgame Root

Examining opponent counterfactual value constraints in the context of the

ongoing rock, paper, scissors example, let us say we are player two. As part of

the process of computing the trunk portion of an equilibrium profile, we must

have also computed the subgame portion of the profile (even if only implicitly,

as in CFR-D) where player 2 also acts uniformly randomly, shown in Figure 5.5.

If we compute the opponent (player one) best-response counterfactual values

for the subgame (or implicitly track them, as in CFR-D) we see that our

opponent gets a value of 0 after all three actions6.

Figure 5.6 revisits the situation where we incorrectly re-solved the subgame,

and chose a player two strategy that always plays rock. Using 0 as a constraint

rules out always rock, because player one choosing paper has a value of 1

6While we, as player two, cannot distinguish the three states at the root of the subgame,
the three states are all distinct to our opponent, player one.
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Subgame where player 2
always plays rock

v(Pr)*P(r)+v(Pp)*P(p)+v(Ps)*P(s)
= 1*1+0*0+-1*0 = 1

Player 1 counterfactual
value of playing paper

0,0 | 1,-1 | -1,1 -1,1 | 0,0 | 1,-1

1 r 0 s0 p

1,-1 | -1,1 | 0,0

0 1 -1
Player 1
counterfactual values

R P S
Trunk

Figure 5.6: Opponent Counterfactual Values for Always Rock

against always rock, which exceeds our constraint of 0 from the equilibrium

in Figure 5.5. To re-solve the game, we must find a strategy where player one

gets an expected value of no more than 0 for every action, which only occurs

with the original player two equilibrium strategy of uniform random actions.

Note that while we ended up with an identical strategy after re-solving the

rock paper scissors subgame, more generally our re-solved subgame strategy

is only guaranteed to be at least as good as the original strategy against an

opponent best response, not to be identical to the original strategy.

5.2.5 Re-solving a Subgame with a Gadget Game

Section 5.2.4 described how, given a trunk and subgame strategy for one player

1, we can summarise the subgame strategy by constraints on the opponent’s

best-response counterfactual values at the root of a subgame. We can keep the

constraint values and discard the subgame strategy, because for any new sub-

game strategy with constraint values that do not exceed the original constraint

values, the combination of the trunk strategy and the new strategy is no more

exploitable than the trunk and original strategy. This section describes how

we can build a special re-solving game from the constraint values, such that

player 1’s equilibrium strategy satisfies the constraints in the original subgame.

First, we must more carefully define what we mean by opponent counter-
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factual values at the root of the subgame. Let us say we are player 1 and our

opponent is player 2. Because player 1 might be acting in the root states R

and information sets partition the states according to the player that is acting,

we need something like “opponent information sets” to describe the root from

player 2’s point of view. We partition the states R according to the sequence

of player 2 information sets and player 2 actions to reach the states, giving

us opponent “information sets” IR. That is, as in Section 2.3.2, a state is a

history of actions, which induces a sequence of tuples < Ii, ai >, from which

we can take the subsequence of tuples where p(Ii) = 2. States h, j ∈ R are in

the same I ∈ IR if and only if h and j induce the same subsequence.

For all “opponent information sets” I ∈ IR, there is an equivalence be-

tween the expected value in the re-solving game, and the counterfactual value

in the original game. The counterfactual value vσ1
2 (I) =

∑
h∈I v

σ1
2 (h) =∑

h∈I π
σT
1
−2(h)u

σS

2 (h) where σT
1 is the trunk strategy for player 1 and σS is the

subgame strategy profile. The opponent’s best-response counterfactual value7

vbr
σT
1 σS

1
2 (I) = maxσS

2
v
⟨σT

1 σS
1 ,σ

S
2 ⟩

2 (I) can be used as the constraint values that are

part of the input to a re-solving problem. That is, given constraint values c

indexed by opponent information set I, we want to enforce vbr
σT
1 σS

1
2 (I) ≤ cI ,

which is equivalent to enforcing u
σS
1

2 (I) ≤ cI in the re-solving game.

Figure 5.7 shows the re-solving game, which uses a gadget at the beginning

of the game to ensure that constraint values are satisfied. Conceptually, the

opponent has a choice for every information set whether to terminate and

achieve the constraint value, or follow through and play within the subgame.

We start by duplicating the states R at the root of the subgame, giving

us new states R̃ = {r̃|r ∈ R}. For all r̃ ∈ R̃ there is a terminal action T and

a non-terminal F that reaches state r. P (r̃) = 2, regardless of what player

was acting in state r. R̃ is partitioned according to the opponent information

partition IR, giving us information sets IR̃.

In order to make it a proper game, we need an initial chance decision that

7Note that a counterfactual best response in a subgame is subtly different than a best
response within the full game. A best response within the full game considers π2(I) and
thus will not maximise counterfactual value for states that opponent 2 does not play to.
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Figure 5.7: Construction of Re-Solving Gadget Game

reaches all states r̃ ∈ R̃ with probability πσT

−2(r)/k, where k =
∑

r∈R π
σT

−2(r) is

a normalising constant so the probabilities sum to 1. To keep the theoretically

useful property that expected values in the re-solving game correspond to

counterfactual values in the subgame (i.e., ũ2(h) = v2(h)) then we must also

multiply all leaf values by k so that ũ(z) = ku(z).

Finally, we need to assign values to the T actions in the new gadget deci-

sions, using the vector of constraint values c supplied as an argument to the

re-solving problem. For every information set I ∈ IR̃ and for all r ∈ I, we

set u2(r · T ) = kcI/
∑

r′∈I π−2(r
′). This choice means that, considering the

initial chance event and the sum across r ∈ I, the expected value u2(I · T ) for

choosing T at information set I is equal to the constraint value.

Informally, we maximise our value in the re-solving game by minimising

opponent counterfactual values in the original game. The gadget allows the

opponent to opt out of playing into the subgame with any of their information

sets, so that we have no incentive to minimise one opponent value at the

expense of increasing another opponent value beyond the original constraints.

If an opponent best response to some existing strategy is used to compute the

constraints, we know that it must be possible to have the values be at least as

low as the constraints, so our re-solving equilibrium strategy must be at least

94



as good as the original strategy. A formal proof that the re-solving game can

be used to generate a subgame strategy that does not increase exploitability

can be found in Appendix B.

5.3 Solving Games Using Decomposition

We now have all the pieces necessary to solve and play games using decompo-

sition. Given a trunk and imperfect information subgames, we can solve the

game to get a trunk strategy using CFR-D, which requires us to repeatedly

solve subgames (with any algorithm, including CFR-D). When needed, we can

recover a strategy in the subgames by re-solving.

For example, let us say we wanted to play the game of HULHE and we

did not have access to the tens of terabytes used to generate the Cepheus

solution, but did have access to a machine with 16GiB of memory and wanted

to use CFR-D. We could consider splitting the game after the second round of

betting, just before the fourth public card is dealt. This would give us a trunk

with 3.8∗108 betting sequences, and each of the 142 155 subgames would have

4.6 ∗ 108 betting sequences. This arrangement is shown in Figure 5.8.

  

Trunk

3.8*108 sequences
(5.6GiB, kept)

Subgame
#3

4.6*108 sequences
(6.9GiB, discarded)

Subgame
#142,155

4.6*108 sequences
(6.9GiB, discarded)

...

Subgame CFVs
(2.8GiB, kept)

Figure 5.8: Using CFR-D on HULHE
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The CFR-D computation will generate the trunk portion of an equilib-

rium profile, covering the top dark-shaded triangle. In order to later re-solve a

subgame, CFR-D must also store opponent counterfactual values for each sub-

game, shown as the dark-shaded rectangle below the trunk. Because we might

need to act as either player while playing, we must store subgame counterfac-

tual values for both players. During the CFR-D computation, there will be

repeated calls to a game solver to solve a subgame. However, because we only

need the counterfactual values of the subgame profile, the space required by

the subgame solver can be freed up after the subgame computation is finished.

At 8 bytes per value, we only require a bit more than 15GiB.

When it comes time to play the game, what do we do? While the current

state remains within the trunk, everything is easy: we just look up the action

distribution from our stored trunk strategy. Once we hit a subgame, we must

now look up the stored opponent counterfactual values for the appropriate

subgame and player, and re-solve the subgame as described in Section 5.2.5.

We then use that re-solved subgame strategy until the end of the game, with

no further computation needed. Note that the use of re-solving means that we

now have a (potentially significant!) computation cost to playing a game.

There is a cost to the reduction in space, from 262 TB even with 4 byte val-

ues [9] down to less than 16 GiB with 8 byte values. Because CFR-D requires

a solution to the subgames at every iteration, and the subgames comprise the

majority of the game, the computation cost is roughly squared. If we use CFR

or CFR+ to solve the subgames, and use N iterations both for the CFR-D

trunk computation and for solving subgames, we will update values for sub-

game information sets N2 times. Additionally, as mentioned in Section 5.2.3,

CFR-D modified to use CFR+ in the trunk does not have the empirically

observed O(1/T ) behavior of CFR+ by itself.

5.3.1 Algorithm

Algorithm 6 gives a simple version of CFR-D. The input T describes the num-

ber of trunk iterations. Solve is the algorithm used to solve subgames, and

could be CFR, an LP-based method, or CFR-D itself (with its own argument
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of a solver for subgames). Finally, CFR-D requires a description of how the

game game is divided into a trunk and subgames. After running, CFR-D re-

turns the average strategy profile in the trunk, as well as the average values

at the root of each subgame. The returned subgame values can be used as

constraint values for re-solving.

At each iteration, after computing the current trunk strategy, we solve each

subgame, one at a time. The trunk strategy defines a probability distribution

over states at the root of a subgame, making it a well defined game that we

can solve. Generating this new game is described in MakeSubgameGame. After

solving the subgame, we find the best response strategy profile, and compute

the counterfactual values at the root of the game for each player when playing

the solution against the best response. This final best response step guards

against irrational (non best-response) play in the solution at any information

sets not reached by the trunk, as described in Section 5.2.3.

After computing the subgame values we have all the information needed to

compute counterfactual values in the trunk. As in the recursive version of CFR,

we make use of the fact that the counterfactual values can be decomposed into

other counterfactual values. Say that C(I · a) is the set of child information

sets for information set I after making action a, where the same player is

acting8. Then vp(I, a) =
∑

J∈C(I) vp(J), for p = P (I). With vp(I) computed

for information sets at the root of every subgame, we can compute vp(I, a) for

every information set within the trunk.

After computing subgame values, CFR-D updates v̄S , the average counter-

factual value for every information set at the root of each subgame, averaged

across all time steps. Finally the iteration finishes as in CFR, by computing

values in the trunk, and using them to update regrets in the trunk.

5.3.2 Comparison to Double Oracle Methods

Double oracle methods [63] also let us solve a reduced problem, using a best

response as a computable oracle. We start by solving a reduced problem

8As in Section 2.4.3, C(I · a) = {J ∈ Ip(I)|I · a ⊏ J, ∄K ⊏ J s.t. I · a ⊏ K}, where I ⊏ J
if and only if ∃h ∈ I, j ∈ J such that h ⊏ j.
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input : Game G, Number of iterations T , game solving algorithm Solve,
trunk information sets T , set of subgames S

output: Trunk strategy of ϵ-Nash approximation σ̄,
average player values at root of subgames

foreach I ∈ T do
foreach a ∈ A(I) do

R(I, a)← 0
σ̄(I, a)← 0

foreach S ∈ S do
foreach p ∈ {p1, p2}, information set Ip at root of S do

v̄S(Ip)← 0

for t← 1 to T do
σ ←RegretToStrategy(T ,R)
UpdateAverage(T ,σ,1,σ̄)
vS ← SubgameValues(S,σ,Solve)
v̄S ← (t− 1)/tv̄S + 1/tvS
vT ← StrategyToValues(T ,σ)
UpdateRegrets(T ,σ,v,R)

NormaliseAverage(T ,σ̄)
return σ̄, v̄S

function SubgameValues(S,σ,Solve):
foreach S ∈ S do

foreach state h at root of S do
probs[h]← πσ(h)

Game← MakeSubgameGame (G, S, probs)
σS ← Solve (Game)
σBR = ⟨brp1(σS), brp2(σS)⟩
foreach p ∈ {p1, p2}, information set Ip at root of S do

v(Ip)← v
⟨σBR,p,σS,−p⟩
p (Ip)

return v
function MakeSubgameGame(G, S, probs[·]):

input : Game, subgame, root probabilities
output: New game containing subgame states
k ←

∑
h∈S probs[h]

HG ← {h ∈ S}
⋃
∅

ZG ← ZG
⋂
HG

pG(h)← pG(h) if h ∈ S else c
uG(h)← kuG(h)
σc,G(h, a)← σc,G(h, a) if h ∈ S else probs[a]/k
return ⟨HG, ZG, PG , pG, uG, IG , σc,G⟩

Algorithm 6: CFR-D
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using some subset of the possible strategies for each player. Then, for each

player, we look at a best response to the strategy within the full game. If the

player’s best response improves their value, it is added to the reduced problem.

Because it is using best responses, we get information about the quality of the

solution, and can stop when the solution to the reduced problem is an adequate

approximation of an equilibrium in the full game.

For some problems, incrementally adding strategies can be very effective.

In some security games, one player must find a path, and the other player is

selecting locations [7, 24, 41, 42]. This class of games can quickly grow to have

an astronomically large number of information sets: the number of possible

paths grows exponentially with the maximum path length. An acceptable

solution, however, might be found using only hundreds of strategies.

Double oracle methods can reduce space requirements, and frequently can

reduce computation costs as well by working with a smaller problem at each

iteration. Their effectiveness, however, depends on there being a small support

for the equilibrium, so that we only need a small set of strategies. In contrast,

CFR-D and decomposition offers a guaranteed, controlled reduction in space,

but at the cost of increased computation time.

5.4 Re-solving Exploitable Strategies

The re-solving technique of Section 5.2.5 was discussed in the context of solving

a game, but it also has other uses. Given a trunk strategy and opponent

best-response counterfactual values to our subgame strategy, re-solving lets

us generate a new subgame strategy that is no more exploitable than the

original subgame strategy, when combined with the trunk strategy. We can

use that guarantee to save space, as in Section 5.3 where we immediately

discard subgame strategies, or we could also use it to try improve an existing

strategy.

Improving a strategy works as follows. The opponent best-response coun-

terfactual values are a constraint on the subgame strategies we can consider, in

the form of an upper bound on the performance of an opponent best response
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against our strategy. If our strategy cannot be improved, these bounds will be

tight, and there is no strategy for us that lowers the value for one opponent

information set without increasing the value at another information set. How-

ever, if our strategy can be improved, these bounds are loose. If we re-solve

the subgame using those bounds and the gadget of Section 5.2.5, there is no

guarantee that we will decrease opponent values below the bounds and thus

improve our strategy, but we are likely to do so as the bounds are loose.

We could use re-solving to reduce exploitability if we know, or strongly sus-

pect, that our current strategy is exploitable in some portion of the game. As

a motivating example, consider the use of game abstraction, as demonstrated

in attempts to approximate equilibrium strategies in poker games [79, 4, 33].

Instead of directly solving the game, we first construct a small version of the

game, an abstraction which tries to capture the strategically important ele-

ments of the original game. We then solve the small abstract game, and finally

translate that strategy back into the original game. With few exceptions [53],

there are no bounds on the exploitability of the translated solution. We would

expect that in any subgame we looked at, the translated strategy would be a

suitable candidate for re-solving to reduce exploitability.

In particular, many abstract games for poker games are constructed by

grouping together card combinations into abstract buckets: instead of a player

knowing that they have 3♡K♠ with 7♡8♢A♡6♣5♣ as public cards, the player

might only know their cards are in bucket 2732 out of 10 000. The abstract

strategy will be for all of the situations grouped into that bucket, not just that

single deal of cards. If we ran across that situation in a real game, we might

want to use the knowledge of the exact cards.

The story of using exact knowledge of the real game state to fix problems

with abstraction is compelling enough that it was done even without theoreti-

cally sound re-solving techniques. Unpublished versions of the PsOpti agent [4]

used the solving process of Section 5.2.2 in the final river round, starting with

the fixed probability distributions for both players from the strategy profile in

earlier rounds. With the technology of the time, the abstract games needed to

be very small, and results were slightly negative. Independently discovered by
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Ganzfried et al., a similar unsafe subgame solving technique that eliminates

dominated strategies was used with positive results [28].

5.4.1 Experimental Results
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Figure 5.9: Exploitability of re-solved abstract strategy in Leduc hold’em

Figure 5.9, originally published at AAAI [15], looks at the exploitability

after re-solving a strategy generated from an abstraction of Leduc hold’em. It

looks at both the safe re-solving method in Section 5.2.5 that has a theoretical

guarantee, as well as the unsafe method of Ganzfried et al. Both methods used

CFR to solve the subgame re-solving games, and the exploitability is plotted

against the numbers of iterations used to solve the games. The original strategy

used was exploitable for 0.382 chips/game.

We can see a strong improvement in the exploitability using the safe re-

solving method. Within 200 CFR iterations, which is only sufficient to pro-

duce a poor approximation of an equilibrium profile, we already reduce the

exploitability to 0.33 chips/game. After 2000 iterations, the exploitability

varies between 0.23 to 0.29 chips/game, or a reduction of 24%-40%. The value

does not converge, because the equilibrium strategies in the re-solving gadget

game only provides a guarantee that the exploitability does not increase, with

no preference for strategies which maximise the decrease in exploitability. In

contrast, after 6250 iterations the unsafe method reaches and maintains an
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exploitability of 0.39 chips/game. The apparent convergence to the original

exploitability is a coincidence: in other situations the unsafe strategy could be

less exploitable, or significantly more exploitable.

Experimental Design

The original strategy used for the Leduc hold’em re-solving experiment was

generated using an abstract game of the style discussed above in Section 5.4.

In the abstract game, players cannot distinguish between a Queen or a King

on the board if they hold a Jack, or between a Jack or a Queen on the board

if they hold a King. That is, they know their card perfectly on the first round,

but can only distinguish JJ , JQ/JK, QJ , QQ, QK, KJ/KQ, and KK on

the second round.

This abstract game still lets players exactly compute the expected outcome

of their hand against a uniform random opponent hand (commonly known

as “hand strength”), so we might consider it to have captured much of the

complexity in the original game. The players, however, do lose information

about value against a non-uniform opponent hand: if I had the Jack, knowing

whether the board was the Queen or King would influence my belief about

the opponent holding a Queen, which changes how successful I think a bluff

should be. Because of this missing information, the equilibrium strategy from

the abstract game is exploitable for 0.382 chips/game in the full game9.

One natural choice for a trunk in the game of Leduc hold’em is the first

round of betting. If we split the game after the public cards are dealt, we

have 30 subgames, corresponding to the six possible public cards and the five

betting sequences where neither player ends the game early by folding in the

first round. Then, with a strategy, trunk and subgames in hand, we com-

pute two vectors for each subgame. First, we need our probability of reaching

the subgame for each information set (i.e., πus(I)), computed using a product

of action probabilities in the trunk. Second, we need our opponent’s best-

response counterfactual values for each opponent information set, computed

9Note that the exploitability is for one particular equilibrium. There are multiple abstract
game equilibrium profiles, with different exploitability in the full game.
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with the standard recursive best-response algorithm, which naturally produces

counterfactual values. We do this computation twice, so we have this infor-

mation from both players’ point of view.

With the probabilities and counterfactual values for each subgame, we can

now use the method of Section 5.2.5 to produce a new strategy. Note that we

must run this computation twice for each subgame to get a strategy profile,

once for each player, as the re-solving computation only has a guarantee on

the strategy for one player. Combining the new subgame strategy profiles with

the trunk strategy profile, we get a new strategy profile which is guaranteed

to be no more exploitable than the original strategy profile.

We can also use the unsafe method of Ganzfried et al. [28]. This method

only requires the probabilities of reaching the subgame, as in the computation

of Section 5.2.2. To improve the quality of the solution, it also forces the

probability of playing any dominated strategy to 0. The unsafe method only

needs to be run once per subgame, as we can use the strategy profile, rather

than just the strategy for a single player. Combining the new subgame profiles

with the trunk, we get a third strategy profile which is hopefully better than

the original, but could potentially be more exploitable.

One on One Performance

Because there can be a disconnect between exploitability and the one-on-one

performance [47], we might also be interested in the effect of re-solving on the

expected performance against other agents.

Figure 5.10 looks at the expected performance of the re-solved strategies

against the original strategy (i.e., the strategy used in the re-solving process.)

The unsafe re-solving method quickly converges to an expected value of 0.032

chips/game when playing against the original strategy. With somewhat more

computation, the safe re-solving technique achieves a value of 0.028 chips/game

against the original strategy.

The unsafe re-solving method outperforms the safe re-solving method by

around 0.004 chips/game in this experiment. However, playing against the

original strategy is the ideal situation for the unsafe re-solving method, be-
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Figure 5.10: Performance of re-solved abstract strategy in Leduc hold’em
against the original strategy

cause it assumes that the opponent trunk strategy does not change, and the

assumption is true when playing against the original strategy.
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Figure 5.11: Performance of re-solved abstract strategy in Leduc hold’em
against a best response to the original strategy

Figure 5.11 looks at the expected performance of the re-solved strategies

against a strategy which is a best response to the original strategy. Unlike when

we played against the original strategy, the trunk strategy has now changed

and the unsafe re-solving method is making false assumptions. Safe re-solving

now outperforms unsafe re-solving by around 0.2 chips/game.
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5.4.2 Improving Re-solving

There are a number of improvements to the re-solving process, since the orig-

inal publication. I explored a different source of values for the re-solving con-

straints, and tried mixing opponent probabilities into the re-solving process.

This is previously unpublished work. In related work, Moravč́ık et al. pub-

lished a different re-solving gadget that combines the exploitability guarantee

with an objective function [66].

Re-solving with Self-play Values

All of the re-solving theory in the discussion above uses the opponent best-

response counterfactual values vbrσ(I) from an existing strategy. A best re-

sponse, however, is clearly pessimistic and the self-play values vσ2 (I) of abstract

strategies can be a better source of constraints. For example, if we re-run the

experiment of Section 5.4.1 using self-play values, we get an exploitability of

0.143 chips/game instead of 0.288 chips/game, a reduction of 50%. The re-

mainder of this section examines the reasons why self-play values might work

well in practice.

Consider how the constraint vector c supplied as part of the re-solving

process affects the exploitability. For simplicity, let us assume we are some

fixed player 1 with strategy σ1, our opponent is player 2, we are considering a

single subgame S, and c is the vector of constraint values for σS
1 (i.e., each cI

is the opponent player 2 best-response counterfactual value vbrσS
2 (I).)

Say that we re-solve S using constraints c, and get some new subgame

strategy σ′S1 with constraint values c′. The expected (not counterfactual) value

of S for player 2 using any best response σ∗2 is πσ∗
2 (S) · c′. So, if the values

in c′ are lower than c, we have potentially decreased player 1’s exploitability.

Note that the improvement in exploitability is not guaranteed because a best-

response opponent might already choose not to play into the subgame with

that information set, so that reducing the value even further has no effect.

As long as c represents feasible constraints, the new values c′ will be as

good as c. That is, if there is some σ̃S with constraint values c̃ such that c ≥ c̃
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(i.e., cI ≥ c̃I∀I), then the re-solving theorem guarantees that c′ ≤ c. If the

constraints are not feasible, the re-solving gadget game is still well defined, so

that we still get some new σ′S1 , but there is no longer a guarantee that c′ ≤ c.

There are, then, two broad classes of “error” in c if we are trying to min-

imise our exploitability: overestimation and underestimation. If the values in

c are too high, so that we are too pessimistic about what values the opponent

can achieve, we may get a subgame strategy which is more exploitable than

it needs to be. On the other hand, if the values in c are overly optimistic and

too low, we may also get an unnecessarily exploitable strategy. Fortunately,

the increase in exploitability is bounded by the amount of underestimation.

Theorem 11 Assume we have a strategy σ1 for player 1 with opponent 2,

and some subgame S. Let c be re-solving constraints such that cI ≤ v
br(σS)
2 (I)

and ϵ +
∑

I cI =
∑

I v
br(σS)
2 (I) for some ϵ > 0, and σ′S be the strategy from

re-solving S using the gadget game of Section 5.2.5 with constraints c. Then

the exploitability of σ1 combined with σ′S is no more than ϵ greater than σ1.

Proof. First, note that because c ≤ v
br(σS)
2 , if player 1 plays σS

1 then player 2

will achieve at most
∑

I v
br(σS)
2 (I). Therefore we get a bound on the player 2

value of the gadget game,∑
I

max(cI , v
br(σ′S)
2 (I)) ≤

∑
I

v
br(σS)
2 (I) = ϵ+

∑
I

cI

Subtracting cI from each side inside the sum∑
I

max(0, v
br(σ′S)
2 (I)− cI) ≤ ϵ

Noting again that c ≤ v
br(σS)
2∑

I

max(0, v
br(σ′S)
2 (I)− vbr(σ

S)
2 (I)) ≤

∑
I

max(0, v
br(σ′S)
2 (I)− cI) ≤ ϵ

If the player 2 best response to σ′S only played into information sets where

v
br(σ′S)
2 (I)− vbr(σ

S)
2 (I) > 0, they can increase their value by at most ϵ.

Finally, we can consider how best-response and self-play values differ, when

starting with an exploitable strategy. If we are exploitable, we must have a
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less exploitable strategy (e.g., the 0 exploitability Nash equilibrium is guar-

anteed to exist), so the opponent best-response counterfactual values must be

overestimates. The self-play values are likely to be lower, reducing the amount

of overestimation, but some values may be infeasible underestimates. In prac-

tice, strategies from abstract games appear to have self-play values which are

close to equilibrium values, while the best-response values can be very high.

The trade-off then favours using self-play values, as seen in the Leduc results

at the beginning of this section.

Conversely, if we are starting with a strategy profile where the exploitability

is already low, the self-play values must be close to best-response values, and

Theorem 11 tells us there is at most a small penalty to using self-play values

rather than best-response values.

Using Opponent Probabilities in Re-solving

The safe re-solving method does not increase exploitability, but does not have

any additional objective that necessarily decreases exploitability. We can

adapt an idea of the robust counter-strategy method of Johanson et al. [48] to

provide an alternate objective. Johanson et al. use a coin-flip gadget to make

a trade off between exploitability and exploitation of a fixed strategy. At the

beginning of the game, there is a single binary chance event, with the outcome

unknown to the player of interest. With probability p, we play a game where

the opponent plays the fixed strategy, and with probability 1− p we play the

normal game where the opponent is free to react to us.

The idea is to use an estimate of opponent probabilities to construct an

additional objective. In the re-solving game as presented above, once the

opponent stops playing into some information set I ∈ IR (i.e., by selecting T

with probability 1 in the the re-solving gadget at the previous information set

Ĩ ∈ IR̃), we lose incentive to continue minimising the opponent counterfactual

value vσ2 (I). This happens because πσ
2 (h) = 0 for all states h that can be

reached from I, so vσ1 (h) = 0. If we forced player 2 to play into I, the values

could be non-zero and we would still have incentive to decrease vσ2 (I).

The additional objective is built by using a fixed opponent policy at all
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Ĩ ∈ IR̃, setting σ2(Ĩ , F ) = qI . Like c, q is a vector indexed by opponent

information sets, but q specifies an estimate of πσ
2 (I). With probability p we

play the game using this new objective, and with probability 1 − p we play

the unmodified re-solving game. As long as qI is a decent estimate of πσ
2 (I)

for player 2’s actual strategy πσ
2 (I), we will do a decent job at estimating how

important it is to minimise the value of each information set.

To use the coin-flip idea in the re-solving game, we add the coin-flip decision

before the re-solving gadget, with the result being hidden from the re-solving

player. With probability p we use the opponent trunk probabilities πσT

2 (I)

when playing into the game, and with probability 1 − p the opponent plays

into the game through the re-solving gadget. Note that because the opponent’s

counterfactual values in the main game are unaffected by any gadget decision,

we do not need separate opponent information sets for the coin-flip decision.

Using the opponent ranges appears to have a strong, mostly positive effect,

and is robust with respect to the choice of p. Even better, using the opponent

ranges often decreases the exploitability rather than increasing it, despite the

trade-off the coin-flip gadget is making between two different objectives. For

an example, consider re-solving the same abstract strategy used throughout

Section 5.4.1 with the coin-flip gadget, using both best-response and self-play

values. In these experiments, p = 0 corresponds to re-solving without the

coin-flip gadget, and p = 1 corresponds to the unsafe re-solving method.

Figure 5.12 looks at the expected performance against the original strat-

egy. As we might expect, using the opponent probabilities increases our value

against that opponent, with the best results coming from large values of p.

If we only look at the results when using best-response values for re-solving

constraints (the solid line), even p = 0.01 offers substantial improvement, and

the outcome does not vary much across different values of p until we hit p = 0

or p = 1. We get one negative result when using self-play values for constraints

(dashed line), where the results without the coin-flip (p = 0) are better than

using the coin-flip until p ≥ 0.8.

Figure 5.13 looks at the exploitability of the re-solved strategy. The main

result is that the exploitability is lower for any value of p ∈ [0.01, 0.9], and is
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still lower at p = 0.99 when using best-response values as re-solving constraints.

As with the one-on-one performance, there is a sharp transition at p = 0

and p = 1, with both extremes being more exploitable than any other choice

of p. Although the effect is small when using self-play values as re-solving

constraints, with p = 0.8 we both reduced the exploitability, and increased the

one-on-one performance.
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Figure 5.12: Performance of re-solved abstract strategy in Leduc hold’em
against original strategy, using coin-flip gadget, with self-play and best-
response values

Informally, we can explain the lack of increased exploitability by consider-

ing 1− p as slack in the opponent probabilities. Without the coin-flip gadget,

the opponent is able to pick any distribution of probabilities coming into the

rest of the game. With the coin-flip gadget, this distribution is mixed with a

fixed distribution. As long as 1−p is small enough that the opponent can still

select a distribution which is an appropriate response to our strategy when

mixed with the fixed distribution, we have not unduly limited our opponent.

If our opponent is not overly restricted, our strategy will not be exploitable.
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Figure 5.13: Exploitability of re-solved abstract strategy in Leduc hold’em,
using coin-flip gadget, with self-play and best-response values

Alternate Re-solving Gadget

The gadget in Section 5.2.5 only guarantees that opponent counterfactual val-

ues do not increase after re-solving. If we are re-solving to reduce exploitability,

we also have a goal of decreasing opponent counterfactual values. Moravč́ık et

al. published a new re-solving gadget [66] which simultaneously guarantees op-

ponent counterfactual values do not increase, while maximising the minimum

improvement of the values.

Moravč́ık et al. make two changes in their gadget. First, the values at

the gadget decision are shifted by subtracting the constraint values, so that

a best response to the original strategy has a value of 0 for all opponent

information sets. Second, the opponent chooses which information set to play

(i.e., one decision with N choices), rather than choosing whether to play each

information set (i.e., N binary decisions.)

The motivation behind the changes relies on the idea of margin: the dif-

ference between the opponent’s counterfactual value for the re-solved strategy,

and the opponent constraint values used to construct the gadget. By letting

the opponent choose an information set, we get the minimum margins over
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all opponent information sets. Choosing our strategy to maximise our value

means we are maximising the minimum margin, giving us incentive to decrease

opponent values beyond the original constraint values.

While Moravč́ık et al. report positive results, the new gadget makes no

difference within the experimental setup in Section 5.4.1. The lack of im-

provement does not contradict their reported results, but it does highlight a

subtle distinction between maximising min-margin, and minimising the sum

of opponent counterfactual values. If the constraint values are tight for one of

the opponent information sets I, so that it cannot be decreased any further,

the maximum margin will be 0. With an adequate strategy, all of the other

margins will be at least 0. Because the opponent selects the information set

with the minimum margin, they will select information set I and we will have

no further incentive to improve.
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Chapter 6

Practical Decomposition:
Continual Re-Solving

The decomposition tools in Chapter 5 allowed for a new class of algorithms,

which can operate on games which do not fit in memory. For example, there

is enough space on modern machines to run a recursive version of CFR-D

on the game of HUNL, which has more than 6 ∗ 10161 information sets [44].

Unfortunately, the computation time is prohibitively large, and we would not

complete a single iteration in anyone’s lifetime1. In perfect information games,

the computational intractability of extremely large games is solved by using

depth-limited search, and a heuristic evaluation of positions at the depth limit.

CFR-D and the decomposition tools provide a framework for a depth-

limited solving computation, using a game solving algorithm to answer ques-

tions about situations at the depth limit. This split gives us a location to

switch out a slow computation for a fast heuristic evaluation function, just as

in perfect information search, and defines the input and output of the evalua-

tion function, but gives no guidance on how to construct an effective function.

Martin Schmid and Matej Moravč́ık suggested the use of deep neural networks

to build an evaluation function from training data for this purpose.

I participated in a large team effort to implement game-theoretically sound

depth-limited solving in HUNL. We played the resulting program DeepStack

against professional poker players, and won by a large, statistically signif-

1To continue the physics analogy of HUNL having more particles than the observable
universe, the game-solving computation would take longer to finish than experimentally
checking if the universe enters a big crunch or suffers from heat death.
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icant margin. My main contribution is a theoretical analysis of the final

algorithm done in cooperation with Trevor Davis. I also worked on coordi-

nation and infrastructure, and participated in general discussion throughout

the project. The theoretical work, algorithm, and human results are published

in Science [65].

6.1 Continual Re-solving Algorithm

DeepStack uses a new theoretically sound algorithm, continual re-solving, that

performs multiple depth-limited computations to solve and play imperfect in-

formation games [65]. It combines elements of CFR-D and re-solving with a

heuristic evaluation function. It is also an entirely online algorithm, with no

pre-computed strategy.

As a basic outline, continuous re-solving uses CFR-D with an evaluation

function to provide answers to the subgame solving problems of Section 5.2.2,

and re-solves our strategy before every decision that we make using the tech-

nique of Section 5.2.5. There are two parts where continuous re-solving extends

beyond these previously published techniques: the evaluation function, and the

generation of opponent counterfactual values for re-solving constraints.

6.1.1 Imperfect Information Evaluation

At each iteration, CFR-D must solve every subgame given the fixed trunk

strategy of the current iteration. This is an instance of the problem discussed in

Section 5.2.2. We have some trunk strategy profile σT , which lets us compute

the probability πσT

p (Ip) of reaching a subgame for both players p, and all

information sets/parts2 Ip at the root of the subgame. These probabilities

make the subgame a well defined game which can be solved. Finally, the

subgame equilibrium profile can be used to compute counterfactual values

vp(Ip) for both players and all information sets/parts. Summarising the process

for a subgame, we get a pair of probability distributions in, and produce a pair

2The partition of states at the root of the subgame for the non-acting player does not
constitute a traditional information set partition, which only considers the acting player.
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of counterfactual values corresponding to an equilibrium profile.

The summary gives us the form for the input and output of an imperfect

information heuristic evaluation function, and the target values we are trying

to estimate. Note that the form is similar to a perfect information heuristic

function: we want the value of optimal play from the position onward, and as

discussed before we only need N−1 elements of the distribution so that perfect

information games require no distribution information. In contrast, there are

a couple of differences that make it more difficult to construct an imperfect

information heuristic. First, it has multiple real-valued inputs along with the

situation itself, and has multiple correlated, real-valued outputs. Second, the

counterfactual values of an equilibrium are not unique, so that it can be harder

to evaluate performance.

The non-uniqueness of outputs for any given inputs means we do not

strictly have a function, but any single choice of the possible outputs is a

valid choice, so we can force it to be a function. The real-valued inputs rule

out a table-based approach like the databases of endgame positions often used

in perfect information search, but does not rule out any general techniques for

function approximation. So we can produce an imperfect information heuris-

tic evaluation function, using the well-developed body of research on function

approximation.

It is interesting to note that in poker, there are transpositions in the evalu-

ation function: different sequences of events that lead to equivalent situations

with the same subgame structure and player utilities. All we need to know is

how much each player has bet in total, how big of a bet they are currently

facing, and whether the current round has already started with a check. While

the exact betting sequence matters very much within the game and affects the

future play, the effect of different betting sequences is to change the proba-

bility distribution of hands, and those distributions are already an input to

the evaluation function. Instead of having 10161/1326 different subgames3 we

could consider evaluating in HUNL with 20 000 chip stacks with a 100 chip big

3There are around 10160 information sets, and all subgames group together the informa-
tion sets for the 1326 possible hands.
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blind, there are around 1018 unique subgame situations to evaluate4.

6.1.2 Re-solving Constraint Values

The constraints used by the re-solving method in my original decomposition

work are framed in terms of the best-response values to an existing strategy for

the subgame of interest. In Section 5.4.2 I widened this to consider arbitrary

constraint values. I showed that if we start with an exploitable strategy, best-

response values are necessarily non-optimal, and experimentally demonstrated

that self-play values can produce better results than best-response values. We

could also consider different constraints for re-solving a subgame when our

current strategy is not highly exploitable.

There are, in fact, a range of constraint values which preserve the original

exploitability of σ when re-solving a subgame S. For example, if the opponent

has made at least one action before reaching S, we can use the best-response

values of not playing into S [40, 14]. Instead of doing as well as σS, we are

now ensuring that we do as well as possible given an opponent that can either

choose to play against our new strategy, or not play into S and play against

the rest of σ. For information sets where the opponent will reach S in some

equilibrium, these “anything-but-this-subgame” values will be a lower, more

optimistic choice than the best-response counterfactual values.

For a sketch of a correctness proof for re-solving with these non-subtree

values, we can consider the resulting gadget-game equilibrium profile within

the original game. There is at least one opponent information set I before

subgame S. The gadget decision is now making exactly the same decision as

an opponent best response would make at I within the original game: deciding

to play into S to receive the new value from σ′S, or receive the value from

playing a best response to σ outside of S. We are therefore trying to minimise

our exploitability by changing σ′S, given the fixed σ outside of S.

DeepStack also uses constraint values based on an opponent action at some

information set I before subgame S. Instead of using the maximum value

420 0002/2 combinations for total amount bet and bet faced, times 2 for the possibility
of an initial check, times 2.4 ∗ 109 unique card combinations.
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over actions at I that do not reach S, it uses the maximum value over all

actions at I including the action which reaches S. That is, it is the opponent’s

optimal value at I. This produces constraint values which are a higher for

any information set where reaching S was a non-optimal decision, making

DeepStack’s constraints a more pessimistic choice than the basic opponent

best-response values.

The upside of using the opponent-optimal constraint values is that we only

need a single value for each opponent information set, rather than requiring a

value for each action. When using continual re-solving in a game like HUNL,

we might use a sparse tree to find our current strategy. After making our

decision and the opponent acts again, we might find out that the opponent’s

decision does not exactly match any of the choices in the sparse tree. However,

as long as the sparse tree does a good job of estimating the opponent’s value

in an equilibrium (i.e., their optimal value), we can safely use that single value

per information set regardless of what action the opponent made.

Correctness of the opponent-optimal values follows from noting that the

constraints must be feasible because no value is less than the self-play values,

and applying Lemma 27 in Appendix C, originally published in the supplemen-

tary material accompanying the DeepStack article [65]. Informally, re-solving

with DeepStack’s choice of constraints is not guaranteed to exploit opponent

mistakes as much as the original strategy, but we will never do worse than our

original strategy would have done against an optimal opponent.

6.2 Theoretical Analysis

Along with Trevor Davis, I gave a bound on the exploitability of continual

re-solving, stated below in Theorem 12. Given a game where we make d ac-

tions, the strategy has exploitability in O(dϵE) if we use a subgame evaluation

function with bounded error ϵE. A proof is given in Appendix C.

Theorem 12 Assume we have some initial opponent constraint values w from

a solution generated using at least T iterations of CFR-D, we use at least

T iterations of CFR-D to solve each re-solving game, and we use a subtree
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value estimator such that minσ∗S∈NES

∑
I∈IS2
|vσ∗S(I) − vI | ≤ ϵE. Then after

d re-solving steps the exploitability of the resulting strategy is no more than

(d + 1)k/
√
T + (2d + 1)jϵE for some constants k, j specific to both the game

and how it is split into subgames.

While both continual re-solving and CFR-D are built on very similar de-

composition tools, the proof of the DeepStack bound in Theorem 12 differs

from the CFR-D bounds I published [15] in two main ways. First, the original

CFR-D proof is very strongly tied to best-response constraints, whereas the

continual re-solving proof needs to be more general. Second, the CFR-D proof

used bounds on individual information sets, leading to a geometrically growing

exploitability bound in the number of re-solving steps.

To handle DeepStack’s constraints, the exploitability bounds were split

into underestimation error, overestimation error, and solution error. This split

made it easier to talk about the effects of the solution quality and evaluation

function on constraints, and the effects of constraints on exploitability.

The original CFR-D proof gave bounds in terms of individual information

sets at the root of the subgame. Looking at exploitability, we need to con-

sider the error across all information sets, which meant the original CFR-D

exploitability bound had an O(NϵE) term, where N was the number of in-

formation sets at the root of the subgame. Because the various sources of

error were not separated, this term also became part of the input to the next

re-solving step, resulting in an O(NdϵE) bound for d re-solving steps.

The DeepStack proof gives a bound on the sum of errors across all infor-

mation sets, giving O(ϵE) terms without the factor of N . By more carefully

separating the sources of error, the proof also avoids any other geometric

growth in the d re-solving steps.

At each re-solving step the algorithm introduces error into the constraints

by estimating the counterfactual values using the evaluation function, with

the sum of the underestimation error and overestimation error being bounded

by ϵE. There is also additional solution error from finding an approximate

solution to the re-solving game. If we use a variant of CFR, the solution error
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is bounded by O(1/
√
T + ϵE) when using T re-solving iterations. Running the

re-solving step d times gives the final bound.

6.3 Experimental Results

There are two strong experimental results for DeepStack. First, we have lower

bounds on exploitability which are significantly lower for DeepStack than for a

variety of agents HUNL agents built using traditional abstraction-based tech-

niques. Second, we have strong results playing DeepStack against humans.

All of the results in this section were published as supplementary material in

the DeepStack paper [65].

6.3.1 Lower Bounds on Exploitability

Lisýet al. introduced the local best response technique (LBR) [60] which

provides a lower bound on exploitability of a static agent. LBR is not a single

computation, but an agent that plays against the target agent using knowledge

of the target’s strategy to choose actions. At each decision, LBR uses the

distribution over the opponent’s possible hands to compute an approximation

of future value for some set of actions. It then makes a greedy local decision

by picking the action with the highest expected value.

Table 6.1 gives the LBR results against a number of agents including Deep-

Stack, using four different configurations of LBR with different available ac-

tions. Slumbot and Act1 are agents from the 2016 Annual Computer Poker

Competition (ACPC) [1], coming in second and third place respectively. Hy-

perborean was the third place instant run-off entry in the 2014 ACPC. The

“Full Cards” agent uses a compressed 2TB strategy built from a game that

uses the full HUNL card structure, but only allowed the actions of a fold, call,

pot-sized bet, or an all-in bet. Unlike the ACPC agents and DeepStack, which

use player stacks of 200 big blinds, the “Full Cards” strategy used player stacks

of 100 big blinds.
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LBR Settings Local best response performance (mbb/g)
Pre-flop F, C C C C
Flop F, C C C 56bets
Turn F, C F, C, P, A 56bets F, C
River F, C F, C, P, A 56bets F, C

Hyperborean (2014) 721 ± 56 3852 ± 141 4675 ± 152 983 ± 95
Slumbot (2016) 522 ± 50 4020 ± 115 3763 ± 104 1227 ± 79
Act1 (2016) 407 ± 47 2597 ± 140 3302 ± 122 847 ± 78
Always Fold 250 ± 0 750 ± 0 750 ± 0 750 ± 0

Full Cards [100 BB] -424 ± 37 -536 ± 87 2403 ± 87 1008 ± 68
DeepStack -428 ± 87 -383 ± 219 -775 ± 255 -602 ± 214

Table 6.1: Exploitability lower bound of different programs evaluated with
LBR using only the listed actions in each round as shown in each column. F,
C, P, A, refer to fold, call, a pot-sized bet, and all-in, respectively. 56bets
includes the actions fold, call and 56 equidistant pot fractions as defined in
the original LBR paper [60].

All of the ACPC entries are extremely vulnerable to exploitation by LBR:

they are worse off than an agent which folds to any bet. LBR does not even

need to make a bet: just folding or calling with full knowledge of the cards is

sufficient to win by hundreds of mbb/g. The “Full Cards” agent is similarly

exploitable, as long as LBR is allowed to make actions other than the fold,

call, pot, all-in actions that were used in the game for which “Full Cards” is a

Nash equilibrium. In contrast, DeepStack cannot be exploited by LBR in any

of the tested settings.

There are situations where allowing LBR to consider more actions does

not increase its performance, because the greedy local decision might not be

the best choice. Negative values in the LBR results are not a logical error

either; they indicate that LBR was unable to exploit the agent because it

is only estimating future values. Finally, note that LBR is only providing a

lower bound on exploitability, so the negative values do not prove that Deep-

Stack’s exploitability is small. They do, however, indicate that DeepStack is

not vulnerable to one class of attack that can be used to exploit a range of

abstraction-based agents.
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6.3.2 Human Performance against DeepStack

With the assistance of the International Federation of Poker(IFP) [39], we re-

cruited volunteers to play against DeepStack. Only players who self-identified

as a “professional poker player” during registration were selected to play. Each

player was given four weeks to complete a 3000 game match. To incentivize

players, monetary prizes of $5000, $2500, and $1250 (CAD) were awarded to

the top three players that completed their match. Player performance was

ranked by their win rates, using an unbiased variance reduction technique

called AIVAT [16]. All participants were informed of these details when they

registered to participate, and required to acknowledge their understanding.

Table 6.2 gives the results of the human study. There were 33 players from

17 countries who participated, with 11 players completing all 3000 games.

All games were completed between November 7th and December 12th, 2016.

DeepStack won against all participants who completed their match, with a

statistically significant win at more than a 95% confidence level for 10 of those

11 players. DeepStack did not lose at a statistically significant rate against any

participant, and won an average of 486mbb/g ± 40 against all players over the

complete set of 44 852 games. The positive results make DeepStack the first

computer agent to achieve a statistically significant win against professional

poker players in the game of HUNL.
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Player Games Win Rate (mbb/g)

Martin Sturc 3000 70 ± 119
Stanislav Voloshin 3000 126 ± 103

Prakshat Shrimankar 3000 139 ± 97
Ivan Shabalin 3000 170 ± 99

Lucas Schaumann 3000 207 ± 87
Phil Laak 3000 212 ± 143
Kaishi Sun 3000 363 ± 116

Dmitry Lesnoy 3000 411 ± 138
Antonio Parlavecchio 3000 618 ± 212

Muskan Sethi 3000 1009 ± 184
Pol Dmit 3000 1008 ± 156

Tsuneaki Takeda 1901 627 ± 231
Youwei Qin 1759 1306 ± 331
Fintan Gavin 1555 635 ± 278

Giedrius Talacka 1514 1063 ± 338
Juergen Bachmann 1088 527 ± 198
Sergey Indenok 852 881 ± 371

Sebastian Schwab 516 1086 ± 598
Dara O’Kearney 456 78 ± 250

Roman Shaposhnikov 330 131 ± 305
Shai Zurr 330 499 ± 360

Luca Moschitta 328 444 ± 580
Stas Tishekvich 295 −45 ± 433
Eyal Eshkar 191 18 ± 608
Jefri Islam 176 997 ± 700
Fan Sun 122 531 ± 774

Igor Naumenko 102 −137 ± 638
Silvio Pizzarello 90 1500 ± 2100

Gaia Freire 76 369 ± 136
Alexander Bös 74 487 ± 756
Victor Santos 58 475 ± 462
Mike Phan 32 −1019 ± 2352

Juan Manuel Pastor 7 2744 ± 3521

Table 6.2: DeepStack’s win rate against professional poker players, with 95%
confidence interval
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Chapter 7

Conclusions

In this thesis I introduce improved methods for solving imperfect informa-

tion games, trying to find techniques that use less computation time, less

space, or both. Along with others, I introduced three new algorithms: CFR+,

CFR-D, and continual re-solving. I provide performance bounds for all three

algorithms, and tighten an existing CFR bound as part of a larger effort to

explain empirical performance compared to theoretically faster algorithms.

In experiments using large poker and matrix games, CFR+ produces a

low-exploitability strategy much more quickly than CFR. The behaviour of

CFR+ in these games is more like we would expect from theoretically faster

algorithms. With others, I used CFR+ to solve HULHE, making it the first

solved imperfect information game that is commonly played by humans. I

provide theoretical bounds which show that CFR+ is asymptotically no worse

than CFR. I also prove that regret-matching+, a new algorithm used by CFR+,

minimises tracking regret, giving it a guarantee with respect to one class of

dynamic policies. Hedge and regret-matching lack this property.

The theoretical decomposition tools I introduced opened up new space-

saving possibilities for imperfect information games, and for improving existing

strategies. CFR-D demonstrated some of this potential, with space require-

ments that are less than linear in the number of information sets. I prove

that CFR-D converges, with a roughly quadratic computation cost compared

to CFR. The CFR-D result rests on top of a proof that re-solving works, and

can use opponent counterfactual values to compute a subgame strategy which
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completes a trunk equilibrium.

Continual re-solving extended the decomposition work, using a heuristic

evaluation function to not only overcome the quadratic increase in computation

time suffered by CFR-D, but greatly decrease the computation time compared

to CFR. Along with the decomposition-based reduction in space requirements,

and sparse game trees, the combination of advantages make it possible to

approximately solve and play extremely large games. With others, I used

continual re-solving to play and beat professional HUNL players for the first

time. Trevor Davis and I proved that the exploitability of continual re-solving

grows linearly with the heuristic error.

There are many possible directions to extend this research. I improved

the bounds on CFR (and CFR+) with respect to problem size, but they are

still very loose. Decomposition is not directly tied to CFR, as in CFR-D

or continual re-solving, but it is not clear how to fit the resulting non-smooth

objective function into other algorithms. All of the fast 1/ϵ algorithms seem to

require 3 values per information set: is there a modification that only requires

2 values? Can we use the observation of Rakhlin et al. that the opponent

is not arbitrary to improve on the 1/
√
ϵ bounds for CFR+, perhaps to ϵ−3/4?

Finally, continual re-solving has many pieces that could be improved: better

heuristics, different ways of building sparse depth-limited trees, and changing

the re-solving method and how opponent ranges are used.

With or without future improvements, this work extended what was pos-

sible with imperfect information games. In games where space is not an issue,

CFR+ is simple and very effective, and can be scaled up to large clusters of

machines. If there is not enough space but we do have time, CFR-D can solve

games using less memory than conventional methods. Finally, if we have nei-

ther time nor space but can accept error introduced by heuristic evaluation,

continual re-solving still lets us solve and play these games.
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[69] A.S. Nemirovskĭı and D.B. IUdin. Problem Complexity and Method Effi-
ciency in Optimization. A Wiley-Interscience publication. Wiley, 1983.

[70] Y. Nesterov. Excessive gap technique for nonsmooth convex optimization.
SIAM Journal of Optimization, 16(1):235–249, 2005.

[71] Yurii Nesterov. Smooth minimization of non-smooth functions. Math.
Program., 103(1):127–152, 2005.

[72] Yurii Nesterov. Primal-dual subgradient methods for convex problems.
Mathematical programming, 120(1):221–259, 2009.

[73] Alexander Rakhlin and Karthik Sridharan. Optimization, learning, and
games with predictable sequences. In Advances in Neural Information
Processing Systems 26 (NIPS), pages 3066–3074, 2013.

[74] RT Rockafellar. Convex Analysis. Princeton University Press, 1970.

[75] I. V. Romanovskii. Reduction of a game with complete memory to a
matrix game. Soviet Mathematics, 3:678–681, 1962.

[76] David Schnizlein, Michael H. Bowling, and Duane Szafron. Probabilistic
state translation in extensive games with large action sets. In Proceedings
of the Twenty-First International Joint Conference on Artificial Intelli-
gence (IJCAI), 2009, pages 278–284, 2009.

129



[77] Reinhard Selten. Reexamination of the perfectness concept for equilib-
rium points in extensive games. International journal of game theory,
4(1):25–55, 1975.

[78] Claude E. Shannon. Xxii. programming a computer for playing chess.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science, 41(314):256–275, 1950.

[79] Jiefu Shi and Michael Littman. Abstraction methods for game theoretic
poker. In Computers and Games, pages 333–345. Springer, 2001.

[80] NZ Shor, Krzysztof C Kiwiel, and Andrzej Ruszcayski. Minimization
methods for non-differentiable functions. Springer-Verlag New York, Inc.,
1985.

[81] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484–489,
2016.

[82] Finnegan Southey, Michael H. Bowling, Bryce Larson, Carmelo Piccione,
Neil Burch, Darse Billings, and D. Chris Rayner. Bayes’ bluff: Opponent
modelling in poker. In Proceedings of the Twenty-First Conference in
Uncertainty in Artificial Intelligence (UAI), pages 550–558, 2005.

[83] Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E. Schapire.
Fast convergence of regularized learning in games. In Advances in Neural
Information Processing Systems 28 (NIPS), pages 2989–2997, 2015.

[84] Oskari Tammelin. CFR+. CoRR, abs/1407.5042, 2014.

[85] Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling.
Solving heads-up limit texas hold’em. In Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence (IJCAI), 2015.

[86] John Tromp and Gunnar Farnebäck. Combinatorics of go. In Interna-
tional Conference on Computers and Games, pages 84–99. Springer, 2006.

[87] Paul Tseng. On accelerated proximal gradient methods for convex-
concave optimization. http://www.mit.edu/~dimitrib/PTseng/
papers/apgm.pdf, 2008.

[88] A. W. Tucker. Solving a matrix game by linear programming. IBM J.
Res. Dev., 4(5):507–517, November 1960.

[89] Eric Van Damme. A relation between perfect equilibria in extensive form
games and proper equilibria in normal form games. International Journal
of Game Theory, 13(1):1–13, 1984.

[90] J. von Neumann. Zur theorie der gesellschaftsspiele. Mathematische An-
nalen, 100(1):295–320, 1928.

[91] John von Neumann and Oskar Morgenstern. Theory of Games and Eco-
nomic Behavior. Princeton University Press, Princeton, Second Edition,
1947.

130

http://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf
http://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf


[92] Kevin Waugh, Dave Schnizlein, Michael Bowling, and Duane Szafron.
Abstraction pathologies in extensive games. In Proceedings of the Eighth
International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pages 781–788, 2009.

[93] Uzi Zahavi, Ariel Felner, Neil Burch, and Robert C. Holte. Predicting the
performance of IDA* using conditional distributions. Journal of Artificial
Intelligence Research (JAIR), 37:41–83, 2010.

[94] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Pic-
cione. Regret minimization in games with incomplete information. In
Advances in Neural Information Processing Systems 20 (NIPS), pages
905–912, 2007.

131



Appendix A

CFR+ and Regret-matching+

Proofs

In this section, I present proofs of the bounds given in Section 4.2. The proofs

were originally published at IJCAI [85].

A.1 Regret-matching+ and External Regret

The proof that regret-matching+ has low external regret has two parts main.

Lemma 13 shows that the regret-like values stored by the algorithm are an

upper bound on the true regrets. Lemma 14 gives a bound on the regret-like

values. Both lemmas together give the main result, Theorem 6.

Lemma 13 Given a sequence of strategies σ1, ..., σT , each defining a probabil-

ity distribution over a set of actions A, let Qt(a) = (Qt−1(a) + ∆Rt(a))
+
and

Q0(a) = 0 for all actions a ∈ A. Then for the regret-like value Qt(a), we have

∆Rt(a) = Rt(a)−Rt−1(a) ≤ ∆Qt(a) = Qt(a)−Qt−1(a) (A.1)

and

Rt(a) ≤ Qt(a) (A.2)

Proof. For any t ≥ 1 we have

∆Qt(a) = Qt(a)−Qt−1(a)

= max (Qt−1(a) + ∆Rt(a), 0)−Qt−1(a)
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≥ Qt−1(a) + ∆Rt(a)−Qt−1(a)

= ∆Rt(a)

After noting that R0(a) = 0 ≤ Q0(a) = 0, we have proven equation A.2. Writ-

ing the regrets as sum of the changes, we can finish the proof of equation A.1.

Qt(a) =
t∑

i=1

∆Qt(a)

≥
t∑

i=1

∆Rt(a)

= Rt(a)

Lemma 14 Given a set of actions A and any sequence of T value functions

vt : A ↦→ R, say we have played the sequence σt of regret-matching+ strategies.

Then the sum of squared regret-like values is bounded by the sum of squared

change in regret values, so that
∑

aQ
T (a)2 ≤

∑T
t=1

∑
a∆R

t(a)2.

Proof.∑
a

QT (a)2 =
∑
a

((
QT−1(a) + ∆RT (a)

)+)2
≤
∑
a

(
QT−1(a) + ∆RT (a)

)2
=
∑
a

(
QT−1(a)2 +∆RT (a)2 + 2QT−1(a)∆RT (a)

)
=
∑
a

QT−1(a)2 +
∑
a

∆RT (a)2

+ 2
∑
a

QT−1(a)

(
vT (a)−

∑
b

vT (b)σT (b)

)
=
∑
a

QT−1(a)2 +
∑
a

∆RT (a)2

+ 2
∑
a

QT−1(a)

(
vT (a)−

∑
b

vT (b)QT−1(b)/
∑
c

QT−1(c)

)
=
∑
a

QT−1(a)2 +
∑
a

∆RT (a)2

+ 2
∑
a

QT−1(a)vT (a)
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− 2
∑
a,b

QT−1(a)vT (b)QT−1(b)/
∑
c

QT−1(c)

=
∑
a

QT−1(a)2 +
∑
a

∆RT (a)2

+ 2
∑
a

QT−1(a)vT (a)

− 2
∑
b

vT (b)QT−1(b)
∑
a

σT (a)

=
∑
a

QT−1(a)2 +
∑
a

∆RT (a)2

+ 2
∑
a

QT−1(a)vT (a)

− 2
∑
b

vT (b)QT−1(b)1

=
∑
a

QT−1(a)2 +
∑
a

∆RT (a)2

Q0(a) = 0 for all a, so by induction
∑

aQ
T (a)2 ≤

∑T
t=1

∑
a∆R

t(a)2.

Theorem 6 Given a set of actions A, any sequence of T value functions

vt : A ↦→ R, and bound L such that |vt(a) − vt(b)| ≤ L for all t and a, b ∈ A,

after playing the sequence σt of regret-matching+ strategies, the regret-like value

QT (a) ≤ L
√
|A|T for all a ∈ A. Moreover, this same bound applies to RT (a).

Proof. For all t, ∆Rt(a) = vt(a) −
∑

b v
t(b)σt(b) ≤ L. Placing this in

Lemma 14 gives a bound
∑

aQ
T (a)2 ≤ T |A|L2. Because QT (a) ≥ 0 for all

T, a for any a we get that QT (a) ≤ L
√
|A|T .

A.2 Regret-matching+ and Tracking Regret

To prove a tracking regret bound on regret-matching+, we show that the regret-

like values in regret-matching+ are an upper bound on the true regret values

within any of the piecewise segments.

Theorem 7 Given a set of actions A, any sequence of T value functions

vt : A ↦→ R, and bound L such that |vt(a) − vt(b)| ≤ L for all t and a, b ∈ A,

after playing the sequence σt of regret-matching+ strategies, there is a bound

on k-tracking regret of Rk,T ≤ kL
√
|A|T .
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Proof. Given a run of regret-matching+ on the T time steps, we get a sequence

of Qt(a) and ∆Qt(a) values. Define Q[B](a) =
∑Be

t=Bs
∆Qt(a), similar to the

definition of R[B](a) in equation 4.1 of Section 4.2.2. Then,

∑
a

(
R[B](a)+

)2
=

⎛⎝( Be∑
t=Bs

∆Rt(a)

)+
⎞⎠2

≤
∑
a

⎛⎝( Be∑
t=Bs

∆Qt(a)

)+
⎞⎠2

Lemma 13

≤
∑
a

⎛⎝(QBs−1(a) +
Be∑

t=Bs

∆Qt(a)

)+
⎞⎠2

Qt(a) ≥ 0∀t

=
∑
a

(
QBe(a)+

)2
=
∑
a

QBe(a)2

≤
Be∑
t=1

∑
a

∆Rt(a)2 Lemma 14

≤ Be|A|L2 (A.3)

Consider an arbitrary partition B of [1, T ] where |B| ≤ k. Compute the square

of positive regrets over all intervals and piecewise strategies consistent with B,(∑
B∈B

max
aB

R[B](aB)
+

)2

≤
(
|B|max

B∈B
max

a
R[B](a)+

)2

≤ |B|2max
B∈B

max
a

(
R[B](a)+

)2
≤ k2max

B∈B

∑
a

(
(R[B](a))+

)2
≤ k2max

B∈B
Be|A|L2 Equation A.3

= k2L2|A|T (A.4)

Comparing regrets and positive regrets,∑
B∈B

max
aB

R[B](aB) ≤
∑
B∈B

max
aB

R[B](aB)
+

≤ kL
√
|A|T Equation A.4

Because B is an arbitrary k-partition, Rk,T ≤ kL
√
|A|T .
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A.3 CFR+ Exploitability

With Theorem 6 giving a proof that regret-matching+ minimises regret, prov-

ing that CFR+ generates an ϵ-Nash equilibrium is largely achieved by existing

work on CFR. The two major steps are linking the CFR+ weighted average

strategy and the regret over a weighted series of values, and providing a bound

on regret-matching+ regret on the weighted series of values.

We start with Lemma 15, which considers sequences which could plausibly

be a sequence of ∆Qt(a) values observed during a run of regret-matching+.

The lemma states that for any sequence of T bounded values where the sum

of any prefix is positive, the linearly weighted sum of the values is less than

T times greater than the un-weighted sum. A rough sketch of the argument

is that the weighted sum is maximised by having positive values later in the

sequence, but the positive-prefix-sum requirement places a bound on the suffix.

We then construct a new regret minimising problem from a CFR+ run

by taking the observed counterfactual values and using the same linearly in-

creasing weighting CFR+ uses for the average strategy. In Lemma 16 we use

Lemma 15 and the proof of Theorem 1 to get a bound on the regret for the

CFR+ strategies in the new weighted problem. The (re-scaled) regret of a

sequence of strategies in this new game gives the difference in value between a

best response to the CFR+ average strategy and the weighted observed values.

Theorem 8 uses this link between regret and the CFR+ average strategy.

Lemma 15 Call a sequence x1, ..., xT of bounded real values B-plausible if

B > 0,
∑i

t=1 xt ≥ 0 for all i, and
∑T

t=1 xt ≤ B. For any B-plausible sequence,∑T
t=1 txt ≤ TB.

Proof. Consider any B-plausible sequence that maximises the weighted sum.

That is, let

x∗1, ..., x
∗
T = argmax

B-plausible x′1,...,x
′T

T∑
t=1

tx′t

We will show
∑T

t=1 tx
∗
t ≤ TB by proving that x∗i ≥ 0 for all 1 ≤ i ≤ T .
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For any i < T , it cannot be the case that for any i < j that x∗i > 0,

x∗j < 0, and x∗k ≥ 0 for all k where i < k < j. Assume this were true, then let

δ = min(|x∗i |, |x∗j |). Construct a new sequence x′ where

x′i = x∗i − δ

x′j = x∗j + δ

x′k = x∗k ∀k ̸= i, j

This new sequence x′ is B-plausible. We have

k∑
t=1

x′t = −δ +
i−1∑
t=1

x∗t +
k∑
t=i

x∗t If i ≤ k < j

≥ −δ + 0 + δ

= 0

and

k∑
t=1

x′t =
k∑

t=1

x∗t If k < i or k ≥ j

Looking at the weighted sum of x′, we have

T∑
t=1

tx′t =
i−1∑
t=1

tx′t ++ix′i +

j−1∑
t=i+1

tx′t + jx′j +
T∑

t=j+1

tx′t

=
i−1∑
t=1

tx∗t + i(x∗i − δ) +
j−1∑

t=i+1

tx∗t + j(x∗j + δ) +
T∑

t=j+1

tx∗t

=
T∑
t=1

tx∗t + (j − i)δ

>
T∑
t=1

tx∗t

which contradicts the construction of x∗ as a maximizing sequence.

Further, it cannot be the case that x∗j < 0 for any j. Assume there is a

negative value. Let j be the minimum index such that that x∗j < 0. Because

j is the minimum index, x∗k ≥ 0 for all k < j. From above, it cannot be the

case that x∗i > 0 for any i < j. This means x∗k = 0 for all k < j, so we
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have
∑j

t=1 x
∗
t = x∗j < 0, which contradicts x∗ being a B-plausible sequence.

Therefore, we have x∗j ≥ 0 for all j.

Finally, looking at
∑T

t=1 txt for an arbitrary B-plausible sequence x∑
t

txt ≤
∑
t

tx∗t By construction of x∗t

≤
∑
t

Tx∗t x∗t ≥ 0

= T
∑
t

x∗t

≤ TB x∗t is B-plausible, so
∑
t

x∗t ≤ B

Lemma 16 Let σ1, ..., σT be a sequence of strategy profiles from a run of

CFR+. Further, let L be a bound on the difference in values so that |up(h)−

up(j)| ≤ L for all h, j, p, Ap = maxI∈Ip |A(I)| be the maximum number of

player p actions, and Mp be defined as in Theorem 1. Then for any player p,

R′Tp = maxσ∗p
∑T

t=1(tup(σ
∗
p, σ

t
−p)− tup(σt

p, σ
t
−p)) ≤ TLMp

√
ApT .

Proof. Consider the regret R′T (I, a) for σt in a new game where utp(h) =

tup(h) for all h. By definition, R′T (I, a) =
∑T

t=1 t∆R
t(I, a). Lemma 13 and

Lemma 15 let us say

R′T (I, a) ≤
T∑
t=1

t∆Qt(I, a) ≤ T

T∑
t=1

∆Qt(I, a) = TQT (I, a)

Lemma 14 lets us state that
∑

aQ
T (I, a)2 ≤

∑T
t=1

∑
a ∆R

t(I, a)2. This

can be combined with the bound on R′T (I, a)

∑
a

R′T (I, a)2 ≤
∑
a

(TQT (I, a))2 ≤
T∑
t=1

∑
a

∆(TRt(I, a))2

The bound on the sum on the squared regrets in the weighted game is in

the same form as the regret-matching bound, and we can directly apply the

proof of Theorem 1 in the modified game with L′ = TL, giving us the bound

Rp ≤ L′Mp

√
ApT = TLMp

√
ApT .
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Theorem 8 Let L be a bound on values such that |up(h)− up(j)| ≤ L for all

h, j, p, and Ap = maxI∈Ip |A(I)| be the maximum number of player p actions.

Say we are given partitions {B0
p(σ

D
p ),B1

p(σ
D
p ), ...} for any pure strategy σD

p ∈

ΣD
p . Then after T CFR+ iterations, the linearly weighted average strategy

profile σ̄T
p = 2/(T 2 + T )

∑T
t=1 tσ

t
p is a 2

∑
p LMp

√
Ap/T -Nash equilibrium,

where Mp = maxσD
p ∈ΣD

p

∑dmax

d=0

∑
B∈Bdp(σD

p ) ξp(B)
√
|B|.

Proof. Let z =
∑T

t=1 t = t(t+ 1)/2. We wish to find the exploitability ϵ.

ϵ = max
σ∗1

u1(σ
∗
1,
1

z

∑
t

tσt
2) + max

σ∗2
u2(

1

z

∑
t

tσt
1, σ

∗
2)

Because the game is zero sum, 1
z

∑T
t=1 tu1(σ

t
1, σ

t
2) +

1
z

∑T
t=1 tu2(σ

t
1, σ

t
2) = 0

= max
σ∗1

u1(σ
∗
1,
1

z

∑
t

tσt
2)−

1

z

T∑
t=1

tu1(σ
t
1, σ

t
2)

+ max
σ∗2

u2(
1

z

∑
t

tσt
1, σ

∗
2, )−

1

z

T∑
t=1

tu2(σ
t
1, σ

t
2)

Using Lemma 16 we can write this as

=
1

z
R′T1 +

1

z
R′T2

≤ 1

z

∑
p

TLMp

√
ApT

≤ 2
∑
p

LMp

√
Ap/T
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Appendix B

Decomposition Proofs

In this section, I present proofs of the arguments given in Section 5.2.3 and

Section 5.2.5. The proofs were originally published at AAAI [15]. Some addi-

tional background terminology from the paper follows below.

In a perfect recall game, for any z ∈ Z(I) there is a unique state h ∈ I such

that h ⊏ z, which we write z[I]. If we replace the whole strategy for player

p by a new strategy σ′p, we will call the resulting profile ⟨σ−p, σ′p⟩. Finally,

σ[S←σ′] is the strategy that is equal to σ everywhere except at information sets

in S, where it is equal to σ′.

BRp(σ) is the best response strategy for player p against σ. A counter-

factual best response CBRp(σ) is a strategy where σp(I, a) > 0 if and only

if vp(I, a) ≥ maxb vp(I, b), so it maximizes counterfactual value at every in-

formation set. CBRp is necessarily a best response, but BRp may not be a

counterfactual best response as it may choose non-maximizing actions where

πp(I) = 0. The well known recursive bottom-up technique of constructing a

best response generates a counterfactual best response.

A ˜will be used to distinguish the re-solving game from the subgame of

the original game, and a re-solving strategy from the strategy copied to the

original game. The strategy σS will refer to a strategy within subgame S in

the original game. The game S̃ will be the re-solving game for S including the

initial gadget decision. Strategy σ̃ is a strategy within the re-solving game S̃.

140



B.1 CFR-D exploitability

Theorem 17 gives a bound on regret after running CFR-D, based on the regret

for each information set in the trunk due to regret-matching, and on the regrets

Rt
full(I) = maxσ′ v

σt
[IS←σ′]

p (I) − vσt

p (I) for information sets I ∈ IS at the root

of each subgame S, given the subgame solution at time t. If there are at most

NS information sets at the root of any subgame and Rt
full(I) ≤ ϵS, then for

any ϵ > 0 CFR-D is guaranteed to produce an ϵ+NSϵS-Nash equilibrium with

sufficient iterations. That is, the quality of the subgame solutions has a linear

effect on the exploitability of the final CFR-D solution.

Theorem 17 Let ITR be the information sets in the trunk, A = maxI∈I |A(I)|

be an upper bound on the number of actions, and ∆ = maxs,t∈Z |u(s) − u(t)|

be the variance in leaf utility. Let σt be the current CFR-D strategy profile at

time t, and NS be the number of information sets at the root of any subgame.

If for all times t, players p, and information sets I at the root of a subgame IS,

the regret Rt
full(I) = maxσ′ v

σt
[IS←σ′]

p (I) − vσt

p (I) is bounded by ϵS, then player

p regret RT
p ≤ ∆|ITR|

√
AT +NSTϵS.

Proof. The proof follows from Zinkevich et al.’s argument in Appendix

A.1 [94]. Lemma 5 shows that for any player p information set I,

RT
full(I) ≤ RT

p (I) +
∑

I′∈Childp(I)

RT
full(I

′)

where Childp(I) is the set of all player information sets which can be reached

from I without passing through another player p information set. We will prove

RT
full(I) ≤ (D(I) + 1)∆

√
AT + S(I)TϵS by induction on D(I), the number of

I’s descendants in the trunk ITR

D(I) = |{J ∈ ITR|p(J) = P (I),∃h ∈ I, j ∈ J s.t. h ⊏ j}|

where S(I) is the number of I’s descendants in the subgame

S(I) = |{J ∈ IS|p(J) = P (I),∃h ∈ I, j ∈ J s.t. h ⊏ j}|
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As the base case, consider any trunk information set I ∈ Ip whereD(I) = 0

(i.e., no descendants in ITR). By Lemma 5 of Zinkevich et al., we get

RT
full(I) ≤ RT

p (I) +
∑

I′∈Childp(I)

RT
full(I

′)

≤ ∆
√
AT +

∑
I′∈Childp(I)

RT
full(I

′) By regret-matching bound

≤ ∆
√
AT + S(I)

T∑
t=1

ϵS By subgame regret bound

= (D(I) + 1)∆
√
AT + S(I)TϵS

Now assume that for all i ≥ 0, RT
full(I) ≤ D(I)∆

√
AT + S(I)TϵS for all I

such that D(I) ≤ i. Consider I ∈ Ip such that D(I) = i+ 1.

RT
full(I) ≤ RT

p (I) +
∑

I′∈Childp(I)

RT
full(I

′)

≤ ∆
√
AT +

∑
I′∈Childp(I)

D(I ′)(∆
√
AT + S(I ′)TϵS)

= ∆
√
AT +D(I)

√
AT + S(I)TϵS

= (D(I) + 1)∆
√
AT + S(I)TϵS

implying the inductive hypothesis holds for i+ 1.

By induction RT
full(I) ≤ (D(I) + 1)∆

√
AT + S(I)TϵS holds for all I, and

therefore holds at the root of the game where D(I) = |ITR| and S(I) = NS.

B.2 Re-solving Exploitability

In this section, I prove that in the worst case, re-solving a subgame only

increases exploitability by a small, bounded amount, even if we started with

an approximation of a Nash equilibrium. Without loss of generality, I will

assume the players are 1 and 2, and we are re-solving to find a player 1 subgame

strategy. We will use the re-solving gadget game of Section 5.2.5, so player 2

has the initial F and T decisions. The central theorem is
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Theorem 18 Let σ be a equilibrium profile approximation, with a bound on

player 2 counterfactual regret maxa∈(I) v
σ
2 (I, a) −

∑
b∈A(I) σ2(I, b)v

σ
2 (I, b) ≤ ϵS

for all I in IR̃2 . Let σ̃ be the re-solved strategy, with a bound ϵR on the ex-

ploitability in the re-solving game. Then the exploitability of σ is increased by

no more than (|IR̃2 | − 1)ϵS + ϵR if we use σ̃ in the subgame:

u
⟨σ1[S←σ̃],BR(σ1[S←σ̃])⟩
2 ≤ (|IR̃2 | − 1)ϵS + ϵR + u

⟨σ1,BR(σ1)⟩
2

Theorem 18 gives a proof of the upper bound on exploitability of a re-solved

strategy. The context for this section is as follows. Strategy profile σ is an

approximation of a Nash equilibrium for the whole game. ϵS gives a bound on

the regret-like value which is the difference between the maximum counterfac-

tual value for any action at an information set, and the counterfactual value of

the information set following σ. Strategy profile σ̃ is an ϵR-Nash equilibrium

in the re-solving game. k is the normalising constant for the re-solving game,

discussed in Section 5.2.5.

The proof will require some additional notation. The induced re-solving

game strategy profile σF̃ is the re-solving game analogue of σ, with player 2

always choosing to play into the game, rather than terminating with the T

action. More precisely, for all information sets in the subtrees under the F

action, σF̃ takes the same action as σ, and for all initial player 2 information

sets I where F or T is chosen, σF̃ (I, F ) = 1.

Lemma 19 For any player 2 strategy ρ in the original game and player 1

strategy ρ̃ in the re-solving game, if we let σ̂ = ⟨σ1[S←ρ̃], ρ⟩, then for any

I ∈ IR̃2 , uσ̂2 (I) = πρ
2(I)ũ

⟨ρ̃,ρF̃ ⟩
2 (I).

Proof.

From the definition of expected value

uσ̂2 (I) =
∑
h∈I

∑
z∈Z,h⊏z

πρ
2(h)π

σ
−2(h)π

ρ
2(z|h)π

ρ̃
−2(z|h)u2(z)

Noting πρ
2(h) = πρ

2(I), and multiplying by k/k

= πρ
2(I)

∑
h∈I

∑
z∈Z,h⊏z

kπσ
−2(h)π

ρ
2(z|h)π

ρ̃
−2(z|h)u2(z)/k
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Grouping kπσ
−2(h) into re-solving game probabilities, and 1/k into values

= πρ
2(I)

∑
h∈I

∑
z∈Z,h⊏z

πσF̃

−2(h)π
ρ
2(z|h)π

ρ̃
−2(z|h)ũ2(z)

= πρ
2(I)ũ

⟨ρ̃,ρF̃ ⟩
2 (I)

Lemma 20 Assume we are given an ϵR-Nash profile σ̃ in the re-solving game,

a strategy profile σ in the original game with v
⟨σ1,BR(σ1)⟩
2 (I) ≤ ϵS + vσ2 (I), and

a vector of weights w indexed by opponent information set with 0 ≤ wI ≤ 1

for all I ∈ IR̃2 . Then∑
I∈IR̃2

wI ũ
⟨σ̃1,BR(σ̃1)⟩
2 (I) ≤ (|IR̃2 | − 1)ϵS + ϵR +

∑
I∈I2

wI ũ
⟨σF̃

1 ,BR(σF̃
1 )⟩

2 (I)

Proof. σ and σ̃ have the following properties.

vσ2 (I) ≤ v
⟨σ1,BR(σ1)⟩
2 (I) By def’n of BR (B.1)

= ũ
⟨σF̃

1 ,BR(σF̃
1 )⟩

2 (I) Gadget doesn’t help 2

≤ ϵS + vσ2 (I) By ϵS bound on σ (B.2)

vσ2 (I) ≤ ũ
⟨σ̃1,BR(σ̃1)⟩
2 (I) By gadget T choice (B.3)∑

I∈IR̃2

ũ
⟨σ̃1,BR(σ̃1)⟩
2 (I) ≤ ϵR +

∑
I∈IR̃2

ũσ̃
∗

2 (I) σ̃ an ϵR-Nash

≤ ϵR +
∑
I∈IR̃2

ũ
⟨σF̃

1 ,BR(σF̃
1 )⟩

2 (I) σF̃
1 may not be Nash (B.4)

That is, for each I we have a shared lower bound on ũ
⟨σF̃

1 ,BR(σF̃
1 )⟩

2 (I) and

ũ
⟨σ̃1,BR(σ̃1)⟩
2 (I), but only ũ

⟨σF̃
1 ,BR(σF̃

1 )⟩
2 (I) has an upper bound for each I. The

upper bound for ũ
⟨σ̃1,BR(σ̃1)⟩
2 (I) is only for the sum across all I.

To simplify, let n(I) = ũ
⟨σ̃1,BR(σ̃1)⟩
2 (I), and o(I) = ũ

⟨σF̃
1 ,BR(σF̃

1 )⟩
2 (I)). Also,

let G = {I ∈ IR̃2 |n(I) ≥ o(I)}, and L = IR̃2 \G. Now consider the dot product

of the difference between the two sums∑
I∈IR̃2

wI(n(I)− o(I))
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=
∑
I∈L

wI(n(I)− o(I)) +
∑
I∈G

wI(n(I)− o(I))

≤
∑
I∈L

0(n(I)− o(I)) +
∑
I∈G

1(n(I)− o(I))

=
∑
I∈IR̃2

(n(I)− o(I))−
∑
I∈L

(n(I)− o(I))

≤
∑
I∈IR̃2

(n(I)− o(I)) + |L|ϵS By B.1,B.2,B.3

≤ ϵR + |L|ϵS By B.4 (B.5)

There are now two cases. The first case is G is empty, implying n(I) < o(I)

for all I. Therefore
∑

I∈IR̃2
wIn(I) ≤

∑
I∈IR̃2

wIo(I). This trivially gives us the

desired bound. The second case is G is not empty. Equation B.5 is maximised

when L is as large as possible, which occurs when |L| = |IR̃2 | − 1. This gives

us the desired bound
∑

I∈IR̃2
wIn(I) ≤ (|IR̃2 | − 1)ϵS + ϵR +

∑
I∈IR̃2

wIo(I).

Theorem 18 Let σ be a equilibrium profile approximation, with a bound on

player 2 counterfactual regret maxa∈(I) v
σ
2 (I, a) −

∑
b∈A(I) σ2(I, b)v

σ
2 (I, b) ≤ ϵS

for all I in IR̃2 . Let σ̃ be the re-solved strategy, with a bound ϵR on the ex-

ploitability in the re-solving game. Then the exploitability of σ is increased by

no more than (|IR̃2 | − 1)ϵS + ϵR if we use σ̃ in the subgame:

u
⟨σ1[S←σ̃],BR(σ1[S←σ̃])⟩
2 ≤ (|IR̃2 | − 1)ϵS + ϵR + u

⟨σ1,BR(σ1)⟩
2

Proof. Let σ̂ = ⟨σ1[S←σ̃1], BR(σ1[S←σ̃1])⟩, and ZS be the set of states in the

subgame. In this case,

uσ̂2 =
∑

zinZ\ZS

πσ̂(z)u2(z) +
∑
z∈ZS

πσ̂(z)u2(z)

=
∑

z∈Z\ZS

π⟨σ1,BR(σ1)⟩(z)u2(z) +
∑
z∈ZS

πσ̂(z)u2(z) (B.6)

Considering only the second sum, rearranging the terms and using Lemma 19∑
z∈ZS

πσ̂(z)u2(z) =
∑
I∈IR2

uσ̂2 (I)

=
∑
I∈IR̃2

πσ̂
2 (I)ũ

⟨σ̃1,σ̂2
F̃ ⟩

2 (I)
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A best response must have no less utility than σ̂F̃
2 , so we can apply Lemma 20

≤
∑
I

πσ̂
2 (I)ũ

⟨σ̃1,BR(σ̃1)⟩
2 (I)

≤ (|IR̃2 | − 1)ϵS + ϵR +
∑
I

πσ̂
2 (I)ũ

⟨σF̃
1 ,BR(σF̃

1 )⟩
2 (I)

Because ũσ
F̃

2 (I) = vσ2 (I) and ũ2(I · T ) = vσ2 (I) for all I, BR(σF̃
1 ) can always

pick action F , and we can directly use BR(σF̃
1 ) in the real game, with the

same counterfactual value.

= (|IR2 | − 1)ϵS + ϵR +
∑
I

πσ̂
2 (I)v

⟨σ1,BR(σ1)⟩
2 (I)

Putting this back into line B.6, and noting that a best response can only

increase the utility, we get

uσ̂2 = (|IR2 | − 1)ϵS + ϵR + u
⟨σ1,σ̂[S←BR(σ)⟩
2

≤ (|IR̃2 | − 1)ϵS + ϵR + u
⟨σ1,BR(σ1)⟩
2
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Appendix C

DeepStack Proofs

In this section, I present proofs of the arguments given in Section 6.2. The

proofs are joint work with Trevor Davis, and were originally published in

Science as supplementary material [65]. They use the same terminology as

Appendix B, as well as some new terminology introduced below.

The main result is Theorem 12, giving an exploitability bound on the

continual re-solving strategy after making d actions. Roughly speaking, the

exploitability increases linearly with the estimation quality ϵE for each re-

solving step: estimation error does not grow multiplicatively over time.

Theorem 12 Assume we have some initial opponent constraint values w from

a solution generated using at least T iterations of CFR-D, we use at least

T iterations of CFR-D to solve each re-solving game, and we use a subtree

value estimator such that minσ∗S∈NES

∑
I∈IS2
|vσ∗S(I) − vI | ≤ ϵE. Then after

d re-solving steps the exploitability of the resulting strategy is no more than

(d + 1)k/
√
T + (2d + 1)jϵE for some constants k, j specific to both the game

and how it is split into subgames.

The proof of Theorem 12 requires three parts. First, Lemmas 21 through

25 give a bound on how much re-solving increases the exploitability, if we use

constraints that include error from the subgame evaluation function. Second,

Lemma 26 gives a bound on exploitability when solving a game using CFR and

a subgame evaluation function. Finally, Lemma 27 shows that the optimal-

opponent best-response values DeepStack uses for constraints does not increase

exploitability. Together, the parts describe one step of continual re-solving.
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In games that have many publicly visible actions or chance events, one

convenient way to create subgames is to consider public states. A public

action is an action (or chance event) a such that for all information sets I,

if ∃h ∈ I where ∃j ∈ H, j · a ⊑ h, then ∀h ∈ I ∃j ∈ H, j · a ⊑ h. A public

state, defined by the sequence of public actions taken in a game, is a set of

information sets. Because the actions are public and therefore partition the

information sets in a game, a public state is the root of a subgame. A public

state and all its descendant states is a subgame.

For example, in HULHE, all of the player actions are public actions: both

players know (and remember) the actions made by both players. Similarly,

the public board cards are public actions: both players know the public cards,

and do not mistake them for other possible public board cards. A sequence of

betting and board cards describes a public state consisting of all information

sets that only differ in the private cards for the players.

Without loss of generality, we will say player 1 is performing the continual

re-solving, and call player 2 the opponent. We write IS2 for the collection of

player 2 information sets in a subgame S. Let G⟨S, σ, w⟩ be the re-solving

gadget game, where S is some subgame, σ is used to get player 1 probabilities

πσ
−2(h) for each h ∈ S, and c is a vector where cI gives the value of player 2

taking the terminate action (T) from information set I ∈ IS2 . cvbrσ2 (I), defined

in Section 2.4.3, gives the player 2 counterfactual value of information set I

given they play a counterfactual value best response to our strategy σ. For a

subtree strategy σS, we write σ → σS for the strategy that plays according to

σS for any state in the subtree and according to σ otherwise. For the gadget

game G⟨S, σ, c⟩, the gadget value of a subtree strategy σS is defined to be:

GVS
c,σ(σ

S) =
∑
I∈IS2

max(cI , cvbr
σ→σS

2 (I)),

and the underestimation error (as discussed in Section 5.4.2) is defined to be:

US
c,σ = min

σS
GVS

c,σ(σ
S)−

∑
I∈IS2

cI .
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Lemma 21 The game value of a gadget game G⟨S, σ, c⟩ is∑
I∈IS2

cI + US
c,σ.

Proof. Let σ̃S
2 be a gadget game strategy for player 2 which must choose from

the F and T actions at starting information set I. Let ũ be the utility function

for the gadget game.

min
σS
1

max
σ̃S
2

ũ(σS
1 , σ̃

S
2 ) = min

σS
1

max
σS
2

∑
I∈IS2

πσ
−2(I)∑

I′∈IS2
πσ
−2(I

′)
max

a∈{F,T}
ũσ

S

(I, a)

= min
σS
1

max
σS
2

∑
I∈IS2

max(cI ,
∑
h∈I

πσ
−2(h)u

σS

(h))

A best response can maximize utility at each information set independently:

= min
σS
1

∑
I∈IS2

max(cI ,max
σS
2

∑
h∈I

πσ
−2(h)u

σS

(h))

= min
σS
1

∑
I∈IS2

max(cI , cvbr
σ→σS

1
2 (I))

= US
c,σ +

∑
I∈IS2

cI

Lemma 22 If our strategy σS is ϵ-exploitable in the gadget game G⟨S, σ, c⟩,

then GVS
c,σ(σ

S) ≤
∑

I∈IS2
cI + US

c,σ + ϵ

Proof. This follows from Lemma 21 and the definitions of ϵ-Nash, US
c,σ, and

GVS
c,σ(σ

S).
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Lemma 23 Given an ϵO-exploitable σ in the original game, if we replace a

subgame with a strategy σS such that cvbrσ→σS

2 (I) ≤ cI for all I ∈ IS2 , then the

new combined strategy has an exploitability no more than ϵO + EXPS
c,σ where

EXPS
c,σ =

∑
I∈IS2

max(cvbrσ2 (I), cI)−
∑
I∈IS2

cvbrσ2 (I)

Proof. We only care about the information sets where the opponent’s coun-

terfactual value increases, and a worst case upper bound occurs when the op-

ponent best response would reach every such information set with probability

1, and never reach information sets where the value decreased.

Let Z[S] ⊆ Z be the set of terminal states reachable from some h ∈ S

and let v2 be the game value of the full game for player 2. Let σ2 be a best

response to σ and let σS
2 be the part of σ2 that plays in the subtree rooted at

S. Then necessarily σS
2 achieves counterfactual value cvbrσ2 (I) at each I ∈ IS2 .

max
σ∗2

(u(σ → σS, σ∗2))

= max
σ∗2

[ ∑
z∈Z[S]

πσ→σS

−2 (z)π
σ∗2
2 (z)u(z) +

∑
z∈Z\Z[S]

πσ→σS

−2 (z)π
σ∗2
2 (z)u(z)

]

= max
σ∗2

[ ∑
z∈Z[S]

πσ→σS

−2 (z)π
σ∗2
2 (z)u(z)−

∑
z∈Z[S]

πσ
−2(z)π

σ∗2→σS
2

2 (z)u(z)

+
∑

z∈Z[S]

πσ
−2(z)π

σ∗2→σS
2

2 (z)u(z) +
∑

z∈Z\Z[S]

πσ
−2(z)π

σ∗2
2 (z)u(z)

]

≤ max
σ∗2

[ ∑
z∈Z[S]

πσ→σS

−2 (z)π
σ∗2
2 (z)u(z)−

∑
z∈Z[S]

πσ
−2(z)π

σ∗2→σS
2

2 (z)u(z)

]

+max
σ∗2

[ ∑
z∈Z[S]

πσ
−2(z)π

σ∗2→σS
2

2 (z)u(z) +
∑

z∈Z\Z[S]

πσ
−2(z)π

σ∗2
2 (z)u(z)

]

≤ max
σ∗2

[∑
I∈IS2

∑
h∈I

πσ
−2(h)π

σ∗2
2 (h)uσ

S ,σ∗2 (h)

−
∑
I∈IS2

∑
h∈I

πσ
−2(h)π

σ∗2
2 (h)uσ,σ

S
2 (h)

]
+max

σ∗2
(u(σ, σ∗2))
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By perfect recall π2(h) = π2(I) for each h ∈ I:

≤ max
σ∗2

[∑
I∈IS2

π
σ∗2
2 (I)

(∑
h∈I

πσ
−2(h)u

σS ,σ∗2 (h)−
∑
h∈I

πσ
−2(h)u

σ,σS
2 (h)

)]
+ v2 + ϵO

= max
σ∗2

[∑
I∈IS2

π
σ∗2
2 (I)πσ

−2(I)

(
cvbrσ→σS

2 (I)− cvbrσ2 (I)

)]
+ v2 + ϵO

≤
[∑
I∈IS2

max(cvbrσ→σS

2 (I)− cvbrσ2 (I), 0)

]
+ v2 + ϵO

≤
[∑
I∈IS2

max(cI − cvbrσ2 (I), cvbr
σ
2 (I)− cvbrσ2 (I))

]
+ v2 + ϵO

=

[∑
I∈IS2

max(cvbrσ2 (I), cI)−
∑
I∈IS2

cvbrσ2 (I)

]
+ v2 + ϵO

Lemma 24 Given an ϵO-exploitable σ in the original game, if we replace the

strategy in a subgame with a strategy σS that is ϵS-exploitable in the gadget

game G⟨S, σ, c⟩, then the new combined strategy has an exploitability no more

than ϵO + EXPS
c,σ + US

c,σ + ϵS.

Proof. We use that max(a, b) = a+ b−min(a, b). From applying Lemma 23

with cI = cvbrσ→σS

2 (I) and expanding EXPS

cvbrσ→σS
2 ,σ

we get exploitability no

more than ϵO −
∑

I∈IS2
cvbrσ2 (I) plus∑

I∈IS2

max(cvbrσ→σS

2 (I), cvbr
σ(I)
2

≤
∑
I∈IS2

max(cvbrσ→σS

2 (I),max(cI , cvbr
σ
2 (I))

=
∑
I∈IS2

(
cvbrσ→σS

2 (I) + max(cI , cvbr
σ
2 (I))

−min(cvbrσ→σS

2 (I),max(cI , cvbr
σ
2 (I)))

)
≤
∑
I∈IS2

(
cvbrσ→σS

2 (I) + max(cI , cvbr2σ(I))

−min(cvbrσ→σS

2 (I), cI)
)

=
∑
I∈IS2

(
max(cI , cvbr

σ
2 (I)) + max(cI , cvbr

σ→σS

2 (I))− cI
)
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=
∑
I∈IS2

max(cI , cvbr
σ
2 (I)) +

∑
I∈IS2

max(cI , cvbr
σ→σS

2 (I))−
∑
I∈IS2

cI

From Lemma 22 we get

≤
∑
I∈IS2

max(cI , cvbr
σ
2 (I)) + US

c,σ + ϵS

Adding ϵO −
∑

I cvbr
σ
2 (I) we get the upper bound ϵO +EXPS

c,σ +US
c,σ + ϵS.

Lemma 25 Assume we are performing one step of re-solving on subtree S,

with constraint values c approximating opponent best-response values to the

previous strategy σ, with an approximation error bound
∑

I |cI−cvbr
σ
2 (I)| ≤ ϵE.

Then we have EXPS
c,σ + US

c,σ ≤ ϵE.

Proof. EXPS
c,σ measures the amount that the cI exceed cvbrσ2 (I), while US

c,σ

bounds the amount that the cI underestimate cvbrσ→σS

2 (I) for any σS, includ-

ing the original σ. Thus, together they are bounded by |cI − cvbrσ2 (I)|:

EXPS
c,σ +US

c,σ =
∑
I∈IS2

max(cvbrσ2 (I), cI)−
∑
I∈IS2

cvbrσ2 (I)

+ min
σS

∑
I∈IS2

max(cI , cvbr
σ→σS

2 (I))−
∑
I∈IS2

cI

≤
∑
I∈IS2

max(cvbrσ2 (I), cI)−
∑
I∈IS2

cvbrσ2 (I)

+
∑
I∈IS2

max(cI , cvbr
σ
2 (I))−

∑
I∈IS2

cI

=
∑
I∈IS2

[max(cI − cvbrσ2 (I), 0) + max(cvbrσ2 (I)− cI , 0)]

=
∑
I∈IS2

|cI − cvbrσ2 (I)| ≤ ϵE
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Lemma 26 Assume we are solving a game G with T iterations of CFR-D

where for both players p, subtrees S, and times t, we use subtree values vI for all

information sets I at the root of S from some suboptimal black box estimator.

If the estimation error is bounded, so that minσ∗S∈NES

∑
I∈IS2
|vσ∗S(I)−vI | ≤ ϵE,

then the trunk exploitability is bounded by kG/
√
T+jGϵE for some game specific

constant kG, jG ≥ 1 which depend on how the game is split into a trunk and

subgames.

Proof. This follows from a modified version the proof of Theorem 2 of Burch et

al. [15], which uses a fixed error ϵ and argues by induction on information sets.

Instead, we argue by induction on entire public states.

For every public state s, let Ns be the number of subgames reachable from

s, including any subgame rooted at s. Let Succ(s) be the set of our public

states which are reachable from s without going through another of our public

states on the way. Note that if s is in the trunk, then every s′ ∈ Succ(s) is

in the trunk or is the root of a subgame. Let DTR(s) be the set of our trunk

public states reachable from s, including s if s is in the trunk. We argue that

for any public state s where we act in the trunk or at the root of a subgame∑
I∈s

RT
full(I)

+ ≤
∑

s′∈DTR(s)

∑
I∈s′

RT (I)+ + TNsϵE (C.1)

First note that if no subgame is reachable from s, then Ns = 0 and the state-

ment follows from Lemma 7 of [94]. For public states from which a subgame

is reachable, we argue by induction on |DTR(s)|.

For the base case, if |DTR(s)| = 0 then s is the root of a subgame S, and by

assumption there is a Nash Equilibrium subgame strategy σ∗S that has regret

no more than ϵE. If we implicitly play σ∗S on each iteration of CFR-D, we thus

accrue
∑

I∈sR
T
full(I)

+ ≤ TϵE.

For the inductive hypothesis, we assume that (C.1) holds for all s such that

|DTR(s)| < k.

Consider a public state s where |DTR(s)| = k. By Lemma 5 of [94] we have

∑
I∈s

RT
full(I)

+ ≤
∑
I∈s

⎡⎣RT (I) +
∑

I′∈Succ(I)

RT
full(I)

+

⎤⎦
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=
∑
I∈s

RT (I) +
∑

s′∈Succ(s)

∑
I′∈s′

RT
full(I

′)+

For each s′ ∈ Succ(s), D(s′) ⊂ D(s) and s ̸∈ D(s′), so |D(s′)| < |D(s)|

and we can apply the inductive hypothesis to show

∑
I∈s

RT
full(I)

+ ≤
∑
I∈s

RT (I) +
∑

s′∈Succ(s)

⎡⎣ ∑
s′′∈D(s′)

∑
I∈s′′

RT (I)+ + TNs′ϵE

⎤⎦
≤

∑
s′∈D(s)

∑
I∈s′

RT (I)+ + TϵE
∑

s′∈Succ(s)

Ns′

=
∑

s′∈D(s)

∑
I∈s′

RT (I)+ + TϵENs

This completes the inductive argument. By using regret matching in the

trunk, we ensure RT (I) ≤ ∆
√
AT , proving the lemma for kG = ∆|IT R|

√
A

and jG = Nroot.

Lemma 27 Given our strategy σ, if the opponent is acting at the root of a

subgame S from a set of actions A, with opponent best-response values cvbrσ2 (I ·

a) after each action a ∈ A, then replacing our subtree strategy with any strategy

that satisfies the opponent constraints cI = maxa∈A cvbrσ2 (I·a) does not increase

our exploitability.

Proof. If the opponent is playing a best response, every counterfactual value

cI before the action must either satisfy cI = cvbrσ2 (I) = maxa∈A cvbrσ2 (I · a),

or not reach state s with private information I. If we replace our strategy in S

with a strategy σ′S such that cvbr
σ′S
2 (I ·a) ≤ cvbrσ2 (I) we preserve the property

that cvbrσ
′

2 (I) = cvbrσ2 (I).
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Theorem 12 Assume we have some initial opponent constraint values w from

a solution generated using at least T iterations of CFR-D, we use at least

T iterations of CFR-D to solve each re-solving game, and we use a subtree

value estimator such that minσ∗S∈NES

∑
I∈IS2
|vσ∗S(I) − vI | ≤ ϵE. Then after

d re-solving steps the exploitability of the resulting strategy is no more than

(d + 1)k/
√
T + (2d + 1)jϵE for some constants k, j specific to both the game

and how it is split into subgames.

Proof. Continual re-solving begins by solving from the root of the entire game,

which we label as subtree S0. We use CFR-D with the value estimator in place

of subgame solving in order to generate an initial strategy σ0 for playing in

S0. By Lemma 26, the exploitability of σ0 is no more than k0/
√
T + j0ϵE.

For each step of continual re-solving i = 1, ..., d, we are re-solving some

subtree Si. From the previous step of re-solving, we have approximate oppo-

nent best-response counterfactual values c̃vbr
σi−1

2 (I) for each I ∈ ISi−1

2 , which

by the estimator bound satisfy |
∑

I∈I
Si−1
2

(cvbr
σi−1

2 (I) − c̃vbr
σi−1

2 (I))| ≤ ϵE.

Updating these values at each public state between Si−1 and Si as described

in the paper yields approximate values c̃vbr
σi−1

2 (I) for each I ∈ ISi
2 which by

Lemma 27 can be used as constraints cI,i in re-solving. Lemma 25 with these

constraints gives us the bound EXPSi
ci,σi−1

+USi
ci,σi−1

≤ ϵE. Thus by Lemma 24

and Lemma 26 we can say that the increase in exploitability from σi−1 to σi

is no more than ϵE + ϵSi
≤ ϵE + ki/

√
T + jiϵE ≤ ki/

√
T + 2jiϵE.

Let k = maxi ki and j = maxi ji. Then after d re-solving steps, the ex-

ploitability is bounded by (d+ 1)k/
√
T + (2d+ 1)jϵE.
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