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Abstract

We develop an approach for optimizing Hidden Markov model representations of voltage-

gated ion channels that addresses the issues of topology determination and poorly performing

optimization algorithms. Developing accurate models of neurological processes is a major

goal of computational neuroscience, but creating accurate models of voltage-gated ion chan-

nels is a difficult task. Noisy data, a large range of potential topologies, and large numbers

of parameters make machine optimization very difficult and topology comparison techniques

unreliable.

We attempt to address the unreliability of the optimization process through multiple

fittings. We then analyze the sets of fitted models with a new metric designed to measure

consistency in the behaviour of the hidden states. When combined with the LogLikelihood

this indicates whether the model has the complexity necessary to fit the data. We then

design a protocol based around the creation of multiple fitted models that utilizes this

metric both as a guide for further fittings and a way to identify a selection of suitable

models and topologies.

We apply the metric to five sets of simulated data and two pairs of live recordings of

voltage-gated K+ channels. On the simulated data the described protocol generated a range

of topologies that successfully captured the correct topology in all but one of the simulated

trials where it underestimated the topology required. Applied to the live data the procedure

performed well on one channel type, for the other results were impacted by the difficulty

of the optimization problem. In general the procedure and metric performed well but were

limited by the ability of the optimizer to deliver a range of high quality solutions.
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Chapter 1

Introduction

Voltage-gated ion channels form the basis of neuronal activity, as such generating accu-

rate computational models of them is an important problem. One of the most common

approaches uses Hidden Markov models (HMMs) to reproduce recordings of ion channel ac-

tivity, but creating an appropriate HMM topology and finding a suitable parameterization

is a difficult optimization problem. We approach the issue by generating multiple versions

of fitted models and evaluating the models through a new metric, max deviation. Through

this we attempt to detect if a topology is overparameterized, distinguish whether a group

of models are poorly fitted or underparameterized, and alleviate some of the difficulties of

dealing with a highly uncertain optimization process.

Among the things that make it a challenge are the extreme complexity [21] and diver-

sity [13] of ion channels. This complexity makes HMMs a convenient basis with which to

model them. Not only can the HMM topologies be modified to suit more or less complex

dynamics but the hidden states of the HMM are analogous to the hidden internal behaviour

of the ion channels.

But fitting the models is difficult with a high failure rate and an ambiguous definition of

success. Fitted models can range anywhere from having no relationship to the data at all to a

very strong fit. But the chances of achieving the global optimum are very unlikely, and even

if we did it would be impossible to verify. Not knowing the optimal parameterization creates

a second problem in comparing topologies. Did a model from one topology have a superior

LogLikelihood (LL) because the topology was better suited, or because the optimization

was just luckier? Without an accurate estimate of the optimal LLs for a set of topologies it
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is difficult to detect overparameterization, particularly through the application of penalty

based metrics.

To gain a better picture of the capabilities of each model topology we perform multiple

fittings of it. We then address the problem of determining a successful fit by introducing

a cutoff criteria, the peak LL range, that takes a range of the best fits. The peak LL

range can be applied at the level of a single topology, to determine the best fits for that

model configuration, and globally, to determine which topologies seem to be successful at

reproducing the data.

Among the models in peak LL range we then apply our new metric, max deviation. The

metric analyses the behaviour of the hidden states to estimate the degree to which the topol-

ogy is free to reproduce the data. We use this metric in combination with the model scores

to estimate if the models and their behaviour are exhibiting under or overparameterization.

Using max deviation as a guide we have developed a protocol to fit a group of topologies

to an ion channel recording and present the user with a range of candidate topologies

potentially able to capture the data.

1.1 Contributions

We explore the issue of modeling voltage-gated ion channels using the modeling tool

QUB Express [30]. Through this we have made the following contributions:

1. A technique for evaluating the effectiveness of optimization settings and a mathemat-

ical model to rank the effectiveness of the settings.

2. A metric max deviation, designed to measure the similarity in behaviour of the hidden

states in a set of HMMs when run against a given data set.

3. An optimization procedure based around generating multiple fittings of ion channel

models for each model topology. Our procedure is based on the establishment of a

set of test topologies and creating a standard configuration to apply to each topology.

Both the number of fittings for each topology and the selection of recommended models

is based on max deviation.

4. A QUB Express plugin and scripts designed to implement the described procedure.
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1.2 Outline

• Chapter 2 Background: Defines necessary terms and concepts as well as provides

background information on ion channels and ion channel modeling. We also review

relevant literature about optimization of ion channels and topology determination.

• Chapter 3 Protocol for model fitting and topology determination: We include an

overview of the live recordings we analyze and the detail some aspects of the arti-

fact detection and correction. We then describe our method for evaluating optimizer

configurations. Finally we describe the max deviation metric, our selection of sample

topologies, and our optimization protocol.

• Chapter 4 Experimental Design: Includes descriptions of several recordings and the

experimental configurations we use to test the viability of our approach.

• Chapter 5 Results: We perform the experiments then analyze and interpret the results.

• Chapter 6 Conclusions: A high level overview of our work and results

• Chapter 7 Future Work: Describes research ideas we would like to explore.

3



Chapter 2

Background

In this chapter we cover background material to assist in understanding our work. In sec-

tion 2.1 we provide definitions for terms. Section 2.2 provides background information on ion

channels and section 2.3 describes the patch clamp technique often used to supply ion chan-

nel recordings. Section 2.4 provides a brief overview of QUB Express, the primary tool we

used during out investigations. One of the original ion channel models, the Hodgkin-Huxley

equations, are covered in section 2.5 and we cover the formulation of the Hidden Markov

Model based models we work with in section 2.6. Section 2.7 covers some related literature

on fitting ion channel models while section 2.8 describes the LogLikelihood calculations that

form the basis of the fitting technique used by QUB Express and are thus indirectly used

by our approach. Finally section 2.9 describes several approaches to determining model

topology.

2.1 Terminology

2.1.1 Topologies, Configured Topologies, and Models

When referring to ion channel models there are three levels of abstraction we refer to. The

most general characteristic of a model is its topology; the topology is the underlying graph

comprising of open and closed states connected by edges. Open topology states correlate

to conductive channel states and closed to non-conductive, edges between states allow a

model to transition directly from one state to another. More specific than a topology is a

configured topology; the configuration includes parameters such as the reversal potential
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and variables that determine the total conductance, however the parameters that govern

the transition rates are still left unaltered. The most specific entity we refer to is a model;

a model is a configured topology with fitted parameters. When the topology, configuration,

and parameterization of the model are correct, the model can accurately reproduce the

current of an ion channel exposed to the same voltage stimulus.

2.1.2 Ancestor/Descendant, Parent/Child

Topology A is considered an ancestor of topology B if the graph of A is a strict subset of

B. Conversely topology B is a descendant of topology A if topology B is a strict superset

of topology A. Topology A is a parent of topology B, and B is a child of A, if A is an

ancestor of B that differs by the addition of a single edge (with a new state if necessary).

A topology may have multiple parents or children.

2.1.3 LL

The likelihood of a model is the probability that the model, θ, would reproduce the data x,

and is generally denoted L(θ|x). For applications such as ion channel modeling the chances

of a model reproducing a particular trace are extremely small. As such the natural logarithm

of the likelihood is generally used instead, we denote the log-likelihood as LL. A model that

always produced the given data would have a likelihood of 1 and a LL of 0 while a model

that would never produce the data would have a likelihood of 0 and a LL of negative infinity.

An optimization function using LL as an objective function attempts to maximum the given

function.

2.1.4 Peak LL Range and Global Peak LL Range

Given a configured topology and a recording we would ideally find the globally optimal

parameterization every time. Unfortunately globally optimal solutions are very difficult for

the optimizer to find. Even when optimization is relatively successful the region around the

global maxima is littered with local maxima so the vast majority of solutions close to the

global maxima end up in one of these local maxima instead. We define the peak LL range

of a configured topology to be the range of solutions with a LL close to the best result we

have found for that configured topology. The rationale for basing the filter on LL is that

LL is the objective function used by the optimizer and LL scales linearly with the number
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of observations. Interpretations based on the Likeilhood itself are difficult since the very

minor change in LL translates into a huge difference in the Likelihoods.

For our data sets we have used a range that includes all LLs within 5% of the best result

for that configured topology. The choice of a 5% cutoff is a compromise between comparing

models of a similar fit and finding enough fits to form a comparison. As well in some simple

artificial models with baseline noise similar to the live data we found that even with the same

configured topology we could generate fits with a LL about 2.5% better than the generative

models themselves. A figure of 5% would put the generative model at the midpoint of the

peak LL range.

Specifically if llbest is the LL of the best fitting for a topology then the llpeak is the lower

bound of our cutoff and so only models with a LL greater than llpeak are included in the

peak LL range:

llpeak = llbest × 1.05 (2.1)

The global peak LL range is defined the same except llbest is the LL of the best fitting

across all configured topologies, it is generally used to indicate which configured topologies

do a roughly equivalent job of fitting the data.

Note that LL is heavily influenced by the noise in the data set. Most of our recordings

had similar noise levels but for data sets with alternate noise levels the 5% figure may not

be appropriate.

2.1.5 Candidate Range

While the model with the best LL typically offers the best fit it does not necessarily represent

the topology most suitable for the data. More complex topologies can achieve a higher LL

while being less suitable as a result of overparameterization. Detecting overparameterization

can be a difficult task even when the optimum fit for each topology is known. Since we cannot

identifiy the optimum fit for a topology with any certainty we introduce a more conservative

concept known as the candidate range. The candidate range is a subset of the full set of

topologies that contains the true topology. Formally, when given a group of topologies T ,

where the true topology is t, then the candidate group is a subset C ⊆ T where t ∈ C.
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2.2 Ion Channel Basics

The cell membrane forms a barrier between the intracellular and extracellular fluids. In

addition to protecting the inside of the cell the membrane also regulates the intracellular

concentration of ions using ion channels and ion transporters.

Unobstructed ions flow in the direction of the electrochemical gradient, ion channels

embedded in the cell membrane temporarily allow this unobstructed flow by opening and

becoming permeable to their associated ion. Conversely ion transporters help maintain the

imbalance between intracellular and extracellular ion concentrations by pumping ions across

the membrane against the electrochemical gradient. Typically sodium ions (Na+) have a

much higher extracellular concentration, while potassium (K+) ions have a higher intracel-

lular concentration though the electrochemical gradient is determined by a combination of

electrical potential and ionic concentration.

The membrane voltage is the difference in electrical potential between the cell interior

and exterior. For each type of ion the direction and strength of the electrochemical gradient

is determined by the difference between the membrane voltage and the reversal potential,

also known as the Nernst potential, calculated using the Nernst equation [18].

For a specific ion, or group of ions, given the equilibrium potential, Vrev, ionic conduc-

tance g, and the membrane voltage, Vm, the ionic current, I, can be calculated with the

following equation

I = g(Vm − Vrev) (2.2)

Ion channels are selective to a specific class of ion, such as Na+, K+, Ca2+, protons, or

negative ions such as Chloride (Cl-). They change state in response to a variety of stimuli

including voltage, neurotransmitters, mechanical force, and ATP among others. There are

many different types of channels, and among the different types the kinetics they show in

response to stimulus are highly diverse.

Individual channels are generally either fully open, closed, or inactive. But within those

broad configurations there may be many sub-configurations. For voltage-gated ion channels

the predisposition to assume different configurations is based on the membrane voltage. This

in turn enables the ion channels to regulate the membrane voltage and leads to complex

electrochemical phenomena such as the action potential.

The classic action potential is caused when the membrane voltage rises above the thresh-
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old potential, this initial rise in voltage is either caused by external stimulus or the char-

acteristics of the channels. This causes both Na+ and K+ channels to start activating,

following the electrochemical gradient Na+ enters the cell and K+ exits. Na+ channels

typically activate much more quickly than K+ channels so the net effect is a sudden in-

crease in voltage described as depolarization. As the voltage peaks the Na+ channels begin

inactivating while K+ channels continue to open. This repolarization stage is characterized

by a drop in the voltage, driving the membrane voltage slightly below the initial voltage in

a phase known as hyper-polarization.

2.3 Patch Clamp Experiments

The voltage clamp technique is one of the primary methods for investigating voltage-gated

ion channels [17, 35, 25]. It aims to maintain the membrane voltage at a given level and

measure the current resulting from the passage of charged ions through the open ion chan-

nels. One variation of the voltage clamp is the whole cell patch clamp as illustrated in

figure 2.1. A glass pipette makes contact with the cell membrane, and a strong suction is

applied to create a seal between the membrane and the pipette and rupture the membrane

patch inside the pipette. This allows the electrode access to the intracellular environment.

Figure 2.1: A basic patch clamp experiment, a
section of cell membrane is sealed off, bathed
in the experimental solution, and maintained
at a prescribed voltage by the electrode.

The resistance across this seal is in ex-

cess of a gigaohm and is commonly referred

to as a “gigaohm seal”. The gigahom seal

ensures that a negligible amount of current

will be transmitted across the barrier so the

electrical properties inside the pipette are

the same as inside the cell. The voltage

across the cell membrane can then be cal-

culated using the pipette electrode and a

reference electrode in the extracellular en-

vironment.

A feedback amplifier acts through the

electrode to set the membrane voltage at the command voltage specified by the experi-

menter. This is achieved through negative feedback; if the membrane voltage deviates from

the command voltage then the feedback ampliphier injects current though the electrode
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into the cell. The amount of current the amplifier inserts depends on the current being

conducted through the cell membrane and the degree to which the membrance voltage must

be modified. The electrode also records both the membrane voltage and membrane current.

The experimenter typically sets the command voltage to run through a voltage protocol.

A typical voltage protocol consists of a series of sweeps at different voltage levels. The

experiments we work with consist of a three stage protocol. The first stage is the conditioning

prepulse. The prepulse is applied for an extended period and is used to put the channels into

steady state so the probability of a channel being open is constant. Typically the prepulse

attempts to put the channels into a fully closed configuration. The prepulse is followed

by the test pulse, the test pulse changes the voltage to trigger channel activation. The

voltage level used in the test pulse is the variable that changes between sweeps. Finally the

deactivation pulse closes the channels and/or returns them to the steady state equillibrium

of the pre-pulse.

The specific voltage protocol for the experiments we worked with is covered in more

detail in section 3.2.1.

2.4 QUB Express

QUB Express [30] is a software tool designed for the Hidden Markov model simulations of

ion channels. Among other functions it can optimize single [33, 34] and multiple [28] ion

channels as well as generate simulated recordings of ion channel models.

The model formulation is as described in section 2.6 and the optimization is based on the

LogLikelihood objective function from section 2.8, the actual optimization is performed by

the global optimization algorithms described in section 2.7. We selected QUB Express as a

basis for our approach for several reasons. First it was a cross-platform tool, written mostly

in Python with performance intensive sections in C++. We also found it to fit models more

quickly and accurately than other HMM based ion channel simulation tools we investigated

such as NEURON [5]. Finally QUB Express includes well developed interfaces for scripting

and plug-in support. This allowed us an environment in which there was straightforward way

to perform model analysis and other complex calculations and to integrate more functionality

directly into QUB Express.
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2.5 Hodgkin Huxley Equations

The first significant attempt to produce a mathematical model of ion channels was performed

in 1952 by Alan Lloyd Hodgkin and Andrew Huxley [19]. While other formulations have

been developed their formulation is still among the most widely used in the field for modeling

K+ and Na+ channels.

Their approach hypothesized independent gating variables that represented the probable

configuration of the channel. Their first work was on K+ channels with a gating variable

denoted n. Each gating variable representes the fraction of that variable in the open con-

figuration. All gating variables would need to be open for the channel itself to be open and

conducting.

To compute the value of n they assumed that at any given voltage the gating variable

could change from closed to open or open to closed and the probability of a change was

dependent only on the current voltage. They denoted the rate that n would open as αn(Vm),

where Vm is the membrane voltage, and the rate that n would close as βn(Vm). Thus the

rate of change of the gating variable n is.

dn

dt
= αn(Vm)(1− n)− βn(Vm)n

If the voltage is not changed the channel will eventually reach steady state activation.

For n the steady state value is determined:

n∞(Vm) =
αn(Vm)

αn(Vm) + βn(Vm)

If the channel is in steady state at the initial voltage V0 then changed to Vm and held

for time t the value of n will be

n(t) = n∞(Vm)− (n∞(Vm)− n∞(V0)) exp(−
t

τn
)

Where the time constant τ can be calculated:

τn =
1

αn(Vm) + βn(Vm)

It follows that the opening and closing rates α and β are a function of the new steady

state value of n and τ .
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αn(Vm) =
n∞(Vm)

τn(Vm)

β(Vm) =
1− n∞(Vm)

τn(Vm)

Working from recordings they could determine the initial activation, steady state activa-

tion, and the time required to reach steady state activation to solve the system of equations.

As they did this they also determined the relevant gating variables through trial and error,

eventually determining that four copies of the gating variable had to be active for the chan-

nel to be open, or n4. For K+ channels defining the number of channels as NcK and the

conductance per channel as CK , the net conductance for potassium is:

gK = NcKCKn4

A similar procedure was used with Na+ channels, in addition to another activation

variable m they added a second variable h to represent the inactivation that Na+ channels

exhibited when held open. Though a similar trial and error process they determined the

probability of an open unblocked channel to be m3h:

gNa = NcNaCNam
3h

Both sets of gating variables turned out to correspond to the physical structure of the

channels in question. The four K+ variables corresponded to four proteins that all had to

be in an open state for a K+ channel to conduct, while the Na+ had a three protein gate

with a separate blocking protein h that would inactivate the channel at higher voltages.

The Hodgkin and Huxley equations are still useful though they do have limitations, they

suggest inactivation is purely voltage dependent when evidence suggests that inactivation

is triggered by the channel being activated [2][27]. Hodgkin and Huxley also models con-

ductance as a continuous variable when conductance is in fact a stochastic system based on

many independent ion channels [42].
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Figure 2.2: A simple two state model where O1 represents the open state and C1 the closed.
qC1O1 is the transition rate from C1 to O1 and qO1C1 from O1 to C1.

2.6 Hidden Markov Model representation

A Hidden Markov Model (HMM) is a Markov process where the system’s state cannot

be observed directly, and instead must be inferred by observing the system’s output [3,

37]. They are well equipped to describe the complex kinetics of ion channels. Similar to

the Hodgkin-Huxley equations one may attempt to map the states of an HMM to protein

configurations in the channel but a physical analogue is not required.

Figure 2.2 shows a basic two state model consisting of an open (O1) and closed state

(C1), note that in general HMMs do not distinguished between closed and inactive channel

configurations and both are treated as closed.

Colquhoun and Hawkes used a Markov process to model single channels when they

investigated the behaviour of single channels. They demonstrated that channels had clusters

of short bursts of conductance [7, 8]. The short duration of the bursts meant they were often

missed by the recording equipment, as such modeling methods must deal with these missed

events. When calculating the Likelihood of an HMM one can include the potential for short

lived events occurring between observations as done by Colquhoun [8, 9], Qin [33, 34, 35],

and others [6, 20].

Qin’s formulation was extended to multiple channel systems by Milescu et al. [28] and

later implemented in QUB-Express [30].

Take the state probability vector, Pt, of which the individual elements Pt[i] represent

the probability that the channel is in state i at time t. The mean conductance of a group

of channels, g, can be obtained by taking the product of Pt with the transposed vector of

state conductances, C, and multiplying by the the number of channels, Nc.

g = NcPt ∗ C ′ (2.3)

Similarly the mean current conducted by an individual channel in a given state is calcu-
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lated

µc = C ′ ∗ (V − Vrev) (2.4)

Combining either of these formulas with the current formula in equation 2.2 and we can

calculate It, the average current due to the channels at time t.

It = Nc ∗ Pt ∗ C ′ ∗ (Vm − Vrev) (2.5)

The ith element ofPt is the probability that a channel will be in state i at the time t. In

each interval Pt is updated by dP which is calculated using the transition matrix Q

Pt+d = Pt + dP

dP = QtPtdt (2.6)

Q is an Ns × Ns matrix where Ns is the number of states and each entry qij is the

flow rate from state i toj. The formula used to calculate each qij varies depending on

the model formulation but the formulation used by QUB-Express calculates the rates as

qij = k0ij ∗ exp(k1ijVm), where Vm is the membrane voltage and k0 and k1 are model

parameters. Elements along the diagonal, qii instead show the rate at which channels leave

state i so Q is described as:

Q =


i ̸= j qij = k0ij ∗ exp(k1ijVm)

i = j qii = −


i ̸=j qij

(2.7)

The steady state probability, denoted Ps, is the value of Pt for which dP = QPtdt = 0.

The value of Ps can be determined by solving for PsQ = 0 while ensuring that


Ps = 1.

This can be done by solving the following equation where Q1 is Q with a row of 1’s at the

end and setting it equal to a vector of length Ns + 1 consisting of Ns 0’s followed by 1.

Ps ×Q1 =

 −→
0

1


To track the progression of P we do not actually use the formula dP = QPtdt since the
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system responds far more quickly than typical values of dt. The individual qij elements are

so large that numerical integration creates an inaccurate approximation of dP . In response

to changes in voltage some models even generate elements in dP far greater than one,

causing the system of equations to quickly break down. Instead we calculate the transition

probability matrix At using the matrix exponential expm.

At = expm(Qtdt) (2.8)

Using Qt directly in equation 2.6 assumed that a channel could make only a single

transition during dt. At instead allows for the possibility of multiple transitions during dt

so each element in the transition matrix aij is the conditional probability that a channel in

state i at time t will be in state j at t + dt, assuming every state is reachable all aij will

have a non-zero value. This method allows for a more accurate calculation of dP .

dP = At ∗ Pt (2.9)

2.7 Parameter Determination

Determining the correct parameters to allow a HMM to reproduce an ion channel recording

is a widely studied problem. While experts will often determine both the model topology

and individual parameters by hand, either task may be approached through an algorithmic

approach.

Hodgkin and Huxley fit their equations to the the Loligo (squid) giant axon using the

disjoint method [19, 46]; a set of two voltage clamp experiments designed to measure dif-

ferent characteristics of the model. The first stage involves a prepulse to hyper-polarize

the channels followed by an extended test pulse to trigger channel activation and eventual

inactivation. The time taken for activation and inactivation at the various voltages allows

the formulas for the activation and inactivation time constants to be derived. As well, the

steady state activation curve is derived by observing the activation at different voltages. In

a second experiment the prepulse varies and causes activation while the test pulse has a

uniform voltage to trigger complete inactivation; again the time constants can be derived

but the varying test pulse allows for calculation of the steady state inactivation curve.

Willms et al. [46] uses an alternative approach to fitting the Hodgkin and Huxley models
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by takes advantage of standard nonlinear optimization algorithms to fit the entire set of

equations at once.

For HMMs expectation-maximization techniques such as Baum-Welch [23, 3] are popular

for estimating the transition rates of Q for single [6] and multiple [44] channel models, though

are generally less useful in determining the parameters for the equations that create the

transition rates. Zhou, Pearson, and Auerbach [48] even developed an analytical solution

for determining transition rates for a subclass of single channel models.

Gurkiewicz [16] and Menon [26] optimized parameterized models using HMM based

formulations optimized with genetic algorithms. NEURON [5], an ion channel simulation

tool, has a model optimization framework. It includes the PRincipal AXIS (PRAXIS) algo-

rithm [14], which attempts to find derivatives numerically and perform a search orthogonal

to the gradient. We also integrated Gurkiewicz’s genetic algorithm and our implementation

of the Cross Entropy Method (CME) [11] but had little success in fitting live data.

The method implemented in QUB-Express uses an objective function based the calcu-

lation of the Log Likelihood for single channel [33, 34] and multiple channel models [35, 36,

28, 29]. QUB-Express includes three optimization algorithms. The first algorithm is the

Nelder-Mead simplex method [32]. A simplex is the generalization of a triangle to an arbi-

trary number of dimensions by creating a shape with k + 1 vertices where k is the number

of dimensions, for instance a 3 vertex triangle in 2 dimensions and a tetrahedron in 3. The

simplex method works by evaluating the objective at each vertex then discarding the worst

vertex and evaluating a new point in its place. It is generally used as the initial optimization

step because it is more resistant to valleys and the lack of gradient calculations allow it to

process the large initial search space more quickly.

The next algorithm is the Davidon-Fletcher-Powell (DFP) formula [10], a quasi-Newton

method that uses the gradient of the estimate to direct the search and is more aggressive

in moving towards a solution. Since the original development of the LL algorithm for the

single channels the standard approach has been to perform an initial pass of the Simplex

algorithm to reach a favourable global region followed by an application of DFP [35].

A recent addition to QUB-Express is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) [4]

algorithm. It is an successor of the DFP algorithm and uses a similar gradient based method.

The strategy suggested by Qin and later used by Milescu used an initial run by the Simplex

algorithm followed by an additional pass by DFP.

Due to our extensive usage of QUB-Express we include a summary of the LogLikelihood
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algorithm.

2.8 Calculating the LogLikelihood

The QUB-Express HMM model formulation best described by Milescu [28] contains sources

of current in the form of Gaussians representing channel current and baseline current. The

state conductance vector has mean C and variance V C with the mean channel current

calculated by equation 2.5. The baseline current is a Gaussian random variable which

represents the current from non-channel sources, and has mean µB and variance V B . The

baseline is described in terms of current instead of conductance as the reversal potential of

the baseline is generally unknown. Combining these gives the mean total current:

µt = µB +Nc ∗ Pt ∗ C ′ ∗ (Vm − Vrev) (2.10)

At this point a common objective function is the Sum of Squared Differences (SSD) that

compares the mean simulated current to the measured current Imeas
t

SSD =

t=T
t=1

(Imeas
t − µt)

2

However, this ignores the opportunity to extract information from variance in the record-

ings. By taking into account the variance in the model the noise in the recording can help

inform the fit.

The model variance comes from three sources, the variance in the baseline current V B ,

the amount of conductance from an individual channel in a specific state CV , and the number

of channels in each state. The formula for the total variance from individual channels is

based off of equation 2.5 and is as follows:

Vct = Nc ∗ Pt ∗ C ′
V ∗ (Vm − Vrev) (2.11)

The variance from the number of channels in each state is NcV
x
t where V x

t is the state

covariance matrix at time t based on the probability vector Pt.

V x
t =


i ̸= j −Pt[i]Pt[j]

i = j Pt[i](1− Pt[i])

(2.12)
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The corresponding variance in current due to the state fluctuations is determined by multi-

plying the state fluctuations by the mean squared current for each channel (equation 2.4).

The total variance due to the state fluctuations is:

Vs = µT
c NcV

x
t µc (2.13)

Combining the variance from state fluctuations in equation 2.13 with the total per chan-

nel variance in equation 2.11 and the baseline variance VB we get a total variance of:

Vt = VB +Nc(µ
T
t V

x
t µt + PT

t V c) (2.14)

Since VB , V x
t , and V c are all Gaussian and the only operations are addition and multi-

plication the resulting total variance Vt is also Gaussian.

Having a method to calculate the mean and variance of the current generated by the

model it is possible to calculate the likelihood. We denote θ as the description of the model.

The likelihood is the probability that a simulation of the model reproduces the given current

trace, I.

L = p(I|θ)

This in turn is equivalent to the product of the probability that the model reproduces the

current at each individual time step, L =
T

t=0 p(It|θ). This likelihood can be an extremely

small number so the logarithm is used instead.

LL = ln(

T
t=0

p(It|θ)) =
T

t=0

ln(p(It|θ)) (2.15)

Since the current is a Gaussian with mean utfrom equation 2.10 and variance Vt from

equation 2.14 the probability of a specific observation, It, is given as follows

p(It|θ) =
1√
2πVt

exp(
−(Imeas

t − µ)2

2Vt
) (2.16)

Taking the natural logarithm yields

ln(
1√
2πVt

exp(
−(Imeas

t − µ)2

2Vt
)) = ln(

1√
2πVt

) +
−(Imeas

t − µ)2

2Vt
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ln(2πVt)

2
− (Imeas

t − µ)2

2Vt
=

1

2


ln(2π) + ln(Vt)−

(Imeas
t − µ)2

Vt


Extending this to all time steps in the trace

LL =

T
t=0

1

2
(ln(2π) + ln(Vt)−

(Imeas
t − µ)2

Vt
)

1

2

T
t=0

ln(2π) + ln(Vt)−
1

2

T
t=0

(Imeas
t − µ)2

Vt

1

2
(

T
t=0

ln(2π) +

T
t=0

lnVt −
T

t=0

(Imeas
t − µ)2

Vt
)

This leads to an estimation of the LL for a model to reproduce a given recording

LL =
1

2
((T + 1) ln(2π) +

T
t=0

lnVt −
T

t=0

(Imeas
t − µ)2

Vt
) (2.17)

2.9 Topology Determination

Determining the proper topology is a critical part of modeling. For some applications

researchers may favour particular topologies, but they often have have no scientific preference

to a specific topology and primarily want a topology that is implied by the data. For these

situations an algorithmic approach to topology determination is ideal.

Hodgson [20] approached the problem of topology determination from single channel

data. By analyzing the duration of closed sections they could discriminate between several

simple topologies due to the restrictions the topologies placed on model behaviour. However

this method is limited to single channel data and is difficult to extend to more complex

topologies.

When choosing between topologies one common strategy is to introduce a penalty term

that penalizes more complex models. Two of the more common ones are Akaike information

criterion (AIC) and Bayesian information criterion (BIC) [24] though other penalty terms

are common. If the number of parameters is k and data points is n then the formulas are

as follows:

AIC = 2k − 2LL (2.18)
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BIC = −2LL+ k ln(n) (2.19)

Siekmann et al. [39] develop a procedure based on Markov chain Monte Carlo (MCMC).

They use MCMC to determine statistical profiles for each of the rate constants in Q by

sampling and scoring different models from the rate space. In addition to creating esti-

mates for Q from the means of the MCMC derived profiles. they are also able to detect

overparameterization through parameters which show poor convergence. Unfortunately, the

sampling approach of the MCMC is much slower than traditional optimization, and their

approach was limited to determining only the rate constants Q rather than the parameters

that generated Q.

Menon’s genetic algorithm based procedure [26] mutated model architectures along with

the parameters. Their procedure started with 100 models within a set complexity range

that all bore random topologies, the objective function was SSD with a penalty function

based on the number of edges. Each generation the worst models of the generation would

be pruned and replaced with modified versions of the survivors, and the survivors would

experience a mutation in either their rate constants or their topologies. Their algorithm

had an additional complication not present in our data in that their data used six different

experimental protocols. To deal with the six protocols they ordered the protocols and

for each generation n would complete the selection and mutation procedure once for each

protocol. Their procedure prescribed 3,000 generations per protocol which given the six

protocols meant a total of 18,000 generations and 1,800,000 simulations. On live data they

were able to converge to the same topology with a similar parameterization in 2 of 3 runs

with the third run resulting in a model with an extra edge. The strength of their technique

was fitting a protocol that required a complex unknown topology.

Speech recognition also makes extensive use of HMMs and those techniques could po-

tentially be applied to ion channel model determination as well. Rowels [38] proposes that

models be constrained by a spatial topology. If the HMM does in fact map to a physical

representation then it could be subject to some physical constraints as well. Since the un-

derlying system has limited degrees of physical freedom each state in the HMM should also

have limited degrees of transitions. For their application of mouth movements for speech

recognition Rowels proposes that each state be limited in degree as the mouth is physically

limited in the number of configurations it can reach in a single step. While the topologies

proposed for ion channels rarely approach the size or degree as the speech recognition models
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that Rowels describes it does suggest large fully connected topologies are unlikely to have

physical analogues.

Vasko et al. [43] describe a method that starts with a large fully connected topology

and goes through pruning iterations, successively removing the transition least important

to the fit, until only a single transition remains. Afterwards the candidate model is chosen

by a selection criteria from among the generations of pruned models. The downside of

this strategy as applied to our domain is they attempted the simpler problem of fitting

transition rates as opposed to a model that generate transition rates based on an input.

While their fits of complex topologies were generally straightforward, in our experience QUB-

Express optimization often fails, particularly for overparameterized topologies. Obtaining

a top fit from which to perform the edge subtraction is a non-trivial problem, particularly

as model complexity decreases and it becomes unclear if poor fits are due to luck or an

underparameterized topology.
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Chapter 3

Protocol for model fitting and

topology determination

We develop a protocol to aid in the development of ion channel models from a recording

of channel current. The goal is to develop an automated method to generate a model, or

range of models, to fit a set of ion channel recordings.

Section 3.1 lays out the stages of the protocol in broad terms, the details and motivation

behind these stages is covered in the subsequent sections.

The first stage of our protocol involves preparing the recording for modeling and config-

uring the topologies so that they can best represent the data. In section 3.2 we detail the

analysis and preparation of recordings of two ion channel types that we later fit in chap-

ters 4 and 5. This is followed by section 3.2.2 where we provide a list of the topologies we

use for fitting.

Next we investigate the reliability of the optimization process itself in section 3.3. Here

we measure the effectiveness of different optimizer configurations and attempt to build a

statistical model of the optimizer results. While we do not utilize this approach directly

in our protocol we do base the optimization configuration we use for our experiments on

the results of this investigation. More importantly this section outlines the difficulty of the

optimization process as for some problems not only do less than 1% of the fits succeed,

but it can be unclear if the best fits are even close to a globally optimal solution for that

configured topology.

Section 3.4 covers our new metric, maximum deviation, that measures the behaviour of
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hidden states and how we utilize it in our optimization protocol. Section 3.4.2.3 covers the

usage of max deviation in determining the range of suggested topologies and section 3.4.2.2

covers the rules we use to determine whether additional rounds of optimizations are required.

Finally in section 3.4.3 we detail the implementation of the protocol in the ion channel

simulation environment QUB Express [30].

3.1 Model Fitting Protocol

The full protocol involves three stages, a configuration stage, an optimization stage, and an

analysis stage.

1. Configuration

(a) Prepare the data as outlined in section 3.2. This involves looking for issues in the

recording, truncating extraneous data, and correcting issues if necessary and/or

possible.

(b) Create a list of target topologies. For our experiments we used the list from

section 3.2.2.

(c) Based on the data analysis create a configuration to be applied to all topologies.

(d) An optional stage where different optimizer settings are evaluated against the

problem is covered in section 3.3.

2. Optimization

(a) Perform an initial optimization round, creating 100 fittings of each topology as

described in section 3.4.

(b) For every topology that requires additional fittings according to table 3.4 double

the number of fittings. Continue until all topologies have reached a termination

criteria or hit a maximum number of fittings.

3. Analysis

(a) Select the topologies that can reproduce the data without excessive overparam-

eterization according to the rule laid out in section 3.4.2.1. From that subset of

topologies the researcher can select a model based on their own criteria. Note

that analysis can be run after every optimization round.
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3.2 Data Preparation and Topology Configuration

Fitting accurate models of ion channels requires data of sufficient quality and properly

configured topologies. Among the issues that can impact channel recordings are recording

artifacts, data synchronization, and background noise. Failing to address these issues may

lead to a recording that displays physiologically impossible data or a model that does not

accurately represent the true physiology.

In addition to high quality data, a proper topology configuration is also necessary to

produce an appropriate parameterization. Total conductance and reversal potential are

clearly necessary to reproduce the data, but also important are sources of variance. Since

the LL objective function does not calculate the difference between the mean trace and the

data, but the probability that the model can reproduce the data, the sources of variance are

a critical part of this calculation.

For both the data preparation and the topology configuration the input of an expert

who understands both the data collection method and the underlying channel physiology is

critical. This section will largely focus on the analysis of two pairs of recordings obtained

from Patrick Stemkowski [41]. He provided valuable feedback in understanding the recording

environment, experimental protocol, and channel properties. He was also involved in the

discussion of how to deal with issues in the data and set proper configurations for the

topologies.

3.2.1 Recording Overviews

In the following section we give an overview of the data sets we worked with and detail a

few of the issues we encountered. The experiments were performed to investigate the effects

of the signaling molecule Interleukin-1 beta (IL-1β) on K+ channels in medium sized dorsal

root ganglion (DRG) neurons. The cells were harvested from male Sprague-Dawley rats

and subjected to 5-6 days of a control treatment of IL-1β before the patch clamp procedure

was applied [40][41]. We investigated two types of K+ channel that were subjected to this

treatement, an A-Type channel exhibiting fast inactivation and a Delayed Rectifier channel

showing slow inactivation.

Voltage patch clamps as described in section 2.3 were used to apply a voltage protocol

to the cells, the protocol consisted of three sections: a conditioning prepulse, a stimulation

pulse, and a deactivation pulse. Figures 3.1 and 3.2 show measured voltage and current,

23



0 50 100 150 200 250 300 350 400 450 500
−140

−120

−100

−80

−60

−40

−20

0

20

40

60

80
A−Type Voltage

Time (ms)

V
o
lt
a
g
e
 (

m
V

)

(a) The voltage protocol used in the A-Type experi-
ments.
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(b) The original recordings of the A-Type current under control conditions and IL-1β.

Figure 3.1: Original voltage and current traces from the A-Type recordings.

applied voltage was the same for both control and IL-1β but depending on the channel type

a different conditioning prepulse was used.

Each recording consisted of 13 sweeps, the conditioning prepulse at the start of each

sweep established equilibrium conditions prior to the stimulation pulse. The stimulation

pulse was a 300 ms pulse from ranging from -60 mV to 60 mV in 10 mV increments followed

by a deactivation pulse of -80 mV. The original data included an additional 500 ms of

conditioning prepulse and 1500 ms of deactivation pulse which were both truncated. During

data collection the extended conditioning pulse was necessary to ensure the channels had

reached equilibrium. But simulations can start at equilibrium so only 50 ms of conditioning

prepulse was necessary to establish the starting conditions and ensure that region of data

was fitted.
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(a) The voltage used in the Delayed Rectifier experi-
ments. The conditioning pulse is the only place this
protocol varies from the A-Type protocol
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(b) The unaltered recordings of the Delayed Rectifier currents under control conditions and IL-1β.

Figure 3.2: Original voltage and current traces from the Delayed Rectifier recordings
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Idealized Vs Recorded Voltage The existence of recorded voltage necessitated the

decision of whether to use idealized or recorded voltage. If voltage recordings are absent

or incomplete it may be necessary to make assumptions about the missing data. Idealized

voltage is one standard approach that assumes the voltage acts as a step function providing

an instantaneous transition between pulses. Since our voltage recordings were smooth and

continuous during transitions between pulses we had the option of using recorded voltage.

After analyzing both scenarios we found the idealized voltage was not consistent with the

recorded current, thus we used recorded voltage for our simulations.

The principal difference between the recorded and idealized voltages was the transi-

tion between pulses, the idealized voltage would switch instantaneously while the recorded

voltage would take 3-5 ms to rise or fall to the new voltage. This period was critical to

the simulation since significant changes in current occurred over this period. The change

was significant enough that models fitted under one voltage scenario would show different

behaviour under the other.

After examining current and conductance traces under both scenarios we chose to use

recorded voltage. Figure 3.3 demonstrates the physiological implausibility of the idealized

voltage scenario. It displays the final sweep of the Control Delayed Rectifier recording at

the transition from the stimulation pulse to the deactivation pulse. At 349 ms the recorded

current starts dropping from above 10,000 pA and at 352 ms the recorded current drops

below zero. Since the reversal potential is -58 mV if we were to assume an instantaneous

transition to from 60 mV to -80 mV at 349 ms then the recorded current from 349 ms

onward would be negative. This is clearly not the case so an instantaneous transition at

349 ms is not plausible. A later instantaneous transition is similarly implausible as it raises

the question of what stimulus caused the channels to deactivate at 349 ms. This issue was

typical when assuming the idealized voltage, in contrast the recorded voltage was generally

consistent with the recorded current in the transition regions. After consultation with Pat

Stemkowski we decided recorded voltage was more appropriate for our simulations.

Evaluating Physiological Viability Although the recorded voltage meant the pulse

transitions were generally well behaved there remained issues with other sections of the

recordings. The first three sweeps of the Control Delayed Rectifier recording had a negative

current when any K+ current at the supplied reversal potential would be positive. A second

issue occurred during the conditioning prepulse for the A-Type recordings. The prepulse
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Figure 3.3: Current during the transition from the stimulus pulse to the deactivation pulse
for the final sweep of the Control Delayed Rectifier recording.

current was consistent with the reversal potential but inconsistent with established A-Type

channel behaviour. Further investigation revealed this to be a correctable artifact of the

subtraction protocol used to isolate the currents.

Figure 3.4 shows a closer look at the current from the first three sweeps which show

negative currents with means -257,-166, and -58 pA. This negative current is inconsistent

with the stimulation pulses for those sweeps of -60, -50, and -40 mV respectively. Current

for the initial -60 mV sweep should have been negligible and the following two should have

been slightly positive. The magnitude of these currents was quite small compared to later

sweeps such as the final sweep with a mean of 10,917 pA. There were several potential causes

for this discrepancy including: a change in reversal potential, the presence of an additional

current source, or an instrument error. The first two would be difficult to correct since

a change in reversal potential would be difficult to determine precisely from the recording

data alone. An additional current source would have an unknown reversal potential and

conductance and would have an unpredictable effect at different voltages.

An instrument calibration error however would have a stable effect throughout the simu-

lation and thus could be easily corrected. As well there is evidence in favour of a calibration

error in the form of negative current during the deactivation pulse. This current is pos-

sible since the deactivation pulse is below the reversal potential but the magnitude of the
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Figure 3.4: Negative current in the first three sweeps of the Control Delayed Rectifier

negative current suggests an unlikely level of activation for K+ channels at that voltage.

A correction of 257 pA makes the initial sweeps plausible but also brings the deactivation

pulse closer to zero, suggesting a more plausible level of channel activity. Note this still

leaves a negative current of about 150 pA during the deactivation pulse, that suggests a

level of channel activation that while consistent with the reversal potential, is unexpected.

The second issue was negative currents during the conditioning pulse for the A-Type

recordings. These negative currents are evident in Figure 3.1. The negative current is

consistent with the reversal potential but inconsistent with the known behaviour of A-Type

channels. At -120 mV the channels should be closed and conducting no current. Investigation

revealed the current to be an artifact of the subtraction protocol used to isolate the currents.

The protocol was required as the medium DRG neurons contained both Delayed Rectifier

and A-Type K+ channels. To separate them the protocol created two recordings, one

showing only a Delayed Rectifier current and the other a combined trace with both Delayed

Rectifier and A-Type currents. The A-Type only current was then created by subtracting

the Delayed Rectifier current from the combined trace.

The combined trace was recorded using a conditioning prepulse of -120 mV, since both

channel types were closed the prepulse current was zero and both would be available to

activate when the stimulation pulse arrived.

The problem was in the creation of the Delayed Rectifier only recording. To eliminate the

A-Type current it used a -30 mV conditioning prepulse, this was high enough to activate and

subsequently inactivate all A-Type channels during the prepulse. Thus when the stimulation

pulse arrived only Delayed Rectifier channels were available to activate and provide current.
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Unfortunately this was also high enough to activate some Delayed Rectifier channels which

remained active throughout the prepulse creating a small positive current.

Subtracting this small positive Delayed Rectifier current from the zero current of the

combined recordings created a negative current in the calculated A-Type recording that was

not the result of A-Type channels. Since the issue only affected the prepulse region we could

correct the recording setting the current in this region to zero.

3.2.2 List of Model Topologies

We have included a variety of topologies to use for analysis. They include examples from

literature and formations we were interested in. Note that for topologies taken from lit-

erature they often use different formulas to produce the transition rates so they are not

truly equivalent. In Figure 3.5 we show the complete list of topologies in tree form starting

with the simplest model, v2_e1, at the root. The concept of model ancestry and descen-

dance is important to the application of maximum deviation in determining correct model

complexity.

The first set of topologies are simple linear topologies that provide a straightforward

example of increasing complexity. The trivial v2_e1 model in Figure 3.6 is the most basic

topology. It is also significant in that it is the only topology unable to model inactivation.

The following models from Figures 3.7, 3.8, 3.9, and 3.10 are linear extensions of this model

up to a depth of 5 with v6_e5. These models have some usage in literature with both v3_e2

and v4_e3 being used by Gurkiewicz et al. [16].

Figure 3.6: v2_e1

Figure 3.7: v3_e2

Figure 3.8: v4_e3

Figure 3.9: v5_e4

29



Figure 3.5: A tree of all topologies we use. For each line of descent topologies are shown
connected to their closest ancestor(s), a solid line indicates the topologies are separated by
the addition of a single edge or state while a dashed line indicates intermediate ancestors
are missing and multiple edges or states were added. Topology nomenclature is primarily
based on characteristics of the topology, v4_e3 indicates a topology with 4 vertices and 3
edges, 5v_e6_o2 has 5 vertices, 6 edges, and 2 open states. When this is insufficient to
differentiate from other topologies we add a suffix based on other model features.
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Figure 3.10: v6_e5

After the linear models we have a series of models that explore the simpler topologies.

The topology v3_e2_disconn is another possible extension of v2_e1, the suffix ’disconn’

signifies that its two closed states are disconnected and differentiates it from the other three

vertex two state topology. The v3_e3 topology is a complete 3 state topology while v4_e4

and v4_e4_i1 are both extensions of the v3_e3 topology, the ’i1’ on v4_e4_i1 distinguishes

it from v4_e4 and simply signified that the transition from O1 to C3 is indirect as opposed

to the direct transitions of its immediate ancestor v3_e3.

Figure 3.11: v3_e2_disconn

Figure 3.12: v3_e3

Figure 3.13: v4_e4

Figure 3.14: v4_e4_i1

We then have a series of topologies with multiple open states in Figures 3.15, 3.16,

3.17,and 3.18. Models with multiple open states have been used by Magleby and Pallota [25]

to describe a voltage-gated K+ channels that were sensitive to Cl−. And both Qin et
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al. [33, 34] and Milescu et al. [28] fit data to models with multiple open states. The v8_e11

architecture in Figure 3.18 was not drawn from literature but was simply an attempt to

supply an additional topology with a large number of states and connections.

Figure 3.15: v4_e4_o2

Figure 3.16: v4_e5_o2

Figure 3.17: v5_e6_o2

Figure 3.18: v8_e11_o3

The final series of topologies from Figure 3.19 to 3.24 extend the lower complexity

topologies. The topologies v5_e5 and v6_e6 help fill the gap up to v6_e7 and v7_e7 which

were both used by Gurkiewicz et al. [16]. The final topology v11_e12 is a high depth high

complexity topology used for Kv4.3 channels [45].
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Figure 3.19: v5_e5

Figure 3.20: v6_e6

Figure 3.21: v6_e7

Figure 3.22: v6_e7_menon

Figure 3.23: v7_e7
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Figure 3.24: v11_e12

Several of these models have non-trivial isomorphisms including v3_e3, v3_e2_disconn,

v4_e4_o2, and v6_e7_menon. The suffix menon on v6_e7_menon is because the topology

is the one generated by Menon’s genetic algorithm [26]

3.2.3 Topology Configuration

A model consists of three components, a topology, a configuration, and a parameterization.

This section details how we combined data analysis and physiologist knowledge to create

our configurations. For the model used by QUB Express there are several configuration

properties including reversal potential, number of channels, baseline current and variance,

individual channel conductance and variance.

The four parameters that factor directly into the calculation of the current: reversal

potential, number of channels, baseline current, and conductance per channel, are all critical

for the model to reproduce the data. The baseline variance and channel variance do not

factor directly into the current calculation but are important to calculating the LL which

is an important factor in the performance of the optimizer. Channel variance can only

be accurately determined from single channel recordings, after consultation with Patrick

Stemkowski we decided the QUB Express defaults of 1 pA were appropriate. The baseline

variance depended largely on the characteristics of the individual experiment. Fortunately

in each experiment the end of the deactivation pulse consisted of a long section of near

zero current. The only source of noise in this section would be baseline noise, therefore we

calculated the baseline variance as the variance of the current in this section.

Since different cells are used for the control and IL experiments the number of K+

channels will vary. Unfortunately we cannot distinguish between changes in conductance

due to the total number of channels and changes due to the effects of IL. As such we calculate

the number of channels from the control recording, where the relationship between peak

conductance and total conductance is better understood, and use the same number for the
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IL recordings.

For our data the reversal potential was calculated by Pat Stemkowski using the Nernst

equation. For channel conductance and variance we decided to use the QUB Express defaults

which were judged to be sufficiently close to the actual values for the channels.

To obtain the number of channels required to model each recording we used a combi-

nation of data analysis and expert knowledge. Based on feedback from the researcher who

produced the data, it was assumed that during the control recordings peak activation would

mean almost all channels would be in an open state, therefore we could calculate the total

number of channels by finding the peak conductance.

Conductance is calculated as g = I
Vm−Vrev

, where Vm and I are drawn directly from

the recording and Vrev is supplied by the physiologist from knowledge of the experimental

setup. Close to the reversal potential the formula becomes unreliable since the denominator

approaches zero when Vm approaches Vrev. Thus we calculated the peak conductance using

data points far from the reversal potential and pulse transitions where data irregularities

may be expected. Note that while QUB Express does not enable optimization of Vrev it can

in principal be fit like any other parameter. However, the small currents near the reversal

potential make it difficult to accurately discern from the data. Physiologist derived values

are considered far more accurate.

To determine the number of channels from the peak conductance we considered a pure

algorithmic approach, but settled on a user guided selection as more reliable. Our approach

divided the recording into ranges of 10 mV, for instance 45-55 mV and 55-65 mV. Then

for each range we evaluated every data point that fell in that range and selected the point

that showed the highest conductance, this generally corresponded to the point of highest

current for each sweep. We specifically excluded the 10 mV region centred around the

reversal potential as being too unreliable to accurately calculate conductance. For more

distant points we presented them for visual inspection relying on the user to evaluate their

reliability. Once the peak conductance points were selected we calculated the number of

channels based on a user supplied estimation of peak activation probability and the per

channel conductance. With our data we used a figure assuming 95% of the channels were

open at peak conductance for the control recordings of both the A-Type and Delayed Rectifier

channels.

The number of channels can be directly calculated from the noise[1], however a reliable

estimate may require a hundred sweeps or more. As well the optimizer may attempt to fit
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the number of channels such as any other parameter, but the results can vary by an order

of magnitude or more. A researcher based estimate of the peak open probability is a more

accurate means to determine the number of channels.

The final configurable property was the baseline current and variance. Baseline current

is a steady current present throughout the trace from a source other than the channels

in question. This assumption may be false as it assumes the baseline current remains

constant throughout the recording, perhaps originating from an instrument calibration error.

However, if the baseline current does vary with voltage then we know neither the reversal

potential nor how conductance varies with the voltage. By using a constant baseline current

of unknown origin we assume a possible source of systemic error if the current is not constant

with voltage. Our control Delayed Rectifier recordings required a slight baseline current to

accommodate a small negative current of unknown origin during the deactivation pulse.

Baseline variance was present in all recordings, it is characterized as the background noise

that exists independent of the ion channels and likely comes from background currents or

instrument noise. We calculated baseline variance from a section of data near the end of

the trace where the channels would show little or no activation.

Note QUB Express can also include channel conductances and variances as optimization

parameters as information about both is contained in the channel noise. However, similarly

to the optimizations of the number of channels, this would lead to huge variances as there

was not enough data to extract reliable estimates. Instead expert knowledge was a more

reliable method to determine these values.

3.3 Determining Optimizer Settings

Due to the fact we intend to perform a large number of optimizations without the benefit of

user feedback it is prudent to determine a well performing optimizer profile for the problem.

With this objective we performed a series of experiments to evaluate the performance of

optimizer profiles against an artificial dataset.

QUB-Express includes three optimization algorithms with multiple settings for each al-

gorithm. The standard optimization includes an initial pass by the Nelder-Mead simplex

method (simplex) [32] followed by an application of the Davidon-Fletcher-Powell (DFP) for-

mula [10] or the recently added Broyden–Fletcher–Goldfarb–Shanno (BFGS) [4] algorithm.

Following the prescribed procedure we tested two arrangements, Simplex followed by
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Algorithm Default Long
Simplex 100 iterations 1000 iterations

DFP 0 restarts 4 random restarts
BFGS 100 iterations 1000 iterations

Table 3.1: Test parameter for each optimization algorithm along with the default and long
setting for the parameter

Profile Simplex DFP BFGS
DS+DD D D -
DS+LD D L -
LS+DD L D -
LS+LD L L -
DS+DB D - D
DS+LB D - L
LS+DB L - D
LS+LB L - L

Table 3.2: The different combinations of QUB-Express optimizer settings we tried. A -
indicates the algorithm was disabled, D indicates the algorithm was enabled with default
settings and L indicates the long setting.

DFP and Simplex followed by BFGS. Also for each algorithm we tested two different settings,

default and long. The default setting uses the default parameters while the long setting

increases a single parameter to extend the run time of that optimization.

The list of the test parameters is shown in table 3.1 while table 3.2 shows the eight

resulting test profiles. For the simplex and BFGS optimizers we increased the number of

iterations by an order of magnitude while for the DFP we followed a QUB Express developer

recommendation to use 4 semi-randomized restarts.

The data set we used to test the profiles was the same recording we generated in sec-

tion 4.1.1 using the v6_e5 model from figure 4.6a.

3.3.1 Modeling the Model Distribution

Since we are generating multiple fittings of models the most successful profile is not neces-

sarily the profile that generates the most high quality models, but rather the profile that

generates peak LL models at the highest rate. The time an optimization takes to complete

is primarily determined number of function calls it makes to evaluate specific model param-

eterizations. We calculate the speed of the optimizer in terms of function calls so if llpeak

is lower bound of the peak LL range then the mean number of function calls required to

generate a peak LL model is Gen(llpeak). Note that all values depend on the optimizer
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profile, configured topology, and recording. In the interest of brevity we exclude them from

the notation. Gen(llpeak) is a function of the mean number of function calls required to gen-

erated a model for the profile, Ncall, and the probability that an individual model generated

by the optimizer is better than llpeak.

Gen(llpeak) = Ncall × P (ll > llpeak) (3.1)

Even at 1000 trials per profile peak LL models were very infrequent. Two methods were

used to expand our analysis. First in addition to our standard cutoff of 5% we included a

stricter cutoff of 1% and a softer cutoff of 20%. We then tested the statistical significance

by deriving the mean and variance of the generation rate with a jackknife estimator [12].

Our second method involved building a statistical model of the distribution of fittings.

Figure 3.25 shows that most LL values are above -1e+05 but a small clump persists below

-1e+06, we refer to these two groups as functional and degenerate models respectively.

The degenerate models are instances where the optimization procedure has failed com-

pletely. A subset of these are numerically unstable where the equations in sections 2.6 and 2.8

break down. Many other models are stable numerically but do not display subtle dynamics,

often stuck completely open or closed regardless of voltage.

The functional group consists of models where the simulation is numerically stable and

the models are able to react to the voltage by showing partial activation, they range from

the best fits to models that show very little relation to the data. There are ambiguous cases

but for our calculations any model above a cutoff of 10 times llbest (approximately -4e+05)

is considered a functional model, though adopting any figure between -1e5 and -1e6 made

very little difference to our results.

The optimization breakdown in the degenerate group meant that they followed a different

distribution from the functional models. As such we separated them so we could study the

distribution of the functional models separately. We denote the probability that a generated

model is functional as Pfunc, and the probability that a functional model is in the peak LL

range as P (peak|func).

P (ll > llpeak) = Pfunc × P (peak|func) (3.2)

We attempted several statistical distributions to approximate P (peak|func) though none

performed well. The Log-normal and gamma distributions came closest with the Log-normal
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Figure 3.25: The LL of fittings from the LS+DD profile. The x-axis simply shows the
number of fittings and displays them in the order in which they were generated. In 3.25a
the functional models look roughly normal (under a logarithmic scale) but the degenerate
models below the functional cutoff line show very little structure. In 3.25b we see the very
small proportion of models that reach the peak LL range.
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Figure 3.26: The Log-normal approximation captures the general form of the distribution
but over-estimates the probability of high quality fits.

showing slightly superior performance but still significantly overestimating the probability

of the peak results. Figure 3.26 shows the Log-normal approximation of the histogram from

one set of fittings. The probability of a peak model can be approximated by the cumulative

distribution function of a Log-normal distribution with mean µ and standard deviation σ

giving the following formula:

P (peak|func) = Fll(llpeak;µ, σ) =
1

σ
√
2π

ˆ −llpeak

0

e
−(ln(t)−µ)2

2σ2

t
dt (3.3)

Despite the overestimation we felt it was a useful analysis since it included the LL

values that did not reach the peak LL cutoff. However, due to the overestimation statistical

significance comparisons [47] would be inappropriate.

3.3.2 Estimating the Efficiency of a profile

Table 3.3a shows the results of the optimization trials measured in observed probabilities

and estimated probabilities using the LogNorm projection. One thing quickly apparent is

the very poor performance of the BFGS optimizer, in all four profiles only two models came

within 20% of the best result and none reached the 5% cutoff. The authors of QUB-Express

wrote their own implementation of DFP which included slight modifications [35] but used

the simplex and BFGS implementations from the SciPy library [22], so the difference may

reflect adaptions made to the implemented DFP version rather than a difference in the

formal description of the algorithms.

Another apparent observation is the degree to which the LogNormal projection overesti-
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Profile
# Func

Ncall
P (peak|func) Observed P (peak|func) LogNorm

/ 1000 1% / 5% / 20% 1% / 5% / 20%
DS+DD 944 3196± 481 0.64 / 1.38 / 3.92 2.87 / 3.53 / 6.85
DS+LD 928 17084± 1892 1.29 / 2.80 / 6.90 4.59 / 5.54 / 10.03
LS+DD 967 3404± 301 0.52 / 0.83 / 4.76 2.92 / 3.77 / 8.26
LS+LD 963 16892± 1958 1.04 / 2.80 / 8.62 3.40 / 4.47 / 10.27
DS+DB 962 2157± 642 0.00 / 0.00 / 0.00 0.63 / 0.81 / 1.82
DS+LB 962 5652± 5958 0.00 / 0.00 / 0.10 0.80 / 1.02 / 2.16
LS+DB 905 1643± 971 0.00 / 0.00 / 0.11 0.51 / 0.69 / 1.88
LS+LB 862 3256± 4200 0.00 / 0.00 / 0.00 0.68 / 0.89 / 2.18

(a) Results of the optimization trials. Ncall is the number of function calls per fitting and
P (peak|func) gives the probability of a functional model reaching the given cutoff

Profile # Gen for 1% # Gen for 5% # Gen for 20%
DS+DD 5.33e+ 05± 1.16e+ 04 2.46e+ 05± 5.34e+ 03 8.64e+ 04± 1.87e+ 03

DS+LD 1.42e+ 06± 2.27e+ 04 6.57e+ 05± 1.05e+ 04 2.67e+ 05± 4.26e+ 03

LS+DD 6.81e+ 05± 8.69e+ 03 4.25e+ 05± 5.43e+ 03 7.40e+ 04± 9.44e+ 02

LS+LD 1.69e+ 06± 2.82e+ 04 6.26e+ 05± 1.05e+ 04 2.04e+ 05± 3.40e+ 03

DS+DB - - -
DS+LB - - 5.65e+ 06± 8.59e+ 05

LS+DB - - 1.64e+ 06± 1.40e+ 05

LS+LB - - -

(b) Calculated generation rates using the measured probabilities

Table 3.3: Results for the different optimizer profiles. The best result for each category is
indicated in bold.

mated the probability of a good fit. However, the LogNormal created very similar rankings to

the observed probabilities, and consistently ranked the long DFP and BFGS configurations

as superior to their respective default DFP and BFGS configurations. This was particularly

useful for the BFGS configurations where there were not enough peak LL fittings to use a

direct observation.

The long DFP configuration significantly improved the probability of peak LL results

but at the cost of significantly increasing the number of function calls per model.

Table 3.3b shows the number of function calls required to generate a peak LL model

under each profile as calculated using the observed probabilities. The two profiles using the

default DFP setting outperformed any other profiles. As compared to the long DFP setting

the default DFP setting did have a lower probability of generating peak LL models, but this

was more than made up for by the much faster generation rate of the default DFP setting.

Thus running both profiles for the same number of iterations one would expect more high

quality models from the default DPF.

Based on these results the default simplex default DFP profile generated models in the

peak LL range at the greatest rate.
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The intention was to use the best optimizer profile when we started performing bulk

optimizations as part of our full protocol. However, an early version of the experiment with

only 100 fittings indicated the long Simplex default DFP profile was the top performer and

so that was the profile we used for our experiments. The analysis scripts and results of the

experiments are available for download1.

3.4 Optimization and Analysis

Once the data is prepared, the topology configuration set, and the optimizer profile chosen,

it is time to start the optimization stage as directed through maximum deviation.

The optimization stage is designed around creating large numbers of fittings for each

topology, this was motivated by the fitting difficulties encountered in section 3.3. For many

problems a single fitting has a low probability of achieving a fit without expert intervention.

To build a system appropriate for non-experts to use we developed a strategy of generating

10s or 100s of models per configured topology. With multiple fittings we attempt to increase

the odds of finding models close to the true peak LL range for that configured topology as

well as gain a clearer picture of model behaviour within the peak LL range.

We create fittings in a series of optimization rounds. At the conclusion of each optimiza-

tion round we survey all topologies, select the ones that require further fittings, and double

the number of fittings for that topology. This continues until we reach a termination criteria

or hit a maximum number of fittings.

This process is initiated with an initialization round. The size of the initialization round

is typically 100 fittings. It is important not to make the initial number of fittings too small

since we use the best global fittings when evaluating the termination criteria. Significantly

underestimating the global maxima could lead to us prematurely terminating the optimiza-

tion process.

After the initialization round analysis and further rounds of fittings are guided by the

maximum deviation.

3.4.1 Maximum Deviation

We developed maximum deviation as a technique to analyze the collections of models in the

peak LL range. It is a measure of the maximum divergence in model behaviour a configured
1Results of optimization parameter experiments: http://hdl.handle.net/10402/era.38721
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topology may express when properly fitted to a recording. We define the deviation as the

degree to which two models responding to a specific voltage protocol show similar behaviour

within their hidden states. The maximum deviation of a group of models is then defined as

the largest deviation that can be found between any pair of models in the group.

We expect that underparameterized models will be highly constrained in how they ob-

tain an optimal fit. This constrained behaviour will be evident in the hidden state behaviour

and thus show a low max deviation. Similarly overparameterized models will be undercon-

strained and thus able to show a large max deviation. These ideas are consistent with the

concepts of model bias and variance[15].

Ideally we would measure the max deviation of several models that all share the same

LL, the global maximum for that configured topology. However, obtaining two fittings with

the same LL is very rare and the difficultly of fitting can make it unclear if we have achieved

the global maxima for a configured topology or are stuck in a local maxima. Instead we

measure the max deviation among the models in the peak LL range.

Having a set of peak LL models we consider the behaviour to evaluate. The behaviour

of the models in terms of open vs closed state occupancy is already well measured by the

LL. If two models have a similar LL it is very likely for them to generate similar fits.

Instead we wish to evaluate the unobserved behaviour. By unobserved behaviour we mean

the occupancy of the hidden states of the HMM that cannot be distinguished by observing

generated current.

If there are multiple open and closed states then all states are hidden and we simply

measure the total difference in state occupancy and normalize by the number of data points.

But many commonly used topologies only have a single open state, meaning they are only

partially hidden as the occupancy of the open state can be inferred from the current. As

such for a partially hidden model we calculate the deviation among only the hidden states

and normalize by the total hidden state occupancy.

The formula is described in the following. Take models A and B to be two fittings of

the same configured topology. The mean occupancy of a state for A is the same as the

state probability vector for that model PAt, so the deviation of state n at time t is simply

| PAt(n)−PBt(n) |. Over the entire set of states the cumulative difference of all unobserved

states is:
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T
t=0

N
n=0

| PAt(n)− PBt(n) |

Now we divide by the total amount of unobserved state occupancy over the duration of

the recording. This gives the formula for the deviation in Equation 3.4.

T
t=0

N
n=0 | PAt(n)− PBt(n) |T

t=0

N
n=0 (PAt(n) + PBt(n))

(3.4)

The max deviation of a set of models is produced by the pair of models that maximizes

Eq 3.4

argmax
A,B

T
t=0

N
n=0 | PAt(n)− PBt(n) |T

t=0

N
n=0 (PAt(n) + PBt(n))

(3.5)

The normalization means that max deviation values should fall in the range [0, 1] though

to accommodate models with non-trivial isomorphisms we calculate the deviation of each

isomorphism and take the smallest deviation as the deviation for that model pair. This

means that for certain classes of isomorphic topologies such as the v3_e2_disconn and

v3_e3 topologies shown in figures 3.11 and 3.12 the range of max deviation is restricted to

[0, 0.5] as a max deviation above 0.5 means the other isomorphism should be used. Also

strictly speaking we should not apply max deviation to the v2_e1 topology in figure 3.6

since it effectively has no hidden states. However, we still apply the measure to the closed

state occupancy with the knowledge that the max deviation is very unlikely to rise much

above 0 since v2_e1 is the base of our topology tree.

Also note that any model from an ancestor topology can be a member of its descendant

topology by adding any new states and edges with transition rates low enough not to alter

the LL. Thus when given a set of models from an ancestor topology those models can be

included by creating fake states with PAt(n) = 0 for any state n that does not exist in the

ancestor topology2.

Another important note is that while the theoretical range of the max deviation should

be [0, 1] simulation error means this is not strictly true. For reasons covered in section 7.5

the calculations to generate P are imprecise and the sum of Pt is not necessarily 1 nor are all

Pt(n) in the strict range [0, 1]. Filtering out all models that violate one of these conditions
2We did not have sufficient time to fully implement this aspect of the calculation, however, we did include

a simplified version that took the max deviation from the set of ancestor models within the peak LL range
of the descendant.
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would greatly reduce the number of peak LL range models to little benefit since the errors

do not significantly affect the LL calculation. Instead of demanding flawless models we cap

the size of the errors by filtering out models where P contains an element Pt where the

sum of all state probabilities is outside the range [0.99, 1]. Still the existence of these states

with a slight negative probability means that calculated max deviations can occasionally be

slightly greater than 1.

Note that the calculated maximum deviation is generally an estimate, and usually an

underestimate, of the true max deviation of models in the peak LL range. The peak LL

will generally increase as we find additional peak LL models that show a higher divergence

than the current set, however, it may decrease if one of the new models has a higher LL and

raises the lower bound of the peak LL range disqualifying some previous included models.

By calculating the max deviation of a large group of peak LL models we can gain in-

formation about the greatest degree of dissimilarity the configured topology can show when

reproducing the data. In general a set of models showing a high degree of dissimilarity

implies that they may have more complexity than is necessary to reproduce the data. How-

ever, exceptions may occur if an underparameterized topology is able to achieve a similar fit

with more than one constrained solution, in which case maximum deviation would falsely

indicate underparameterized models to be overparameterized.

3.4.2 Maximum Deviation applied to topology selection

Our basic assumption around max deviation is that the true max deviation of a configured

topology will correlate to the ability of the configured topology to fit the data. Namely the

higher the max deviation the more freedom a model will have in fitting the data. Thus a

low max deviation is consistent with underparameterization and a high max deviation is

consistent with overparameterization. On this basis we design a protocol that directs which

topologies to explore and produces a selection of candidate topologies.

To understand the rules of our protocol it is necessary to understand the implications

of our assumptions about max deviation and model complexity. The basic intuition is that

an overparameterized topology has many potential behaviours that can reproduce the given

data, leading to a high max deviation. By contrast an underparameterized topology is

highly constrained by the data and will generally only have one behaviour that is able to

reproduce results in the peak LL range, this would lead to a low max deviation. This is not
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the same as saying a topology with a low max deviation is underparameterized or high max

deviation overparameterized. A topology with the correct parameterization could show any

level of max deviation, but we would expect its ancestors to have a low max deviation and

its descendants to be high.

In general we consider a low max deviation ’Low’ as [0, 0.25], ’Medium’ as (0.25,0.6) and

high as [0.6,1]. These values are largely best practice estimates and do not take into account

factors such as model complexity and data noise that a more sophisticated measure may

consider. This enables us to develop a rule to select a group of topologies that potentially

include the correct parameterization. As well we create a set of rules designed to direct

future optimization rounds and select topologies that would benefit from additional fittings.

3.4.2.1 Rule for selecting the candidate range

The difficulty of the optimization problem means we do not have sufficient information to

select the correct topology among all the possible topologies. Even along a single branch

of the topology tree from figure 3.5 it may be unclear if there is a significant gap in the

global maxima between the parent topology and a child. Since we have no basis on which

to select the correct topology we instead attempt to estimate the candidate range described

in section 2.1.5. Specifically we select a range of topologies that attempts to include the

correct topology.

The set of candidate topologies includes every topology in the global peak LL range that

does not have an ancestor that is both in the global peak LL range and has a high max

deviation. Alternately along any branch of the topology tree the set of candidate topologies

will start with the first topology to enter the global peak LL range and end with the first

topology to enter the global peak LL range and have a high max deviation.

Consider the set of linear topologies, v2_e1 through v6_e5, from figure 3.5. Assume that

starting with v3_e2 all topologies are in the global peak LL range (any model descended

from v3_e2 can do at least as well as v3_e2). The max deviation of v3_e2 is low, v4_e3

is medium, and v5_e4 and v6_e5 are both high.

The group of selected topologies would include v3_e2, v4_e3, and v5_e4. We would

discount v2_e1 as being unable to fit the data and v6_e5 as being overparameterized.

This procedure would be repeated for every branch of the tree, including any other

descendants of v3_e2. In general any of the selected topologies may be a correct topology

and the researcher may employ other criteria to further distinguish.
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3.4.2.2 Rules for additional optimizations

After the initialization round we continue to perform additional optimization rounds with

the objective of improving the accuracy and precision of our estimate of the candidate range.

As a general rule we attempt to obtain 10 peak LL fittings to make a determination. This

number is chosen as a compromise between having enough peak LL models to get a good

estimate of the true max deviation and choosing a target that can be feasibly generated.

In some cases where we suspect we are not seeing the true peak LL of the model we may

choose a higher cutoff such as 20. For instance if we see a high or medium max deviation in

a topology that has failed to reach the global peak LL we take that as an indication that the

topology has not reached its true peak LL and we attempt more fittings with the objective

of obtaining a better fit.

There are also some cases when fewer than 10 fittings are necessary, in particular when

we have achieved the global peak LL and have a high max deviation. In this scenario there

is nothing else that additional fittings could tell us.

This situation becomes quite common due to the fact that any descendant model can

reach the same peak LL as its ancestor, but can also meet or exceed the max deviation of

its ancestor at that LL. Therefore the moment a topology reaches the global peak LL and a

high max deviation there is no need to perform additional fittings for that topology or any of

its descendants. The assumption is that since we are seeing a high max deviation the model

is already able to capture all the complexity in the data and any further improvements in LL

would be marginal increments from capturing noise. This is also consistent with our topology

selection rule as we would consider those descendant topologies to be overparameterized

anyways.

In table 3.4 we go into detail for each possible scenario. It outlines the possible combi-

nations of max deviation, number of peak LL fittings, and whether additional fittings are

required for that scenario. It should be noted that there are several assumptions we make

in the construction of this table.

First we assume that we have correctly identified the global peak LL range, and even if

further fittings can incrementally shift the global peak LL range this will not change other

topologies inclusion in the global peak LL range. Clearly this is not always the case but we

cannot continue to search for better peak global LL indefinitely.

Secondly we assume that 10 peak LL models is sufficient to assume that the measured
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Max Dev Global # Peak More ReasonsPeak LL LLs Fittings?
Low No < 10 Yes Insufficient Results
Low No ≥ 10 No Sufficient Results

Low Yes < 10 Yes Insufficient Results
Max deviation may increase

Low Yes ≥ 10 No Sufficient Results

Medium No < 20 Yes Unlikely Scenario
LL may increase

Medium No ≥ 20 No Unlikely Scenario

Medium Yes < 10 Yes Insufficient Results
Max deviation may increase

Medium Yes ≥ 10 No Sufficient Results

High No < 20 Yes Unlikely Scenario
LL may increase

High No ≥ 20 No Unlikely Scenario

High Yes < 10 No Additional fittings can not
increase max dev or LL

High Yes ≥ 10 No Additional fittings can not
increase max dev or LL

Table 3.4: Various scenarios pertaining to the max deviation of a topology, relation of the
peak LL to the global peak LL, and number of models in the peak LL range. The “Max Dev”
column refers to the size of the max deviation, this includes the max deviation measured
directly from the models and the max deviation implied from ancestors sharing the peak LL
range. We define ’Low’ as [0, 0.25], ’Medium’ as (0.25,0.6) and high as [0.6,1] but these values
are best practices. In the ’Global Peak LL’ column a ’Poor’ peak LL means the configured
topology did not reach the global peak LL range, while a ’Good’ peak LL did. The column
’# Peak LLs’ refers to number of models in the peak LL range for that topology and whether
they have reached the described number. The test number in question is generally 10 but
rises to 20 in the case of unlikely scenarios. The “Reasons” column give the interpretation
of the given combination of characteristics. The ’More Fittings?’ column advises whether
additional optimizations are required. In some cases it is not necessary to calculate more
results because we already have sufficient models to arrive at a likely conclusion.
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peak LL range overlaps with the true peak LL range as determined by the globally optimal

fit for each topology. Furthermore we assume that the 10 models in the measured peak LL

range would still be included in the true peak LL range and that the models cover enough

of the solution space that the measured peak LL is in the same category (low, medium,

or high) as the true max deviation. The 10 model standard was chosen as a number low

enough to be feasible but high enough to generate a reasonable number of fits. Choosing a

slightly higher or lower number may be appropriate depending on the number of topologies,

desired accuracy of results, and computational constraints.

The second assumption is the one most likely to be invalidated. We can never be certain

how far we are from the globally optimal fit, and even when we do have that fit we cannot

estimate how much of the possible range of solutions we are missing.

The main risk of the protocol is a scenario where the initialization round fails to reach

the true global peak LL range and the sub-optimally fit models that comprise the measured

peak LL range have a high max deviation. In that scenario the protocol will terminate

prematurely without finding the true global peak LL range. A modification to the protocol

that could help avoid this scenario is to more thoroughly validate the topology with a global

peak LL and high max deviation that caused the protocol to terminate. We would take

the first topology in the global peak LL range with a high max deviation (which is also the

last model in the candidate topology range) and ensure that model had 10 peak LL range

fittings before we terminated.

3.4.2.3 Max Deviation Results Table

To display the results of our approach we use tables such at those shown in table 3.5.

The first table shows the initial optimization round, in this case comprising of 100 fittings,

while the second table shows the complete results, where fittings have continued until each

configured topology has reached a termination criteria. To make visual identification of

different features more apparent we regularly make use of emphasis and bold font, to aid in

recognition emphasized values are shown in blue and bolded values are shown in red.

The tables consist of six columns. In column one ’Topology’ the names of the topologies

are shown. Any configured topology that part of the candidate range is shown in bold. In

this case in the first table v4_e3 is bolded. As a consequence of the selection rule the first

topology in any lineage to enter the global peak LL range will be selected. Since v4_e3

does not have a high max deviation its descendants v5_e4 and v6_e5 are also selected and

49



we consider all three to be potential matches. In the table of full fittings v5_e4 has a high

max deviation, as a result v6_e5 is no longer selected as a potential candidate.

A model that is selected for additional optimizations is indicated with a ’*’. In the first

round of fittings v5_e4 and v6_e5 are both shown with a ’*’ since with a medium max

deviation and less than 10 peak LL models they both qualify for additional fittings.

The column second column, “# peak LL”, shows the number of models in the peak LL

range of the configured topology and the total number of fittings. In the initial table the

simplest v2_e1 configured topology had 100 out of 100 models reach the peak LL range,

but for v6_e5 only 2 out of 100 models reached the range.

The third column “Best LL” shows the LL of the best model for each configured topology.

The best LL out of all the models is shown in bold, while all configured topologies that

reach the global peak LL range are shown emphasized . The observed LL is the LL of the

best model for that configured topology, but when an ancestor model achieves a superior

LL we refer to that LL as the implied LL and we show that LL in ’( )’. Note that the peak

LL range for the “# peak LL” column is calculated based on the observed LL.

The fourth and fifth columns show the AIC, and BIC of the best model. These are based

on the LL of the best model (not the implied LL). The best AIC and BIC overall are shown

in bold.

The final column is the max deviation. Again the max deviation of the observed models

is shown but if there is a larger implied max deviation from ancestor models the larger

implied max deviation is shown in ’( )’. In the full table the implied max deviation for

v6_e5 is taken from its ancestor v5_e4. The table is sorted by the max deviation.

To make the max deviation categories apparent low max deviations are emphasized ,

medium are shown in normal font, and large max deviations are bolded.

Potential Issues The major difficulty is finding enough peak LL models, depending on

the problem the optimization procedure may have a very low success rate. It may not

be feasible to generate enough peak LL models to make a useful determination about the

configured topology.

Another issue is in the number of peak LL models necessary to determine a low or high

max deviation. While the intent of max deviation is to reduce the role of the optimizer in

biasing the results we still are still restricted to the models the optimizer gives us. If the

solution space allows for multiple behaviours with only slight preference then models with
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Results for example at 100 generations
Topology # peak LL Best LL AIC BIC Max Deviation

v2_e1 100/100 -15000 30008 30035 0.001

v3_e2 100/100 -12000 24016 24070 0.100

v4_e3 91/100 -10050 20124 20205 0.200

*v5_e4 5/100 -10000 20032 20140 0.500

*v6_e5 2/100 -11000 (-10000) 22040 22176 0.630

Full results for example
Topology # peak LL Best LL AIC BIC Max Deviation

v2_e1 100/100 -15000 30008 30035 0.001

v3_e2 100/100 -12000 24016 24070 0.100

v4_e3 91/100 -10050 20124 20205 0.200

v5_e4 10/200 -10000 20032 20140 0.700

v6_e5 6/200 -9999 20038 20174 0.650 (0.700)

Table 3.5: Example table of fittings subjected to max deviation analysis

high max deviation should show that readily. If however the various behaviours exist in

distinct valleys in the solution space than the optimizer may be unable to find them, in this

case not only do we not know if a low max deviation is the true result, but we have no way

of estimating the probability that a future iteration will generate a contrary result.

One way of investigating this is also calculating the mean deviation between all models

in the peak LL range. If the mean deviation is correlated to the max deviation it suggests

that the different solutions exist along a continuum and a low max deviation may be inter-

preted with low confidence. If they are uncorrelated then it suggests the solution space is

disconnected and solutions creating a high max deviation may be found unpredictably.

Another issue is as models grow more complex there will be a natural tendency for model

deviations to grow regardless of parameterization. This tendency is difficult to measure or

correct since the absolute range of max deviation will still be [0,1] for non-isomorphic models.

3.4.3 Implementation of Protocol

We implemented the described protocol in QUB Express using a combination of a plugin,

scripts, and modifications to existing QUB Express plugins.

The modification in question took the form of a patch to the MacRates plugin which

is responsible for running the Hidden Markov Models and calculating the LogLikelihood as

well as providing much of the optimization infrastructure. The plugin design was such that

it could not record and store the state occupancy information without modification. Next

was our QUB States plugin which added two panel interfaces to QUB Express. The first
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was a data configuration panel which allowed the user to select the recording to fit and

create a topology configuration as described in section 2.9. The panel had functionality to

automatically scan the data to determine the background noise as well as a functionality to

scan the recording for the proper number of channels.

To scan for the number of channels we required two pieces of user input, the reversal

potential and the peak activation level (ratio of channels open at the maximum activation

level). We then perform a scan of the recording in 10 mV increments and for each increment

determine the point of channel with the highest conductance and calculate the number of

channels necessary to deliver that conductance. We automatically exclude the 10 mV range

centered around the reversal potential due to the unreliability of the conductance calculation

in this region. For each 10 mV increment we show the highest conductance point to the user

and allow them to select one from which to calculate the number of channels, or they can set

the number of channels directly. This technique was effective for the recordings described

in section 3.2.1 but other recordings with different artifacts may require other methods.

The actual optimization panel includes the list of topologies from section 3.2.2, configured

using the settings from the previous panel, as well as information on the number of models

fitted and the LL of the best model. It also includes the ability to select topologies and

perform fittings until one reaches a predetermined number of fitted models. As well it can

generate a number of different reports on the generated models.

The optimization process itself is run through the modified MacRates plugin, a stan-

dard plugin for macroscopic modeling and optimization shipped with QUB Express. Each

configured topology is initialized with all k0 parameters set to 10 and k1 parameters set to

0. Immediately prior to optimization a randomization procedure is applied to the k0 values

modifying them by a random number from [0,1]. During simulation each individual sweep

is initialized with the state probability vector at steady state.

The plugin was designed before we developed the max deviation protocol and does not

fully implement the protocol as described. Instead the protocol is implemented through

a series of scripts we wrote to integrate with the plugin. They calculate the statistics for

each model and implement the rules from table 3.4 to generate tables such as table 3.5 that

provide guidance on suggested topologies and further fittings.

The plug-in, QUB Express patch, and max deviation scripts are available for download3.

We have future plans to integrate the max deviation functionality into the plugin and then
3http://hdl.handle.net/10402/era.38722
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submit the combined work into QUB Express.
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Chapter 4

Experimental Design

We designed a series of experiments to analyze how well our predictions about max deviation

held and to evaluate the utility of max deviation as a metric. These experiments consisted

of five simulated recordings and four cell recordings.

The five simulated recordings were generated from linear models ranging in complexity

from two to six states. These generative models were constructed to ensure occupancy of

the terminal state furthest from the open state and given baseline noise levels at the same

approximate level as the recorded data.

The cell recordings were obtained from Patrick Stemkowski[41] and are described in more

detail in section 3.2.1.

Each experiment consists of two stages, first is a configuration stage where the recordings

are analyzed and properly parameterized. The cell recordings all had a physiologist supplied

reversal potential of -58 mV, this same value was used for all simulated data as well. For all

recordings baseline noise levels were estimated from the recordings. For the live data the

number of channels was estimated from the recordings based on physiological assumptions.

For the simulated data we used the number of channels from the generative models (i.e. the

simulated models that generated the data).

After configuring the models and using the optimizer configurations suggested in sec-

tion 3.3 we performed a two stage process. Step one involved an initial fitting of either 50

or 100 models for each configured topology. Step two involved additional fittings to increase

the number of peak LL models according to the rules laid out in table 3.4.
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Figure 4.1: Voltage protocol used for the simulated data. The prepulse and deactivation
pulse were both set to -80 mV and the main pulse ranged -60 to +60 mV in 10 mV increments.

4.1 Test Data

4.1.1 Simulated Data

The five models simulated are based on the five linear topologies v2_e1 through v6_e5 from

Section 3.2.2. In addition to the noise from channel variance each model also had baseline

noise with a standard deviation of 100 pA. Each model was subjected to the 13 sweep voltage

protocol shown in Figure 4.1 which was again based on the protocols used in our experimental

data. Simulations were done at a granularity of 0.1 ms matching that of the recorded data.

One important difference between the simulated protocol and the experimental protocols is

that the simulated protocol was a step function with instantaneous switches between pulses

while the transitions in the experimental protocol were more gradual as show in section 3.2.1.

None of the simulated models were developed to exhibit inactivation.

The first simulated model is the trivial model using the v2_e1 topology in figure 4.2.

The model rates are shown in the illustration. The k0 and k1 rates from C1 to O1 are 15

and 0.08 respectively while the k0 and k1 rates from O1 to C1 are 10 and -0.01.

Next was v3_e2 shown in Figure 4.3. This was the simplest model which displayed

multiple levels of state occupancy.

We constructed the simulated models to ensure that all states in the models were used.

However, we did not ensure that the models we generated used the full expressiveness of their

topology. For instance, a v5_e4 model could possibly reproduce the recording produced by

the v6_e5 model in figure 4.6.

In table 4.1 we show the configurations used for the simulated experiments. Baseline

noise was measured from the generated data but the channel count was taken directly from
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Figure 4.2: Simulated v2_e1 model and recording.

(a) Rate parameters between states are shown as ’k0 q k1’
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Figure 4.3: Simulated v3_e2 model and recording.
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(a) Rate parameters between states are shown as ’k0 q k1’
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Figure 4.4: Simulated v4_e3 model and recording.

(a) Rate parameters between states are shown as ’k0 q k1’
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Figure 4.5: Simulated v5_e4 model and recording.
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(a) Rate parameters between states are shown as ’k0 q k1’
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Figure 4.6: Simulated v6_e5 model and recording.

Recording vRev (mV) # Channel
Baseline current Channel Conductance

(pA) (pS)
v2_e1 -58 10000 0± 92 10± 1

v3_e2 -58 10000 0± 99 10± 1

v4_e3 -58 10000 0± 94 10± 1

v5_e4 -58 10000 0± 97 10± 1

v6_e5 -58 10000 0± 92 10± 1

Table 4.1: Topology configuration for the five simulated recording experiments

the generative models.

4.1.2 Experimental Data

We had a set of four recordings of K+ channels made by Patrick Stemkowski, a control and

Interleukin-1 beta (IL-1β) treated group of A-Type channels and a control and IL-1β treated

group of Delayed Rectifier channels. A lengthier discussion of methods used to prepare

the recordings and create the configurations is found in section 3.2. The voltage protocol

was the original truncated voltage data shown in figure 3.1a, the current was unmodified

except for the zeroed out conditioning sections as shown in figure 4.7. The Delayed Rectifier

voltage is shown in figure 3.2a and the current traces are shown in figure 4.8. As detailed

in the full analysis we included a baseline current to offset the negative current shown by

the initial sweep near the reversal potential for the Delayed Rectifier control recording.

The configuration used for the four experiments is shown in Table 4.2.
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Figure 4.7: Current sweeps for Control and IL A-Type recordings used for fitting.
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Figure 4.8: The unaltered recordings of the Delayed Rectifier currents under control condi-
tions and IL-1β. Originally shown in figure 3.2b

Recording
vRev

# Channel
Baseline current Channel Conductance

(mV) (pA) (pS)
Control A-Type -58 6753 0± 137 10± 1

IL A-Type -58 6753 0± 52 10± 1

Control Delayed Rectifier -58 11234 −257± 70 10± 1

IL Delayed Rectifier -58 11090 0± 20 10± 1

Table 4.2: Topology configuration for the five experiments
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4.2 Objectives

We have several questions we wish to investigate with our experiments. These relate both

to the optimization protocol and the max deviation metric.

First we wish to evaluate the performance of our protocol as a whole.

R1: In the simulated experiments can we find fits with a LL as good as the original model?

R2: Will the candidate range for each simulated experiment contain the topology of the

original model?

R3: How will the parameterization of the original model compare to the best fitted model

of the original topology?

R4: Will LL/AIC/BIC identify the correct topology in the simulated data?

R5: Will we find good fits and a reasonable set of candidate topologies on the experimental

data?

R6: For each channel type we would expect the Control and IL conditions to show similar

behaviour (subject to the effects of IL). Therefore, will the channel type show a similar

candidate topology ranges for each experimental condition?

Second we wish to investigate the interpretations in table 3.4.

R7: Is it true that topologies outside the global peak LL range will rarely have a high max

deviation?

R8: Can we consistently find a high max deviation in topologies known to be overparame-

terized?

R9: And do the deviations in a group of peak LL models follow a predictable statistical

distribution?
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Chapter 5

Results

For each experiment we highlight several methods of model determination, we show the best

model according to AIC, and BIC. As well we indicate the range of configured topologies

considered to be potential minimal matches to the data according to our application of the

max deviation.

In section 5.1 we examine the simulated data experiments and address questions R1

through R4, and R7. In section 5.2 we examine the experimental data and address questions

R5 and R6. Finally in section 5.2.8 we address questions R8 and R9. We make the full set

of results available for download1.

5.1 Simulated Data

For each experiment involving the simulated data, in addition to our standard evaluation,

we include a comparison of the parameters of the generative model with the parameters of

the top model from the same configured topology.

The purpose of these experiments is to evaluate questions R1 through R4 as well as

provide additional data for R7 through R9.

5.1.1 Simulated v2_e1 data

The first pass over the simulated data from the v2_e1 model is shown in table 5.1. On this

simple data set the results are consistent with the predictions from table 3.4. Not only do

all configured topologies reach the peak LL range but all except two generate a model with
1http://hdl.handle.net/10402/era.38736
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a LL above -39576, the score of the model from figure 4.2 used to generate the data itself.

The ability of even the v2_e1 topology to exceed the LL of the generative model is likely

due to the effect of various noise sources in the simulation.

Three topologies have fewer than 10 peak LL models. However for two of these topologies

a high max deviation, either measure directly or implied from ancestor topologies, precludes

further fittings. Only the v11_e12 topology requires further fittings. The medium range

max deviation of the linear models v3_e2 through v6_e5 is surprising as one would expect

a high max deviation for these clearly overparameterized models. One possibility is that

they are showing the true max deviation and the later states past C1 cannot be heavily

utilized while achieving a peak LL range fit. Another is that a much higher max deviation

is possible, but for such a simple recording any models near the peak LL range fall into the

same general solution of a heavy C1 occupancy.

5.1.1.1 Comparison to generative model

K0

C1→O1 O1→C1

2.3 3.4

K1

C1→O1 O1→C1

2.1 -1.9

Table 5.2: Percentage difference in parameters
between the best performing v2_e1 model and
the generative model

Both AIC and BIC misidentify the correct

model as coming from the v5_e6_o2 con-

figured topology. According to the max de-

viation table the model is correctly shown

to include the v2_e1 topology, however 12

models in the candidate range is quite im-

precise for such a simple example.

Table 5.2 shows the percentage differ-

ence between the parameters of the origi-

nal and fitted model and figures 5.2 and 5.3

show the top fitted v2_e1 model and the

resulting fit.

5.1.2 Simulated v3_e2 model

Next we move on to the simulated recordings of the model from Figure 4.3. Table 5.3 shows

the results of the fittings from both the initial and full run. This being a relatively simple

data set the optimizer again generally performed well.

Again additional results are not required for a single configured topology. However, we
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Results for v2_e1 simulated recordings at 100 generations
Topology # peak LL Best LL AIC BIC Max Deviation

v2_e1 100/100 -39555 79119 79146 0.0

v4_e3 71/100 -39522 (-39520) 79069 79150 0.37 (0.392)

v3_e2 92/100 -39520 79056 79110 0.392

v5_e4 60/100 -39538 (-39520) 79109 79217 0.295 (0.392)

v6_e5 57/100 -39548 (-39520) 79136 79271 0.317 (0.392)

*v11_e12 1/100 -43655 (-39520) 87406 87731 - (0.392)

v3_e2_disconn 91/100 -39514 79044 79098 0.497

v3_e3 86/100 -39480 78984 79065 0.5

v4_e4_o2 98/100 -39507 (-39480) 79047 79156 0.636

v6_e7_menon 7/100 -39534 (-39514) 79124 79313 0.819

v4_e5_o2 93/100 -39488 (-39480) 79016 79151 0.869

v4_e4_i1 54/100 -39506 (-39480) 79045 79154 0.967

v6_e7 13/100 -39641 (-39500) 79338 79527 0.71 (0.969)

v4_e4 63/100 -39505 79043 79151 0.969

v5_e5 21/100 -39500 79040 79176 0.96 (0.969)

v6_e6 16/100 -39537 (-39500) 79122 79285 0.837 (0.969)

v7_e7 6/100 -39432 78920 79110 0.454 (0.969)

v8_e11 75/100 -39451 (-39375) 78990 79288 0.87 (0.993)

v5_e6_o2 80/100 -39375 78798 78960 0.993

Full results for v2_e1 simulated recordings
Topology # peak LL Best LL AIC BIC Max Deviation

v2_e1 100/100 -39555 79119 79146 0.0

v4_e3 71/100 -39522 (-39520) 79069 79150 0.37 (0.392)

v3_e2 92/100 -39520 79056 79110 0.392

v5_e4 60/100 -39538 (-39520) 79109 79217 0.295 (0.392)

v6_e5 57/100 -39548 (-39520) 79136 79271 0.317 (0.392)

v3_e2_disconn 91/100 -39514 79044 79098 0.497

v3_e3 86/100 -39480 78984 79065 0.5

v11_e12 5/400 -40064 (-39520) 80224 80549 0.615

v4_e4_o2 98/100 -39507 (-39480) 79047 79156 0.636

v6_e7_menon 7/100 -39534 (-39514) 79124 79313 0.819

v4_e5_o2 93/100 -39488 (-39480) 79016 79151 0.869

v4_e4_i1 54/100 -39506 (-39480) 79045 79154 0.967

v6_e7 13/100 -39641 (-39500) 79338 79527 0.71 (0.969)

v4_e4 63/100 -39505 79043 79151 0.969

v5_e5 21/100 -39500 79040 79176 0.96 (0.969)

v6_e6 16/100 -39537 (-39500) 79122 79285 0.837 (0.969)

v7_e7 6/100 -39432 78920 79110 0.454 (0.969)

v8_e11 75/100 -39451 (-39375) 78990 79288 0.87 (0.993)

v5_e6_o2 80/100 -39375 78798 78960 0.993

Table 5.1: Initial and full fittings for the v2_e1 simulated recordings.
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did perform additional runs of several configured topologies that we suspected could show a

higher max deviation than we had measured. Both v4_e5_o2 and v4_e4_i1 were slightly

overparameterized and had significant peak LL models. We were curious to see whether

additional fittings would cause the max deviation to grow past the medium range. We also

selected v6_e5 and v6_e7_menon for further optimizations, two models with high max

deviations implied from their ancestor, but only low or medium results themselves.

After the additional runs the max deviations of v4_e5_o2 and v4_e4_i1 grew slightly

larger though not to the extent we may have anticipated. It seems likely that the configured

topologies could not show complete deviations approaching 1 but we cannot exclude the

possibility of undetected solutions. For the two models with large implied max deviations

but low observed max deviations the m6_e7_menon did reach a high max deviation while

v6_e5 grew only slightly despite reaching the 10 model threshhold.

5.1.2.1 Comparison to generative model

In Table 5.4 we see the that the top v3_e2 model is within 15% of the true value for every

parameter. Of particular interest is the LL of the best fit of -39323 is significantly better than

the LL of the generative model of -40639, in fact every qualifying topology had a result under

-40000. AIC and BIC both identify a v3_e2 as the correct model. The ability of models to

outpuerform the generative model can again be explained as a combination of baseline and

channel noise. According to our max deviation table 3.4 the correct model belongs to one of

six configured topologies. Table 5.4 shows the percentage difference between the parameters

of the original and fitted model. Figures 5.4 and 5.5 show the top fitted v3_e2 model and

the resulting fit.

5.1.3 Simulated v4_e3 model

Table 5.5 shows results from the initial and full run of fittings for the simulated data gen-

erated by the v4_e3 model shown in figure 4.4.

For the first time we see a model selected for additional fittings, the v3_e2_disconn

configured topology that achieved only a single fitting (far below the peak LL). The poor

performance of the model in achieving peak LL results is an interesting result considering its

simplicity. It suggests that factors other than complexity are important to the ability of the

optimizer to reproduce the data. The other topology with poor success is v6_e7_menon,
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Results for v3_e2 simulated recordings at 100 generations
Topology # peak LL Best LL AIC BIC Max Deviation

v2_e1 100/100 -52399 104807 104834 0.003

v3_e2 100/100 -39323 78663 78717 0.106

v3_e2_disconn 95/100 -49528 99073 99127 0.205

v3_e3 82/100 -39334 (-39323) 78693 78775 0.239

v4_e4_i1 86/100 -39327 (-39323) 78686 78794 0.423

v4_e4_o2 84/100 -39353 (-39323) 78739 78847 0.433

v4_e5_o2 94/100 -39321 78682 78818 0.436

v5_e6_o2 94/100 -39322 (-39321) 78692 78855 0.688

v4_e3 91/100 -39321 78666 78747 0.911

v4_e4 80/100 -39329 (-39321) 78691 78800 0.864 (0.911)

v8_e11 82/100 -39315 78718 79017 0.856 (0.911)

v5_e4 20/100 -39327 (-39321) 78686 78795 0.893 (0.911)

v5_e5 84/100 -39322 (-39321) 78684 78820 0.874 (0.911)

v6_e7_menon 3/100 -39415 (-39321) 78887 79077 0.436 (0.911)

v6_e5 3/100 -39722 (-39321) 79485 79620 0.23 (0.911)

v11_e12 4/100 -39845 (-39321) 79787 80113 0.678 (0.911)

v6_e6 49/100 -39328 (-39321) 78704 78867 0.674 (0.911)

v7_e7 12/100 -39329 (-39321) 78715 78905 0.858 (0.911)

v6_e7 47/100 -39324 (-39321) 78704 78894 0.92

Full results for v3_e2 simulated recordings
Topology # peak LL Best LL AIC BIC Max Deviation

v2_e1 100/100 -52399 104807 104834 0.003

v3_e2 100/100 -39323 78663 78717 0.106

v3_e2_disconn 95/100 -49528 99073 99127 0.205

v3_e3 82/100 -39334 (-39323) 78693 78775 0.239

v4_e4_o2 84/100 -39353 (-39323) 78739 78847 0.433

v4_e5_o2 359/400 -39321 78682 78818 0.436

v4_e4_i1 344/400 -39327 (-39323) 78686 78794 0.603

v5_e6_o2 94/100 -39322 (-39321) 78692 78855 0.688

v4_e3 91/100 -39321 78666 78747 0.911

v4_e4 80/100 -39329 (-39321) 78691 78800 0.864 (0.911)

v8_e11 82/100 -39315 78718 79017 0.856 (0.911)

v5_e4 20/100 -39327 (-39321) 78686 78795 0.893 (0.911)

v5_e5 84/100 -39322 (-39321) 78684 78820 0.874 (0.911)

v6_e7_menon 5/200 -39415 (-39321) 78887 79077 0.863 (0.911)

v6_e5 10/400 -39370 (-39321) 78780 78916 0.264 (0.911)

v11_e12 4/100 -39845 (-39321) 79787 80113 0.678 (0.911)

v6_e6 49/100 -39328 (-39321) 78704 78867 0.674 (0.911)

v7_e7 12/100 -39329 (-39321) 78715 78905 0.858 (0.911)

v6_e7 47/100 -39324 (-39321) 78704 78894 0.92

Table 5.3: Initial fittings of the v3_e2 simulated recordings
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K0

C1→O1 O1→C1 C2→C1 C1→C2

-11.9 -8.8 3.8 -6.2

K1

C1→O1 O1→C1 C2→C1 C1→C2

0.1 8.0 -3.3 -14.4

Table 5.4: Percentage difference in parameters between the best performing v3_e2 model
and the generative model

however this model does not require additional fittings as its ancestor, v4_e3, has reached

the peak LL range of v6_e7_menon and has a high max deviation.

For an additional round of optimizations, in addition to the recommended topology,

v3_e2_disconn, we also selected v6_e7_menon, v6_e5, and v8_e11 to investigate how

the observed max deviation would change with additional fittings. In particular we were

interested in v8_e11 since it was clearly very overparametarized with a high implied max

deviation, however despite a very large number of fittings it still had a medium max devia-

tion.

After 400 fittings the v3_e2_disconn model reaches the 10 model cutoff with a low max

deviation, giving us more confidence it is unable to reproduce the data. Surprisingly the

measured max deviation among the 192 v8_e11 models is still in the medium range. This

carries a worrying implication about the ability to detect large max deviations. Although

we know that peak LL range v8_e11 models that show a large max deviation do exist (due

to its ancestor v4_e3) these models are apparently quite uncommon for the optimizer to

generate.

5.1.3.1 Comparison to generative model

The LL of the generative model was -39265 which is slightly worse than that of the best

model overall and slightly better than that of the best fitted v4_e3 model. Again BIC is able

to correctly identify a model from the generative configured topology but AIC misidentifies

v6_e7. Using the max deviation approach we narrow the best model down to a range of

seven configured topologies that includes the generative topology. In table 5.6 we see the

percentage difference in each parameter between the best v4_e3 model and the generative

model. Despite a slight difference in the LL of the two models the parameters themselves are

far less constrained. Figures 5.6 and 5.7 show the top fitted v4_e3 model and the resulting

fit.
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Results for v4_e3 simulated recordings at 100 generations
Topology # peak LL Best LL AIC BIC Max Deviation

*v3_e2_disconn 1/100 -65378 130772 130826 -

v2_e1 75/100 -77037 154083 154110 0.005

v3_e2 99/100 -40062 80141 80195 0.09

v3_e3 16/100 -40087 (-40062) 80198 80279 0.099

v4_e4_o2 29/100 -39665 79362 79471 0.276

v4_e5_o2 15/100 -39790 (-39665) 79621 79757 0.447

v5_e6_o2 26/100 -39460 78968 79130 0.442 (0.447)

v4_e4_i1 65/100 -39287 78607 78716 0.542

v4_e3 97/100 -39283 78590 78671 0.893

v4_e4 23/100 -39483 (-39283) 78998 79106 0.841 (0.893)

v8_e11 94/100 -39277 78642 78940 0.409 (0.893)

v6_e7_menon 1/100 -39552 (-39283) 79161 79351 - (0.893)

v5_e4 52/100 -39305 (-39283) 78642 78751 0.941

v5_e5 67/100 -39328 (-39283) 78696 78832 0.565 (0.941)

v6_e5 3/100 -39616 (-39283) 79273 79409 0.314 (0.941)

v11_e12 12/100 -39275 78646 78971 0.919 (0.941)

v6_e7 74/100 -39257 78571 78761 0.859 (0.97)

v6_e6 29/100 -39313 (-39283) 78674 78837 0.97

v7_e7 8/100 -39345 (-39283) 78747 78937 0.639 (0.97)

Full results for v4_e3 simulated recordings
Topology # peak LL Best LL AIC BIC Max Deviation

v2_e1 75/100 -77037 154083 154110 0.005

v3_e2_disconn 10/400 -65378 130772 130826 0.084

v3_e2 99/100 -40062 80141 80195 0.09

v3_e3 16/100 -40087 (-40062) 80198 80279 0.099

v4_e4_o2 29/100 -39665 79362 79471 0.276

v4_e5_o2 15/100 -39790 (-39665) 79621 79757 0.447

v5_e6_o2 26/100 -39460 78968 79130 0.442 (0.447)

v4_e4_i1 65/100 -39287 78607 78716 0.542

v4_e3 97/100 -39283 78590 78671 0.893

v4_e4 23/100 -39483 (-39283) 78998 79106 0.841 (0.893)

v8_e11 189/200 -39277 78642 78940 0.468 (0.893)

v6_e7_menon 10/400 -39552 (-39283) 79161 79351 0.883 (0.893)

v5_e4 52/100 -39305 (-39283) 78642 78751 0.941

v5_e5 67/100 -39328 (-39283) 78696 78832 0.565 (0.941)

v6_e5 6/400 -39397 (-39283) 78835 78970 0.38 (0.941)

v11_e12 12/100 -39275 78646 78971 0.919 (0.941)

v6_e7 74/100 -39257 78571 78761 0.859 (0.97)

v6_e6 29/100 -39313 (-39283) 78674 78837 0.97

v7_e7 8/100 -39345 (-39283) 78747 78937 0.639 (0.97)

Table 5.5: Initial and full fittings for the v4_e3 simulated recordings.
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K0

C1→O1 O1→C1 C2→C1 C1→C2 C3→C2 C2→C3

-7.7 -1.1 -25.6 -28.2 34.2 0.5

K1

C1→O1 O1→C1 C2→C1 C1→C2 C3→C2 C2→C3

8.8 2.5 88.9 -33.1 -47.9 -1.3

Table 5.6: Percentage difference in parameters between the best performing v4_e3 model
and the generative model

5.1.4 Simulated v5_e4 model

Table 5.7 shows results from the initial and full run of fittings for the simulated data gen-

erated by the v5_e4 model shown in figure 4.5a.

After the initial fittings eight models are selected for additional optimizations due to

insufficient results and 7 of the 19 models are selected as members of the candidate range.

After additional fittings the candidate topology range is unchanged. In addition we find

three of the configured topologies were unable to reach a termination criteria even after 1000

fittings, this included two models that were likely underparameterized and one that hit the

global peak LL. After 1000 fittings we abandon further fittings for reasons of feasibility.

5.1.4.1 Comparison to generative model

The LL for the generative v5_e4 model was -39348, slightly worse than the best v5_e4 fit

and better than the v4_e3 model, we cannot say for certain that v4_e3 was insufficient

to generate the data but v5_e4 had the lowest LL (and accordingly best AIC and BIC).

The max deviation indicates the correct topology is one of 10 models. Table 5.8 shows

the percentage difference between the parameters of the original and fitted model, again as

complexity increases so does the difference between the original and fitted model. Figures

5.8 and 5.9 show the top fitted v5_e4 model and the resulting fit.

5.1.5 Simulated v6_e5 model

The v6_e5 simulated data was the largest simulated data experiment, the initial and full

results are shown in table 5.9. The initial run suggests 10 configured topologies in the

candidate range that may contain the correct model, notably the generative topology is not

among them. The v6_e5 configured topology is excluded as being overparameterized, this

is not necessarily false as the model could potentially be completely reproduced by a simpler
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Results for v5_e4 simulated recordings at 100 generations
Topology # peak LL Best LL AIC BIC Max Deviation

*v3_e2_disconn 1/100 -79304 158624 158679 -

v2_e1 83/100 -104930 209869 209896 0.006

v3_e2 26/100 -45150 90316 90370 0.048

*v4_e5_o2 3/100 -45259 (-44308) 90559 90694 0.033 (0.051)

*v3_e3 4/100 -45194 (-45150) 90412 90493 0.051

*v4_e4_o2 1/100 -44308 88648 88756 - (0.051)

v4_e4_i1 11/100 -39501 79034 79142 0.273

*v5_e6_o2 9/100 -39627 79303 79465 0.275

v4_e3 87/100 -39472 78968 79049 0.303

*v4_e4 1/100 -39573 (-39472) 79179 79287 - (0.303)

*v6_e7_menon 1/100 -41365 (-39472) 82786 82976 - (0.303)

v8_e11 35/100 -39389 78866 79164 0.523

v6_e7 23/100 -39479 (-39317) 79014 79203 0.373 (0.857)

v5_e4 61/100 -39317 78666 78774 0.857

v5_e5 8/100 -39340 (-39317) 78720 78856 0.269 (0.857)

v6_e5 2/100 -39361 (-39317) 78762 78897 0.728 (0.857)

v11_e12 3/100 -40886 (-39317) 81868 82193 0.176 (0.857)

v6_e6 38/100 -39327 (-39317) 78702 78865 0.338 (0.857)

v7_e7 11/100 -39324 (-39317) 78704 78894 0.775 (0.857)

Full results for v5_e4 simulated recordings
Topology # peak LL Best LL AIC BIC Max Deviation

v2_e1 83/100 -104930 209869 209896 0.006

*v3_e2_disconn 4/1000 -79304 158624 158679 0.032

v3_e2 26/100 -45150 90316 90370 0.048

*v3_e3 4/1000 -45194 (-45150) 90412 90493 0.051

v4_e5_o2 16/400 -45129 (-44079) 90298 90434 0.074 (0.184)

v4_e4_o2 16/800 -44079 88191 88299 0.184

v5_e6_o2 17/200 -39627 79303 79465 0.275

v4_e3 87/100 -39472 78968 79049 0.303

v4_e4_i1 27/200 -39466 78964 79073 0.34

*v4_e4 5/1000 -39529 (-39472) 79091 79200 0.385

v8_e11 35/100 -39389 78866 79164 0.523

v6_e7_menon 8/800 -39581 (-39472) 79218 79408 0.827

v6_e7 23/100 -39479 (-39317) 79014 79203 0.373 (0.857)

v5_e4 61/100 -39317 78666 78774 0.857

v5_e5 19/200 -39340 (-39317) 78720 78856 0.431 (0.857)

v6_e5 2/100 -39361 (-39317) 78762 78897 0.728 (0.857)

v11_e12 3/100 -40886 (-39317) 81868 82193 0.176 (0.857)

v6_e6 38/100 -39327 (-39317) 78702 78865 0.338 (0.857)

v7_e7 11/100 -39324 (-39317) 78704 78894 0.775 (0.857)

Table 5.7: Initial and complete fittings for the v5_e4 simulated recordings
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K0

C1→O1 O1→C1 C2→C1 C1→C2 C3→C2 C2→C3 C4→C3 C3→C4

-33.1 -6.1 -21.2 -48.1 29.7 118.0 26.2 -59.2

K1

C1→O1 O1→C1 C2→C1 C1→C2 C3→C2 C2→C3 C4→C3 C3→C4

-0.7 6.2 109.3 58.3 11.7 38.5 -63.3 -42.9

Table 5.8: Percentage difference in rate constants between the best performing v5_e4 model
and the generative model

model.

Five configured topologies are selected for additional fittings based on the protocol.

In the full results even after running 1000 fittings several configured topologies were

unable to reach a stopping criteria. The 10 topologies in the candidate range. AIC and

BIC both select the v6_e6 topology which contains one additional edge from v6_e5, the

best model of this topology slightly exceeded the LL of the generative model (-39271) on

the same recording. The max deviation protocol presents a range of 10 potential configured

topologies. Significantly v6_e5 is not among the topologies selected by the max deviation

topology selection rule. It is precluded by v5_e4 which is well in the global peak LL

range and has a max deviation of 0.904. While it is possible the original v6_e5 model was

overparameterized (for instance if a v5_e4 model could have perfectly reproduced it) the

more likely interpretation is our method falsely detected v6_e5 as overparameterized. This

may be a limitation of the protocol where it may underestimate the necessary topology

complexity if the effects of that missing complexity are small, such as a model with two

missing states still being able to reach the global peak LL range.

5.1.5.1 Comparison to generative model

Table 5.10 shows the percentage difference between the parameters of the original model

and the top v6_e5 model. Figures 5.10 and 5.11 show the top fitted v6_e5 model and the

resulting fit.

5.1.6 Simulated Data Summary

On the simulated data we answered R1 in the sense that we produced a model with a LL

close to, or in excess of, the original model, for each topology.

On R2 we asked whether the candidate topologies would contain the original topol-

ogy, this too was answered affirmatively except for the v6_e5 simulated recording where it
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Results for v6_e5 simulated recordings at 100 generations
Topology # peak LL Best LL AIC BIC Max Deviation

*v4_e4_o2 1/100 -51957 103946 104054 -

*v3_e2_disconn 1/100 -105237 210490 210544 -

v2_e1 89/100 -139934 279876 279903 0.008

v3_e2 24/100 -54888 109793 109847 0.022

*v4_e5_o2 3/100 -52563 (-51957) 105167 105303 0.023

*v3_e3 5/100 -54914 (-54888) 109853 109935 0.033

v5_e6_o2 14/100 -40550 81149 81312 0.151

v4_e4_i1 21/100 -40988 82009 82117 0.191

v4_e3 99/100 -41046 82116 82197 0.202

*v4_e4 3/100 -41380 (-41046) 82793 82901 0.199 (0.202)

v8_e11 25/100 -39290 78668 78967 0.401

v6_e7_menon 7/100 -50069 (-41046) 100195 100385 0.895

v6_e7 7/100 -39552 (-39220) 79160 79350 0.899 (0.904)

v5_e4 64/100 -39305 78642 78750 0.904

v5_e5 16/100 -39262 78564 78700 0.407 (0.904)

v6_e5 4/100 -39448 (-39305) 78937 79073 0.851 (0.904)

v11_e12 1/100 -39492 (-39305) 79080 79406 - (0.904)

v6_e6 43/100 -39220 78489 78652 0.472 (0.904)

v7_e7 20/100 -39253 (-39220) 78562 78751 0.512 (0.904)

Full results for v6_e5 simulated recordings
Topology # peak LL Best LL AIC BIC Max Deviation

*v4_e4_o2 1/1000 -51957 103946 104054 -

v2_e1 89/100 -139934 279876 279903 0.008

v3_e2 24/100 -54888 109793 109847 0.022

*v3_e3 6/1000 -54914 (-54888) 109853 109935 0.033

*v4_e5_o2 5/1000 -52156 (-51957) 104353 104489 0.04

*v3_e2_disconn 8/1000 -104386 208788 208843 0.096

v5_e6_o2 17/200 -40550 81149 81312 0.189

v4_e4_i1 21/100 -40988 82009 82117 0.191

v4_e3 99/100 -41046 82116 82197 0.202

*v4_e4 6/1000 -41298 (-41046) 82628 82736 0.301

v8_e11 25/100 -39290 78668 78967 0.401

v6_e7_menon 7/100 -50069 (-41046) 100195 100385 0.895

v6_e7 7/100 -39552 (-39220) 79160 79350 0.899 (0.904)

v5_e4 64/100 -39305 78642 78750 0.904

v5_e5 16/100 -39262 78564 78700 0.407 (0.904)

v6_e5 4/100 -39448 (-39305) 78937 79073 0.851 (0.904)

v11_e12 1/100 -39492 (-39305) 79080 79406 - (0.904)

v6_e6 43/100 -39220 78489 78652 0.472 (0.904)

v7_e7 20/100 -39253 (-39220) 78562 78751 0.512 (0.904)

Table 5.9: Initial and complete fittings for the v6_e5 simulated recordings
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K0

C1→O1 O1→C1 C2→C1 C1→C2 C3→C2 C2→C3 C4→C3 C3→C4 C4→C5 C5→C4

130.5 -63.8 -72.5 12.6 -55.3 -76.6 0.6 -51.4 20.0 -96.8

K1

C1→O1 O1→C1 C2→C1 C1→C2 C3→C2 C2→C3 C4→C3 C3→C4 C4→C5 C5→C4

-95.8 76.6 458.6 -3.1 32.9 -26.8 -18.0 92.8 96.9 -711.5

Table 5.10: Percentage difference in rate constants between the best performing v5_e4
model and the generative model

identified the original topology as overparameterized.

In question R3 we asked the degree to which we could find parameters close to the

original model. What we found was that as the number of states increased the degree to

which the original parameters could be recovered diminished significantly. As shown in

table 5.10 both k0 and k1 parameters could vary from the original values by well over 100%.

One important question was whether a topology that fell short of the global peak LL

range would show a high max deviation. Across all five experiments no topology satisfied

this condition.

Another question was R8, whether we would detect a high max deviation in topologies

known to be overparameterized. This held true for all experiments except for the simplest

v2_e1 simulated recording. In all cases of a topology known to be overparameterized we

were able to detect a high max deviation. However, in several instances we only did so by

detecting the high max deviation though an ancestor topology. This is particularly evident

in the case of the v8_e11 topology for the v4_e3 simulated data shown in table 5.5. Even

189 models were insufficient to generate a max deviation of more than 0.468 despite the fact

that a max deviation of at least 0.893 was possible as shown by an ancestor topology.

Regarding question R4 other measures such as LL, AIC, and BIC were inconsistent at

detecting the proper topology. In only one of five experiments did LL select the proper

topology, AIC succeeded in two of five and BIC three of five.

5.2 Experimental Data

The optimization experiments involving the K+ channel recordings investigate question R5

about whether we will be able to find high quality fits for the experimental data. In addition

we also investigate R6, whether the candidate topologies will be similar for each channel

type regardless of Control or IL conditions. We also gather data for R7 through R9.
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5.2.1 Control A-Type

We performed an initial set of 100 fittings on the recordings of Control A-type channels.

The results of the initial fittings are shown in table 5.11. Thirteen topologies are below the

10 model threshold and two are selected for additional optimizations. As well the initial

fittings show thirteen configured topologies in the candidate range.

The additional rounds of optimizations reduced the number topologies in the candidate

range to seven. AIC and BIC both indicate the model with the best LL, the top v5_e6_o2

model. However, our max deviation metric indicates that this model is unnecessarily com-

plex.

The simplest model in the selected topologies belongs to the v3_e2 and v3_e2_disconn

topologies. If we inspect either of those topologies in detail they appear to be underparam-

eterized. More complex topologies in the candidate range such as v4_e4_o2 appear to fit

the data quite well. However, we intend to compare the selected model to another model

from the IL A-Type topology, and the only two topologies selected by each recording are

v3_e2 and v3_e2_disconn. So we plot the best v3_e2_disconn model against the recorded

data as shown in figure 5.13.

5.2.2 IL A-Type

Our initial run of the IL A-Type recordings consisted of 100 models and already showed

conclusive results. Specifically the v3_e2 configured topology both supplied a large number

of peak LL models and a large max deviation. Since v3_e2 also reached the global peak LL

it suggested that additional fittings for v3_e2, or any descendant models, were unnecessary.

Interestingly due to the high max deviation of the v3_e2 topology and the large number

of topologies descended from it only v3_e2_disconn required additional fittings which were

sufficient to push the max deviation into the medium range. The only topologies in the

candidate range are the v3_e2_disconn and v3_e2 topologies. This is consistent with the

Control A-Type results though that recording fostered a larger range of topologies.

Again AIC and BIC simply select the model with the best LL, a v6_e6 model which is

inconsistent with the v5_e6_o2 model from the Control recording. To showcase the quality

of the fits we choose the v3_e2_disconn model with the fit shown in figure 5.15.
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Results for Control A-Type recordings at 100 generations
Topology # peak LL Best LL AIC BIC Max Deviation

v2_e1 73/100 -97157 194323 194350 0.02

v3_e2_disconn 21/100 -47155 94326 94380 0.356

v3_e2 34/100 -47897 95811 95866 0.364

*v4_e5_o2 2/100 -46587 93215 93351 0.172 (0.408)

*v4_e4_o2 5/100 -46784 93601 93710 0.284 (0.408)

v3_e3 24/100 -47083 94190 94271 0.41

v4_e4_i1 18/100 -46715 93462 93570 0.681

v4_e3 10/100 -47839 95703 95784 0.686

v5_e4 11/100 -47861 (-47839) 95754 95863 0.587 (0.686)

v11_e12 2/100 -49738 (-47839) 99573 99898 0.501 (0.686)

v4_e4 9/100 -47003 94039 94148 0.677 (0.686)

v6_e7_menon 4/100 -46669 93394 93584 0.547 (0.686)

v6_e5 4/100 -47864 (-47839) 95768 95903 0.575 (0.686)

v8_e11 2/100 -48060 (-46489) 96209 96507 0.286 (0.915)

v5_e6_o2 6/100 -46489 93026 93188 0.915

v6_e7 7/100 -47756 (-46692) 95569 95759 0.941 (0.948)

v5_e5 8/100 -46692 93425 93561 0.948

v6_e6 4/100 -48274 (-46692) 96597 96760 0.937 (0.948)

v7_e7 6/100 -49131 (-46692) 98318 98508 0.904 (0.948)

Full results for Control A-Type recordings
Topology # peak LL Best LL AIC BIC Max Deviation

v2_e1 73/100 -97157 194323 194350 0.02

v3_e2_disconn 21/100 -47155 94326 94380 0.356

v3_e2 34/100 -47897 95811 95866 0.364

v4_e4_o2 13/1000 -46675 93383 93491 0.317 (0.408)

v3_e3 24/100 -47083 94190 94271 0.41

v4_e4_i1 18/100 -46715 93462 93570 0.681

v4_e3 10/100 -47839 95703 95784 0.686

v5_e4 11/100 -47861 (-47839) 95754 95863 0.587 (0.686)

v11_e12 2/100 -49738 (-47839) 99573 99898 0.501 (0.686)

v4_e4 9/100 -47003 94039 94148 0.677 (0.686)

v6_e7_menon 4/100 -46669 93394 93584 0.547 (0.686)

v6_e5 4/100 -47864 (-47839) 95768 95903 0.575 (0.686)

v4_e5_o2 14/1000 -46587 93215 93351 0.885

v8_e11 2/100 -48060 (-46489) 96209 96507 0.286 (0.915)

v5_e6_o2 6/100 -46489 93026 93188 0.915

v6_e7 7/100 -47756 (-46692) 95569 95759 0.941 (0.948)

v5_e5 8/100 -46692 93425 93561 0.948

v6_e6 4/100 -48274 (-46692) 96597 96760 0.937 (0.948)

v7_e7 6/100 -49131 (-46692) 98318 98508 0.904 (0.948)

Table 5.11: Initial and complete fittings of the Control A-Type recordings
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Results for IL A-Type recordings at 100 generations
Topology # peak LL Best LL AIC BIC Max Deviation

v2_e1 67/100 -40182 80372 80399 0.009

*v3_e2_disconn 3/100 -36176 72368 72422 0.226

v4_e4 17/100 -35744 71521 71629 0.681 (0.731)

v4_e3 11/100 -35897 71819 71901 0.731 (0.745)

v3_e2 15/100 -35951 71919 71974 0.745

v4_e5_o2 2/100 -38076 (-35951) 76193 76329 0.673 (0.745)

v3_e3 1/100 -35975 (-35951) 71975 72056 - (0.745)

v8_e11 1/100 -36010 (-35854) 72108 72406 - (0.745)

v4_e4_o2 2/100 -40812 (-35951) 81656 81764 0.458 (0.745)

v5_e6_o2 3/100 -35854 71756 71919 0.543 (0.745)

v5_e4 7/100 -36560 (-35897) 73153 73261 0.801

v11_e12 28/100 -36039 (-35897) 72175 72501 0.79 (0.801)

v6_e5 13/100 -37379 (-35897) 74798 74933 0.755 (0.801)

v6_e7_menon 16/100 -35612 71280 71470 0.836

v4_e4_i1 18/100 -35621 71274 71383 0.838

v5_e5 34/100 -35630 71300 71436 0.853

v6_e6 27/100 -35607 71263 71426 0.853

v7_e7 7/100 -36178 (-35607) 72413 72603 0.728 (0.853)

v6_e7 38/100 -35672 (-35607) 71401 71591 0.917

Full results for IL A-Type recordings
Topology # peak LL Best LL AIC BIC Max Deviation

v2_e1 67/100 -40182 80372 80399 0.009

v3_e2_disconn 10/200 -36176 72368 72422 0.346

v4_e4 17/100 -35744 71521 71629 0.681 (0.731)

v4_e3 11/100 -35897 71819 71901 0.731 (0.745)

v3_e2 15/100 -35951 71919 71974 0.745

v4_e5_o2 2/100 -38076 (-35951) 76193 76329 0.673 (0.745)

v3_e3 1/100 -35975 (-35951) 71975 72056 - (0.745)

v8_e11 1/100 -36010 (-35854) 72108 72406 - (0.745)

v4_e4_o2 2/100 -40812 (-35951) 81656 81764 0.458 (0.745)

v5_e6_o2 3/100 -35854 71756 71919 0.543 (0.745)

v5_e4 7/100 -36560 (-35897) 73153 73261 0.801

v11_e12 28/100 -36039 (-35897) 72175 72501 0.79 (0.801)

v6_e5 13/100 -37379 (-35897) 74798 74933 0.755 (0.801)

v6_e7_menon 16/100 -35612 71280 71470 0.836

v4_e4_i1 18/100 -35621 71274 71383 0.838

v5_e5 34/100 -35630 71300 71436 0.853

v6_e6 27/100 -35607 71263 71426 0.853

v7_e7 7/100 -36178 (-35607) 72413 72603 0.728 (0.853)

v6_e7 38/100 -35672 (-35607) 71401 71591 0.917

Table 5.12: Initial and complete fittings of the IL A-Type recordings
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5.2.3 A-Type Overview

To examine the effects of the Interleukin on the A-Type recordings we selected one model

from each recording in order to compare their behaviour. The only topologies in the can-

didate range for both recordings were v3_e2_disconn and v3_e2. Note that being selected

only means they are potentially the correct topology, the investigator should exercise judg-

ment in determining if they are proper fits.

In the case of the IL recording the v3_e2 and v3_e2_disconn topologies were the only

ones indicated, and accordingly the top model from both seem to properly reproduce the

data. The high level of noise in the IL recording may have have obscured more subtle effects.

On the control data the top models from the v3_e2 and v3_e2_disconn topologies, despite

reaching the global peak LL range, did not seem to adequately reproduce the data when we

inspected the fits in detail. To properly reproduce the data a model belonging to a more

complex topology within the selected range, such as v4_e4_o2, was required.

Unfortunately even if we generated high quality v4_e4_o2 models for the IL recording

(the few that were generated were of poor quality) such a comparison would be undercut

by the large max deviations that would be present in the fittings for the models fit to the

IL recording.

Instead we compare the state occupancy profiles of the best v3_e2_disconn model for

each recording. While the control model will be underparameterized from the perspective

of the control recording v3_e2_disconn is the only topology that reaches the global peak

LL range with a low or medium max deviation for both recordings. Even then the max

deviations of 0.356 and 0.209 should be interpreted in light of the fact that v3_e2_disconn

can not exhibit a max deviation over 0.5 due to the isomorphism in the closed states.

Figure 5.16 shows the two state occupancy plots, for visual clarity we confine the plots

to the final voltage sweep. The important difference is in the open states. The control

A-Type open state experiences strong activation followed by almost complete inactivation

(any remaining activation is indistinguishable from noise). In the IL recording activation

is quite mild and only partial inactivation occurs. The apparent reversal of the roles of C1

and C2 is misleading due to the isomorphic nature of the topology.

For this channel type R5 seems to be validated as we found many strong fits for each

channel type. We cannot confirm whether the correct topology was inside the candidate

range. However, the differences between the best fits inside the range and the best fits
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among topologies thought to be overparameterized were very mild. R6 is also confirmed

but with reservations. The candidate topology ranges were consistent but the topologies

that were in the section of overlap were likely underparameterized for the control topology.

The v3_e2 and v3_e2_disconn topologies may have been underparameterized for the IL

recording as well but could be distinguished due to the high level of noise. R7, regarding

whether topologies outside the global peak LL range would not have a high max deviation,

was validated for the one topology (v2_e1) that satisfied this criteria.

5.2.4 Control Delayed Rectifier

The dynamics of the Control Delayed Rectifier records were much more difficult than any

previous recordings. After an initial run of 100 optimizations only three configured topolo-

gies did not require additional fittings. We performed additional fittings though the difficulty

of the problem meant that in addition to needing many more fittings than earlier problems,

each fitting also took much longer as the optimization algorithms had trouble reaching their

termination criteria. Despite more than a month of CPU time we were unable to reach the

termination criteria described in table 3.4 for any additional configured topologies. Seeing

an exhaustive investigation was infeasible we decided to concentrate our computational re-

sources on the most interesting configured topologies. After bringing all selected topologies

up to 400 fittings we only continued for ones that either reached the global maxima, or we

suspected were complex enough to reach the global maxima, and configured topologies that

showed an interesting condition such as a poor peak LL but a high max deviation.

The results are sparse enough that the max deviation metric simply indicates the four

configured topologies that managed to reach a fitting in the peak LL range. We also note

that v6_e6, despite not reaching the global peak LL, has a max deviation of 0.661. This is

an interesting result because it contradicts our expectation that we should not see a high

max deviation and a result that does not reach the global peak LL. However, this is based

on only 6 results when our rules suggest 20 is necessary in such a situation. We may be

seeing a high max deviation simply because the models failed to reach the optimal peak LL

range for that configured topology.

But if the result is accurate and those six models do represent the optimal peak LL range

for that configured topology then they may represent another phenomena. Most likely as

the number of states increase we would expect the max deviation to increase since each
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state has less impact on the behaviour. For a 6 state model a max deviation of 0.661 may

properly represent a medium or even low max deviation. This is unfortunately a question

we were unable to adequately explore due to the difficulty of finding fits for the configured

topology in question.

5.2.5 IL Delayed Rectifier

The dynamics for the IL Delayed Rectifier recording may be even more difficult than the

Control recording. After an initial run of 100 fittings shown in table 5.14 only a single model

in a single configured topology is in the global peak LL range and only the v2_e1 topology

is exempt from further fittings. As a result we again embraced the strategy of targeted

additional fittings after 400 fittings.

During the extended fittings one interesting situation arose at 400 fittings with v4_e4_i12.

It had 8 qualifying models, a high max deviation of 0.673, and a LL of -56483 that did not

reach the global peak LL range. This allowed us another opportunity to test our prediction

that the true peak LL for that topology would be higher. After increasing the fittings to

800 we found the LL of the best model increased to -54624, this was sufficient to shift the

peak LL range and reduce the max deviation into the medium range.

In the full results v6_e7 also has a high max deviation and a result that does not reach

the global peak LL. However, we know those results do not reach the topology’s true peak

LL as known from its ancestor, so they do not violate our prediction that a topology below

the global peak LL will not show a high max deviation. Out of several thousand fittings

across our topologies the candidate range includes only two models from the v6_e7_menon

configured topology. We select the better of these two models to show in figure 5.20.

5.2.6 Delayed Rectifier Overview

The Delayed Rectifier recordings had the opposite problem from the A-Type. Instead of

multiple topologies and models to choose from there was only one topology that entered the

global peak LL range for both recordings, v6_e7_menon. Accordingly we compare the best

fitting from each recording in figure 5.21. The closed state occupancies are of little interest

since even if the topologies did have a physiological interpretation we do not have sufficient

results to know the size of the max deviations for those topologies, or even if we did enter
2This is not shown in table 5.14 as the table shows the full results where the topology was run to 800

models
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Results for Delayed Rectifier control recordings at 100 generations
Topology # peak LL Best LL AIC BIC Max Deviation

*v6_e7_menon 1/100 -41854 83765 83955 -

*v4_e4_o2 1/100 -47771 95574 95682 -

*v7_e7 1/100 -44453 88963 89152 -

*v4_e4_i1 1/100 -46967 93967 94075 -

v2_e1 99/100 -137192 274393 274420 0.009

v3_e2 70/100 -72217 144451 144505 0.037

*v4_e3 2/100 -48223 96470 96551 0.039

*v4_e4 1/100 -46842 93717 93826 - (0.039)

*v5_e5 1/100 -47814 (-46842) 95669 95805 - (0.039)

*v11_e12 1/100 -79856 (-48223) 159809 160134 - (0.039)

*v6_e5 3/100 -73440 (-48223) 146921 147056 0.063

*v3_e3 5/100 -50464 100953 101034 0.133

*v3_e2_disconn 3/100 -67700 135416 135471 0.216

*v5_e6_o2 5/100 -40637 81323 81486 0.365

*v5_e4 2/100 -64296 (-48223) 128625 128733 0.377

*v8_e11 4/100 -41452 (-40637) 82993 83291 0.463

*v4_e5_o2 2/100 -42550 85141 85276 0.551

*v6_e7 1/100 -50640 (-46603) 101336 101526 - (0.673)

*v6_e6 3/100 -46603 93255 93418 0.673

Full results for Delayed Rectifier control recordings
Topology # peak LL Best LL AIC BIC Max Deviation

*v6_e7_menon 1/800 -41854 83765 83955 -

v2_e1 99/100 -137192 274393 274420 0.009

v3_e2 70/100 -72217 144451 144505 0.037

*v4_e3 2/400 -48223 96470 96551 0.039

*v6_e5 1/400 -64594 (-48223) 129228 129363 - (0.039)

*v11_e12 1/400 -66669 (-48223) 133435 133760 - (0.039)

*v4_e4 2/400 -46842 93717 93826 0.089

*v4_e4_o2 3/400 -47524 95080 95188 0.105

*v3_e3 8/400 -50464 100953 101034 0.133

*v3_e2_disconn 3/100 -67700 135416 135471 0.216

v5_e6_o2 10/800 -40637 81323 81486 0.365

*v5_e4 7/400 -64296 (-48223) 128625 128733 0.38

*v4_e4_i1 5/400 -46100 92232 92341 0.542

*v8_e11 9/800 -41452 (-40637) 82993 83291 0.545

*v4_e5_o2 3/800 -42550 85141 85276 0.551

*v7_e7 1/800 -44453 88963 89152 - (0.643)

*v6_e7 1/400 -47761 (-45080) 95578 95768 - (0.667)

*v5_e5 7/1000 -45080 90201 90336 0.667

*v6_e6 6/1000 -45545 (-45080) 91139 91301 0.661 (0.667)

Table 5.13: Initial and complete fittings of the Delayed Rectifier Control recordings
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Results for Delayed Rectifier IL recordings at 100 generations
Topology # peak LL Best LL AIC BIC Max Deviation

*v5_e5 1/100 -49188 98416 98552 -

*v6_e7_menon 1/100 -45114 90284 90474 -

v2_e1 98/100 -397406 794821 794848 0.002

*v3_e2_disconn 3/100 -75976 151969 152023 0.004

*v5_e6_o2 1/100 -50676 101401 101564 - (0.023)

*v3_e2 3/100 -93088 186192 186247 0.13

*v3_e3 2/100 -61675 123375 123456 0.167

*v7_e7 2/100 -56214 (-49188) 112484 112674 0.21

*v4_e3 3/100 -58637 117298 117379 0.265

*v8_e11 2/100 -52809 (-50676) 105707 106006 0.27

*v4_e5_o2 1/100 -60555 (-52601) 121150 121285 - (0.283)

*v4_e4_o2 4/100 -52601 105235 105344 0.283

*v6_e5 4/100 -106507 (-58637) 213055 213191 0.296

*v5_e4 2/100 -69706 (-58637) 139444 139553 0.361

*v6_e6 2/100 -61651 (-49188) 123350 123513 0.403

*v4_e4 5/100 -61342 (-58637) 122716 122824 0.571

*v4_e4_i1 5/100 -56483 112999 113107 0.619

*v6_e7 4/100 -60163 (-49188) 120383 120573 0.646

*v11_e12 3/100 -72271 (-58637) 144639 144965 0.808

Full results for Delayed Rectifier IL recordings
Topology # peak LL Best LL AIC BIC Max Deviation

*v4_e4 1/400 -56227 112486 112595 -

*v11_e12 1/400 -55240 110576 110902 -

*v5_e6_o2 1/800 -48101 96251 96414 -

v2_e1 98/100 -397406 794821 794848 0.002

*v3_e2_disconn 4/800 -75976 151969 152023 0.019

*v3_e3 3/800 -57814 115652 115734 0.066

*v3_e2 3/800 -93088 186192 186247 0.13

*v4_e5_o2 2/1000 -52694 (-52601) 105428 105564 0.016 (0.283)

*v4_e4_o2 4/400 -52601 105235 105344 0.283

*v4_e3 8/1000 -58637 117298 117379 0.288

*v6_e5 2/400 -98474 (-58637) 196988 197123 0.316

*v4_e4_i1 2/800 -54624 109280 109388 0.326

*v5_e4 2/400 -69706 (-58637) 139444 139553 0.361

*v6_e7_menon 2/1000 -45114 90284 90474 0.423

*v8_e11 11/1000 -50523 (-48101) 101134 101433 0.558

*v5_e5 3/1000 -47818 95677 95813 0.609

*v6_e6 1/800 -52143 (-47818) 104334 104497 - (0.609)

*v7_e7 3/400 -54688 (-47818) 109433 109623 0.47 (0.609)

*v6_e7 8/1000 -54908 (-47818) 109873 110063 0.795

Table 5.14: Initial and complete fittings of the IL Delayed Rectifier recordings
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the true global peak LL range. The open state does bear more interest as it is based on the

data.

In both recordings the shape of the open state is quite similar throughout the stimulation

pulse except that the activation in the IL trace if far more subdued. The start of the

deactivation pulse from 350-400 ms is interesting because of how the open state deactivates.

Deactivation occurs at a faster rate in the control model than the IL model. The model

error in this section is not particularly high so it seems to be a real effect. However the

implications to the physiology should still be limited. The combination of model error and

recording noise obscure the magnitude of the effect. The control recording also has a slight

negative current that persists to the end of the deactivation section. This current is absent in

the IL recording. Whether this is an actual characteristic of the ion channels or a recording

artifact is unknown.

For this channel type R4 is only partially validated. Although we found adequate fits

there were only a handful. It is possible that a larger compliment of slightly more complex

topologies would have found a better set of results. R5 is again confirmed but with reser-

vations. The candidate topology ranges were consistent but the overall lack of peak LL fits

gives us low confidence in this conclusion. For R7 we never reached a termination criteria

for any topology, thus we lack sufficient data to make a determination.

5.2.7 Experimental Data Summary

With both A-Type recordings we were able to achieve a global peak LL using the same

simple topologies. The range of configured topologies suggested for the Control A-Type

recordings were larger than the IL A-Type but both results were consistent in the sense

that the IL estimate was a subset of the Control estimate.

Similarly the Delayed Rectifier recordings were also consistent, the single model identified

for the IL Delayed Rectifier recordings was one of the four models identified for the Control

Delayed Rectifier. However, the Delayed Rectifier recordings were characterized by the

difficulty of fitting the data. No configured topologies outside of the simplest achieved a

termination criteria in either experiment. For the handful of peak LL fittings we did achieve

with the Control Delayed Rectifier in table 5.11 the max deviations were in the medium

range. We do not know if that was the true max deviation as we did not even achieve the 10

model threshhold. However, we may have had more success if we included more descendants
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of those models.

One thing evident during the simulated data experiments was as we increased the com-

plexity of models used to generate the recordings the proportion of fitted models in the

peak LL range decreased. If the process generating the Delayed Rectifier recordings were

sufficiently complex than any configured topology would have a low probability of reaching

a global optima. Similarly in general, as the complexity of the configured topology we try to

fit increased the proportion of peak LL models generally decreased. For particularly com-

plex dynamics like the Delayed Rectifier recordings, fitting a configured topology complex

enough to reproduce them might be a very difficult task.

We suspect several strategies could help improve the fittings of difficult recordings such

as the Delayed Rectifier recordings. As we saw with the simulated data not all configured

topologies that achieve the global peak LL did so with the same success rate. If we could

find topologies that were better suited to the Delayed Rectifier dynamics than we may

have more luck in generating sufficient peak LL models to evaluate them. Another strategy

may involve a more thorough investigation of the optimizer profile. We used a profile

determined in section 3.3, but that profile was based on a single configured topology on a

single recording, a different set of parameters may have proven more effective for the Delayed

Rectifier recordings. On question R5 on the protocols applicability to the experimental data,

we either need a more appropriate set of topologies, or an optimization setup that generated

peak LL models at a higher rate.

5.2.8 Max Deviation Distributions

Regarding question R9, on how the deviations are distributed among a group of peak LL,

we consider model sets from across the full set of experiments.

More specifically, define max deviation MD(S) as a function that takes a set of models

S, finds a subset s ∈ S that represents the peak LL range of S, then returns the max

deviation of the set s.

Then if M is the set of all possible models for the configured topology then MD(M) is

the true max deviation for the configured topology.

Now if m is a subset of M generated by the optimizer then MD(m) is the measured

max deviation of that subset. The question is how well MD(m) functions as an estimator

of MD(M) and whether we can judge the accuracy of a particular estimate.
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Figure 5.1: The distribution of deviations between models for the two sets of peak LL models.
Since a deviation exists between every pair of models the total number of deviations for a
set of N models is

N−1
n=0 n, meaning 17578 deviations for the 189 v8_e11 models and 4560

for the 97 v4_e3 models.

Unfortunately our results do not suggest a straightforward way to make this estimate.

The most dramatic example is from the simulated v4_e3 recordings in section 5.1.3. The

histograms of the deviations for the v8_e11 model and its v4_e3 ancestor are shown in

figure 5.1. The v4_e3 topology is a subset of v8_e11 in three different ways, and there

exists solutions of high deviation v4_e3 models that are in the peak LL range of the v8_e11

configured topology. Yet despite this not one of the 189 v8_e11 models shows this alternative

solution. In fact viewing the histogram of the v4_e3 models we see very few high deviations

between [.7, .9), further analysis revealed these results to be caused by just two models.

If these models were not generated the measured max deviation would have been in the

medium range.

One way to measure the degree to which this is an issue is to look at configured topologies

where we have a change to observe an underestimated max deviation. Across all experiments

we look at the configured topologies where an ancestor shares the descendants peak LL range.

These represent all the instances where we could potentially detect an underestimated max

deviation.

It should be noted that the ancestor models would have underestimated the max de-

viation to some extent as well, and not necessarily to a similar degree since the ancestor

topologies are both simpler in a topological sense, but also less complex with respect to the

recording.

Out of 26 configured topologies that had a low or medium max deviation, an ancestor

which reached its peak LL range, and a minimum of 10 fittings, a total of 14 configured

topologies had an ancestor with a higher max deviation. Of these 14 models in 11 cases
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it was sufficient to push the max deviation into a higher category. In all 11 cases it was

a medium max deviation with a parent having a high max deviation. Among 31 models

with a minimum of 10 fittings where an ancestor in the peak LL range had a larger max

deviation the average gap was 0.21.

For configured topologies that did not reach the 10 model threshhold but had a low

or medium max deviation and an ancestor which reached its peak LL range there are 21

candidates. Of these 8 were underestimated and 7 were underestimated significantly enough

to change the category, one from low to medium and six from medium to high. Among 35

models with fewer than 10 fittings where an ancestor in the peak LL range had a larger max

deviation the average gap was 0.18.

The similarity between group above the 10 model threshhold and the one below seems

to suggest the number of fittings was not very influential, and to some extent that is correct.

On models we ran for more results the max deviation only increased by an average of 0.1.

But another important factor is that the average number of peak LL fittings per configured

topology varied significantly by recording. So when the child topology hit 10 models the

parent generally did as well, and when the child failed to hit 10 the parent had fewer fittings

as well. So while fewer fittings made the max deviation numbers less accurate the effect on

the child-parent difference generally canceled out.

It is difficult to do a general analysis of the max deviations because it is so dependent

on the particular recording and topology selection. But we do see evidence that this ap-

proach will underestimate max deviations by at least a category for a significant portion of

configured topologies.
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5.2.9 Plots from model fittings

Figure 5.2: Selected model for v2_e1 simu-
lated recordings. Rate parameters between
states are shown as ’k0 q k1’
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Figure 5.3: Selected fitting for v2_e1 simulated recordings

Figure 5.4: Selected model for v3_e2 simu-
lated recordings. Rate parameters between
states are shown as ’k0 q k1’

-4000

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0  50  100  150  200  250  300  350  400  450  500

C
u
rr

e
n
t 
(p

A
)

Time (ms)

Fit of v3_e2 on v3_e2 simulated recordings

-400

-300

-200

-100

 0

 100

 200

 300

 400

 500

 0  50  100  150  200  250  300  350  400  450  500

C
u
rr

e
n
t 
(p

A
)

Time (ms)

Residual of v3_e2 on v3_e2 simulated recordings

Figure 5.5: Selected fitting for v3_e2 simulated recordings

Figure 5.6: Selected model for v4_e3 simu-
lated recordings. Rate parameters between
states are shown as ’k0 q k1’
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Figure 5.7: Selected fitting for v4_e3 simulated recordings

Figure 5.8: Selected model for v5_e4 simu-
lated recordings. Rate parameters between
states are shown as ’k0 q k1’
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Figure 5.9: Selected fitting for v5_e4 simulated recordings

Figure 5.10: Selected model for v6_e5 sim-
ulated recordings. Rate parameters between
states are shown as ’k0 q k1’
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Figure 5.11: Selected fitting for v6_e5 simulated recordings
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Figure 5.12: Selected model for Control A-
Type recording. Rate parameters between
states are shown as ’k0 q k1’
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Figure 5.13: Selected fitting for Control A-Type recording

Figure 5.14: Selected model for IL A-Type
recording. Rate parameters between states
are shown as ’k0 q k1’
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Figure 5.15: Selected fitting for IL A-Type recording
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Figure 5.16: State occupancy plots of best v3_e2_disconn fittings for A-Type recordings.
Note that v3_e2_disconn is isomorphic so C1 and C2 can be switched.
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Figure 5.17: Selected model for Control De-
layed Rectified recording. Rate parameters
between states are shown as ’k0 q k1’
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Figure 5.18: Selected fitting for Control Delayed Rectified recording

Figure 5.19: Selected model for IL Delayed
Rectifier recording. Rate parameters between
states are shown as ’k0 q k1’
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Figure 5.20: Selected fitting for IL Delayed Rectifier recording
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Figure 5.21: State occupancy plots of selected v6_e7_menon fittings for Delayed Rectifier
recordings.
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Chapter 6

Conclusions

We have investigated the problem of fitting ion channel recordings using hidden Markov

models of undetermined topology. The major obstacle to producing high quality models

is the difficulty of the optimization procedure, translating into a high failure rate for the

optimization tools and a lack of certainty about the proximity of any optimization result

to the global maxima. The difficulty of this problem and the uncertainty around generated

optimization results was the major difficulty we were attempting to address.

Our strategy involved creating a single configuration to be used in each fitting and then

performing multiple optimizations across a range of preselected configured topologies. Yet

even with the simplest recordings the best fittings for a single configured topology spanned

a large range of LL values with models from ancestor topologies regularly outperforming

descendant topologies. Some configured topologies were clearly easier for the optimizer to

fit on the given recordings, but this may be more a characteristic of the optimizer than the

configured topologies, and in either case does not necessarily speak as to the ability of a

properly fitted model to fit the data.

This meant that to effectively assess the groups of models we needed an approach that

did more than look at the model with the best score. Instead we defined a selection criteria,

the peak LL range, that could identify a group of models that generated fits of the same

general quality. Within this group of models we applied a new metric, the max deviation.

The max deviation is a measure of the ability of a configured topology to show the same

observed behaviour using different behaviours within its hidden states. The motivation is

that if a model is at the limit of its expressive capability its hidden states will be constrained
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in what behaviour they can exhibit to produce an optimal output. Generally only having

one set of behaviours that delivers the optimal result for that topology will translate into a

low max deviation. Conversely an overparameterized topology will be able to generate the

optimal behaviour with multiple unique solutions. This will translate into a wide range of

behaviour in the internal states, resulting in a high max deviation.

The procedure we developed around this metric was designed to determine if a configured

topology had sufficient complexity to model the data based on a group of fittings from that

configured topology. Moreover it would identify a range of models estimated to contain the

configured topology most representative of the data.

This approach worked well on our experiments using simulated data. In four of five

experiments it produced estimates which included the model that generated the data in

question. On actual cell recordings the results were mixed. For both pairs of control and IL

experiments it indicated consistent groups of configured topologies for both channel types,

which would be expected if the IL treatment does not alter the underlying structure pro-

ducing the recordings. However, for the Delayed Rectifier channel recordings the difficulty

of the data was such that even with thousands of models we were unable to generate enough

quality fittings in each topology to make a meaningful application of the metric. A signif-

icant issue we did not address is the degree to which adding states decreases the influence

of each individual state, potentially increasing the ability of a highly constrained configured

topology to show a large max deviation.

To our knowledge this is a novel approach and has potential for further development. In

Future Work we outline several ideas that build upon our methods including a correction

for additional states, a method that does not require a pre-determined list of topologies,

and an investigation of the relationship to related topics such as variance.
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Chapter 7

Future Work

7.1 Improved Topology Exploration Protocol

One of the major limitations of our current approach is the limited and somewhat arbitrary

selection of topologies used. Instead of assembling a growing list of topologies one could

attempt a search through the topology space.

The main hurdle in a search is the breadth of the topology space and the difficulty in

properly evaluating the suitability of any single topology due to the high failure rate of

optimizations. By relying on the rules in table 3.4 we can ascertain whether a model has

sufficient complexity with more confidence, but the process is far too expensive to perform

any significant exploration of the model space.

Instead we suggest an approach that focuses on aggressively increasing complexity until

evidence of a global peak LL is reached. One strategy we suggest is an iterative approach

that starts with a simple v2_e1 model. At each level we take the best model and considers

all the descendants that can be generated by adding a single edge. We then start optimizing

each child topology while attempting to evaluate the suitability of the topology for opti-

mization. Ideally we can quickly determine the topologies that generate peak LL models at

the highest rate and concentrate only on those topologies until we reach 10 peak LL models.

If the models have a high max deviation it suggests we reached a global peak LL and may

terminate, otherwise we continue to increase the complexity.

If the approach is successful it could supply a handful of models of similar structure and

complexity that are all able to reproduce the data, and do so with topologies that are well
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suited to the optimization problem, relative to other topologies of similar complexity.

7.2 Max Deviation Oriented Optimization

One of the main difficulties in measuring max deviation is the extent to which we are reliant

on a random set of good models from the optimizer. We cannot solve this problem but we

may be able to reduce its influence if we can increase the variety of models generated by the

optimizer. One way to do this would be to include a max deviation related penalty in the

objective function.

Take the function D(A) that compute the largest deviation between a specific model A

and another model B in the set (as opposed to max deviation which takes the further step of

performing this calculation for all models A). If we include D(A) in the objective function

we can bias the optimizer toward models that show distinct behaviour and get closer to the

true max deviation with fewer models. If Peakcutoff is the cutoff level for peak models,

1.05 in our standard formulation, then a potential objective function for the optimization

would be:

LL− LL×D(A)× Peakcutoff (7.1)

This formulation will incentivize the optimizer to push D(A) towards 1 and generate

novel behaviours, potentially increasing the rate at which models in the peak LL range

with a high max deviation are generated. Note this objective function would be used for

optimization but peak LL models would still be determined by a pure LL objective function.

In addition to improving the generation rate of high max deviation models we suspect this

objective function could potentially improve the optimization process in specific scenarios.

Considering a maximization problem where the LL surface contains a large hill con-

taining a sub-optimal solution the optimizer regularly gets stuck in. The formulation in

equation 7.1 alters the surface, lowering well explored regions such as the hill and encour-

aging the optimizer to explore novel regions of behaviour. By biasing the optimizer away

from regions that were well explored by previous iterations we effectively improve territory

explored by the optimization process as a whole.
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7.3 Improved Optimizer Profile

We are aware of little research on the distribution of suboptimal fittings discussed in sec-

tion 3.3. There are multiple benefits that could arise from a better understanding of the

distribution of created models.

One of the first benefits is a better statistical model of the optimizer results could improve

ability to categorize the performance of different configurations and understand how those

results track between different configured topologies and data sets. When performing a large

series of optimizations an automated pre-optimization stage could evaluate the performance

of several configurations against the problem set and select the most appropriate one. A

more ambitious strategy would be to evaluate optimizer configurations as they generated

the results, effectively optimizing the optimization parameters themselves.

For either of these approaches to be feasible and useful one would need to develop a

relatively accurate statistical model of the results distribution from a modest set of sub-

optimal results.

Of particular interest is how the distribution of suboptimal results may contain clues

about the geography of the problem. In several instances our data suggested that a topology

would have a higher failure rate the more underparameterized it was. Therefore a high

failure rate in these simple topologies is may suggest the data requires at least two or more

additional states to potentially fit, or at least that these topologies may be discarded as

insufficient after fewer generations of fittings.

7.4 Relation to Bias and Variance

The bias-variance tradeoff is a major problem in modeling. Bias is the tendency of the

models to show a systemic error while variance is their tendency to give different estimates.

Ideally models should have both low bias and low variance, but in general as models grow

more complex bias decreases and variance increases.

More formally an estimator is a rule that attempts to create estimates of values from

a population based on samples from that population. The bias of the estimator is the

difference between the average estimate and the true value, so an unbiased estimator will

deliver estimates with the same mean as the actual data. While the variance refers to

the variance in the estimates that the estimator delivers. High variance implies that the
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estimator is overfitting the data or has underconstrained features, this is particularly an

issue on data the models have not been fitted against.

If we create an estimator g for function f given dataset {x, y} where y = f(x) + ϵ, with

ϵ being the measurement error. Then for every dataset {x, y} the estimator g(x) delivers

slightly different estimates. The mean estimator over all possible datasets is E[g(x)]. Bias

is defined as the error between the mean estimator and the true function.

bias = E[g(x)]− f(x)

If the mean estimator has no systemic difference from the true function it is said to be

unbiased.

The variance of the estimator is defined in the same fashion as the variance of any

function:

variance = E[(g(x)− E[g(x)])2

It is the average squared difference between any specific estimator g(x) and the mean

estimator E[g(x)].

Bias and variance are difficult to apply to ion channel modeling for several reasons. For

one they are typically estimated by with multiple datasets by either taking multiple samples

of the distribution or using cross-validation. But when modelling we typically only have

one recording and the data points are not independent so cross-validation is inappropriate.

Instead we would have to use other strategies such as creating synthetic protocols to see the

models operate on fresh data.

We also run into the same problem as we did with max deviation where a substantial

portion of the models are poorly fitted and provide a poor basis for analysis. We would

likely need a device similar to the peak LL range to create a subset of models available for

comparison. And even then we still have one of the problems we were trying to address

with max deviation since the selection of models will be skewed by what the optimizer is

best suited to generating.

We believe it would be worthwhile to investigate the applicability of bias and variance

to the problem of ion channel modeling in conjunction with an approach such as filtering

in the peak LL range. As well since both variance and max deviation generally increase

with overparameterization and work on a similar concept it would be useful to study their
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relationship in more detail.

7.5 Numerical Stability

Prior to using QUB Express our early investigations made extensive use of the simulation

environment NEURON [5]. When comparing model simulations between the two environ-

ments we found that implementing the model formulation described by QUB Express in

NEURON would lead to inconsistent results. Some models would behave almost identically

but others would beak down completely.

We suspect the source of the discrepancy is the calculation of the transition matrix Q

as described in section 2.6. The form of the equation to determine the transition rates

k0 ∗ exp(k1 ∗ Vm) is extremely sensitive to changes in Vm. Running models fit to the live

recordings from section 4.1.2 we discovered values in the Q matrix of 1019 or more. This

lead to an error when calculating the flow rate matrix equation 2.8.

Matrix exponentials are difficult to accurately calculate [31], the method used by QUB

Express uses an eigendecomposition of Q. However, the matrix generated by reversing

the decomposition of Q contains significant discrepancies. We attempted to improve the

stability of the models by adding a penalty term based on the size of the error to the LL

calculation used by QUB Express during optimization. This resulted in models showing

insufficient dynamic response to the voltage.

We believe it is important to understand the degree to which these issues exist in different

ion channel simulation environments based on Markov processes and to understand what

influence they may have on the reproducibility and interpretation of models in the literature.
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