Search
Skip to Search Results- 3Chondrocytes
- 3Cryopreservation
- 3Vitrification
- 2Articular cartilage
- 2Cryoprotectant agents
- 2Cryoprotective agents
-
2010
Law, G. K., Elliott, J. A., Forbes, J. F., Weiss, A. D., McGann, L. E., Jomha, N. M.
Large articular cartilage defects have proven difficult to treat and often result in osteoarthritis of the affected joint. Cryopreservation of articular cartilage can provide an increased supply of tissues for osteochondral allograft but cryoprotective agents are required; however, few studies...
-
2012
Law, G. K., Forbes, J. F., Elliott, J. A., McGann, L. E., Jomha, N. M., Prasad, V., Almansoori, K. A.
Background Vitrification is a method of cryopreservation by which cells and tissues can be preserved at low temperatures using cryoprotective agents (CPAs) at high concentrations (typically ⩾6.0 M) to limit the harmful effects of ice crystals that can form during cooling processes. However, at...
-
2014
Prasad, V., Laouar, L., Jomha, N. M., McGann, L. E., Fahmy, M. D., Almansoori, K. A., Elliott, J. A.
Vitrification of articular cartilage (AC) could enhance tissue availability but requires high concentrations of cyroprotective agents (CPAs). This study investigated relative injuries caused by commonly used CPAs. We hypothesized that the in situ chondrocyte dose–injury relationships of five...
-
Statistical prediction of the vitrifiability and glass stability of multi-component cryoprotective agent solutions.
Download2010
Forbes, J. F., Law, G. K., Weiss, A. D., Scheuerman, A., McGann, L. E., Elliott, J. A., Jomha, N. M.
Long-term biologic storage of articular cartilage has proven elusive due to cellular degradation over time or acute damage during attempts at cryopreservation. Vitrification is one option that may result in successful cryopreservation but difficulty with cryoprotective agent (CPA) toxicity at...