Search
Skip to Search Results- 15Optimization
- 4Machine Learning
- 3Reinforcement Learning
- 2Deep Learning
- 2Machine learning
- 2Simulation
-
Spring 2015
Rayner, David Christopher Ferguson
Heuristic search is a central problem in artificial intelligence. Among its defining properties is the use of a heuristic, a scalar function mapping pairs of states to an estimate of the actual distance between them. Accurate heuristics are generally correlated with faster query resolution and...
-
Fall 2014
We develop an approach for optimizing Hidden Markov model representations of voltage-gated ion channels that addresses the issues of topology determination and poorly performing optimization algorithms. Developing accurate models of neurological processes is a major goal of computational...
-
Fall 2022
The objective of signal decomposition is to extract and separate distinct signal components from a composite signal. Signal decomposition has been studied in many applications, such as image, video, audio, and speech signals. This thesis focuses on the category of signal decomposition on...
-
Fall 2021
Traffic congestion is a severe problem in many cities. One way to reduce it is by optimizing traffic signal timings. Experts spend a lot of time analyzing traffic patterns to produce good handcrafted timing schedules. However, these timing schedules can be less responsive when there is a sudden...
-
Fall 2023
Oftentimes, machine learning applications using neural networks involve solving discrete optimization problems, such as in pruning, parameter-isolation-based continual learning and training of binary networks. Still, these discrete problems are combinatorial in nature and are also not amenable to...