Search
Skip to Search Results- 6Chen, Guanqun
- 5Xu, Yang
- 4Caldo, Kristian Mark P.
- 4Weselake, Randall J.
- 3Ozga, Jocelyn
- 2Falarz, Lucas
- 6DGAT
- 2Linum usitatissimum
- 2Saccharomyces cerevisiae
- 2Triacylglycerol
- 2Triacylglycerol biosynthesis
- 1Acyltransferase
-
Characterization of Type-2 Diacylglycerol Acyltransferases in the Green Microalga Chromochloris zofingiensis
Download2018-12-13
Xu, Yang, Falarz, Lucas, Chen, Guanqun
Diacylglycerol acyltransferase (DGAT) catalyzes the last and committed step of the acyl-CoA-dependent TAG biosynthesis and thus is a key target for manipulating oil production in microalgae. The microalga Chromochloris zofingiensis can accumulate substantial amounts of triacylglycerol (TAG) and...
-
In vivo and in vitro evidence for biochemical coupling of reactions catalyzed by lysophosphatidylcholine acyltransferase and diacyglycerol acyltransferase
Download2015
Greer, Michael S., Pan, Xue, Weselake, Randall J., Chen, Guanqun, Zou, Jitao, Caldo, Kristian Mark P., Kazachkov, Michael
Seed oils of flax (Linum usitatissimum L.) and many other plant species contain substantial amounts of polyunsaturated fatty acids (PUFAs). Phosphatidylcholine (PC) is the major site for PUFA synthesis. The exact mechanisms of how these PUFAs are channeled from PC into triacylglycerol (TAG) needs...
-
Kinetic improvement of an algal diacylglycerol acyltransferase 1 via fusion with an acyl-CoA binding protein
Download2020-01-01
Xu, Yang, Caldo, Kristian Mark P., Falarz, Lucas, Jayawardhane, Kethmi, Chen, Guanqun
SUMMARY Microalgal oils in the form of triacylglycerols (TAGs) are broadly used as nutritional supplements and biofuels. Diacylglycerol acyltransferase (DGAT) catalyzes the final step of acyl-CoA-dependent biosynthesis of TAG and is considered a key target for manipulating oil production....
-
Multiple mechanisms contribute to increased neutral lipid accumulation in yeast producing recombinant variants of plant diacylglycerol acyltransferase 1
Download2017-09-01
Shah, Saleh, Xu, Yang, Ramakrishnan, Geetha, Caldo, Kristian Mark P., Chen, Guanqun, Ozga, Jocelyn, Greer, Michael S., Lemieux, M. Joanne, Wu, Limin, Weselake, Randall J.
The apparent bottleneck in the accumulation of oil during seed development in some oleaginous plant species is the formation of triacylglycerol (TAG) by the acyl-CoA-dependent acylation of sn-1,2- diacylglycerol catalyzed by diacylglycerol acyltransferase (DGAT, EC 2.3.1.20). Improving DGAT...
-
Properties and Biotechnological Applications of Acyl‐CoA:diacylglycerol Acyltransferase and Phospholipid:diacylglycerol Acyltransferase from Terrestrial Plants and Microalgae
Download2018-07-30
Xu, Yang, Caldo, Kristian Mark P., Pal‐Nath, Dipasmita, Ozga, Jocelyn, Lemieux, M. Joanne, Weselake, Randall J., Chen, Guanqun
Triacylglycerol (TAG) is the major storage lipid in most terrestrial plants and microalgae, and has great nutritional and industrial value. Since the demand for vegetable oil is consistently increasing, numerous studies have been focused on improving the TAG content and modifying the fatty‐acid...
-
Substrate preferences of long-chain acyl-CoA synthetase and diacylglycerol acyltransferase contribute to enrichment of flax seed oil with a-linolenic acid
Download2018-04-01
Xu, Yang, Holic, Roman, Li, Darren, Pan, Xue, Mietkiewska, Elzbieta, Chen, Guanqun, Ozga, Jocelyn, Weselake, Randall J.
Seed oil from flax (Linum usitatissimum) is enriched in a-linolenic acid (ALA; 18:3?9cis,12cis,15cis), but the biochemical processes underlying the enrichment of flax seed oil with this polyunsaturated fatty acid are not fully elucidated. Here, a potential process involving the catalytic actions...