This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
- 14Schuurmans, Dale (Computing Science)
- 4Szepesvari, Csaba (Computing Science)
- 3Bowling, Michael (Computing Science)
- 2Greiner, Russell (Computing Science)
- 1Bowling, Mike (Computing Science)
- 1Müller, Martin (Computing Science)
- 5Machine learning
- 3Reinforcement Learning
- 2Machine Learning
- 1Abstractions
- 1Agent evaluation
- 1Artificial intelligence
-
Fall 2021
The optimization of non-convex objective functions is a topic of central interest in machine learning. Remarkably, it has recently been shown that simple gradient-based optimization can achieve globally optimal solutions in important non-convex problems that arise in machine learning, including...
-
Spring 2015
This dissertation explores regularized factor models as a simple unification of machine learn- ing problems, with a focus on algorithmic development within this known formalism. The main contributions are (1) the development of generic, efficient algorithms for a subclass of regularized...
-
Spring 2017
Co-embedding is the process of mapping elements from multiple sets into a common latent space, which can be exploited to infer element-wise associations by considering the geometric proximity of their embeddings. Such an approach underlies the state of the art for link prediction, relation...
-
Spring 2021
This dissertation demonstrates how to utilize data collected previously from different sources to facilitate learning and inference for a target task. Learning from scratch for a target task or environment can be expensive and time-consuming. To address this problem, we make three contributions...