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Abstract

The optimization of non-convex objective functions is a topic of central inter-

est in machine learning. Remarkably, it has recently been shown that simple

gradient-based optimization can achieve globally optimal solutions in impor-

tant non-convex problems that arise in machine learning, including policy gra-

dient optimization in reinforcement learning (RL), generalized linear model

training in supervised learning (SL), and over-parameterized neural network

training in deep learning. However, previous work generally relies on uniform

properties of the optimization landscape, ignoring relevant problem structure,

which limits both the applicability and strength of the theoretical results that

can be obtained.

In this thesis, motivated by fundamental problems in RL and SL, I inves-

tigate a non-uniform analysis for non-convex optimization.

Chapter 2 studies policy gradient optimization (PG) in RL and resolves

three open problems in the literature by introducing a new analysis tool called

non-uniform  Lojasiewicz inequality (N L). In particular, this chapter shows

that (i) PG optimization with a softmax parameterization converges to a

globally optimal policy at a O(1/t) rate; (ii) adding entropy regularization

improves the convergence rate of PG to O(e−c·t) (where c > 0) to a regular-

ized optimal policy; and (iii) an Ω(1/t) lower bound can be established on the

worst case convergence of softmax PG. The separation of rates is further ex-

plained using the concept of the N L degree. These results provide a theoretical

explanation of the optimization advantage of entropy regularization.

ii



Next, Chapter 3 reconsiders a common policy parameterization used in

machine learning: the softmax transform. Two negative results are estab-

lished for using the softmax transform in gradient based optimization. In par-

ticular, this chapter shows that (i) optimizing any expectation with respect

to the softmax must exhibit sensitivity to parameter initialization (“softmax

gravity well”); and (ii) optimizing log-probabilities under the softmax must

exhibit slow convergence (“softmax damping”). I propose an alternative es-

cort mapping that demonstrates better optimization properties for PG and

cross entropy minimization in SL. This analysis is based on the N L inequality

and a new non-uniform smoothness (NS) property. These difficulties with the

softmax and the advantage of the escort transform are further explained by

the concept of the N L coefficient.

Chapter 4 then introduces a non-uniform analysis that combines the non-

uniform smoothness (NS) property and the N L inequality, using the combi-

nation to more accurately characterize non-convex objective landscapes and

inspire new geometry-aware gradient descent methods. One interesting result

for general optimization is that geometry-aware first-order methods can con-

verge to global optimality faster than the classical Ω(1/t2) lower bounds if one

additionally considers these non-uniform properties. This chapter then applies

new geometry-aware first-order methods to PG and generalized linear model

training (GLM). For PG, it is shown that normalizing gradient ascent can

accelerate convergence to O(e−c·t) for some c > 0, while incurring less over-

head than existing algorithms. For GLM, it is shown that geometry-aware

normalized gradient descent can also achieve a linear convergence rate, which

significantly improves the best known results. Additionally, I show that these

geometry-aware gradient descent methods can escape landscape plateaus faster

than standard gradient descent.

Finally, Chapter 5 extends the analysis to stochastic policy optimization,
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and shows that the preferability of optimization methods depends critically on

whether stochastic versus exact gradients are used. By introducing the concept

of committal rate, this chapter contributes two key findings: (i) identifying a

criterion for determining almost sure global convergence; and (ii) revealing

an inherent trade-off between exploiting geometry to accelerate convergence

versus achieving almost sure global optimality. This committal rate theory is

then used to explain why practical policy optimization methods are sensitive

to random initialization, leading to the development of an ensemble method

that can be guaranteed to achieve near-optimal solutions with high probability.
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One’s destiny, of course, depends on self-struggle, but also takes into account

the historical schedule.

– Jiang Zemin
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Chapter 1

Introduction

Optimization plays a central role in machine learning: many machine learning

problems can be formulated as optimizing some form of objective function.

During the past few decades, the focus of machine learning has shifted from

the classical, well developed topic of convex analysis (Boyd et al., 2004; Nes-

terov, 2018; Rockafellar, 2015) to non-convex optimization. The key reason

is that current machine learning techniques, such as deep learning (DL) (Le-

Cun et al., 2015) and reinforcement learning (RL) (Sutton and Barto, 2018),

almost always involve optimizing a non-convex objective. Deep neural net-

works achieve outstanding performance in practice, but have resisted a clear

theoretical understanding from the perspectives of optimization (Sun, 2020)

and generalization (Zhang et al., 2016), while value based objectives in RL are

naturally non-concave in complex decision processes.

Despite these challenges, there have been a number of exciting recent ad-

vances in non-convex optimization research. In particular, Ge et al. (2016)

study the matrix completion problem and find that it has no spurious lo-

cal minima; i.e., all local minima achieve the globally minimal loss value.

Kawaguchi (2016) have shown that deep linear network training also avoids

bad local minima. Allen-Zhu et al. (2019), Du et al. (2018), and Zou et al.

(2020) proved that, with high probability over random initializations, (stochas-

tic) gradient descent methods converge to globally optimal solutions in over-

parameterized neural networks. Agarwal et al. (2019) and Bhandari and Russo

(2019) showed that policy gradient based methods converge to a globally op-

1



timal policy in tabular settings.

1.1 Examples

Although this recent progress is impressive, there still exist many open prob-

lems, and the understanding and theoretical justification for many empirically

successful methods remains lacking. I will use two important examples to

illustrate many of the key findings in this thesis.

Example 1 (Policy gradient (PG) optimization). Given a reward vector r ∈

RK and a probability distribution πθ over a K-dimensional action space [K] :=

{1, 2, . . . , K}, parameterized by θ ∈ Θ where πθ(a) ≥ 0 and
∑

a∈[K] πθ(a) = 1,

we would like to maximize the expected reward of πθ,

max
θ:[K]→R

E
a∼πθ

[r(a)], (1.1)

by performing gradient ascent updates on θ, i.e., for all t ≥ 1,

θt+1(a)← θt(a) + η ·
dπ>θtr

dθt
, ∀a ∈ [K]. (1.2)

The policy optimization problem in Example 1, also known as Policy gradi-

ent (PG), is a representative problem in reinforcement learning (RL). Under-

standing the optimization behaviour of gradient descent in this scenario is of

foundational significance to understanding many RL methods, such as policy

search and actor critic methods. However, the convergence properties of PG

using standard parameterizations remains underdeveloped.

Example 2 (Generalized linear model (GLM) training). Consider a finite

dataset D = {(xi, yi)}i∈[N ], where yi ∈ [0, 1] is a target prediction and xi is a

data point. A conditional prediction πi of yi given xi can be expressed in terms

of a linear feature mapping φ : xi 7→ φi ∈ Rd and parameters θ ∈ Rd, via

πi = σ(φ>i θ), (1.3)

where σ is a certain non-linear transform. We would like to learn a good

predictor by minimizing a loss function with gradient descent, i.e.,

min
θ
L(θ) = min

θ∈Rd

1

N
·
N∑
i=1

(πi − yi)2. (1.4)

2



This second example, the generalized linear model (GLM) training of Ex-

ample 2, is widely applied in supervised learning (SL). However, the opti-

mization behavior of gradient descent is still not thoroughly understood for

different combinations of non-linear transforms and loss functions. There also

remain questions about whether better performing methods can be devised for

this problem.

1.2 Approach and Overview

The thesis begins by carefully analyzing Example 1. I propose a new analyti-

cal tool, the non-uniform  Lojasiewicz (N L) inequality, motivated by the failure

of standard techniques to fully characterize gradient descent optimization for

this problem. These alternative N L inequalities are used to resolve three open

problems in the PG optimization literature, which provides a new understand-

ing and explanation for the optimization advantage of entropy regularization.

These results are presented in Chapter 2.

I then further develop these novel N L inequality tools to reveal negative

results to accompany the above findings. In particular, several optimization

disadvantages of the standard softmax transform are revealed, both for the RL

and SL settings, using the concept of N L coefficient to provide explanations

and solutions. This part is presented in Chapter 3.

I then expand the above negative results by introducing another important

new concept, the non-uniform smoothness (NS) property. By combining the

N L and NS properties, a novel geometry-aware first-order method is developed,

with a corresponding non-uniform analysis. This analysis applies to general

non-convex optimization, PG optimization, and GLM training, while signifi-

cantly improving existing results and mitigating negative aspects of existing

algorithms. This part is presented in Chapter 4.

Finally, I extend the analysis to the stochastic setting, where an anomaly

is observed that faster policy gradient algorithms can become dominated by

slower counterparts. To understand this phenomenon, I introduce a new con-

cept called the committal rate to explain the results, and reveal an inherent

3



trade-off between convergence speed and almost sure global convergence, which

characterizes the fundamental difficulty of stochastic policy optimization. This

part is presented in Chapter 5.

1.3 Contributions

The main contributions of this dissertation are the following.

Non-uniform properties. This thesis introduces two new non-uniform prop-

erties, the non-uniform smoothness property (NS) and the non-uniform  Lojasiewicz

(N L) inequality, to characterize non-convex objective landscapes. These prop-

erties generalize and unify existing concepts in the optimization literature. I

apply these to fundamental problems in reinforcement learning and supervised

learning, and show that the key quantities in these properties—the NS coeffi-

cient, N L degree, and N L coefficient—can be used to explain the optimization

advantages of regularization, parameterzation, surrogate objectives, and label

smoothing. This work was published as (Mei et al., 2021b).

Non-uniform analysis and geometry-aware first-order methods. The

thesis also introduces a non-uniform analysis for non-convex optimization, and

a novel family of geometry-aware normalized gradient descent (GNGD) meth-

ods. By exploiting non-uniform landscape information, GNGD can be shown

to achieve linear convergence rates of O(e−c·t) (where c > 0), which overcomes

the classical Ω(1/t2) lower bounds for convex-smooth optimization. These re-

sults broaden our fundamental knowledge of the set of objectives that admit

efficient global optimization. This work was published as (Mei et al., 2021b).

Softmax policy gradient (PG) convergence analysis. Next, the the-

sis analyzes softmax policy gradient (PG) methods using the non-uniform

 Lojasiewicz inequality (N L). Three open problems are resolved by providing

value function objectives that satisfy the N L inequalities. First, it is shown

that softmax PG converges to a globally optimal policy with rate O(1/t).

Second, entropy regularized PG is shown to converge to a regularized optimal
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policy at a linear rate of O(e−c·t). Finally, unregularized PG is shown to follow

a rate lower bound of Ω(1/t). These results reveal an optimization advantage

of entropy regularization: it accelerates the convergence of PG methods. This

acceleration is further explained using the concept of N L degree, a key quantity

in the N L inequality. This work was published as (Mei et al., 2020b).

Softmax gravity well phenomenon and the escort transform for PG.

Using empirical and theoretical results, the thesis illustrates a fundamental

disadvantage of the common practice in machine learning of using the softmax

transform. Optimizing an expectation over softmax probabilities is shown

to exhibit initialization sensitivity and slow escaping behavior from landscape

plateaus. This phenomenon is referred to as the “softmax gravity well (SGW)”

for PG. An alternative escort transform is proposed, and the resulting escort

PG methods provably mitigate the SGW problem. The difficulties with soft-

max and the effectiveness of the escort transform are both explained using

the concept of N L coefficient, another key quantity in the N L inequality. This

work was published as (Mei et al., 2020a) and received an oral presentation.

Softmax damping phenomenon and escort cross entropy minimiza-

tion. A disadvantage of using the softmax transform in cross entropy min-

imization, called “softmax damping”, is revealed. Here it is shown that the

convergence rate degenerates from O(e−c·t) to O(1/t) when minimizing the

log-probabilities of a softmax transform in supervised learning. Using the es-

cort transform for cross entropy minimization provably achieves fast linear

convergence rates. These results are explained by observing that vanishing

N L coefficients lead to decreasing N L degrees, an interplay between the two

key quantities in the N L inequality. This work was published as part of the

same paper (Mei et al., 2020a) above.

Geometry-aware normalized PG. A geometry-aware normalized gradi-

ent descent (GNGD) method is developed and applied to PG optimization

in RL, where it is shown that the resulting geometry-aware normalized PG
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(GNPG) method achieves a global linear convergence rate of O(e−c·t) with-

out using regularization or introducing an arg max operation in each itera-

tion. This result breaks the Ω(1/t) lower bound of standard softmax PG with

bounded learning rate of O(1). The key reason is that the policy value function

satisfies the non-uniform smoothness (NS) property, while the NS coefficient is

exactly the PG norm. This allows GNPG to better leverage the N L inequality

compared to standard PG, accelerating both its convergence rate and escap-

ing behavior from landscape plateaus. This work was published as (Mei et al.,

2021b).

Geometry-aware normalization in generalized linear model training.

The geometry-aware normalized gradient descent (GNGD) method is also ap-

plied to generalized linear model (GLM) training in supervised learning. It

is shown that GNGD achieves a global linear convergence rate of O(e−c·t) for

minimizing the mean squared error (MSE), which significantly improves the

best existing result of O(1/
√
t). These results are achieved by observing that

MSE in a GLM satisfies a new N L inequality and NS property, which enables

both gradient descent (GD) and GNGD to achieve fast convergence. Using

the NS and N L properties, I further show that GNGD escapes from land-

scape plateaus strictly faster than GD, providing new understanding of using

geometry-aware normalization in GLM training. This work was published as

part of the same paper (Mei et al., 2021b) above.

Stochastic policy optimization and committal rate theory. Finally,

the previous results are extended to the stochastic setting, revealing an appar-

ent anomaly that the preferability of policy optimization algorithms changes

dramatically depending on whether true versus on-policy stochastic gradients

are considered. To explain the anomaly, the concept of committal rate is

introduced, which serves as a criterion for determining almost sure global con-

vergence. Using the committal rate theory, the thesis uncovers a fundamental

trade-off between leveraging geometry to accelerate convergence and achiev-

ing almost sure global convergence; in particular, no uninformed algorithm can
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improve the O(1/t) convergence rate without incurring a positive probability

of failure (i.e. diverging or converging to a sub-optimal stationary point). This

finding explains the sensitivity to random initialization in practical policy opti-

mization algorithms, which motivates the development of an ensemble method

that can achieve fast convergence to global optima with high probability. This

work has been submitted for review as (Mei et al., 2021a).

1.3.1 Publications

The papers related to the topics covered in this dissertation are as follows.

• Jincheng Mei, Chenjun Xiao, Ruitong Huang, Dale Schuurmans, and

Martin Müller. On Principled Entropy Exploration in Policy Optimiza-

tion. IJCAI 2019. See Mei et al. (2019)

• Jincheng Mei, Chenjun Xiao, Csaba Szepesvári, and Dale Schuurmans.

On the Global Convergence Rates of Softmax Policy Gradient Methods.

ICML 2020. See Mei et al. (2020b)

• Jincheng Mei, Chenjun Xiao, Bo Dai, Lihong Li, Csaba Szepesvári, and

Dale Schuurmans. Escaping the Gravitational Pull of Softmax. NeurIPS

2020, oral. See Mei et al. (2020a)

• Jincheng Mei∗, Yue Gao∗, Bo Dai, Csaba Szepesvári, and Dale Schuur-

mans. Leveraging Non-uniformity in First-order Non-convex Optimiza-

tion. ICML 2021. See Mei et al. (2021b)

• Jincheng Mei, Bo Dai, Chenjun Xiao, Csaba Szepesvári†, and Dale

Schuurmans†. Understanding the Effect of Stochasticity in Policy Opti-

mization. Preprint 2021 (under review). See Mei et al. (2021a).

• ∗ indicates equal contribution, and † indicates equal advising.
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Chapter 2

Global Convergence Rates of
Softmax Policy Gradient

We start by considering a special fundamental non-convex optimization prob-

lem, i.e., policy gradient optimization in reinforcement learning. It is necessary

to introduce a new analysis tool which we call non-uniform  Lojasiewicz inequal-

ity, to resolve several open problems in the reinforcement learning literature.

The results in this chapter appeared in Mei et al. (2020b).

2.1 Introduction

The policy gradient is one of the most foundational concepts in Reinforcement

Learning (RL) (Sutton and Barto, 2018), lying at the core of policy-search

and actor-critic methods. The policy gradient theorem (Sutton et al., 2000),

in particular, establishes a general foundation for policy search methods, by

showing that an unbiased estimate of the gradient of a policy’s expected return

with respect to its parameters can still be recovered from an approximate value

function (provided the approximation is a best fit). As an approach to RL,

policy gradient ascent is particularly appealing due to its simplicity and direct-

ness: it targets the quantity of interest, it is inherently sound given appropriate

step size control, and it can be readily combined with network function ap-

proximation to achieve effective empirical performance (e.g., Schulman et al.

(2015) and Schulman et al. (2017)).

Despite the prevalence and importance of policy optimization in RL, the
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theoretical understanding of the policy gradient method has, until recently,

been severely limited. A key barrier to understanding is the inherent non-

convexity of the value landscape with respect to standard policy parametriza-

tions. As a result, little has been known about the global convergence behavior

of policy gradient methods. Recently, important new progress in understand-

ing the convergence behavior of policy gradient has been achieved. In this

dissertation we will restrict ourselves to the tabular setting, we analyze the

part of the literature that also deals with this setting. While the tabular setting

is clearly limiting, this is the setting where so far the cleanest results have been

achieved and understanding this setting is a necessary first step towards the

bigger problem of understanding RL algorithms. Returning to the discussion

of recent work, Fazel et al. (2018) showed that gradient based methods achieve

global convergence in special linear quadratic regulator settings. For general

Markov decision processes, Bhandari and Russo (2019) showed that, with di-

rect parametrization, projected gradient ascent on the simplex does not suffer

from spurious local optima. In concurrent work, Agarwal et al. (2019) showed

that (i) with direct parametrization, projected gradient ascent converges at

rate O(1/
√
t) to a global optimum; and (ii) with softmax parametrization,

policy gradient converges asymptotically. Agarwal et al. (2019) also analyze

other variants of policy gradient, and show that policy gradient with rela-

tive entropy regularization converges at rate O(1/
√
t), natural policy gradient

(mirror descent) converges at rate O(1/t), and given a “compatible” function

approximation (thus, going beyond the tabular case) natural policy gradient

converges at rate O(1/
√
t). Shani et al. (2020) obtains the slower rate O(1/

√
t)

for mirror descent. They also proposed a variant that adds entropy regular-

ization and prove a rate of O(1/t) for this modified problem.

Despite these advances, many open questions remain in understanding the

behavior of policy gradient methods, even in the tabular setting and even

when the true gradient is available in the updates. In this chapter, we provide

answers to the following three questions left open by previous work in this

area:

(i) What is the convergence rate of policy gradient methods with softmax
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parametrization? The best previous result, due to Agarwal et al. (2019),

established asymptotic convergence but gave no rates.

(ii) What is the convergence rate of entropy regularized softmax policy gra-

dient? Figuring out the answer to this question was explicitly stated as

an open problem by Agarwal et al. (2019).

(iii) Empirical results suggest that entropy helps optimization (Ahmed et

al., 2019). Can this empirical observation be turned into a rigorous

theoretical result?1

In this chapter, we answer the above three open questions and our contri-

butions are summarized as follows.

First, we prove that with the true gradient, policy gradient methods with

a softmax parametrization converge to the optimal policy at a O(1/t) rate,

with constants depending on the problem and initialization. This result sig-

nificantly strengthens the recent asymptotic convergence results of Agarwal

et al. (2019). Our analysis relies on two novel findings: (i) that softmax policy

gradient satisfies what we call a non-uniform  Lojasiewicz-type inequality with

the constant in the inequality depending on the optimal action probability

under the current policy; (ii) the minimum probability of an optimal action

during optimization can be bounded in terms of its initial value. Combining

these two findings, with a few other properties we describe, it can be shown

that softmax policy gradient method achieves a O(1/t) convergence rate.

Second, we analyze entropy regularized policy gradient and show that it

enjoys a linear convergence rate of O(e−t) toward the softmax optimal policy,

which is significantly faster than that of the unregularized version. This result

resolves an open question in Agarwal et al. (2019), where the authors analyzed

a more aggressive relative entropy regularization rather than the more common

entropy regularization. A novel insight is that entropy regularized gradient

1While Shani et al. (2020) suggest that entropy regularization speeds up mirror descent
to achieve the rate of O(1/t), in light of the corresponding result of Khodadadian et al.
(2021) who established the O(e−c·t) rate for the unregularized version of mirror descent,
the conclusion is questionable: entropy does not speed up mirror descent in in terms of
convergence rate. It remains open whether it speeds up mirror descent in terms of better
constant dependence.
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updates behave similarly to the contraction operator in value learning, with a

contraction factor that depends on the current policy.

Third, we provide a theoretical understanding of entropy regularization in

policy gradient methods. (i) We prove a new lower bound of Ω(1/t) for softmax

policy gradient, implying that the upper bound of O(1/t) that we established,

apart from constant factors, is unimprovable. This result also provides a the-

oretical explanation of the optimization advantage of entropy regularization:

even with access to the true gradient, entropy helps policy gradient converge

faster than any achievable rate of softmax policy gradient method without reg-

ularization. (ii) We study the concept of non-uniform  Lojasiewicz degree and

show that, without regularization, the  Lojasiewicz degree of expected reward

cannot be positive, which allows O(1/t) rates to be established. We then show

that with entropy regularization, the  Lojasiewicz degree of maximum entropy

reward becomes 1/2, which is sufficient to obtain linear O(e−t) rates. This

change of the relationship between gradient norm and sub-optimality reveals

a deeper reason for the improvement in convergence rates. The theoretical

study we provide corroborates existing empirical studies on the impact of en-

tropy in policy optimization (Ahmed et al., 2019).

The remainder of the chapter is organized as follows. After introducing

notation and defining the setting in Section 2.2, we present the three main

contributions in Sections 2.3 to 2.5 as aforementioned. Section 2.7 gives our

brief summary.

2.2 Notations and Settings

For a finite set X , we use ∆(X ) to denote the set of probability distributions

over X . A finite Markov decision process (MDP)M = (S,A,P , r, γ) is deter-

mined by a finite state space S, a finite action space A, a transition function

P : S × A → ∆(S), a scalar reward function r : S × A → R, and a discount

factor γ ∈ [0, 1).

An agent interacts with the environment, i.e., the MDPM, using a policy

π : S → ∆(A). Given a state st, the agent takes an action at ∼ π(·|st),
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receives a one-step scalar reward r(st, at) and a next-state st+1 ∼ P(·|st, at).

The long-term expected reward, also known as the value function of π under

s, is defined as

V π(s) := E
s0=s,at∼π(·|st),
st+1∼P(·|st,at)

[
∞∑
t=0

γtr(st, at)

]
. (2.1)

We also let V π(ρ) := Es∼ρ [V π(s)], where ρ ∈ ∆(S) is an initial state distribu-

tion. The state-action value of π at (s, a) ∈ S ×A is defined as

Qπ(s, a) := r(s, a) + γ
∑
s′

P(s′|s, a)V π(s′). (2.2)

We let Aπ(s, a) := Qπ(s, a) − V π(s) be the advantage function of π. The

(discounted) state distribution of π is defined as

dπs0(s) := (1− γ)
∞∑
t=0

γt Pr(st = s|s0, π,P), (2.3)

and we let dπρ(s) := Es0∼ρ
[
dπs0(s)

]
. Given ρ, there exists an optimal policy π∗

such that

V π∗(ρ) = max
π:S→∆(A)

V π(ρ). (2.4)

We denote V ∗(ρ) := V π∗(ρ) for conciseness. Since S × A is finite, for conve-

nience, without loss of generality, we assume that the one step reward lies in

the [0, 1] interval:

Assumption 1 (Bounded reward). r(s, a) ∈ [0, 1], ∀(s, a).

Consider a tabular representation, i.e., θ(s, a) ∈ R for all (s, a), so that

the policy πθ can be parameterized by θ using the softmax transform, which

exponentiates the components of the vector and normalizes it so that the

result lies in the simplex. This can be used to transform vectors assigned to

state-action pairs into policies:

Softmax transform. Given the function θ : S × A → R, the softmax

transform of θ is defined as πθ(·|s) := softmax(θ(s, ·)), where for all a ∈ A,

πθ(a|s) =
exp{θ(s, a)}∑
a′ exp{θ(s, a′)}

. (2.5)
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We also extend this notation to the case when there are no states. Given a finite

action set [K] := {1, 2, . . . , K}, for θ : [K] → R, we define πθ := softmax(θ)

using

πθ(a) =
exp{θ(a)}∑
a′ exp{θ(a′)}

, ∀a ∈ [K]. (2.6)

The problem of RL is then to find a policy πθ that maximizes the value func-

tion, i.e.,

sup
θ:S×A→R

V πθ(ρ). (2.7)

H matrix. Given any distribution π over [K], let H(π) := diag(π)− ππ> ∈

RK×K , where diag(x) ∈ RK×K is the diagonal matrix that has x ∈ RK at

its diagonal. The H matrix will play a central role in our analysis because

H(πθ) is the Jacobian of the θ 7→ πθ := softmax(θ) map that maps R[K] to the

(K − 1)-simplex: (
dπθ
dθ

)>
= H(πθ). (2.8)

Here, we are using the standard convention that derivatives give row-vectors.

Finally, we recall the definition of smoothness from convex analysis:

Smoothness. A function f : Θ → R with Θ ⊂ Rd is β-smooth (w.r.t. `2

norm, β > 0) if for all θ, θ′ ∈ Θ,∣∣∣∣f(θ′)− f(θ)−
〈df(θ)

dθ
, θ′ − θ

〉∣∣∣∣ ≤ β

2
· ‖θ′ − θ‖2

2. (2.9)

2.3 Policy Gradient

Policy gradient is a special policy search method. In policy search, one consid-

ers a family of policies parametrized by finite-dimensional parameter vectors,

reducing the search for a good policy to searching in the space of parameters.

This search is usually accomplished by making incremental changes (additive

updates) to the parameters. Representative policy-based RL methods include

13



REINFORCE (Williams, 1992), natural policy gradient (Kakade, 2002), de-

terministic policy gradient (Silver et al., 2014), and trust region policy opti-

mization (Schulman et al., 2015). In policy gradient methods, the parameters

are updated by following the gradient of the map that maps policy parameters

to values. Under mild conditions, the gradient can be reexpressed in a conve-

nient form in terms of the policy’s action-value function and the gradients of

the policy parametrization:

Theorem 1 (Policy gradient theorem (Sutton et al., 2000)). Fix a map θ 7→

πθ(a|s) that for any (s, a) is differentiable and fix an initial distribution µ ∈

∆(S). Then,

∂V πθ(µ)

∂θ
=

1

1− γ
· E
s∼dπθµ

[∑
a

∂πθ(a|s)
∂θ

·Qπθ(s, a)

]
. (2.10)

2.3.1 Vanilla Softmax Policy Gradient

We focus on the policy gradient method that uses the softmax parametrization

Eq. (2.5). Since we consider the tabular case, the policy is then parametrized

using the parameter θ : S × A → R function and πθ(·|s) = softmax(θ(s, ·)).

The vanilla form of policy gradient for this case is shown in Algorithm 1.

Algorithm 1 Policy Gradient Method
Input: Learning rate η > 0.
Initialize parameter θ1(s, a) for all (s, a).
while t ≥ 1 do

θt+1 ← θt + η · ∂V
πθt (µ)
∂θt

.
end while

With some calculation, Theorem 1 can be used to show that the gradient

takes the following special form in this case:

Lemma 1. Softmax policy gradient w.r.t. θ is

∂V πθ(µ)

∂θ(s, a)
=

1

1− γ
· dπθµ (s) · πθ(a|s) · Aπθ(s, a). (2.11)

Recently, Agarwal et al. (2019) showed that softmax policy gradient asymp-

totically converges to π∗, i.e., V πθt (ρ) → V ∗(ρ) as t → ∞ provided that
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µ(s) > 0 holds for all states s ∈ S. We strengthen this result to show that

the rate of convergence (in terms of value sub-optimality) is O(1/t). The next

section is devoted to this result. For better accessibility, we start with the re-

sult for the bandit case which presents an opportunity to explaining the main

ideas underlying our result in a clean fashion.

2.3.2 Convergence Rate: One-state MDPs

As promised, in this section we consider the “bandit case”. In particular,

assume that the MDP has a single state and the discount factor γ is zero:

γ = 0. In this case, Eq. (2.1) reduces to maximizing the expected reward,

max
θ:A→R

E
a∼πθ

[r(a)]. (2.12)

With πθ = softmax(θ), even in this simple setting, the objective is non-concave

in θ, as shown by a simple example:

Proposition 1. On some problems, θ 7→ Ea∼πθ [r(a)] is a non-concave func-

tion over RK.

As γ = 0 and there is a single state, Lemma 1 simplifies to

dπ>θ r

dθ(a)
= πθ(a) · (r(a)− π>θ r) . (2.13)

Putting things together, we see that in this case the update in Algorithm 1

takes the following form:

Update 1 (Softmax policy gradient, expected reward).

θt+1(a)← θt(a) + η · πθt(a) · (r(a)− π>θtr), ∀a ∈ [K]. (2.14)

As is well known, if a function is smooth, then a small gradient update will

be guaranteed to improve the objective value. As it turns out, for the softmax

parametrization, the expected reward objective is β-smooth with β ≤ 5/2:

Lemma 2 (Smoothness). ∀r ∈ [0, 1]K, θ 7→ π>θ r is 5/2-smooth.
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Smoothness alone (as is also well known) is not sufficient to guarantee

that gradient updates converge to a global optimum. For non-concave ob-

jectives, the next best thing to guarantee convergence to global maxima is

to establish that the gradient of the objective at any parameter dominates

the sub-optimality of the parameter. Inequalities of this form are known as

a  Lojasiewicz inequality ( Lojasiewicz, 1963). The reason gradient dominance

helps is because it prevents the gradient vanishing before reaching a maxi-

mum. The objective function of our problem also satisfies such an inequality,

although of a weaker, “non-uniform” form. For the following result, for sim-

plicity, we assume that the optimal action is unique. This assumption can be

lifted with a little extra work, which is discussed at the end of this section.

Lemma 3 (Non-uniform  Lojasiewicz). Assume r has one unique maximizing

action a∗. Let π∗ = arg maxπ∈∆ π
>r. Then,∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≥ πθ(a
∗) · (π∗ − πθ)>r . (2.15)

The weakness of this inequality is that the right-hand side scales with

πθ(a
∗) – hence we call it non-uniform. As a result, Lemma 3 is not very

useful if πθt(a
∗), the optimal action’s probability, becomes very small during

the updates.

Nevertheless, the inequality still suffices to get the following intermediate

result. The proof of this result combines smoothness and the  Lojasiewicz

inequality we derived.

Lemma 4 (Pseudo-rate). Let ct = min1≤s≤t πθs(a
∗). Using Update 1 with

η = 2/5, we have, for all t ≥ 1,

(π∗ − πθt)>r ≤ 5/(t · c2
t ), and (2.16)

T∑
t=1

(π∗ − πθt)>r ≤ min
{√

5T/cT , (5 log T )/c2
T + 1

}
. (2.17)

In the remainder of this section we assume that η = 2/5.

Remark 1. The value of πθt(a
∗), while it is nonzero (and so is ct) can be

small (e.g., because of the choice of θ1). Consequently, its minimum ct can be
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quite small and the upper bound in Lemma 4 can be large, or even vacuous.

The dependence of the previous result on πθt(a
∗) comes from Lemma 3. As it

turns out, it is not possible to eliminate or improve the dependence on πθ(a
∗)

in Lemma 3. To see this consider r = (5, 4, 4)>, πθ = (2ε, 1/2− 2ε, 1/2) where

ε > 0 is small number. By algebra, we have,

(π∗ − πθ)>r = 1− 2ε > 1/2, (2.18)

dπ>θ r

dθ
= (2ε− 4ε2,−ε+ 4ε2,−ε)>, (2.19)∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

= ε ·
√

6− 24ε+ 32ε2 ≤ 3ε. (2.20)

Hence, we have, for any constant C > 0,

C · (π∗ − πθ)>r > C/2 > 3ε ≥
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

, (2.21)

which means for any  Lojasiewicz-type inequality, C necessarily depends on ε

and hence on πθ(a
∗) = 2ε.

The necessary dependence on πθt(a
∗) makes it clear that Lemma 4 is insuf-

ficient to conclude a O(1/t) rate. since ct may vanish faster than O(1/t) as t

increases. Our next result eliminates this possibility. In particular, the result

follows from the asymptotic convergence result which states that πθt(a
∗)→ 1

as t→∞. From this and because πθ(a) > 0 for any θ ∈ RK and action a, we

conclude that πθt(a
∗) remains bounded away from zero during the course of

the updates:

Lemma 5. We have inft≥1 πθt(a
∗) > 0.

With some extra work, one can also show that eventually θt enters a region

where πθt(a
∗) can only increase:

Proposition 2. For any initialization there exist t0 ≥ 1 such that for any

t ≥ t0, t 7→ πθt(a
∗) is increasing. In particular, when πθ1 is the uniform

distribution, t0 = 1.

With Lemmas 4 and 5, we can now obtain an O(1/t) convergence rate for

softmax policy gradient method2:

2For a continuous version of Update 1, Walton (2020) proves a O(1/t) rate, using a
Lyapunov function argument.
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Theorem 2 (Arbitrary initialization). Using Update 1 with η = 2/5, for all

t ≥ 1,

(π∗ − πθt)>r ≤ 5/(c2 · t), (2.22)

where c = inft≥1 πθt(a
∗) > 0 is a constant that depends on r and θ1, but it does

not depend on the time t.

Proposition 2 suggests that one should set θ1 so that πθ1 is uniform. Us-

ing this initialization, we can show that inf t≥1 πθt(a
∗) ≥ 1/K, strengthening

Theorem 2:

Theorem 3 (Uniform initialization). Using Update 1 with η = 2/5 and θ1

such that πθ1(a) = 1/K, ∀a, for all t ≥ 1,

(π∗ − πθt)>r ≤ 5K2/t, and (2.23)

T∑
t=1

(π∗ − πθt)>r ≤ min
{
K
√

5T , 5K2 log T + 1
}
. (2.24)

Remark 2. In Section 2.5, we prove a lower bound Ω(1/t) for the same update

rule, showing that the upper bound O(1/t) of Theorem 2, apart from constant

factors, is unimprovable.

In general it is difficult to characterize how the constant c in Theorem 2

depends on the problem and initialization. For the simple 3-armed case, this

dependence is relatively clear:

Lemma 6. Let r(1) > r(2) > r(3). Then, a∗ = 1 and inft≥1 πθt(a
∗) =

min1≤t≤t0 πθt(1), where

t0 = min

{
t ≥ 1 :

πθt(1)

πθt(3)
≥ r(2)− r(3)

2 · (r(1)− r(2))

}
. (2.25)

Note that the smaller r(1) − r(2) and πθ1(1) are, the larger t0 is, which

potentially means c in Theorem 2 can be smaller and the upper bound is

worse.

18



-0.2
0

0.2
0.4

0.6
0.8

10.80.60.40.20-0.2

0.6

0.2

0

1

0.4

0.8

-0.2
0

0.2
0.4

0.6
0.8

10.80.60.40.20-0.2

0.2

0.4

0.8

0.6

0

1

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.1: Visualization of proof idea for Lemma 5.

Visualization. In Fig. 2.1(a), the region below the red line corresponds to

R =

{
πθ :

πθ(1)

πθ(3)
≥ r(2)− r(3)

2 · (r(1)− r(2))

}
, (2.26)

where r = (1.0, 0.9, 0.1)>. Any globally convergent iteration will enter R

within finite time (the closure of R contains π∗) and never leaves R (this

is the main idea in Lemma 5). Subfigure (b) shows the behavior of the

gradient updates with “good” (πθ1 = (0.05, 0.01, 0.94)>) and “bad” (πθ1 =

(0.01, 0.05, 0.94)>) initial policies. While these are close to each other, the

iterates behave quite differently (in both cases η = 2/5). From the good ini-

tialization, the iterates converge quickly: after 100 iterations the distance to

the optimal policy is already quite small. At the same time, starting from a

“bad” initial value, the iterates are first attracted toward a sub-optimal action.

It takes more than 7000 iterations for the algorithm to escape this sub-optimal
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corner! In subfigure (c), we see that πθt(a
∗) increases for the good initializa-

tion, while in subfigure (d), for the bad initialization, we see that it initially

decreases. These experiments confirm that the dependence of the error bound

in Theorem 2 on the initial values cannot be removed.

Non-unique optimal actions. When the optimal action is non-unique, the

arguments need to be slightly modified. Instead of using a single πθ(a
∗), we

need to consider the sum of probabilities of all optimal actions, i.e.,
∑

a∗∈A∗ πθ(a
∗).

2.3.3 Convergence Rate: General MDPs

For general MDPs, the optimization problem takes the form

max
θ:S×A→R

V πθ(ρ) = max
θ:S×A→R

E
s∼ρ

∑
a

πθ(a|s) ·Qπθ(s, a). (2.27)

Here, as before, πθ(·|s) = softmax(θ(s, ·)), s ∈ S. The values here are defined

with respect to an initial state distribution ρ which may not be the same as

the initial state distribution µ used in the gradient updates (cf. Algorithm 1),

allowing for greater flexibility in our analysis. While the initial state distri-

butions do not play any role in the bandit case, here, in the multi-state case,

they have a strong influence. In particular, for the rest of this section, we will

assume that the initial state distribution µ used in the gradient updates is

bounded away from zero:

Assumption 2 (Sufficient exploration). The initial state distribution satisfies

min
s
µ(s) > 0. (2.28)

Assumption 2 was also adapted by Agarwal et al. (2019), which ensures

“sufficient exploration” in the sense that the occupancy measure dπµ of any

policy π when started from µ will be guaranteed to be positive over the whole

state space. Agarwal et al. (2019) asked whether this assumption is necessary

for convergence to global optimality.

Proposition 3. There exists an MDP and µ with mins µ(s) = 0 such that there

exists θ∗ : S × A → [0,∞] such that θ∗ is the stationary point of θ 7→ V πθ(µ)
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while πθ∗ is not an optimal policy. Furthermore, this stationary point is an

attractor, hence, starting gradient ascent in a small enough vicinity of θ∗ will

make it converge to θ∗.

The MDP of this proposition is S bandit problems: Each state s ∈ S

under each action deterministically gives itself as the next state. The reward

is selected so that in each s there is a unique optimal action. If µ leaves out

state s (i.e., µ(s) = 0), clearly, the gradient of θ 7→ V πθ(µ) w.r.t. θ is zero

regardless of the choice of θ. Hence, any θ such that θ(s, a) = +∞ for a optimal

in state s with µ(s) > 0 and θ(s, a) finite otherwise will satisfy the properties of

the proposition. It remains open whether the sufficient exploration condition

is necessary for unichain MDPs.

According to Assumption 1, r(s, a) ∈ [0, 1], Q(s, a) ∈ [0, 1/(1 − γ)], and

hence the objective function is still smooth, as was also shown by Agarwal

et al. (2019):

Lemma 7 (Smoothness). V πθ(ρ) is 8/(1− γ)3-smooth.

As mentioned in Section 2.3.2, smoothness and (uniform)  Lojasiewicz in-

equality are sufficient to prove a convergence rate. As noted by Agarwal et al.

(2019), the main difficulty is to establish a (uniform)  Lojasiewicz inequality

for the softmax parametrization. As it turns out, the results from the bandit

case carry over to multi-state MDPs.

For stating this and the remaining results, we fix a deterministic optimal

policy π∗ and denote by a∗(s) the action that π∗ selects in state s. With this,

the promised result on the non-uniform  Lojasiewicz inequality is as follows:

Lemma 8 (Non-uniform  Lojasiewicz). We have,∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

≥ 1√
S
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

·min
s
πθ(a

∗(s)|s) · [V ∗(ρ)− V πθ(ρ)] . (2.29)

By Assumption 2, dπθµ is also bounded away from zero on the whole state

space and thus the multiplier of the sub-optimality in the above inequality is

positive.
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Generalizing Lemma 5, we show that mins πθt(a
∗(s)|s) is uniformly bounded

away from zero:

Lemma 9. Let Assumption 2 hold. Using Algorithm 1, we have,

c := inf
s∈S,t≥1

πθt(a
∗(s)|s) > 0. (2.30)

Using Lemmas 7 to 9, we prove that softmax policy gradient converges to

an optimal policy at a O(1/t) rate in MDPs, just like what we have seen in

the bandit case:

Theorem 4. Let Assumption 2 hold and let {θt}t≥1 be generated using Algo-

rithm 1 with η = (1 − γ)3/8. Let c be the positive constant from Lemma 9.

Then, for all t ≥ 1,

V ∗(ρ)− V πθt (ρ) ≤ 16 · S
c2 · (1− γ)6 · t

·
∥∥∥∥dπ∗µµ

∥∥∥∥2

∞
·
∥∥∥∥ 1

µ

∥∥∥∥
∞
. (2.31)

As far as we know, this is the first convergence-rate result for softmax

policy gradient for MDPs.

Remark 3. Theorem 4 implies that the iteration complexity of Algorithm 1

to achieve O(ε) sub-optimality is O
(

S
c2(1−γ)6ε

·
∥∥∥dπ∗µµ ∥∥∥2

∞
·
∥∥∥ 1
µ

∥∥∥
∞

)
, which, as a

function of ε, is better than the results of Agarwal et al. (2019) for (i) pro-

jected gradient ascent on the simplex O
(

SA
(1−γ)6ε2

·
∥∥∥dπ∗ρµ ∥∥∥2

∞

)
or for (ii) softmax

policy gradient with relative-entropy regularization O
(

S2A2

(1−γ)6ε2
·
∥∥∥dπ∗ρµ ∥∥∥2

∞

)
. The

improved dependence on ε (or t) in our result follows from Lemmas 8 and 9

and a different proof technique utilized to prove Theorem 4, while we pay a

price because our bound depends on c, which adds an extra dependence on the

MDP as well as on the initialization of the algorithm.

2.4 Entropy Regularized Policy Gradient

Agarwal et al. (2019) considered relative-entropy regularization in policy gra-

dient to get an O(1/
√
t) convergence rate. As they note, relative-entropy is

more “agressive” in penalizing small probabilities than the more “common”
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entropy regularizer (cf. Remark 5.2 in their paper) and it remains unclear

whether this latter regularizer leads to an algorithm with the same rate. In

this section, we answer this positively and in fact prove a much better rate. In

particular, we show that entropy regularized policy gradient with the softmax

parametrization enjoys a linear rate of O(e−c·t). In retrospect, perhaps this is

unsurprising as entropy regularization bears a strong similarity to introduc-

ing a strongly convex regularizer in convex optimization, where this change is

known to significantly improve the rate of convergence of first-order methods

(e.g., Nesterov, 2018, Chapter 2).

2.4.1 Maximum Entropy RL

In entropy regularized RL, or sometimes called maximum entropy RL, near-

deterministic policies are penalized (Haarnoja et al., 2018; Mei et al., 2019;

Mnih et al., 2016; Nachum et al., 2017; Neu et al., 2017; Williams and Peng,

1991; Xiao et al., 2019; Xiao et al., 2018; Ziebart, 2010; Ziebart et al., 2008),

which is achieved by modifying the value of a policy π to

Ṽ π(ρ) := V π(ρ) + τ ·H(ρ, π) , (2.32)

where H(ρ, π) is the “discounted entropy”, defined as

H(ρ, π) := E
s0∼ρ,at∼π(·|st),
st+1∼P(·|st,at)

[
∞∑
t=0

−γt log π(at|st)

]
, (2.33)

and τ ≥ 0, the “temperature”, determines the strength of the penalty.3 Clearly,

the value of any policy can be obtained by adding an entropy penalty to the

rewards (as proposed originally by Williams and Peng (1991)). Hence, simi-

larly to Lemma 1, one can obtain the following expression for the gradient of

the entropy regularized objective under the softmax policy parametrization:

Lemma 10. It holds that for all (s, a),

∂Ṽ πθ(µ)

∂θ(s, a)
=

1

1− γ
· dπθµ (s) · πθ(a|s) · Ãπθ(s, a), (2.34)

3To better align with naming conventions in information-theory, discounted entropy
should be rather called the discounted action-entropy rate as entropy itself in the literature
on Markov chain information theory would normally refer to the entropy of the stationary
distribution of the chain, while entropy rate refers to what is being used here.
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where Ãπθ(s, a) is the “soft” advantage function defined as

Ãπθ(s, a) := Q̃πθ(s, a)− τ log πθ(a|s)− Ṽ πθ(s), (2.35)

Q̃πθ(s, a) := r(s, a) + γ
∑
s′

P(s′|s, a)Ṽ πθ(s′). (2.36)

2.4.2 Convergence Rate: One-state MDPs

As in the non-regularized case, to gain insight, we first consider MDPs with a

single state and γ = 0.

In the one-state case with γ = 0, Eq. (2.32) reduces to maximizing the

entropy-regularized reward,

max
θ:A→R

E
a∼πθ

[r(a)− τ log πθ(a)]. (2.37)

Again, Eq. (2.37) is a non-concave function of θ. In this case, regularized

policy gradient reduces to

d{π>θ (r − τ log πθ)}
dθ

= H(πθ)(r − τ log πθ), (2.38)

where H(πθ) is the same as in Eq. (2.8). Using the above gradient in Algo-

rithm 1 we have the following update rule:

Update 2 (Softmax policy gradient, maximum entropy reward).

θt+1 ← θt + η ·H(πθt)(r − τ log πθt). (2.39)

Due to the presence of regularization, the optimal solution will be biased

with the bias disappearing as τ → 0:

Softmax optimal policy. π∗τ := softmax(r/τ) is the optimal solution of

Eq. (2.37).

Remark 4. At this stage, we could use arguments similar to those of Sec-

tion 2.3 to show the O(1/t) convergence of πθt to π∗τ . However, we can use

an alternative idea to show that entropy-regularized policy gradient converges

significantly faster. The issue of bias will be discussed later.
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Our alternative idea is to show that Update 2 defines a contraction but

with a contraction coefficient that depends on the parameter that the update

is applied to:

Lemma 11 (Non-uniform contraction). Using Update 2 with τη ≤ 1, ∀t > 0,

‖ζt+1‖2 ≤
(

1− τη ·min
a
πθt(a)

)
· ‖ζt‖2, (2.40)

where ζt := τθt − r − (τθt−r)>1
K

· 1.

This lemma immediately implies the following bound:

Lemma 12. Using Update 2 with τη ≤ 1, ∀t > 0,

‖ζt‖2 ≤
2(τ‖θ1‖∞ + 1)

√
K

exp
{
τη
∑t−1

s=1 [mina πθs(a)]
} . (2.41)

Similarly to Lemma 5, we can show that the minimum action probability

can be lower bounded by its initial value.

Lemma 13. There exists c = c(τ,K, ‖θ1‖∞) > 0, such that for all t ≥ 1,

mina πθt(a) ≥ c. Thus,

t−1∑
s=1

[min
a
πθs(a)] ≥ c · (t− 1). (2.42)

A closed-form expression for c is given in the appendix. Note that when

τ = 0 (no regularization), the result would no longer hold true. The key here

is that mina πθt(a)→ mina π
∗
τ (a) > 0 as t→∞ and the latter inequality holds

thanks to τ > 0. From Lemmas 12 and 13, it follows that entropy regularized

softmax policy gradient enjoys a linear convergence rate:

Theorem 5. Using Update 2 with η ≤ 1/τ , for all t ≥ 1,

δ̃t ≤
2(τ‖θ1‖∞ + 1)2K/τ

exp {2τη · c · (t− 1)}
, (2.43)

where δ̃t := π∗τ
> (r − τ log π∗τ )−π>θt (r − τ log πθt) and c > 0 is from Lemma 13.
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2.4.3 Convergence Rate: General MDPs

For general MDPs, the problem is to maximize Ṽ πθ(ρ) in Eq. (2.32). The soft-

max optimal policy π∗τ is known to satisfy the following consistency conditions

(Nachum et al., 2017):

π∗τ (a|s) = exp
{

(Q̃π∗τ (s, a)− Ṽ π∗τ (s))/τ
}
, (2.44)

Ṽ π∗τ (s) = τ log
∑
a

exp
{
Q̃π∗τ (s, a)/τ

}
. (2.45)

Using a somewhat lengthy calculation, we show that the discounted entropy

in Eq. (2.33) is smooth:

Lemma 14 (Smoothness). H(ρ, πθ) is (4 + 8 logA)/(1 − γ)3-smooth, where

A := |A| is the total number of actions.

Our next key result shows that the augmented value function Ṽ πθ(ρ) sat-

isfies a “better type” of non-uniform  Lojasiewicz inequality:

Lemma 15 (Non-uniform  Lojasiewicz). Suppose µ(s) > 0 for all state s ∈ S.

Then, ∥∥∥∥∂Ṽ πθ(µ)

∂θ

∥∥∥∥
2

≥ C(θ) ·
[
Ṽ π∗τ (ρ)− Ṽ πθ(ρ)

] 1
2
, (2.46)

where

C(θ) :=

√
2τ√
S
·min

s

√
µ(s) ·min

s,a
πθ(a|s) ·

∥∥∥∥dπ∗τρdπθµ
∥∥∥∥− 1

2

∞
. (2.47)

The main difference to the previous versions of the non-uniform  Lojasiewicz

inequality is that the sub-optimality gap appears under the square root. For

small sub-optimality gaps this means that the gradient must be larger – a

stronger “signal”. Next, we show that action probabilities are still uniformly

bounded away from zero:

Lemma 16. Using Algorithm 1 with the entropy regularized objective, we have

c := inf
t≥1

min
s,a

πθt(a|s) > 0. (2.48)

With Lemmas 14 to 16, we show a O(e−c·t) rate for entropy regularized

policy gradient in general MDPs:
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Theorem 6. Let Assumption 2 hold and let c be the positive constant from

Lemma 16. Using Algorithm 1 with the entropy regularized objective and soft-

max parametrization and

η =
(1− γ)3

8 + τ(4 + 8 logA)
, (2.49)

we have, for all t ≥ 1,

Ṽ π∗τ (ρ)− Ṽ πθt (ρ) ≤
∥∥∥∥ 1

µ

∥∥∥∥
∞
· 1 + τ logA

(1− γ)2
· e−C(t−1), (2.50)

where

C =
(1− γ)4

(8/τ + 4 + 8 logA) · S
·min

s
µ(s) · c2 ·

∥∥∥∥∥dπ
∗
τ
µ

µ

∥∥∥∥∥
−1

∞

> 0, (2.51)

is independent with t.

2.4.4 Controlling the Bias

As noted in Remark 4, π∗τ is biased, i.e., π∗τ 6= π∗ for fixed τ > 0. We discuss

two possible approaches to deal with the bias, but much remains to be done

to properly address the bias. For simplicity, we consider the bandit case.

A two-stage approach. Note that for any fixed τ > 0, π∗τ (a
∗) ≥ π∗τ (a)

for all a 6= a∗. Therefore, using policy gradient with πθ1 = π∗τ , we have

πθt(a
∗) ≥ ct ≥ 1/K. This suggests a two-stage method: first, to ensure

πθt(a
∗) ≥ maxa πθt(a), use entropy-regularized policy gradient some iterations

and then turn off regularization.

Theorem 7. Denote ∆ = r(a∗) − maxa6=a∗ r(a) > 0. Using Update 2 for

t1 ∈ O(e1/τ · log ( τ+1
∆

)) iterations and then Update 1 for t2 ≥ 1 iterations, we

have,

(π∗ − πθt)>r ≤ 5/(c2 · t2), (2.52)

where t = t1 + t2, and c ∈ [1/K, 1).
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This approach removes the nasty dependence on the choice of the initial

parameters. While this dependence is also removed if we initialize with the

uniform policy, uniform initialization is insufficient if only noisy estimates of

the gradients are available. However, we leave the study of this case for future

work. An obvious problem with this approach is that ∆ is unknown. This

can be helped by exiting the first phase when we detect “convergence” e.g. by

detecting that the relative change of the policy is small.

Decreasing the penalty. Another simple idea is to decrease the strength of

regularization, e.g., set τt ∈ O(1/ log t). Consider the following update, which

is a slight variation of the previous one:

Update 3. θt+1 ← τt
τt+1
· (θt + ηt ·H(πθt)(r − τt log πθt)).

The rationale for the scaling factor is that it allows one to prove a variant

of Lemma 11. While this is promising, the proof cannot be finished as before.

The difficulty is that πθt → π∗ (which is what we want to achieve) implies that

mina πθt(a) → 0, which prevents the use of our previous proof technique. We

show the following partial results.

Theorem 8. Using Update 3 with τt = α·∆
log t

for t ≥ 2, where α > 0, and

ηt = 1/τt, we have, for all t ≥ 1,

(π∗ − πθt)>r ≤
K

t1/α
+

C · log t

exp
{∑t−1

s=1 [mina πθs(a)]
} , (2.53)

where C := 2(τ1‖θ1‖∞+1)
√
K

α·∆ .

The final rates then depend on how fast mina πθt(a) diminishes as a function

of t. We conjecture that the rate in some cases degenerates to O
(

log t
t1/α

)
, which

is strictly faster than O(1/t) in the non-regularized case when α ∈ (0, 1) and

is observed in simulations in Fig. 2.5. We leave it as an open problem to study

decaying entropy in general MDPs.
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2.5 A Theoretical Understanding of Entropy

Regularization in Policy Gradient

The previous section indicated that entropy regularization may speed up con-

vergence. In addition, ample empirical evidence suggest that this may be the

case (e.g., Haarnoja et al., 2018; Mei et al., 2019; Mnih et al., 2016; Nachum

et al., 2017; Williams and Peng, 1991). In this section, we aim to provide new

insights into why entropy may help policy optimization, taking an optimization

perspective.

We start by establishing a lower bound that shows that the O(1/t) rate

we established earlier for softmax policy gradient without entropy regular-

ization cannot be improved. Next, we introduce the notion of non-uniform

 Lojasiewicz degree, which we show to increase in the presence of entropy regu-

larization. We then connect a higher degree to faster convergence rates. Note

that our proposal to view entropy regularization as an optimization aid is

somewhat an alternative explanation compared with the more common expla-

nation that entropy regularization helps by encouraging exploration. While it

is definitely true that entropy regularization encourages exploration, the form

of exploration it encourages is not sensitive to epistemic uncertainty and as

such it fails to provide a satisfactory solution to the exploration problem (e.g.,

O’Donoghue et al., 2020).

2.5.1 Lower Bounds

The purpose of this section is to establish that the O(1/t) rates established

earlier for unpenalized policy gradient is tight. To get lower bounds, we need

to show that progress in every iteration cannot be too large. This holds when

we can reverse the inequality in the  Lojasiewicz inequality. To this regard, in

bandit problems we have the following result:

Lemma 17 (Reversed  Lojasiewicz). Take any r ∈ [0, 1]K. Denote ∆ = r(a∗)−

maxa6=a∗ r(a) > 0. Then,∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≤
√

2

∆
· (π∗ − πθ)>r. (2.54)
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Using this result gives the desired lower bound:

Theorem 9 (Lower bound). Take any r ∈ [0, 1]K. For large enough t ≥ 1,

using Update 1 with learning rate ηt ∈ (0, 1],

(π∗ − πθt)>r ≥ ∆2/(6 · t). (2.55)

Note that Theorem 9 is a special case of general MDPs. Next, we show

that similar to Lemma 17, the progress in each iteration of softmax policy

gradient in any MDP can be bounded in terms of sub-optimality gap.

Lemma 18 (Reversed  Lojasiewicz). Denote

∆∗(s) = Q∗(s, a∗(s))− max
a6=a∗(s)

Q∗(s, a) > 0, (2.56)

as the optimal value gap of state s, where a∗(s) is the action that the optimal

policy selects under state s, and ∆∗ = mins∈S ∆∗(s) > 0 as the optimal value

gap of the MDP. Then we have,∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

≤ 1

1− γ
·
√

2

∆∗
· [V ∗(µ)− V πθ(µ)] . (2.57)

With Lemma 18, we then strengthen Theorem 9 and show that the Ω(1/t)

lower bound also holds for any MDP:

Theorem 10 (Lower bound). Take any MDP. For large enough t ≥ 1, using

Algorithm 1 with ηt ∈ (0, 1],

V ∗(µ)− V πθt (µ) ≥ (1− γ)5 · (∆∗)2

12 · t
, (2.58)

where ∆∗ := mins∈S,a 6=a∗(s){Q∗(s, a∗(s)) − Q∗(s, a)} > 0 is the optimal value

gap of the MDP.

Remark 5. Our convergence rates in Section 2.3 match the lower bounds up

to constant. However, the constant gap is large, e.g., K2 in Theorem 3, and

∆2 in Theorem 9. The gap is because the reversed  Lojasiewicz inequality of

Lemma 17 uses ∆, which is unavoidable when πθ is close to π∗. We leave it

as an open problem to close this gap.
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With the lower bounds established, we confirm that entropy regularization

helps policy optimization by speeding up convergence, though the question

remains open as to the mechanism by which the improved convergence rate

manifests itself.

2.5.2 Non-uniform  Lojasiewicz (N L) Degree

To gain further insight into how entropy regularization helps, we introduce the

non-uniform  Lojasiewicz degree:

Definition 1 (Non-uniform  Lojasiewicz (N L) degree). A function f : Θ→ R

has N L degree ξ ∈ [0, 1] if∥∥∥∥df(θ)

dθ

∥∥∥∥
2

≥ C(θ) · |f(θ)− f(θ∗)|1−ξ , (2.59)

∀θ ∈ Θ, where C(θ) > 0 holds for all θ ∈ Θ.

The uniform degree, where C(θ) is a positive constant, has previously been

connected to convergence speed in the optimization literature. Bárta (2017)

studied this effect for first-, while Nesterov and Polyak (2006) and Zhou et al.

(2018) studied this for second-order methods. As noted beforehand, a larger

degree (smaller exponent of the sub-optimality) is expected to improve the

convergence speed of algorithms that rely on gradient information. Intuitively,

we expect this to continue to hold for the non-uniform  Lojasiewicz degree as

well. With this, we now study what non-uniform  Lojasiewicz degrees can one

obtain with and without entropy regularization.

Our first result shows that the non-uniform  Lojasiewicz degree of the ex-

pected reward objective (in bandits) cannot be positive:

Proposition 4. Let r ∈ [0, 1]K be arbitrary and consider θ 7→ Ea∼πθ [r(a)].

The non-uniform  Lojasiewicz degree of this map with constant C(θ) = πθ(a
∗)

is zero.

Note that according to Remark 1, it is necessary that C(θ) depends on

πθ(a
∗). The difference between Proposition 4 and the reversed  Lojasiewicz

inequality of Lemma 17 is subtle. Lemma 17 is a condition that implies
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impossibility to get rates faster than O(1/t), while Proposition 4 says it is

not sufficient to get rates faster than O(1/t) using the same technique as in

Lemma 4. However, this does not preclude that other techniques could give

faster rates.

Next, we show that the non-uniform  Lojasiewicz degree of the entropy-

regularized expected reward objective is at least 1/2:

Proposition 5. Fix τ > 0. With C(θ) =
√

2τ ·mina πθ(a), the non-uniform

 Lojasiewicz degree of θ 7→ Ea∼πθ [r(a)− τ log πθ(a)] is at least 1/2.

2.6 Experimental Verification

To verify the convergence rates in the chapter, we conduct experiments on

one-state MDPs with K actions.

2.6.1 Softmax Policy Gradient

K = 20, r ∈ [0, 1]K is randomly generated, and πθ1 is randomly initialized.

Softmax policy gradient, i.e., Update 1 is used with learning rate η = 2/5

and maximum iteration number T = 3 × 105. As shown in Fig. 2.2(a), the

sub-optimality δt = (π∗ − πθt)
> r approaches 0. Subfigures (b) and (c) show

log δt as a function of log t. As log t increases, the slope is approaching −1,

indicating that log δt = − log t+C, which is equivalent to δt = C ′/t. Subfigure

(d) shows πθt(a
∗) as a function of t.

2.6.2 Entropy Regularized Softmax Policy Gradient

K = 20, r ∈ [0, 1]K and πθ1 are the same as above. Entropy regularized soft-

max policy gradient, i.e., Update 2 is used with temperature τ = 0.2, learning

rate η = 2/5 and iteration number T = 5 × 104. As shown in Fig. 2.3(a),

the soft sub-optimality δ̃t = π∗τ
> (r − τ log π∗τ )−πθt> (r − τ log πθt) approaches

0. Subfigure (b) shows log δ̃t as a function of t. As t increases, the curve

approaches a straight line, indicating that log δ̃t = −C1 · t+C2, which is equiv-

alent to δ̃t = C ′2/ exp{C ′1 · t}. Subfigure (c) shows ζt as defined in Lemma 11 as

a function of t, which verifies Lemma 12. Subfigure (d) shows mina πθt(a) as

32



0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 2 4 6 8 10 12 14
-12

-10

-8

-6

-4

-2

0

12.575 12.58 12.585 12.59 12.595 12.6 12.605 12.61 12.615
-11.755

-11.75

-11.745

-11.74

-11.735

-11.73

-11.725

-11.72

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.2: Softmax policy gradient, Update 1.

a function of t. As t increases, mina πθt(a) approaches constant values, which

verifies Lemma 13.

2.6.3 “Bad” Initializations for Softmax Policy Gradient
(PG)

As illustrated in Fig. 2.1, “bad” initializations lead to attraction toward sub-

optimal corners and slowly escaping for softmax policy gradient. Fig. 2.4

shows one example with K = 5. Softmax policy gradient takes about 8 × 106

iterations around a sub-optimal corner. While with entropy regularization

(τ = 0.2), the convergence is significantly faster.

2.6.4 Decaying Entropy Regularization

We run entropy regularized policy gradient with decaying temperature τt =

α·∆
log t

for t ≥ 2, i.e., Update 3. Fig. 2.5 shows one example with K = 10
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Figure 2.3: Entropy regularized softmax policy gradient, Update 2.

and different α values. The actual rate is O
(

1
t−slope

)
, and the partial rate in

Theorem 8 is O
(

1
t1/α

)
.

2.7 Summary

We set out to study the convergence speed of softmax policy gradient meth-

ods with and without entropy regularization in the tabular setting. Here, the

error is measured in terms of the sub-optimality of the policy obtained after

some number of updates. Our main finding is that without entropy regular-

ization, the rate is Θ(1/t), which is faster than rates previously obtained. Our

analysis also uncovered an unpleasant dependence on the initial parameter val-

ues. With entropy regularization, the rate becomes linear O(e−c·t), where now

the constant in the exponent is influenced by the initial choice of parameters.

Thus, our analysis shows that entropy regularization substantially changes the
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Figure 2.4: Bad initialization for softmax policy gradient.

rate at which gradient methods converge. Our main technical innovation is the

introduction of a new non-uniform  Lojasiewicz (N L) inequality. The deeper

reason of entropy accelerating convergence is explained using the notion of N L

degree, which is a key quantity to characterize different N L inequalities.
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Figure 2.5: Decaying entropy regularization, Update 3.
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Chapter 3

Escaping the Gravitational Pull
of Softmax

The convergence rate results we established in Chapter 2 are general and

substantive. However, in this chapter we reveal a negative side of those results,

and provide an explanation for the gap between theory and practice. This

leads to a deeper understanding of the coefficient in non-uniform  Lojasiewicz

inequality.

The results in this chapter appeared in Mei et al. (2020a).

3.1 Introduction

The probability transformation plays an essential role in machine learning,

used whenever the output of a learned model needs to be mapped to a proba-

bility distribution. For example, in reinforcement learning (RL), a probability

transformation is used to parameterize policy representations that provide a

conditional distribution over a finite set of actions given an input state or ob-

servation (Sutton and Barto, 2018). In supervised learning (SL), particularly

classification, a probability transformation is used to parameterize classifiers

that provide a conditional distribution over a finite set of classes given an input

observation (Friedman et al., 2001). Attention models (Vaswani et al., 2017)

also use probability transformations to provide differentiable forms of memory

addressing.

Among the myriad ways one might map vectors to probability distributions,
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the softmax transform is the most common. According to Eq. (2.6), for θ ∈

RK , the transformation πθ = softmax(θ) is defined by

πθ(a) =
exp{θ(a)}∑
a′ exp{θ(a′)}

, ∀a ∈ [K] := {1, ..., K}, (3.1)

which ensures πθ(a) > 0 and
∑

a πθ(a) = 1 (Bridle, 1989). The softmax trans-

form can also be extended to continuous output spaces through the concept

of a Gibbs function (LeCun et al., 2006), but for concreteness we restrict our

attention to finite output sets.

Despite the ubiquity of the softmax in machine learning, it is not clear

why it should be the default choice of probability transformation. Some alter-

native transformations have been investigated in the literature (de Brébisson

and Vincent, 2015; Laha et al., 2018), but a comprehensive understanding of

why one choice might be advantageous over another remains incomplete. It is

natural to ask what options might be available and what properties are desir-

able. In fact, we find that the softmax is a particularly undesirable choice from

the perspective of gradient descent (ascent) optimization. Moreover, better al-

ternatives are readily available at no computational overhead. This chapter

seeks to fill the gap in understanding key optimization properties of proba-

bility transformations in general and how they compare to the softmax. In

particular, we make the following three main contributions.

First, we start by investigating the softmax policy gradient (SPG) in Chap-

ter 2. In this setting, we identify an inherent disadvantage of SPG, the “soft-

max gravity well (SGW)”, whereby gradient ascent trajectories are drawn

toward suboptimal corners of the probability simplex and subsequently slowed

in their progress toward the optimal vertex. We establish these facts both

through theoretical analysis and empirical observation, revealing that the be-

havior of SPG depends strongly on initialization. Then we propose the use

of the escort transform as an alternative to softmax for expected reward op-

timization. We analyze the resulting gradient ascent algorithm, escort policy

gradient (EPG), and prove that it enjoys strictly better convergence behavior

than SPG, significantly mitigating sensitivity to initialization. These findings

are also verified experimentally.
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Second, we consider supervised learning and investigate gradient descent

optimization of cross entropy loss using the softmax transform, an algorithm

we refer to as softmax cross entropy (SCE). Here, even though the optimiza-

tion landscape at the output layer is convex, we identify a detrimental phe-

nomenon we refer to as “softmax damping”. In particular, given deterministic

(“one-hot”) true label distributions, we show that SCE achieves a slower than

linear rate of convergence. Then we propose the use of the escort transform

as an alternative to softmax for cross entropy minimization. We analyze the

resulting gradient descent algorithm, escort cross entropy (ECE), and show

that it is guaranteed to enjoy strictly faster convergence than SCE. In par-

ticular, a special choice of the escort transform fully eliminates the softmax

damping phenomenon, preserving the linear convergence rate for cross entropy

minimization.

Finally, we propose a unifying concept, the Non-uniform  Lojasiewicz (N L)

coefficient, to explain both the softmax gravity well and softmax damping, even

when these might otherwise appear to be disconnected phenomena. Interest-

ingly, in the case of SCE, the vanishing N L coefficient leads to decreasing N L

degree, which is introduced in Definition 1, indicating the two concepts in the

N L inequality are not independent and can have nice interplay with each other.

We show that by increasing the N L coefficient, EPG achieves strictly better

initialization dependence than SPG. Moreover, by making the N L coefficient

non-vanishing, ECE enjoys strictly faster convergence than SCE.

3.2 Illustrating the Softmax Gravity Wells with

Softmax Policy Gradient

We begin by considering the domain of reinforcement learning (RL), using

the softmax policy gradient (SPG) method to maximize long-term expected

reward. As shown in Chapter 2, SPG enjoys a Θ(1/t) bound on the rate of

convergence, with constants that depend on the problem and initialization.

Although the Θ(1/t) convergence rate results are general and impressive,

they seem at odds with the behavior of policy gradient methods, which are

39



notoriously difficult to tune in practice (Schulman et al., 2015). To reconcile

theory with empirical observation, we first demonstrate that the “constants”

in these results are in fact important, and understanding their role explains

much of the real-world performance of SPG.

3.2.1 Initialization Sensitivity

To illustrate the point concretely, consider a simple experiment on one-state

Markov Decision Processes (MDPs) (i.e., a multi-armed bandit) with K = 6

actions. According to Update 1, in this case, the SPG of a policy πθ for a

given reward vector r ∈ [0, 1]K reduces to the update

θt+1(a)← θt(a) + η · πθt(a) ·
[
r(a)− π>θtr

]
, (3.2)

∀a ∈ [K] := {1, ..., K}, and πθt+1 = softmax(θt+1).

Fig. 3.1 shows the result of multiple runs using SPG with full gradients.

Depending on whether the last iteration satisfies πθT (a∗) ≥ 0.99, we group the

20 runs as “good” and “bad” initializations. As shown in Fig. 3.1(a) and (b),

for good initializations, the sub-optimality (π∗ − πθt)
>r quickly approaches 0,

whereas for bad initializations, the iterates get stuck near local optima. Sub-

figure (c) shows average probability of optimal actions, which shows that the

trajectories from bad initializations stay near local optima, since the optimal

action probabilities stay close to 0. However, we know from Theorem 2 that

from any initializations SPG must eventually converge to the optimal policy

π∗, and that is indeed the case here: Subfigure (d) shows the long-run time

to convergence (boxes are 25 to 75th percentiles) for good versus bad initial-

izations, where the y-axis is log T such that πθT (a∗) ≥ 0.99, showing bad runs

take many orders of magnitude longer.

Although these findings seem not to comport with theory, they can in fact

be explained by delving deeper into the detailed nature of the Θ(1/t) rates

proved in Chapter 2.
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Figure 3.1: SPG behavior (sub-optimality (π∗ − πθt)
> r) on single-state MDPs

withK = 6 arms, fully parameterized policy (no approximation error), rewards
randomly generated (uniform within [0, 1] for each r(a)) and policy randomly
initialized on each run, 20 runs. Full gradient SPG updates with stepsize
η = 0.4 from Theorem 2 for T = 3 × 104 steps. An initialization is “good” if
πθT (a∗) ≥ 0.99 at the last iterate.

3.2.2 Escape Time

To control the effect of initialization, consider a specialization of the previous

problem where we let r = (b+∆, b, . . . , b)> ∈ [0, 1]K for some b, such that ∆ >

0 is the reward gap. For a given initialization, we say that SPG “escapes” at

time t0 if for all t ≥ t0 it holds that (π∗ − πθt)
> r < 0.9 ·∆, i.e., after t0 the sub-

optimality stays “small”. Fig. 3.2(a) shows that as the initial probability of the

optimal action πθ1(a∗) decreases, the “escape time” t0 increases proportionally.

In particular, the slope in subfigure (a) approaches −1 as πθ1(a∗) decreases,

indicating that log t0 = − log πθ1(a∗) + C, or equivalently t0 = C ′/πθ1(a∗).
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Figure 3.2: Dependence on initialization and softmax gravity wells.

3.2.3 Multiple Plateaus

Two trajectories for SPG on a single-state MDP with K = 5 is shown in

Fig. 3.2(b) and (c). This example reveals that every suboptimal vertex i ∈

{2, 3, 4} has the potential to attract the iterates, while also slowing progress

to render the sub-optimality plateaus in subfigure (c). Therefore, SPG spends

some “escape time” around each suboptimal corner.

3.2.4 Theoretical Justification

Explaining attraction toward suboptimal deterministic policy. We

can see as SPG follows a trajectory defined by exact gradients, it effectively

encounters “softmax gravity wells (SGWs)” at the vertices (deterministic poli-

cies), each of which attracts the trajectory and significantly slows down progress

in their vicinity. To see why the attraction to suboptimal vertices is possible,

consider the SPG in detail: for a single-state MDP, ∀a ∈ [K], we have

dπ>θ r

dθ(a)
= πθ(a) ·

[
r(a)− π>θ r

]
. (3.3)

Note that it is possible for an optimal action, a∗, to be less attractive than a

suboptimal action a, even when r(a∗) > r(a), since it is possible to have both

r(a∗)− π>θtr > r(a)− π>θtr > 0, (3.4)

and πθt(a) > πθt(a
∗), and yet still have

πθt(a) ·
[
r(a)− π>θtr

]
> πθt(a

∗) ·
[
r(a∗)− π>θtr

]
. (3.5)
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This configuration causes the probability on the suboptimal action to stay

above the optimal action probability,

θt+1(a) = θt(a) + η · πθt(a) ·
[
r(a)− π>θtr

]
(3.6)

≥ θt(a
∗) + η · πθt(a∗) ·

[
r(a∗)− π>θtr

]
(3.7)

= θt+1(a∗), (3.8)

and thus πθt+1(a) > πθt+1(a∗), which in turn leads to Eq. (3.5) holds for πθt+1 .

Repeatedly, this vicious circle will finally attract the iteration toward and ap-

proach the suboptimal deterministic policy with πθt(a) ≈ 1 for the suboptimal

action a.

Even though the examples and analysis above might seem specific, they

provide the foundation for a useful and informative lower bound.

Theorem 11 (Escape time lower bound). Even in a single-state MDP, for

any learning rate ηt ∈ (0, 1], there exists an initialization of the policy πθ1

and a positive constant C, such that SPG with full gradients cannot escape a

suboptimal corner before time

t0 :=
C

∆ · πθ1(a∗)
, (3.9)

i.e., it will hold that

(π∗ − πθt)>r ≥ 0.9 ·∆, (3.10)

for all t ≤ t0, where ∆ := r(a∗) − maxa6=a∗ r(a) > 0 is the reward gap of

r ∈ [0, 1]K.

Theorem 11 shows that for SPG with bounded learning rates, the time

to escape suboptimal vertices is lower bounded inversely to optimal action

probability πθ(a
∗), which is necessarily small near suboptimal vertices, leading

to long suboptimal plateaus.

Existing observations of plateaus. SPG plateaus have been observed in

the literature. Previous work including Chen et al. (2019) and Chapter 2 did
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observe this effect empirically, but did not take a deeper look into the under-

lying causes. With function approximation, feature interference has also been

considered to be a source of plateaus (Schaul et al., 2019). In the multi-agent

setting, it has been observed that the non-stationary nature of the environment

can also cause difficulties for SPG to adapt (Hennes et al., 2019). However,

the analysis in this chapter shows that SPG still suffers from plateaus even in

the simplest setting (exact gradients, no approximation, stationary environ-

ments). In Section 3.4 we provide additional mathematical insight to explain

why the softmax transformation itself is the root cause, which also justifies

the name SGW.

3.3 Escort Transform for Policy Gradient

3.3.1 Escort Transform

As explained, a difficulty encountered by SPG comes from the πθ(a) factor

that appears in the gradient, Eq. (3.3). This creates a dependence on the

current policy that potentially discounts the signal from high-reward actions.

Unfortunately, the problem is unavoidable if using SPG with bounded learning

rates to perform updates (Theorem 11). Therefore, we study the following

alternative transform, which we refer to as the “escort transform” (Beck and

Schögl, 1995; Tsallis et al., 1998).

Definition 2 (Escort transform). Given θ : S ×A → R, define πθ = fp(θ) for

p ≥ 1 by

πθ(a|s) =
|θ(s, a)|p∑
a′ |θ(s, a′)|p

. (3.11)

If there is only one state, the escort transform is defined as

πθ(a) =
|θ(a)|p∑
a′ |θ(a′)|p

, ∀a ∈ [K]. (3.12)

3.3.2 Escort Policy Gradient

To explain why this alternative transform might help alleviate the problems

encountered by the softmax, consider the gradient of expected reward using
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the escort transform, i.e., the Escort Policy Gradient (EPG), for a single-state

MDP, ∀a ∈ [K]:

dπ>θ r

dθ(a)
= p · sgn{θ(a)} · |θ(a)|p−1∑

a′ |θ(a′)|p
·
[
r(a)− π>θ r

]
(3.13)

=
p

‖θ‖p
· sgn{θ(a)} · πθ(a)1−1/p ·

[
r(a)− π>θ r

]
. (3.14)

Note the key difference between SPG and EPG, in which the πθ(a) term in

Eq. (3.3) now becomes πθ(a)1−1/p in Eq. (3.14). Thus, for any p ≥ 1, we have

1 − 1/p ∈ [0, 1), which implies πθ(a)1−1/p > πθ(a) since πθ(a) ∈ [0, 1]. This

change will have important implications in convergence rate.

Remark 6. πθ(a)1−1/p → πθ(a) as p→∞, which suggests that large values of

p lead to similar iteration behavior as SPG, whereas small values of p weaken

the dependence on πθ(a). In particular, if p = 1 then πθ(a)1−1/p = 1, which

entirely eliminates the dependence on current policy πθ.

As is the case for the softmax transform, the expected reward objective

remains non-concave over parameter θ when using the alternative escort trans-

form.

Proposition 6. θ 7→ π>θ r is a non-concave function over RK using the map

πθ := fp(θ).

Despite the non-concavity, we manage to obtain surprisingly strong con-

vergence results for EPG, with proofs provided in the appendix. In particular,

thanks to what we call non-uniform smoothness (NS) property and the non-

uniform  Lojasiewicz (N L) inequality enjoyed by the objective, EPG is shown

to enjoy an upper bound on the sub-optimality for single-state MDPs that has

a strictly better initialization dependence than SPG.

Lemma 19 (Non-uniform smoothness). Suppose r ∈ [0, 1]K. Let πθ := fp(θ),

and πθ′ := fp(θ
′). Denote θζ := θ + ζ · (θ′ − θ) with some ζ ∈ [0, 1]. Then, we

have,

(i) for p ≥ 2, π>θ r is 3·p2·K1/p

‖θζ‖2p
-smooth, i.e.,∣∣∣∣(πθ′ − πθ)>r − 〈dπ>θ rdθ

, θ′ − θ
〉∣∣∣∣ ≤ 3 · p2 ·K1/p

2 · ‖θζ‖2
p

· ‖θ′ − θ‖2
2. (3.15)
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(ii) for p = 1, π>θ r is 2·K
‖θζ‖21

-smooth, i.e.,∣∣∣∣(πθ′ − πθ)>r − 〈dπ>θ rdθ
, θ′ − θ

〉∣∣∣∣ ≤ K

‖θζ‖2
1

· ‖θ′ − θ‖2
2. (3.16)

Lemma 20 (Non-uniform  Lojasiewicz). Let πθ = fp(θ). For any p > 0, we

have, ∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≥ p

‖θ‖p
· πθ(a∗)1−1/p · (π∗ − πθ)>r, (3.17)

where π∗ = arg maxπ∈∆ π
>r is the optimal policy.

With the NS property and N L inequality, we can prove a O(1/t) global

convergence rate for EPG using similar techniques in SPG analysis Chapter 2.

Theorem 12. For a single-state MDP, following the escort policy gradient

with any initialization such that |θ1(a)| > 0, ∀a, we obtain the following upper

bounds on the sub-optimality gap for all t ≥ 1:

(gradient flow) for p ≥ 1, with ηt = ‖θt‖2
p,

(π∗ − πθt)>r ≤
1

c2−2/p · t+ 1
, (3.18)

(gradient ascent) for p ≥ 2, with ηt = 2
9·p2·K1/p · ‖θt‖2

p,

(π∗ − πθt)>r ≤
9 ·K1/p

c2−2/p
· 1

t
, (3.19)

(gradient ascent) for p = 1, with ηt = 2
9·K · ‖θt‖

2
1,

(π∗ − πθt)>r ≤
9K

t
, (3.20)

where c := inft πθt(a
∗) > 0 is a problem- and initialization-dependent, but

time-independent constant.1

When p is very large positive values, Theorem 12 implies a close to O(1/(c2 ·

t)) convergence rate, recovering the same rate for SPG Theorem 2, as expected

(Remark 6). For p < ∞, EPG achieves the same O(1/t) rate as SPG, but

enjoys a strictly better c2−2/p > c2 dependence. In particular, for p = 1, there

is no dependence on c, which is also consistent with Remark 6.

Similar results can in fact be obtained for EPG in general MDPs.

1Here, gradient ascent, as expected, refers to θt+1 = θt + ηt ·
dπ>
θt
r

dθt
and gradient flow

refers to the continuous version when dθt
dt = ηt ·

dπ>
θt
r

dθt
.
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Theorem 13. Following the escort policy gradient with any initialization such

that |θ1(s, a)| > 0, ∀(s, a) to get {θt}t≥1, for any t ≥ 1, the following upper

bounds hold for πθt,

(i) for p ≥ 2, with ηt = (1−γ)3

10·p2·A1/p ,

V ∗(ρ)− V πθt (ρ) ≤ 20 · A1/p · S
c2−2/p · (1− γ)6 · t

·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
2

∞

·
∥∥∥∥ 1

µ

∥∥∥∥
∞
, (3.21)

(ii) for p = 1, with ηt = (1−γ)3

10·A ,

V ∗(ρ)− V πθt (ρ) ≤ 20 · A · S
(1− γ)6 · t

·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
2

∞

·
∥∥∥∥ 1

µ

∥∥∥∥
∞
, (3.22)

where c := infs∈S inft≥1 πθt(a
∗(s)|s) > 0 is problem- and initialization-dependent

constant, A := |A| and S := |S| are the total number of actions and states,

respectively, and µ ∈ ∆(S) is an initial state distribution which provides initial

states for the policy gradient method.

Remark 7. Using p = 1 in Theorem 13, the iteration complexity of EPG

depends on polynomial functions of S and A, which significantly improves the

corresponding results for SPG Theorem 4, where the worst case dependence

can be exponential in S and A.

3.3.3 Entropy Regularization

Finally, as for SPG, adding entropy regularization leads to linear convergence

rates for EPG. Note that SPG with entropy regularization enjoys a linear

convergence rate O(e−c
2·t) with dependence on c = inft≥1 min(s,a) πθt(a|s) The-

orem 6. Our results show that EPG with entropy regularization has strictly

better constant dependence than SPG.

Theorem 14. For an entropy regularized MDP with finite states and actions,

following the escort policy gradient with any initialization such that |θ1(s, a)| >

0, ∀(s, a), and

ηt =
(1− γ)3

10 · p2 · A1/p + cτ
, (3.23)
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to get {θt}t≥1, for all t ≥ 1, the following sub-optimality upper bounds hold for

πθt, for p ≥ 2:

Ṽ π∗τ (ρ)− Ṽ πθt (ρ) ≤ ‖1/µ‖∞
exp{Cτ · c′2 · t}

· 1 + τ logA

(1− γ)2
, (3.24)

where c′ > c := inf(s,a) inft≥1 πθt(a|s) > 0, τ is the temperature for entropy reg-

ularization, π∗τ is the softmax optimal policy, and cτ , Cτ are problem-dependent

constants.

3.3.4 Relationship to Mirror Descent (MD)

As an additional observation, note that simply removing πθ(a) in Eq. (3.3)

yields an update θt+1 = θt(a) + ηt · r(a) and πθt+1 = softmax(θt+1), which can

be combined to yield an update

πθt+1(a) =
πθt(a) · exp{ηt · r(a)}∑

a′∈[K] πθt(a
′) · exp{ηt · r(a′)}

, (3.25)

that is equivalent to Mirror Descent (MD) with KL divergence. Given this

similarity between SPG, EPG and MD, one might hope that EPG could be

reduced to a particular version of MD. However, unlike SPG and MD, the EPG

gradient does not specify a conservative vector field and cannot be recovered

by MD using any regularization.

Remark 8 (EPG cannot be reduced to MD). Recall that for a (convex) po-

tential Φ : ∆ → R and its Bregman divergence DΦ : ∆ × ∆ → R, the MD

update is

πt+1 = arg max
π∈∆

π>r − 1

ηt
· DΦ(π‖πt). (3.26)

In particular, using Φ(π) = π> log π as the potential and DΦ(π‖π′) = DKL(π‖π′)

as the divergence one obtains πθt+1(a) ∝ πθt(a) · exp{ηt · r(a)}. Equivalently,

this update can be expressed

πθt+1 = arg max
π∈∆

π>θt+1 − Φ(π), (3.27)

where θt+1 = θt(a) + ηt · r(a).
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Now suppose EPG is MD, i.e., there is some Φ such that

fp(θt+1) = arg max
π∈∆

π>θt+1 − Φ(π). (3.28)

Then we would have to have fp(θt+1) = ∇Φ∗(θt+1) where Φ∗ is the Fenchel

conjugate of Φ. Taking the derivative w.r.t. θ yields(
dπθ
dθ

)>
=

(
dfp(θ)

dθ

)>
= p · diag(1/θ)

(
diag(πθ)− πθπ>θ

) (?)
=
d2Φ∗(θ)

dθ2
. (3.29)

By Schwarz’s theorem, d2Φ∗(θ)
dθ2 is symmetric, however diag(1/θ)

(
diag(πθ)− πθπ>θ

)
is not symmetric. Therefore, there cannot be a regularizer Φ that makes EPG

equivalent to MD.

Remark 8 implies that standard techniques for analyzing mirror descent

(e.g., Bregman divergence and convex duality) cannot be directly applied to

EPG, necessitating our analysis based on the non-uniform smoothness and N L

inequalities for Theorems 12 to 14.

3.3.5 Experimental Verification

To support these findings and reveal some of the practical implications of

EPG versus SPG, we conducted a simple experiment on a single-state MDP

with K = 3 and r = (0.2, 0.9, 1.0)>. Fig. 3.3(a) depicts the dπθ(a∗)
dt

values for

SPG, where the dark regions around the corners show areas of slow progress.

In particular, the region around the lower-right suboptimal corner exhibits
dπθ(a∗)
dt

< 0, and πθ(a
∗) will actually decrease under SPG updating in this

region, prolonging the escape time according to Theorem 11. In short, the dark

regions correspond to SGWs for SPG. Subfigure (b) further shows how SPG is

attracted toward the suboptimal corner, visually consistent with subfigure (a).

By contrast, the solid lines indicate EPG methods with different p values. As

noted in Remark 6, smaller p values have better resistance against attraction

to SPG gravity wells, while larger p values behave more similarly to SPG. We

also observe that MD (with KL divergence) has similar performance to EPG

with p = 2 in this case. Finally, subfigure (c) plots the sub-optimaliy gap

before (π∗−πθt)>r ≤ 0.005 is achieved. It is clear that SPG does get stuck on
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a suboptimal plateau while EPG methods do not suffer from this disadvantage.

We note that EPG curves for p ≥ 2 behave nicer than p = 1 since the escort

is differentiable when p ≥ 2.
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Figure 3.3: Empirical visualization for EPG and SPG.

3.4 Non-uniform  Lojasiewicz Coefficient: An

Underlying Explanation

Remark 6 provides an intuition for why EPG has better initialization depen-

dence than SPG. This intuition can be formalized using the notion of non-

uniform  Lojasiewicz (N L) coefficient, which plays an important role here since

both SPG in Chapter 2 and EPG analyses are based on N L inequalities.

Definition 3 (Non-uniform  Lojasiewicz (N L) coefficient). A function f : Θ→

R has N L coefficient C(θ) > 0 if it satisfies N L inequality with coefficient C(θ),

i.e., there exists ξ ∈ [0, 1] such that for all θ ∈ Θ,∥∥∥∥df(θ)

dθ

∥∥∥∥
2

≥ C(θ) · |f(θ)− f(θ∗)|1−ξ. (3.30)

Recall that in Definition 1, ξ is called N L degree, which impacts the con-

vergence rates of SPG methods as shown in Section 2.5. According to the

result of Lemma 3, if πθ = softmax(θ), then π>θ r has N L coefficient πθ(a
∗);

that is∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

=
∥∥(diag(πθ)− πθπ>θ

)
r
∥∥

2
≥ πθ(a

∗) · (π∗ − πθ)> r. (3.31)

50



Moreover, this coefficient is not improvable (Remark 1) and it appears in the

SPG convergence rate O(1/(c2 · t)) (Theorem 2), where c := inft≥1 πθt(a
∗)

(Lemma 5). Now consider EPG. If πθ = fp(θ), then we have∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

=
∥∥p · diag(1/θ)

(
diag(πθ)− πθπ>θ

)
r
∥∥

2
(3.32)

≥ p · πθ(a
∗)

|θ(a∗)|
· (π∗ − πθ)> r (3.33)

=
1

‖θ‖p
· πθ(a∗)1−1/p · (π∗ − πθ)> r, (3.34)

where πθ(a
∗)1−1/p > πθ(a

∗) provides strictly larger (partial) N L coefficient,

hence in Theorem 12 EPG obtains a strictly better result than SPG.

The improvement of N L coefficient explains a better dependence of EPG on

initialization. It is then natural to ask whether the escort transform can also

benefit other scenarios, which is answered affirmatively in the next section.

3.5 Escort Transform for Cross Entropy

We now turn to classification, where the goal is to learn a classifier that min-

imizes the cross-entropy loss. As in RL, the softmax transform is the default

choice for parameterizing a probabilistic classifier. Different from RL where

the objective is linear, the objective here involves log probabilities:

min
θ:A→R

− log πθ(ay) = H(y) + min
θ:A→R

DKL(y‖πθ), (3.35)

where πθ = softmax(θ), y ∈ {0, 1}K is a one-hot vector encoding the class

label, and ay is the true label class so that y(ay) = 1. Note that the entropy

H(y) := −y> log y = 0 here. The objective in Eq. (3.35) is smooth and convex

in θ, which implies that gradient descent will achieve an O(1/t) rate (Nesterov,

2018). Furthermore, for θ that satisfies mina πθ(a) ≥ πmin with some constant

πmin > 0 (πθ is bounded away from the simplex boundary), the objective is

strongly convex, resulting in an even better, linear rate O(e−c·t).

Despite these nice properties, we still find that the softmax transform

proves problematic for gradient descent optimization. We refer to this new

disadvantage as “softmax damping”.
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3.5.1 Softmax Damping

Consider running gradient descent in a simple experiment where K = 10

and y is a one-hot vector. Let δt := − log πθt(ay). If one hopes for a linear

convergence rate, i.e., δt = O(e−c·t), then log δt = −O(t) is expected. But

Fig. 3.4(a) shows a different picture with a flattening slope. Subfigure (b)

plots log δt as a function of log t, which shows a straight line for sufficiently

large t with a slope approaching −1. This figure verifies the convergence rate

is indeed δt = O(1/t), instead of the linear O(e−c·t) rate. Subfigure (c) shows

the `2 measure ‖y − πθt‖2
2 also has a sublinear rate, indicating that this is an

inherent optimization phenomenon and is independent of the measurement.
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Figure 3.4: Softmax damping phenomenon and escort cross entropy.
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3.5.2 N L Coefficient Explanation

The N L coefficient can be used to explain why this rate degeneration occurs

for softmax cross entropy (SCE). Note that for πθ = softmax(θ) we obtain∥∥∥∥d{DKL(y‖πθ)}
dθ

∥∥∥∥2

2

= ‖y − πθ‖2
2 ≥ min

a
πθ(a) ·DKL(y‖πθ). (3.36)

Once again the mina πθ(a) term cannot be eliminated for the softmax trans-

form, but here it has a different consequence than before. To see the N L coeffi-

cient of SCE cannot be improved, consider the example where y = (0, 1)> and

π = (ε, 1− ε)>, where ε > 0 is small. Note that DKL(y‖π) = − log (1− ε) ≥ ε

and ‖y − π‖2
2 = 2 · ε2, which means for any constant C > 0, we have

C ·DKL(y‖π) ≥ C · ε > 2 · ε2 = ‖y − π‖2
2. (3.37)

Therefore, for any  Lojasiewicz-type inequality, C necessarily depends on mina πθ(a).

Now for any convergent sequence πθt , i.e., such that DKL(y‖πθt)→ 0, we neces-

sarily have mina πθt(a)→ 0, which makes the gradient information insufficient

to sustain a linear convergence rate. That is, the fast convergence rate is

“damped” in this case. The difference between this phenomenon and the pre-

vious “softmax gravity well” is that here the vanishing N L coefficients change

the rates rather than the constant in the bound on the sub-optimality gap.

Moreover, we can explain why the rate degenerates to O(1/t) asymptoti-

cally as t → ∞, using the interplay between the N L coefficient and N L de-

gree. Consider the same example where πθ = (ε, 1 − ε)> and DKL(y‖πθ) =

− log (1− ε). Note that we have e−2·x ≤ 1 − x for all x ∈ [0, 1/2]. Then we

have,∥∥∥∥d{DKL(y‖πθ)}
dθ

∥∥∥∥2

2

≥ min
a
πθ(a) ·DKL(y‖πθ) (by Eq. (3.36)) (3.38)

=
1

2
· 2 · ε ·DKL(y‖πθ) (3.39)

≥ −1

2
· log (1− ε) ·DKL(y‖πθ) (ε ∈ [0, 1/2]) (3.40)

=
1

2
·DKL(y‖πθ)2, (3.41)
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which means the N L degree becomes ξ = 0 as mina πθ(a) → 0, according to

Definition 1. Comparing to Eq. (3.36) with ξ = 1/2, this is a strictly weaker

N L inequality and can only lead to a O(1/t) convergence rate.

3.5.3 Label smoothing, soft target, reward-augmented
maximum likelihood

As shown in Eq. (3.36), the reason for softmax damping happens is mina πθ(a)→

0 as πθ → y if y is a one-hot distribution. One might consider non-deterministic

target y to avoid degenerating convergence since we would have mina πθ(a)→

mina y(a) > 0. In fact, there exist several existing work implementing this

idea, including label smoothing (Szegedy et al., 2016), soft target (Hinton

et al., 2015), and reward augmented maximum likelihood (Norouzi et al.,

2016). Those techniques are usually considered to have generalization ben-

efits. Here we provide an optimization advantage, which is a byproduct of our

N L coefficient explanation. For example, instead of using a one-hot true label

distribution y in DKL(y‖πθ), label smoothing has a regularized target as

yLS := (1− α) · y + α · 1

K
, (3.42)

where K is the total number of classes, and α > 0 is the label smoothing hyper-

parameter. It is then obvious that mina πθ(a)→ mina yLS(a) = α/K > 0, and

the softmax damping will not happen.

3.5.4 Escort Cross Entropy

As in Section 3.3 for policy gradient, we propose to also use the escort trans-

form for cross entropy minimization. A simple calculation for πθ = fp(θ)

shows ∥∥∥∥d{DKL(y‖πθ)}
dθ

∥∥∥∥2

2

= ‖p · diag(1/θ)(y − πθ)‖2
2 (3.43)

≥ p2

‖θ‖2
p

·min
a
πθ(a)1−2/p ·DKL(y‖πθ). (3.44)

Note that the term mina πθ(a)1−2/p > mina πθ(a) is strictly better than the

softmax cross entropy when p ≥ 2. In particular, for p = 2, the escort cross
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entropy (ECE) has (partial) N L coefficient mina πθ(a)1−2/p = 1, which fully

eliminates the dependence on the current policy πθ. This leads to our last

main result, which restores the linear convergence rate.

Theorem 15. Using the escort transform with p = 2 and gradient descent on

the cross entropy objective with learning rate ηt =
‖θt‖2p

4·(3+c21)
, we obtain for all

t ≥ 1,

− log πθt(ay) = DKL(y‖πθt) ≤ DKL(y‖πθ1) · exp
{
− (t− 1)

2 · (3 + c2
1)

}
, (3.45)

where 1/c2
1 = πθ1(ay) ∈ (0, 1] only depends on initialization.

For reference, we run gradient descent on the cross entropy objective in

the same experiment above, but with the escort transform. As shown in

Fig. 3.4(d), log δt now becomes linear in t, or equivalently − log πθt(ay) =

C · e−c·t, verifying the theoretical finding of Theorem 15.

3.6 Experimental Results

We conduct several experiments to verify the effectiveness of the proposed

escort transform in policy gradient and cross entropy minimization.

3.6.1 One-state MDPs

First, we conduct experiments on one-state MDPs with K = 10, 50, and 100.

For each value of K ∈ {10, 50, 100}, the policy is parameterized by θ ∈ RK .

For SPG, πθ = softmax(θ), and for EPG πθ = fp(θ). The total number of

runs for each algorithm under each K value is 20. In each run, we randomly

generate the reward r ∈ [0, 1]K , and then randomly initialize πθ1 within the

(K − 1)-dimensional probability simplex. SPG and EPG start from the same

initial policy πθ1 . The total number of iterations is T = 5× 104.

Fig. 3.5 shows the results of SPG and EPG with p = 2. The learning

rate of SPG is set to be η = 0.4 (Theorem 2). The learning rate of EPG is

ηt = 0.2·‖θt‖2
p (Theorem 12). As shown in Fig. 3.5(a), EPG with p = 2 quickly

converges to optimal policies consistently across all the K values, significantly

outperforming SPG.
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Figure 3.5: Results on one-state MDPs and Four-room.

Different p values. Fig. 3.6(a)-(c) show the results of EPG for p ∈ {2, 3, 4, 5}

in one-state MDPs, where each curve is the averaged result of 20 runs.

3.6.2 Four-room

Second, we compare the algorithms on Four-room environment for 20 runs.

There is one goal with reward 1.0 and 4 sub-goals (“sub-goals” mean goals

with lower rewards) with reward 0.7 as shown in Fig. 3.5(b). At a (sub-)goal

state, the agent can step away then step back to receive rewards. The policy

is πθ = softmax(θ) for SPG, and πθ = fp(θ) for EPG, and θ is the output of

one parameterized by one hidden layer neural network with ReLU activation

function and 64 hidden nodes.

In each run, the starting position is randomly generated. The optimal value

function V ∗ is approximately calculated using value iteration with threshold

of two consecutive iterations ‖Vt − Vt+1‖2
2 ≤ 1 × 10−10. In each iteration, the

true objective is used by calculating the stationary distribution dπθt and the

state-action value Qπθt . We use Adam optimizer (Kingma and Ba, 2014) and

the total number of iterations is T = 500.

The total number of runs for each algorithm is 20. The p value for EPG

is searched within {1, 2, 3, 4, 5}. The learning rate 0.01 is used for both SPG

and EPG as a result of searching within {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}.

Fig. 3.5 shows the results of SPG and EPG with p = 2. As shown in

Fig. 3.5(c), SPG is easily stuck in plateaus due to the presence of the sub-

goals, while EPG with p = 2 quickly achieves the optimal goal.
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Different p values. Fig. 3.6(d) shows the results of EPG for p ∈ {1, 2, 3, 4, 5}

in Four-room task, where each curve is the averaged result of 20 runs.
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Figure 3.6: Results of EPG with different p values on one-state MDPs and
Four-room.

3.6.3 MNIST

Next, we do experiments on MNIST dataset. For each (x, y), where x ∈ R784

is image data and y ∈ {0, 1}10 is the true label, the training objective is

1−πθ(ay|x), where y(ay) = 1. We use policy gradient methods, since the mis-

classification probability minimization problem is a special case of expected

reward maximization. The policy is πθ = softmax(θ) for SPG and SCE, and

πθ = fp(θ) for EPG and ECE, where θ is the output of one hidden layer neural

network with ReLU activation function and 512 hidden nodes. The dataset

is split into training set with 55000, validation set with 5000, and testing set

with 10000 data points.
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We use SGD with momentum 0.9 and the total number of epochs is 100.

The total number of runs for each algorithm is 20. The learning rates for SPG

and EPG are searched within {0.001, 0.005, 0.01, 0.05, 0.1, 0.5} and 0.05 is used

for both SPG and EPG. The batchsize is searched within {10, 20, 50, 100, 200, 500},

and 20 is used for for SPG and 50 is used for EPG. The p value for EPG is

searched within {1, 2, 3, 4, 5}.

Fig. 3.7(a) and (b) show the results of SPG and EPG with p = 4. For both

training objective and test error, SPG has plateaus due to SGWs, which is

consistent with the observation in (Chen et al., 2019). At the same time, EPG

with p = 4 does not have this disadvantage: it converges quickly and achieves

better results than SPG.

The results show that with stochastic gradients and neural network func-

tion approximations, (i) SPG still plateaus even when starting from nearly

uniform initializations; (ii) EPG outperforms SPG in terms of not suffering

from plateaus even with estimated gradients.

Finally, for SL, we compare ECE and SCE on MNIST. For each training

data (x, y), the training objective is − log πθ(ay|x), where y(ay) = 1. The

neural network and dataset are the same as above. The learning rate and

batchsizes are searched within the same range as above, and we use the learning

rate 0.01, and the batchsize 20 for both SCE and ECE. As shown in Fig. 3.7(c)

and (d), ECE with p = 2 is faster than SCE to achieve the same training

objective, which benefits generalization, providing smaller test error than SCE.

Different p values. Fig. 3.8 shows the results of EPG with p ∈ {2, 3, 4, 5}

on MNIST, where each curve is the averaged result of 10 runs. The best result

in terms of the test error is with p = 5.

3.6.4 Comparing SPG, EPG, and MD

As noted in Remark 8, EPG cannot be reduced to MD with any regularizer.

Also as shown in Fig. 3.3(b), EPG and MD with KL divergence behave sim-

ilarly in the 3-action case. We conduct experiments on bandit problems with

K ∈ {50, 100, 500} actions to compare EPG with MD. In each iteration, all
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Figure 3.7: Results on MNIST.

the algorithms use the same stochastic gradient to do updates. Each curve is

averaged over 20 runs.

As shown in Fig. 3.9, EPG and MD with KL regularization have com-

parable performances, significantly outperforming SPG. However, EPG in its

nature is a policy gradient method, which has a cheap update in each iteration,

while MD needs to solve an optimization problem to do one update.

3.7 Summary

We discovered two phenomena that arise from the use of the standard softmax

probability transformation in reinforcement learning and supervised learning,

and proposed the escort transform to alleviate or eliminate these disadvan-

tages. Our findings of the softmax gravity well and softmax damping phe-

nomena challenge the common practice of using the softmax transformation
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Figure 3.8: Results of EPG with different p values on MNIST.
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Figure 3.9: Sub-optimality (π∗ − πθt)
> r on single-state MDPs using stochas-

tic gradients.

in machine learning. The key technical innovation is to use the concept of non-

uniform  Lojasiewicz (N L) coefficient to characterize different N L inequalities.

This goes beyond the classic convex “matching loss” theory (Auer et al., 1996;

Kivinen and Warmuth, 1998) and guarantees better optimization results.
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Chapter 4

Non-uniform Analysis

In Chapters 2 and 3, the non-uniform  Lojasiewicz inequality was introduced

to study the policy gradient optimization (PG) in RL. In this chapter, inspired

by the PG results as well as other non-convex optimization problems in ma-

chine learning, I unify and generalize the previous non-uniform properties, and

propose a non-uniform analysis for general optimization, then apply it to both

PG in RL and generalized linear model training (GLM) in SL.

The results in this chapter appeared in Mei et al. (2021b).

4.1 Introduction

The optimization of non-convex objective functions is a topic of key interest

in modern-day machine learning. Recent, intriguing results show that simple

gradient-based optimization can achieve globally optimal solutions in certain

non-convex problems arising in machine learning, such as in reinforcement

learning (RL) (Chapter 2), supervised learning (SL) (Hazan et al., 2015),

and deep learning (Allen-Zhu et al., 2019). While gradient-based algorithms

remain the method of choice in machine learning, the convergence of such

algorithms to global minimizers has still only been established in restrictive

settings where one can assert two strong assumptions about the objective

function: (i) that the objective is smooth, and (ii) that the objective satisfies

a gradient dominance over sub-optimality such as the  Lojasiewicz inequality.

We will find it beneficial to recall the definitions of these properties. For the

remainder of this chapter let Θ = Rd.
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Definition 4 (Smoothness). The function f : Θ → R is β-smooth (β > 0) if

it is differentiable and for all θ, θ′ ∈ Θ,∣∣∣∣f(θ′)− f(θ)−
〈df(θ)

dθ
, θ′ − θ

〉∣∣∣∣ ≤ β

2
· ‖θ′ − θ‖2

2. (4.1)

Definition 5 (Kurdyka (1998),  Lojasiewicz (1963), and Polyak (1963)). The

differentiable function f : Θ → R satisfies the (C, ξ)- Lojasiewicz inequality if

for all θ ∈ Θ, ∥∥∥∥df(θ)

dθ

∥∥∥∥
2

≥ C ·
(
f(θ)− inf

θ∈Θ
f(θ)

)1−ξ
, (4.2)

where C > 0 and ξ ∈ [0, 1].

In particular, if an objective function f satisfies both assumptions, gradient-

based optimization can be shown to converge to a global minimizer by not-

ing first that uniform smoothness Eq. (4.1) ensures the gradient updates

achieve monotonic improvement with an appropriate step size, i.e., we have,

for θt+1 ← θt − 1
β
· ∇f(θt),

f(θt+1) ≤ f(θt)−
1

2β
· ‖∇f(θt)‖2

2 . (4.3)

while the  Lojasiewicz inequality Eq. (4.2) ensures the gradient does not van-

ish before a global minimizer is reached. Several global convergence results

have recently been achieved in the machine learning literature by exploiting

assumptions of this kind. For example, in reinforcement learning it has re-

cently been shown that policy gradient (PG) methods converge to a globally

optimal policy (Chapter 2); in supervised learning it has been shown that

gradient descent (GD) methods converge to global minimizers of certain non-

convex problems (Hazan et al., 2015); and in deep learning theory it has been

shown that (stochastic) GD can converge to a global minimizer with an over-

parameterized neural network (Allen-Zhu et al., 2019).

However, previous work that relies on the two uniform conditions in Defi-

nitions 4 and 5 assumes universal constants β and C, which ignores important

problem structure and limits both the applicability of the results and the

strength of the results that can be obtained.
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In this chapter, we expand the class of problems for which gradient-based

optimization is globally convergent, develop novel gradient-based methods that

better exploit local structure, and improve the convergence rate analysis. We

achieve these results by first defining then investigating a new set of non-

uniform smoothness and  Lojasiewicz inequalities, which generalize the classi-

cal definitions and allow a refined characterization of the space of objectives.

Given these refined notions, we then tailor novel gradient-based algorithms

that improve previous methods for these new problem classes, and extend the

analysis to exploit these new forms of non-uniformity, achieving significantly

stronger convergence rates in many cases. Importantly, these improvements

are achieved in non-convex optimization problems that arise in relevant ma-

chine learning problems.

The remainder of this chapter is organized as follows.

First, in Section 4.2 we illustrate how natural optimization problems,

including those in machine learning, exhibit interesting local structure that

cannot be adequately captured by the uniform smoothness and  Lojasiewicz

inequalities.

Second, Section 4.3 introduces the the Non-uniform Smoothness (NS)

property and the Non-uniform  Lojasiewicz (N L) inequality, based on which

Section 4.5 provides non-uniform analyses.

Finally, Sections 4.6 and 4.7 then present new results for policy gradient

and generalized linear models respectively.

4.2 Motivation

To illustrate the significance of non-uniformity in machine learning problems,

we consider examples motivated by recent theoretical (Wilson et al., 2019;

Zhang et al., 2019) (and Chapter 2) and empirical studies (Cohen et al., 2021).

Regarding smoothness, it is clear that a uniform smoothness constant β

cannot always adequately characterize an objective over its entire domain. For

example, the convex function f : x 7→ x4 cannot be informatively characterized

by a uniform smoothness constant β because its Hessian f ′′ : x 7→ 12 · x2 has

63



the property that f ′′(x)→∞ as |x| → ∞, and f ′′(x)→ 0 as |x| → 0. Varying

smoothness of this kind has motivated the study of alternative definitions to

explain, for example, the effectiveness of gradient clipping in training neural

networks and normalization in optimization (Wilson et al., 2019; Zhang et al.,

2019). Meanwhile Cohen et al. (2021) present neural network training results

that cannot be well explained using the standard smoothness condition of

Definition 4.

Regarding the  Lojasiewicz inequality, our study of policy gradient opti-

mization in Chapter 2 has shown that, with the standard softmax parameteri-

zation, the expected return objective cannot satisfy any  Lojasiewicz inequality

with a universal constant C (Remark 1), which removes the possibility of using

(Definition 5) to prove convergence. By introducing a non-uniform version of

the  Lojasiewicz inequality (Lemmas 3 and 8), we were able to show a global

convergence rate for the same problem.
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Figure 4.1: Non-uniform landscape of non-convex function.

Fig. 4.1 illustrates another example of a non-convex objective, which arises

in supervised learning. Subfigure (a) visualizes the mean squared error (MSE)

of a generalized linear model (GLM) (Hazan et al., 2015), which is not only

non-convex but also highly non-uniform. As a “teaser”, subfigure (b) com-

pares the convergence behavior of two algorithms: standard gradient descent

(GD), which suffers from slow convergence on the plateaus due to the non-

uniformity of the objective, and an alternative algorithm (GNGD), soon to

be introduced. This figure previews how proper handling of non-uniformity in
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the optimization landscape can enable significant acceleration of optimization

progress, including a quick escape from landscape plateaus.

4.3 Non-uniform Properties

The main results in this chapter depend on two core concepts, Non-uniform

Smoothness (NS) and Non-uniform  Lojasiewicz (N L) inequality. The NS prop-

erty is a new, intuitive generalization of smoothness. The N L inequality is a

new proposal that generalizes previous  Lojasiewicz inequalities as well as spe-

cial N L inequalities in Chapter 2. Our key contribution is to show that the

combination of these two non-uniform concepts is particularly powerful, ap-

plicable to important non-convex objectives in machine learning, and allows

the development of improved algorithms and analysis.

4.3.1 Non-uniform Smoothness (NS)

The first main concept we leverage is a new generalized notion of smoothness

that depends on the parameters non-uniformly.

Definition 6 (Non-uniform Smoothness (NS)). The function f : Θ → R

satisfies β(θ) non-uniform smoothness if f is differentiable and for all θ, θ′ ∈

Θ, ∣∣∣∣f(θ′)− f(θ)−
〈df(θ)

dθ
, θ′ − θ

〉∣∣∣∣ ≤ β(θ)

2
· ‖θ′ − θ‖2

2, (4.4)

where β is a positive valued function: β : Θ→ (0,∞).

We will refer to β(θ) in Definition 6 as the NS coefficient. This alternative

definition generalizes and unifies several smoothness concepts from the recent

literature. First, NS clearly reduces to Eq. (4.1) with β(θ) = β. However, NS

also generalizes the notion of (L0, L1) smoothness from Zhang et al. (2019)

by using β(θ) = L0 + L1 · ‖∇f(θ)‖2. By using β(θ) = c · ‖∇f(θ)‖
p−2
p−1

2 , NS

also reduces to the notion of strong smoothness of order p proposed in Wilson

et al. (2019). Finally, with β(θ) = c/ ‖θ‖2
p, NS reduces to a special form of

non-uniform smoothness considered in Lemma 19. We will show later that
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NS also covers other previously unstudied smoothness variants. Below we

will demonstrate the key benefits of Definition 6 in terms of its generality,

better convergence results, and practical implications in conjunction with the

N L inequality.

4.3.2 Non-uniform  Lojasiewicz (N L) Inequality

The second main concept we leverage is a new generalized  Lojasiewicz inequal-

ity introduced in Lemma 3 in Chapter 2:

Definition 7 (Non-uniform  Lojasiewicz (N L)). The differentiable function

f : Θ→ R satisfies the (C(θ), ξ) non-uniform  Lojasiewicz inequality if for all

θ ∈ Θ, ∥∥∥∥df(θ)

dθ

∥∥∥∥
2

≥ C(θ) · |f(θ)− f(θ∗)|1−ξ , (4.5)

where ξ ∈ (−∞, 1], and C(θ) : Θ → R > 0 holds for all θ ∈ Θ. In this

definition, either θ∗ = arg minθ∈Θ f(θ), or f(θ∗) is replaced with infθ f(θ) if

the global optimum is not achieved within the domain Θ.

Definition 7 extends the classical “uniform”  Lojasiewicz inequalities in op-

timization literature, such as the Polyak- Lojasiewicz (P L) inequality with

C(θ) = C > 0 and ξ = 1/2 ( Lojasiewicz, 1963; Polyak, 1963); and the

Kurdyka- Lojasiewicz (K L) inequality1 by setting C(θ) = C > 0 (Kurdyka,

1998). We refer to ξ as the N L degree (Definition 1) and C(θ) as the N L coef-

ficient (Definition 3). Generally speaking, a larger N L degree ξ and N L coef-

ficient C(θ) indicate faster convergence for gradient based algorithms. Chap-

ter A provides an overview of remarkable non-convex functions that satisfy

the N L inequality for various ξ and C(θ). As stated, our main contribution is

to show how, when combined with NS, N L becomes a powerful tool for both

algorithm design and analysis, which is a novel direction of investigation.

1The K L inequality is violated at bad local optima, since vanishing gradient norm cannot
dominate non-zero sub-optimality gap. Therefore Definition 7 actually recovers global K L
inequality.
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4.4 Geometry-aware Gradient Descent

A key benefit of the non-uniform definitions is that we can introduce step-

size rules that make gradient descent adapt to the local “geometry” of the

optimization objective. First consider the classical gradient decent update.

Definition 8 (Gradient Descent (GD)).

θt+1 ← θt − η · ∇f(θt). (4.6)

The key challenge with deploying GD is choosing the step size η; if η is too

large, instability ensues, if too small, progress becomes slow. Recall from the

Eq. (4.3) that η = 1/β is a canonical choice for assuring convergence in uni-

formly β smooth objectives. This suggests that in the presence of non-uniform

smoothness β(θ) given in NS, the stepsize should be adapted to 1/β(θ). This

leads to a new variant of normalized gradient descent.

Definition 9 (Geometry-aware Normalized GD (GNGD)).

θt+1 ← θt − η ·
∇f(θt)

β(θt)
. (4.7)

Key to making this approach practical will be efficient ways to measure (or

bound) β(θ). Below we will show how in the context of NS and N L properties,

GNGD can be made both practical and extremely efficient at solving various

global optimization problems in machine learning. These results also broaden

our fundamental knowledge of the set of objectives that admit efficient global

optimization.

4.5 Non-uniform Analysis

4.5.1 Main Theorem

Our first main contribution in this chapter is an analysis for GD and GNGD

based in the presence of non-uniform properties. For minimization problems,

we assume infθ f(θ) > −∞ (supθ f(θ) <∞ for maximization problems).
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Theorem 16. Suppose f : Θ→ R satisfies NS with β(θ) and the N L inequality

with (C(θ), ξ). Suppose C := inft≥1 C(θt) > 0 for GD and GNGD. Let δ(θ) :=

f(θ)− f(θ∗) be the sub-optimality gap. The following hold:

(1a) if β(θ) ≤ c · δ(θ)1−2ξ with ξ ∈ (−∞, 1/2), then the conclusions of (1b)

hold;

(1b) if β(θ) ≤ c · ‖∇f(θ)‖
1−2ξ
1−ξ

2 with ξ ∈ (−∞, 1/2), then GD with η ∈ O(1)

achieves δ(θt) ∈ Θ(1/t
1

1−2ξ ), and GNGD achieves δ(θt) ∈ O(e−c
′·t).

(2a) if β(θ) ≤ L0 + L1 · ‖∇f(θ)‖2, then the conclusions of (2b) hold;

(2b) if β(θ) ≤ L0 · ‖∇f(θ)‖2
δ(θ)2−2ξ +L1 · ‖∇f(θ)‖2, then GD and GNGD both achieve

δ(θt) ∈ O(1/t
1

1−2ξ ) when ξ ∈ (−∞, 1/2), and O(e−c
′·t) when ξ = 1/2.

GNGD has strictly better constant than GD (1 > C > C2).

(3a) if β(θ)≤ c ·‖∇f(θ)‖
1−2ξ
1−ξ

2 with ξ ∈ (1/2, 1), then the conclusions of (3b)

hold;

(3b) if β(θ) ≤ c · δ(θ)1−2ξ with ξ ∈ (1/2, 1), then GD with η ∈ Θ(1) does not

converge, while GNGD achieves δ(θt) ∈ O(e−c
′·t).

Remark 9. The cases (1)-(3) cover all three possibilities of β(θ∗). Since

θ∗ is the global minimum, ∇2f(θ∗) is positive semi-definite (negative if θ∗ is

maximum) if it exists.

(1) If ∇2f(θ∗) = 0, then β(θ)→ 0 as θ, θ′ → θ∗, which means the landscape

around θ∗ is flat.

(2) If ∇2f(θ∗) has at least one strictly positive (negative) eigenvalue, then

β(θ)→ β > 0 as θ, θ′ → θ∗.

The cases (1)-(2) also cover the situations where the Hessian ∇2f(θ∗) does

not exist but one can find a finite β(θ∗) > 0 to upper bound the l.h.s. of

Definition 6.

(3) The case (3) is for blow-up type non-existence of ∇2f(θ∗), where β(θ∗)

is unbounded.

Remark 10. In Theorem 16, the N L coefficient C := inft≥1 C(θt) is related

to the early optimization and plateau escaping behavior studied in Chapter 3.
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Figure 4.2: Different function classes for β(θ∗) <∞. We use a label notation
where, e.g., C denotes the set of all functions that satisfy property C, and
ACE := A ∩ C ∩ E. The two largest ellipsoids correspond to A ∪ B and C.
We study the following four non-convex function classes in (A ∪ B) ∩ C, i.e.,
W := AC \ (AD ∪ ACE), X := AD \ ADE, Y := BC \ (BD ∪ BCE), and
Z := BD \ (BDE ∪ BF).

It remains open to study whether GNGD can be combined with the alternative

escort parameterizations in Definition 2 to further improve C.

Note that (1b) recovers the strong smoothness of order p with p = 1/ξ in

Wilson et al. (2019), and (2a) recovers the (L0, L1) smoothness of Zhang et

al. (2019). The results here consider more general N L functions and establish

faster rates of convergence. The other cases have not been studied in literature

to our knowledge. In Sections 4.6 and 4.7 below we study practical machine

learning examples that are covered by cases (1) and (2) in Theorem 16. Other

cases of different β(θ) and ξ are discussed below for completeness.

4.5.2 Function Classes

Before applying these results to problems in machine learning, we first provide

a refined characterization of function classes organized by their NS and N L

properties. This also clarifies the relation between the non-uniform properties

and standard notions of convexity and smoothness; see Fig. 4.2.

Proposition 7. The following hold for an objective f :

(1) D ⊆ C. If f satisfies N L with degree ξ, it satisfies N L with degree ξ′ < ξ;

(2) F⊆D. A strongly convex f satisfies N L with ξ=1/2;

(3) F ∩ A = ∅. A strongly convex f cannot satisfy NS with β(θ) → 0 as

θ, θ′ → θ∗;
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(4) E⊆C. A (not strongly) convex f satisfies N L with ξ=0.

The next proposition provides concrete examples for each convex function

class in (A ∪ B) ∩ C in Fig. 4.2.

Proposition 8. The following results hold:

(1) ACE 6= ∅. There exists at least one (not strongly) convex function which

satisfies N L with ξ < 1/2 and NS with β(θ)→ 0 as θ, θ′ → θ∗.

(2) ADE 6= ∅. There exists at least one (not strongly) convex function which

satisfies N L with ξ ≥ 1/2 and NS with β(θ)→ 0 as θ, θ′ → θ∗.

(3) BCE 6= ∅. There exists at least one (not strongly) convex function which

satisfies N L with ξ < 1/2 and NS with β(θ)→ β > 0 as θ, θ′ → θ∗.

(4) BDE 6= ∅. There exists at least one (not strongly) convex function which

satisfies N L with ξ ≥ 1/2 and NS with β(θ)→ β > 0 as θ, θ′ → θ∗.

(5) BF 6= ∅. There exists at least one strongly convex function which satisfies

NS with β(θ)→ β > 0 as θ, θ′ → θ∗.

A more interesting result considers examples in the classes of non-convex

functions (A∪B)∩C in Fig. 4.2. The non-uniform analysis above largely still

applies to these problems, even when standard convex analysis cannot apply.

Proposition 9. The following results hold:

(1) W := AC\(AD∪ACE) 6= ∅. There exists at least one non-convex function

which satisfies N L with ξ < 1/2 and NS with β(θ)→ 0 as θ, θ′ → θ∗.

(2) X := AD \ADE 6= ∅. There exists at least one non-convex function which

satisfies N L with ξ ≥ 1/2 and NS with β(θ)→ 0 as θ, θ′ → θ∗.

(3) Y := BC\ (BD∪BCE) 6= ∅. There exists at least one non-convex function

which satisfies N L with ξ < 1/2 and NS with β(θ)→ β > 0 as θ, θ′ → θ∗.

(4) Z := BD\ (BDE∪BF) 6= ∅. There exists at least one non-convex function

which satisfies N L with ξ ≥ 1/2 and NS with β(θ)→ β > 0 as θ, θ′ → θ∗.

We next apply the techniques to a class of convex functions, achieving

results that cannot be explained by classical convex-smooth analysis.

Proposition 10. The convex function f : x 7→ |x|p with p > 1 satisfies the

N L inequality with ξ = 1/p and the NS property with β(x) ≤ c1 · δ(x)1−2ξ.
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Consider any p > 2, such as p = 4, where it follows that f satisfies N L

with degree ξ = 1/4 < 1/2. According to (1a) in Theorem 16, GD will achieve

δ(xt) ∈ Θ(1/t2), while GNGD attains δ(xt) ∈ O(e−c·t) (where c > 0). Note

that standard convex analysis can only give a O(1/t) rate on (not strongly)

convex smooth functions. The Θ(1/t2) rate for GD here follows from using

N L degree ξ = 1/4, which improves on ξ = 0 from mere convexity ((4) in

Proposition 7). The O(e−c·t) rate has also been observed for this example by

exploiting strong smoothness ((1b), as noted) (Wilson et al., 2019). Fig. 4.2

provides a more general understanding of when this happens.

4.5.3 Existing Lower Bounds

Ω(1/t2) lower bound for convexity-smoothness. Note that GNGD sat-

isfies

xt+1 = x1 −
t∑
i=1

η

β(xi)
· ∇f(xi) ∈ Span {x1,∇f(x1), . . . ,∇f(xt)} , (4.8)

which is a first-order oracle (Nesterov, 2003). Thus there exists a worst-case

objective in the convex-smooth class that forces δ(xt) ∈ Ω(1/t2) for t ∈ O(n),

where n is the parameter dimension (Bubeck et al., 2015; Nemirovski and

Yudin, 1983; Nesterov, 2003). This is not a contradiction, since the lower

bound is established by constructing a convex smooth function with a constant

β > 0 (Bubeck et al., 2015), and β(x) → β > 0 as x, x′ → x∗ in Definition 6.

Hence, the Ω(1/t2) result covers some functions in BCE in Fig. 4.2. Meanwhile

f : x 7→ |x|p with p > 2 satisfies β(x)→ 0 as x, x′ → 0 in Definition 6 (ACE in

Fig. 4.2), which implies that the standard convex-smooth class consists of two

subclasses. One subclass (BCE) admits first-order sub-linear lower bounds,

while the other (ACE) allows linear convergence using first-order methods.

This illustrates the necessity of non-uniformity in subdividing the NS class as

A ∪ B in Fig. 4.2. This partition also inspires geometry-aware GD.

As shown in Proposition 10, with p ∈ (1, 2), f : x 7→ |x|p satisfies N L

inequality with ξ = 1/p ∈ (0, 1/2). As shown in Fig. 4.3(a), the spectral

radius of Hessian approaches 0 as x→ 0, which is the case (1) in Theorem 16.
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Figure 4.3: GD and GNGD on f : x 7→ |x|p, p = 4.

Subfigure (c) shows that the standard GD with constant learning rate

η = 0.01 achieves sublinear rate about O(1/t2), while subfigure (b) shows that

GNGD with η = 0.01 enjoys linear rate O(e−c·t), verifying Theorem 16.

Ω(1/
√
t) lower bound for (L0, L1)-smoothness. For β(θ) = L0 + L1 ·

‖∇f(θ)‖2 ((2a) in Theorem 16) with L0, L1 ≥ 1, standard normalized GD

is subject to a Ω(1/
√
t) lower bound (Zhang et al., 2019). However, in Sec-

tion 2.3, we will show that normalized policy gradient (PG) method achieves

a linear rate of O(e−c·t). Again, this is not a contradiction for similar reasons.

With L0 ≥ 1, β(θ) → L0 > 0 as θ, θ′ → θ∗, the Ω(1/
√
t) lower bound will

hold for some functions in BCE ∪ Y in Fig. 4.2. While in Section 2.3 the

objective satisfies L0 = 0 and L1 > 0, hence β(θ)→ 0 as θ, θ′ → θ∗ (ACE∪W

in Fig. 4.2). This shows a similar separation of rates for first-order methods

will also occur based on NS conditions. Furthermore, in Section 4.7, we will

show that both GD and GNGD achieve a O(e−c·t) rate for GLM, but here the

objective is in Z in Fig. 4.2 so the lower bounds do not apply.

4.5.4 Unbounded Hessian

Consider any p ∈ (1, 2), such as p = 3/2 where f satisfies ξ = 2/3. According

to Theorem 16(3a), GD diverges since the Hessian is unbounded near 0. This

makes it necessary to introduce geometry-aware normalization to ensure con-

vergence, which is verified in Fig. 4.4. This has practical implications for RL,

for example ensuring exploration using state distribution entropy, which has
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unbounded Hessian near probability simplex boundary (Hazan et al., 2019)

and alternative escort probability transforms when p ∈ (1, 2) (Definition 2).

As shown in Proposition 10, with p ∈ (1, 2), f : x 7→ |x|p satisfies N L

inequality with ξ = 1/p ∈ (1/2, 1), which is the case (3) in Theorem 16. The

function f is differentiable, and the Hessian |f ′′(x)| = p · (p− 1) · |x|p−2 →∞,

as x→ 0, which indicates GD with η ∈ Θ(1) does not converge.

Fig. 4.4(a) shows the image of f : x 7→ |x|1.5. As shown in subfigure (b),

the gradient of f exists at x = 0, and the Hessian |f ′′(x)| → ∞ as x→ 0. The

results of GD with η = 0.005 and GNGD are presented in subfigure (c). The

sub-optimality of GD update decreased for some time, and then it increased

later. This is due to the Hessian is unbounded near x = 0, and thus constant

learning rates cannot guarantee monotonic progresses for GD. On the other

hand, GNGD with η = 0.01 enjoys O(e−c·t) convergence rate, verifying the

results in the case (3) in Theorem 16.
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Figure 4.4: GD and GNGD on f : x 7→ |x|p, p = 1.5.

4.6 Geometry-aware Normalized Policy Gra-

dient

Our second main contribution is to show that the expected return objective

considered in direct policy optimization in RL falls under the function classW

in Fig. 4.2, in particular satisfying case (1) of Theorem 16 with N L degree ξ =

0. The key point is that value functions in Markov decision processes (MDPs)

satisfy NS properties with coefficient being the PG norm (Lemmas 21 and 24).
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This novel finding not only provides a much more precise characterization than

existing standard smoothness results in Lemma 7, but also enables PG with

normalization to use the N L inequalities (Lemmas 3 and 8) differently than

for standard PG (‖∇f(θ)‖2 vs. ‖∇f(θ)‖2
2), which leads to faster convergence

as well as plateau escaping.

4.6.1 Convergence Rate: One-state MDPs

We first illustrate some key insights for one-state MDPs with K actions and

γ = 0. The value function Eq. (2.1) reduces to expected reward Eq. (2.12),

max
θ:A→R

E
a∼πθ

[r(a)]. (4.9)

where r ∈ [0, 1]K , θ ∈ RK , and πθ = softmax(θ). In Chapter 2, we have

shown that even though maxθ π
>
θ r is a non-concave maximization, global

convergence can be achieved with a O(1/t) rate using uniform smoothness

and the N L inequality of Lemma 3. Let a∗ be the optimal action. Denote

π∗ = arg maxπ∈∆ π
>r. Then,∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≥ πθ(a
∗) · (π∗ − πθ)>r. (4.10)

Note that Lemma 3 is not improvable in terms of the coefficients C(θ) =

πθ(a
∗) and ξ = 0 as shown in Remark 1 and Lemma 17 respectively. However,

this result is based on only using a uniform smoothness coefficient β = 5/2

in Lemma 2, which even empirical evidence suggests can be significantly re-

fined. To illustrate, we run standard policy gradient (PG) on a 3-action one-

state MDP. As shown in Fig. 4.5(a), PG first goes through a long suboptimal

plateau, and then eventually escapes to approach π∗. Fig. 4.5(b) presents the

spectral radius of the Hessian and the PG norm 3 ·
∥∥∥dπ>θtrdθt

∥∥∥
2

as functions of

time t. It is evident that the smoothness behaves non-uniformly: it is close

to zero at the suboptimal plateau and near π∗, highly aligned with the PG

norm. Compared to any universal constant β, the PG norm characterizes

the non-uniform landscape information far more precisely. We formalize this

observation by proving the following key result:
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Lemma 21 (NS). Denote θζ := θ + ζ · (θ′ − θ) with some ζ ∈ [0, 1]. For

any r ∈ [0, 1]K, θ 7→ π>θ r satisfies β(θζ) non-uniform smoothness with β(θζ) =

3 ·
∥∥∥dπ>θζ rdθζ

∥∥∥
2
.
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Figure 4.5: PG results on r = (1.0, 0.8, 0.1)>.

Comparing Lemma 21 with (1b) in Theorem 16, we have ξ = 0, and GNGD

requires normalizing β(θζ), which is the PG norm of θζ rather than θ. However,

ζ is unknown. Fortunately, the next lemma shows that, if we still normalize

the PG norm of θ, the β(θζ) in Lemma 21 can be upper bounded by
∥∥∥dπ>θ rdθ

∥∥∥
2
,

given the learning rate is small enough:

Lemma 22. Let θ′ = θ+ η · dπ
>
θ r

dθ

/∥∥∥dπ>θ rdθ

∥∥∥
2
. Denote θζ := θ+ ζ · (θ′ − θ) with

some ζ ∈ [0, 1]. We have, for all η ∈ (0, 1/3),∥∥∥∥dπ>θζrdθζ

∥∥∥∥
2

≤ 1

1− 3η
·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

. (4.11)

Next, the N L coefficient πθ(a
∗) is bounded away from 0, which provides

constants in the convergence rate results.

Lemma 23 (Non-vanishing N L coefficient). Using normalized policy gradient

method, we have inft≥1 πθt(a
∗) > 0.

To this point, we demonstrate that the non-concave function π>θ r satisfies

(1b) in Theorem 16 with ξ = 0 in each iteration of normalized PG2: Lemmas 21

2This essentially means we prove that a uniform  Lojasiewicz inequality holds for the
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and 22 show that the NS coefficient β(θζt) ≤ c1 ·
∥∥∥dπ>θtrdθt

∥∥∥
2
, while Lemmas 3

and 23 guarantee
∥∥∥dπ>θtrdθt

∥∥∥
2
≥ c2 · (π∗−πθt)>r. Therefore, combining Lemmas 3

and 21 to 23, we prove the global linear convergence rate O(e−c·t) of normalized

PG:

Theorem 17. Using normalized PG θt+1 = θt + η · dπ
>
θt
r

dθt

/∥∥∥dπ>θtrdθt

∥∥∥
2
, with η =

1/6, for all t ≥ 1, we have,

(π∗ − πθt)>r ≤ (π∗ − πθ1)> r · e−
c·(t−1)

12 , (4.12)

where c = inft≥1 πθt(a
∗) > 0 is from Lemma 23, and c is a constant that

depends on r and θ1, but not on the time t.

Remark 11. If πθ1 is uniform, i.e., πθ1(a) = 1/K, ∀ a ∈ [K], then we have

c ≥ 1/K in Theorem 17. This can be proved by showing that πθt+1(a∗) ≥

πθt(a
∗), similar to Proposition 2

4.6.2 Geometry-aware Normalized PG (GNPG)

Next, we generalize from one-state to finite MDPs, using the GNPG3 on value

function, as shown in Algorithm 2.

Algorithm 2 Geometry-aware Normalized Policy Gradient
Input: Learning rate η > 0.
Initialize parameter θ1(s, a) for all (s, a).
while t ≥ 1 do

θt+1 ← θt + η · ∂V
πθt (µ)
∂θt

/∥∥∥∂V πθt (µ)
∂θt

∥∥∥
2
.

end while

4.6.3 Convergence Rate: General MDPs

For general finite MDPs, we assume “sufficient exploration” for the initial

state distribution µ, which is from Assumption 2. The initial state distribution

entire sequence {θt}t≥1, but this does not imply that the N L condition is unnecessary. As
shown in Remark 1,  Lojasiewicz-type inequalities with constant C > 0 cannot hold. It can
only become uniform after specifying an initialization θ1 and an algorithm (in this case, PG).
Otherwise, uniform  Lojasiewicz cannot hold since initialization can make the N L coefficient
πθ(a

∗) arbitrarily close to 0.
3We use GNPG as the name of Algorithm 2, since NPG is usually used to refer to the

natural PG algorithm in RL literature (Kakade, 2002).
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satisfies

min
s
µ(s) > 0. (4.13)

Given Assumption 2, in Theorem 4, we prove a O(1/t) rate using uniform

smoothness and the N L inequality of Lemma 8. We have, ∀ θ ∈ RS×A,∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

≥ 1√
S
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

·min
s
πθ(a

∗(s)|s) · [V ∗(ρ)− V πθ(ρ)] , (4.14)

where S := |S| is the total number of states, and a∗(s) is the action that π∗

selects in state s. Here, the N L degree ξ = 0 is not improvable as shown in

Lemma 18. In one-state MDPs with S = 1, Lemma 8 recovers Lemma 3 with

the same N L coefficient C(θ) = πθ(a
∗), indicating that C(θ) in Lemma 8 might

also be unimprovable. On the other hand, the uniform smoothness considered

in Lemma 7, i.e., β = 8/(1 − γ)3 is too conservative, particularly when γ is

close to 1. Our next key result shows that the policy value also satisfies a

stronger NS property, with the NS coefficient being the PG norm, generalizing

Lemma 21:

Lemma 24 (NS). Let Assumption 2 hold and denote θζ := θ+ ζ · (θ′− θ) with

some ζ ∈ [0, 1]. θ 7→ V πθ(µ) satisfies β(θζ) non-uniform smoothness with

β(θζ) =

[
3 +

2 · (C∞ − (1− γ))

(1− γ) · γ

]
·
√
S ·
∥∥∥∥∂V πθζ (µ)

∂θζ

∥∥∥∥
2

, (4.15)

where C∞ := maxπ

∥∥∥dπµµ ∥∥∥∞ ≤ 1
mins µ(s)

<∞.

In one-state MDPs with γ = 0 and S = 1, we have C∞ = 1 − γ. Thus

Lemma 24 reduces to Lemma 21 with the same NS coefficient β(θζ) = 3 ·∥∥∥dπ>θζ rdθζ

∥∥∥
2
. Similar to Lemma 22, if we use Algorithm 2 with small enough

learning rate, then β(θζ) in Lemma 24 is upper bounded by the PG norm of

θ:

Lemma 25. Let η = (1−γ)·γ
6·(1−γ)·γ+4·(C∞−(1−γ))

· 1√
S

and θ′ = θ+η·∂V
πθ (µ)
∂θ

/∥∥∥∂V πθ (µ)
∂θ

∥∥∥
2
.

Denote θζ := θ + ζ · (θ′ − θ) with some ζ ∈ [0, 1]. We have,∥∥∥∥∂V πθζ (µ)

∂θζ

∥∥∥∥
2

≤ 2 ·
∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

. (4.16)
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Next, the N L coefficient mins πθ(a
∗(s)|s) in Lemma 8 is lower bounded

away from 0:

Lemma 26 (Non-vanishing N L coefficient). Let Assumption 2 hold and let

{θt}t≥1 be generated by Algorithm 2. We have, c := infs∈S,t≥1 πθt(a
∗(s)|s) > 0.

Now we have the non-concave function V πθ(ρ) satisfies (1b) in Theorem 16

with ξ = 0 in each iteration of Algorithm 2. Therefore, combining Lemmas 8

and 24 to 26, we prove the global linear convergence rate O(e−c·t) of Algo-

rithm 2:

Theorem 18. Let Assumption 2 hold and let {θt}t≥1 be generated using Al-

gorithm 2 with learning rate

η =
(1− γ) · γ

6 · (1− γ) · γ + 4 · (C∞ − (1− γ))
· 1√

S
, (4.17)

where C∞ := maxπ

∥∥∥dπµµ ∥∥∥∞. Denote C ′∞ := maxπ

∥∥∥dπρµ ∥∥∥∞. Let c be the positive

constant from Lemma 26. We have, for all t ≥ 1,

V ∗(ρ)− V πθt (ρ) ≤ (V ∗(µ)− V πθ1 (µ)) · C ′∞
1− γ

· e−C·(t−1), (4.18)

where

C =
(1− γ)2 · γ · c

12 · (1− γ) · γ + 8 · (C∞ − (1− γ))
· 1

S
·
∥∥∥∥dπ∗µµ

∥∥∥∥−1

∞
. (4.19)

Not only the O(e−c·t) rate in Theorem 18 is faster than O(1/t) for standard

PG without normalization, but also the constant is better than Theorem 4.

The strictly better dependence c (� c2 in PG) is related to faster escaping

plateaus as shown in Chapter 3.

Remark 12. The conclusion of GNPG has better constants than PG (c �

c2) arises from upper bounds (Theorems 4 and 18), which is also supported

by empirical evidence. According to Theorem 11, there exists a lower bound

that shows c cannot be removed for PG under one-state MDP settings. For

finite MDPs, very recently, Li et al. (2021) show that for softmax PG (without

normalization), c can be very small in terms of the number of states. It remains

open to consider whether c is reasonably large for GNPG.
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Remark 13. To our knowledge, existing PG variants can achieve linear con-

vergence O(e−c·t) only if using at least one of the following techniques: (a)

regularization; In Theorem 6, we prove that entropy regularized PG enjoys

O(e−c·t) convergence toward the regularized optimal policy. (b) natural gra-

dient; Cen et al. (2020) prove that entropy regularized natural PG achieves

linear convergence toward regualrized optimal policy. (c) exact line-search;

Bhandari and Russo (2020) prove that without parameterization, PG variants

with exact line-search achieve linear rates by approximating policy iteration.

Among the above techniques, regularization changes the problem to reg-

ularized MDPs, while natural PG and line-search require solving expensive

optimization problems to do updates, since each update is an arg max.

On the contrary, Algorithm 2 enjoys global O(e−c·t) rate (i) without using

regularization, since Algorithm 2 directly works on the original MDPs; (ii)

without solving optimization problems in each iteration, and the normalized

PG update is cheap. The strong results rely on the NS and N L properties,

and also the geometry-aware normalization that takes advantage of the non-

uniform properties.

Remark 14. According to Theorem 10, standard softmax PG of Algorithm 1

with bounded learning rate follows Ω(1/t) lower bound, which is consistent with

the case (1) in Theorem 16. Algorithm 2 achieves faster linear convergence

rates, indicating that the adaptive update stepsize η/ ‖∇V πθt (ρ)‖2 is asymptot-

ically unbounded, since ‖∇V πθt (ρ)‖2 → 0 as t→∞.

4.6.4 Empirical Verification

We compare PG and GNPG on the one-state MDP problem as shown in

Fig. 4.6. Fig. 4.6(a) shows that GNPG escapes from the sub-optimal plateau

significantly faster than PG, while Fig. 4.6(b) shows that GNPG follows linear

convergence O(e−c·t) of sub-optmality, verifying the theoretical results.

Fig. 4.7 shows the results for PG and GNPG beyond one-state MDPs. The

environment is a synthetic tree with height h and branching factor b. The total
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Figure 4.6: PG and GNPG on r = (1.0, 0.8, 0.1)>.

number of states is

S =
h−1∑
i=0

bi. (4.20)

The discount factor γ = 0.99, and we set µ = ρ (e.g., in Algorithm 2 and

Theorem 18), where ρ(s0) = 1 for the root state s0. For PG, in each iteration,

we calculate the policy gradient (Lemma 1) to do one update. For GNPG,

Algorithm 2 is used.

Subfigures (a) and (b) show the results for h = b = 4, and S = 85. The

learning rate is η = 0.02 for PG and GNPG. Subfigures (c) and (d) show the

results for h = 5 and b = 4, and S = 341. The learning rate is η = 0.05 for

PG and GNPG.

4.7 Generalized Linear Models

Next, we investigate the generalized linear model (GLM) with quasi-maximum

likelihood estimate (quasi-MLE), which applied widely in supervised learning.

We show that the mean squared error (MSE) of GLM is in the non-convex

function class Z in Fig. 4.2, and it satisfies the case (2) in Theorem 16 with ξ =

1/2. As a result, both GD and GNGD achieve global linear convergence rates

O(e−c·t), significantly improving the best existing results of O(1/
√
t) (Hazan

et al., 2015). We also provide new understandings of using normalization in

GLM based on our non-uniform analysis.
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Figure 4.7: Results for PG and GNPG on tree MDPs. In (a) and (b), S = 85.
In (c) and (d), S = 341.

4.7.1 Basic Settings and Notations

Given a training data set D = {(xi, yi)}i∈[N ], which consists of N data points,

there is a feature map xi 7→ φ(xi) ∈ Rd for each pair (xi, yi) ∈ D. We

denote φi := φ(xi) for conciseness. For each data point xi, we have yi ∈ [0, 1]

as the ground truth likelihood. Following Hazan et al. (2015), our model is

parameterized by a weight vector θ ∈ Rd as ,

πi = σ(φ>i θ) =
1

1 + exp{−φ>i θ}
, (4.21)
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where σ : R → (0, 1) is the sigmoid activation. The problem is to minimize

the mean squared error (MSE),

min
θ
L(θ) = min

θ∈Rd

1

N
·
N∑
i=1

(πi − yi)2. (4.22)

We assume yi = π∗i := σ(φ>i θ
∗), where θ∗ ∈ Rd, and ‖θ∗‖2 < ∞, which

means the target yi is realizable and non-deterministic. According to Hazan

et al. (2015), the MSE in Eq. (4.22) is not quasi-convex (thus not convex).

Fortunately, Hazan et al. (2015) manage to show that Eq. (4.22) satisfies a

weaker Strictly-Locally-Quasi-Convex (SLQC) property, based on which they

prove the following result:

Theorem 19 (Hazan et al. (2015)). With diminishing learning rate ηt ∈

Θ(1/
√
t), the normalized gradient descent (NGD) update θt+1 ← θt − ηt ·

∂L(θt)
∂θt

/∥∥∥∂L(θt)
∂θt

∥∥∥
2

satisfies,

δ(θt) := L(θt)− L(θ∗) ∈ O(1/
√
t), (4.23)

where θ∗ := arg minθ L(θ) is the global optimal solution.

4.7.2 Fast Convergence using Non-uniform Analysis

Based on the O(1/
√
t) rate for NGD in Theorem 19, Hazan et al. (2015)

propose to normalize gradient norm in MSE minimization. However, there is

no lower bound for other methods including GD on GLM, and thus it is not

clear if there exists a faster rate for GLM optimization.

Surprisingly, we prove that both GD and GNGD actually achieve much

faster rates of O(e−c·t) using the non-uniform analysis. Our first key finding

is to show that the MSE in GLM satisfies a new N L inequality with ξ = 1/2:

Lemma 27 (N L). Denote

u(θ) := min
i∈[N ]
{πi · (1− πi)}, and (4.24)

v := min
i∈[N ]
{π∗i · (1− π∗i )}. (4.25)
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We have,

∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

≥ C(θ, φ) ·

[
1

N
·
N∑
i=1

(πi − π∗i )
2

] 1
2

, (4.26)

holds for all θ ∈ Rd, where

C(θ, φ) = 8 · u(θ) ·min {u(θ), v} ·
√
λφ, (4.27)

and λφ is the smallest positive eigenvalue of 1
N
·
∑N

i=1 φiφ
>
i .

Remark 15. It is not clear if results similar to Lemma 27 hold without assum-

ing: (i) realizable optimal prediction yi = π∗i := σ(φ>i θ
∗); (ii) non-deterministic

optimal prediction ‖θ∗‖2 <∞. We leave it as an open question to study non-

uniformity of GLM without the above assumptions.

In Lemma 27, λφ is determined by the feature φ, and u(θ) shows that the

gradient is vanishing when πi is near deterministic, which is consistent with

the fact that the sigmoid saturates and provides uninformative gradient as the

parameter magnitude becomes large.
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Figure 4.8: Experiments on GLM using GD.

We run GD on one example with N = 10 and d = 2. As shown in Fig. 4.8,

the gradient norm ‖∇L(θt)‖2 is close to zero at plateaus and near optimum.

However, unlike the PG, the spectral radius of the Hessian∇2L(θt) is only close

to zero at plateaus, while it approaches positive constant near optimum. This

indicates a different NS condition other than Lemmas 21 and 24 is needed,
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since only gradient norm → 0 cannot upper bound the spectral radius of

Hessian → β > 0. With some calculations, we prove the following key results:

Lemma 28 (Smoothness and NS). L(θ) satisfies β smoothness with

β =
3

8
·max
i∈[N ]
‖φi‖2

2, (4.28)

and β(θ) NS with

β(θ) = L1 ·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

+ L0 ·

(∥∥∥∥∂L(θ)

∂θ

∥∥∥∥2

2

/
L(θ)

)
. (4.29)

At the optimal solution θ∗, the spectral radius of the Hessian ∂2L(θ∗)
∂(θ∗)2 is

strictly positive. Therefore, the MSE objective of Eq. (4.22) is in the non-

convex function class Z in Fig. 4.2, and it satisfies the case (2) in Theorem 16

with ξ = 1/2. Combining Lemmas 27 and 28 and applying Theorem 16, we

have the following global linear convergence result:

Theorem 20. With η = 1/β, GD update satisfies for all t ≥ 1,

L(θt) ≤ L(θ1) · e−C2·(t−1). (4.30)

With η ∈ Θ(1), GNGD update satisfies for all t ≥ 1,

L(θt) ≤ L(θ1) · e−C·(t−1), (4.31)

where C ∈ (0, 1), i.e., GNGD is strictly faster than GD.

Theorem 20 significantly improves the O(1/
√
t) rate in Theorem 19. The

key difference is that we discovered a new N L inequality of Lemma 27 that is

satisfied by GLMs.

In Theorem 20, we have C = inft≥1 C(θt, φ), which is very close to zero if

πi is near deterministic, and GD suffers sub-optimality plateaus as shown in

Fig. 4.1. GNGD has strictly (orders of magnitudes) better constant depen-

dence C � C2, and escapes plateaus significantly faster than GD. Intuitively,

for the GLM in Fig. 4.1, C in Theorem 16 is lower bounded reasonably if θ1

is initialized within some finite distance of the central valley containing θ∗.
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Combining the N L and NS properties (Lemmas 27 and 28), we provide

new understandings of using normalization in GLM: (i) First, using standard

NGD (Hazan et al., 2015) for all t ≥ 1 is not a good choice. By examining the

asymptotic behaviour as θ → θ∗, we have β(θ) → β > 0. However, the nor-

malization
∥∥∥∂L(θ)

∂θ

∥∥∥
2

in standard NGD gives incremental updates with adaptive

stepsize →∞. To guarantee convergence, it is necessary to use ηt → 0, which

counteracts normalization and slows down the learning, since it might not be

easy to find a learning rate scheme. This is consistent with the O(e−c·t) result

for GD with η > 0 and without normalization in Theorem 20. (ii) Second,

using geometry-aware normalization β(θt) is a better choice than normalizing

the gradient norm ‖∇L(θt)‖2. We elaborate this point by investigating both the

asymptotic and the early-stage behaviours using NS-N L. Since β(θt)→ β > 0

asymptotically, GNGD is approaching GD as θt → θ∗, which makes GNGD

enjoy the same O(e−c·t) rate. On the other hand, at early-stage optimiza-

tion (e.g., close to initialization in Fig. 4.1), when θt is far from θ∗, we have

thus β(θt) ≤ c ·
∥∥∥∂L(θt)

∂θt

∥∥∥
2
. Then GNGD is close to NGD, which guarantees

strictly better progresses than GD. This is because of the progress of GNGD

in each iteration at this time is about ‖∇L(θt)‖2, while the progress of GD

is ‖∇L(θt)‖2
2, and the gradient norm is close to 0 on plateaus. Using N L of

Lemma 27, GNGD will have strictly better constant dependence C than C2

in GD.

4.7.3 Empirical Verification

Theorem 20 proves linear convergence rates O(e−c·t) for both GD and GNGD

on GLM. We compare GD, NGD (Hazan et al., 2015), and GNGD on GLM,

as shown in Fig. 4.9.

Subfigure (a) presents the results of GD with η = 0.09 and GNGD with

η = 0.09. Both GD and GNGD achieve linear O(e−c·t) rates, verifying Theo-

rem 20. GD suffers from the plateaus at the early-stage optimization, which

is consistent with Fig. 4.1 and the explanations after Theorem 20. On the

other hand, the slopes indicate that GNGD converges strictly faster than GD,

which justifies the constant dependences (C ≥ C2) in Theorem 20. Subfigure
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Figure 4.9: Convergence rates for GD, NGD, and GNGD on GLM.

(b) shows that standard NGD (Hazan et al., 2015) with constant learning rate

η = 0.09 does not converge. The NGD update keeps oscillating, which veri-

fies our argument of using standard normalization for all t ≥ 1 is not a good

idea. Subfigure (c) presents the NGD using adaptive learning rate ηt = 0.09√
t

,

which has faster convergence than NGD with constant η. However, GNGD

still significantly outperforms NGD with ηt = 0.09√
t

, verifying the O(e−c·t) in

Theorem 20 and O(1/
√
t) in Theorem 19.

4.8 Summary

The main contributions of this chapter concern a general characterization and

analysis based on non-uniform properties, which are not only sufficiently gen-

eral to cover concrete examples, but also significantly improve convergence

rates over previous work and even over classical lower bounds. Importantly,

the techniques apply to important applications in machine learning that in-

volve non-convex optimization problems.
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Chapter 5

Understanding Stochasticity in
Policy Optimization

The results in Chapters 2 to 4 apply to true gradient settings. This chapter

extends the analysis and investigates the algorithms in stochastic gradient

settings. A new analytical tool, which I refer to as the committal rate, is

introduced and reveals interesting properties of stochastic policy optimization.

The results in this chapter appeared in the paper Mei et al. (2021a), which

has been submitted for review.

5.1 Introduction

Policy optimization is a central problem in reinforcement learning (RL) that

provides a foundation for both policy-based and actor-critic RL methods. As

shown in Chapters 2 to 4, recent findings indicate that policy gradient methods

can indeed be guaranteed to converge to globally optimal solutions at least in

the tabular setting, even if the policy value function is non-concave.

In particular, the standard softmax PG method with a constant learning

rate has been shown to converge to a globally optimal policy at a Θ(1/t) rate

for finite MDPs (Chapter 2), albeit with challenging problem and initialization

dependent constants (Chapter 3). Several techniques have been developed to

further improve standard PG and achieve better rates and constants. For ex-

ample, adding entropy regularization has been shown to produce faster O(e−c·t)

convergence (c > 0) to the optimal regularized policy (Chapter 3 and Cen et al.
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(2020), Lan (2021), and Mei et al. (2020b)). By exploiting natural geometries

based on Bregman divergences, natural PG (NPG) or mirror descent (MD)

have been shown to achieve better constants than standard PG (Agarwal et al.,

2019; Cen et al., 2020) and faster O(e−c·t) rates, with (Cen et al., 2020; Lan,

2021) and without regularization (Khodadadian et al., 2021). Alternative pol-

icy parameterizations, such as the escort parameterization, have been shown

to improve the constants achieved by softmax and yield faster plateau escaping

(Chapter 3). A geometry-aware normalized PG (GNPG) approach has been

proposed to exploit the non-uniformity of the value function, achieving even

faster O(e−c·t) rates with improved constants (Chapter 4).

A key observation is that each of these four techniques—(i) entropy reg-

ularization, (ii) NPG (or MD), (iii) alternative escort policy parameteriza-

tion, and (iv) GNPG—accelerate the convergence of standard softmax PG by

better exploiting the geometry of the optimization landscape. In particu-

lar, entropy regularization makes the regularized objective behave more like

a quadratic (Lemma 15), which significantly improves the near-linear charac-

ter of the softmax policy value (Lemma 18). Natural PG (or MD) perform

non-Euclidean updates in the parameter space, which is quite different from

the Euclidean geometry characterizing standard softmax PG updates. The es-

cort policy parameterization induces an alternative policy-parameter relation

(Lemma 20). GNPG exploits the non-uniform smoothness in the optimization

landscape via a simple gradient normalization operation (Lemma 24).

However, these advantages have only been established for the true gradient

setting. A natural question therefore is whether geometry can also be exploited

to accelerate convergence to global optimality in stochastic gradient settings.

In this chapter, we show that in a certain fundamental sense, the answer is

no. That is, there exists a fundamental trade-off between leveraging geometry

to accelerate convergence and overcoming the noise introduced by stochastic

gradients (possibly infinite); in particular, no uninformed algorithm can im-

prove the O(1/t) convergence rate without incurring a positive probability of

failure (i.e. diverging or converging to a sub-optimal stationary point).

The conditions used in vanilla stochastic gradient convergence analysis, i.e.,
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unbiased and variance-bounded gradient estimator (Nemirovski et al., 2009),

has been exploited to attempt to explain such a trade-off in policy gradients

(Abbasi-Yadkori et al., 2019; Lan, 2021). However, the bounded variance

requires the sample policy to be bounded away from zero everywhere, which is

impractical. Meanwhile, a variant of NPG can converge even with unbounded

variance (Chung et al., 2020). These gaps raise the question that if not the

bounded variance, then what is the key factor to ensure the convergence of

stochastic policy optimization algorithms? Motivated by this question, we

introduce the concept committal rate to characterize the behavior policies,

which significantly affect whether convergence to a correct solution can be

guaranteed in the stochastic on-policy setting. In particular, we make the

following contributions.

• First, we illustrate the anomaly that the preferability of policy optimiza-

tion algorithms (softmax PG vs. NPG and GNPG) changes dramatically

depending on whether true versus on-policy stochastic gradients are consid-

ered, and reveal the impracticality and unnecessity of a bounded variance

requirement in Section 5.2;

• Second, we introduce the concept of the committal rate in Section 5.3

to characterize how quickly a sampled action’s probability approaches 1,

which provide us tools for analyzing the stochasticity effect in convergences;

• Third, we use the committal rate to study general stochastic policy opti-

mization behaviors rigorously and reveal the inherent geometry-convergence

trade-off in Section 5.4;

• Finally, we explain the sensitivity to random initialization in practical

policy optimization algorithms. From these results, we then develop an

ensemble method that can achieve fast convergence to global optima with

high probability in Section 5.5.
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5.2 Understanding Algorithm Preferability in

On-line Policy Optimization

To illustrate the key aspects of policy optimization methods and their compara-

tive preferability, it suffices to consider deterministic, single-state, finite-action

Markov decision processes (MDPs). The main results below extend to general

finite MDPs, but for clarity of exposition we restrict attention to one-state

MDPs.

A deterministic, single-state, finite-action MDP can be simply be specified

by an action space is [K] := {1, 2, . . . K} and a K-dimensional reward vector

r ∈ RK . The problem is to maximize the expected reward of a parametric

policy πθ as in Eq. (2.12),

max
θ:[K]→R

E
a∼πθ

[r(a)], (5.1)

where πθ is parameterized by θ using the standard softmax transform as in

Eq. (2.6),

πθ(a) =
exp{θ(a)}∑
a′ exp{θ(a′)}

, ∀a ∈ [K]. (5.2)

Without loss of generality, we assume there exists a unique optimal action

a∗ = arg max
a∈[K]

r(a), (5.3)

hence there exists a unique optimal deterministic policy π∗ such that

π∗>r = sup
θ∈RK

π>θ r = r(a∗). (5.4)

We make the following assumption on the reward.

Assumption 3 (Positive reward). r(a) ∈ (0, 1], ∀a ∈ [K].

5.2.1 Exact Gradient Setting

As shown in Proposition 1, Eq. (2.12) is a non-concave maximization over the

policy parameter θ. Nevertheless, it has recently become better understood

how policy gradient (PG) methods still converge to global optima for Eq. (2.12)
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when exact gradients are used. To illustrate the main considerations, we focus

on the following three representative algorithms that have recently been proved

to achieve convergence to globally optimal solutions but at different rates:

softmax policy gradient (PG) in Chapter 2, natural PG (NPG), and geometry-

aware normalized PG (GNPG) in Chapter 4, while similar conclusions can be

drawn for other variants (Chung et al., 2020; Denisov and Walton, 2020).

Standard Softmax PG

The standard softmax PG method is specified by Update 1,

θt+1 ← θt + η ·
dπ>θtr

dθt
, (5.5)

where

dπ>θ r

dθ
=
(
diag(πθ)− πθπ>θ

)
r, (5.6)

and thus

dπ>θ r

dθ(a)
= πθ(a) · (r(a)− π>θ r), ∀a ∈ [K]. (5.7)

As shown in Chapter 2, the convergence of this update to a globally optimal

policy, given exact gradients, can be established by considering the following

non-uniform  Lojasiewicz (N L) inequality of Lemma 3,∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≥ πθ(a
∗) · (π∗ − πθ)>r. (5.8)

By considering smoothness of the optimization landscape, Chapter 2 then

shows that the progress in each iteration of PG can be lower bounded by the

squared norm of the gradient,
∥∥∥dπ>θtrdθt

∥∥∥2

2
, which leads to a O(1/t) rate.

Proposition 11 (PG upper bound, Theorem 2). Using Update 1 with η = 2/5,

we have

(π∗ − πθt)>r ≤ 5/(c2 · t), (5.9)

for all t ≥ 1, such that c = inft≥1 πθt(a
∗) > 0 is a constant that depends on r

and θ1, but it does not depend on the time t. In particular, if πθ1(a) = 1/K

∀a then c ≥ 1/K.
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Proposition 12 (PG lower bound, Theorem 9). For sufficiently large t ≥ 1,

Update 1 with η ∈ (0, 1] exhibits

(π∗ − πθt)>r ≥ ∆2/ (6 · t) , (5.10)

where ∆ = r(a∗)−maxa6=a∗ r(a) > 0 is the reward gap of r.

Remark 16. According to Theorem 11, the constant dependence of PG follows

a Ω(1/c) lower bound for one-state MDPs, while c can be exponentially small

in terms of the number of states for general finite MDPs (Li et al., 2021).

To summarize, using η ∈ O(1), softmax PG achieves convergence to a

global optima, but with a Θ(1/t) rate that exhibits poor constant dependence.

Natural PG (NPG)

An alternative method, natural PG (NPG) (Kakade, 2002), provides the pro-

totype for many practical policy optimization methods, such as Trust Re-

gion Policy Optimization (TRPO) and Proximal Policy Optimization (PPO)

(Schulman et al., 2015; Schulman et al., 2017). NPG is based on the following

update.

Update 4 (Natural PG (NPG), true gradient).

θt+1 ← θt + η · r, and (5.11)

πθt+1 = softmax(θt+1). (5.12)

For softmax policies, it turns out that Update 4 is identical to mirror

descent (MD) with a Kullback-Leibler (KL) divergence. Therefore a standard

MD analysis shows that Update 4 achieves convergence to a global optimum at

a rate of O(1/t) (Agarwal et al., 2019). Very recently, work concurrent to this

thesis (Khodadadian et al., 2021) has shown that Update 4 actually enjoys a

much faster O(e−c·t) rate. In fact, here too we can establish the same O(e−c·t)

rate, but using a simpler argument based on the following variant of the N L

inequality for natural gradients. These results are new.
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Lemma 29 (Natural N L inequality, continuous). We have,

〈dπ>θ r
dθ

, r
〉
≥ πθ(a

∗) ·∆ · (π∗ − πθ)> r. (5.13)

Lemma 30 (Natural N L, discrete). Let π′(a) := π(a)·eη·r(a)∑
a′ π(a′)·eη·r(a′) , ∀ a ∈ [K],

where η > 0. Then,

(π′ − π)
>
r ≥

[
1− 1

π(a∗) · (eη·∆ − 1) + 1

]
· (π∗ − π)> r. (5.14)

In particular, by using a non-Euclidean update and analysis, the progress

of each iteration of NPG can be lower bounded by the larger bound
〈dπ>θtr

dθt
, r
〉

instead of the weaker bound
∥∥∥dπ>θtrdθt

∥∥∥2

2
established for standard PG. Based on

this inequality, one can easily establish a much faster O(e−c·t) convergence to

a globally optimal solution for NPG, making it far preferable to PG if true

gradients are available.

Theorem 21 (NPG upper bound). Using Update 4 with any η > 0, we have,

for all t ≥ 1,

(π∗ − πθt)
> r ≤ (π∗ − πθ1)> r · e−c·(t−1), (5.15)

where c := log
(
πθ1(a∗) ·

(
eη·∆ − 1

)
+ 1
)
> 0 for any η > 0.

Geometry-aware Normalized PG (GNPG)

The Geometry-aware Normalized PG (GNPG) update is investigated in Chap-

ter 4 to accelerate the convergence of PG by exploiting local smoothness prop-

erties of the optimization landscape. GNPG is specified by

Update 5 (Geometry-aware Normalized PG (GNPG), true gradient).

θt+1 ← θt + η ·
dπ>θtr

dθt

/∥∥∥dπ>θtr
dθt

∥∥∥
2
. (5.16)

The analysis in Chapter 4 focuses on exploiting non-uniform smoothness

(NS) rather than improving the N L inequality as for NPG above. According

to Lemma 21, the spectral radius of Hessian matrix
d2π>θ r

dθ2 is upper bounded

by 3 ·
∥∥∥dπ>θ rdθ

∥∥∥
2
.
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Given this NS property, Chapter 4 then shows how the progress in each

iteration of GNPG can be lower bounded by the larger quantity
∥∥∥dπ>θtrdθt

∥∥∥
2

in-

stead of the weaker
∥∥∥dπ>θtrdθt

∥∥∥2

2
bound for standard PG. Then, using the same

N L inequality as for PG, Theorem 17 shows that GNPG also converges to a

globally optimal solution at rate O(e−c·t). Again, one naturally concludes that

GNPG is preferable to PG if exact gradients are used.

Proposition 13 (GNPG upper bound, Theorem 17). Using Update 5 with

η = 1/6, we have, for all t ≥ 1,

(π∗ − πθt)>r ≤ (π∗ − πθ1)> r · e−
c·(t−1)

12 , (5.17)

where c = inft≥1 πθt(a
∗) > 0 does not depend on t. If πθ1(a) = 1/K, ∀a, then

c ≥ 1/K.

5.2.2 On-policy Stochastic Gradient Setting: Anoma-
lies

Although the above results show that exploiting geometric information can al-

low linear convergence to an optimal solution given true gradients—obviously

O(e−c·t) represents an exponential speedup over the Ω(1/t) lower bound estab-

lished for standard PG—it is critical to understand whether such advantages

can also be obtained in the more natural stochastic gradient setting. Given the

previous results, it would seem natural to prefer accelerated algorithms over

PG in practice, and there is some evidence that such thinking has become

mainstream based on the popularity of TRPO and PPO over PG. However,

by more closely examining the behavior of these algorithms when true gradi-

ents are replaced by on-policy stochastic estimates, serious shortcomings begin

to emerge, as empirically observed in Chung et al. (2020), and it is far from ob-

vious that similar advantages from the true gradient case might be recoverable

in the more practical stochastic scenario.

We begin by examining the behavior of the previous algorithms in the

context of on-policy stochastic gradients. To enable this analysis, first note

that each of the above PG methods, Updates 1, 4 and 5, can be adapted to the
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stochastic setting by using on-policy importance sampling (IS) to provide an

unbiased estimate of the true reward. We do not make assumptions like each

action is sufficiently explored, since πθt is the behaviour policy as well as the

policy to be optimized. It is possible that πθt approaches a near deterministic

policy, ruling out positive results based on such assumptions (Abbasi-Yadkori

et al., 2019).

Definition 10 (On-policy IS). At iteration t, sample one action at ∼ πθt. The

IS reward estimator r̂t is constructed as r̂t(a) = I{at=a}
πθt (a)

· r(a) for all a ∈ [K].

Remark 17. We consider sampling one action in each iteration for conve-

nience, and the results hold for sampling a constant B > 0 mini-batch of

actions in each iteration.

Softmax PG

Update 6 (Softmax PG, on-policy stochastic gradient).

θt+1 ← θt + η ·
dπ>θt r̂t

dθt
, (5.18)

where

dπ>θt r̂t

dθt(a)
= πθt(a) · (r̂t(a)− π>θt r̂t), ∀a ∈ [K]. (5.19)

Using IS estimation, the softmax PG is unbiased and its variance is upper

bounded by constant.

Lemma 31. Let r̂ be the IS estimator using on-policy sampling a ∼ πθ(·).

The stochastic softmax PG estimator is unbiased and bounded, i.e.,

E
a∼πθ(·)

[
dπ>θ r̂

dθ

]
=
dπ>θ r

dθ
, and (5.20)

E
a∼πθ(·)

∥∥∥∥dπ>θ r̂dθ

∥∥∥∥2

2

≤ K

2
. (5.21)

These observations imply that stochastic softmax PG converges to a global

optimum almost surely, since the stochastic update follows the true gradient

update with controlled noise, which was also proved by Chung et al. (2020).

Theorem 22. Using Update 6, (π∗ − πθt)
> r → 0 as t → ∞ with probability

1.
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NPG

Similarly, we can use on-policy IS estimation to adapt NPG to the stochastic

setting.

Update 7 (NPG, on-policy stochastic gradient).

θt+1 ← θt + η · r̂t, and (5.22)

πθt+1 = softmax(θt+1). (5.23)

Although the NPG is unbiased, its variance can be possibly unbounded in

the on-policy setting, as established by the following direct calculation.

Lemma 32. For NPG, we have, Ea∼πθ(·) [r̂] = r, and Ea∼πθ(·) ‖r̂‖2
2 =

∑
a∈[K]

r(a)2

πθ(a)
.

Note that if πθ(a) → 0, the variance becomes unbounded, which predicts

trouble if someone tried to use the standard analysis for stochastic gradient

methods1 (e.g., Nemirovski et al. (2009)). In fact, we provide a more direct

result showing that stochastic NPG has a positive probability of converging

to a sub-optimal deterministic policy.

Theorem 23. Using Update 7, we have: (i) with positive probability, as t→

∞,
∑

a6=a∗ πθt(a)→ 1; (ii) ∀a ∈ [K], with positive probability, πθt(a)→ 1, as

t→∞.

This result extends the result of Chung et al. (2020) who considered the

two-action (K = 2) case only. The intuition is that the stochastic NPG

accumulates too much probability on sampled sub-optimal actions and cannot

recover due to the “vicious circle” between sampling and updating (Chung

et al., 2020).

GNPG

Finally, we consider the stochastic version of GNPG.

1Standard treatment of stochastic approximation algorithms does deal with unbounded
noise in a controlled way to still get positive results (Benveniste et al., 2012), which means
that bounded variance is far from being necessary.
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Update 8 (GNPG, on-policy stochastic gradient).

θt+1 ← θt + η ·
dπ>θt r̂t

dθt

/∥∥∥dπ>θt r̂t
dθt

∥∥∥
2
. (5.24)

Unfortunately, this estimator involves a ratio of random variables, and its

bias can be large. As for NPG we can show that stochastic GNPG fails with

positive probability in the stochastic case.

Theorem 24. Using Update 8, we have: (i) with positive probability, as t→

∞,
∑

a6=a∗ πθt(a)→ 1; (ii) ∀a ∈ [K], with positive probability, πθt(a)→ 1, as

t→∞.

5.2.3 Motivating the On-policy Stochastic Setting

We summarize the preferability of alternative optimization strategies in the

exact versus on-policy stochastic gradient settings in Table 5.1: there appears

to be a major reversal in going from one scenario to the other.

Softmax PG NPG GNPG

True gradient
converges
Θ(1/t)

converges
O(e−c·t)

converges
O(e−c·t)

Stochastic
on-policy

converges w.p. 1 fails w.p. > 0 fails w.p. > 0

Table 5.1: Convergence properties of softmax PG, NPG and GNPG in the
alternative settings.

Of course it is possible to study the convergence of algorithms when the

gradient estimates are assumed to be unbiased and have bounded variance as

in the analysis of vanilla SGD (Nemirovski et al., 2009), and in some other

work for policy gradients (Abbasi-Yadkori et al., 2019; Lan, 2021; Zhang et

al., 2021; Zhang et al., 2020a; Zhang et al., 2020b). However, first, such

conditions are only sufficient conditions which are difficult to be satisfied,

because a bounded variance assumption requires that the probabilities induced

by a behaviour policy are bounded away from 0 everywhere (Chung et al.,

2020), which is impractical for large state and action spaces and impossible

when they are infinite. Second, PPO (Schulman et al., 2017) and TRPO
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(Schulman et al., 2015) use on-policy sampling without any explicit correction

to fulfill the exploratory behaviour requirement, while still solving practical

problems (Andrychowicz et al., 2020). Third, the on-policy setting under a

practical requirement is technically more challenging. In off-policy settings,

the sampling procedure is independent of the parameter update (Chung et

al., 2020), which makes the analysis much more straightforward with some

extra assumptions on the estimate of value functions or gradients (Ren et al.,

2021), while these become coupled in the on-policy setting and a more subtle

analysis is required. Finally, Chung et al. (2020) investigate baselines and

show that variance reduction techniques are not able to overcome unbounded

variance, while NPG can still achieve global convergence almost surely with

a judicious choice of baseline even though its variance remains unbounded

(see Update 9 for details). This means bounded variance is not necessary

for convergence, and some other factors rather than variance account for the

convergence behaviours of stochastic policy optimization algorithms.

This leave us an important question to be answered to bridge the gap

between theory and practice,

What are the key factors determining the convergence of stochastic policy

optimization?

We propose the committal rate to characterize the behavior of algorithms to

answer this question.

5.3 Committal Rate of Stochastic Policy Op-

timization Algorithms

Although the baseline study (Chung et al., 2020) only focuses on two- and

three-action bandits primarily, it develops a useful intuition that stochastic

policy optimization in practical settings consists of separate “sampling” and

“updating” steps that become coupled in the on-policy setting. Building from

this observation, and seeking to explain the outcomes in Section 5.2, we for-

malize the following “committal rate” function of a policy optimization algo-

rithm. The main idea is to decouple the “sampling” and “updating” by fixing
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sampling one action and characterizing the aggressiveness of an update in a

deterministic way. Thus, in what follows, by a policy optimization algorithm

A we mean a mapping from all sequences of pairs of action-reward pairs to

the set of parameter vectors.

Definition 11 (Committal Rate). Fix a reward function r ∈ (0, 1]K and an

initial parameter vector θ1 ∈ RK. Consider a policy optimization algorithm A.

Let action a be the sampled action forever after initialization and let θt be

the resulting parameter vector obtained by using A on the first t observations.

The committal rate of algorithm A on action a (given r and θ1) is then defined

as

κ(A, a) = sup

{
α ≥ 0 : lim sup

t→∞
tα · [1− πθt(a)] <∞

}
. (5.25)

Note that in the definition we have suppressed the dependence of κ on

the rewards and the initial parameter vector. Definition 11 accounts for how

aggressive an update rule is: An algorithm with committal rate α will

make πθt(a) approach 1 at the polynomial rate of 1/tα provided that the

sampling rule only chooses action a. Thus, a larger value of κ(A, a) indi-

cates an algorithm that quickly commits to the action a. For example, if

πθt(a) = 1 − 1/(t · log (t)), then κ(A, a) = 1. Similarly, if πθt(a) = 1 − 1/et,

then κ(A, a) = ∞, which means πθt(a) approaches 1 extremely quickly. On

the other hand, if 1−πθt(a) ∈ Ω(1), then κ(A, a) = 0, implying that πθt never

becomes committal, since πθt(a) never approaches 1.

Our next results shows that a small committal rate with respect to sub-

optimal actions is necessary for almost sure convergence to a globally optimal

policy.

Theorem 25. Consider a policy optimization method A. Fix r ∈ (0, 1]K

an action a ∈ [K] which is sub-optimal under r so that κ(A, a) > 1. Fix

θ1 ∈ RK so that πθ1(a) > 0 and let {θt}t≥1 be the parameter sequence obtained

by using A with online sampling, i.e., when at ∼ πθt(·). Then, the event

E = {at = a holds for all t ≥ 1} happens with positive probability, and it also

holds that πθt converges to a sub-optimal deterministic policy with positive

probability.

99



Theorem 25 shows that maxa:r(a)<r(a∗) κ(A, a) ≤ 1 is a necessary condition

for ensuring the almost sure convergence of the policies obtained using A and

online sampling to a global optimum. In words, slow reaction to constantly

sampling sub-optimal actions is necessary for the success of policy optimization

methods when they are used with online sampling.

Using this result, we can now interrogate the committal rates of the previ-

ously listed algorithms.

Theorem 26. Let Assumption 3 holds. For the stochastic updates NPG and

GNPG from Updates 7 and 8 we obtain κ(NPG, a) =∞ and κ(GNPG, a) =∞

for all a ∈ [K] respectively.

Theorem 26 explains why stochastic NPG and GNPG have a non-zero fail-

ure probability in the on-policy stochastic setting: they do not obey a necessary

condition for almost sure global convergence. Intuitively, these algorithms can

fail by prematurely allocating too much probability to a sub-optimal action:

each sampling of an action a ∈ [K] increments its parameter by Θ(1), so if a is

sampled t times successively, then we have 1− πθt(a) ∈ O(e−c·t), which means

κ(A, a) = ∞. According to Theorem 25, there is a positive probability that

a single sub-optimal action can receive a long enough sampling run to ensure

the other actions will never again be sampled.

By contrast, we can compare these outcomes to the committal rate of the

softmax PG algorithm.

Theorem 27. Let r(a) > 0 and πθ1(a) > 0. Softmax PG obtains κ(PG, a) = 1

for all a ∈ [K].

Theorems 25 and 27 provide (partial) explanations of the observations

in Section 5.2: stochastic NPG and GNPG can fail while PG almost surely

converges to a global optimum, but their committal rates lie on different sides

of the necessary condition. Since κ(PG, a) = 1 for softmax PG, it follows that∏∞
t=1 πθt(a) = 0 (see Lemma 62), hence it is not possible to sample sub-optimal

actions forever, and the optimal action a∗ always has a sufficient chance to be

sampled, which ensures learning.
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Next, we consider NPG using special baselines (Chung et al., 2020), which

enjoys almost sure global convergence but has unbounded variance, and this re-

sult cannot be explained by the standard variance-based analysis using bounded

variance assumption and decaying learning rates.

Update 9 (NPG with oracle baseline).

θt+1 ← θt + η ·
(
r̂t − b̂t

)
, (5.26)

where

b̂t(a) =

(
I {at = a}
πθt(a)

− 1

)
· b, ∀a ∈ [K], (5.27)

and b ∈ (r(a∗)−∆, r(a∗)).

Theorem 28. Using Update 9, (π∗ − πθt)
> r → 0 as t → ∞ with probability

1.

For Update 9, the variance is still unbounded (Chung et al., 2020), while

the learning rate is not decaying. Thus the convergence is not due to the

analysis based on bounded variance with decaying learning rate. However, the

necessary condition in Theorem 25 is satisfied. We have, πθt+1(at) < πθt(at),

if at 6= a∗, i.e., whenever a sub-optimal action is selected its probability de-

creases, while the optimal action’s probability always increases after any up-

date. Therefore, we have κ(A, a∗) = ∞ and κ(A, a) = 0 for all a 6= a∗. This

example means committal rate works for cases beyond the bounded variance

condition used widely in the optimization and reinforcement learning commu-

nities.

5.4 The Geometry-Convergence Trade-off in

Stochastic Policy Optimization

Theorem 27 raises the question of whether κ(A, a) = 1 for all sub-optimal

actions a ∈ [K] is sufficient to ensure an algorithm A converges to an optimal

policy almost surely. Unfortunately, this is not the case, and the complete

picture of global optimality in stochastic policy optimization is more complex

and requires detailed study of different iteration behaviors.
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5.4.1 Iteration Behaviours

Remark 18. The condition that κ(A, a) ≤ 1 for all sub-optimal actions a ∈

[K] is not sufficient for ensuring almost sure convergence to global optimality.

In addition to “convergence to a sub-optimal policy with positive probability”

and “convergence to a globally optimal policy with probability 1” there exist

other possible optimization behaviours, such as “not converging to any policy”.

In particular, consider the following update behaviors.

Staying. For the stationary update A : θt+1 ← θt we obtain κ(A, a) = 0 ≤ 1

for all a ∈ [K], yet πθt = πθ1 does not converge to the optimal policy nor any

sub-optimal deterministic policy.

Wandering (NPG with a large baseline). Consider

A : θt+1 ← θt + η ·
(
r̂t − b̂t

)
, (5.28)

with b̂t(a) =
(

I{at=a}
πθt (a)

− 1
)
· b for all a ∈ [K]. If b > r(a∗), then we have

πθt+1(at) < πθt(at), i.e., a selected action’s probability will decrease after up-

dating, hence κ(A, a) = 0 for all a ∈ [K]. However, πθt(a) 6→ 1 as t → ∞ for

all a ∈ [K], therefore πθt will wander within the simplex forever.

The above examples show that not converging to a sub-optimal policy

does not necessarily imply converging to an optimal policy almost surely, and a

stronger condition is needed to eliminate unreasonable behaviors like θt+1 ← θt.

We leave it as an open question to identify necessary and sufficient conditions

for almost sure convergence to a global optimum.

5.4.2 Geometry-Convergence Trade-off

In Section 5.2 we saw that NPG and GNGP can use true gradients to signifi-

cantly accelerate PG by better exploiting geometry. However, in the stochastic

setting, any estimated geometry might be inaccurate, and intuitively, accel-

erated methods risk leveraging inaccurate information too aggressively. On

the one hand, if progress is sufficiently fast (i.e., with a large committal rate),
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then an algorithm might never recover from aggressive yet inaccurate updates

(Theorem 25). On the other hand, large progress is necessary for fast conver-

gence. The tension between these observations suggest that there might be an

inherent trade-off between exploiting geometry and avoiding premature con-

vergence in stochastic policy optimization. We formalize this intuition with

the following results. For the first result, we need to restrict to the class of

policy optimization methods that do not decrease the probability of the opti-

mal action whenever that action is chosen: In particular, a policy optimization

method is said to be optimality-smart if for any t ≥ 1, πθ̃t(a
∗) ≥ πθt(a

∗) holds

where θ̃t is the parameter vector obtained when a∗ is chosen in every time step,

starting at θ1, while θt is any parameter vector that can be obtained with t

updates (regardless of the action sequence chosen), but also starting from θ1.

Theorem 29. Let A be optimality-smart and pick a bandit instance. If A

together with on-policy sampling leads to {θt}t≥1 such that {πθt}t≥1 converges

to a globally optimal policy at a rate O(1/tα) with positive probability, for

α > 0, then κ(A, a∗) ≥ α.

This theorem implies that a large committal rate for the optimal action is

necessary for achieving fast convergence to the globally optimal policy, since

the sub-optimality dominates how close the optimal action’s probability is to

1, i.e.,

(π∗ − πθt)
> r =

∑
a6=a∗

πθt(a) · (r(a∗)− r(a)) (5.29)

≥ (1− πθt(a∗)) ·∆. (5.30)

Therefore (π∗ − πθt)
> r ∈ O(1/tα) implies 1 − πθt(a∗) ∈ O(1/tα). Combining

this result with Theorem 25 formally establishes the following inherent trade-

off between exploiting geometry to accelerate convergence versus achieving

global optimality almost surely (aggressiveness vs. stability).

Theorem 30 (Geometry-Convergence trade-off). If an algorithm A is optimality-

smart, and κ(A, a∗) = κ(A, a) for at least one a 6= a∗, then A with on-policy

sampling can only exhibit at most one of the following two behaviors:
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(i) A converges to a globally optimal policy almost surely;

(ii) A converges to a deterministic policy at a rate faster than O(1/t) with

positive probability.

In other words, if A has a chance to converge to a global optimum, then

either A converges to the globally optimal policy with probability 1 (A is

stable) but at a rate no better than O(1/t), or it achieves a faster than O(1/t)

convergence rate (A is aggressive) but fails to converge to the globally optimal

policy with some positive probability. This trade-off between the geometry

and convergence is faced by any stochastic policy optimization algorithm that

is not informed by external oracle information that allows it to distinguish

optimal and sub-optimal actions based on on-policy samples.

Remark 19. Theorem 30 means an algorithm can achieve at most one of the

mentioned two results. It is possible that an algorithm achieves neither (e.g.,

staying or wandering).

5.4.3 Exploiting External Information

In Theorem 30, the condition of κ(A, a∗) = κ(A, a) for at least one sub-

optimal action a ∈ [K] is necessary for the trade-off to hold. If this condition

can somehow be bypassed, for example, by providing problem specific infor-

mation, then it is possible to simultaneously achieve faster rates and almost

sure convergence to a global optimum. For example, consider the NPG with

oracle baseline of Update 9. As mentioned before, we have κ(A, a∗) =∞ and

κ(A, a) = 0 for all a 6= a∗, breaking the mentioned condition, which allows A

to enjoy almost sure global convergence as well as a O(e−c·t) rate. Of course,

such a fortuitous outcome required a very specific baseline that is aware of

both the optimal reward and the reward gap. Without introducing external

mechanisms that inform an on-policy algorithm it appears that such informa-

tion cannot be recovered sufficiently quickly from sample data alone (Tucker

et al., 2018). Nevertheless, it remains an open question to prove that this is

not possible, or whether some other strategy might allow an on-policy stochas-
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tic policy optimization algorithm to avoid the condition of Theorem 30 and

achieve both fast rates and almost sure global convergence.

Figure 5.1: Different algorithmic behaviours subdivided by two properties
of committal rate. SAMBA does not use parametric policies and is discussed
below.

Fig. 5.1 summarizes all the iteration behaviours we studied in this chapter,

organized by two properties of committal rate: (i) possible failure if κ(A, a) >

1 for at least one sub-optimal action a; and (ii) an inherent geometry-convergence

trade-off if κ(A, a∗) = κ(A, a) for at least one sub-optimal action a. It remains

open to study where other algorithms suit themselves in this diagram.

5.5 Initialization Sensitivity and Ensemble Meth-

ods

In this section, we will keep exploiting the newly introduced concept, commit-

tal rate, to further reveal mystery observed in practice about the sensitivity of

the initialization in policy optimization (Henderson et al., 2018). With the un-

derstanding of this unavoidable phenomenon, we introduce ensemble method

and quantitatively characterize the successful rate in terms of number of trials.

5.5.1 Initialization Sensitivity

It has been observed empirically that RL algorithms are sensitive to initial-

ization in practice: the same algorithm can produce remarkably different per-

formance given different random seeds (Henderson et al., 2018). Chapter 3

has attempted to explain initialization sensitivity due to the softmax trans-

form, but such results only hold for true gradients and apply to standard PG

methods.
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Using the committal rate theory developed above, we can provide a new

explanation and additional understanding of the initialization sensitivity of

practical policy optimization algorithms. Most well-performing policy opti-

mization algorithms in practice, such as TRPO and PPO (Schulman et al.,

2015; Schulman et al., 2017), are based on NPG, which exploits geometry to

accelerate PG in true gradient settings. However, according to Theorem 30,

such fast convergence must incur a positive probability of failing to reach a

global optimum, even in bandit settings. Therefore, the need to attempt mul-

tiple random seeds to achieve success is an unavoidable consequence of using

these algorithms according to this theory.

5.5.2 Ensemble Methods

The committal rate theory also explains why ensemble methods (Jung et al.,

2020; Parker-Holder et al., 2020; Wiering and Van Hasselt, 2008), i.e., running

a policy optimization algorithm in multiple parallel threads and picking the

best performing one, can provably work well. This is because a fast algorithm

for the true gradient setting can have a positive probability of success or failure

across different initializations while always converging quickly. In which case,

multiple independent runs can then be used to reduce the failure probability

to any desired positive value, while retaining efficiency (if full parallelism can

be maintained).

Theorem 31. With probability 1− δ, the best single run among O(log (1/δ))

independent runs of NPG (GNPG) converges to a globally optimal policy at

an O(e−c·t) rate.

As shown in Chapter 3, softmax PG can get stuck on long plateaus for

even true gradient settings, which means almost sure global convergence does

not necessarily imply good practical performance. Therefore, it is a reasonable

choice to perform well with the compromise of small failure probability. Here

we consider simply best selection, and it remains open to study whether and

how practical training tricks, such as proximal update (Lazić et al., 2021;
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Schulman et al., 2017) and regularization (Mnih et al., 2016), stabilize training

by increasing the success probability under stochastic settings.

5.6 Discussions

We leave it open to identify sufficient and necessary conditions for almost sure

global convergence in Section 5.4. We make the following conjecture with some

intuitions.

Conjecture 1. Given a stochastic policy optimization algorithm A, if κ(A, a∗) =

κ(A, a) for at least one sub-optimal action a, then κ(A, a∗) ∈ (0, 1] is a suf-

ficient and necessary condition for global convergence to π∗ with polynomial

convergence rate of O(1/tα), where α > 0.

The necessary condition part is guaranteed by Theorem 25. For the suf-

ficient condition part, Theorem 29 can potentially be strengthened with the

claim that κ(A, a∗) ≥ α is a sufficient and necessary condition for global

convergence with rate O(1/tα) (α > 0). The observation here is that under

Assumption 3, we have r(a∗)− r(a) ≤ 1, which leads to,

(π∗ − πθt)
> r =

∑
a6=a∗

πθt(a) · (r(a∗)− r(a)) ≤ 1− πθt(a∗). (5.31)

This suggests that if κ(A, a∗) ≥ α (i.e., 1−πθt(a∗) ∈ O(1/tα)), then (π∗ − πθt)
> r ∈

O(1/tα). However, a gap here is κ(A, a∗) ≥ α means “1 − πθt(a∗) ∈ O(1/tα)

if we fix sampling a∗ forever”, and it is not clear if this says something about

“1 − πθt(a
∗) ∈ O(1/tα) if we run the algorithm A using on-policy sampling

at ∼ πθt(·)”.

5.6.1 Lower Bounds in Bandit Literature

In the bandit literature (Lattimore and Szepesvári, 2020), there exist Ω(log T )

and Ω(
√
T ) lower bounds for stochastic and adversarial reward settings respec-

tively, which implies that the convergence speed in terms of sub-optimality

(“average regret” in bandit) cannot be faster than O(1/t). However, the lower

bound construction there is information-theoretic, which holds for adversarial
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(changing reward signal) and stochastic (the reward needs to be estimated

accurately enough) settings. Theorem 30 holds for a simpler optimization set-

ting: the reward is fixed and deterministic, but the policy gradient is estimated

using on-policy sampling. Therefore, the difficulty and trade-off are from the

restriction on the action-selection scheme (balancing the aggressiveness of the

update and the stability), not from estimating or tracking the reward signal.

5.6.2 General MDPs

The one-state MDP results already show the main findings, since a large por-

tion of this section is about constructing counterexamples showing that the

stochastic policy optimization algorithms do not perform well as in the true

gradient setting. A counterexample for one-state MDPs is also a counterexam-

ple for general MDPs. Therefore, there is no loss of generality by establishing

negative results using one-state MDPs.

5.7 Summary

This chapter introduces the committal rate theory, which not only explains

why faster policy optimization algorithms in the true gradient setting become

dominated by slower counterparts in the on-policy stochastic setting, but also

reveals an inherent geometry-convergence trade-off in stochastic policy opti-

mization. The theory also explains empirical observations of sensitivity to

random initialization for practical policy optimization algorithms as well as

the effectiveness of ensemble methods.
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Chapter 6

Conclusions and Future
Directions

This dissertation introduces a new non-uniform analysis for non-convex op-

timization in reinforcement learning and machine learning. The main pillars of

this analysis are two new non-uniform properties: the non-uniform  Lojasiewicz

inequality (N L) and the non-uniform smoothness (NS) property. Below I sum-

marize the contributions and logic behind the development of the non-uniform

analysis as well as some future directions.

Chapter 2 set out to study the global convergence rate of policy gradient

(PG) methods with the softmax parameterization. The value function maxi-

mization problem is non-concave with respect to the parameters, and existing

uniform  Lojasiewicz inequalities with universal constants cannot be satisfied in

this case. I therefore introduce the non-uniform  Lojasiewicz inequality (N L) as

a necessary analysis tool. Using N L inequalities to help analyze PG methods,

I successfully resolved a number of longstanding open problems:

• By showing that policy value functions satisfy a N L inequality, I estab-

lish the first finite time O(1/t) upper bound on the convergence rate of

softmax PG methods.

• By proving that entropy regularized value functions satisfy a better N L

inequality, I show that entropy regularized PG achieves a global linear

convergence rate of O(e−c·t) (where c > 0).

• By proving that, without regularization, policy value functions satisfy a
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reversed  Lojasiewicz inequality, I establish an Ω(1/t) convergence rate

lower bound for softmax PG.

• The above results provide a new understanding of entropy regularization,

showing how it accelerates the convergence speed of PG optimization.

• A deeper explanation for how entropy accelerates PG convergence speed

is further provided by the N L degree, which is a key quantity in the N L

inequality.

This work leaves open a number of interesting questions: While some lower

bounds are established, there remain gaps between the lower and upper bounds.

Another interesting direction is to extend the results to alternative (e.g., re-

stricted) policy parametrizations, or to study policy gradient when the gradient

must be estimated from data. One also expects that non-uniform  Lojasiewicz

inequalities and the non-uniform  Lojasiewicz degree could also be put to good

use in other areas of non-convex optimization.

Chapter 3 focused on explaining the gap between the above theoretical

results and practical performance of PG methods. In theory, PG has a Θ(1/t)

convergence rate, while in practice, it exhibits extreme sensitivity to different

initializations. Using the concept of N L coefficient, another key quantity in

the N L inequality, I locate the source of the issue, which arises from using the

softmax transform with gradient descent (ascent) methods. In particular, the

logic behind the main contributions in this chapter are as follows:

• By proving that in the worst case, the progress of PG methods in each

iteration is upper bounded by the N L coefficient, I first show that softmax

PG is guaranteed to suffer from initialization sensitivity, which is the

“softmax gravity well” phenomenon.

• By using an alternative escort policy transformation to improve the N L

coefficient, I show that escort PG methods strictly improve softmax PG

in terms of faster escape times from landscape plateaus.

• By showing that vanishing N L coefficients lead to decreasing N L degrees,

I discover and explain why convergence degrades from O(e−c·t) to O(1/t)
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behaviour when using the softmax transform for cross entropy minimiza-

tion in supervised learning, i.e., the “softmax damping” phenomenon.

• I show that a specific choice of escort transform results in non-vanishing

N L coefficients, and therefore preserves the N L degree and the fast linear

convergence rate of O(e−c·t).

Uncovering these two phenomena challenges the common practice of using the

softmax transformation in machine learning. However, there are other factors

to consider when assessing such transformations for machine learning prob-

lems, such as the “temperature” of the softmax, or how different transforms

might impact the generalization ability of the learned models. An important

direction for future work is to investigate whether similar phenomena occur

in other scenarios where the softmax is commonly utilized, such as attention

models and exponential exploration. Since our underlying explanation using

the concept of (N L) coefficient and its interplay with the N L degree matches

empirical observations, we also expect the N L coefficient to be useful in un-

derstanding other problems in machine learning.

Chapter 4 introduced a new non-uniform smoothness (NS) property, which

was inspired from the special case of escort PG and other relevant optimiza-

tion research in machine learning. The combination of the NS property and

N L inequality is extremely successful in terms of inspiring new algorithm de-

sign, being sufficiently general to cover different function classes, improving

previous results beyond even classical lower bounds, and being applicable to

fundamental non-convex optimization problems in machine learning. To sum-

marize,

• I introduce a new NS property that generalizes and unifies previous spe-

cial cases. The NS property inspires a new first-order method called

geometry-aware normalized gradient descent (GNGD), which exploits

non-uniform landscape information.

• I propose a non-uniform analysis of gradient descent (GD) and GNGD

when the NS and N L properties are satisfied. GNGD overcomes the
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classical Ω(1/t2) lower bound in convex-smooth analysis by exploiting

the additional non-uniform properties.

• By showing that value functions satisfy the NS property, and that the

NS coefficient is the PG norm in this case, I prove that geometry-aware

normalized PG (GNPG) achieves a global linear convergence rate of

O(e−c·t) without using regularization or introducing an arg max update.

• By showing that the mean squared error (MSE) in generalized linear

model training (GLM) satisfies the N L and NS properties, I prove that

both GD and GNGD achieve O(e−c·t) convergence in this case, signif-

icantly improving previous results that establish only O(1/
√
t) conver-

gence rates. Combining NS and N L also provides a better understanding

of how to use geometry-aware normalization.

This general characterization and analysis based on non-uniform properties

applies to important non-convex optimization problems in machine learning.

One future direction is to further push the analysis to other domains with

more complex function approximators, such as neural networks (Allen-Zhu et

al., 2019). Another valuable direction for future work is to incorporate stochas-

tic gradient (Karimi et al., 2016) and other adaptive gradient-based methods

(Kingma and Ba, 2014) in the analysis. Finally, it would be interesting to

apply other non-uniform properties beyond those mentioned in this chapter.

Chapter 5 finally extends the analysis to stochastic policy optimization.

The novel findings inspire the introduction of a new committal rate theory:

• By investigating several policy optimization algorithms in the stochastic

setting, I uncover an anomaly that the preferability of policy optimiza-

tion algorithms changes dramatically depending on whether true versus

on-policy stochastic gradients are used.

• I introduce the concept of committal rate to characterize the interplay

between convergence rates and almost sure global convergence, which is

then used to explain the anomaly introduced above.
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• In particular, I use the committal rate to reveal an inherent geometry-

convergence trade-off: an uninformed algorithm can either converge to

a globally optimal policy with probability 1 but at a rate no faster than

O(1/t), or it can achieve faster than O(1/t) convergence but necessarily

with a positive probability of diverging or converging to a sub-optimal

policy.

• I use this committal rate theory to explain why practical policy opti-

mization algorithms are sensitive to random initialization. From these

results, I then develop an ensemble method that can achieve fast con-

vergence to global optima with high probability, allowing a positive but

controllable probability of failure.

An interesting direction for future study is to investigate the necessary and

sufficient conditions for almost sure global convergence, which could be weaker

than the bounded variance assumption. Another important direction is to in-

vestigate whether other techniques might be integrated into on-policy stochas-

tic optimization to break the condition of Theorem 30 and bypass the geometry-

convergence trade-off, to achieve both almost sure global convergence and a

faster than O(1/t) rate. One also expects that some generalized versions of

committal rate would be meaningful in stochastic reward settings.
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Appendix A

Non-convex (Non-concave)
Examples for N L Inequality

We list some non-convex (or non-concave in maximization problems) functions

which satisfy N L inequalities here from literature. See corresponding references

for details.

Expected reward, softmax parameterization. As shown in Lemma 3

and Mei et al. (2020b, Lemma 3),∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≥ πθ(a
∗) · (π∗ − πθ)>r. (A.1)

Value function, softmax parameterization. As shown in Lemma 8 and

Mei et al. (2020b, Lemma 8),∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

≥ 1√
S
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

·min
s
πθ(a

∗(s)|s) · [V ∗(ρ)− V πθ(ρ)] . (A.2)

Entropy regularized expected reward, softmax parameterization. As

shown in Proposition 5 and Mei et al. (2020b, Proposition 5),∥∥∥∥d{π>θ (r − τ log πθ)}
dθ

∥∥∥∥
2

≥ C(θ) ·
[
π∗τ
> (r − τ log π∗τ )− π>θ (r − τ log πθ)

] 1
2
,

(A.3)

where

C(θ) =
√

2τ ·min
a
πθ(a). (A.4)
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Entropy regularized value function, softmax parameterization. As

shown in Lemma 15 and Mei et al. (2020b, Lemma 15),∥∥∥∥∥∂Ṽ πθ(µ)

∂θ

∥∥∥∥∥
2

≥ C(θ) ·
[
Ṽ π∗τ (ρ)− Ṽ πθ(ρ)

] 1
2
, (A.5)

where

C(θ) =

√
2τ√
S
·min

s

√
µ(s) ·min

s,a
πθ(a|s) ·

∥∥∥∥∥dπ
∗
τ
ρ

dπθµ

∥∥∥∥∥
− 1

2

∞

. (A.6)

Expected reward, escort parameterization. As shown in Lemma 19 and

Mei et al. (2020a, Lemma 3),∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≥ p

‖θ‖p
· πθ(a∗)1−1/p · (π∗ − πθ)>r. (A.7)

Value function, escort parameterization. As shown in Lemma 44 and

Mei et al. (2020a, Lemma 7),∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

≥ C(θ, p) · [V ∗(ρ)− V πθ(ρ)] , (A.8)

where

C(θ, p) =
p√
S
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

· mins πθ(a
∗(s)|s)1−1/p

maxs ‖θ(s, ·)‖p
. (A.9)

Entropy regularized value function, escort parameterization. As shown

in Lemma 48 and Mei et al. (2020a, Lemma 12),∥∥∥∥∥∂Ṽ πθ(µ)

∂θ

∥∥∥∥∥
2

≥ C(θ, p) ·
[
Ṽ π∗τ (ρ)− Ṽ πθ(ρ)

] 1
2
, (A.10)

where

C(θ, p) =
p ·
√

2τ√
S
·min

s

√
µ(s) · mins,a πθ(a|s)1−1/p

maxs ‖θ(s, ·)‖p
·

∥∥∥∥∥dπ
∗
τ
ρ

dπθµ

∥∥∥∥∥
− 1

2

∞

. (A.11)

Cross entropy, escort parameterization. As shown in Lemma 50 and

Mei et al. (2020a, Lemma 17),∥∥∥∥d{DKL(y‖πθ)}
dθ

∥∥∥∥
2

≥ p

‖θ‖p
·min

a
πθ(a)

1
2
− 1
p ·DKL(y‖πθ)

1
2 . (A.12)
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Generalized linear models, sigmoid activation, mean squared error.

As shown in Lemma 27 and Mei et al. (2021b, Lemma 9),

∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

≥ 8 · u(θ) ·min {u(θ), v} ·
√
λφ ·

[
1

N
·
N∑
i=1

(πi − π∗i )
2

] 1
2

. (A.13)
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Appendix B

Proofs for Chapter 2: Global
Convergence Rates of Softmax
Policy Gradient

B.1 Proofs for Section 2.3: Softmax Parametriza-

tion

B.1.1 Preliminaries

Lemma 1. Consider the map θ 7→ V πθ(µ) where θ ∈ RS×A and πθ(·|s) =

softmax(θ(s, ·)). The derivative of this map satisfies

∂V πθ(µ)

∂θ(s, a)
=

1

1− γ
· dπθµ (s) · πθ(a|s) · Aπθ(s, a). (B.1)

Note that this is given as Agarwal et al. (2019, Lemma C.1); we include a

proof for completeness.

Proof. According to the policy gradient theorem (Theorem 1),

∂V πθ(µ)

∂θ
=

1

1− γ
E

s′∼dπθµ

[∑
a

∂πθ(a|s′)
∂θ

·Qπθ(s′, a)

]
. (B.2)

For s′ 6= s, ∂πθ(a|s′)
∂θ(s,·) = 0 since πθ(a|s′) does not depend on θ(s, ·). Therefore,

∂V πθ(µ)

∂θ(s, ·)
=

1

1− γ
· dπθµ (s) ·

[∑
a

∂πθ(a|s)
∂θ(s, ·)

·Qπθ(s, a)

]
(B.3)

=
1

1− γ
· dπθµ (s) ·

(
dπ(·|s)
dθ(s, ·)

)>
Qπθ(s, ·) (B.4)

=
1

1− γ
· dπθµ (s) ·H(πθ(·|s))Qπθ(s, ·). (using Eq. (2.8)) (B.5)
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Since H(πθ(·|s)) = diag(πθ(·|s)) − πθ(·|s)πθ(·|s)>, for each component a, we

have

∂V πθ(µ)

∂θ(s, a)
=

1

1− γ
· dπθµ (s) · πθ(a|s) ·

[
Qπθ(s, a)−

∑
a

πθ(a|s) ·Qπθ(s, a)
]
(B.6)

=
1

1− γ
· dπθµ (s) · πθ(a|s) · [Qπθ(s, a)− V πθ(s)] (B.7)

=
1

1− γ
· dπθµ (s) · πθ(a|s) · Aπθ(s, a), (B.8)

where the second equation is using

V πθ(s) =
∑
a

πθ(a|s) ·Qπθ(s, a).

B.1.2 Proofs for Softmax Parametrization in Bandits

Proposition 1. On some problems, θ 7→ Ea∼πθ [r(a)] is a non-concave function

over RK .

Proof. Consider the following example: r = (1, 9/10, 1/10)>, θ1 = (0, 0, 0)>,

πθ1 = softmax(θ1) = (1/3, 1/3, 1/3)>, θ2 = (ln 9, ln 16, ln 25)>, and πθ2 =

softmax(θ2) = (9/50, 16/50, 25/50)>. We have,

1

2
·
(
π>θ1r + π>θ2r

)
=

1

2
·
(

2

3
+

259

500

)
=

1777

3000
=

14216

24000
. (B.9)

On the other hand, defining θ̄ = 1
2
· (θ1 + θ2) = (ln 3, ln 4, ln 5)> we have

πθ̄ = softmax(θ̄) = (3/12, 4/12, 5/12)> and

π>θ̄ r =
71

120
=

14200

24000
. (B.10)

Since 1
2
·
(
π>θ1r + π>θ2r

)
> π>

θ̄
r, θ 7→ Ea∼πθ(·) [r(a)] is a non-concave function of

θ.

Lemma 2 (Smoothness). Let πθ = softmax(θ) and πθ′ = softmax(θ′). For

any r ∈ [0, 1]K , θ 7→ π>θ r is 5/2-smooth, i.e.,∣∣∣∣(πθ′ − πθ)>r − 〈dπ>θ rdθ
, θ′ − θ

〉∣∣∣∣ ≤ 5

4
· ‖θ′ − θ‖2

2. (B.11)
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Proof. Let S := S(r, θ) ∈ RK×K be the second derivative of the value map

θ 7→ π>θ r. By Taylor’s theorem, it suffices to show that the spectral radius of

S (regardless of r and θ) is bounded by 5/2. Now, by its definition we have

S =
d

dθ

{
dπ>θ r

dθ

}
(B.12)

=
d

dθ
{H(πθ)r} (using Eq. (2.8)) (B.13)

=
d

dθ

{
(diag(πθ)− πθπ>θ )r

}
. (B.14)

Continuing with our calculation fix i, j ∈ [K]. Then,

Si,j =
d{πθ(i) · (r(i)− π>θ r)}

dθ(j)
(B.15)

=
dπθ(i)

dθ(j)
· (r(i)− π>θ r) + πθ(i) ·

d{r(i)− π>θ r}
dθ(j)

(B.16)

= (δijπθ(j)− πθ(i)πθ(j)) · (r(i)− π>θ r) (B.17)

− πθ(i) · (πθ(j)r(j)− πθ(j)π>θ r) (B.18)

= δijπθ(j) · (r(i)− π>θ r) (B.19)

− πθ(i)πθ(j) · (r(i)− π>θ r) (B.20)

− πθ(i)πθ(j) · (r(j)− π>θ r), (B.21)

where

δij =

{
1, if i = j,

0, otherwise
(B.22)

is Kronecker’s δ-function. To show the bound on the spectral radius of S, pick

y ∈ RK . Then,

∣∣y>Sy∣∣ =

∣∣∣∣∣
K∑
i=1

K∑
j=1

Si,jy(i)y(j)

∣∣∣∣∣ (B.23)

=

∣∣∣∣∑
i

πθ(i)(r(i)− π>θ r)y(i)2 (B.24)

− 2
∑
i

πθ(i)(r(i)− π>θ r)y(i)
∑
j

πθ(j)y(j)

∣∣∣∣ (B.25)

=
∣∣∣(H(πθ)r)

> (y � y)− 2 · (H(πθ)r)
> y ·

(
π>θ y

)∣∣∣ (B.26)

≤ ‖H(πθ)r‖∞ · ‖y � y‖1 + 2 · ‖H(πθ)r‖1 · ‖y‖∞ · ‖πθ‖1 · ‖y‖∞ , (B.27)

128



where � is Hadamard (component-wise) product, and the last inequality uses

Hölder’s inequality together with the triangle inequality. Note that ‖y�y‖1 =

‖y‖2
2, ‖πθ‖1 = 1, and ‖y‖∞ ≤ ‖y‖2. For i ∈ [K], denote by Hi,:(πθ) the i-th

row of H(πθ) as a row vector. Then,

‖Hi,:(πθ)‖1 = πθ(i)− πθ(i)2 + πθ(i) ·
∑
j 6=i

πθ(j) (B.28)

= πθ(i)− πθ(i)2 + πθ(i) · (1− πθ(i)) (B.29)

= 2 · πθ(i) · (1− πθ(i)) (B.30)

≤ 1/2. (using that x · (1− x) ≤ 1/4 holds for x ∈ [0, 1]) (B.31)

On the other hand,

‖H(πθ)r‖1 =
∑
i

πθ(i) ·
∣∣r(i)− π>θ r∣∣ (B.32)

≤ max
i

∣∣r(i)− π>θ r∣∣ (B.33)

≤ 1.
(

using r ∈ [0, 1]K
)

(B.34)

Therefore we have,∣∣y>S(r, θ)y
∣∣ ≤ ‖H(πθ)r‖∞ · ‖y‖

2
2 + 2 · ‖H(πθ)r‖1 · ‖y‖

2
2 (B.35)

= max
i

∣∣∣(Hi,:(πθ))
> r
∣∣∣ · ‖y‖2

2 + 2 · ‖H(πθ)r‖1 · ‖y‖
2
2 (B.36)

≤ max
i
‖Hi,:(πθ)‖1 · ‖r‖∞ · ‖y‖

2
2 + 2 · 1 · ‖y‖2

2 (B.37)

≤ (1/2 + 2) · ‖y‖2
2 = 5/2 · ‖y‖2

2 , (B.38)

finishing the proof.

Lemma 3 (Non-uniform  Lojasiewicz). Assume r has a single maximizing

action a∗. Let π∗ := arg maxπ∈∆ π
>r, and πθ = softmax(θ). Then, for any θ,∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≥ πθ(a
∗) · (π∗ − πθ)>r . (B.39)

When there are multiple optimal actions, we have∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≥ 1√
|A∗|

·

[ ∑
a∗∈A∗

πθ(a
∗)

]
· (π∗ − πθ)>r, (B.40)

where A∗ = {a∗ : r(a∗) = maxa r(a)} is the set of optimal actions.
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Proof. We give the proof for the general case, as the case of a single maximizing

action is a corollary to this case. Using the expression we got for the gradient

earlier,∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≥

( ∑
a∗∈A∗

[
πθ(a

∗) · (r(a∗)− π>θ r)
]2) 1

2

(B.41)

≥ 1√
|A∗|

∑
a∗∈A∗

πθ(a
∗) · (r(a∗)− π>θ r) (by Cauchy-Schwarz) (B.42)

=
1√
|A∗|

·

[ ∑
a∗∈A∗

πθ(a
∗)

]
· (π∗ − πθ)>r.

For the remaining results in this section, for simplicity, we assume that

A∗ = {a∗}, i.e., there is a unique optimal action a∗.

Lemma 4 (Pseudo-rate). Let πθt = softmax(θt), and ct = min1≤s≤t πθs(a
∗).

Using Update 1 with η = 2/5, for all t ≥ 1,

(π∗ − πθt)>r ≤ 5/(t · c2
t ), and (B.43)

T∑
t=1

(π∗ − πθt)>r ≤ min
{√

5T/cT , (5 log T )/c2
T + 1

}
. (B.44)

Proof. According to Lemma 2,∣∣∣∣(πθt+1 − πθt)>r −
〈dπ>θtr
dθt

, θt+1 − θt
〉∣∣∣∣ ≤ 5

4
· ‖θt+1 − θt‖2

2, (B.45)

which implies

π>θtr − π
>
θt+1

r ≤ −
〈dπ>θtr
dθt

, θt+1 − θt
〉

+
5

4
· ‖θt+1 − θt‖2

2 (B.46)

= −η ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥2

2

+
5

4
· η2 ·

∥∥∥∥dπ>θtrdθt

∥∥∥∥2

2

(using Update 1) (B.47)

= −1

5
·
∥∥∥∥dπ>θtrdθt

∥∥∥∥2

2

(using η = 2/5) (B.48)

≤ −1

5
·
[
πθt(a

∗) · (π∗ − πθt)>r
]2

(by Lemma 3) (B.49)

≤ −c
2
t

5
·
[
(π∗ − πθt)>r

]2
, (by the definition of ct) (B.50)

which is equivalent to

(π∗ − πθt+1)>r − (π∗ − πθt)>r ≤ −
c2
t

5
·
[
(π∗ − πθt)>r

]2
. (B.51)
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Let δt = (π∗− πθt)>r. To prove the first part, we need to show that δt ≤ 5
c2t
· 1
t

holds for any t ≥ 1. We prove this by induction on t.

Base case: Since δt ≤ 1 and ct ∈ (0, 1), the result trivially holds up to t ≤ 5.

Inductive step: Now, let t ≥ 2 and suppose that δt ≤ 5
c2t
·1
t
. Consider ft : R→ R

defined using ft(x) = x− c2t
5
· x2. We have that ft is monotonically increasing

in
[
0, 5

2·c2t

]
. Hence,

δt+1 ≤ ft(δt) (by Eq. (B.51)) (B.52)

≤ ft

(
5

c2
t

· 1

t

) (
using δt ≤

5

c2
t

· 1

t
≤ 5

2 · c2
t

, t ≥ 2

)
(B.53)

=
5

c2
t

·
(

1

t
− 1

t2

)
(B.54)

≤ 5

c2
t

· 1

t+ 1
(B.55)

≤ 5

c2
t+1

· 1

t+ 1
, (using ct ≥ ct+1 > 0) (B.56)

which completes the induction and the proof of the first part of the lemma.

For the second part, summing up δt ≤ 5
c2t
· 1
t
≤ 5

c2T
· 1
t
, we have

T∑
t=1

(π∗ − πθt)>r ≤
5 log T

c2
T

+ 1. (B.57)

On the other hand, rearranging Eq. (B.51) and summing up

δ2
t ≤

5

c2
t

· (δt − δt+1) ≤ 5

c2
T

· (δt − δt+1), (B.58)

from t = 1 to T ,

T∑
t=1

δ2
t ≤

5

c2
T

T∑
t=1

(δt − δt+1) (B.59)

=
5

c2
T

· (δ1 − δT+1) (B.60)

≤ 5

c2
T

. (since δT+1 ≥ 0, δ1 ≤ 1) (B.61)

Therefore, by Cauchy-Schwarz,

T∑
t=1

(π∗ − πθt)>r =
T∑
t=1

δt ≤
√
T ·

√√√√ T∑
t=1

δ2
t ≤
√

5T

cT
.
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Lemma 5. For η = 2/5, we have inft≥1 πθt(a
∗) > 0.

Proof. Let

c =
K

2∆
·
(

1− ∆

K

)
(B.62)

and

∆ = r(a∗)−max
a6=a∗

r(a) > 0 (B.63)

denote the reward gap of r. We will prove that inft≥1 πθt(a
∗) = min1≤t≤t0 πθt(a

∗),

where t0 = min{t : πθt(a
∗) ≥ c

c+1
}. Note that t0 depends only on θ1 and c,

and c depends only on the problem. Define the following regions,

R1 =

{
θ :

dπ>θ r

dθ(a∗)
≥ dπ>θ r

dθ(a)
, ∀a 6= a∗

}
, (B.64)

R2 = {θ : πθ(a
∗) ≥ πθ(a), ∀a 6= a∗} , (B.65)

Nc =

{
θ : πθ(a

∗) ≥ c

c+ 1

}
. (B.66)

We make the following three-part claim.

Claim 1. The following hold:

a) R1 is a “nice” region, in the sense that if θt ∈ R1 then, with any η > 0,

following a gradient update (i) θt+1 ∈ R1 and (ii) πθt+1(a∗) ≥ πθt(a
∗).

b) We have R2 ⊂ R1 and Nc ⊂ R1.

c) For η = 2/5, there exists a finite time t0 ≥ 1, such that θt0 ∈ Nc, and thus

θt0 ∈ R1, which implies that inft≥1 πθt(a
∗) = min1≤t≤t0 πθt(a

∗).

Claim a) Part (i): We want to show that if θt ∈ R1, then θt+1 ∈ R1. Let

R1(a) =

{
θ :

dπ>θ r

dθ(a∗)
≥ dπ>θ r

dθ(a)

}
. (B.67)

Note that R1 = ∩a6=a∗R1(a). Pick a 6= a∗. Clearly, it suffices to show that if

θt ∈ R1(a) then θt+1 ∈ R1(a). Hence, suppose that θt ∈ R1(a). We consider

two cases.
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Case (a): πθt(a
∗) ≥ πθt(a). Since πθt(a

∗) ≥ πθt(a), we also have θt(a
∗) ≥ θt(a).

After an update of the parameters,

θt+1(a∗) = θt(a
∗) + η ·

dπ>θtr

dθt(a∗)
(B.68)

≥ θt(a) + η ·
dπ>θtr

dθt(a)
(B.69)

= θt+1(a), (B.70)

which implies that πθt+1(a∗) ≥ πθt+1(a). Since r(a∗) − π>θt+1
r > 0 and r(a∗) >

r(a),

πθt+1(a∗) ·
(
r(a∗)− π>θt+1

r
)
≥ πθt+1(a) ·

(
r(a)− π>θt+1

r
)
, (B.71)

which is equivalent to
dπ>θt+1

r

dθt+1(a∗)
≥

dπ>θt+1
r

dθt+1(a)
, i.e., θt+1 ∈ R1(a).

Case (b): Suppose now that πθt(a
∗) < πθt(a). First note that for any θ and

a 6= a∗, θ ∈ R1(a) holds if and only if

r(a∗)− r(a) ≥
(

1− πθ(a
∗)

πθ(a)

)
·
(
r(a∗)− π>θ r

)
. (B.72)

Indeed, from the condition
dπ>θ r

dθ(a∗)
≥ dπ>θ r

dθ(a)
, we get

πθ(a
∗) ·
(
r(a∗)− π>θ r

)
≥ πθ(a) ·

(
r(a)− π>θ r

)
(B.73)

= πθ(a) ·
(
r(a∗)− π>θ r

)
− πθ(a) · (r(a∗)− r(a)) , (B.74)

which, after rearranging, is equivalent to Eq. (B.72). Hence, it suffices to show

that Eq. (B.72) holds for θt+1 provided it holds for θt.

From the latter condition, we get

r(a∗)− r(a) ≥ (1− exp {θt(a∗)− θt(a)}) ·
(
r(a∗)− π>θtr

)
. (B.75)

After an update of the parameters, according to the ascent lemma for smooth

function (Lemma 33), π>θt+1
r ≥ π>θtr, i.e.,

0 < r(a∗)− π>θt+1
r ≤ r(a∗)− π>θtr . (B.76)

On the other hand,

θt+1(a∗)− θt+1(a) = θt(a
∗) + η ·

dπ>θtr

dθt(a∗)
− θt(a)− η ·

dπ>θtr

dθt(a)
(B.77)

≥ θt(a
∗)− θt(a), (B.78)
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which implies that

1− exp {θt+1(a∗)− θt+1(a)} ≤ 1− exp {θt(a∗)− θt(a)} . (B.79)

Furthermore, by our assumption that πθt(a
∗) < πθt(a), we have

1− exp {θt(a∗)− θt(a)} = 1− πθt(a
∗)

πθt(a)
> 0. (B.80)

Putting things together, we get

(1− exp {θt+1(a∗)− θt+1(a)}) ·
(
r(a∗)− π>θt+1

r
)

(B.81)

≤ (1− exp {θt(a∗)− θt(a)}) ·
(
r(a∗)− π>θtr

)
(B.82)

≤ r(a∗)− r(a), (B.83)

which is equivalent to(
1−

πθt+1(a∗)

πθt+1(a)

)
·
(
r(a∗)− π>θt+1

r
)
≤ r(a∗)− r(a), (B.84)

and thus by our previous remark, θt+1 ∈ R1(a), thus, finishing the proof of

part (i).

Part (ii): Assume again that θt ∈ R1. We want to show that πθt+1(a∗) ≥

πθt(a
∗). Since θt ∈ R1, we have

dπ>θt
r

dθt(a∗)
≥ dπ>θt

r

dθt(a)
, ∀a 6= a∗. Hence,

πθt+1(a∗) =
exp {θt+1(a∗)}∑
a exp {θt+1(a)}

(B.85)

=
exp

{
θt(a

∗) + η · dπ>θt
r

dθt(a∗)

}
∑

a exp
{
θt(a) + η · dπ

>
θt
r

dθt(a)

} (B.86)

≥
exp

{
θt(a

∗) + η · dπ>θt
r

dθt(a∗)

}
∑

a exp
{
θt(a) + η · dπ>θt

r

dθt(a∗)

} (
using

dπ>θtr

dθt(a∗)
≥

dπ>θtr

dθt(a)

)
(B.87)

=
exp {θt(a∗)}∑
a exp {θt(a)}

= πθt(a
∗). (B.88)
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Claim b) We start by showing that R2 ⊂ R1. For this, let θ ∈ R2, i.e.,

πθ(a
∗) ≥ πθ(a). Then,

dπ>θ r

dθ(a∗)
= πθ(a

∗) ·
(
r(a∗)− π>θ r

)
(B.89)

> πθ(a) ·
(
r(a)− π>θ r

)
(B.90)(

using r(a∗)− π>θ r > 0 and r(a∗) > r(a)
)

(B.91)

=
dπ>θ r

dθ(a)
. (B.92)

Hence, θ ∈ R1 and thus R2 ⊂ R1 as desired.

Now, let us prove that Nc ⊂ R1. Take θ ∈ Nc. We want to show that

θ ∈ R1. If θ ∈ R2, by R2 ⊂ R1, we also have that θ ∈ R1. Hence, it remains

to show that θ ∈ R1 holds when θ ∈ Nc and θ 6∈ R2.

Thus, take any θ that satisfies these two conditions. Pick a 6= a∗. It suffices

to show that θ ∈ R1(a). Without loss of generality, assume that a∗ = 1 and

a = 2. Then, we have,

dπ>θ r

dθ(a∗)
− dπ>θ r

dθ(a)
=
dπ>θ r

dθ(1)
− dπ>θ r

dθ(2)
(B.93)

= πθ(1) ·
(
r(1)− π>θ r

)
− πθ(2) ·

(
r(2)− π>θ r

)
(B.94)

= 2 · πθ(1) ·
(
r(1)− π>θ r

)
+

K∑
i=3

πθ(i) ·
(
r(i)− π>θ r

)
(B.95)

(see below) (B.96)

=

(
2 · πθ(1) +

K∑
i=3

πθ(i)

)
·
(
r(1)− π>θ r

)
(B.97)

−
K∑
i=3

πθ(i) · (r(1)− r(i)) (B.98)

≥

(
2 · πθ(1) +

K∑
i=3

πθ(i)

)
·
(
r(1)− π>θ r

)
−

K∑
i=3

πθ(i) (B.99)

≥

(
2 · πθ(1) +

K∑
i=3

πθ(i)

)
· ∆

K
−

K∑
i=3

πθ(i), (B.100)

where the second equation is because

πθ(2) ·
(
r(2)− π>θ r

)
+
∑
i 6=2

πθ(i) ·
(
r(i)− π>θ r

)
= 0, (B.101)
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the first inequality is by 0 < r(1) − r(i) ≤ 1 and the second inequality is

because of

r(1)− π>θ r =
K∑
i=1

πθ(i) · r(1)−
K∑
i=1

πθ(i) · r(i) (B.102)

=
K∑
i=2

πθ(i) · (r(1)− r(i)) (B.103)

≥
K∑
i=2

πθ(i) ·∆ ≥ max
a6=a∗
{πθ(a)} ·∆ (B.104)

≥ ∆

K
.

(
using max

a6=a∗
{πθ(a)} = max

a
{πθ(a)} ≥ 1

K

)
(B.105)

Plugging
∑K

i=3 πθ(i) = 1 − πθ(1) − πθ(2) into Eq. (B.93) and rearranging the

resulting expression we get

dπ>θ r

dθ(a∗)
− dπ>θ r

dθ(a)
(B.106)

≥ πθ(1) ·
(

1 +
∆

K

)
−
(

1− ∆

K

)
+ πθ(2) ·

(
1− ∆

K

)
(B.107)

≥ πθ(2) ·
(

1− ∆

K

)
≥ 0, (B.108)

(using θ ∈ Nc, πθ(1) ≥ c/(c+ 1)) (B.109)

which implies that θ ∈ R1(a), thus, finishing the proof.

Claim c) We claim that πθt(a
∗)→ 1 as t→∞. For this, we wish to use the

asymptotic convergence results of Agarwal et al. (2019, Theorem 5.1), which

states this, but the stepsize there is η ≤ 1/5 while here we have η = 2/5.

We claim that their asymptotic result still hold with the larger η. In fact,

the restriction on η comes from that they can only prove the ascent lemma

(Lemma 33) for η ≤ 1/5. Other than this, their proof does not rely on the

choice of η. Since we can prove the ascent lemma with η ≤ 2/5 (and in

particular with η = 2/5), their result continues to hold even with η = 2/5.

Thus, πθt(a
∗) → 1 as t → ∞. Hence, there exists t0 ≥ 1, such that

πθt0 (a∗) ≥ c
c+1

, which means θt0 ∈ Nc ⊂ R1. According to the first part in

our proof, i.e., once θt is in R1, following gradient update θt+1 will be in R1,
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and πθt(a
∗) is increasing in R1, we have inft πθt(a

∗) = min1≤t≤t0 πθt(a
∗). t0

depends on initialization and c, which only depends on the problem.

Proposition 2. For any initialization there exist t0 ≥ 1 such that for any

t ≥ t0, t 7→ πθt(a
∗) is increasing. In particular, when πθ1 is the uniform

distribution, t0 = 1.

Proof. We have t0 = min{t ≥ 1 : πθt(a
∗) ≥ c

c+1
}, where c = K

2∆
·
(
1− ∆

K

)
in

the proof for Lemma 5 satisfies for any t ≥ t0, t 7→ πθt(a
∗) is increasing.

Now, let θ1 be so that πθ1 is the uniform distribution. We show that t0 = 1.

Recall from Claim 1 that R2 is the region where the probability of the optimal

action exceeds that of the suboptimal ones and R1 is the region where the

gradient of the optimal action exceeds those of the suboptimal ones and that

R2 ⊂ R1. Clearly, θ1 ∈ R2 and hence also θ1 ∈ R1. Now, by Part a) of

Claim 1, R1 is invariant under the updates, showing that t0 = 1 holds as

required.

Theorem 2 (Arbitrary initialization). Using Update 1 with η = 2/5, for all

t ≥ 1,

(π∗ − πθt)>r ≤ 5/(c2 · t), (B.110)

where c = inft≥1 πθt(a
∗) > 0 is a constant that depends on r and θ1, but it

does not depend on the time t.

Proof. According to Lemmas 4 and 5, the claim immediately holds, with c =

inft≥1 πθt(a
∗) > 0.

Theorem 3 (Uniform initialization). Using Update 1 with η = 2/5 and

πθ1(a) = 1/K, ∀a, for all t ≥ 1,

(π∗ − πθt)>r ≤ 5K2/t, and (B.111)

T∑
t=1

(π∗ − πθt)>r ≤ min
{
K
√

5T , 5K2 log T + 1
}
. (B.112)
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Proof. Since the initial policy is uniform policy, πθ1(a∗) ≥ 1/K. According

to Proposition 2, for all t ≥ t0 = 1, t 7→ πθt(a
∗) is increasing. Hence, we

have πθt(a
∗) ≥ 1/K, ∀t ≥ 1, and ct = min1≤s≤t πθs(a

∗) ≥ 1/K. According to

Lemma 4,

(π∗ − πθt)>r ≤
5

c2
t

· 1

t
, (B.113)

we have (π∗ − πθt)
>r ≤ 5K2/t, ∀t ≥ 1. The remaining results follow from

Eq. (B.43) and cT ≥ 1/K.

Lemma 6. Let r(1) > r(2) > r(3). Then, a∗ = 1 and inft≥1 πθt(1) =

min1≤t≤t0 πθt(1), where

t0 = min

{
t ≥ 1 :

πθt(1)

πθt(3)
≥ r(2)− r(3)

2 · (r(1)− r(2))

}
. (B.114)

In general, for K-action bandit cases, let r(1) > r(2) > · · · > r(K), we have,

t0 = min

{
t ≥ 1 : πθ(1) ≥

∑
j 6=1,j 6=i πθ(j) · (r(i)− r(j))

2 · (r(1)− r(i))
, (B.115)

for all i ∈ {2, 3, . . . K − 1}
}
. (B.116)

Proof. 3-action case. Recall the definition ofR1 from the proof for Lemma 5:

R1 =

{
θ :

dπ>θ r

dθ(a∗)
≥ dπ>θ r

dθ(a)
, ∀a 6= a∗

}
. (B.117)

By Part a) of Claim 1, it suffices to prove that θ ∈ R1. Thus, our goal is

to show that any θ such that πθ(1)
πθ(3)

≥ r(2)−r(3)
2·(r(1)−r(2))

is in fact an element of R1.

Suppose πθ(1)
πθ(3)

≥ r(2)−r(3)
2·(r(1)−r(2))

. There are two cases.

Case (a): If πθ(1)
πθ(3)

≥ r(2)−r(3)
r(1)−r(2)

, then we have,

r(2)− π>θ r = −πθ(1) · (r(1)− r(2)) + πθ(3) · (r(2)− r(3)) (B.118)

= πθ(3) · (r(1)− r(2)) ·
[
−πθ(1)

πθ(3)
+
r(2)− r(3)

r(1)− r(2)

]
(B.119)

≤ 0,

(
πθ(1)

πθ(3)
≥ r(2)− r(3)

r(1)− r(2)

)
(B.120)

which implies,

dπ>θ r

dθ(1)
− dπ>θ r

dθ(2)
= πθ(1) ·

(
r(1)− π>θ r

)
− πθ(2) ·

(
r(2)− π>θ r

)
(B.121)

≥ 0− 0 = 0.
(
r(1)− π>θ r > 0

)
(B.122)
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Note that since r(1) > π>θ r, and r(3) < π>θ r, we have

dπ>θ r

dθ(1)
− dπ>θ r

dθ(3)
= πθ(1) ·

(
r(1)− π>θ r

)
− πθ(3) ·

(
r(3)− π>θ r

)
(B.123)

≥ 0− 0 = 0. (B.124)

Therefore we have
dπ>θ r

dθ(1)
≥ dπ>θ r

dθ(2)
and

dπ>θ r

dθ(1)
≥ dπ>θ r

dθ(3)
, i.e., θ ∈ R1.

Case (b): If r(2)−r(3)
2·(r(1)−r(2))

≤ πθ(1)
πθ(3)

< r(2)−r(3)
r(1)−r(2)

, then we have,

dπ>θ r

dθ(1)
− dπ>θ r

dθ(2)
= πθ(1) ·

(
r(1)− π>θ r

)
− πθ(2) ·

(
r(2)− π>θ r

)
(B.125)

= 2 · πθ(1) ·
(
r(1)− π>θ r

)
+ πθ(3) ·

(
r(3)− π>θ r

)
(B.126)

≥ πθ(3) ·
[
r(2)− r(3)

r(1)− r(2)
·
(
r(1)− π>θ r

)
+
(
r(3)− π>θ r

)]
(B.127)(

using
πθ(1)

πθ(3)
≥ r(2)− r(3)

2 · (r(1)− r(2))

)
(B.128)

≥ πθ(3) ·
[
r(2)− r(3)

r(1)− r(2)
· (r(1)− r(2)) +

(
r(3)− π>θ r

)]
(B.129)

= πθ(3) ·
(
r(2)− π>θ r

)
≥ 0, (B.130)

where the second equation is according to

πθ(1) ·
(
r(1)− π>θ r

)
+ πθ(2) ·

(
r(2)− π>θ r

)
+ πθ(3) ·

(
r(3)− π>θ r

)
(B.131)

= π>θ r − π>θ r = 0, (B.132)

and the second inequality is because of

r(1)− π>θ r = (1− πθ(1)) · r(1)− (πθ(2) · r(2) + πθ(3) · r(3)) (B.133)

= πθ(2) · (r(1)− r(2)) + πθ(3) · (r(1)− r(3)) (B.134)

= (πθ(2) + πθ(3)) · (r(1)− r(2)) + πθ(3) · (r(2)− r(3)) (B.135)

> (πθ(2) + πθ(3)) · (r(1)− r(2)) + πθ(1) · (r(1)− r(2)) (B.136)(
using

πθ(1)

πθ(3)
<
r(2)− r(3)

r(1)− r(2)

)
(B.137)

= r(1)− r(2), (B.138)

and the last inequality is from

r(2)− π>θ r = πθ(3) · (r(1)− r(2)) ·
[
−πθ(1)

πθ(3)
+
r(2)− r(3)

r(1)− r(2)

]
(B.139)

> 0.

(
πθ(1)

πθ(3)
<
r(2)− r(3)

r(1)− r(2)

)
(B.140)
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Now we have
dπ>θ r

dθ(1)
≥ dπ>θ r

dθ(2)
. According to Eq. (B.123), we have

dπ>θ r

dθ(1)
≥ dπ>θ r

dθ(3)
.

Therefore we have θ ∈ R1.

K-action case. Suppose for each action i ∈ {2, 3, . . . K − 1}, πθ(1) ≥∑
j 6=1,j 6=i πθ(j)·(r(i)−r(j))

2·(r(1)−r(i)) . There are two cases.

Case (a): If πθ(1) ≥
∑
j 6=1,j 6=i πθ(j)·(r(i)−r(j))

r(1)−r(i) , then we have,

r(i)− π>θ r = −πθ(1) · (r(1)− r(i)) +
∑

j 6=1,j 6=i

πθ(j) · (r(i)− r(j)) (B.141)

≤ 0,

(
πθ(1) ≥

∑
j 6=1,j 6=i πθ(j) · (r(i)− r(j))

r(1)− r(i)

)
(B.142)

which implies, for all i ∈ {2, 3, . . . K − 1},

dπ>θ r

dθ(1)
− dπ>θ r

dθ(i)
= πθ(1) ·

(
r(1)− π>θ r

)
− πθ(i) ·

(
r(i)− π>θ r

)
(B.143)

≥ 0− 0 = 0.
(
r(1)− π>θ r > 0

)
(B.144)

Similar with Eq. (B.123), since r(1) > π>θ r, and r(K) < π>θ r, we have

dπ>θ r

dθ(1)
− dπ>θ r

dθ(K)
= πθ(1) ·

(
r(1)− π>θ r

)
− πθ(K) ·

(
r(K)− π>θ r

)
(B.145)

≥ 0− 0 = 0. (B.146)

Therefore we have
dπ>θ r

dθ(1)
≥ dπ>θ r

dθ(i)
, for all i ∈ {2, 3, . . . K}, i.e., θ ∈ R1.

Case (b): If
∑
j 6=1,j 6=i πθ(j)·(r(i)−r(j))

2·(r(1)−r(i)) ≤ πθ(1) <
∑
j 6=1,j 6=i πθ(j)·(r(i)−r(j))

r(1)−r(i) , then we

have, for all i ∈ {2, 3, . . . K − 1},

dπ>θ r

dθ(1)
− dπ>θ r

dθ(i)
= πθ(1) ·

(
r(1)− π>θ r

)
− πθ(i) ·

(
r(i)− π>θ r

)
(B.147)

= 2 · πθ(1) ·
(
r(1)− π>θ r

)
+
∑

j 6=1,j 6=i

πθ(j) ·
(
r(j)− π>θ r

)
(B.148)

≥
∑

j 6=1,j 6=i πθ(j) · (r(i)− r(j))
r(1)− r(i)

·
(
r(1)− π>θ r

)
(B.149)

+
∑

j 6=1,j 6=i

πθ(j) ·
(
r(j)− π>θ r

)
(B.150)

≥
∑

j 6=1,j 6=i πθ(j) · (r(i)− r(j))
r(1)− r(i)

· (r(1)− r(i)) (B.151)

+
∑

j 6=1,j 6=i

πθ(j) ·
(
r(j)− π>θ r

)
(B.152)

=
∑

j 6=1,j 6=i

πθ(j) ·
(
r(i)− π>θ r

)
≥ 0, (B.153)
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where the second equation is according to

πθ(1) ·
(
r(1)− π>θ r

)
+ πθ(i) ·

(
r(i)− π>θ r

)
(B.154)

+
∑

j 6=1,j 6=i

πθ(j) ·
(
r(j)− π>θ r

)
(B.155)

= π>θ r − π>θ r = 0, (B.156)

and the first inequality is by r(1)− π>θ r > 0 and,

πθ(1) ≥
∑

j 6=1,j 6=i πθ(j) · (r(i)− r(j))
2 · (r(1)− r(i))

, (B.157)

and the second inequality is because of

r(1)− π>θ r = πθ(i) · (r(1)− r(i)) +
∑

j 6=1,j 6=i

πθ(j) · (r(1)− r(j)) (B.158)

=
∑
j 6=1

πθ(j) · (r(1)− r(i)) +
∑

j 6=1,j 6=i

πθ(j) · (r(i)− r(j)) (B.159)

>
∑
j 6=1

πθ(j) · (r(1)− r(i)) + πθ(1) · (r(1)− r(i)) (B.160)

(
using

∑
j 6=1,j 6=i πθ(j) · (r(i)− r(j))

r(1)− r(i)
> πθ(1)

)
(B.161)

= r(1)− r(i), (B.162)

and the last inequality is from
∑
j 6=1,j 6=i πθ(j)·(r(i)−r(j))

r(1)−r(i) > πθ(1) > 0 and,

r(i)− π>θ r = −πθ(1) · (r(1)− r(i)) +
∑

j 6=1,j 6=i

πθ(j) · (r(i)− r(j)) (B.163)

> 0.

(
πθ(1) <

∑
j 6=1,j 6=i πθ(j) · (r(i)− r(j))

r(1)− r(i)

)
(B.164)

Now we have
dπ>θ r

dθ(1)
≥ dπ>θ r

dθ(i)
, for all i ∈ {2, 3, . . . K−1}. According to Eq. (B.145),

we have
dπ>θ r

dθ(1)
≥ dπ>θ r

dθ(K)
. Therefore we have θ ∈ R1.

B.1.3 Proofs for Softmax Parametrization in MDPs

Lemma 7 (Smoothness). V πθ(ρ) is 8/(1− γ)3-smooth.

Proof. See Agarwal et al. (2019, Lemma E.4). Our proof is for completeness.
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Denote θα = θ + αu, where α ∈ R and u ∈ RSA. For any s ∈ S,∑
a

∣∣∣∣∂πθα(a|s)
∂α

∣∣∣
α=0

∣∣∣∣ =
∑
a

∣∣∣∣〈∂πθα(a|s)
∂θα

∣∣∣
α=0

,
∂θα
∂α

〉∣∣∣∣ (B.165)

=
∑
a

∣∣∣∣〈∂πθ(a|s)∂θ
, u
〉∣∣∣∣. (B.166)

Since ∂πθ(a|s)
∂θ(s′,·) = 0, for s′ 6= s,

∑
a

∣∣∣∣∂πθα(a|s)
∂α

∣∣∣
α=0

∣∣∣∣ =
∑
a

∣∣∣∣〈∂πθ(a|s)∂θ(s, ·)
, u(s, ·)

〉∣∣∣∣ (B.167)

=
∑
a

πθ(a|s) ·
∣∣u(s, a)− πθ(·|s)>u(s, ·)

∣∣ (B.168)

≤ max
a
|u(s, a)|+ |πθ(·|s)>u(s, ·)| ≤ 2 · ‖u‖2. (B.169)

Similarly,∑
a

∣∣∣∣∂2πθα(a|s)
∂α2

∣∣∣
α=0

∣∣∣∣ =
∑
a

∣∣∣∣〈 ∂

∂θα

{
∂πθα(a|s)

∂α

} ∣∣∣
α=0

,
∂θα
∂α

〉∣∣∣∣ (B.170)

=
∑
a

∣∣∣∣〈∂2πθα(a|s)
∂θ2

α

∣∣∣
α=0

∂θα
∂α

,
∂θα
∂α

〉∣∣∣∣ (B.171)

=
∑
a

∣∣∣∣〈∂2πθ(a|s)
∂θ2(s, ·)

u(s, ·), u(s, ·)
〉∣∣∣∣. (B.172)

Let S(a, θ) = ∂2πθ(a|s)
∂θ2(s,·) ∈ RA×A. ∀i, j ∈ [A], the value of S(a, θ) is,

Si,j =
∂{δiaπθ(a|s)− πθ(a|s)πθ(i|s)}

∂θ(s, j)
(B.173)

= δia · [δjaπθ(a|s)− πθ(a|s)πθ(j|s)] (B.174)

− πθ(a|s) · [δijπθ(j|s)− πθ(i|s)πθ(j|s)] (B.175)

− πθ(i|s) · [δjaπθ(a|s)− πθ(a|s)πθ(j|s)] , (B.176)

where the δ notation is as defined in Eq. (B.22). Then we have,∣∣∣∣〈∂2πθ(a|s)
∂θ2(s, ·)

u(s, ·), u(s, ·)
〉∣∣∣∣ =

∣∣∣∣∣
A∑
i=1

A∑
j=1

Si,ju(s, i)u(s, j)

∣∣∣∣∣ (B.177)

= πθ(a|s) ·
∣∣∣u(s, a)2 − 2 · u(s, a) · πθ(·|s)>u(s, ·) (B.178)

− πθ(·|s)> (u(s, ·)� u(s, ·)) + 2 ·
(
πθ(·|s)>u(s, ·)

)2
∣∣∣. (B.179)
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Therefore we have,∑
a

∣∣∣∣∂2πθα(a|s)
∂α2

∣∣∣
α=0

∣∣∣∣ ≤ max
a

{
u(s, a)2 + 2 ·

∣∣u(s, a) · πθ(·|s)>u(s, ·)
∣∣} (B.180)

+ πθ(·|s)> (u(s, ·)� u(s, ·)) + 2 ·
(
πθ(·|s)>u(s, ·)

)2
(B.181)

≤ ‖u(s, ·)‖2
2 + 2 · ‖u(s, ·)‖2

2 + ‖u(s, ·)‖2
2 + 2 · ‖u(s, ·)‖2

2 (B.182)

≤ 6 · ‖u‖2
2. (B.183)

Define P (α) ∈ RS×S, where ∀(s, s′),

[P (α)](s,s′) =
∑
a

πθα(a|s) · P(s′|s, a). (B.184)

The derivative w.r.t. α is[
∂P (α)

∂α

∣∣∣
α=0

]
(s,s′)

=
∑
a

[
∂πθα(a|s)

∂α

∣∣∣
α=0

]
· P(s′|s, a). (B.185)

For any vector x ∈ RS, we have[
∂P (α)

∂α

∣∣∣
α=0

x

]
(s)

=
∑
s′

∑
a

[
∂πθα(a|s)

∂α

∣∣∣
α=0

]
· P(s′|s, a) · x(s′). (B.186)

The `∞ norm is upper bounded as∥∥∥∥∂P (α)

∂α

∣∣∣
α=0

x

∥∥∥∥
∞

= max
s

∣∣∣∣∣∑
s′

∑
a

[
∂πθα(a|s)

∂α

∣∣∣
α=0

]
· P(s′|s, a) · x(s′)

∣∣∣∣∣ (B.187)

≤ max
s

∑
a

∑
s′

P(s′|s, a) ·
∣∣∣∣∂πθα(a|s)

∂α

∣∣∣
α=0

∣∣∣∣ · ‖x‖∞ (B.188)

= max
s

∑
a

∣∣∣∣∂πθα(a|s)
∂α

∣∣∣
α=0

∣∣∣∣ · ‖x‖∞ (B.189)

≤ 2 · ‖u‖2 · ‖x‖∞. (by Eq. (B.167)) (B.190)

Similarly, taking second derivative w.r.t. α,[
∂2P (α)

∂α2

∣∣∣
α=0

]
(s,s′)

=
∑
a

[
∂2πθα(a|s)

∂α2

∣∣∣
α=0

]
· P(s′|s, a). (B.191)
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The `∞ norm is upper bounded as∥∥∥∥∂2P (α)

∂α2

∣∣∣
α=0

x

∥∥∥∥
∞

= max
s

∣∣∣∣∣∑
s′

∑
a

[
∂2πθα(a|s)

∂α2

∣∣∣
α=0

]
· P(s′|s, a) · x(s′)

∣∣∣∣∣
(B.192)

≤ max
s

∑
a

∑
s′

P(s′|s, a) ·
∣∣∣∣∂2πθα(a|s)

∂α2

∣∣∣
α=0

∣∣∣∣ · ‖x‖∞ (B.193)

= max
s

∑
a

∣∣∣∣∂2πθα(a|s)
∂α2

∣∣∣
α=0

∣∣∣∣ · ‖x‖∞ (B.194)

≤ 6 · ‖u‖2
2 · ‖x‖∞. (by Eq. (B.180)) (B.195)

Next, consider the state value function of πθα ,

V πθα (s) =
∑
a

πθα(a|s) · r(s, a) (B.196)

+ γ
∑
a

πθα(a|s)
∑
s′

P(s′|s, a) · V πθα (s′), (B.197)

which implies,

V πθα (s) = e>sM(α)rθα , (B.198)

where

M(α) = (Id− γP (α))−1 , (B.199)

and rθα ∈ RS for s ∈ S is given by

rθα(s) =
∑
a

πθα(a|s) · r(s, a). (B.200)

Since [P (α)](s,s′) ≥ 0, ∀(s, s′), and

M(α) = (Id− γP (α))−1 =
∞∑
t=0

γt [P (α)]t, (B.201)

we have [M(α)](s,s′) ≥ 0, ∀(s, s′). Denote [M(α)]i,: as the i-th row vector of

M(α). We have

1 =
1

1− γ
· (Id− γP (α)) 1 =⇒M(α)1 =

1

1− γ
· 1, (B.202)
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which implies, ∀i, ∥∥∥[M(α)]i,:

∥∥∥
1

=
∑
j

[M(α)](i,j) =
1

1− γ
. (B.203)

Therefore, for any vector x ∈ RS,

‖M(α)x‖∞ = max
i

∣∣∣[M(α)]>i,: x
∣∣∣ (B.204)

≤ max
i

∥∥∥[M(α)]i,:

∥∥∥
1
· ‖x‖∞ (B.205)

=
1

1− γ
· ‖x‖∞. (B.206)

According to Assumption 1, r(s, a) ∈ [0, 1], ∀(s, a). We have,

‖rθα‖∞ = max
s
|rθα(s)| = max

s

∣∣∣∣∣∑
a

πθα(a|s) · r(s, a)

∣∣∣∣∣ ≤ 1. (B.207)

Since ∂πθ(a|s)
∂θ(s′,·) = 0, for s′ 6= s,∣∣∣∣∂rθα(s)

∂α

∣∣∣∣ =

∣∣∣∣∣
(
∂rθα(s)

∂θα

)>
∂θα
∂α

∣∣∣∣∣ (B.208)

=

∣∣∣∣∣
(
∂{πθα(·|s)>r(s, ·)}

∂θα(s, ·)

)>
u(s, ·)

∣∣∣∣∣ (B.209)

=
∣∣∣(H (πθα(·|s)) r(s, ·))> u(s, ·)

∣∣∣ (B.210)

≤ ‖H (πθα(·|s)) r(s, ·)‖1 · ‖u(s, ·)‖∞ . (B.211)

Similarly to Eq. (B.32), the `1 norm is upper bounded as

‖H (πθα(·|s)) r(s, ·)‖1 =
∑
a

πθα(a|s) ·
∣∣r(s, a)− πθα(·|s)>r(s, ·)

∣∣ (B.212)

≤ max
a

∣∣r(s, a)− πθα(·|s)>r(s, ·)
∣∣ (B.213)

≤ 1. (since r(s, a) ∈ [0, 1]) (B.214)

Therefore we have,∥∥∥∥∂rθα∂α

∥∥∥∥
∞

= max
s

∣∣∣∣∂rθα(s)

∂α

∣∣∣∣ (B.215)

≤ max
s
‖H (πθα(·|s)) r(s, ·)‖1 · ‖u(s, ·)‖∞ (B.216)

≤ ‖u‖2. (B.217)
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Similarly,∥∥∥∥∂2rθα
∂α2

∥∥∥∥
∞

= max
s

∣∣∣∣∂2rθα(s)

∂α2

∣∣∣∣ (B.218)

= max
s

∣∣∣∣∣
(

∂

∂θα

{
∂rθα(s)

∂α

})>
∂θα
∂α

∣∣∣∣∣ (B.219)

= max
s

∣∣∣∣∣
(
∂2rθα(s)

∂θ2
α

∂θα
∂α

)>
∂θα
∂α

∣∣∣∣∣ (B.220)

= max
s

∣∣∣∣u(s, ·)>∂
2{πθα(·|s)>r(s, ·)}

∂θα(s, ·)2
u(s, ·)

∣∣∣∣ (B.221)

≤ 5/2 · ‖u(s, ·)‖2
2 ≤ 3 · ‖u‖2

2. (by Eq. (B.35)) (B.222)

Taking derivative w.r.t. α in Eq. (B.198),

∂V πθα (s)

∂α
= γ · e>sM(α)

∂P (α)

∂α
M(α)rθα + e>sM(α)

∂rθα
∂α

. (B.223)

Taking second derivative w.r.t. α,

∂2V πθα (s)

∂α2
= 2γ2 · e>sM(α)

∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)rθα (B.224)

+ γ · e>sM(α)
∂2P (α)

∂α2
M(α)rθα (B.225)

+ 2γ · e>sM(α)
∂P (α)

∂α
M(α)

∂rθα
∂α

+ e>sM(α)
∂2rθα
∂α2

. (B.226)

For the last term,∣∣∣∣e>sM(α)
∂2rθα
∂α2

∣∣∣
α=0

∣∣∣∣ ≤ ‖es‖1 ·
∥∥∥∥M(α)

∂2rθα
∂α2

∣∣∣
α=0

∥∥∥∥
∞

(B.227)

≤ 1

1− γ
·
∥∥∥∥∂2rθα
∂α2

∣∣∣
α=0

∥∥∥∥
∞

(by Eq. (B.204)) (B.228)

≤ 3

1− γ
· ‖u‖2

2. (by Eq. (B.218)) (B.229)
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For the second last term,∣∣∣∣e>sM(α)
∂P (α)

∂α
M(α)

∂rθα
∂α

∣∣∣
α=0

∣∣∣∣ ≤ ∥∥∥∥M(α)
∂P (α)

∂α
M(α)

∂rθα
∂α

∣∣∣
α=0

∥∥∥∥
∞

(B.230)

≤ 1

1− γ
·
∥∥∥∥∂P (α)

∂α
M(α)

∂rθα
∂α

∣∣∣
α=0

∥∥∥∥
∞

(by Eq. (B.204)) (B.231)

≤ 2 · ‖u‖2

1− γ
·
∥∥∥∥M(α)

∂rθα
∂α

∣∣∣
α=0

∥∥∥∥
∞

(by Eq. (B.187)) (B.232)

≤ 2 · ‖u‖2

(1− γ)2
·
∥∥∥∥∂rθα∂α

∣∣∣
α=0

∥∥∥∥
∞

(by Eq. (B.204)) (B.233)

≤ 2 · ‖u‖2

(1− γ)2
· ‖u‖2 =

2

(1− γ)2
· ‖u‖2

2. (by Eq. (B.215)) (B.234)

For the second term,∣∣∣∣e>sM(α)
∂2P (α)

∂α2
M(α)rθα

∣∣∣
α=0

∣∣∣∣ ≤ ∥∥∥∥M(α)
∂2P (α)

∂α2
M(α)rθα

∣∣∣
α=0

∥∥∥∥
∞

(B.235)

≤ 1

1− γ
·
∥∥∥∥∂2P (α)

∂α2
M(α)rθα

∣∣∣
α=0

∥∥∥∥
∞

(by Eq. (B.204)) (B.236)

≤ 6 · ‖u‖2
2

1− γ
·
∥∥∥M(α)rθα

∣∣∣
α=0

∥∥∥
∞

(by Eq. (B.192)) (B.237)

≤ 6 · ‖u‖2
2

(1− γ)2
·
∥∥∥rθα∣∣∣

α=0

∥∥∥
∞

(by Eq. (B.204)) (B.238)

≤ 6

(1− γ)2
· ‖u‖2

2. (by Eq. (B.207)) (B.239)

For the first term, according to Eq. (B.187), Eqs. (B.204) and (B.207),∣∣∣∣e>sM(α)
∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)rθα

∣∣∣
α=0

∣∣∣∣ (B.240)

≤
∥∥∥∥M(α)

∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)rθα

∣∣∣
α=0

∥∥∥∥
∞

(B.241)

≤ 1

1− γ
· 2 · ‖u‖2 ·

1

1− γ
· 2 · ‖u‖2 ·

1

1− γ
· 1 (B.242)

=
4

(1− γ)3
· ‖u‖2

2. (B.243)
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Combining Eqs. (B.227), (B.230), (B.235) and (B.240) with Eq. (B.224),∣∣∣∣∂2V πθα (s)

∂α2

∣∣∣
α=0

∣∣∣∣ ≤ 2γ2 ·
∣∣∣∣e>sM(α)

∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)rθα

∣∣∣
α=0

∣∣∣∣ (B.244)

+ γ ·
∣∣∣∣e>sM(α)

∂2P (α)

∂α2
M(α)rθα

∣∣∣
α=0

∣∣∣∣ (B.245)

+ 2γ ·
∣∣∣∣e>sM(α)

∂P (α)

∂α
M(α)

∂rθα
∂α

∣∣∣
α=0

∣∣∣∣+

∣∣∣∣e>sM(α)
∂2rθα
∂α2

∣∣∣
α=0

∣∣∣∣
(B.246)

≤
(

2γ2 · 4

(1− γ)3
+ γ · 6

(1− γ)2
+ 2γ · 2

(1− γ)2
+

3

1− γ

)
· ‖u‖2

2

(B.247)

≤ 8

(1− γ)3
· ‖u‖2

2, (B.248)

which implies for all y ∈ RSA and θ,∣∣∣∣y>∂2V πθ(s)

∂θ2
y

∣∣∣∣ =

∣∣∣∣∣
(

y

‖y‖2

)>
∂2V πθ(s)

∂θ2

(
y

‖y‖2

)∣∣∣∣∣ · ‖y‖2
2 (B.249)

≤ max
‖u‖2=1

∣∣∣∣〈∂2V πθ(s)

∂θ2
u, u
〉∣∣∣∣ · ‖y‖2

2 (B.250)

= max
‖u‖2=1

∣∣∣∣〈∂2V πθα (s)

∂θ2
α

∣∣∣
α=0

∂θα
∂α

,
∂θα
∂α

〉∣∣∣∣ · ‖y‖2
2 (B.251)

= max
‖u‖2=1

∣∣∣∣〈 ∂

∂θα

{
∂V πθα (s)

∂α

} ∣∣∣
α=0

,
∂θα
∂α

〉∣∣∣∣ · ‖y‖2
2 (B.252)

= max
‖u‖2=1

∣∣∣∣∂2V πθα (s)

∂α2

∣∣∣
α=0

∣∣∣∣ · ‖y‖2
2 (B.253)

≤ 8

(1− γ)3
· ‖y‖2

2. (by Eq. (B.244)) (B.254)

Denote θξ = θ+ ξ(θ′− θ), where ξ ∈ [0, 1]. According to Taylor’s theorem, ∀s,

∀θ, θ′, ∣∣∣∣V πθ′ (s)− V πθ(s)−
〈∂V πθ(s)

∂θ
, θ′ − θ

〉∣∣∣∣ (B.255)

=
1

2
·

∣∣∣∣∣(θ′ − θ)> ∂2V πθξ (s)

∂θ2
ξ

(θ′ − θ)

∣∣∣∣∣ (B.256)

≤ 4

(1− γ)3
· ‖θ′ − θ‖2

2. (by Eq. (B.249)) (B.257)

Since V πθ(s) is 8/(1 − γ)3-smooth, for any state s, V πθ(ρ) = Es∼ρ [V πθ(s)] is

also 8/(1− γ)3-smooth.
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Lemma 8 (Non-uniform  Lojasiewicz). Let πθ(·|s) = softmax(θ(s, ·)), s ∈ S

and fix an arbitrary optimal policy π∗. We have,∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

≥ 1√
S
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

·min
s
πθ(a

∗(s)|s) · [V ∗(ρ)− V πθ(ρ)] , (B.258)

where a∗(s) = arg maxa π
∗(a|s) (s ∈ S). Furthermore,

∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

≥ 1√
SA
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

·

min
s

∑
ā(s)∈Āπθ (s)

πθ(ā(s)|s)

 · [V ∗(ρ)− V πθ(ρ)] ,

(B.259)

where Āπ(s) = {ā(s) ∈ A : Qπ(s, ā(s)) = maxaQ
π(s, a)} is the greedy action

set for state s given policy π.

Proof. We have,

∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

=

[∑
s,a

(
∂V πθ(µ)

∂θ(s, a)

)2
] 1

2

(B.260)

≥

[∑
s

(
∂V πθ(µ)

∂θ(s, a∗(s))

)2
] 1

2

(B.261)

≥ 1√
S

∑
s

∣∣∣∣ ∂V πθ(µ)

∂θ(s, a∗(s))

∣∣∣∣ (‖x‖1 = |〈1, |x|〉| ≤ ‖1‖2 · ‖x‖2) (B.262)

=
1

1− γ
· 1√

S

∑
s

∣∣dπθµ (s) · πθ(a∗(s)|s) · Aπθ(s, a∗(s))
∣∣ (B.263)

(by Lemma 1) (B.264)

=
1

1− γ
· 1√

S

∑
s

dπθµ (s) · πθ(a∗(s)|s) · |Aπθ(s, a∗(s))| , (B.265)

where the last inequality is because of dπθµ (s) ≥ 0 and πθ(a
∗(s)|s) ≥ 0. Define
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the distribution mismatch coefficient as

∥∥∥∥dπ∗ρdπθµ
∥∥∥∥
∞

= maxs
dπ
∗
ρ (s)

d
πθ
µ (s)

. We have,

∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

(B.266)

≥ 1

1− γ
· 1√

S

∑
s

dπθµ (s)

dπ∗ρ (s)
· dπ∗ρ (s) · πθ(a∗(s)|s) · |Aπθ(s, a∗(s))| (B.267)

≥ 1

1− γ
· 1√

S
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

·min
s
πθ(a

∗(s)|s) (B.268)

·
∑
s

dπ
∗

ρ (s) · |Aπθ(s, a∗(s))| (B.269)

≥ 1

1− γ
· 1√

S
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

·min
s
πθ(a

∗(s)|s) (B.270)

·
∑
s

dπ
∗

ρ (s) · Aπθ(s, a∗(s)) (B.271)

=
1√
S
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

·min
s
πθ(a

∗(s)|s) (B.272)

· 1

1− γ
∑
s

dπ
∗

ρ (s)
∑
a

π∗(a|s) · Aπθ(s, a) (B.273)

=
1√
S
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

·min
s
πθ(a

∗(s)|s) · [V ∗(ρ)− V πθ(ρ)] , (B.274)

where the one but last equality used that π∗ is deterministic and in state s

chooses a∗(s) with probability one, and the last equality uses the performance

difference formula (Lemma 34).

To prove the second claim, given a policy π, define the greedy action set for

each state s,

Āπ(s) =
{
ā(s) ∈ A : Qπ(s, ā(s)) = max

a
Qπ(s, a)

}
. (B.275)
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By similar arguments that were used in the first part, we have,∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

≥ 1√
SA

∑
s,a

∣∣∣∣∂V πθ(µ)

∂θ(s, a)

∣∣∣∣ (by Cauchy-Schwarz) (B.276)

=
1

1− γ
· 1√

SA

∑
s

dπθµ (s)
∑
a

πθ(a|s) · |Aπθ(s, a)| (B.277)

(by Lemma 1) (B.278)

≥ 1

1− γ
· 1√

SA

∑
s

dπθµ (s)
∑

ā(s)∈Āπθ (s)

πθ(ā(s)|s) · |Aπθ(s, ā(s))| (B.279)

≥ 1

1− γ
· 1√

SA
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

·

min
s

∑
ā(s)∈Āπθ (s)

πθ(ā(s)|s)

 (B.280)

·
∑
s

dπ
∗

ρ (s) ·
∣∣∣max

a
Qπθ(s, a)− V πθ(s)

∣∣∣ , (B.281)

where the last inequality is because for any ā(s) ∈ Āπθ(s) we have

Aπθ(s, ā(s)) = max
a
Qπθ(s, a)− V πθ(s), (B.282)

which is the same value across all ā(s) ∈ Āπθ(s). Then we have,∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

≥ 1

1− γ
· 1√

SA
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

·

min
s

∑
ā(s)∈Āπθ (s)

πθ(ā(s)|s)

 (B.283)

·
∑
s

dπ
∗

ρ (s) ·
[
max
a
Qπθ(s, a)− V πθ(s)

]
(B.284)

≥ 1√
SA
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

·

min
s

∑
ā(s)∈Āπθ (s)

πθ(ā(s)|s)

 (B.285)

· 1

1− γ
∑
s

dπ
∗

ρ (s) · [Qπθ(s, a∗(s))− V πθ(s)] (B.286)

=
1√
SA
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

·

min
s

∑
ā(s)∈Āπθ (s)

πθ(ā(s)|s)

 (B.287)

· 1

1− γ
∑
s

dπ
∗

ρ (s)
∑
a

π∗(a|s) · Aπθ(s, a) (B.288)

=
1√
SA
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

·

min
s

∑
ā(s)∈Āπθ (s)

πθ(ā(s)|s)

 (B.289)

· [V ∗(ρ)− V πθ(ρ)] , (B.290)

where the last equation is again according to Lemma 34.
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Lemma 9. Let Assumption 2 hold. Using Algorithm 1, we have c :=

infs∈S,t≥1 πθt(a
∗(s)|s) > 0.

Proof. The proof is an extension of the proof for Lemma 5. Denote ∆∗(s) =

Q∗(s, a∗(s)) − maxa6=a∗(s) Q
∗(s, a) > 0 as the optimal value gap of state s,

where a∗(s) is the action that the optimal policy selects under state s, and

∆∗ = mins∈S ∆∗(s) > 0 as the optimal value gap of the MDP. For each state

s ∈ S, define the following sets:

R1(s) =

{
θ :

∂V πθ(µ)

∂θ(s, a∗(s))
≥ ∂V πθ(µ)

∂θ(s, a)
, ∀a 6= a∗

}
, (B.291)

R2(s) = {θ : Qπθ(s, a∗(s)) ≥ Q∗(s, a∗(s))−∆∗(s)/2} , (B.292)

R3(s) =
{
θt : V πθt (s) ≥ Qπθt (s, a∗(s))−∆∗(s)/2, (B.293)

for all t ≥ 1 large enough
}
, (B.294)

Nc(s) =

{
θ : πθ(a

∗(s)|s) ≥ c(s)

c(s) + 1

}
, (B.295)

where c(s) =
A

(1− γ) ·∆∗(s)
− 1. (B.296)

Similarly to the previous proof, we have the following claims:

Claim I. R1(s)∩R2(s)∩R3(s) is a “nice” region, in the sense that, following

a gradient update, (i) if θt ∈ R1(s)∩R2(s)∩R3(s), then θt+1 ∈ R1(s)∩

R2(s) ∩R3(s); while we also have (ii) πθt+1(a∗(s)|s) ≥ πθt(a
∗(s)|s).

Claim II. Nc(s) ∩R2(s) ∩R3(s) ⊂ R1(s) ∩R2(s) ∩R3(s).

Claim III. There exists a finite time t0(s) ≥ 1, such that θt0(s) ∈ Nc(s) ∩

R2(s) ∩ R3(s), and thus θt0(s) ∈ R1(s) ∩ R2(s) ∩ R3(s), which implies

inft≥1 πθt(a
∗(s)|s) = min1≤t≤t0(s) πθt(a

∗(s)|s).

Claim IV. Define t0 = maxs t0(s). Then, we have

inf
s∈S,t≥1

πθt(a
∗(s)|s) = min

1≤t≤t0
min
s
πθt(a

∗(s)|s). (B.297)

Clearly, claim IV suffices to prove the lemma since for any θ, mins,a πθ(a|s) > 0.

In what follows we provide the proofs of these four claims.
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Claim I. First we prove part (i) of the claim. If θt ∈ R1(s)∩R2(s)∩R3(s),

then θt+1 ∈ R1(s) ∩ R2(s) ∩ R3(s). Suppose θt ∈ R1(s) ∩ R2(s) ∩ R3(s). We

have θt+1 ∈ R3(s) by the definition of R3(s). We have,

Qπθt (s, a∗(s)) ≥ Q∗(s, a∗(s))−∆∗(s)/2. (B.298)

According to smoothness arguments as Eq. (B.357), we have V πθt+1 (s′) ≥

V πθt (s′), and

Qπθt+1 (s, a∗(s)) = Qπθt (s, a∗(s)) +Qπθt+1 (s, a∗(s))−Qπθt (s, a∗(s)) (B.299)

= Qπθt (s, a∗(s)) + γ
∑
s′

P(s′|s, a∗(s)) · [V πθt+1 (s′)− V πθt (s′)] (B.300)

≥ Qπθt (s, a∗(s)) + 0 (B.301)

≥ Q∗(s, a∗(s))−∆∗(s)/2, (B.302)

which means θt+1 ∈ R2(s). Next we prove θt+1 ∈ R1(s). Note that ∀a 6= a∗(s),

Qπθt (s, a∗(s))−Qπθt (s, a) (B.303)

= Qπθt (s, a∗(s))−Q∗(s, a∗(s)) +Q∗(s, a∗(s))−Qπθt (s, a) (B.304)

≥ −∆∗(s)/2 +Q∗(s, a∗(s))−Q∗(s, a) +Q∗(s, a)−Qπθt (s, a) (B.305)

≥ −∆∗(s)/2 +Q∗(s, a∗(s))− max
a6=a∗(s)

Q∗(s, a) +Q∗(s, a)−Qπθt (s, a)

(B.306)

= −∆∗(s)/2 + ∆∗(s) + γ
∑
s′

P(s′|s, a) · [V ∗(s′)− V πθt (s′)] (B.307)

≥ −∆∗(s)/2 + ∆∗(s) + 0 (B.308)

= ∆∗(s)/2. (B.309)

Using similar arguments we also have Qπθt+1 (s, a∗(s))−Qπθt+1 (s, a) ≥ ∆∗(s)/2.

According to Lemma 1,

∂V πθt (µ)

∂θt(s, a)
=

1

1− γ
· dπθtµ (s) · πθt(a|s) · Aπθt (s, a) (B.310)

=
1

1− γ
· dπθtµ (s) · πθt(a|s) · [Qπθt (s, a)− V πθt (s)] . (B.311)

Furthermore, since ∂V
πθt (µ)

∂θt(s,a∗(s))
≥ ∂V

πθt (µ)
∂θt(s,a)

, we have

πθt(a
∗(s)|s) · [Qπθt (s, a∗(s))− V πθt (s)] (B.312)

≥ πθt(a|s) · [Qπθt (s, a)− V πθt (s)] . (B.313)
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Similarly to the first part in the proof for Lemma 5. There are two cases.

Case (a): If πθt(a
∗(s)|s) ≥ πθt(a|s), then θt(s, a

∗(s)) ≥ θt(s, a). After an

update of the parameters,

θt+1(s, a∗(s)) = θt(s, a
∗(s)) + η · ∂V πθt (µ)

∂θt(s, a∗(s))
(B.314)

≥ θt(s, a) + η · ∂V
πθt (µ)

∂θt(s, a)
= θt+1(s, a), (B.315)

which implies πθt+1(a∗(s)|s) ≥ πθt+1(a|s). Since Qπθt+1 (s, a∗(s))−Qπθt+1 (s, a) ≥

∆∗(s)/2 ≥ 0, ∀a, we have Qπθt+1 (s, a∗(s)) − V πθt+1 (s) = Qπθt+1 (s, a∗(s)) −∑
a πθt+1(a|s) ·Qπθt+1 (s, a) ≥ 0, and

πθt+1(a∗(s)|s) · [Qπθt+1 (s, a∗(s))− V πθt+1 (s)] (B.316)

≥ πθt+1(a|s) · [Qπθt+1 (s, a)− V πθt+1 (s)] , (B.317)

which is equivalent to ∂V
πθt+1 (µ)

∂θt+1(s,a∗(s))
≥ ∂V

πθt+1 (µ)
∂θt+1(s,a)

, i.e., θt+1 ∈ R1(s).

Case (b): If πθt(a
∗(s)|s) < πθt(a|s), then by ∂V

πθt (µ)
∂θt(s,a∗(s))

≥ ∂V
πθt (µ)

∂θt(s,a)
,

πθt(a
∗(s)|s) · [Qπθt (s, a∗(s))− V πθt (s)] (B.318)

≥ πθt(a|s) · [Qπθt (s, a)− V πθt (s)] (B.319)

= πθt(a|s) ·
[
Qπθt (s, a∗(s))− V πθt (s) (B.320)

+Qπθt (s, a)−Qπθt (s, a∗(s))
]
, (B.321)

which, after rearranging, is equivalent to

Qπθt (s, a∗(s))−Qπθt (s, a) (B.322)

≥
(

1− πθt(a
∗(s)|s)

πθt(a|s)

)
· [Qπθt (s, a∗(s))− V πθt (s)] (B.323)

= (1− exp {θt(s, a∗(s))− θt(s, a)}) · [Qπθt (s, a∗(s))− V πθt (s)] . (B.324)

Since θt+1 ∈ R3(s), we have,

Qπθt+1 (s, a∗(s))− V πθt+1 (s) ≤ ∆∗(s)/2 (B.325)

≤ Qπθt+1 (s, a∗(s))−Qπθt+1 (s, a). (B.326)
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On the other hand,

θt+1(s, a∗(s))− θt+1(s, a) (B.327)

= θt(s, a
∗(s)) + η · ∂V πθt (µ)

∂θt(s, a∗(s))
− θt(s, a)− η · ∂V

πθt (µ)

∂θt(s, a)
(B.328)

≥ θt(s, a
∗(s))− θt(s, a), (B.329)

which implies

1− exp {θt+1(s, a∗(s))− θt+1(s, a)} (B.330)

≤ 1− exp {θt(s, a∗(s))− θt(s, a)} . (B.331)

Furthermore, since 1− exp {θt(s, a∗(s))− θt(s, a)} = 1− πθt (a
∗(s)|s)

πθt (a|s)
> 0 (in this

case πθt(a
∗(s)|s) < πθt(a|s)),

(1− exp {θt+1(s, a∗(s))− θt+1(s, a)}) · [Qπθt+1 (s, a∗(s))− V πθt+1 (s)] (B.332)

≤ Qπθt+1 (s, a∗(s))−Qπθt+1 (s, a), (B.333)

which after rearranging is equivalent to

πθt+1(a∗(s)|s) · [Qπθt+1 (s, a∗(s))− V πθt+1 (s)] (B.334)

≥ πθt+1(a|s) · [Qπθt+1 (s, a)− V πθt+1 (s)] , (B.335)

which means ∂V
πθt+1 (µ)

∂θt+1(s,a∗(s))
≥ ∂V

πθt+1 (µ)
∂θt+1(s,a)

i.e., θt+1 ∈ R1(s). Now we have (i) if

θt ∈ R1(s) ∩R2(s) ∩R3(s), then θt+1 ∈ R1(s) ∩R2(s) ∩R3(s).

Let us now turn to proving part (ii). We have πθt+1(a∗(s)|s) ≥ πθt(a
∗(s)|s).

If θt ∈ R1(s) ∩ R2(s) ∩ R3(s), then ∂V
πθt (µ)

∂θt(s,a∗(s))
≥ ∂V

πθt (µ)
∂θt(s,a)

, ∀a 6= a∗. After an

update of the parameters,

πθt+1(a∗(s)|s) =
exp {θt+1(s, a∗(s))}∑

a exp {θt+1(s, a)}
(B.336)

=
exp

{
θt(s, a

∗(s)) + η · ∂V
πθt (µ)

∂θt(s,a∗(s))

}
∑

a exp
{
θt(s, a) + η · ∂V

πθt (µ)
∂θt(s,a)

} (B.337)

≥
exp

{
θt(s, a

∗(s)) + η · ∂V
πθt (µ)

∂θt(s,a∗(s))

}
∑

a exp
{
θt(s, a) + η · ∂V

πθt (µ)
∂θt(s,a∗(s))

} (B.338)

(
because

∂V πθt (µ)

∂θt(s, a∗(s))
≥ ∂V πθt (µ)

∂θt(s, a)

)
(B.339)

=
exp {θt(s, a∗(s))}∑

a exp {θt(s, a)}
= πθt(a

∗(s)|s). (B.340)
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Claim II. Nc(s) ∩ R2(s) ∩ R3(s) ⊂ R1(s) ∩ R2(s) ∩ R3(s). Suppose θ ∈

R2(s) ∩R3(s) and πθ(a
∗(s)|s) ≥ c(s)

c(s)+1
. There are two cases.

Case (a): If πθ(a
∗(s)|s) ≥ maxa6=a∗(s){πθ(a|s)}, then we have,

∂V πθ(µ)

∂θ(s, a∗(s))
=

1

1− γ
· dπθµ (s) · πθ(a∗(s)|s) · [Qπθ(s, a∗(s))− V πθ(s)] (B.341)

>
1

1− γ
· dπθµ (s) · πθ(a|s) · [Qπθ(s, a)− V πθ(s)] (B.342)

=
∂V πθ(µ)

∂θ(s, a)
, (B.343)

where the inequality is since Qπθ(s, a∗(s)) − Qπθ(s, a) ≥ ∆∗(s)/2 > 0, ∀a 6=

a∗(s), similarly to Eq. (B.303).

Case (b): πθ(a
∗(s)|s) < maxa6=a∗(s){πθ(a|s)}, which is not possible. Suppose

there exists an a 6= a∗(s), such that πθ(a
∗(s)|s) < πθ(a|s). Then we have the

following contradiction,

πθ(a
∗(s)|s) + πθ(a|s) >

2 · c(s)
c(s) + 1

= 2− 2 · (1− γ) ·∆∗(s)
A

> 1, (B.344)

where the last inequality is according to A ≥ 2 (there are at least two actions),

and ∆∗(s) ≤ 1/(1− γ).

Claim III. (1) According to the asymptotic convergence results of Agar-

wal et al. (2019, Theorem 5.1), which we can use thanks to Assumption 2,

πθt(a
∗(s)|s) → 1. Hence, there exists t1(s) ≥ 1, such that πθt1(s)

(a∗(s)|s) ≥
c(s)
c(s)+1

. (2) Qπθt (s, a∗(s)) → Q∗(s, a∗(s)), as t → ∞. There exists t2(s) ≥ 1,

such that Q
πθt2(s) (s, a∗(s)) ≥ Q∗(s, a∗(s)) − ∆∗(s)/2. (3) Qπθt (s, a∗(s)) →

V ∗(s), and V πθt (s) → V ∗(s), as t → ∞. There exists t3(s) ≥ 1, such that

∀t ≥ t3(s), Qπθt (s, a∗(s))− V πθt (s) ≤ ∆∗(s)/2.

Define t0(s) = max{t1(s), t2(s), t3(s)}. We have θt0(s) ∈ Nc(s) ∩ R2(s) ∩

R3(s), and thus θt0(s) ∈ R1(s) ∩R2(s) ∩R3(s). According to the first part in

our proof, i.e., once θt is inR1(s)∩R2(s)∩R3(s), following gradient update θt+1

will be inR1(s)∩R2(s)∩R3(s), and πθt(a
∗(s)|s) is increasing inR1(s)∩R2(s)∩

R3(s), we have inft πθt(a
∗(s)|s) = min1≤t≤t0(s) πθt(a

∗(s)|s). t0(s) depends on

initialization and c(s), which only depends on the MDP and state s.

156



Claim IV. Define t0 = maxs t0(s). Then we have

inf
s∈S,t≥1

πθt(a
∗(s)|s) = min

1≤t≤t0
min
s
πθt(a

∗(s)|s).

Theorem 4. Let Assumption 2 hold and let {θt}t≥1 be generated using Al-

gorithm 1 with η = (1− γ)3/8, c the positive constant from Lemma 9. Then,

for all t ≥ 1,

V ∗(ρ)− V πθt (ρ) ≤ 16S

c2(1− γ)6t
·
∥∥∥∥dπ∗µµ

∥∥∥∥2

∞
·
∥∥∥∥ 1

µ

∥∥∥∥
∞
. (B.345)

Proof. Let us first note that for any θ and µ,

dπθµ (s) = E
s0∼µ

[
dπθµ (s)

]
(B.346)

= E
s0∼µ

[
(1− γ)

∞∑
t=0

γt Pr(st = s|s0, πθ,P)

]
(B.347)

≥ E
s0∼µ

[(1− γ) Pr(s0 = s|s0)] (B.348)

= (1− γ) · µ(s) . (B.349)

According to the value sub-optimality lemma of Lemma 36,

V ∗(ρ)− V πθ(ρ) =
1

1− γ
∑
s

dπθρ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) (B.350)

=
1

1− γ
∑
s

dπθρ (s)

dπθµ (s)
· dπθµ (s)

∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) (B.351)

≤ 1

1− γ
·
∥∥∥∥ 1

dπθµ

∥∥∥∥
∞

∑
s

dπθµ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) (B.352)

≤ 1

(1− γ)2
·
∥∥∥∥ 1

µ

∥∥∥∥
∞

∑
s

dπθµ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) (B.353)(
by Eq. (B.346) and min

s
µ(s) > 0

)
(B.354)

=
1

1− γ
·
∥∥∥∥ 1

µ

∥∥∥∥
∞
· [V ∗(µ)− V πθ(µ)] , (B.355)

where the first inequality is because of∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) ≥ 0, (B.356)

and the last equation is again by Lemma 36. According to Lemma 7, V πθ(µ)

is β-smooth with β = 8/(1 − γ)3. Denote δt = V ∗(µ) − V πθt (µ). And note
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η = (1−γ)3

8
. We have,

δt+1 − δt = V πθt (µ)− V πθt+1 (µ) (B.357)

≤ −(1− γ)3

16
·
∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥2

2

(by Lemma 33) (B.358)

≤ −(1− γ)3

16S
·

∥∥∥∥∥ dπ
∗
µ

d
πθt
µ

∥∥∥∥∥
−2

∞

·
[
min
s
πθt(a

∗(s)|s)
]2

(B.359)

· [V ∗(µ)− V πθt (µ)]2 (by Lemma 8) (B.360)

≤ −(1− γ)5

16S
·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
−2

∞

·
[
min
s
πθt(a

∗(s)|s)
]2

· δ2
t (B.361)

≤ −(1− γ)5

16S
·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
−2

∞

·
[

inf
s∈S,t≥1

πθt(a
∗(s)|s)

]2

· δ2
t , (B.362)

where the second to last inequality is by d
πθt
µ (s) ≥ (1−γ)·µ(s) (cf. Eq. (B.346)).

According to Lemma 9, c = infs∈S,t≥1 πθt(a
∗(s)|s) > 0. Using similar induction

arguments as in Eq. (B.52),

V ∗(µ)− V πθt (µ) ≤ 16S

c2(1− γ)5t
·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
2

∞

, (B.363)

which leads to the final result,

V ∗(ρ)− V πθt (ρ) ≤ 1

1− γ
·
∥∥∥∥ 1

µ

∥∥∥∥
∞
· [V ∗(µ)− V πθt (µ)] (B.364)

≤ 16S

c2(1− γ)6t
·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
2

∞

·
∥∥∥∥ 1

µ

∥∥∥∥
∞
, (B.365)

thus, finishing the proof.
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B.2 Proofs for Section 2.4: Entropy Regular-

ized Softmax Policy Gradient

B.2.1 Preliminaries

Lemma 10. Entropy regularized policy gradient w.r.t. θ is

∂Ṽ πθ(µ)

∂θ(s, a)
=

1

1− γ
· dπθµ (s) · πθ(a|s) · Ãπθ(s, a) (B.366)

∂Ṽ πθ(µ)

∂θ(s, ·)
=

1

1− γ
· dπθµ (s) ·H(πθ(·|s))

[
Q̃πθ(s, ·)− τ log πθ(·|s)

]
(B.367)

=
1

1− γ
· dπθµ (s) ·H(πθ(·|s))

[
Q̃πθ(s, ·)− τθ(s, ·)

]
, ∀s (B.368)

where Ãπθ(s, a) is soft advantage function defined as

Ãπθ(s, a) = Q̃πθ(s, a)− τ log πθ(a|s)− Ṽ πθ(s) (B.369)

Q̃πθ(s, a) = r(s, a) + γ
∑
s′

P(s′|s, a)Ṽ πθ(s′). (B.370)

Proof. According to the definition of Ṽ πθ ,

Ṽ πθ(µ) = E
s∼µ

∑
a

πθ(a|s) ·
[
Q̃πθ(s, a)− τ log πθ(a|s)

]
. (B.371)

Taking derivative w.r.t. θ,

∂Ṽ πθ(µ)

∂θ
= E

s∼µ

∑
a

∂πθ(a|s)
∂θ

·
[
Q̃πθ(s, a)− τ log πθ(a|s)

]
(B.372)

+ E
s∼µ

∑
a

πθ(a|s) ·

[
∂Q̃πθ(s, a)

∂θ
− τ · 1

πθ(a|s)
· ∂πθ(a|s)

∂θ

]
(B.373)

= E
s∼µ

∑
a

∂πθ(a|s)
∂θ

·
[
Q̃πθ(s, a)− τ log πθ(a|s)

]
(B.374)

+ E
s∼µ

∑
a

πθ(a|s) ·
∂Q̃πθ(s, a)

∂θ
(B.375)

= E
s∼µ

∑
a

∂πθ(a|s)
∂θ

·
[
Q̃πθ(s, a)− τ log πθ(a|s)

]
(B.376)

+ γ · E
s∼µ

∑
a

πθ(a|s)
∑
s′

P(s′|s, a) · ∂Ṽ
πθ(s′)

∂θ
(B.377)

=
1

1− γ
∑
s

dπθµ (s)
∑
a

∂πθ(a|s)
∂θ

·
[
Q̃πθ(s, a)− τ log πθ(a|s)

]
, (B.378)
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where the second equation is because of∑
a

πθ(a|s) ·
[

1

πθ(a|s)
· ∂πθ(a|s)

∂θ

]
=
∑
a

∂πθ(a|s)
∂θ

(B.379)

=
∂

∂θ

∑
a

πθ(a|s) =
∂1

∂θ
= 0. (B.380)

Using similar arguments as in the proof for Lemma 1, i.e., for s′ 6= s, ∂πθ(a|s)
∂θ(s′,·) =

0, we have,

∂Ṽ πθ(µ)

∂θ(s, ·)
=

1

1− γ
· dπθµ (s) ·

∑
a

∂πθ(a|s)
∂θ(s, ·)

·
[
Q̃πθ(s, a)− τ log πθ(a|s)

]
(B.381)

=
1

1− γ
· dπθµ (s) ·

(
dπ(·|s)
dθ(s, ·)

)> [
Q̃πθ(s, ·)− τ log πθ(·|s)

]
(B.382)

=
1

1− γ
· dπθµ (s) ·H(πθ(·|s))

[
Q̃πθ(s, ·)− τ log πθ(·|s)

]
(B.383)

(by Eq. (2.8)) (B.384)

=
1

1− γ
· dπθµ (s) ·H(πθ(·|s))

[
Q̃πθ(s, ·)− τθ(·|s) (B.385)

+ τ log
∑
a

exp{θ(s, a)} · 1
]

(B.386)

=
1

1− γ
· dπθµ (s) ·H(πθ(·|s))

[
Q̃πθ(s, ·)− τθ(·|s)

]
, (B.387)

where the last line is from H(πθ(·|s))1 = 0 in Lemma 37. For each component

a, we have

∂Ṽ πθ(µ)

∂θ(s, a)
=

1

1− γ
· dπθµ (s) · πθ(a|s) ·

[
Q̃πθ(s, a)− τ log πθ(a|s) (B.388)

−
∑
a

πθ(a|s) ·
[
Q̃πθ(s, a)− τ log πθ(a|s)

] ]
(B.389)

=
1

1− γ
· dπθµ (s) · πθ(a|s) ·

[
Q̃πθ(s, a)− τ log πθ(a|s)− Ṽ πθ(s)

]
(B.390)

=
1

1− γ
· dπθµ (s) · πθ(a|s) · Ãπθ(s, a).

B.2.2 Proofs for Bandits and Non-uniform Contraction

Lemma 11 (Non-uniform contraction). Using Update 2 with τη ≤ 1, ∀t ≥ 1,

‖ζt+1‖2 ≤
(

1− τη ·min
a
πθt(a)

)
· ‖ζt‖2, (B.391)

where ζt = τθt − r − (τθt−r)>1
K

· 1.
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Proof. Update 2 can be written as

θt+1 = θt − η ·H(πθt)(τ log πθt − r) (B.392)

= θt − η ·H(πθt)

[
τθt − r −

(
log
∑
a

exp{θt(a)}

)
· 1

]
(B.393)

= θt − η ·H(πθt)(τθt − r) (B.394)

= θt − η ·H(πθt)

(
τθt − r −

(τθt − r)>1

K
· 1
)
, (B.395)

where the last two equations are from H(πθt)1 = 0 as shown in Lemma 37.

For all t ≥ 1,

ζt+1 = τθt+1 − r −
(τθt+1 − r)>1

K
· 1 (B.396)

= τθt − r −
(τθt − r)>1

K
· 1 + τ(θt+1 − θt) (B.397)

+

(
(τθt − r)>1

K
− (τθt+1 − r)>1

K

)
· 1 (B.398)

= τθt − r −
(τθt − r)>1

K
· 1 + τ(θt+1 − θt) (B.399)

+
τ(θt − θt+1)>1

K
· 1. (B.400)

For the last term,

τ(θt − θt+1)>1

K
· 1 (B.401)

=
τ

K
·
(
η ·H(πθt)

(
τθt − r −

(τθt − r)>1

K
· 1
))>

1 · 1 = 0, (B.402)

where the last equation is again by H(πθt)
>1 = H(πθt)1 = 0. Using the

update rule and combining the above,

ζt+1 = τθt − r −
(τθt − r)>1

K
· 1 + τ(θt+1 − θt) (B.403)

= (Id− τη ·H(πθt))

(
τθt − r −

(τθt − r)>1

K
· 1
)

(B.404)

= (Id− τη ·H(πθt)) ζt. (B.405)

According to Lemma 38, with τη ≤ 1,

‖ζt+1‖2 = ‖(Id− τη ·H(πθt)) ζt‖2 (B.406)

≤
(

1− τη ·min
a
πθt(a)

)
· ‖ζt‖2.
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Lemma 12. Let πθt = softmax(θt). Using Update 2 with τη ≤ 1, ∀t ≥ 1,

‖ζt‖2 ≤
2(τ‖θ1‖∞ + 1)

√
K

exp
{
τη
∑t−1

s=1 [mina πθs(a)]
} . (B.407)

Proof. According to Lemma 11, for all t ≥ 1,

‖ζt+1‖2 ≤
(

1− τη ·min
a
πθt(a)

)
· ‖ζt‖2 (B.408)

≤ 1

exp {τη ·mina πθt(a)}
· ‖ζt‖2 (B.409)

≤ 1

exp {τη ·mina πθt(a)}
·
(

1− τη ·min
a
πθt−1(a)

)
· ‖ζt−1‖2 (B.410)

≤ 1

exp
{
τη
∑t

s=t−1 [mina πθs(a)]
} · ‖ζt−1‖2 (B.411)

≤ 1

exp
{
τη
∑t

s=1 [mina πθs(a)]
} · ‖ζ1‖2. (B.412)

For the initial logit θ1,

‖ζ1‖2 =

∥∥∥∥τθ1 − r −
(τθ1 − r)>1

K
· 1
∥∥∥∥

2

(B.413)

≤ ‖τθ1 − r‖2 +

∥∥∥∥(τθ1 − r)>1

K
· 1
∥∥∥∥

2

(by triangle inequality) (B.414)

= ‖τθ1 − r‖2 +

∣∣(τθ1 − r)>1
∣∣

√
K

(B.415)

≤ ‖τθ1 − r‖2 +
‖τθ1 − r‖2 · ‖1‖2√

K
(by Cauchy-Schwarz) (B.416)

= 2 · ‖τθ1 − r‖2 (B.417)

≤ 2 · (‖τθ1‖2 + ‖r‖2) (B.418)

≤ 2(τ‖θ1‖∞ + 1)
√
K , (B.419)

finishing the proof.

Lemma 13. There exists c = c(τ,K, ‖θ1‖∞) > 0, such that for all t ≥ 1,

mina πθt(a) ≥ c. Thus,
∑t−1

s=1 [mina πθs(a)] ≥ c · (t− 1).

Proof. Define the constant c = c(τ,K, ‖θ1‖∞) as

c =
1

K
· 1

exp{1/τ}
· 1

exp{4(‖θ1‖∞ + 1/τ)
√
K}

. (B.420)
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First, according to Eq. (B.413), we have,

‖ζ1‖2 ≤ 2(τ‖θ1‖∞ + 1)
√
K. (B.421)

Next, according to Lemma 11, with τη ≤ 1,

‖ζt+1‖2 ≤
(

1− τη ·min
a
πθt(a)

)
· ‖ζt‖2 (B.422)

≤ 2(τ‖θ1‖∞ + 1)
√
K. (B.423)

Therefore, for all t ≥ 1, we have,

‖ζt‖2 ≤ 2(τ‖θ1‖∞ + 1)
√
K. (B.424)

We now prove mina πθt(a) ≥ c. We have, ∀a,∣∣∣∣θt(a)− r(a)

τ
− (θt − r/τ)>1

K

∣∣∣∣ =
1

τ
·
∣∣∣∣τθt(a)− r(a)− (τθt − r)>1

K

∣∣∣∣ (B.425)

≤ 1

τ
·
∥∥∥∥τθt − r − (τθt − r)>1

K
· 1
∥∥∥∥

2

(B.426)

=
1

τ
· ‖ζt‖2 (B.427)

≤ 2(‖θ1‖∞ + 1/τ)
√
K. (B.428)

Denote a1 = arg mina θt(a), and a2 = arg maxa θt(a). According to the above,

we have the following results,

θt(a1) ≥ r(a1)

τ
+

(τθt − r)>1

K
− 2(‖θ1‖∞ + 1/τ)

√
K, (B.429)

−θt(a2) ≥ −r(a2)

τ
− (τθt − r)>1

K
− 2(‖θ1‖∞ + 1/τ)

√
K, (B.430)

which can be used to lower bound the minimum probability as,

min
a
πθt(a) =

exp{θt(a1)}∑
a exp{θt(a)}

(B.431)

≥ exp{θt(a1)}∑
a exp{θt(a2)}

(B.432)

=
1

K
· exp {θt(a1)− θt(a2)} , (since θt(a) ≤ θt(a2), ∀a) (B.433)
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which can be further lower bounded using the above results,

min
a
πθt(a) ≥ 1

K
· exp {θt(a1)− θt(a2)} (B.434)

≥ 1

K
· exp

{
r(a1)

τ
+

(τθt − r)>1

K
− 2(‖θ1‖∞ + 1/τ)

√
K (B.435)

− r(a2)

τ
− (τθt − r)>1

K
− 2(‖θ1‖∞ + 1/τ)

√
K

}
(B.436)

=
1

K
· exp

{
r(a1)− r(a2)

τ
− 4(‖θ1‖∞ + 1/τ)

√
K

}
(B.437)

≥ 1

K
· exp

{
−1

τ
− 4(‖θ1‖∞ + 1/τ)

√
K

}
(B.438)(

because r ∈ [0, 1]K and r(a1)− r(a2) ≥ −1
)

(B.439)

=
1

K
· 1

exp{1/τ}
· 1

exp{4(‖θ1‖∞ + 1/τ)
√
K}

= c.

Theorem 5. Let πθt = softmax(θt). Using Update 2 with η ≤ 1/τ , for all

t ≥ 1,

(π∗τ − πθt)
> r ≤ 2

√
K(‖θ1‖∞ + 1/τ)

exp {τη · c · (t− 1)}
, (B.440)

δ̃t ≤
2(τ‖θ1‖∞ + 1)2K/τ

exp {2τη · c · (t− 1)}
, (B.441)

where δ̃t := π∗τ
> (r − τ log π∗τ )−πθt> (r − τ log πθt) and c > 0 is from Lemma 13.

Proof. According to Hölder’s inequality,

(π∗τ − πθt)
> r (B.442)

≤ ‖π∗τ − πθt‖1 · ‖r‖∞ (by Hölder’s inequality) (B.443)

≤ ‖π∗τ − πθt‖1

(
because r ∈ [0, 1]K

)
(B.444)

≤
∥∥∥∥ rτ − θt +

(τθt − r)>1

τK
· 1
∥∥∥∥
∞

(by Lemma 39) (B.445)

=
1

τ
·
∥∥∥∥τθt − r − (τθt − r)>1

K
· 1
∥∥∥∥
∞

(B.446)

≤ 1

τ
·
∥∥∥∥τθt − r − (τθt − r)>1

K
· 1
∥∥∥∥

2

(B.447)

≤ 1

τ
· 2(τ‖θ1‖∞ + 1)

√
K

exp
{
τη
∑t−1

s=1 [mina πθs(a)]
} (by Lemma 12) (B.448)

≤ 2
√
K

τ
· τ‖θ1‖∞ + 1

exp {τη · c · (t− 1)}
. (by Lemma 13) (B.449)
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On the other hand, we have,

π∗τ
> (r − τ log π∗τ )− πθt> (r − τ log πθt) (B.450)

= π∗τ
> (r − τ log π∗τ )− πθt> (r − τ log π∗τ + τ log π∗τ − τ log πθt) (B.451)

= (π∗τ − πθt)
> (r − τ log π∗τ ) + τ ·DKL(πθt‖π∗τ ) (B.452)

= (π∗τ − πθt)
> 1 · τ · log

∑
a

exp{r(a)/τ}+ τ ·DKL(πθt‖π∗τ ) (B.453)

= τ ·DKL(πθt‖π∗τ ) (B.454)

≤ τ

2
·
∥∥∥∥θt − r

τ
− (τθt − r)>1

τK
· 1
∥∥∥∥2

∞
(by Lemma 42) (B.455)

=
1

2τ
·
∥∥∥∥τθt − r − (τθt − r)>1

K
· 1
∥∥∥∥2

∞
(B.456)

≤ 1

2τ
·
∥∥∥∥τθt − r − (τθt − r)>1

K
· 1
∥∥∥∥2

2

(B.457)

≤ 1

2τ
· 4(τ‖θ1‖∞ + 1)2K

exp
{

2τη
∑t−1

s=1 [mina πθs(a)]
} (by Lemma 12) (B.458)

≤ 1

τ
· 2(τ‖θ1‖∞ + 1)2K

exp {2τη · c · (t− 1)}
. (by Lemma 13)

B.2.3 Proofs for MDPs and Entropy Regularization

Lemma 14 (Smoothness). H(ρ, πθ) is (4 + 8 logA)/(1 − γ)3-smooth, where

A = |A| is the total number of actions.

Proof. Denote Hπθ(s) = H(s, πθ). Also denote θα = θ + αu, where α ∈ R and

u ∈ RSA. According to Eq. (2.33),

Hπθα (s) = E
s0=s,at∼πθα (·|st),
st+1∼P(·|st,at)

[
∞∑
t=0

−γt log πθα(at|st)

]
(B.459)

= −
∑
a

πθα(a|s) · log πθα(a|s) (B.460)

+ γ
∑
a

πθα(a|s)
∑
s′

P(s′|s, a) ·Hπθα (s′), (B.461)

which implies,

Hπθα (s) = e>sM(α)hθα , (B.462)
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where M(α) = (Id− γP (α))−1 is defined in Eq. (B.199), P (α) is defined in

Eq. (B.184), and hθα ∈ RS for s ∈ S is given by

hθα(s) = −
∑
a

πθα(a|s) · log πθα(a|s). (B.463)

According to Eq. (B.463), hθα(s) ∈ [0, logA], ∀s. Then we have,

‖hθα‖∞ = max
s
|hθα(s)| ≤ logA. (B.464)

For any state s ∈ S,∣∣∣∣∂hθα(s)

∂α

∣∣∣∣ =

∣∣∣∣〈∂hθα(s)

∂θα
,
∂θα
∂α

〉∣∣∣∣ (B.465)

=

∣∣∣∣〈 ∂hθα(s)

∂θα(·|s)
, u(s, ·)

〉∣∣∣∣ (B.466)

=
∣∣∣(H(πθα(·|s)) log πθα(·|s))> u(s, ·)

∣∣∣ (B.467)

≤ ‖H(πθα(·|s)) log πθα(·|s)‖1 · ‖u(s, ·)‖∞ . (B.468)

The `1 norm is upper bounded as

‖H(πθα(·|s)) log πθα(·|s)‖1 (B.469)

=
∑
a

πθα(a|s) ·
∣∣log πθα(a|s)− πθα(·|s)> log πθα(·|s)

∣∣ (B.470)

≤
∑
a

πθα(a|s) ·
(
|log πθα(a|s)|+

∣∣πθα(·|s)> log πθα(·|s)
∣∣) (B.471)

= −2 ·
∑
a

πθα(a|s) · log πθα(a|s) ≤ 2 · logA. (B.472)

Therefore we have,∥∥∥∥∂hθα∂α

∥∥∥∥
∞

= max
s

∣∣∣∣∂hθα(s)

∂α

∣∣∣∣ (B.473)

≤ max
s
‖H(πθα(·|s)) log πθα(·|s)‖1 · ‖u(s, ·)‖∞ (B.474)

≤ 2 · logA · ‖u‖2. (B.475)

The second derivative w.r.t. α is∣∣∣∣∂2hθα(s)

∂α2

∣∣∣∣ =

∣∣∣∣∣
(

∂

∂θα

{
∂hθα(s)

∂α

})>
∂θα
∂α

∣∣∣∣∣ (B.476)

=

∣∣∣∣∣
(
∂2hθα(s)

∂θ2
α

∂θα
∂α

)>
∂θα
∂α

∣∣∣∣∣ (B.477)

=

∣∣∣∣u(s, ·)>∂
2hθα(s)

∂θ2
α(s, ·)

u(s, ·)
∣∣∣∣ . (B.478)
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Denote the Hessian T (s, θα) =
∂2hθα (s)

∂θ2(s,·) . Then,

T (s, θα) =
∂2hθα(s)

∂θ2
α(s, ·)

=
∂

∂θα(s, ·)

{
∂hθα(s)

∂θα(s, ·)

}
(B.479)

=
∂

∂θα(s, ·)

{(
∂πθα(·|s)
∂θα(s, ·)

)>
∂hθα(s)

∂πθα(·|s)

}
(B.480)

=
∂

∂θα(s, ·)
{H(πθα(·|s))(− log πθα(·|s))} . (B.481)

Note T (s, θα) ∈ RA×A, and ∀i, j ∈ A, the value of T (s, θα) is,

Ti,j =
d{πθα(i|s) · (− log πθα(i|s)− hθα(s))}

dθα(s, j)
(B.482)

=
dπθα(i|s)
dθα(s, j)

· (− log πθα(i|s)− hθα(s)) (B.483)

+ πθα(i|s) · d{− log πθα(i|s)− hθα(s)}
dθα(s, j)

(B.484)

= (δijπθα(j|s)− πθα(i|s)πθα(j|s)) · (− log πθα(i|s)− hθα(s)) (B.485)

+ πθα(i|s) ·
(
− 1

πθα(i|s)
· (δijπθα(j|s)− πθα(i|s)πθα(j|s)) (B.486)

− πθα(j|s) · (− log πθα(j|s)− hθα(s))

)
(B.487)

= δijπθα(j|s) · (− log πθα(i|s)− hθα(s)− 1) (B.488)

− πθα(i|s)πθα(j|s) · (− log πθα(i|s)− hθα(s)− 1) (B.489)

− πθα(i|s)πθα(j|s) · (− log πθα(j|s)− hθα(s)). (B.490)
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For any vector y ∈ RA,

∣∣y>T (s, θα)y
∣∣ =

∣∣∣∣∣
A∑
i=1

A∑
j=1

Ti,jy(i)y(j)

∣∣∣∣∣ (B.491)

≤

∣∣∣∣∣∑
i

πθα(i|s) · (− log πθα(i|s)− hθα(s)− 1) · y(i)2

∣∣∣∣∣ (B.492)

+ 2 ·
∣∣∣∣∑

i

πθα(i|s) · y(i) (B.493)

·
∑
j

πθα(j|s) · (− log πθα(j|s)− hθα(s)) · y(j)

∣∣∣∣ (B.494)

+
(
πθα(·|s)>y

)2
(B.495)

=
∣∣∣(H(πθα(·|s))(− log πθα(·|s))− πθα(·|s))> (y � y)

∣∣∣ (B.496)

+ 2 ·
∣∣∣(πθα(·|s)>y

)
· (H(πθα(·|s))(− log πθα(·|s)))> y

∣∣∣ (B.497)

+
(
πθα(·|s)>y

)2
(B.498)

≤ ‖H(πθα(·|s))(− log πθα(·|s))‖∞ · ‖y � y‖1 (B.499)

+ ‖πθα(·|s)‖∞ · ‖y � y‖1 (B.500)

+ 2 · ‖πθα(·|s)‖1 · ‖y‖∞ (B.501)

· ‖H(πθα(·|s))(− log πθα(·|s))‖1 · ‖y‖∞ (B.502)

+ ‖πθα(·|s)‖2
2 · ‖y‖2

2, (B.503)

where the last inequality is by Hölder’s inequality. Note that ‖y� y‖1 = ‖y‖2
2,

‖πθα(·|s)‖∞ ≤ ‖πθα(·|s)‖1, ‖πθα(·|s)‖2 ≤ ‖πθα(·|s)‖1 = 1, and ‖y‖∞ ≤ ‖y‖2.

The `∞ norm is upper bounded as

‖H(πθα(·|s))(− log πθα(·|s))‖∞ (B.504)

= max
a

∣∣πθα(a|s) ·
(
− log πθα(a|s) + πθα(·|s)> log πθα(·|s)

)∣∣ (B.505)

≤ max
a
−πθα(a|s) · log πθα(a|s)− πθα(·|s)> log πθα(·|s) (B.506)

≤ 1

e
+ logA.

(
since − x · log x ≤ 1

e
for all x ∈ [0, 1]

)
(B.507)
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Therefore we have,∣∣y>T (s, θα)y
∣∣ ≤ ‖H(πθα(·|s))(− log πθα(·|s))‖∞ · ‖y‖

2
2 (B.508)

+ ‖y‖2
2 + 2 · ‖H(πθα(·|s))(− log πθα(·|s))‖1 · ‖y‖

2
2 + ‖y‖2

2 (B.509)

≤
(

1

e
+ logA+ 2

)
· ‖y‖2

2 (B.510)

+ 2 · ‖H(πθα(·|s))(− log πθα(·|s))‖1 · ‖y‖
2
2 (B.511)

(by Eq. (B.504)) (B.512)

≤
(

1

e
+ logA+ 2 + 2 · logA

)
· ‖y‖2

2 (by Eq. (B.469)) (B.513)

≤ 3 · (1 + logA) · ‖y‖2
2. (B.514)

According to the above results,∥∥∥∥∂2hθα
∂α2

∥∥∥∥
∞

= max
s

∣∣∣∣∂2hθα(s)

∂α2

∣∣∣∣ (B.515)

= max
s

∣∣∣∣u(s, ·)>∂
2hθα(s)

∂θ2
α(s, ·)

u(s, ·)
∣∣∣∣ (B.516)

= max
s

∣∣u(s, ·)>T (s, θα)u(s, ·)
∣∣ (B.517)

≤ 3 · (1 + logA) ·max
s
‖u(s, ·)‖2

2 (B.518)

≤ 3 · (1 + logA) · ‖u‖2
2. (B.519)

Taking derivative w.r.t. α in Eq. (B.462),

∂Hπθα (s)

∂α
= γ · e>sM(α)

∂P (α)

∂α
M(α)hθα + e>sM(α)

∂hθα
∂α

. (B.520)

Taking second derivative w.r.t. α,

∂2Hπθα (s)

∂α2
= 2γ2 · e>sM(α)

∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)hθα (B.521)

+ γ · e>sM(α)
∂2P (α)

∂α2
M(α)hθα (B.522)

+ 2γ · e>sM(α)
∂P (α)

∂α
M(α)

∂hθα
∂α

+ e>sM(α)
∂2hθα
∂α2

. (B.523)

For the last term,∣∣∣∣e>sM(α)
∂2hθα
∂α2

∣∣∣
α=0

∣∣∣∣ ≤ ‖es‖1 ·
∥∥∥∥M(α)

∂2hθα
∂α2

∣∣∣
α=0

∥∥∥∥
∞

(B.524)

≤ 1

1− γ
·
∥∥∥∥∂2hθα
∂α2

∣∣∣
α=0

∥∥∥∥
∞

(by Eq. (B.204)) (B.525)

≤ 3 · (1 + logA)

1− γ
· ‖u‖2

2. (by Eq. (B.515)) (B.526)
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For the second last term,∣∣∣∣e>sM(α)
∂P (α)

∂α
M(α)

∂hθα
∂α

∣∣∣
α=0

∣∣∣∣ ≤ ∥∥∥∥M(α)
∂P (α)

∂α
M(α)

∂hθα
∂α

∣∣∣
α=0

∥∥∥∥
∞

(B.527)

≤ 1

1− γ
·
∥∥∥∥∂P (α)

∂α
M(α)

∂hθα
∂α

∣∣∣
α=0

∥∥∥∥
∞

(by Eq. (B.204)) (B.528)

≤ 2 · ‖u‖2

1− γ
·
∥∥∥∥M(α)

∂hθα
∂α

∣∣∣
α=0

∥∥∥∥
∞

(by Eq. (B.187)) (B.529)

≤ 2 · ‖u‖2

(1− γ)2
·
∥∥∥∥∂hθα∂α

∣∣∣
α=0

∥∥∥∥
∞

(by Eq. (B.204)) (B.530)

≤ 2 · ‖u‖2

(1− γ)2
· 2 · logA · ‖u‖2 (B.531)

=
4 · logA

(1− γ)2
· ‖u‖2

2. (by Eq. (B.473)) (B.532)

For the second term,∣∣∣∣e>sM(α)
∂2P (α)

∂α2
M(α)hθα

∣∣∣
α=0

∣∣∣∣ ≤ ∥∥∥∥M(α)
∂2P (α)

∂α2
M(α)hθα

∣∣∣
α=0

∥∥∥∥
∞

(B.533)

≤ 1

1− γ
·
∥∥∥∥∂2P (α)

∂α2
M(α)hθα

∣∣∣
α=0

∥∥∥∥
∞

(by Eq. (B.204)) (B.534)

≤ 6 · ‖u‖2
2

1− γ
·
∥∥∥M(α)hθα

∣∣∣
α=0

∥∥∥
∞

(by Eq. (B.192)) (B.535)

≤ 6 · ‖u‖2
2

(1− γ)2
·
∥∥∥hθα∣∣∣

α=0

∥∥∥
∞

(by Eq. (B.204)) (B.536)

≤ 6 · logA

(1− γ)2
· ‖u‖2

2. (by Eq. (B.464)) (B.537)

For the first term, according to Eqs. (B.187) and (B.204), Eq. (B.464),∣∣∣∣e>sM(α)
∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)hθα

∣∣∣
α=0

∣∣∣∣ (B.538)

≤
∥∥∥∥M(α)

∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)hθα

∣∣∣
α=0

∥∥∥∥
∞

(B.539)

≤ 1

1− γ
· 2 · ‖u‖2 ·

1

1− γ
· 2 · ‖u‖2 ·

1

1− γ
· logA (B.540)

=
4 · logA

(1− γ)3
· ‖u‖2

2. (B.541)
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Combining Eqs. (B.524), (B.527), (B.533) and (B.538) with Eq. (B.521),∣∣∣∣∂2Hπθα (s)

∂α2

∣∣∣
α=0

∣∣∣∣ ≤ 2γ2 ·
∣∣∣∣e>sM(α)

∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)hθα

∣∣∣
α=0

∣∣∣∣ (B.542)

+ γ ·
∣∣∣∣e>sM(α)

∂2P (α)

∂α2
M(α)hθα

∣∣∣
α=0

∣∣∣∣ (B.543)

+ 2γ ·
∣∣∣∣e>sM(α)

∂P (α)

∂α
M(α)

∂hθα
∂α

∣∣∣
α=0

∣∣∣∣ (B.544)

+

∣∣∣∣e>sM(α)
∂2hθα
∂α2

∣∣∣
α=0

∣∣∣∣ (B.545)

≤
(

2γ2 · 4 · logA

(1− γ)3
+ γ · 6 · logA

(1− γ)2
(B.546)

+ 2γ · 4 · logA

(1− γ)2
+

3 · (1 + logA)

1− γ

)
· ‖u‖2

2 (B.547)

≤
(

8 · logA

(1− γ)3
+

3

1− γ

)
· ‖u‖2

2 (B.548)

≤ 4 + 8 · logA

(1− γ)3
· ‖u‖2

2, (B.549)

which implies for all y ∈ RSA and θ,∣∣∣∣y>∂2Hπθ(s)

∂θ2
y

∣∣∣∣ =

∣∣∣∣∣
(

y

‖y‖2

)>
∂2Hπθ(s)

∂θ2

(
y

‖y‖2

)∣∣∣∣∣ · ‖y‖2
2 (B.550)

≤ max
‖u‖2=1

∣∣∣∣〈∂2Hπθ(s)

∂θ2
u, u
〉∣∣∣∣ · ‖y‖2

2 (B.551)

= max
‖u‖2=1

∣∣∣∣〈∂2Hπθα (s)

∂θ2
α

∣∣∣
α=0

∂θα
∂α

,
∂θα
∂α

〉∣∣∣∣ · ‖y‖2
2 (B.552)

= max
‖u‖2=1

∣∣∣∣〈 ∂

∂θα

{
∂Hπθα (s)

∂α

} ∣∣∣
α=0

,
∂θα
∂α

〉∣∣∣∣ · ‖y‖2
2 (B.553)

= max
‖u‖2=1

∣∣∣∣∂2Hπθα (s)

∂α2

∣∣∣
α=0

∣∣∣∣ · ‖y‖2
2 (B.554)

≤ 4 + 8 · logA

(1− γ)3
· ‖y‖2

2. (by Eq. (B.542)) (B.555)

Denote θξ = θ+ ξ(θ′− θ), where ξ ∈ [0, 1]. According to Taylor’s theorem, ∀s,

∀θ, θ′, ∣∣∣∣Hπθ′ (s)−Hπθ(s)−
〈∂Hπθ(s)

∂θ
, θ′ − θ

〉∣∣∣∣ (B.556)

=
1

2
·

∣∣∣∣∣(θ′ − θ)> ∂2Hπθξ (s)

∂θ2
ξ

(θ′ − θ)

∣∣∣∣∣ (B.557)

≤ 2 + 4 · logA

(1− γ)3
· ‖θ′ − θ‖2

2. (by Eq. (B.550)) (B.558)
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Since Hπθ(s) is (4 + 8 logA)/(1 − γ)3-smooth, ∀s, H(ρ, πθ) = Es∼ρ [Hπθ(s)] is

also (4 + 8 logA)/(1− γ)3-smooth.

Lemma 15 (Non-uniform  Lojasiewicz). Suppose µ(s) > 0 for all states s ∈ S

and πθ(·|s) = softmax(θ(s, ·)). Then,∥∥∥∥∥∂Ṽ πθ(µ)

∂θ

∥∥∥∥∥
2

≥ C(θ) ·
[
Ṽ π∗τ (ρ)− Ṽ πθ(ρ)

] 1
2
, (B.559)

where

C(θ) =

√
2τ√
S
·min

s

√
µ(s) ·min

s,a
πθ(a|s) ·

∥∥∥∥∥dπ
∗
τ
ρ

dπθµ

∥∥∥∥∥
− 1

2

∞

. (B.560)

Proof. According to the definition of soft value functions,

Ṽ π∗τ (ρ)− Ṽ πθ(ρ) (B.561)

= E
s0∼ρ,at∼π∗τ (·|st),
st+1∼P(·|st,at)

[
∞∑
t=0

γt(r(st, at)− τ log π∗τ (at|st))

]
− Ṽ πθ(ρ) (B.562)

= E
s0∼ρ,at∼π∗τ (·|st),
st+1∼P(·|st,at)

[ ∞∑
t=0

γt(r(st, at)− τ log π∗τ (at|st) (B.563)

+ Ṽ πθ(st)− Ṽ πθ(st))

]
− Ṽ πθ(ρ) (B.564)

= E
s0∼ρ,at∼π∗τ (·|st),
st+1∼P(·|st,at)

[ ∞∑
t=0

γt(r(st, at)− τ log π∗τ (at|st) (B.565)

+ γṼ πθ(st+1)− Ṽ πθ(st))

]
(B.566)

=
1

1− γ
∑
s

dπ
∗
τ
ρ (s) ·

[∑
a

π∗τ (a|s) ·
(
r(s, a)− τ log π∗τ (a|s) (B.567)

+ γ
∑
s′

P(s′|s, a)Ṽ πθ(s′)− Ṽ πθ(s)
)]

(B.568)

=
1

1− γ
∑
s

dπ
∗
τ
ρ (s) ·

[∑
a

π∗τ (a|s) ·
[
Q̃πθ(s, a)− τ log π∗τ (a|s)

]
− Ṽ πθ(s)

]
.

(B.569)

Next, define the “soft greedy policy” π̄θ(·|s) = softmax(Q̃πθ(s, ·)/τ), ∀s, i.e.,

π̄θ(a|s) =
exp

{
Q̃πθ(s, a)/τ

}∑
a′ exp

{
Q̃πθ(s, a′)/τ

} , ∀a. (B.570)
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We have, ∀s,∑
a

π∗τ (a|s) ·
[
Q̃πθ(s, a)− τ log π∗τ (a|s)

]
(B.571)

≤ max
π(·|s)

∑
a

π(a|s) ·
[
Q̃πθ(s, a)− τ log π(a|s)

]
(B.572)

=
∑
a

π̄θ(a|s) ·
[
Q̃πθ(s, a)− τ log π̄θ(a|s)

]
(B.573)

= τ log
∑
a

exp
{
Q̃πθ(s, a)/τ

}
. (B.574)

Also note that,

Ṽ πθ(s) =
∑
a

πθ(a|s) ·
[
Q̃πθ(s, a)− τ log πθ(a|s)

]
(B.575)

=
∑
a

πθ(a|s) ·
[
Q̃πθ(s, a)− τ log π̄θ(a|s) + τ log π̄θ(a|s)− τ log πθ(a|s)

]
(B.576)

=
∑
a

πθ(a|s) ·
[
Q̃πθ(s, a)− τ log π̄θ(a|s)

]
− τDKL(πθ(·|s)‖π̄θ(·|s))

(B.577)

= τ log
∑
a

exp
{
Q̃πθ(s, a)/τ

}
− τ ·DKL(πθ(·|s)‖π̄θ(·|s)). (B.578)

Combining the above,

Ṽ π∗τ (ρ)− Ṽ πθ(ρ) (B.579)

=
1

1− γ
∑
s

dπ
∗
τ
ρ (s) ·

[∑
a

π∗τ (a|s) ·
[
Q̃πθ(s, a)− τ log π∗τ (a|s)

]
− Ṽ πθ(s)

]
(B.580)

≤ 1

1− γ
∑
s

dπ
∗
τ
ρ (s) ·

[
τ log

∑
a

exp
{
Q̃πθ(s, a)/τ

}
− Ṽ πθ(s)

]
(B.581)

=
1

1− γ
∑
s

dπ
∗
τ
ρ (s) · τ ·DKL(πθ(·|s)‖π̄θ(·|s)) (B.582)

≤ 1

1− γ
∑
s

dπ
∗
τ
ρ (s) · τ

2
·

∥∥∥∥∥Q̃πθ(s, ·)
τ

− θ(s, ·)− (Q̃πθ(s, ·)/τ − θ(s, ·))>1

A
· 1

∥∥∥∥∥
2

∞
(B.583)

(by Lemma 42) (B.584)

=
1

1− γ
∑
s

dπ
∗
τ
ρ (s) · 1

2τ
·

∥∥∥∥∥Q̃πθ(s, ·)− τθ(s, ·)− (Q̃πθ(s, ·)− τθ(s, ·))>1

A
· 1

∥∥∥∥∥
2

∞

,

(B.585)
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where A = |A| is the total number of actions. Taking square root of soft

sub-optimality,[
Ṽ π∗τ (ρ)− Ṽ πθ(ρ)

] 1
2

(B.586)

≤ 1√
1− γ

·

∑
s

d
π∗τ
ρ (s)

2τ
·

∥∥∥∥∥Q̃πθ(s, ·)− τθ(s, ·)− (Q̃πθ(s, ·)− τθ(s, ·))>1

A
· 1

∥∥∥∥∥
2

∞

 1
2

(B.587)

=
1√

1− γ
·

∑
s


√
d
π∗τ
ρ (s)
√

2τ
·

∥∥∥∥∥Q̃πθ(s, ·)− τθ(s, ·)− (Q̃πθ(s, ·)− τθ(s, ·))>1

A
· 1

∥∥∥∥∥
∞

2


1
2

(B.588)

≤ 1√
1− γ

·
∑
s

√
d
π∗τ
ρ (s)
√

2τ
·

∥∥∥∥∥Q̃πθ(s, ·)− τθ(s, ·)− (Q̃πθ(s, ·)− τθ(s, ·))>1

A
· 1

∥∥∥∥∥
∞

(B.589)

(by ‖x‖2 ≤ ‖x‖1) (B.590)

≤ 1√
1− γ

· 1√
2τ
·

∥∥∥∥∥dπ
∗
τ
ρ

dπθµ

∥∥∥∥∥
1
2

∞

∑
s

√
dπθµ (s) (B.591)

·

∥∥∥∥∥Q̃πθ(s, ·)− τθ(s, ·)− (Q̃πθ(s, ·)− τθ(s, ·))>1

A
· 1

∥∥∥∥∥
∞

. (B.592)

On the other hand, the entropy regularized policy gradient norm is lower

bounded as∥∥∥∥∥∂Ṽ πθ(µ)

∂θ

∥∥∥∥∥
2

=

∑
s,a

(
∂Ṽ πθ(µ)

∂θ(s, a)

)2
 1

2

(B.593)

=

∑
s

∥∥∥∥∥∂Ṽ πθ(µ)

∂θ(s, ·)

∥∥∥∥∥
2

2

 1
2

(B.594)

≥ 1√
S

∑
s

∥∥∥∥∥∂Ṽ πθ(µ)

∂θ(s, ·)

∥∥∥∥∥
2

, (B.595)

(by Cauchy-Schwarz, ‖x‖1 = |〈1, |x|〉| ≤ ‖1‖2 · ‖x‖2) (B.596)
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which is further lower bounded as∥∥∥∥∥∂Ṽ πθ(µ)

∂θ

∥∥∥∥∥
2

≥ 1√
S
· 1

1− γ
∑
s

dπθµ (s) ·
∥∥∥H(πθ(·|s))

[
Q̃πθ(s, ·)− τθ(s, ·)

]∥∥∥
2

(B.597)

(by Eq. (B.366), Lemma 10) (B.598)

=
1√
S
· 1

1− γ
∑
s

dπθµ (s) (B.599)

·

∥∥∥∥∥H(πθ(·|s))

[
Q̃πθ(s, ·)− τθ(s, ·)− (Q̃πθ(s, ·)− τθ(s, ·))>1

A
· 1

]∥∥∥∥∥
2

(B.600)

(by Lemma 37) (B.601)

≥ 1√
S
· 1

1− γ
∑
s

dπθµ (s) ·min
a
πθ(a|s) (B.602)

·

∥∥∥∥∥Q̃πθ(s, ·)− τθ(s, ·)− (Q̃πθ(s, ·)− τθ(s, ·))>1

A
· 1

∥∥∥∥∥
2

(B.603)

(by Lemma 38) (B.604)

≥ 1√
S
· 1

1− γ
∑
s

dπθµ (s) ·min
a
πθ(a|s) (B.605)

·

∥∥∥∥∥Q̃πθ(s, ·)− τθ(s, ·)− (Q̃πθ(s, ·)− τθ(s, ·))>1

A
· 1

∥∥∥∥∥
∞

. (B.606)
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Denote ζθ(s) = Q̃πθ(s, ·)− τθ(s, ·)− (Q̃πθ (s,·)−τθ(s,·))>1
K

· 1. We have,∥∥∥∥∥∂Ṽ πθ(µ)

∂θ

∥∥∥∥∥
2

≥ 1√
S
· 1

1− γ
∑
s

dπθµ (s) ·min
a
πθ(a|s) · ‖ζθ(s)‖∞ (B.607)

≥ 1√
S
· 1√

1− γ
·min

s

√
dπθµ (s) ·min

s,a
πθ(a|s) ·

√
2τ ·

∥∥∥∥∥dπ
∗
τ
ρ

dπθµ

∥∥∥∥∥
− 1

2

∞

(B.608)

·

 1√
1− γ

· 1√
2τ
·

∥∥∥∥∥dπ
∗
τ
ρ

dπθµ

∥∥∥∥∥
1
2

∞

∑
s

√
dπθµ (s) · ‖ζθ(s)‖∞

 (B.609)

≥ 1√
S
· 1√

1− γ
·min

s

√
dπθµ (s) ·min

s,a
πθ(a|s) (B.610)

·
√

2τ ·

∥∥∥∥∥dπ
∗
τ
ρ

dπθµ

∥∥∥∥∥
− 1

2

∞

·
[
Ṽ π∗τ (ρ)− Ṽ πθ(ρ)

] 1
2

(B.611)

≥
√

2τ√
S
·min

s

√
µ(s) ·min

s,a
πθ(a|s) ·

∥∥∥∥∥dπ
∗
τ
ρ

dπθµ

∥∥∥∥∥
− 1

2

∞

·
[
Ṽ π∗τ (ρ)− Ṽ πθ(ρ)

] 1
2
,

(B.612)

where the last inequality is by dπθµ (s) ≥ (1− γ) · µ(s) (cf. Eq. (B.346)).

Lemma 16. Using Algorithm 1 with the entropy regularized objective, we

have c := inft≥1 mins,a πθt(a|s) > 0.

Proof. The augmented value function Ṽ πθt (ρ) is monotonically increasing fol-

lowing gradient update due to smoothness, i.e., Lemmas 7 and 14. It follows

then that Ṽ πθt (ρ) is upper bounded. Indeed,

Ṽ πθt (ρ) = E
s0∼ρ,at∼πθt (·|st),
st+1∼P(·|st,at)

[
∞∑
t=0

γt(r(st, at)− τ log πθt(at|st))

]
(B.613)

=
1

1− γ
∑
s

d
πθt
ρ (s) ·

[∑
a

πθt(a|s) · (r(s, a)− τ log πθt(a|s))

]
(B.614)

≤ 1

1− γ
∑
s

d
πθt
ρ (s) · (1 + τ logA) (B.615)(

by r(s, a) ≤ 1 and −
∑
a

πθt(a|s) · log πθt(a|s) ≤ logA

)
(B.616)

≤ 1 + τ logA

1− γ
. (B.617)
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According to the monotone convergence theorem, Ṽ πθt (ρ) converges to a finite

value. Suppose πθt(a|s)→ πθ∞(a|s). For any state s ∈ S, define the following

sets,

A0(s) = {a : πθ∞(a|s) = 0} , (B.618)

A+(s) = {a : πθ∞(a|s) > 0} . (B.619)

Note that A = A0(s) ∪ A+(s) since π∞(a|s) ≥ 0, ∀a ∈ A. We prove that for

any state s ∈ S, A0(s) = ∅ by contradiction. Suppose ∃s ∈ S, such that A0(s)

is non-empty. For any a0 ∈ A0(s), we have πθt(a0|s) → πθ∞(a0|s) = 0, which

implies − log πθt(a0|s)→∞. There exists t0 ≥ 1, such that ∀t ≥ t0,

− log πθt(a0|s) ≥
1 + τ logA

τ(1− γ)
. (B.620)

According to Lemma 10, ∀t ≥ t0,

∂Ṽ πθt (µ)

∂θt(s, a0)
=

1

1− γ
· dπθtµ (s) · πθt(a0|s) · Ãπθt (s, a0) (B.621)

=
d
πθt
µ (s)

1− γ
· πθt(a0|s) ·

[
Q̃πθt (s, a0)− τ log πθt(a0|s)− Ṽ πθt (s)

]
(B.622)

≥ d
πθt
µ (s)

1− γ
· πθt(a0|s) ·

[
0− τ log πθt(a0|s)−

1 + τ logA

1− γ

]
(B.623)

≥ d
πθt
µ (s)

1− γ
· πθt(a0|s) ·

[
0 + τ · 1 + τ logA

τ(1− γ)
− 1 + τ logA

1− γ

]
(B.624)

= 0, (B.625)

where the first inequality is by

Q̃πθt (s, a0) = r(s, a0) + γ
∑
s′

P(s′|s, a0)Ṽ πθt (s′) ≥ 0. (B.626)(
by r(s, a0) ≥ 0 and Ṽ πθt (s′) ≥ 0

)
(B.627)

This means that θt(s, a0) is increasing for any t ≥ t0, which in turn implies that

θ∞(s, a0) is lower bounded by constant, i.e., θ∞(s, a0) ≥ c for some constant

c, and thus exp {θ∞(a0|s)} ≥ ec > 0. According to

πθ∞(a0|s) =
exp {θ∞(a0|s)}∑
a exp {θ∞(a|s)}

= 0, (B.628)
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we have, ∑
a

exp {θ∞(a|s)} =∞. (B.629)

On the other hand, for any a+ ∈ A+(s), according to

πθ∞(a+|s) =
exp {θ∞(a+|s)}∑
a exp {θ∞(a|s)}

> 0, (B.630)

we have,

exp {θ∞(a+|s)} =∞, ∀a+ ∈ A+(s) (B.631)

which implies, ∑
a+∈A+(s)

θ∞(a+|s) =∞. (B.632)

Note that ∀t, the summation of logit incremental over all actions is zero:

∑
a

∂Ṽ πθt (µ)

∂θt(s, a)
=

∑
a0∈A0(s)

∂Ṽ πθt (µ)

∂θt(s, a0)
+

∑
a+∈A+(s)

∂Ṽ πθt (µ)

∂θt(s, a+)
(B.633)

=
1

1− γ
· dπθtµ (s)

∑
a

πθt(a|s) · Ãπθt (s, a) (B.634)

=
1

1− γ
· dπθtµ (s) ·

[
Ṽ πθt (s)− Ṽ πθt (s)

]
= 0. (B.635)

According to Eq. (B.621), ∀t ≥ t0,

∑
a0∈A0(s)

∂Ṽ πθt (µ)

∂θt(s, a0)
≥ 0. (B.636)

According to Eq. (B.633), ∀t ≥ t0,

∑
a+∈A+(s)

∂Ṽ πθt (µ)

∂θt(s, a+)
= 0−

∑
a0∈A0(s)

∂Ṽ πθt (µ)

∂θt(s, a0)
≤ 0. (B.637)

which means
∑

a+∈A+(s) θt(s, a+) will decrease for all large enough t ≥ 1. This

contradicts with Eq. (B.632), i.e.,
∑

a+∈A+(s) θt(s, a+)→∞.

To this point, we have shown that A0(s) = ∅ for any state s ∈ S, i.e.,

πθt(·|s) will converge in the interior of probabilistic simplex ∆(A). Further-

more, at the convergent point πθ∞(·|s), the gradient is zero, otherwise by
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smoothness the objective can be further improved, which is a contradiction

with convergence. According to Lemma 10, ∀s,

∂Ṽ πθ∞ (µ)

∂θ∞(s, ·)
=

1

1− γ
· dπθ∞µ (s) ·H(πθ∞(·|s))

[
Q̃πθ∞ (s, ·)− τ log πθ∞(·|s)

]
(B.638)

= 0. (B.639)

We have d
πθ∞
µ (s) ≥ (1 − γ) · µ(s) > 0 for all states s (cf. Eq. (B.346)).

Therefore we have, ∀s,

H(πθ∞(·|s))
[
Q̃πθ∞ (s, ·)− τ log πθ∞(·|s)

]
= 0. (B.640)

According to Lemma 37, H(πθ∞(·|s)) has eigenvalue 0 with multiplicity 1, and

its corresponding eigenvector is c · 1 for some constant c ∈ R. Therefore, the

gradient is zero implies that for all states s,

Q̃πθ∞ (s, ·)− τ log πθ∞(·|s) = c · 1, (B.641)

which is equivalent to

πθ∞(·|s) = softmax(Q̃πθ∞ (s, ·)/τ), (B.642)

which, according to Nachum et al. (2017, Theorem 3), is the softmax optimal

policy π∗τ . Since τ ∈ Ω(1) > 0 and,

0 ≤ Q̃πθ∞ (s, a) ≤ 1 + τ logA

1− γ
, (B.643)

we have πθ∞(a|s) ∈ Ω(1), ∀(s, a). Since πθt(a|s) → πθ∞(a|s), there exists

t0 ≥ 1, such that ∀t ≥ t0,

0.9 · πθ∞(a|s) ≤ πθt(a|s) ≤ 1.1 · πθ∞(a|s), ∀(s, a) (B.644)

which means inft≥t0 mins,a πθt(a|s) ∈ Ω(1), and thus

inf
t≥1

min
s,a

πθt(a|s) = min

{
min

1≤t≤t0
min
s,a

πθt(a|s), inf
t≥t0

min
s,a

πθt(a|s)
}

(B.645)

= min{Ω(1), Ω(1)} ∈ Ω(1).
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Theorem 6. Suppose µ(s) > 0 for all state s. Using Algorithm 1 with

the entropy regularized objective and softmax parametrization and η = (1 −

γ)3/(8 + τ(4 + 8 logA)), there exists a constant C > 0 such that for all t ≥ 1,

Ṽ π∗τ (ρ)− Ṽ πθt (ρ) ≤
∥∥∥∥ 1

µ

∥∥∥∥
∞
· 1 + τ logA

(1− γ)2
· e−C(t−1) . (B.646)

Proof. According to the soft sub-optimality lemma of Lemma 41,

Ṽ π∗τ (ρ)− Ṽ πθt (ρ) =
1

1− γ
∑
s

[
d
πθt
ρ (s) · τ ·DKL(πθt(·|s)‖π∗τ (·|s))

]
(B.647)

=
1

1− γ
∑
s

d
πθt
ρ (s)

d
πθt
µ (s)

·
[
d
πθt
µ (s) · τ ·DKL(πθt(·|s)‖π∗τ (·|s))

]
(B.648)

≤ 1

(1− γ)2

∑
s

1

µ(s)
·
[
d
πθt
µ (s) · τ ·DKL(πθt(·|s)‖π∗τ (·|s))

]
(B.649)

≤ 1

(1− γ)2
·
∥∥∥∥ 1

µ

∥∥∥∥
∞

∑
s

[
d
πθt
µ (s) · τ ·DKL(πθt(·|s)‖π∗τ (·|s))

]
(B.650)

=
1

1− γ
·
∥∥∥∥ 1

µ

∥∥∥∥
∞
·
[
Ṽ π∗τ (µ)− Ṽ πθt (µ)

]
, (B.651)

where the last equation is again by Lemma 41, and the first inequality is

according to d
πθt
µ (s) ≥ (1−γ) ·µ(s) (cf. Eq. (B.346)). According to Lemmas 7

and 14, V πθ(µ) is 8/(1 − γ)3-smooth, and H(µ, πθ) is (4 + 8 logA)/(1 − γ)3-

smooth. Therefore, Ṽ πθ(µ) = V πθ(µ) + τ · H(µ, πθ) is β-smooth with β =

(8 + τ(4 + 8 logA))/(1 − γ)3. Denote δ̃t = Ṽ π∗τ (µ) − Ṽ πθt (µ). And note

η = (1−γ)3

8+τ(4+8 logA)
. We have,

δ̃t+1 − δ̃t = Ṽ πθt (µ)− Ṽ πθt+1 (µ) (B.652)

≤ − (1− γ)3

16 + τ(8 + 16 logA)
·
∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥2

2

(by Lemma 33) (B.653)

≤ − (1− γ)3

16 + τ(8 + 16 logA)
· 2τ

S
·min

s
µ(s) ·min

s,a
πθt(a|s)2 (B.654)

·

∥∥∥∥∥ dπ
∗
τ
µ

d
πθt
µ

∥∥∥∥∥
−1

∞

·
[
Ṽ π∗τ (µ)− Ṽ πθt (µ)

]
(by Lemma 15) (B.655)

≤ − (1− γ)4 ·mins µ(s)

(8/τ + 4 + 8 logA) · S
·min
s,a

πθt(a|s)2 ·

∥∥∥∥∥dπ
∗
τ
µ

µ

∥∥∥∥∥
−1

∞

· δ̃t (B.656)(
by d

πθt
µ (s) ≥ (1− γ) · µ(s)

)
(B.657)

≤ − (1− γ)4 ·mins µ(s)

(8/τ + 4 + 8 logA) · S
· inf
t≥1

min
s,a

πθt(a|s)2 ·

∥∥∥∥∥dπ
∗
τ
µ

µ

∥∥∥∥∥
−1

∞

· δ̃t, (B.658)
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According to Lemma 16, c = inft≥1 mins,a πθt(a|s) > 0 is independent with t.

We have,

δ̃t ≤

1− (1− γ)4 ·mins µ(s) · c2

(8/τ + 4 + 8 logA) · S
·

∥∥∥∥∥dπ
∗
τ
µ

µ

∥∥∥∥∥
−1

∞

 · δ̃t−1 (B.659)

≤ exp

−(1− γ)4 ·mins µ(s) · c2

(8/τ + 4 + 8 logA) · S
·

∥∥∥∥∥dπ
∗
τ
µ

µ

∥∥∥∥∥
−1

∞

 · δ̃t−1 (B.660)

≤ exp

−(1− γ)4 ·mins µ(s) · c2

(8/τ + 4 + 8 logA) · S
·

∥∥∥∥∥dπ
∗
τ
µ

µ

∥∥∥∥∥
−1

∞

· (t− 1)

 · δ̃1 (B.661)

≤ exp

−(1− γ)4 ·mins µ(s) · c2

(8/τ + 4 + 8 logA) · S
·

∥∥∥∥∥dπ
∗
τ
µ

µ

∥∥∥∥∥
−1

∞

· (t− 1)

 · 1 + τ logA

1− γ
,

(B.662)

where the last inequality is according to Eq. (B.613). Therefore we have the

final result,

Ṽ π∗τ (ρ)− Ṽ πθt (ρ) ≤ 1

1− γ
·
∥∥∥∥ 1

µ

∥∥∥∥
∞
·
[
Ṽ π∗τ (µ)− Ṽ πθt (µ)

]
(B.663)

≤ 1

exp {C · (t− 1)}
· 1 + τ logA

(1− γ)2
·
∥∥∥∥ 1

µ

∥∥∥∥
∞
, (B.664)

where

C =
(1− γ)4

(8/τ + 4 + 8 logA) · S
·min

s
µ(s) · c2 ·

∥∥∥∥∥dπ
∗
τ
µ

µ

∥∥∥∥∥
−1

∞

> 0, (B.665)

is independent with t.

B.2.4 Proofs for Two-stage and Decaying Entropy Reg-
ularization

Theorem 7 (Two-stage). Denote ∆ = r(a∗) − maxa6=a∗ r(a) > 0. Using

Update 2 for t1 ∈ O(e1/τ · log ( τ+1
∆

)) iterations and then Update 1 for t2 ≥ 1

iterations, we have,

(π∗ − πθt)>r ≤ 5/(C2 · t2), (B.666)

where t = t1 + t2, and C ∈ [1/K, 1).
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Proof. In particular, using Update 2 with η ≤ 1/τ for the following number

of iterations,

t1 =
1

τη
·K · exp

{
4‖θ1‖∞

√
K
}

(B.667)

· exp
{1 + 4

√
K

τ

}
· log

(
4(τ‖θ1‖∞ + 1)

√
K

∆

)
+ 1 (B.668)

∈ O
(
e1/τ · log

(τ + 1

∆

))
, (B.669)

we have,

t1 − 1 ≥ 1

τη
·K · exp

{
4‖θ1‖∞

√
K
}

(B.670)

· exp
{1 + 4

√
K

τ

}
· log

(
4(τ‖θ1‖∞ + 1)

√
K

∆

)
(B.671)

=
1

τη
·K · exp{1/τ} · exp{4(‖θ1‖∞ + 1/τ)

√
K} (B.672)

· log

(
4(τ‖θ1‖∞ + 1)

√
K

∆

)
(B.673)

≥ 1

τη
· 1

c
· log

(
4(τ‖θ1‖∞ + 1)

√
K

∆

)
. (c is from Lemma 13) (B.674)

Therefore we have,

log

(
4(τ‖θ1‖∞ + 1)

√
K

∆

)
≤ τη · c · (t1 − 1) (B.675)

≤ τη

t1−1∑
s=1

[min
a
πθs(a)] (by Lemma 13) (B.676)

≤ log

(
2(τ‖θ1‖∞ + 1)

√
K

‖ζt1‖2

)
, (by Lemma 12) (B.677)

which is equivalent to,

‖ζt1‖2 =

∥∥∥∥τθt1 − r − (τθt1 − r)>1

K
· 1
∥∥∥∥

2

≤ ∆

2
. (B.678)

Then we have, for all a,∣∣∣∣θt1(a)− r(a)

τ
− (τθt1 − r)>1

τK

∣∣∣∣ ≤ ∥∥∥∥θt1 − r

τ
− (τθt1 − r)>1

τK
· 1
∥∥∥∥

2

(B.679)

=
1

τ
·
∥∥∥∥τθt1 − r − (τθt1 − r)>1

K
· 1
∥∥∥∥

2

≤ ∆

2τ
, (B.680)
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which implies,

θt1(a∗) ≥ r(a∗)

τ
− ∆

2τ
+

(τθt1 − r)>1

τK
, and (B.681)

θt1(a) ≤ r(a)

τ
+

∆

2τ
+

(τθt1 − r)>1

τK
. for all a 6= a∗ (B.682)

Then we have, for all a 6= a∗,

θt1(a∗)− θt1(a) ≥ r(a∗)

τ
− ∆

2τ
−
(
r(a)

τ
+

∆

2τ

)
(B.683)

=
r(a∗)

τ
− r(a)

τ
− ∆

τ
≥ 0, (B.684)

which means πθt1 (a∗) ≥ πθt1 (a). Now we turn off the regularization and use

Update 1 for t2 ≥ 1 iterations. According to similar arguments as in Theo-

rem 3, we have,

(π∗ − πθt)>r ≤ 5/(C2 · t2), (B.685)

where t = t1 + t2, and C ∈ [1/K, 1).

Theorem 8 (Decaying entropy regularization). Using Update 3 with τt = α·∆
log t

for t ≥ 2, where α > 0, and ηt = 1/τt, we have, for all t ≥ 1,

(π∗ − πθt)>r ≤
K

t1/α
+

log t

exp
{∑t−1

s=1 [mina πθs(a)]
} · 2(τ1‖θ1‖∞ + 1)

√
K

α ·∆
.

(B.686)

Proof. Denote π∗τt = softmax(r/τt) as the softmax optimal policy at time t.

We have,

(π∗ − πθt)>r = (π∗ − π∗τt)
>r︸ ︷︷ ︸

“decaying”

+ (π∗τt − πθt)
>r︸ ︷︷ ︸

“tracking”

. (B.687)
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“decaying” part. Note a∗ is the optimal action. Denote ∆(a) = r(a∗) −

r(a), and ∆ = mina6=a∗ ∆(a). We have,

(π∗ − π∗τt)
>r =

∑
a

π∗τt(a) · r(a∗)−
∑
a

π∗τt(a) · r(a) (B.688)

=
∑
a6=a∗

π∗τt(a) ·∆(a) (B.689)

=

∑
a6=a∗ e

r(a)
τt ·∆(a)∑

a′ e
r(a′)
τt

(B.690)

≤
∑
a6=a∗

e
r(a)
τt ·∆(a)

e
r(a∗)
τt + e

r(a)
τt

(B.691)

=
∑
a6=a∗

∆(a)

e
∆(a)
τt + 1

(B.692)

≤
∑
a6=a∗

1

e
∆
τt + 1

=
K − 1

1 + e
∆
τt

≤ K

e
∆
τt

. (B.693)

Using the decaying temperature τt = α·∆
log t

, for t ≥ 2, where α > 0, we have,

(π∗ − π∗τt)
>r ≤ K

t1/α
. (B.694)

“tracking” part. Using Update 3, we have,

τt+1θt+1 − r −
(τt+1θt+1 − r)>1

K
· 1 = τtθt − r −

(τtθt − r)>1

K
· 1 (B.695)

+ (τt+1θt+1 − τtθt) +

(
(τtθt − r)>1

K
− (τt+1θt+1 − r)>1

K

)
· 1

(B.696)

= τtθt − r −
(τtθt − r)>1

K
· 1 + τtηt ·H(πθt)(r − τt log πθt) (B.697)

+
(τtθt − τt+1θt+1)> 1

K
· 1 (by Update 3) (B.698)

= (Id− τtηt ·H(πθt))

(
τtθt − r −

(τtθt − r)>1

K
· 1
)

(B.699)(
H(πθt)1 = H(πθt)

>1 = 0, cf. Eq. (B.401)
)

(B.700)

= (Id−H(πθt))

(
τtθt − r −

(τtθt − r)>1

K
· 1
)
. (ηt = 1/τt) (B.701)
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Therefore we have,∥∥∥∥τt+1θt+1 − r −
(τt+1θt+1 − r)>1

K
· 1
∥∥∥∥

2

(B.702)

=

∥∥∥∥(Id−H(πθt))

(
τtθt − r −

(τtθt − r)>1

K
· 1
)∥∥∥∥

2

(B.703)

≤
(

1−min
a
πθt(a)

)
·
∥∥∥∥τtθt − r − (τtθt − r)>1

K
· 1
∥∥∥∥

2

(B.704)

(by Lemma 38) (B.705)

≤ exp
{
−min

a
πθt(a)

}
·
∥∥∥∥τtθt − r − (τtθt − r)>1

K
· 1
∥∥∥∥

2

. (B.706)

Then we have,

(π∗τt − πθt)
>r ≤

∥∥π∗τt − πθt∥∥1
(B.707)

(by Hölder’s inequality, and ‖r‖∞ ≤ 1) (B.708)

≤
∥∥∥∥θt − r

τt
− (τtθt − r)>1

τtK
· 1
∥∥∥∥
∞

(by Lemma 39) (B.709)

≤ 1

τt
·
∥∥∥∥τtθt − r − (τtθt − r)>1

K
· 1
∥∥∥∥

2

(‖x‖∞ ≤ ‖x‖2) (B.710)

≤ 1

τt
· exp

{
−min

a
πθt−1(a)

}
(B.711)

·
∥∥∥∥τt−1θt−1 − r −

(τt−1θt−1 − r)>1

K
· 1
∥∥∥∥

2

(B.712)

(by Eq. (B.702)) (B.713)

≤ 1

τt
· exp

{
−

t−1∑
s=1

[min
a
πθs(a)]

}
(B.714)

·
∥∥∥∥τ1θ1 − r −

(τ1θ1 − r)>1

K
· 1
∥∥∥∥

2

(B.715)

≤ 1

τt
· exp

{
−

t−1∑
s=1

[min
a
πθs(a)]

}
· 2(τ1‖θ1‖∞ + 1)

√
K (B.716)

(by Eq. (B.413)) (B.717)

=
log t

exp
{∑t−1

s=1 [mina πθs(a)]
} · 2(τ1‖θ1‖∞ + 1)

√
K

α ·∆
.
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B.3 Proofs for Section 2.5: A Theoretical Un-

derstanding of Entropy Regularization in

Policy Gradient

B.3.1 Proofs for the Bandit Case

Lemma 17 (Reversed  Lojasiewicz). Take any r ∈ [0, 1]K . Denote ∆ =

r(a∗)−maxa6=a∗ r(a) > 0. Then,∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≤
√

2

∆
· (π∗ − πθ)>r. (B.718)

Proof. Note a∗ is the optimal action. Denote ∆(a) = r(a∗) − r(a), and ∆ =

mina6=a∗ ∆(a).

(π∗ − πθ)>r =
∑
a

πθ(a) · r(a∗)−
∑
a

πθ(a) · r(a) (B.719)

=
∑
a6=a∗

πθ(a) · r(a∗)−
∑
a6=a∗

πθ(a) · r(a) (B.720)

=
∑
a6=a∗

πθ(a) ·∆(a) (B.721)

≥
∑
a6=a∗

πθ(a) ·∆. (B.722)

On the other hand,

0 ≤ r(a∗)− π>θ r = (π∗ − πθ)>r (B.723)

=
∑
a6=a∗

πθ(a) ·∆(a) ≤
∑
a6=a∗

πθ(a) · 1 =
∑
a6=a∗

πθ(a). (B.724)
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Therefore the `2 norm of gradient can be upper bounded as∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

(B.725)

=

(
πθ(a

∗)2 ·
[
r(a∗)− π>θ r

]2
+
∑
a6=a∗

πθ(a)2 · (r(a)− π>θ r)2

) 1
2

(B.726)

≤

12 ·

[∑
a6=a∗

πθ(a)

]2

+
∑
a6=a∗

πθ(a)2 · 12

 1
2

(B.727)

≤

[∑
a6=a∗

πθ(a)

]2

+

[∑
a6=a∗

πθ(a)

]2
 1

2

(by ‖x‖2 ≤ ‖x‖1) (B.728)

=
√

2 ·
∑
a6=a∗

πθ(a). (B.729)

Combining the results, we have∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≤
√

2 ·
∑
a6=a∗

πθ(a) =

√
2

∆
·∆ ·

∑
a6=a∗

πθ(a) ≤
√

2

∆
· (π∗ − πθ)>r.

Theorem 9 (Lower bound). Take any r ∈ [0, 1]K . For large enough t ≥ 1,

using Update 1 with learning rate ηt ∈ (0, 1],

(π∗ − πθt)>r ≥
∆2

6 · t
.

Proof. Denote δt = (π∗ − πθt)>r > 0. Let θt+1 = θt + ηt ·
dπ>θt

r

dθt
, and πθt+1 =

softmax(θt+1) be the next policy after one step gradient update. We have,

δt − δt+1 (B.730)

= (πθt+1 − πθt)>r −
〈dπ>θtr
dθt

, θt+1 − θt
〉

+
〈dπ>θtr
dθt

, θt+1 − θt
〉

(B.731)

≤ 5

4
· ‖θt+1 − θt‖2

2 +
〈dπ>θtr
dθt

, θt+1 − θt
〉

(by Lemma 2) (B.732)

=

(
5η2

t

4
+ ηt

)
·
∥∥∥∥dπ>θtrdθt

∥∥∥∥2

2

(
by θt+1 = θt + ηt ·

dπ>θtr

dθt

)
(B.733)

≤ 9

2
· 1

∆2
· δ2

t . (by ηt ∈ (0, 1] and by Lemma 17) (B.734)

According to convergence result Theorem 2 we have δt > 0, δt → 0 as t→∞.

We prove that for all large enough t ≥ 1, δt ≤ 10
9
· δt+1 by contradiction.
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Suppose δt >
10
9
· δt+1.

δt+1 ≥ δt −
9

2
· 1

∆2
· δ2

t (B.735)

>
10

9
· δt+1 −

9

2
· 1

∆2
·
(

10

9
· δt+1

)2

(B.736)(
since f(x) = x− ax2 is increasing for all x <

1

2a
and a > 0

)
(B.737)

=
10

9
· δt+1 −

50

9
· 1

∆2
· δ2

t+1, (B.738)

which implies δt+1 > ∆2

50
for large enough t ≥ 1. This is a contradiction

with δt → 0 as t → ∞. Now we have δt ≤ 10
9
· δt+1. Divide both sides of

δt − δt+1 ≤ 9
2
· 1

∆2 · δ2
t by δt · δt+1,

1

δt+1

− 1

δt
≤ 9

2
· 1

∆2
· δt
δt+1

≤ 9

2
· 1

∆2
· 10

9
=

5

∆2
. (B.739)

Summing up from T1 (some large enough time) to T1 + t, we have

1

δT1+t

− 1

δT1

≤ 5

∆2
· (t− 1) ≤ 5

∆2
· t. (B.740)

Since T1 is a finite time, δT1 ≥ 1/C for some constant C > 0. Rearranging, we

have

(π∗ − πθT1+t
)>r = δT1+t ≥

1
1
δT1

+ 5
∆2 · t

(B.741)

≥ 1

C + 5
∆2 · t

≥ 1

C + 5
∆2 · (T1 + t)

. (B.742)

By abusing notation t := T1 + t and C ≤ t
∆2 , we have

(π∗ − πθt)>r ≥
1

C + 5
∆2 · t

≥ 1
t

∆2 + 5
∆2 · t

=
∆2

6 · t
, (B.743)

for all large enough t ≥ 1.

B.3.2 Proofs for General MDPs

Lemma 18 (Reversed  Lojasiewicz). Denote

∆∗(s) = Q∗(s, a∗(s))− max
a6=a∗(s)

Q∗(s, a) > 0, (B.744)
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as the optimal value gap of state s, where a∗(s) is the action that the optimal

policy selects under state s, and ∆∗ = mins∈S ∆∗(s) > 0 as the optimal value

gap of the MDP. Then we have,∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

≤ 1

1− γ
·
√

2

∆∗
· [V ∗(µ)− V πθ(µ)] . (B.745)

Proof. Denote ∆∗(s, a) = Q∗(s, a∗(s))−Q∗(s, a), and ∆∗(s) = mina6=a∗(s) ∆∗(s, a).

We have,

V ∗(µ)− V πθ(µ) =
1

1− γ
∑
s

dπθµ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) (B.746)

(by Lemma 36) (B.747)

=
1

1− γ
∑
s

dπθµ (s) ·
[∑

a

πθ(a|s) ·Q∗(s, a∗(s)) (B.748)

−
∑
a

πθ(a|s) ·Q∗(s, a)

]
(B.749)

=
1

1− γ
∑
s

dπθµ (s) ·
[ ∑
a6=a∗(s)

πθ(a|s) ·Q∗(s, a∗(s)) (B.750)

−
∑

a6=a∗(s)

πθ(a|s) ·Q∗(s, a)

]
(B.751)

=
1

1− γ
∑
s

dπθµ (s) ·

 ∑
a6=a∗(s)

πθ(a|s) ·∆∗(s, a)

 (B.752)

≥ 1

1− γ
∑
s

dπθµ (s) ·

 ∑
a6=a∗(s)

πθ(a|s)

 ·∆∗(s). (B.753)

SinceQπθ(s, a) ∈ [0, 1/(1−γ)], and V πθ(s) ∈ [0, 1/(1−γ)], we have |Aπθ(s, a)| ∈

[0, 1/(1− γ)]. Also,

|Aπθ(s, a∗(s))| =

∣∣∣∣∣Qπθ(s, a∗(s))−
∑
a

πθ(a|s) ·Qπθ(s, a)

∣∣∣∣∣ (B.754)

=

∣∣∣∣∣∣
∑

a6=a∗(s)

πθ(a|s) · [Qπθ(s, a∗(s))−Qπθ(s, a)]

∣∣∣∣∣∣ (B.755)

≤
∑

a6=a∗(s)

πθ(a|s) · |Qπθ(s, a∗(s))−Qπθ(s, a)| (B.756)

(by the triangle inequality) (B.757)

≤ 1

1− γ
∑

a6=a∗(s)

πθ(a|s). (because Qπθ(s, a) ∈ [0, 1/(1− γ)]) (B.758)
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Therefore the `2 norm of gradient can be upper bounded as∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

=
1

1− γ
·

[∑
s

dπθµ (s)2
∑
a

πθ(a|s)2 · Aπθ(s, a)2

] 1
2

(B.759)

=
1

1− γ
·
[∑

s

dπθµ (s)2 ·
(
πθ(a

∗(s)|s)2 · Aπθ(s, a∗(s))2 (B.760)

+
∑

a6=a∗(s)

πθ(a|s)2 · Aπθ(s, a)2
)] 1

2

(B.761)

≤ 1

1− γ
·
[∑

s

dπθµ (s)2 ·
(

1 · 1

(1− γ)2
·
[ ∑
a6=a∗(s)

πθ(a|s)
]2

(B.762)

+
∑

a6=a∗(s)

πθ(a|s)2 · 1

(1− γ)2

)] 1
2

(B.763)

≤ 1

(1− γ)2
·
[∑

s

dπθµ (s)2 · 2 ·
[ ∑
a6=a∗(s)

πθ(a|s)
]2
] 1

2

(B.764)

(by ‖x‖2 ≤ ‖x‖1) (B.765)

≤ 1

(1− γ)2
·
√

2 ·
∑
s

dπθµ (s) ·
[ ∑
a6=a∗(s)

πθ(a|s)
]
. (B.766)

(by ‖x‖2 ≤ ‖x‖1) (B.767)

Combining the results, we have∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

≤ 1

1− γ
·
√

2 · 1

1− γ
∑
s

dπθµ (s) ·

 ∑
a6=a∗(s)

πθ(a|s)

 (B.768)

=
1

1− γ
·
√

2

∆∗
· 1

1− γ
∑
s

dπθµ (s) ·

 ∑
a6=a∗(s)

πθ(a|s)

 ·∆∗ (B.769)

≤ 1

1− γ
·
√

2

∆∗
· 1

1− γ
∑
s

dπθµ (s) ·

 ∑
a6=a∗(s)

πθ(a|s)

 ·∆∗(s) (B.770)

(by ∆∗ ≤ ∆∗(s) holds for all s) (B.771)

≤ 1

1− γ
·
√

2

∆∗
· [V ∗(µ)− V πθ(µ)] .

Theorem 10 (Lower bound). Take any MDP. For large enough t ≥ 1, using

Algorithm 1 with ηt ∈ (0, 1],

V ∗(µ)− V πθt (µ) ≥ (1− γ)5 · (∆∗)2

12 · t
, (B.772)
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where ∆∗ = mins∈S,a 6=a∗(s){Q∗(s, a∗(s)) − Q∗(s, a)} > 0 is the optimal value

gap of the MDP, and a∗(s) = arg maxa π
∗(a|s) is the action that the optimal

policy selects under state s.

Proof. Suppose Algorithm 1 can converge faster than O(1/t) for general MDPs,

then it can converge faster than O(1/t) for any one-state MDPs, which are

special cases of general MDPs. This is a contradiction with Theorem 9.

The above one-sentence argument implies a Ω(1/t) rate lower bound. To

calculate the constant in the lower bound, we need results similar to Lemma 17.

According to the reversed  Lojasiewicz inequality of Lemma 18,∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥
2

≤ 1

1− γ
·
√

2

∆∗
· δt, (B.773)

where δt = V ∗(µ)− V πθt (µ) > 0. Let θt+1 = θt + ηt · ∂V
πθt (µ)
∂θt

, and πθt+1(·|s) =

softmax(θt+1(s, ·)), ∀s ∈ S be the next policy after one step gradient update.

Using similar calculations as in Eq. (B.730),

δt − δt+1 = V πθt+1 (µ)− V πθt (µ)−
〈∂V πθt (µ)

∂θt
, θt+1 − θt

〉
(B.774)

+
〈∂V πθt (µ)

∂θt
, θt+1 − θt

〉
(B.775)

≤ 4

(1− γ)3
· ‖θt+1 − θt‖2

2 +
〈∂V πθt (µ)

∂θt
, θt+1 − θt

〉
(B.776)

(by Lemma 7) (B.777)

=

(
4η2

t

(1− γ)3
+ ηt

)
·
∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥2

2

(B.778)(
by θt+1 = θt + ηt ·

∂V πθt (µ)

∂θt

)
(B.779)

≤ 10

(1− γ)5
· 1

(∆∗)2
· δ2

t . (by ηt ∈ (0, 1] and by Lemma 18) (B.780)

According to Theorem 4, we have δt > 0, δt → 0 as t → ∞. Using similar

arguments as in Eq. (B.735), we can show that for all large enough t ≥ 1,

δt ≤ 11
10
· δt+1. Divide both sides of δt − δt+1 ≤ 10

(1−γ)5 · 1
(∆∗)2 · δ2

t by δt · δt+1,

1

δt+1

− 1

δt
≤ 10

(1− γ)5
· 1

(∆∗)2
· δt
δt+1

(B.781)

≤ 10

(1− γ)5
· 1

(∆∗)2
· 11

10
=

11

(1− γ)5 · (∆∗)2
. (B.782)

191



Using similar calculations as in the proof of Theorem 9, we have,

V ∗(µ)− V πθt (µ) = δt ≥
(1− γ)5 · (∆∗)2

12 · t
, (B.783)

for all large enough t ≥ 1.

B.3.3 Proofs for the Non-uniform  Lojasiewicz Degree

Proposition 4. Let r ∈ [0, 1]K be arbitrary and consider θ 7→ Ea∼πθ [r(a)].

The non-uniform  Lojasiewicz degree of this map with constant C(θ) = πθ(a
∗)

is zero.

Proof. We prove by contradiction. Suppose the  Lojasiewicz degree of Ea∼πθ [r(a)]

can be larger than 0. Then there exists ξ > 0, such that,∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≥ C(θ) ·
[
(π∗ − πθ)>r

]1−ξ
. (B.784)

Consider the following example, r = (0.6, 0.4, 0.2)>, πθ = (1− 3ε, 2ε, ε)> with

small number ε > 0.

(π∗ − πθ)>r = r(a∗)− π>θ r = 0.6− (0.6− 0.8ε) = 0.8 · ε. (B.785)

According to the reversed  Lojasiewicz inequality of Lemma 17,∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≤
√

2

∆
· (π∗ − πθ)>r =

√
2

2
· (π∗ − πθ)>r (B.786)

≤ 1.5

2
· (π∗ − πθ)>r = 0.6 · ε. (B.787)

Also note that πθ(a
∗) = 1− 3ε > 1/4. Then for ξ ∈ (0, 1], we have∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≤ 0.6 · ε =
1

4
· 3 · 0.8 · ε (B.788)

< πθ(a
∗) · 3 · 0.8 · ε = C(θ) · 3 · 0.8 · ε. (B.789)

Next, since ε > 0 can be very small,∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

< C(θ) · 3 · 0.8 · ε = C(θ) · 3 · (0.8 · ε)ξ · (0.8 · ε)1−ξ (B.790)

< C(θ) · (0.8 · ε)1−ξ = C(θ) ·
[
(π∗ − πθ)>r

]1−ξ
, (B.791)

where the second inequality is by (0.8 · ε)ξ < 1/3 for small ε > 0 since ξ > 0.

This is a contradiction with the assumption. Therefore the  Lojasiewicz degree

ξ cannot be larger than 0.
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Proposition 5. Fix τ > 0. With C(θ) =
√

2τ · mina πθ(a), the  Lojasiewicz

degree of θ 7→ Ea∼πθ [r(a)− τ log πθ(a)] is at least 1/2.

Proof. Denote δθ = Ea∼π∗τ [r(a)− τ log π∗τ (a)]−Ea∼πθ [r(a)− τ log πθ(a)] as the

soft sub-optimality. We have,

δθ = E
a∼π∗τ

[r(a)− τ log π∗τ (a)]− E
a∼πθ

[r(a)− τ log π∗τ (a)] (B.792)

− E
a∼πθ

[τ log π∗τ (a)− τ log πθ(a)] (B.793)

= τ log
∑
a

exp{r(a)/τ} − τ log
∑
a

exp{r(a)/τ} (B.794)

+ τ ·DKL(πθ‖π∗τ ) (since π∗τ = softmax(r/τ)) (B.795)

= τ ·DKL(πθ‖π∗τ ) (B.796)

≤ τ

2
·
∥∥∥∥ rτ − θ − (r/τ − θ)>1

K
· 1
∥∥∥∥2

∞
(by Lemma 42) (B.797)

=
1

2τ
·
∥∥∥∥r − τθ − (r − τθ)>1

K
· 1
∥∥∥∥2

∞
. (B.798)

Next, the entropy regularized policy gradient w.r.t. θ is

d{π>θ (r − τ log πθ)}
dθ

= H(πθ)(r − τ log πθ) (B.799)

= H(πθ)

(
r − τθ + τ log

∑
a

exp{θ(a)} · 1

)
(B.800)

= H(πθ) (r − τθ) (B.801)

= H(πθ)

(
r − τθ − (r − τθ)>1

K
· 1
)
, (B.802)

where the last two equations are by H(πθ)1 = 0 as shown in Lemma 37. Then

we have,∥∥∥∥d{π>θ (r − τ log πθ)}
dθ

∥∥∥∥
2

=

∥∥∥∥H(πθ)

(
r − τθ − (r − τθ)>1

K
· 1
)∥∥∥∥

2

(B.803)

≥ min
a
πθ(a) ·

∥∥∥∥r − τθ − (r − τθ)>1

K
· 1
∥∥∥∥

2

(by Lemma 38) (B.804)

≥ min
a
πθ(a) ·

∥∥∥∥r − τθ − (r − τθ)>1

K
· 1
∥∥∥∥
∞

(B.805)

≥ min
a
πθ(a) ·

√
2τ ·

√
δθ (by Eq. (B.792)) (B.806)

=
√

2τ ·min
a
πθ(a) ·

(
E

a∼π∗τ
[r(a)− τ log π∗τ (a)]− E

a∼πθ
[r(a)− τ log πθ(a)]

) 1
2

,

(B.807)

193



which means the  Lojasiewicz degree of Ea∼πθ [r(a)− τ log πθ(a)] is 1/2 and

C(θ) =
√

2τ ·mina πθ(a).

B.4 Miscellaneous Extra Supporting Results

Lemma 33 (Ascent lemma for smooth function). Let f : Rd → R be a β-

smooth function, θ ∈ Rd and θ′ = θ + 1
β
· ∂f(θ)

∂θ
. We have,

f(θ)− f(θ′) ≤ − 1

2β
·
∥∥∥∥∂f(θ)

∂θ

∥∥∥∥2

2

. (B.808)

Proof. According to the definition of smoothness, we have,∣∣∣∣f(θ′)− f(θ)−
〈∂f(θ)

∂θ
, θ′ − θ

〉∣∣∣∣ ≤ β

2
· ‖θ′ − θ‖2

2, (B.809)

which implies,

f(θ)− f(θ′) ≤ −
〈∂f(θ)

∂θ
, θ′ − θ

〉
+
β

2
· ‖θ′ − θ‖2

2 (B.810)

= − 1

β
·
∥∥∥∥∂f(θ)

∂θ

∥∥∥∥2

2

+
β

2
· 1

β2
·
∥∥∥∥∂f(θ)

∂θ

∥∥∥∥2

2

(B.811)(
θ′ = θ +

1

β
· ∂f(θ)

∂θ

)
(B.812)

= − 1

2β
·
∥∥∥∥∂f(θ)

∂θ

∥∥∥∥2

2

.

Lemma 34 (First performance difference lemma (Kakade and Langford, 2002)).

For any policies π and π′,

V π′(ρ)− V π(ρ) =
1

1− γ
∑
s

dπ
′

ρ (s)
∑
a

(π′(a|s)− π(a|s)) ·Qπ(s, a) (B.813)

=
1

1− γ
∑
s

dπ
′

ρ (s)
∑
a

π′(a|s) · Aπ(s, a). (B.814)
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Proof. According to the definition of value function,

V π′(s)− V π(s) =
∑
a

π′(a|s) ·Qπ′(s, a)−
∑
a

π(a|s) ·Qπ(s, a) (B.815)

=
∑
a

π′(a|s) ·
(
Qπ′(s, a)−Qπ(s, a)

)
(B.816)

+
∑
a

(π′(a|s)− π(a|s)) ·Qπ(s, a) (B.817)

=
∑
a

(π′(a|s)− π(a|s)) ·Qπ(s, a) (B.818)

+ γ
∑
a

π′(a|s)
∑
s′

P(s′|s, a) ·
[
V π′(s′)− V π(s′)

]
(B.819)

=
1

1− γ
∑
s′

dπ
′

s (s′)
∑
a′

(π′(a′|s′)− π(a′|s′)) ·Qπ(s′, a′) (B.820)

=
1

1− γ
∑
s′

dπ
′

s (s′)
∑
a′

π′(a′|s′) · (Qπ(s′, a′)− V π(s′)) (B.821)

=
1

1− γ
∑
s′

dπ
′

s (s′)
∑
a′

π′(a′|s′) · Aπ(s′, a′).

Lemma 35 (Second performance difference lemma). For any policies π and

π′,

V π′(ρ)− V π(ρ) =
1

1− γ
∑
s

dπρ(s)
∑
a

(π′(a|s)− π(a|s)) ·Qπ′(s, a). (B.822)

Proof. According to the definition of value function,

V π′(s)− V π(s) =
∑
a

π′(a|s) ·Qπ′(s, a)−
∑
a

π(a|s) ·Qπ(s, a) (B.823)

=
∑
a

(π′(a|s)− π(a|s)) ·Qπ′(s, a) (B.824)

+
∑
a

π(a|s) ·
(
Qπ′(s, a)−Qπ(s, a)

)
(B.825)

=
∑
a

(π′(a|s)− π(a|s)) ·Qπ′(s, a) (B.826)

+ γ
∑
a

π(a|s)
∑
s′

P(s′|s, a) ·
[
V π′(s′)− V π(s′)

]
(B.827)

=
1

1− γ
∑
s′

dπs (s′)
∑
a′

(π′(a′|s′)− π(a′|s′)) ·Qπ′(s′, a′).

Lemma 36 (Value sub-optimality lemma). For any policy π,

V ∗(ρ)− V π(ρ) =
1

1− γ
∑
s

dπρ(s)
∑
a

(π∗(a|s)− π(a|s)) ·Q∗(s, a). (B.828)
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Proof. According to the second performance difference lemma of Lemma 35,

the result immediately holds.

Lemma 37 (Spectrum of H matrix). Let π ∈ ∆(A). Denote H(π) = diag(π)−

ππ>. Let

π(1) ≤ π(2) ≤ · · · ≤ π(K). (B.829)

Denote the eigenvalues of H(π) as

λ1 ≤ λ2 ≤ · · · ≤ λK . (B.830)

Then we have,

λ1 = 0, (B.831)

π(i− 1) ≤ λi ≤ π(i), i = 2, 3, . . . , K. (B.832)

Proof. According to Golub (1973, Section 5),

π(1)− π>π ≤ λ1 ≤ π(1), (B.833)

π(i− 1) ≤ λi ≤ π(i), i = 2, 3, . . . , K. (B.834)

We show λ1 = 0. Note

H(π)1 = (diag(π)− ππ>)1 = π − π = 0 · 1. (B.835)

Thus 1 is an eigenvector of H(π) which corresponds to eigenvalue 0. Further-

more, for any vector x ∈ RK ,

x>H(π)x = E
a∼π

[x(a)2]−
(
E
a∼π

[x(a)]
)2

= Vara∼π[x(a)] ≥ 0, (B.836)

which means all the eigenvalues of H(π) are non-negative.

Lemma 38. Let π ∈ ∆(A). Denote H(π) = diag(π) − ππ>. For any vector

x ∈ RK,∥∥∥∥(Id−H(π))

(
x− x>1

K
· 1
)∥∥∥∥

2

≤
(

1−min
a
π(a)

)
·
∥∥∥∥x− x>1

K
· 1
∥∥∥∥

2

,

(B.837)∥∥∥∥H(π)

(
x− x>1

K
· 1
)∥∥∥∥

2

≥ min
a
π(a) ·

∥∥∥∥x− x>1

K
· 1
∥∥∥∥

2

. (B.838)
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Proof. x can be written as linear combination of eigenvectors of H(π),

x = a1 ·
1√
K

+ a2v2 + · · ·+ aKvK (B.839)

=
x>1

K
· 1 + a2v2 + · · ·+ aKvK . (B.840)

Since H(π) is symmetric,
{

1√
K
, v2, . . . , vK

}
are orthonormal. The last equa-

tion is because the representation is unique, and

a1 = x>
1√
K

=
x>1√
K
. (B.841)

Denote

x′ = x− x>1

K
· 1 = a2v2 + · · ·+ aKvK . (B.842)

We have

‖x′‖2
2 = a2

2 + · · ·+ a2
K . (B.843)

On the other hand,

(Id−H(π))x′ = a2(1− λ2)v2 + · · ·+ aK(1− λK)vK . (B.844)

Therefore

‖(Id−H(π))x′‖2 =
(
a2

2(1− λ2)2 + · · ·+ a2
K(1− λK)2

) 1
2 (B.845)

≤
(
(a2

2 + · · ·+ a2
K) · (1− λ2)2

) 1
2 (B.846)

= (1− λ2) · ‖x′‖2 (B.847)

≤
(

1−min
a
π(a)

)
· ‖x′‖2, (B.848)

where the first inequality is by 0 ≤ π(1) ≤ λ2 ≤ · · · ≤ λK ≤ π(K) ≤ 1, and

the last inequality is according to λ2 ≥ π(1) = mina π(a), and both are shown

in Lemma 37. Similarly,

‖H(π)x′‖2 =
(
a2

2λ
2
2 + · · ·+ a2

Kλ
2
K

) 1
2 (B.849)

≥
(
(a2

2 + · · ·+ a2
K) · λ2

2

) 1
2 (B.850)

= λ2 · ‖x′‖2 (B.851)

≥ min
a
π(a) · ‖x′‖2.

197



Lemma 39. Let πθ = softmax(θ) and πθ′ = softmax(θ′). Then for any con-

stant c ∈ R,

‖πθ − π′θ‖1 ≤ ‖θ
′ − θ − c · 1‖∞ . (B.852)

Proof. This results improves the results of ‖πθ − πθ′‖∞ ≤ 2 · ‖θ − θ′‖∞ in Xiao

et al. (2019, Lemma 5). According to the `1 norm strong convexity of negative

entropy over probabilistic simplex, i.e., for any policies π, π′,

π> log π ≥ π′
>

log π′ + (π − π′)> log π′ +
1

2
· ‖π′ − π‖2

1 , (B.853)

we have (letting π = πθ, and π′ = πθ′),

DKL(πθ‖πθ′) = π>θ log πθ − πθ′> log πθ′ − (πθ − πθ′)> log πθ′ (B.854)

≥ 1

2
· ‖πθ − π′θ‖

2
1 , (B.855)

which is the Pinsker’s inequality. Then we have,

‖πθ − π′θ‖1 ≤
√

2 ·DKL(πθ‖πθ′) (B.856)

≤
√

2 · 1

2
· ‖θ′ − θ − c · 1‖2

∞ (by Lemma 42) (B.857)

= ‖θ′ − θ − c · 1‖∞ .

Lemma 40 (Soft performance difference lemma). For any policies π and π′,

Ṽ π′(ρ)− Ṽ π(ρ) =
1

1− γ
∑
s

dπρ(s) (B.858)

·
[∑

a

(π′(a|s)− π(a|s)) ·
[
Q̃π′(s, a)− τ log π′(a|s)

]
(B.859)

+ τ ·DKL(π(·|s)‖π′(·|s))
]
. (B.860)
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Proof. According to the definition of soft value function,

Ṽ π′(s)− Ṽ π(s) =
∑
a

π′(a|s) ·
[
Q̃π′(s, a)− τ log π′(a|s)

]
(B.861)

−
∑
a

π(a|s) ·
[
Q̃π(s, a)− τ log π(a|s)

]
(B.862)

=
∑
a

(π′(a|s)− π(a|s)) ·
[
Q̃π′(s, a)− τ log π′(a|s)

]
(B.863)

+
∑
a

π(a|s) ·
[
Q̃π′(s, a)− τ log π′(a|s) (B.864)

− Q̃π(s, a) + τ log π(a|s)
]

(B.865)

=
∑
a

(π′(a|s)− π(a|s)) ·
[
Q̃π′(s, a)− τ log π′(a|s)

]
(B.866)

+ τDKL(π(·|s)‖π′(·|s)) (B.867)

+ γ
∑
a

π(a|s)
∑
s′

P(s′|s, a) ·
[
Ṽ π′(s′)− Ṽ π(s′)

]
(B.868)

=
1

1− γ
∑
s′

dπs (s′) (B.869)

·
[∑

a′

(π′(a′|s′)− π(a′|s′)) ·
[
Q̃π′(s′, a′)− τ log π′(a′|s′)

]
(B.870)

+ τ ·DKL(π(·|s′)‖π′(·|s′))
]
, (B.871)

finishing the proof.

Lemma 41 (Soft sub-optimality lemma). For any policy π,

Ṽ π∗τ (ρ)− Ṽ π(ρ) =
1

1− γ
∑
s

[
dπρ(s) · τ ·DKL(π(·|s)‖π∗τ (·|s))

]
. (B.872)

Proof. According to Nachum et al. (2017, Theorem 1), ∀(s, a),

τ log π∗τ (a|s) = Q̃π∗τ (s, a)− Ṽ π∗τ (s). (B.873)
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According to the soft performance difference lemma of Lemma 40,

Ṽ π∗τ (s)− Ṽ π(s) =
1

1− γ
∑
s′

dπs (s′) (B.874)

·
[∑

a′

(π∗τ (a
′|s′)− π(a′|s′)) ·

[
Q̃π∗τ (s′, a′)− τ log π∗τ (a

′|s′)
]

(B.875)

+ τ ·DKL(π(·|s′)‖π∗τ (·|s′))
]

(B.876)

=
1

1− γ
∑
s′

dπs (s′) ·
[∑

a′

(π∗τ (a
′|s′)− π(a′|s′)) · Ṽ π∗τ (s′) (B.877)

+ τ ·DKL(π(·|s′)‖π∗τ (·|s′))
]

(by Eq. (B.873)) (B.878)

=
1

1− γ
∑
s′

dπs (s′) ·
[

(1− 1) · Ṽ π∗τ (s′) (B.879)

+ τ ·DKL(π(·|s′)‖π∗τ (·|s′))
]

(B.880)

=
1

1− γ
∑
s′

[dπs (s′) · τ ·DKL(π(·|s′)‖π∗τ (·|s′))].

Lemma 42 (KL-Logit inequality). Let πθ = softmax(θ) and πθ′ = softmax(θ′).

Then for any constant c ∈ R,

DKL(πθ‖πθ′) ≤
1

2
· ‖θ′ − θ − c · 1‖2

∞ . (B.881)

In particular, let c = (θ′−θ)>1
K

, we have

DKL(πθ‖πθ′) ≤
1

2
·
∥∥∥∥θ′ − θ − (θ′ − θ)>1

K
· 1
∥∥∥∥2

∞
. (B.882)

Proof. According to the `1 norm strong convexity of negative entropy over

probabilistic simplex, i.e., for any policies π, π′,

π′
>

log π′ ≥ π> log π + (π′ − π)> log π +
1

2
· ‖π − π′‖2

1 , (B.883)
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we have (letting π = πθ, and π′ = πθ′),

DKL(πθ‖πθ′) = π>θ log πθ − πθ′> log πθ′ − (πθ − πθ′)> log πθ′ (B.884)

≤ (πθ − πθ′)> log πθ −
1

2
· ‖πθ − πθ′‖2

1 − (πθ − πθ′)> log πθ′ (B.885)

= (πθ − πθ′)> (log πθ − log πθ′)−
1

2
· ‖πθ − πθ′‖2

1 (B.886)

= (πθ − πθ′)>
[
θ − θ′ (B.887)

−
(

log
∑
a

exp{θ(a)} − log
∑
a

exp{θ′(a)}
)
· 1
]

(B.888)

− 1

2
· ‖πθ − πθ′‖2

1 (B.889)

= (πθ − πθ′)> (θ − θ′)− 1

2
· ‖πθ − πθ′‖2

1 (B.890)

= (πθ − πθ′)> (θ − θ′ − c · 1)− 1

2
· ‖πθ − πθ′‖2

1 (B.891)(
since (πθ − πθ′)>c · 1 = 0 holds ∀c ∈ R

)
(B.892)

≤ ‖θ − θ′ − c · 1‖∞ · ‖πθ − πθ′‖1 −
1

2
· ‖πθ − πθ′‖2

1 (B.893)

(by Hölder’s inequality) (B.894)

≤ 1

2
· ‖θ − θ′ − c · 1‖2

∞ , (B.895)

where the last inequality is according to ax− bx2 ≤ a2

4b
, ∀a, b > 0.

B.5 Sub-optimality Guarantees for Entropy-

Based RL Methods

Some interesting insight worth mentioning in the proof of Lemma 15 is that

the intermediate results provide sub-optimality guarantees for existing entropy

regularized RL methods. In particular, Eqs. (B.570) and (B.582) provides

policy improvement guarantee for Soft Actor-Critic (Haarnoja et al., 2018,

SAC), and Eqs. (B.583) and (B.591) provide sub-optimality guarantees for

Patch Consistency Learning (Nachum et al., 2017, PCL).

Remark 20 (Soft policy improvement inequality). In Haarnoja et al. (2018,

Eq. (4) and Lemma 2), the policy is updated by

πθt+1 = arg min
πθ

DKL

(
πθ(·|s)

∥∥∥∥ exp {Qπθt (s, ·)}∑
a exp {Qπθt (s, a)}

)
, (B.896)
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which is exactly the KL divergence in Eq. (B.582), with π̄θ(·|s) defined in

Eq. (B.570). The soft policy improvement inequality of Eq. (B.582) guarantees

that if the soft policy improvement is small, then the sub-optimality is small.

Remark 21 (Path inconsistency inequality). In Nachum et al. (2017, Theo-

rems 1 and 3), it is shown that

• (i) soft optimal policy π∗τ satisfies the consistency conditions Eqs. (2.44)

and (2.45);

• (ii) for any policy π that satisfies the consistency conditions, i.e., if ∀s, a,

π(a|s) = exp
{

(Q̃π(s, a)− Ṽ π(s))/τ
}
, and (B.897)

Ṽ π(s) = τ log
∑
a

exp
{
Q̃π(s, a)/τ

}
, (B.898)

then π = π∗τ , and Ṽ π = Ṽ π∗τ .

However, Nachum et al. (2017) does not show if the consistency is violated

during learning, how the violation is related to the sub-optimality. To see why

Lemma 15 provides insight, define the following “path inconsistency”,

r(s, a) + γ
∑
s′

P(s′|s, a)Ṽ π(s′)− Ṽ π(s)− τ log π(a|s)

= Q̃π(s, a)− Ṽ π(s)− τ log π(a|s), (B.899)

which captures the violation of consistency conditions during learning. Note

that for softmax policy πθ(·|s) = softmax(θ(s, ·)), the r.h.s. of Eq. (B.899) can

be written in vector form as

Q̃πθ(s, ·)− Ṽ πθ(s) · 1− τ log πθ(·|s) (B.900)

= Q̃πθ(s, ·)− Ṽ πθ(s) · 1− τθ(s, ·) + τ log
∑
a

exp{θ(s, a)} · 1. (B.901)

Denote cθ(s) = Ṽ πθ (s)
τ
− log

∑
a exp{θ(s, a)}, and using Lemma 42 in the proof

of Lemma 15, in particular, Eq. (B.583),

DKL(πθ(·|s)‖π̄θ(·|s)) ≤
1

2
·

∥∥∥∥∥Q̃πθ(s, ·)
τ

− θ(s, ·)− cθ(s) · 1

∥∥∥∥∥
2

∞

=
1

2τ 2
·
∥∥∥Q̃πθ(s, ·)− Ṽ πθ(s) · 1− τ log πθ(·|s)

∥∥∥2

∞
.
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Using the above results in Eq. (B.591),

[
Ṽ π∗τ (ρ)− Ṽ πθ(ρ)

] 1
2 ≤ 1√

1− γ
· 1√

2τ
·

∥∥∥∥∥dπ
∗
τ
ρ

dπθµ

∥∥∥∥∥
1
2

∞

∑
s

√
dπθµ (s) (B.902)

·
∥∥∥Q̃πθ(s, ·)− Ṽ πθ(s) · 1− τ log πθ(·|s)

∥∥∥
∞

(B.903)

=
1√

1− γ
· 1√

2τ
·

∥∥∥∥∥dπ
∗
τ
ρ

dπθµ

∥∥∥∥∥
1
2

∞

∑
s

√
dπθµ (s) (B.904)

·max
a

∣∣∣∣∣r(s, a) + γ
∑
s′

P(s′|s, a)Ṽ πθ(s′)− τ log πθ(a|s)− Ṽ πθ(s)

∣∣∣∣∣ ,
(B.905)

where (square of)
∣∣∣r(s, a) + γ

∑
s′ P(s′|s, a)Ṽ πθ(s′)− τ log πθ(a|s)− Ṽ πθ(s)

∣∣∣ is

exactly the (one-step) path inconsistency objective used in PCL (Nachum et al.,

2017, Eq. (14)). Therefore, minimizing path inconsistency guarantees small

sub-optimality. The path inconsistency inequality of Eq. (B.902) implies path

consistency of Nachum et al. (2017).
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Appendix C

Proofs for Chapter 3: Escaping
the Gravitational Pull of
Softmax

C.1 Proofs for Section 3.2: Softmax Gravity

Well

Theorem 11 (Escape time lower bound). Even in a single-state MDP, for

any learning rate ηt ∈ (0, 1], there exists an initialization of the policy πθ1

and a positive constant C, such that SPG with full gradients cannot escape a

suboptimal corner before time t0 := C
∆·πθ1 (a∗)

, i.e., it will hold that

(π∗ − πθt)>r ≥ 0.9 ·∆, (C.1)

for all t ≤ t0, where ∆ := r(a∗) − maxa6=a∗ r(a) > 0 is the reward gap of

r ∈ [0, 1]K .

Proof. Consider the reward vector r = (b + ∆, b, . . . , b)> ∈ [0, 1]K for some b,

where ∆ > 0 is the reward gap. Then we have,

π>θ r = πθ(1) · (b+ ∆) + (1− πθ(1)) · b. (C.2)

Note that a∗ = 1. We have,

r(a∗)− π>θ r = b+ ∆− π>θ r (C.3)

= (1− πθ(1)) ·∆. (C.4)
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And ∀a 6= 1, we have,

r(a)− π>θ r = b− π>θ r (C.5)

= −πθ(1) ·∆. (C.6)

Therefore, the `2 norm of softmax policy gradient can be upper bounded as

∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

=

[
πθ(a

∗)2 ·
(
r(a∗)− π>θ r

)2
+

K∑
a=2

πθ(a)2 ·
(
r(a)− π>θ r

)2

] 1
2

(C.7)

=

[
πθ(1)2 · (1− πθ(1))2 ·∆2 + πθ(1)2 ·∆2 ·

K∑
a=2

πθ(a)2

] 1
2

(C.8)

(by Eqs. (C.3) and (C.5)) (C.9)

= πθ(1) ·∆ ·

[
(1− πθ(1))2 +

K∑
a=2

πθ(a)2

] 1
2

(C.10)

≤ πθ(1) ·∆ ·

(1− πθ(1))2 +

(
K∑
a=2

πθ(a)

)2
 1

2

(‖x‖2 ≤ ‖x‖1) (C.11)

=
√

2 · πθ(1) · (1− πθ(1)) ·∆. (C.12)

Let θt+1 ← θt + ηt ·
dπ>θt

r

dθt
, and πθt+1 = softmax(θt+1) be the next policy after

one step gradient update. Define the following two kinds of iterations:

tgood :=
{
t ≥ 1 : πθt+1(1) > πθt(1)

}
, (C.13)

tbad :=
{
t ≥ 1 : πθt+1(1) ≤ πθt(1)

}
. (C.14)

For all t ∈ tbad, we have,

1

πθt(1)
− 1

πθt+1(1)
=

1

πθt+1(1) · πθt(1)
·
(
πθt+1(1)− πθt(1)

)
≤ 0. (C.15)
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For all t ∈ tgood, we have,

πθt+1(1)− πθt(1) =

[
1− 1

∆
·
(
r(a∗)− π>θt+1

r
)]

(C.16)

−
[
1− 1

∆
·
(
r(a∗)− π>θtr

)]
(by Eq. (C.3)) (C.17)

=
1

∆
·
[
(πθt+1 − πθt)>r −

〈dπ>θtr
dθt

, θt+1 − θt
〉

(C.18)

+
〈dπ>θtr
dθt

, θt+1 − θt
〉]

(C.19)

≤ 1

∆
·
[

5

4
· ‖θt+1 − θt‖2

2 +
〈dπ>θtr
dθt

, θt+1 − θt
〉]

(C.20)

(by Lemma 2) (C.21)

=
1

∆
·
(

5η2
t

4
+ ηt

)
·
∥∥∥∥dπ>θtrdθt

∥∥∥∥2

2

(
θt+1 = θt + ηt ·

dπ>θtr

dθt

)
(C.22)

≤ 1

∆
·
(

5η2
t

4
+ ηt

)
· 2 · πθt(1)2 · (1− πθt(1))2 ·∆2 (C.23)

(by Eq. (C.7)) (C.24)

≤ 9

2
· πθt(1)2 · (1− πθt(1))2 ·∆ (ηt ∈ (0, 1]) (C.25)

≤ 9

2
· πθt(1)2 ·∆. (πθt(1) ∈ [0, 1]) (C.26)

Dividing both sides of Eq. (C.16) with πθt+1(1) · πθt(1), we have,

1

πθt(1)
− 1

πθt+1(1)
≤ 9

2
· πθt(1)

πθt+1(1)
·∆ (C.27)

≤ 9

2
·∆.

(
πθt+1(1) ≥ πθt(1) > 0

)
(C.28)
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Therefore, we have,

1

πθ1(1)
− 1

πθt(1)
=

t−1∑
s=1

[
1

πθs(1)
− 1

πθs+1(1)

]
(C.29)

=
t−1∑

s=1, s∈tgood

[
1

πθs(1)
− 1

πθs+1(1)

]
(C.30)

+
t−1∑

s=1, s∈tbad

[
1

πθs(1)
− 1

πθs+1(1)

]
(C.31)

≤
t−1∑

s=1, s∈tgood

[
1

πθs(1)
− 1

πθs+1(1)

]
(by Eq. (C.15)) (C.32)

≤
t−1∑

s=1, s∈tgood

[
9

2
·∆
]

(by Eq. (C.27)) (C.33)

≤ 9

2
·∆ · t. (C.34)

Let πθ1(1) ≤ 1
c
, for some constant c ≥ 11. If t ≤ 2

9c
· 1

∆
· 1
πθ1 (1)

, then we have,

1

πθt(1)
≥ 1

πθ1(1)
− 9

2
·∆ · t (by Eq. (C.29)) (C.35)

≥ 1

πθ1(1)
·
(

1− 1

c

)
(C.36)

≥ c ·
(

1− 1

c

)
= c− 1 ≥ 10, (C.37)

which implies πθt(1) ≤ 1
10

. Therefore, for all t ≤ 2
9c
· 1

∆
· 1
πθ1 (1)

, we have,

(π∗ − πθt)>r = (1− πθt(1)) ·∆ (by Eq. (C.3)) (C.38)

≥ 0.9 ·∆.

C.2 Proofs for Section 3.3: Escort Policy Gra-

dient

C.2.1 Escort Policy Gradient Closed Form in Bandits

For completeness, we show the detailed calculations for the escort policy gra-

dient in bandits, i.e., Eqs. (3.13) and (3.14), which are duplicated here for

207



convenience,

dπ>θ r

dθ(a)
= p · sgn{θ(a)} · |θ(a)|p−1∑

a′ |θ(a′)|p
·
[
r(a)− π>θ r

]
(C.39)

=
p

‖θ‖p
· sgn{θ(a)} · πθ(a)1−1/p ·

[
r(a)− π>θ r

]
. (C.40)

According to the chain rule, we have,

dπ>θ r

dθ
=

(
dπθ
dθ

)>(
dπ>θ r

dπθ

)
=

(
dπθ
dθ

)>
r. (C.41)

We calculate the Jacobian of the escort transform πθ = fp(θ). We have, for all

i, j ∈ [K],

dπθ(i)

dθ(j)
=

d

dθ(j)

{
|θ(i)|p∑
a′ |θ(a′)|p

}
(C.42)

=
δij · p · |θ(i)|p−1 · sgn{θ(i)} · (

∑
a′ |θ(a′)|p)

(
∑

a′ |θ(a′)|p)
2 (C.43)

− |θ(i)|
p · p · |θ(j)|p−1 · sgn{θ(j)}

(
∑

a′ |θ(a′)|p)
2 (C.44)

= δij · p · sgn{θ(i)} · |θ(i)|
p−1∑

a′ |θ(a′)|p
(C.45)

− p · sgn{θ(j)} · |θ(j)|
p−1∑

a′ |θ(a′)|p
· πθ(i), (C.46)

where

δij =

{
1, if i = j,

0, otherwise.
(C.47)

Then we have the Jacobian as,(
dπθ
dθ

)>
= p · diag(sgn{θ})diag(|θ|p−1)∑

a′ |θ(a′)|p
[
Id− 1π>θ

]
. (C.48)

Combing Eqs. (C.41) and (C.48), we have,

dπ>θ r

dθ
= p · diag(sgn{θ})diag(|θ|p−1)∑

a′ |θ(a′)|p
[
r − 1 ·

(
π>θ r

)]
, (C.49)

208



which implies Eq. (3.13). Using πθ(a) = |θ(a)|p∑
a′ |θ(a′)|p

, we have, if θ(a) 6= 0,

dπ>θ r

dθ(a)
= p · sgn{θ(a)} · |θ(a)|p−1∑

a′ |θ(a′)|p
·
[
r(a)− π>θ r

]
(C.50)

=
p

|θ(a)|
· sgn{θ(a)} · |θ(a)|p∑

a′ |θ(a′)|p
·
[
r(a)− π>θ r

]
(C.51)

=
p

‖θ‖p · πθ(a)1/p
· sgn{θ(a)} · πθ(a) ·

[
r(a)− π>θ r

]
(C.52)

=
p

‖θ‖p
· sgn{θ(a)} · πθ(a)1−1/p ·

[
r(a)− π>θ r

]
, (C.53)

which is Eq. (3.14). On the other hand, if θ(a) = 0, then sgn{θ(a)} = sgn{0} =

0 makes Eq. (3.13) trivially equal to Eq. (3.14).

C.2.2 One-state MDPs

Proposition 6. θ 7→ π>θ r is a non-concave function over RK using the map

πθ := fp(θ), p ≥ 1.

Proof. Consider the following example with K = 3: r = (1, 9/10, 1/10)>,

θ1 = (1, 1, 1)>, and θ2 = (1, 1, 3)>. Then we have,

πθ1 = (1/3, 1/3, 1/3)>, (C.54)

πθ2 =
1

2 + 3p
· (1, 1, 3p)> . (C.55)

Denote θ̄ := 1
2
· (θ1 + θ2) = (1, 1, 2)>. We have,

1

2
·
(
π>θ1r + π>θ2r

)
=

1

2
·
(

2

3
+

19 + 3p

10 · (2 + 3p)

)
(C.56)

=
97 + 23 · 3p

60 · (2 + 3p)
(C.57)

=
194 + 97 · 2p + 46 · 3p + 23 · 2p · 3p

60 · (2 + 3p) · (2 + 2p)
(C.58)

=
19 + 2p

10 · (2 + 2p)
+

17 · (−2 + 5 · 2p − 4 · 3p + 2p · 3p)
60 · (2 + 3p) · (2 + 2p)

(C.59)

≥ 19 + 2p

10 · (2 + 2p)
(see below) (C.60)

= π>θ̄ r, (C.61)

where the last inequality is because of the function g(x) : x 7→ −2 + 5 · 2x− 4 ·
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3x + 2x · 3x is non-negative for all x ≥ 1. In fact, for any x ≥ 2, we have,

g(x) := −2 + 5 · 2x − 4 · 3x + 2x · 3x (C.62)

≥ −2 + 5 · 2x − 4 · 3x + 4 · 3x (x ≥ 2) (C.63)

= −2 + 5 · 2x ≥ 0. (C.64)

On the other hand, for any x ∈ [1, 2), we have,

g(x) := −2 + 5 · 2x − 4 · 3x + 2x · 3x (C.65)

≥ −2 + 5 · 2x − 4 · 3x + 2 · 3x (x ≥ 1) (C.66)

= −2 + 5 · 2x − 2 · 3x ≥ 0, (C.67)

which is easy to verify. According to Eq. (C.56), Ea∼πθ(·) [r(a)] is a non-concave

function of θ.

Lemma 19 (Non-uniform Smoothness). Suppose r ∈ [0, 1]K . Let πθ := fp(θ),

and πθ′ := fp(θ
′). Denote θζ := θ + ζ · (θ′ − θ) with some ζ ∈ [0, 1]. Then, we

have,

(i) for p ≥ 2, π>θ r is 3·p2·K1/p

‖θζ‖2p
-smooth, i.e.,∣∣∣∣(πθ′ − πθ)>r − 〈dπ>θ rdθ

, θ′ − θ
〉∣∣∣∣ ≤ 3 · p2 ·K1/p

2 · ‖θζ‖2
p

· ‖θ′ − θ‖2
2. (C.68)

(ii) for p = 1, π>θ r is 2·K
‖θζ‖21

-smooth, i.e.,∣∣∣∣(πθ′ − πθ)>r − 〈dπ>θ rdθ
, θ′ − θ

〉∣∣∣∣ ≤ K

‖θζ‖2
1

· ‖θ′ − θ‖2
2. (C.69)

Proof. Denote the second derivative w.r.t. θ (i.e., Hessian) as

S(r, θ) =
d

dθ

{
dπ>θ r

dθ

}
(C.70)

= p · d
dθ

{
diag

(πθ
θ

)
(r − π>θ r · 1)

}
. (C.71)
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Note that S(r, θ) ∈ RK×K , whose element at position (i, j) ∈ [K]2 is

Si,j = p ·
d{πθ(i)

θ(i)
· (r(i)− π>θ r)}
dθ(j)

(C.72)

= p ·
d{πθ(i)

θ(i)
}

dθ(j)
· (r(i)− π>θ r) + p · πθ(i)

θ(i)
· d{r(i)− π

>
θ r}

dθ(j)
(C.73)

= p ·
p
θ(j)
· [δij · πθ(i)− πθ(i) · πθ(j)] · θ(i)− πθ(i) · δij

θ(i)2
(C.74)

· (r(i)− π>θ r) (C.75)

− πθ(i)

θ(i)
· p2 · πθ(j)

θ(j)
· (r(j)− π>θ r) (C.76)

= p · (p− 1) · δij ·
πθ(i)

θ(i)2
· (r(i)− π>θ r) (C.77)

− p2 · πθ(i)
θ(i)

· πθ(j)
θ(j)

· (r(i)− π>θ r) (C.78)

− p2 · πθ(i)
θ(i)

· πθ(j)
θ(j)

· (r(j)− π>θ r), (C.79)

where δij is defined in Eq. (C.47). We calculate the spectral radius of S(r, θ).

For any nonzero y ∈ RK ,

∣∣y>S(r, θ)y
∣∣ =

∣∣∣∣∣
K∑
i=1

K∑
j=1

Si,jy(i)y(j)

∣∣∣∣∣ (C.80)

=

∣∣∣∣∣p · (p− 1)
∑
i

πθ(i)

θ(i)2
· (r(i)− π>θ r) · y(i)2 (C.81)

−2 · p2
∑
i

πθ(i)

θ(i)
· y(i)

∑
j

πθ(j)

θ(j)
· (r(j)− π>θ r) · y(j)

∣∣∣∣∣ (C.82)

≤ p · (p− 1) ·

∣∣∣∣∣∑
i

πθ(i)

θ(i)2
· (r(i)− π>θ r) · y(i)2

∣∣∣∣∣ (C.83)

+ 2 · p2 ·

∣∣∣∣∣∑
i

πθ(i)

θ(i)
· y(i)

∑
j

πθ(j)

θ(j)
· (r(j)− π>θ r) · y(j)

∣∣∣∣∣ , (C.84)

where the last inequality is by triangle inequality.
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First part. For p ≥ 2, the first term in Eq. (C.80) is upper bounded as,∣∣∣∣∣∑
i

πθ(i)

θ(i)2
· (r(i)− π>θ r) · y(i)2

∣∣∣∣∣ (C.85)

≤
∑
i

πθ(i)

θ(i)2
·
∣∣r(i)− π>θ r∣∣ · y(i)2 (by triangle inequality) (C.86)

≤
(

max
a

πθ(a)

θ(a)2
· |r(a)− π>θ r|

)
· ‖y‖2

2 (C.87)

(by Hölder’s inequality) (C.88)

≤
(

max
a

πθ(a)

θ(a)2

)
· ‖y‖2

2 (r(a) ∈ [0, 1], ∀a) (C.89)

=
1

‖θ‖2
p

·
(

max
a
πθ(a)1−2/p

)
· ‖y‖2

2 (C.90)

≤ 1

‖θ‖2
p

· ‖y‖2
2 . (p ≥ 2) (C.91)

The last term in Eq. (C.80) is upper bounded as,∣∣∣∣∣∑
i

πθ(i)

θ(i)
· y(i)

∑
j

πθ(j)

θ(j)
· (r(j)− π>θ r) · y(j)

∣∣∣∣∣ (C.92)

≤
∥∥∥πθ
θ

∥∥∥
2
· ‖y‖2 ·

∥∥∥diag
(πθ
θ

)
(r − π>θ r · 1)

∥∥∥
2
· ‖y‖2 (C.93)

(by Cauchy-Schwarz) (C.94)

=
∥∥∥πθ
θ

∥∥∥
2
·

[∑
a

(
πθ(a)

θ(a)

)2

· (r(a)− π>θ r)2

] 1
2

· ‖y‖2
2 (C.95)

≤
∥∥∥πθ
θ

∥∥∥
2
·

[∑
a

(
πθ(a)

θ(a)

)2
] 1

2

· ‖y‖2
2 (r(a) ∈ [0, 1], ∀a) (C.96)

=
∑
a

(
πθ(a)

θ(a)

)2

· ‖y‖2
2 (C.97)

=
1

‖θ‖2
p

∑
a

(
πθ(a)1−1/p

)2 · ‖y‖2
2 (C.98)

≤ 1

‖θ‖2
p

·

(∑
a

πθ(a)1−1/p

)
· ‖y‖2

2 .
(
πθ(a)1−1/p ∈ [0, 1]

)
(C.99)
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The intermediate term is then upper bounded as,∑
a

πθ(a)1−1/p = K1/p · 1

K

∑
a

(K · πθ(a))1−1/p (C.100)

≤ K1/p ·

(∑
a

K · πθ(a)

K

)1−1/p

(by Jensen’s inequality) (C.101)

= K1/p. (C.102)

Combining Eqs. (C.80), (C.85), (C.92) and (C.100), we have∣∣y>S(r, θ)y
∣∣ ≤ p · (p− 1) · 1

‖θ‖2
p

· ‖y‖2
2 + 2 · p2 · 1

‖θ‖2
p

·K1/p · ‖y‖2
2 (C.103)

≤ 3 · p2 ·K1/p

‖θ‖2
p

· ‖y‖2
2.

(
K1/p ≥ 1

)
(C.104)

According to Taylor’s theorem, we have, for p ≥ 2,∣∣∣∣(πθ′ − πθ)>r − 〈dπ>θ rdθ
, θ′ − θ

〉∣∣∣∣ =
1

2
·
∣∣∣(θ′ − θ)> S(r, θζ) (θ′ − θ)

∣∣∣ (C.105)

≤ 3 · p2 ·K1/p

2 · ‖θζ‖2
p

· ‖θ′ − θ‖2
2. (by Eq. (C.103)) (C.106)

Second part. For p = 1, according to Eq. (C.80), Eqs. (C.92) and (C.100),

we have,∣∣y>S(r, θ)y
∣∣ ≤ 2 · p2 · 1

‖θ‖2
p

·K1/p · ‖y‖2
2 =

2 ·K
‖θ‖2

1

· ‖y‖2
2. (C.107)

According to Taylor’s theorem, we have, for p = 1,∣∣∣∣(πθ′ − πθ)>r − 〈dπ>θ rdθ
, θ′ − θ

〉∣∣∣∣ ≤ K

‖θζ‖2
1

· ‖θ′ − θ‖2
2. (C.108)

Lemma 20 (Non-uniform  Lojasiewicz). Let πθ = fp(θ). For any p > 0, we

have, ∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≥ p

‖θ‖p
· πθ(a∗)1−1/p · (π∗ − πθ)>r, (C.109)

where π∗ = arg maxπ∈∆ π
>r is the optimal policy.
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Proof. The result follows from calculating the gradient norm,

∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

=

[
K∑
a=1

(
p · πθ(a)

θ(a)
· (r(a)− π>θ r)

)2
] 1

2

(C.110)

≥
∣∣∣∣p · πθ(a∗)θ(a∗)

· (r(a∗)− π>θ r)
∣∣∣∣ (C.111)

= p · πθ(a
∗)

|θ(a∗)|
· (π∗ − πθ)>r (C.112)

=
p

‖θ‖p
· πθ(a∗)1−1/p · (π∗ − πθ)>r.

(
πθ(a) =

|θ(a)|p∑
a′ |θ(a′)|p

)
Theorem 12. For a single-state MDP, following the escort policy gradient

with any initialization such that |θ1(a)| > 0, ∀a, we obtain the following upper

bounds on the sub-optimality gap for all t ≥ 1:

(gradient flow) for p ≥ 1, with ηt = ‖θt‖2
p,

(π∗ − πθt)>r ≤
1

c2−2/p · t+ 1
, (C.113)

(gradient ascent) for p ≥ 2, with ηt = 2
9·p2·K1/p · ‖θt‖2

p,

(π∗ − πθt)>r ≤
9 ·K1/p

c2−2/p
· 1

t
, (C.114)

(gradient ascent) for p = 1, with ηt = 2
9·K · ‖θt‖

2
1,

(π∗ − πθt)>r ≤
9K

t
, (C.115)

where c := inft πθt(a
∗) > 0 is a problem- and initialization-dependent, but

time-independent constant.

Proof. First part. For p ≥ 2, according to Lemma 19,∣∣∣∣(πθt+1 − πθt)>r −
〈dπ>θtr
dθt

, θt+1 − θt
〉∣∣∣∣ (C.116)

≤ 3 · p2 ·K1/p

2 · ‖θζt‖2
p

· ‖θt+1 − θt‖2
2, (C.117)

where

θζt := θt + ζt · (θt+1 − θt) = θt + ζt · ηt ·
dπ>θtr

dθt
, (C.118)
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for some ζt ∈ [0, 1]. The `p gradient norm can be upper bounded as,

∥∥∥∥dπ>θ rdθ

∥∥∥∥
p

=

[
K∑
a=1

∣∣∣∣p · πθ(a)

θ(a)
· (r(a)− π>θ r)

∣∣∣∣p
] 1
p

(C.119)

= p ·

[
K∑
a=1

(
πθ(a)

|θ(a)|
· |r(a)− π>θ r|

)p] 1
p

(C.120)

=
p

‖θ‖p
·

[
K∑
a=1

(
πθ(a)1−1/p · |r(a)− π>θ r|

)p] 1
p

(C.121)

≤ p

‖θ‖p
·

[
K∑
a=1

(1 · 1)p
] 1
p

=
p ·K1/p

‖θ‖p
. (C.122)

According to the triangle inequality, we have,

‖θζt‖p ≥ ‖θt‖p − ζt · ηt ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
p

(C.123)

≥ ‖θt‖p − ζt · ηt ·
p ·K1/p

‖θt‖p
. (by Eq. (C.119)) (C.124)

= ‖θt‖p ·
(

1− ζt ·
2

9 · p

) (
ηt =

2 · ‖θt‖2
p

9 · p2 ·K1/p

)
(C.125)

≥ ‖θt‖p ·
(

1− 2

9 · p

)
(ζt ∈ [0, 1]) (C.126)

= ‖θt‖p ·

[(
1− 2√

6

)
·

(
1− 2 · (3 +

√
6)

9 · p

)
+

2√
6

]
(C.127)

≥ 2√
6
· ‖θt‖p. (p ≥ 2) (C.128)

Combining Eqs. (C.116) and (C.123), we have,∣∣∣∣(πθt+1 − πθt)>r −
〈dπ>θtr
dθt

, θt+1 − θt
〉∣∣∣∣ (C.129)

≤ 3 · p2 ·K1/p

2 · ‖θζt‖2
p

· ‖θt+1 − θt‖2
2 (C.130)

≤ 9 · p2 ·K1/p

4 · ‖θt‖2
p

· ‖θt+1 − θt‖2
2, (C.131)
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which implies,

π>θtr − π
>
θt+1

r ≤ −
〈dπ>θtr
dθt

, θt+1 − θt
〉

+
9 · p2 ·K1/p

4 · ‖θt‖2
p

· ‖θt+1 − θt‖2
2 (C.132)

= −ηt ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥2

2

+
9 · p2 ·K1/p

4 · ‖θt‖2
p

· η2
t ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥2

2

(C.133)(
θt+1 = θt + ηt ·

dπ>θtr

dθt

)
(C.134)

= −
‖θt‖2

p

9 · p2 ·K1/p
·
∥∥∥∥dπ>θtrdθt

∥∥∥∥2

2

(
ηt =

2 · ‖θt‖2
p

9 · p2 ·K1/p

)
(C.135)

≤ −
HHH‖θt‖2

p

9 · SSp2 ·K1/p
·
[

Ap
H
HH‖θt‖p
· πθt(a∗)1−1/p · (π∗ − πθt)>r

]2

(C.136)

(by Lemma 20) (C.137)

= −πθt(a
∗)2−2/p

9 ·K1/p
·
[
(π∗ − πθt)>r

]2
(C.138)

≤ − c
2−2/p
t

9 ·K1/p
·
[
(π∗ − πθt)>r

]2
, (C.139)

where ct := min1≤s≤t πθs(a
∗) > 0. Eq. (C.132) is equivalent to,

(π∗ − πθt+1)>r − (π∗ − πθt)>r ≤ −
c

2−2/p
t

9 ·K1/p
·
[
(π∗ − πθt)>r

]2
. (C.140)

Denote δt := (π∗ − πθt)>r. We prove δt ≤ 9·K1/p

c
2−2/p
t

· 1
t

by induction. For t = 2,

since c2 ∈ (0, 1),

δ2 ≤ 1 ≤ 9 ·K1/p

c
2−2/p
2

· 1

2
. (C.141)

Suppose δt ≤ 9·K1/p

c
2−2/p
t

· 1
t
, t ≥ 2. Consider ft : R → R, ft(x) := x − c

2−2/p
t

9·K1/p · x2.
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Clearly, ft is monotonically increasing in
[
0, 9·K1/p

2·c2−2/p
t

]
. We have,

δt+1 ≤ δt −
c

2−2/p
t

9 ·K1/p
· δ2

t (by Eq. (C.140)) (C.142)

≤ 9 ·K1/p

c
2−2/p
t

· 1

t
− c

2−2/p
t

9 ·K1/p
·

(
9 ·K1/p

c
2−2/p
t

· 1

t

)2

(C.143)(
δt ≤

9 ·K1/p

c
2−2/p
t

· 1

t
≤ 9 ·K1/p

2 · c2−2/p
t

, t ≥ 2

)
(C.144)

=
9 ·K1/p

c
2−2/p
t

·
(

1

t
− 1

t2

)
(C.145)

≤ 9 ·K1/p

c
2−2/p
t

· 1

t+ 1
, (C.146)

which completes the proof for δt ≤ 9·K1/p

c
2−2/p
t

· 1
t
. Then we have, for all t ≥ 1,

(π∗ − πθt)>r ≤
9 ·K1/p

c
2−2/p
t

· 1

t
(C.147)

≤ 9 ·K1/p

(inft≥1 πθt(a
∗))2−2/p

· 1

t
. (C.148)

Second part. For p = 1, according to Lemma 19,∣∣∣∣(πθt+1 − πθt)>r −
〈dπ>θtr
dθt

, θt+1 − θt
〉∣∣∣∣ ≤ K

‖θζt‖2
1

· ‖θt+1 − θt‖2
2, (C.149)

where

θζt := θt + ζt · (θt+1 − θt) = θt + ζt · ηt ·
dπ>θtr

dθt
, (C.150)

for some ζt ∈ [0, 1]. The `1 norm can be upper bounded as∥∥∥∥dπ>θtrdθt

∥∥∥∥
1

=
K∑
a=1

∣∣∣∣πθt(a)

θt(a)
·
(
r(a)− π>θ r

)∣∣∣∣ (C.151)

=
1

‖θt‖1

K∑
a=1

|r(a)− π>θ r| (C.152)

≤ K

‖θt‖1

.
(
r ∈ [0, 1]K

)
(C.153)
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According to triangle inequality, we have,

‖θζt‖1 ≥ ‖θt‖1 − ζt · ηt ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
1

(C.154)

≥ ‖θt‖1 − ζt · ηt ·
K

‖θt‖1

. (by Eq. (C.151)) (C.155)

= ‖θt‖1 ·
(

1− ζt ·
2

9

) (
ηt =

2 · ‖θt‖2
1

9 ·K

)
(C.156)

≥ 2

3
· ‖θt‖1. (ζt ∈ [0, 1]) (C.157)

Combining Eqs. (C.149) and (C.154), we have,∣∣∣∣(πθt+1 − πθt)>r −
〈dπ>θtr
dθt

, θt+1 − θt
〉∣∣∣∣ (C.158)

≤ K

‖θζt‖2
1

· ‖θt+1 − θt‖2
1 (C.159)

≤ 9 ·K
4 · ‖θt‖2

1

· ‖θt+1 − θt‖2
1, (C.160)

which implies,

π>θtr − π
>
θt+1

r ≤ −
〈dπ>θtr
dθt

, θt+1 − θt
〉

+
9 ·K

4 · ‖θt‖2
1

· ‖θt+1 − θt‖2
1 (C.161)

= −ηt ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥2

2

+
9 ·K

4 · ‖θt‖2
1

· η2
t ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥2

2

(C.162)(
θt+1 = θt + ηt ·

dπ>θtr

dθt

)
(C.163)

= −‖θt‖
2
1

9 ·K
·
∥∥∥∥dπ>θtrdθt

∥∥∥∥2

2

(
ηt =

2 · ‖θt‖2
1

9 ·K

)
(C.164)

≤ −
HHH‖θt‖2

1

9 ·K
·
[

1
HHH‖θt‖1

· (π∗ − πθt)>r
]2

(by Lemma 20) (C.165)

= − 1

9 ·K
·
[
(π∗ − πθt)>r

]2
. (C.166)

Using a similar induction argument as in Eq. (C.142), we have

(π∗ − πθt)>r ≤
9 ·K
t

. (C.167)
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Third part. For the gradient flow, we have,

d{(π∗ − πθt)
> r}

dt
= −

dπ>θtr

dt
(C.168)

= −
(
dθt
dt

)>(dπ>θtr
dθt

)
(C.169)

= −ηt ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥2

2

(
dθt
dt

= ηt ·
dπ>θtr

dθt

)
(C.170)

≤ −ηt ·
[

p

‖θt‖p
· πθt(a∗)1−1/p · (π∗ − πθt)>r

]2

(by Lemma 20) (C.171)

= −πθt(a∗)2−2/p ·
[
(π∗ − πθt)>r

]2 (
ηt =

‖θt‖2
p

p2

)
(C.172)

≤ −c2−2p · [(π∗ − πθt)
> r]2, (C.173)

which implies,

d

dt

{
1

(π∗ − πθt)>r

}
= − 1

[(π∗ − πθt)>r]2
· d{(π

∗ − πθt)
> r}

dt
(C.174)

= c2−2p. (C.175)

Taking integral, we have,

1

(π∗ − πθt)
> r

=
1

(π∗ − πθ1)> r
+ c2−2p · (t− 1) (C.176)

≥ 1 + c2−2p · (t− 1),
(

(π∗ − πθ1)> r ∈ (0, 1]
)

(C.177)

which is equivalent to

(π∗ − πθt)
> r ≤ 1

c2−2p · (t− 1) + 1
.

C.2.3 General MDPs

Lemma 43. The escort policy gradient w.r.t. θ is

∂V πθ(µ)

∂θ(s, a)
=

1

1− γ
· dπθµ (s) · p · πθ(a|s)

θ(s, a)
· Aπθ(s, a), (C.178)

where Aπθ(s, a) is the advantage function defined as

Aπθ(s, a) = Qπθ(s, a)− V πθ(s), (C.179)

Qπθ(s, a) = r(s, a) + γ
∑
s′

P(s′|s, a)V πθ(s′). (C.180)
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Proof. According to Theorem 1, we have,

∂V πθ(µ)

∂θ
=

1

1− γ
E

s′∼dπθµ

[∑
a

∂πθ(a|s′)
∂θ

·Qπθ(s′, a)

]
. (C.181)

For s′ 6= s, ∂πθ(a|s′)
∂θ(s,·) = 0 since πθ(a|s′) does not depend on θ(s, ·). Therefore,

∂V πθ(µ)

∂θ(s, ·)
=

1

1− γ
· dπθµ (s) ·

[∑
a

∂πθ(a|s)
∂θ(s, ·)

·Qπθ(s, a)

]
(C.182)

=
1

1− γ
· dπθµ (s) ·

(
dπ(·|s)
dθ(s, ·)

)>
Qπθ(s, ·) (C.183)

=
1

1− γ
· dπθµ (s) · p · diag

(
π(·|s)
θ(s, ·)

)(
Id− 1π>θ

)
Qπθ(s, ·). (C.184)

For each component a, we have

∂V πθ(µ)

∂θ(s, a)
(C.185)

=
1

1− γ
· dπθµ (s) · p · πθ(a|s)

θ(s, a)
·
[
Qπθ(s, a)−

∑
a

πθ(a|s) ·Qπθ(s, a)

]
(C.186)

=
1

1− γ
· dπθµ (s) · p · πθ(a|s)

θ(s, a)
· (Qπθ(s, a)− V πθ(s)) (C.187)(

V πθ(s) =
∑
a

πθ(a|s) ·Qπθ(s, a)

)
(C.188)

=
1

1− γ
· dπθµ (s) · p · πθ(a|s)

θ(s, a)
· Aπθ(s, a).

Lemma 44 (Non-uniform Smoothness). Suppose r(s, a) ∈ [0, 1] for all (s, a).

Let πθ := fp(θ), and πθ′ := fp(θ
′). Denote θζ := θ + ζ · (θ′ − θ) with some

ζ ∈ [0, 1]. Denote A := |A| as the total number of actions. Then we have,

(i) for p ≥ 2, V πθ(ρ) is 8·p2·A2/p

(1−γ)3 · 1
mins ‖θζ(s,·)‖2p

-smooth, i.e.,∣∣∣∣V πθ′ (ρ)− V πθ(ρ)−
〈∂V πθ(ρ)

∂θ
, θ′ − θ

〉∣∣∣∣ (C.189)

≤ 4 · p2 · A2/p

(1− γ)3
· ‖θ′ − θ‖2

2

mins ‖θζ(s, ·)‖2
p

. (C.190)

(ii) for p = 1, V πθ(ρ) is 8·A2

(1−γ)3 · 1
mins ‖θζ(s,·)‖21

-smooth, i.e.,∣∣∣∣V πθ′ (ρ)− V πθ(ρ)−
〈∂V πθ(ρ)

∂θ
, θ′ − θ

〉∣∣∣∣ (C.191)

≤ 4 · A2

(1− γ)3
· ‖θ′ − θ‖2

2

mins ‖θζ(s, ·)‖2
1

. (C.192)
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Proof. Denote θα = θ + αu, where α ∈ R and u ∈ RSA. For any s ∈ S,∑
a

∣∣∣∣∂πθα(a|s)
∂α

∣∣∣
α=0

∣∣∣∣ =
∑
a

∣∣∣∣〈∂πθα(a|s)
∂θα

∣∣∣
α=0

,
∂θα
∂α

〉∣∣∣∣ (C.193)

=
∑
a

∣∣∣∣〈∂πθ(a|s)∂θ
, u
〉∣∣∣∣. (C.194)

Since ∂πθ(a|s)
∂θ(s′,·) = 0, for s′ 6= s,

∑
a

∣∣∣∣∂πθα(a|s)
∂α

∣∣∣
α=0

∣∣∣∣ =
∑
a

∣∣∣∣〈∂πθ(a|s)∂θ(s, ·)
, u(s, ·)

〉∣∣∣∣ (C.195)

=
∑
a

p · πθ(a|s)
|θ(s, a)|

·
∣∣u(s, a)− πθ(·|s)>u(s, ·)

∣∣ (C.196)

=
∑
a

p

‖θ(s, ·)‖p
· πθ(a|s)1−1/p ·

∣∣u(s, a)− πθ(·|s)>u(s, ·)
∣∣ (C.197)

≤ p

‖θ(s, ·)‖p
·max

a

∣∣u(s, a)− πθ(·|s)>u(s, ·)
∣∣ ·∑

a

πθ(a|s)1−1/p (C.198)

≤ p

‖θ(s, ·)‖p
· 2 · ‖u‖∞ · A1/p (by Eq. (C.100)) (C.199)

≤ 2 · p · A1/p

‖θ(s, ·)‖p
· ‖u‖2. (C.200)

Similarly, the second derivative is,∑
a

∣∣∣∣∂2πθα(a|s)
∂α2

∣∣∣
α=0

∣∣∣∣ =
∑
a

∣∣∣∣〈 ∂

∂θα

{
∂πθα(a|s)

∂α

} ∣∣∣
α=0

,
∂θα
∂α

〉∣∣∣∣ (C.201)

=
∑
a

∣∣∣∣〈∂2πθα(a|s)
∂θ2

α

∣∣∣
α=0

∂θα
∂α

,
∂θα
∂α

〉∣∣∣∣ (C.202)

=
∑
a

∣∣∣∣〈∂2πθ(a|s)
∂θ2(s, ·)

u(s, ·), u(s, ·)
〉∣∣∣∣. (C.203)
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Let S(a, θ) = ∂2πθ(a|s)
∂θ2(s,·) ∈ RA×A. ∀i, j ∈ [A], the value of S(a, θ) is,

Si,j = p ·
∂{δia · πθ(a|s)

θ(s,a)
− πθ(a|s) · πθ(i|s)

θ(s,i)
}

∂θ(s, j)
(C.204)

= p · δia ·
p

θ(s,j)
· [δjaπθ(a|s)− πθ(a|s)πθ(j|s)] · θ(s, a)− δjaπθ(a|s)

θ(s, a)2

(C.205)

− p2

θ(s, j)
· [δjaπθ(a|s)− πθ(a|s)πθ(j|s)] ·

πθ(i|s)
θ(s, i)

(C.206)

− p · πθ(a|s) ·
p

θ(s,j)
· [δijπθ(i|s)− πθ(i|s)πθ(j|s)] · θ(s, i)− δijπθ(i|s)

θ(s, i)2

(C.207)

= δia · δja · p · (p− 1) · πθ(a|s)
θ(s, a)2

(C.208)

− δia · p2 · πθ(a|s)
θ(s, a)

· πθ(j|s)
θ(s, j)

− δja · p2 · πθ(a|s)
θ(s, a)

· πθ(i|s)
θ(s, i)

(C.209)

+ p · πθ(a|s) ·
[
2 · p · πθ(i|s)

θ(s, i)
· πθ(j|s)
θ(s, j)

− δij · (p− 1) · πθ(i|s)
θ(s, i)2

]
,

(C.210)

where the δ notation is as defined in Eq. (C.47). Then we have,∣∣∣∣〈∂2πθ(a|s)
∂θ2(s, ·)

u(s, ·), u(s, ·)
〉∣∣∣∣ =

∣∣∣∣∣
A∑
i=1

A∑
j=1

Si,ju(s, i)u(s, j)

∣∣∣∣∣ (C.211)

≤ p · (p− 1) · πθ(a|s)
θ(s, a)2

· u(s, a)2 (C.212)

+ 2 · p2 · πθ(a|s)
|θ(s, a)|

· |u(s, a)| ·

∣∣∣∣∣
(
πθ(·|s)
θ(s, ·)

)>
u(s, ·)

∣∣∣∣∣ (C.213)

+ πθ(a|s) ·
[
2 · p2 ·

∣∣∣∣ (πθ(·|s)θ(s, ·)

)>
u(s, ·)

∣∣∣∣2 (C.214)

+ p · (p− 1) ·
∣∣∣∣ (πθ(·|s)θ(s, ·)2

)>
(u(s, ·)� u(s, ·))

∣∣∣∣] (C.215)

=
p · (p− 1)

‖θ(s, ·)‖2
p

· πθ(a|s)1−2/p · u(s, a)2 (C.216)

+
2 · p2

‖θ(s, ·)‖2
p

· πθ(a|s)1−1/p · |u(s, a)| ·
∣∣∣∣(πθ(·|s)1−1/p

)>
u(s, ·)

∣∣∣∣ (C.217)

+
2 · p2

‖θ(s, ·)‖2
p

· πθ(a|s) ·
∣∣∣∣(πθ(·|s)1−1/p

)>
u(s, ·)

∣∣∣∣2 (C.218)

+
p · (p− 1)

‖θ(s, ·)‖2
p

· πθ(a|s) ·
∣∣∣∣(πθ(·|s)1−2/p

)>
(u(s, ·)� u(s, ·))

∣∣∣∣ . (C.219)
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First part. For p ≥ 2, according to the Cauchy-Schwarz inequality, we have,∑
a

∣∣∣∣∂2πθα(a|s)
∂α2

∣∣∣
α=0

∣∣∣∣ ≤ p · (p− 1)

‖θ(s, ·)‖2
p

·
∑
a

u(s, a)2 (C.220)

+
2 · p2

‖θ(s, ·)‖2
p

· ‖u(s, ·)‖2
2 · ‖πθ(·|s)1−1/p‖2

2 (C.221)

+
2 · p2

‖θ(s, ·)‖2
p

· ‖u(s, ·)‖2
2 · ‖πθ(·|s)1−1/p‖2

2 (C.222)

+
p · (p− 1)

‖θ(s, ·)‖2
p

· ‖ · ‖πθ(·|s)1−2/p‖∞ · ‖u(s, ·)� u(s, ·)‖1 (C.223)

≤ 2 · p · (p− 1)

‖θ(s, ·)‖2
p

· ‖u(s, ·)‖2
2 +

4 · p2

‖θ(s, ·)‖2
p

· A1/p · ‖u(s, ·)‖2
2 (C.224)

(by Eq. (C.100)) (C.225)

≤ 2 · p2 · (1 + 2 · A1/p)

‖θ(s, ·)‖2
p

· ‖u‖2
2. (C.226)

Define P (α) ∈ RS×S, where ∀(s, s′),

[P (α)](s,s′) =
∑
a

πθα(a|s) · P(s′|s, a). (C.227)

The derivative w.r.t. α is[
∂P (α)

∂α

∣∣∣
α=0

]
(s,s′)

=
∑
a

[
∂πθα(a|s)

∂α

∣∣∣
α=0

]
· P(s′|s, a). (C.228)

For any vector x ∈ RS, we have,[
∂P (α)

∂α

∣∣∣
α=0

x

]
(s)

=
∑
s′

∑
a

[
∂πθα(a|s)

∂α

∣∣∣
α=0

]
· P(s′|s, a) · x(s′). (C.229)

The `∞ norm is upper bounded as,∥∥∥∥∂P (α)

∂α

∣∣∣
α=0

x

∥∥∥∥
∞

= max
s

∣∣∣∣∣∑
s′

∑
a

[
∂πθα(a|s)

∂α

∣∣∣
α=0

]
· P(s′|s, a) · x(s′)

∣∣∣∣∣ (C.230)

≤ max
s

∑
a

∑
s′

P(s′|s, a) ·
∣∣∣∣∂πθα(a|s)

∂α

∣∣∣
α=0

∣∣∣∣ · ‖x‖∞ (C.231)

= max
s

∑
a

∣∣∣∣∂πθα(a|s)
∂α

∣∣∣
α=0

∣∣∣∣ · ‖x‖∞ (C.232)

≤ max
s

2 · p · A1/p

‖θ(s, ·)‖p
· ‖u‖2 · ‖x‖∞. (by Eq. (C.195)) (C.233)
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Similarly, taking second derivative w.r.t. α,[
∂2P (α)

∂α2

∣∣∣
α=0

]
(s,s′)

=
∑
a

[
∂2πθα(a|s)

∂α2

∣∣∣
α=0

]
· P(s′|s, a). (C.234)

The `∞ norm is upper bounded as,∥∥∥∥∂2P (α)

∂α2

∣∣∣
α=0

x

∥∥∥∥
∞

(C.235)

= max
s

∣∣∣∣∣∑
s′

∑
a

[
∂2πθα(a|s)

∂α2

∣∣∣
α=0

]
· P(s′|s, a) · x(s′)

∣∣∣∣∣ (C.236)

≤ max
s

∑
a

∑
s′

P(s′|s, a) ·
∣∣∣∣∂2πθα(a|s)

∂α2

∣∣∣
α=0

∣∣∣∣ · ‖x‖∞ (C.237)

= max
s

∑
a

∣∣∣∣∂2πθα(a|s)
∂α2

∣∣∣
α=0

∣∣∣∣ · ‖x‖∞ (C.238)

≤ max
s

2 · p2 · (1 + 2 · A1/p)

‖θ(s, ·)‖2
p

· ‖u‖2
2 · ‖x‖∞. (C.239)

(by Eq. (C.220)) (C.240)

Next, consider the state value function of πθα ,

V πθα (s) =
∑
a

πθα(a|s) · r(s, a) (C.241)

+ γ
∑
a

πθα(a|s)
∑
s′

P(s′|s, a) · V πθα (s′), (C.242)

which implies,

V πθα (s) = e>sM(α)rθα , (C.243)

where

M(α) = (Id− γP (α))−1 , (C.244)

and rθα ∈ RS for s ∈ S is given by

rθα(s) =
∑
a

πθα(a|s) · r(s, a). (C.245)

Since [P (α)](s,s′) ≥ 0, ∀(s, s′), and

M(α) = (Id− γP (α))−1 =
∞∑
t=0

γt [P (α)]t, (C.246)
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we have [M(α)](s,s′) ≥ 0, ∀(s, s′). Denote [M(α)]i,: as the i-th row vector of

M(α). We have

1 =
1

1− γ
· (Id− γP (α)) 1 =⇒M(α)1 =

1

1− γ
· 1, (C.247)

which implies, ∀i, ∥∥∥[M(α)]i,:

∥∥∥
1

=
∑
j

[M(α)](i,j) =
1

1− γ
. (C.248)

Therefore, for any vector x ∈ RS,

‖M(α)x‖∞ = max
i

∣∣∣[M(α)]>i,: x
∣∣∣ (C.249)

≤ max
i

∥∥∥[M(α)]i,:

∥∥∥
1
· ‖x‖∞ (C.250)

=
1

1− γ
· ‖x‖∞. (C.251)

Since r(s, a) ∈ [0, 1], ∀(s, a), we have,

‖rθα‖∞ = max
s
|rθα(s)| = max

s

∣∣∣∣∣∑
a

πθα(a|s) · r(s, a)

∣∣∣∣∣ ≤ 1. (C.252)

Since ∂πθ(a|s)
∂θ(s′,·) = 0, for s′ 6= s,

∣∣∣∣∂rθα(s)

∂α

∣∣∣∣ =

∣∣∣∣∣
(
∂rθα(s)

∂θα

)>
∂θα
∂α

∣∣∣∣∣ (C.253)

=

∣∣∣∣∣
(
∂{πθα(·|s)>r(s, ·)}

∂θα(s, ·)

)>
u(s, ·)

∣∣∣∣∣ (C.254)

=
∣∣∣p · (diag(1/θα(s, ·))

(
diag(πθα(·|s))− πθα(·|s)πθα(·|s)>

)
r(s, ·)

)>
u(s, ·)

∣∣∣
(C.255)

≤ p ·
∥∥diag(1/θα(s, ·))

(
diag(πθα(·|s))− πθα(·|s)πθα(·|s)>

)
r(s, ·)

∥∥
1

(C.256)

· ‖u(s, ·)‖∞ . (C.257)
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The `1 norm is upper bounded as,∥∥diag(1/θα(s, ·))
(
diag(πθα(·|s))− πθα(·|s)πθα(·|s)>

)
r(s, ·)

∥∥
1

(C.258)

=
∑
a

πθα(a|s)1−1/p

‖θα(s, ·)‖p
·
∣∣r(s, a)− πθα(·|s)>r(s, ·)

∣∣ (C.259)

≤ 1

‖θα(s, ·)‖p
·max

a

∣∣r(s, a)− πθα(·|s)>r(s, ·)
∣∣ ·∑

a

πθα(a|s)1−1/p (C.260)

≤ 1

‖θα(s, ·)‖p
·
∑
a

πθα(a|s)1−1/p (r(s, a) ∈ [0, 1]) (C.261)

≤ A1/p

‖θα(s, ·)‖p
. (by Eq. (C.100)) (C.262)

Combining Eqs. (C.253) and (C.258), we have,∥∥∥∥∂rθα∂α

∥∥∥∥
∞

= max
s

∣∣∣∣∂rθα(s)

∂α

∣∣∣∣ (C.263)

≤ max
s
p ·
∥∥diag(1/θα(s, ·))

(
diag(πθα(·|s))− πθα(·|s)πθα(·|s)>

)
r(s, ·)

∥∥
1

(C.264)

· ‖u(s, ·)‖∞ (C.265)

≤ max
s

p · A1/p

‖θα(s, ·)‖p
· ‖u‖2. (C.266)

Similarly, for the second derivative, we have,∥∥∥∥∂2rθα
∂α2

∥∥∥∥
∞

= max
s

∣∣∣∣∂2rθα(s)

∂α2

∣∣∣∣ (C.267)

= max
s

∣∣∣∣∣
(

∂

∂θα

{
∂rθα(s)

∂α

})>
∂θα
∂α

∣∣∣∣∣ (C.268)

= max
s

∣∣∣∣∣
(
∂2rθα(s)

∂θ2
α

∂θα
∂α

)>
∂θα
∂α

∣∣∣∣∣ (C.269)

= max
s

∣∣∣∣u(s, ·)>∂
2{πθα(·|s)>r(s, ·)}

∂θα(s, ·)2
u(s, ·)

∣∣∣∣ (C.270)

≤ max
s

3 · p2 · A1/p

‖θα(s, ·)‖2
p

· ‖u(s, ·)‖2
2 (by Eq. (C.103)) (C.271)

≤ max
s

3 · p2 · A1/p

‖θα(s, ·)‖2
p

· ‖u‖2
2. (C.272)

Taking derivative w.r.t. α in Eq. (C.243), we have,

∂V πθα (s)

∂α
= γ · e>sM(α)

∂P (α)

∂α
M(α)rθα + e>sM(α)

∂rθα
∂α

. (C.273)
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Taking second derivative w.r.t. α, we have,

∂2V πθα (s)

∂α2
= 2γ2 · e>sM(α)

∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)rθα (C.274)

+ γ · e>sM(α)
∂2P (α)

∂α2
M(α)rθα (C.275)

+ 2γ · e>sM(α)
∂P (α)

∂α
M(α)

∂rθα
∂α

+ e>sM(α)
∂2rθα
∂α2

. (C.276)

For the last term,∣∣∣∣e>sM(α)
∂2rθα
∂α2

∣∣∣
α=0

∣∣∣∣ ≤ ‖es‖1 ·
∥∥∥∥M(α)

∂2rθα
∂α2

∣∣∣
α=0

∥∥∥∥
∞

(C.277)

≤ 1

1− γ
·
∥∥∥∥∂2rθα
∂α2

∣∣∣
α=0

∥∥∥∥
∞

(by Eq. (C.249)) (C.278)

≤ 1

1− γ
·max

s

3 · p2 · A1/p

‖θα(s, ·)‖2
p

· ‖u‖2
2. (by Eq. (C.267)) (C.279)

For the second last term,∣∣∣∣e>sM(α)
∂P (α)

∂α
M(α)

∂rθα
∂α

∣∣∣
α=0

∣∣∣∣ ≤ ∥∥∥∥M(α)
∂P (α)

∂α
M(α)

∂rθα
∂α

∣∣∣
α=0

∥∥∥∥
∞

(C.280)

≤ 1

1− γ
·
∥∥∥∥∂P (α)

∂α
M(α)

∂rθα
∂α

∣∣∣
α=0

∥∥∥∥
∞

(by Eq. (C.249)) (C.281)

≤ 2 · p · A1/p · ‖u‖2

1− γ
·max

s

1

‖θ(s, ·)‖p
·
∥∥∥∥M(α)

∂rθα
∂α

∣∣∣
α=0

∥∥∥∥
∞

(C.282)

(by Eq. (C.230)) (C.283)

≤ 2 · p · A1/p · ‖u‖2

(1− γ)2
·max

s

1

‖θ(s, ·)‖p
·
∥∥∥∥∂rθα∂α

∣∣∣
α=0

∥∥∥∥
∞

(C.284)

(by Eq. (C.249)) (C.285)

≤ 2 · p2 · A2/p · ‖u‖2

(1− γ)2
·max

s

1

‖θ(s, ·)‖2
p

· ‖u‖2. (C.286)

(by Eq. (C.263)) (C.287)
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For the second term,∣∣∣∣e>sM(α)
∂2P (α)

∂α2
M(α)rθα

∣∣∣
α=0

∣∣∣∣ ≤ ∥∥∥∥M(α)
∂2P (α)

∂α2
M(α)rθα

∣∣∣
α=0

∥∥∥∥
∞

(C.288)

≤ 1

1− γ
·
∥∥∥∥∂2P (α)

∂α2
M(α)rθα

∣∣∣
α=0

∥∥∥∥
∞

(by Eq. (C.249)) (C.289)

≤ 2 · p2 · (1 + 2 · A1/p) · ‖u‖2
2

1− γ
(C.290)

·max
s

1

‖θ(s, ·)‖2
p

·
∥∥∥M(α)rθα

∣∣∣
α=0

∥∥∥
∞

(by Eq. (C.235)) (C.291)

≤ 2 · p2 · (1 + 2 · A1/p) · ‖u‖2
2

(1− γ)2
·max

s

1

‖θ(s, ·)‖2
p

·
∥∥∥rθα∣∣∣

α=0

∥∥∥
∞

(C.292)

(by Eq. (C.249)) (C.293)

≤ 2 · p2 · (1 + 2 · A1/p)

(1− γ)2
·max

s

1

‖θ(s, ·)‖2
p

· ‖u‖2
2. (C.294)

(by Eq. (C.252)) (C.295)

For the first term, according to Eq. (C.230), Eqs. (C.249) and (C.252),∣∣∣∣e>sM(α)
∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)rθα

∣∣∣
α=0

∣∣∣∣ (C.296)

≤
∥∥∥∥M(α)

∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)rθα

∣∣∣
α=0

∥∥∥∥
∞

(C.297)

≤ 1

1− γ
·max

s

2 · p · A1/p

‖θ(s, ·)‖p
· ‖u‖2 (C.298)

· 1

1− γ
·max

s

2 · p · A1/p

‖θ(s, ·)‖p
· ‖u‖2 ·

1

1− γ
· 1 (C.299)

=
4 · p2 · A2/p

(1− γ)3
·max

s

1

‖θ(s, ·)‖2
p

· ‖u‖2
2. (C.300)

Combining Eqs. (C.277), (C.280), (C.288) and (C.296) with Eq. (C.274), we
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have,∣∣∣∣∂2V πθα (s)

∂α2

∣∣∣
α=0

∣∣∣∣ ≤ 2γ2 ·
∣∣∣∣e>sM(α)

∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)rθα

∣∣∣
α=0

∣∣∣∣ (C.301)

+ γ ·
∣∣∣∣e>sM(α)

∂2P (α)

∂α2
M(α)rθα

∣∣∣
α=0

∣∣∣∣ (C.302)

+ 2γ ·
∣∣∣∣e>sM(α)

∂P (α)

∂α
M(α)

∂rθα
∂α

∣∣∣
α=0

∣∣∣∣ (C.303)

+

∣∣∣∣e>sM(α)
∂2rθα
∂α2

∣∣∣
α=0

∣∣∣∣ (C.304)

≤
(

8 · γ2 · p2 · A2/p

(1− γ)3
+

2 · γ · p2 · (1 + 2 · A1/p)

(1− γ)2
(C.305)

+
4 · γ · p2 · A2/p

(1− γ)2
+

3 · p2 · A1/p

1− γ

)
·max

s

1

‖θ(s, ·)‖2
p

· ‖u‖2
2 (C.306)

≤ 8 · p2 · A2/p

(1− γ)3
·max

s

1

‖θ(s, ·)‖2
p

· ‖u‖2
2, (C.307)

which implies for all y ∈ RSA and θ,∣∣∣∣y>∂2V πθ(s)

∂θ2
y

∣∣∣∣ =

∣∣∣∣∣
(

y

‖y‖2

)>
∂2V πθ(s)

∂θ2

(
y

‖y‖2

)∣∣∣∣∣ · ‖y‖2
2 (C.308)

≤ max
‖u‖2=1

∣∣∣∣〈∂2V πθ(s)

∂θ2
u, u
〉∣∣∣∣ · ‖y‖2

2 (C.309)

= max
‖u‖2=1

∣∣∣∣〈∂2V πθα (s)

∂θ2
α

∣∣∣
α=0

∂θα
∂α

,
∂θα
∂α

〉∣∣∣∣ · ‖y‖2
2 (C.310)

= max
‖u‖2=1

∣∣∣∣〈 ∂

∂θα

{
∂V πθα (s)

∂α

} ∣∣∣
α=0

,
∂θα
∂α

〉∣∣∣∣ · ‖y‖2
2 (C.311)

= max
‖u‖2=1

∣∣∣∣∂2V πθα (s)

∂α2

∣∣∣
α=0

∣∣∣∣ · ‖y‖2
2 (C.312)

≤ 8 · p2 · A2/p

(1− γ)3
·max

s

1

‖θ(s, ·)‖2
p

· ‖y‖2
2. (by Eq. (C.301)) (C.313)

Denote θζ = θ+ ζ(θ′− θ), where ζ ∈ [0, 1]. According to Taylor’s theorem, ∀s,
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∀θ, θ′, ∣∣∣∣V πθ′ (s)− V πθ(s)−
〈∂V πθ(s)

∂θ
, θ′ − θ

〉∣∣∣∣ (C.314)

=
1

2
·

∣∣∣∣∣(θ′ − θ)> ∂2V πθζ (s)

∂θ2
ζ

(θ′ − θ)

∣∣∣∣∣ (C.315)

≤ 4 · p2 · A2/p

(1− γ)3
·max

s

1

‖θζ(s, ·)‖2
p

· ‖θ′ − θ‖2
2 (C.316)

(by Eq. (C.308)) (C.317)

=
4 · p2 · A2/p

(1− γ)3
· 1

mins ‖θζ(s, ·)‖2
p

· ‖θ′ − θ‖2
2. (C.318)

Since V πθ(s) is 8·p2·A2/p

(1−γ)3 · 1
mins ‖θζ(s,·)‖2p

-smooth, for any state s, V πθ(ρ) = Es∼ρ [V πθ(s)]

is also 8·p2·A2/p

(1−γ)3 · 1
mins ‖θζ(s,·)‖2p

-smooth.

Second part. For p = 1, we have,∣∣∣∣〈∂2πθ(a|s)
∂θ2(s, ·)

u(s, ·), u(s, ·)
〉∣∣∣∣ (C.319)

≤ 2 · p2

‖θ(s, ·)‖2
p

· πθ(a|s)1−1/p · |u(s, a)| ·
∣∣∣∣(πθ(·|s)1−1/p

)>
u(s, ·)

∣∣∣∣ (C.320)

+
2 · p2

‖θ(s, ·)‖2
p

· πθ(a|s) ·
∣∣∣∣(πθ(·|s)1−1/p

)>
u(s, ·)

∣∣∣∣2 . (C.321)

(by Eq. (C.211)) (C.322)

Therefore we have,∑
a

∣∣∣∣∂2πθα(a|s)
∂α2

∣∣∣
α=0

∣∣∣∣ ≤ 4 · p2

‖θ(s, ·)‖2
p

· ‖u(s, ·)‖2
2 · ‖πθ(·|s)1−1/p‖2

2 (C.323)

≤ 4 · p2 · A
‖θ(s, ·)‖2

p

· ‖u‖2
2. (C.324)

Similar to Eq. (C.235), we have,∥∥∥∥∂2P (α)

∂α2

∣∣∣
α=0

x

∥∥∥∥
∞
≤ max

s

∑
a

∣∣∣∣∂2πθα(a|s)
∂α2

∣∣∣
α=0

∣∣∣∣ · ‖x‖∞ (C.325)

≤ max
s

4 · p2 · A
‖θ(s, ·)‖2

p

· ‖u‖2
2 · ‖x‖∞. (by Eq. (C.323)) (C.326)
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Similar to Eq. (C.267), for the second derivative, we have,∥∥∥∥∂2rθα
∂α2

∥∥∥∥
∞

= max
s

∣∣∣∣u(s, ·)>∂
2{πθα(·|s)>r(s, ·)}

∂θα(s, ·)2
u(s, ·)

∣∣∣∣ (C.327)

≤ max
s

2 · p2 · A1/p

‖θα(s, ·)‖2
p

· ‖u(s, ·)‖2
2 (by Eq. (C.107)) (C.328)

≤ max
s

2 · p2 · A1/p

‖θα(s, ·)‖2
p

· ‖u‖2
2. (C.329)

Similar to Eq. (C.277), we have,∣∣∣∣e>sM(α)
∂2rθα
∂α2

∣∣∣
α=0

∣∣∣∣ ≤ ‖es‖1 ·
∥∥∥∥M(α)

∂2rθα
∂α2

∣∣∣
α=0

∥∥∥∥
∞

(C.330)

≤ 1

1− γ
·
∥∥∥∥∂2rθα
∂α2

∣∣∣
α=0

∥∥∥∥
∞

(by Eq. (C.249)) (C.331)

≤ 1

1− γ
·max

s

2 · p2 · A1/p

‖θα(s, ·)‖2
p

· ‖u‖2
2. (by Eq. (C.327)) (C.332)

Similar to Eq. (C.288), we have,∣∣∣∣e>sM(α)
∂2P (α)

∂α2
M(α)rθα

∣∣∣
α=0

∣∣∣∣ ≤ 1

1− γ
·
∥∥∥∥∂2P (α)

∂α2
M(α)rθα

∣∣∣
α=0

∥∥∥∥
∞

(C.333)

(by Eq. (C.249)) (C.334)

≤ 4 · p2 · A · ‖u‖2
2

1− γ
·max

s

1

‖θ(s, ·)‖2
p

·
∥∥∥M(α)rθα

∣∣∣
α=0

∥∥∥
∞

(C.335)

(by Eq. (C.325)) (C.336)

≤ 4 · p2 · A · ‖u‖2
2

(1− γ)2
·max

s

1

‖θ(s, ·)‖2
p

·
∥∥∥rθα∣∣∣

α=0

∥∥∥
∞

(C.337)

(by Eq. (C.249)) (C.338)

≤ 4 · p2 · A
(1− γ)2

·max
s

1

‖θ(s, ·)‖2
p

· ‖u‖2
2. (by Eq. (C.252)) (C.339)

Combining Eqs. (C.280) and (C.296), Eqs. (C.330) and (C.333) with Eq. (C.274),

231



we have,∣∣∣∣∂2V πθα (s)

∂α2

∣∣∣
α=0

∣∣∣∣ ≤ 2γ2 ·
∣∣∣∣e>sM(α)

∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)rθα

∣∣∣
α=0

∣∣∣∣ (C.340)

+ γ ·
∣∣∣∣e>sM(α)

∂2P (α)

∂α2
M(α)rθα

∣∣∣
α=0

∣∣∣∣ (C.341)

+ 2γ ·
∣∣∣∣e>sM(α)

∂P (α)

∂α
M(α)

∂rθα
∂α

∣∣∣
α=0

∣∣∣∣ (C.342)

+

∣∣∣∣e>sM(α)
∂2rθα
∂α2

∣∣∣
α=0

∣∣∣∣ (C.343)

≤
(

8 · γ2 · p2 · A2/p

(1− γ)3
+

4 · γ · p2 · A
(1− γ)2

(C.344)

+
4 · γ · p2 · A2/p

(1− γ)2
+

2 · p2 · A1/p

1− γ

)
·max

s

1

‖θ(s, ·)‖2
p

· ‖u‖2
2 (C.345)

≤ 8 · A2

(1− γ)3
·max

s

1

‖θ(s, ·)‖2
1

· ‖u‖2
2. (p = 1) (C.346)

Similar to Eq. (C.308), Eq. (C.340) implies for all y ∈ RSA and θ,∣∣∣∣y>∂2V πθ(s)

∂θ2
y

∣∣∣∣ ≤ max
‖u‖2=1

∣∣∣∣∂2V πθα (s)

∂α2

∣∣∣
α=0

∣∣∣∣ · ‖y‖2
2 (C.347)

≤ 8 · A2

(1− γ)3
·max

s

1

‖θ(s, ·)‖2
1

· ‖y‖2
2. (Eq. (C.340)) (C.348)

Similar to Eq. (C.314), we have, ∀s, ∀θ, θ′,∣∣∣∣V πθ′ (s)− V πθ(s)−
〈∂V πθ(s)

∂θ
, θ′ − θ

〉∣∣∣∣ (C.349)

≤ 4 · A2

(1− γ)3
·max

s

‖θ′ − θ‖2
2

‖θζ(s, ·)‖2
1

(Eq. (C.347)) (C.350)

=
4 · A2

(1− γ)3
· ‖θ′ − θ‖2

2

mins ‖θζ(s, ·)‖2
1

. (C.351)

Since V πθ(s) is 8·A2

(1−γ)3 · 1
mins ‖θζ(s,·)‖21

-smooth, for any state s, V πθ(ρ) = Es∼ρ [V πθ(s)]

is also 8·A2

(1−γ)3 · 1
mins ‖θζ(s,·)‖21

-smooth.

Lemma 45 (Non-uniform  Lojasiewicz). Suppose µ(s) > 0 for all state s and

πθ := fp(θ). Then,∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

≥ p√
S
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

(C.352)

· mins πθ(a
∗(s)|s)1−1/p

maxs ‖θ(s, ·)‖p
· [V ∗(ρ)− V πθ(ρ)] , (C.353)
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where a∗(s) := arg maxa π
∗(a|s), ∀s ∈ S, is the action that the optimal policy

π∗ takes under s.

Proof. Note that a∗(s) is the action that optimal policy π∗ selects under state

s. ∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

=

[∑
s,a

(
∂V πθ(µ)

∂θ(s, a)

)2
] 1

2

(C.354)

≥

[∑
s

(
∂V πθ(µ)

∂θ(s, a∗(s))

)2
] 1

2

(C.355)

≥ 1√
S

∑
s

∣∣∣∣ ∂V πθ(µ)

∂θ(s, a∗(s))

∣∣∣∣ (C.356)

(by Cauchy-Schwarz, ‖x‖1 = |〈1, |x|〉| ≤ ‖1‖2 · ‖x‖2) (C.357)

=
1

1− γ
· 1√

S

∑
s

∣∣∣∣dπθµ (s) · p · πθ(a
∗(s)|s)

θ(s, a∗(s))
· Aπθ(s, a∗(s))

∣∣∣∣ (C.358)

(by Lemma 43) (C.359)

=
1

1− γ
· 1√

S

∑
s

dπθµ (s) · p · πθ(a
∗(s)|s)

|θ(s, a∗(s))|
· |Aπθ(s, a∗(s))| . (C.360)(

dπθµ (s) ≥ 0, πθ(a
∗(s)|s) ≥ 0

)
(C.361)

Define the distribution mismatch coefficient as

∥∥∥∥dπ∗ρdπθµ
∥∥∥∥
∞

:= maxs
dπ
∗
ρ (s)

d
πθ
µ (s)

. We
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have,∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

≥ 1

1− γ
· 1√

S

∑
s

dπθµ (s)

dπ∗ρ (s)
· dπ∗ρ (s) (C.362)

· p · πθ(a
∗(s)|s)

|θ(s, a∗(s))|
· |Aπθ(s, a∗(s))| (C.363)

=
1

1− γ
· 1√

S

∑
s

dπθµ (s)

dπ∗ρ (s)
· dπ∗ρ (s) · p · 1

‖θ(s, ·)‖p
(C.364)

· (πθ(a∗(s)|s))1−1/p · |Aπθ(s, a∗(s))| (C.365)

≥ 1

1− γ
· 1√

S
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

· p ·min
s

1

‖θ(s, ·)‖p
(C.366)

·min
s
πθ(a

∗(s)|s)1−1/p ·
∑
s

dπ
∗

ρ (s) · |Aπθ(s, a∗(s))| (C.367)

≥ 1

1− γ
· 1√

S
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

· p ·min
s

1

‖θ(s, ·)‖p
(C.368)

·min
s
πθ(a

∗(s)|s)1−1/p ·
∑
s

dπ
∗

ρ (s) · Aπθ(s, a∗(s)) (C.369)

=
p√
S
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

· mins πθ(a
∗(s)|s)1−1/p

maxs ‖θ(s, ·)‖p
(C.370)

· 1

1− γ
∑
s

dπ
∗

ρ (s)
∑
a

π∗(a|s) · Aπθ(s, a) (C.371)

=
p√
S
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

· mins πθ(a
∗(s)|s)1−1/p

maxs ‖θ(s, ·)‖p
· [V ∗(ρ)− V πθ(ρ)] , (C.372)

where the last equation is according to the performance difference lemma of

Lemma 34.

C.2.4 An Equivalent Algorithm with Parameter Nor-
malization

For convenience of analysis, we introduce Algorithm 3, which is equivalent to

Algorithm 1 as shown in Lemma 46.

Lemma 46. Using the escort transform πθ = fp(θ), Algorithm 3 with constant

learning rate η and Algorithm 1 with learning rate ηt(s) = η · ‖θt(s, ·)‖2
p are
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Algorithm 3 Escort Policy Gradient Method with Parameter Nor-
malization

Input: Learning rate η > 0.
Output: Policies πθt = fp(θt).
Initialize parameter θ1(s, a) for all (s, a) ∈ S ×A.

Normalize parameter θ̃1(s, a)← θ1(s,a)
‖θ1(s,·)‖p for all (s, a) ∈ S ×A.

for t = 1 to T do
ζ̃t+1(s, a)← θ̃t(s, a) + η · ∂V

π
θ̃t (µ)

∂θ̃t(s,a)
for all (s, a).

θ̃t+1(s, a)← ζ̃t+1(s,a)

‖ζ̃t+1(s,·)‖p
for all (s, a).

end for

equivalent, i.e., for all (s, a),

θ̃t(s, a) =
θt(s, a)

‖θt(s, ·)‖p
, and (C.373)

πθ̃t(a|s) = πθt(a|s). (C.374)

Proof. For t = 1, according to Algorithm 3, we have, for all (s, a), θ̃1(s, a) =
θ1(s,a)
‖θ1(s,·)‖p , and,

πθ̃1(a|s) =
|θ̃1(s, a)|p∑
a′ |θ̃1(s, a′)|p

(C.375)

=
|θ1(s, a)|p∑
a′ |θ1(s, a′)|p

· 1
XXXXXX‖θ1(s, ·)‖pp

·XXXXXX‖θ1(s, ·)‖pp = πθ1(a|s). (C.376)

Suppose θ̃t(s, a) = θt(s,a)
‖θt(s,·)‖p for some t ≥ 1. Using similar calculation as in

Eq. (C.375), we have, for all (s, a), πθ̃t(a|s) = πθt(a|s), and,

ζ̃t+1(s, a)← θ̃t(s, a) + η · ∂V
πθ̃t (µ)

∂θ̃t(s, a)
(Algorithm 3) (C.377)

=
θt(s, a)

‖θt(s, ·)‖p
+ η · ‖θt(s, ·)‖p ·

∂V πθt (µ)

∂θt(s, a)
(C.378)(

induction hypothesis and πθ̃t = πθt
)

(C.379)

=
θt(s, a)

‖θt(s, ·)‖p
+ ηt(s) ·

1

‖θt(s, ·)‖p
· ∂V

πθt (µ)

∂θt(s, a)
(C.380)(

ηt(s) = η · ‖θt(s, ·)‖2
p

)
(C.381)

=
1

‖θt(s, ·)‖p
·
(
θt(s, a) + ηt(s) ·

∂V πθt (µ)

∂θt(s, a)

)
(C.382)

=
1

‖θt(s, ·)‖p
· θt+1(s, a). (Algorithm 1) (C.383)
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Therefore we have,

θ̃t+1(s, a)← ζ̃t+1(s, a)

‖ζ̃t+1(s, ·)‖p
(Algorithm 3) (C.384)

=
1

XXXXXX‖θt(s, ·)‖p
· θt+1(s, a) ·

XXXXXX‖θt(s, ·)‖p
‖θt+1(s, ·)‖p

(by Eq. (C.377)) (C.385)

=
θt+1(s, a)

‖θt+1(s, ·)‖p
. (C.386)

Using similar calculation as in Eq. (C.375), we have, for all (s, a), πθ̃t+1
(a|s) =

πθt+1(a|s).

Theorem 13. Following the escort policy gradient with any initialization

such that |θ1(s, a)| > 0, ∀(s, a) to get {θt}t≥1, for any t ≥ 1, the following

upper bounds hold for πθt ,

(i) for p ≥ 2, with ηt = (1−γ)3

10·p2·A1/p ,

V ∗(ρ)− V πθt (ρ) ≤ 20 · A1/p · S
c2−2/p · (1− γ)6 · t

·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
2

∞

·
∥∥∥∥ 1

µ

∥∥∥∥
∞
, (C.387)

(ii) for p = 1, with ηt = (1−γ)3

10·A ,

V ∗(ρ)− V πθt (ρ) ≤ 20 · A · S
(1− γ)6 · t

·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
2

∞

·
∥∥∥∥ 1

µ

∥∥∥∥
∞
, (C.388)

where c := infs∈S inft≥1 πθt(a
∗(s)|s) > 0 is problem- and initialization-dependent

constant, A := |A| and S := |S| are the total number of actions and states,

respectively, and µ ∈ ∆(S) is an initial state distribution which provides initial

states for the policy gradient method.

Proof. Note that for any θ and µ,

dπθµ (s) = E
s0∼µ

[
dπθµ (s)

]
(C.389)

= E
s0∼µ

[
(1− γ)

∞∑
t=0

γt Pr(st = s|s0, πθ,P)

]
(C.390)

≥ E
s0∼µ

[(1− γ) Pr(s0 = s|s0)] (C.391)

= (1− γ) · µ(s). (C.392)
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According to the value sub-optimality lemma of Lemma 36,

V ∗(ρ)− V πθ(ρ) =
1

1− γ
∑
s

dπθρ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) (C.393)

=
1

1− γ
∑
s

dπθρ (s)

dπθµ (s)
· dπθµ (s)

∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) (C.394)

≤ 1

1− γ
·
∥∥∥∥ 1

dπθµ

∥∥∥∥
∞

∑
s

dπθµ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) (C.395)

≤ 1

(1− γ)2
·
∥∥∥∥ 1

µ

∥∥∥∥
∞

∑
s

dπθµ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) (C.396)(
by Eq. (C.389) and min

s
µ(s) > 0

)
(C.397)

=
1

1− γ
·
∥∥∥∥ 1

µ

∥∥∥∥
∞
· [V ∗(µ)− V πθ(µ)] , (C.398)

where the first inequality is because of∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) ≥ 0, (C.399)

and the last equation is again by Lemma 36.

For p ≥ 2 and p = 1, according to Lemma 44, V πθ(µ) is β-smooth with

β = 8·p2·A2/p

(1−γ)3 · 1
mins ‖θλt (s,·)‖2p

, i.e., we have, in Algorithm 3,∣∣∣∣V πζ̃t+1 (µ)− V πθ̃t (µ)−
〈∂V πθ̃t (µ)

∂θ̃t
, ζ̃t+1 − θ̃t

〉∣∣∣∣ (C.400)

≤ 4 · p2 · A2/p

(1− γ)3
· ‖ζ̃t+1 − θ̃t‖2

2

mins ‖θ̃λt(s, ·)‖2
p

, (C.401)

where

θ̃λt := θ̃t + λt · (ζ̃t+1 − θ̃t) (C.402)

= θ̃t + λt · η ·
∂V πθ̃t (µ)

∂θ̃t
, (Algorithm 3) (C.403)

for some λt ∈ [0, 1]. Denote sλt := arg mins ‖θ̃λt(s, ·)‖2
p. We have,

‖θ̃λt(sλt , ·)‖p ≥ ‖θ̃t(sλt , ·)‖p − λt · η ·
∥∥∥∥ ∂V πθ̃t (µ)

∂θ̃t(sλt , ·)

∥∥∥∥
p

(C.404)

(by triangle inequality) (C.405)

≥ min
s
‖θ̃t(s, ·)‖p − λt · η ·

∥∥∥∥ ∂V πθ̃t (µ)

∂θ̃t(sλt , ·)

∥∥∥∥
p

. (C.406)
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The `p gradient norm can be upper bounded as,

∥∥∥∥∂V πθ(µ)

∂θ(s, ·)

∥∥∥∥
p

=

[∑
a

∣∣∣∣ 1

1− γ
· dπθµ (s) · p · πθ(a|s)

θ(s, a)
· Aπθ(s, a)

∣∣∣∣p
] 1
p

(C.407)

(by Lemma 43) (C.408)

≤ p

1− γ
·

[∑
a

∣∣∣∣πθ(a|s)θ(s, a)
· Aπθ(s, a)

∣∣∣∣p
] 1
p

(C.409)

=
p

1− γ
· 1

‖θ(s, ·)‖p
·

[∑
a

(
πθ(a|s)1−1/p · |Aπθ(s, a)|

)p] 1
p

(C.410)

≤ p

1− γ
· 1

‖θ(s, ·)‖p
·

[∑
a

(
1 · 1

1− γ

)p] 1
p

(C.411)

≤ p · A1/p

(1− γ)2
·max

s

1

‖θ(s, ·)‖p
. (C.412)

Combining Eqs. (C.404) and (C.407), we have,

min
s
‖θ̃λt(s, ·)‖p (C.413)

≥ min
s
‖θ̃t(s, ·)‖p − λt · η ·

p · A1/p

(1− γ)2
· 1

mins ‖θ̃t(s, ·)‖p
(C.414)

= 1− λt · η ·
p · A1/p

(1− γ)2
(C.415)(

‖θ̃t(s, ·)‖p = 1, for all s, Algorithm 3
)

(C.416)

= 1− λt ·
1− γ

10 · p · A1/p
(C.417)(

η =
(1− γ)3

10 · p2 · A2/p
, by Lemma 46

)
(C.418)

≥ 1− 1− γ
10 · p · A1/p

(λt ∈ [0, 1]) (C.419)

=

(
1− 2√

5

)
·

(
1− 5 + 2

√
5

10
· 1− γ
p · A1/p

)
+

2√
5

(C.420)

≥ 2√
5
.

(
p ≥ 2, A1/p ≥ 1, 1− γ ∈ (0, 1]

)
(C.421)
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Combining Eqs. (C.400) and (C.413), we have,∣∣∣∣V πζ̃t+1 (µ)− V πθ̃t (µ)−
〈∂V πθ̃t (µ)

∂θ̃t
, ζ̃t+1 − θ̃t

〉∣∣∣∣ (C.422)

≤ 4 · p2 · A2/p

(1− γ)3
· ‖ζ̃t+1 − θ̃t‖2

2

mins ‖θ̃λt(s, ·)‖2
p

(C.423)

≤ 5 · p2 · A2/p

(1− γ)3
· ‖ζ̃t+1 − θ̃t‖2

2, (C.424)

which implies,

V πθ̃t (µ)− V πθ̃t+1 (µ) = V πθ̃t (µ)− V πζ̃t+1 (µ) (C.425)(
θ̃t+1(s, a) =

ζ̃t+1(s, a)

‖ζ̃t+1(s, ·)‖p
, Algorithm 3

)
(C.426)

≤ −
〈∂V πθ̃t (µ)

∂θ̃t
, ζ̃t+1 − θ̃t

〉
+

5 · p2 · A2/p

(1− γ)3
· ‖ζ̃t+1 − θ̃t‖2

2 (C.427)

(by Eq. (C.422)) (C.428)

= −η ·
∥∥∥∥∂V πθ̃t (µ)

∂θ̃t

∥∥∥∥2

2

+
5 · p2 · A2/p

(1− γ)3
· η2 ·

∥∥∥∥∂V πθ̃t (µ)

∂θ̃t

∥∥∥∥2

2

(C.429)(
ζ̃t+1 = θ̃t + η · ∂V

πθ̃t (µ)

∂θ̃t
, Algorithm 3

)
(C.430)

= − (1− γ)3

20 · p2 · A2/p
·
∥∥∥∥∂V πθ̃t (µ)

∂θ̃t

∥∥∥∥2

2

(
η =

(1− γ)3

10 · p2 · A2/p

)
(C.431)

≤ − (1− γ)3

20 · SSp2 · A2/p
·
[

Ap√
S
·

∥∥∥∥∥ dπ
∗
µ

d
πθ̃t
µ

∥∥∥∥∥
−1

∞

·
mins πθ̃t(a

∗(s)|s)1−1/p

maxs ‖θ̃t(s, ·)‖p
(C.432)

· [V ∗(µ)− V πθ̃t (µ)]

]2

(Lemma 45) (C.433)

= − (1− γ)3

20 · A2/p · S
·

∥∥∥∥∥ dπ
∗
µ

d
πθ̃t
µ

∥∥∥∥∥
−2

∞

·min
s
πθ̃t(a

∗(s)|s)2−2/p (C.434)

· [V ∗(µ)− V πθ̃t (µ)]
2

(
‖θ̃t(s, ·)‖p = 1, for all s

)
(C.435)

≤ − (1− γ)5

20 · A2/p · S
·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
−2

∞

(C.436)

·min
s
πθ̃t(a

∗(s)|s)2−2/p · [V ∗(µ)− V πθ̃t (µ)]
2
, (C.437)
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where the last inequality is by Eq. (C.389). Then we have,

V πθt (µ)− V πθt+1 (µ) = V πθ̃t (µ)− V πθ̃t+1 (µ) (by Lemma 46) (C.438)

≤ − (1− γ)5

20 · A2/p · S
·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
−2

∞

·min
s
πθt(a

∗(s)|s)2−2/p (C.439)

· [V ∗(µ)− V πθt (µ)]2 (by Eq. (C.425) and Lemma 46) (C.440)

≤ − (1− γ)5

20 · A2/p · S
·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
−2

∞

· c2−2/p · [V ∗(µ)− V πθt (µ)]2 , (C.441)

which is equivalent to,

δt+1 − δt ≤ −
(1− γ)5

20 · A2/p · S
·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
−2

∞

· c2−2/p · δ2
t , (C.442)

where δt = V ∗(µ) − V πθt (µ). Using the similar induction argument as in

Eq. (C.142), we have,

V ∗(µ)− V πθt (µ) ≤ 20 · A2/p · S
(1− γ)5 · t

· 1

c2−2/p
·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
2

∞

, (C.443)

which leads to the final result,

V ∗(ρ)− V πθt (ρ) ≤ 1

1− γ
·
∥∥∥∥ 1

µ

∥∥∥∥
∞
· [V ∗(µ)− V πθt (µ)] (C.444)

(by Eq. (C.393)) (C.445)

≤ 20 · A2/p · S
c2−2/p · (1− γ)6 · t

·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
2

∞

·
∥∥∥∥ 1

µ

∥∥∥∥
∞
.

C.2.5 Entropy Regularized MDPs

Lemma 47. The entropy regularized escort policy gradient w.r.t. θ is

∂Ṽ πθ(µ)

∂θ(s, a)
=

1

1− γ
· dπθµ (s) · p · πθ(a|s)

θ(s, a)
· Ãπθ(s, a), (C.446)

∂Ṽ πθ(µ)

∂θ(s, ·)
=

1

1− γ
· dπθµ (s) · p (C.447)

· diag

(
πθ(·|s)
θ(s, ·)

)(
Id− 1πθ(·|s)>

) [
Q̃πθ(s, ·)− τ log πθ(·|s)

]
. (C.448)

where Ãπθ(s, a) is the soft advantage function defined as

Ãπθ(s, a) = Q̃πθ(s, a)− τ log πθ(a|s)− Ṽ πθ(s) (C.449)

Q̃πθ(s, a) = r(s, a) + γ
∑
s′

P(s′|s, a)Ṽ πθ(s′). (C.450)
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Proof. According to the definition of Ṽ πθ ,

Ṽ πθ(µ) = E
s∼µ

∑
a

πθ(a|s) ·
[
Q̃πθ(s, a)− τ log πθ(a|s)

]
. (C.451)

Taking derivative w.r.t. θ,

∂Ṽ πθ(µ)

∂θ
= E

s∼µ

∑
a

∂πθ(a|s)
∂θ

·
[
Q̃πθ(s, a)− τ log πθ(a|s)

]
(C.452)

+ E
s∼µ

∑
a

πθ(a|s) ·

[
∂Q̃πθ(s, a)

∂θ
− τ 1

πθ(a|s)
∂πθ(a|s)
∂θ

]
(C.453)

= E
s∼µ

∑
a

∂πθ(a|s)
∂θ

·
[
Q̃πθ(s, a)− τ log πθ(a|s)

]
(C.454)

+ E
s∼µ

∑
a

πθ(a|s) ·
∂Q̃πθ(s, a)

∂θ
(C.455)

= E
s∼µ

∑
a

∂πθ(a|s)
∂θ

·
[
Q̃πθ(s, a)− τ log πθ(a|s)

]
(C.456)

+ γ · E
s∼µ

∑
a

πθ(a|s)
∑
s′

P(s′|s, a) · ∂Ṽ
πθ(s′)

∂θ
(C.457)

=
1

1− γ
∑
s

dπθµ (s)
∑
a

∂πθ(a|s)
∂θ

·
[
Q̃πθ(s, a)− τ log πθ(a|s)

]
, (C.458)

where the second equation is because of∑
a

πθ(a|s) ·
[

1

πθ(a|s)
∂πθ(a|s)
∂θ

]
=
∑
a

∂πθ(a|s)
∂θ

(C.459)

=
∂

∂θ

∑
a

πθ(a|s) =
∂1

∂θ
= 0. (C.460)

Using similar arguments as in the proof for Lemma 43, i.e., for s′ 6= s, ∂πθ(a|s)
∂θ(s′,·) =

0,

∂Ṽ πθ(µ)

∂θ(s, ·)
=

1

1− γ
· dπθµ (s) ·

∑
a

∂πθ(a|s)
∂θ(s, ·)

·
[
Q̃πθ(s, a)− τ log πθ(a|s)

]
(C.461)

=
1

1− γ
· dπθµ (s) ·

(
dπθ(·|s)
dθ(s, ·)

)> [
Q̃πθ(s, ·)− τ log πθ(·|s)

]
(C.462)

=
1

1− γ
· dπθµ (s) · p (C.463)

· diag

(
πθ(·|s)
θ(s, ·)

)(
Id− 1πθ(·|s)>

) [
Q̃πθ(s, ·)− τ log πθ(·|s)

]
. (C.464)
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For each component a, we have

∂Ṽ πθ(µ)

∂θ(s, a)
=

1

1− γ
· dπθµ (s) · p · πθ(a|s)

θ(s, a)
·
[
Q̃πθ(s, a)− τ log πθ(a|s) (C.465)

−
∑
a

πθ(a|s) ·
[
Q̃πθ(s, a)− τ log πθ(a|s)

] ]
(C.466)

=
1

1− γ
· dπθµ (s) · p · πθ(a|s)

θ(s, a)
(C.467)

·
[
Q̃πθ(s, a)− τ log πθ(a|s)− Ṽ πθ(s)

]
(C.468)

=
1

1− γ
· dπθµ (s) · p · πθ(a|s)

θ(s, a)
· Ãπθ(s, a).

Lemma 48 (Non-uniform  Lojasiewicz). Suppose µ(s) > 0 for all s ∈ S and

πθ = fp(θ). Then,∥∥∥∥∥∂Ṽ πθ(µ)

∂θ

∥∥∥∥∥
2

≥
√

2τ√
S
·min

s

√
µ(s) (C.469)

· p ·mins,a πθ(a|s)1−1/p

maxs ‖θ(s, ·)‖p
·

∥∥∥∥∥dπ
∗
τ
ρ

dπθµ

∥∥∥∥∥
− 1

2

∞

·
[
Ṽ π∗τ (ρ)− Ṽ πθ(ρ)

] 1
2
. (C.470)
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Proof. According to the definition of soft value functions,

Ṽ π∗τ (ρ)− Ṽ πθ(ρ) (C.471)

= E
s0∼ρ,at∼π∗τ (·|st),
st+1∼P(·|st,at)

[
∞∑
t=0

γt(r(st, at)− τ log π∗τ (at|st))

]
− Ṽ πθ(ρ) (C.472)

= E
s0∼ρ,at∼π∗τ (·|st),
st+1∼P(·|st,at)

[ ∞∑
t=0

γt(r(st, at)− τ log π∗τ (at|st) (C.473)

+ Ṽ πθ(st)− Ṽ πθ(st))

]
− Ṽ πθ(ρ) (C.474)

= E
s0∼ρ,at∼π∗τ (·|st),
st+1∼P(·|st,at)

[ ∞∑
t=0

γt(r(st, at)− τ log π∗τ (at|st) (C.475)

+ γṼ πθ(st+1)− Ṽ πθ(st))

]
(C.476)

=
1

1− γ
∑
s

dπ
∗
τ
ρ (s) ·

[∑
a

π∗τ (a|s) ·
(
r(s, a)− τ log π∗τ (a|s) (C.477)

+ γ
∑
s′

P(s′|s, a)Ṽ πθ(s′)− Ṽ πθ(s)
)]

(C.478)

=
1

1− γ
∑
s

dπ
∗
τ
ρ (s) ·

[∑
a

π∗τ (a|s) ·
(
Q̃πθ(s, a)− τ log π∗τ (a|s)

)
(C.479)

− Ṽ πθ(s)

]
. (C.480)

Next, define the “soft greedy policy” π̄θ(·|s) = softmax(Q̃πθ(s, ·)/τ), ∀s, i.e.,

π̄θ(a|s) =
exp

{
Q̃πθ(s, a)/τ

}∑
a′ exp

{
Q̃πθ(s, a′)/τ

} , ∀a. (C.481)

We have, ∀s,∑
a

π∗τ (a|s) ·
[
Q̃πθ(s, a)− τ log π∗τ (a|s)

]
(C.482)

≤ max
π(·|s)

∑
a

π(a|s) ·
[
Q̃πθ(s, a)− τ log π(a|s)

]
(C.483)

=
∑
a

π̄θ(a|s) ·
[
Q̃πθ(s, a)− τ log π̄θ(a|s)

]
(C.484)

= τ log
∑
a

exp
{
Q̃πθ(s, a)/τ

}
. (C.485)
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Also note that,

Ṽ πθ(s) =
∑
a

πθ(a|s) ·
[
Q̃πθ(s, a)− τ log πθ(a|s)

]
(C.486)

=
∑
a

πθ(a|s) ·
[
Q̃πθ(s, a)− τ log π̄θ(a|s) (C.487)

+ τ log π̄θ(a|s)− τ log πθ(a|s)
]

(C.488)

=
∑
a

πθ(a|s) ·
[
Q̃πθ(s, a)− τ log π̄θ(a|s)

]
(C.489)

− τDKL(πθ(·|s)‖π̄θ(·|s)) (C.490)

= τ log
∑
a

exp
{
Q̃πθ(s, a)/τ

}
− τ ·DKL(πθ(·|s)‖π̄θ(·|s)). (C.491)

Combining Eq. (C.471), Eqs. (C.482) and (C.486), we have,

Ṽ π∗τ (ρ)− Ṽ πθ(ρ) (C.492)

=
1

1− γ
∑
s

dπ
∗
τ
ρ (s) (C.493)

·
[∑

a

π∗τ (a|s) ·
[
Q̃πθ(s, a)− τ log π∗τ (a|s)

]
− Ṽ πθ(s)

]
(C.494)

≤ 1

1− γ
∑
s

dπ
∗
τ
ρ (s) ·

[
τ log

∑
a

exp
{
Q̃πθ(s, a)/τ

}
− Ṽ πθ(s)

]
(C.495)

=
1

1− γ
∑
s

dπ
∗
τ
ρ (s) · τ ·DKL(πθ(·|s)‖π̄θ(·|s)) (C.496)

≤ 1

1− γ
∑
s

dπ
∗
τ
ρ (s) · τ

2
·

∥∥∥∥∥Q̃πθ(s, ·)
τ

− log πθ(s, ·)−
cθ(s)

τ
· 1

∥∥∥∥∥
2

∞

(C.497)

(by Lemma 42) (C.498)

=
1

1− γ
∑
s

d
π∗τ
ρ (s)

2τ
·
∥∥∥Q̃πθ(s, ·)− τ log πθ(s, ·)− cθ(s) · 1

∥∥∥2

∞
, (C.499)

where cθ(s) =
(Q̃πθ (s,·)−τ log πθ(s,·))

>
1

A
. Taking square root of Eq. (C.492), we
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have,[
Ṽ π∗τ (ρ)− Ṽ πθ(ρ)

] 1
2

(C.500)

≤ 1√
1− γ

·
[∑

s

d
π∗τ
ρ (s)

2τ
(C.501)

·
∥∥∥Q̃πθ(s, ·)− τ log πθ(s, ·)− cθ(s) · 1

∥∥∥2

∞

] 1
2

(C.502)

=
1√

1− γ
·
[∑

s

(√
d
π∗τ
ρ (s) · 1√

2τ
(C.503)

·
∥∥∥Q̃πθ(s, ·)− τ log πθ(s, ·)− cθ(s) · 1

∥∥∥
∞

)2] 1
2

(C.504)

≤ 1√
1− γ

·
∑
s

√
d
π∗τ
ρ (s) · 1√

2τ
(C.505)

·
∥∥∥Q̃πθ(s, ·)− τ log πθ(s, ·)− cθ(s) · 1

∥∥∥
∞

(‖x‖2 ≤ ‖x‖1)

(C.506)

≤ 1√
1− γ

· 1√
2τ
·

∥∥∥∥∥dπ
∗
τ
ρ

dπθµ

∥∥∥∥∥
1
2

∞

∑
s

√
dπθµ (s) (C.507)

·
∥∥∥Q̃πθ(s, ·)− τ log πθ(s, ·)− cθ(s) · 1

∥∥∥
∞
. (C.508)

On the other hand, the entropy regularized policy gradient norm is lower
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bounded as∥∥∥∥∥∂Ṽ πθ(µ)

∂θ

∥∥∥∥∥
2

=

∑
s

∥∥∥∥∥∂Ṽ πθ(µ)

∂θ(s, ·)

∥∥∥∥∥
2

2

 1
2

(C.509)

≥ 1√
S

∑
s

∥∥∥∥∥∂Ṽ πθ(µ)

∂θ(s, ·)

∥∥∥∥∥
2

(C.510)

(by Cauchy-Schwarz , ‖x‖1 = |〈1, |x|〉| ≤ ‖1‖2 · ‖x‖2) (C.511)

≥ 1√
S
· 1

1− γ
∑
s

dπθµ (s) (C.512)

·
∥∥∥∥p · diag

(
πθ(·|s)
θ(s, ·)

)(
Id− 1πθ(·|s)>

) [
Q̃πθ(s, ·)− τ log πθ(s, ·)− cθ(s) · 1

]∥∥∥∥
2

(C.513)

(by Lemma 47) (C.514)

=
1√
S
· 1

1− γ
∑
s

dπθµ (s) · p

‖θ(s, ·)‖p
(C.515)

·
∥∥∥diag

(
πθ(·|s)1−1/p

) (
Id− 1πθ(·|s)>

) [
Q̃πθ(s, ·)− τ log πθ(s, ·)− cθ(s) · 1

]∥∥∥
2

(C.516)

≥ 1√
S
· 1

1− γ
∑
s

dπθµ (s) · p

‖θ(s, ·)‖p
·min

a
πθ(a|s)1−1/p (C.517)

·
∥∥∥Q̃πθ(s, ·)− τ log πθ(s, ·)− cθ(s) · 1

∥∥∥
2
. (by Lemma 51) (C.518)
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Denote ζθ(s) = Q̃πθ(s, ·)− τ log πθ(s, ·)− cθ(s) · 1. We have,∥∥∥∥∥∂Ṽ πθ(µ)

∂θ

∥∥∥∥∥
2

(C.519)

≥ 1√
S
· 1

1− γ
∑
s

dπθµ (s) · p

‖θ(s, ·)‖p
·min

a
πθ(a|s)1−1/p · ‖ζθ(s)‖2 (C.520)

≥ 1√
S
· 1

1− γ
∑
s

dπθµ (s) · p

‖θ(s, ·)‖p
·min

a
πθ(a|s)1−1/p · ‖ζθ(s)‖∞

(C.521)

≥ 1√
S
· 1√

1− γ
·min

s

√
dπθµ (s) ·min

s

p

‖θ(s, ·)‖p
·min
s,a

πθ(a|s)1−1/p

(C.522)

·
√

2τ ·

∥∥∥∥∥dπ
∗
τ
ρ

dπθµ

∥∥∥∥∥
− 1

2

∞

·

 1√
1− γ

· 1√
2τ
·

∥∥∥∥∥dπ
∗
τ
ρ

dπθµ

∥∥∥∥∥
1
2

∞

∑
s

√
dπθµ (s) · ‖ζθ(s)‖∞


(C.523)

≥ 1√
S
· 1√

1− γ
·min

s

√
dπθµ (s) ·min

s

p

‖θ(s, ·)‖p
·min
s,a

πθ(a|s)1−1/p

(C.524)

·
√

2τ ·

∥∥∥∥∥dπ
∗
τ
ρ

dπθµ

∥∥∥∥∥
− 1

2

∞

·
[
Ṽ π∗τ (ρ)− Ṽ πθ(ρ)

] 1
2

(by Eq. (C.500))

(C.525)

≥
√

2τ√
S
·min

s

√
µ(s) ·min

s

p

‖θ(s, ·)‖p
·min
s,a

πθ(a|s)1−1/p (C.526)

·

∥∥∥∥∥dπ
∗
τ
ρ

dπθµ

∥∥∥∥∥
− 1

2

∞

·
[
Ṽ π∗τ (ρ)− Ṽ πθ(ρ)

] 1
2
, (C.527)

where the last inequality is by dπθµ (s) ≥ (1− γ) · µ(s) (cf. Eq. (C.389)). Note

that mins,a πθ(a|s)1−1/p ≥ mins,a πθ(a|s), which is a better dependence than

Lemma 15.

Theorem 14. For an entropy regularized MDP with finite states and actions,

following the escort policy gradient with any initialization such that |θ1(s, a)| >

0, ∀(s, a), and

ηt =
(1− γ)3

10 · p2 · A1/p + cτ
, (C.528)

to get {θt}t≥1, for all t ≥ 1, the following sub-optimality upper bounds hold
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for πθt , for p ≥ 2:

Ṽ π∗τ (ρ)− Ṽ πθt (ρ) ≤ ‖1/µ‖∞
exp{Cτ · c′2 · t}

· 1 + τ logA

(1− γ)2
, (C.529)

where c′ > c := inf(s,a) inft≥1 πθt(a|s) > 0, τ is the temperature for entropy reg-

ularization, π∗τ is the softmax optimal policy, and cτ , Cτ are problem-dependent

constants.

Proof. According to the soft sub-optimality lemma of Lemma 41,

Ṽ π∗τ (ρ)− Ṽ πθt (ρ) =
1

1− γ
∑
s

[
d
πθt
ρ (s) · τ ·DKL(πθt(·|s)‖π∗τ (·|s))

]
(C.530)

=
1

1− γ
∑
s

d
πθt
ρ (s)

d
πθt
µ (s)

·
[
d
πθt
µ (s) · τ ·DKL(πθt(·|s)‖π∗τ (·|s))

]
(C.531)

≤ 1

(1− γ)2

∑
s

1

µ(s)
·
[
d
πθt
µ (s) · τ ·DKL(πθt(·|s)‖π∗τ (·|s))

]
(C.532)

≤ 1

(1− γ)2
·
∥∥∥∥ 1

µ

∥∥∥∥
∞

∑
s

[
d
πθt
µ (s) · τ ·DKL(πθt(·|s)‖π∗τ (·|s))

]
(C.533)

=
1

1− γ
·
∥∥∥∥ 1

µ

∥∥∥∥
∞
·
[
Ṽ π∗τ (µ)− Ṽ πθt (µ)

]
, (C.534)

where the last equation is again by Lemma 41, and the first inequality is

according to d
πθt
µ (s) ≥ (1− γ) · µ(s) (cf. Eq. (C.389)).

According to Lemma 46, using ∂Ṽ
πθt (µ)
∂θt

in Algorithm 1 with learning rate

ηt(s) = η ·‖θt(s, ·)‖2
p is equivalent to using ∂Ṽ

π
θ̃t (µ)

∂θ̃t
in Algorithm 3 with learning

rate η. We have, in Algorithm 3,∣∣∣∣∣Ṽ πζ̃t+1 (µ)− Ṽ πθ̃t (µ)−
〈∂Ṽ πθ̃t (µ)

∂θ̃t
, ζ̃t+1 − θ̃t

〉∣∣∣∣∣ (C.535)

≤ 4 · p2 · A2/p + cτ
(1− γ)3

· ‖ζ̃t+1 − θ̃t‖2
2

mins ‖θ̃λt(s, ·)‖2
p

, (C.536)

where

θ̃λt := θ̃t + λt · (ζ̃t+1 − θ̃t) (C.537)

= θ̃t + λt · η ·
∂Ṽ πθ̃t (µ)

∂θ̃t
, (Algorithm 3) (C.538)
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for some λt ∈ [0, 1]. Denote sλt := arg mins ‖θ̃λt(s, ·)‖2
p. We have,

‖θ̃λt(sλt , ·)‖p ≥ ‖θ̃t(sλt , ·)‖p − λt · η ·

∥∥∥∥∥ ∂Ṽ πθ̃t (µ)

∂θ̃t(sλt , ·)

∥∥∥∥∥
p

(C.539)

(by triangle inequality) (C.540)

≥ min
s
‖θ̃t(s, ·)‖p − λt · η ·

∥∥∥∥∥ ∂Ṽ πθ̃t (µ)

∂θ̃t(sλt , ·)

∥∥∥∥∥
p

. (C.541)

The `p gradient norm can be upper bounded as,∥∥∥∥∥∂Ṽ πθ(µ)

∂θ(s, ·)

∥∥∥∥∥
p

=

[∑
a

∣∣∣∣ 1

1− γ
· dπθµ (s) · p · πθ(a|s)

θ(s, a)
· Ãπθ(s, a)

∣∣∣∣p
] 1
p

(C.542)

(by Lemma 47) (C.543)

≤ p

1− γ
·

[∑
a

∣∣∣∣πθ(a|s)θ(s, a)
· Ãπθ(s, a)

∣∣∣∣p
] 1
p

(C.544)

=
p

1− γ
· 1

‖θ(s, ·)‖p
·

[∑
a

(
πθ(a|s)1−1/p · |Ãπθ(s, a)|

)p] 1
p

(C.545)

≤ p

1− γ
· 1

‖θ(s, ·)‖p
·

[∑
a

(
1 · 1 + τ logA

1− γ

)p] 1
p

(C.546)

≤ p · A1/p · (1 + τ logA)

(1− γ)2
·max

s

1

‖θ(s, ·)‖p
. (C.547)

Combining Eqs. (C.539) and (C.542), we have,

min
s
‖θ̃λt(s, ·)‖p ≥ min

s
‖θ̃t(s, ·)‖p (C.548)

− ξ · η · p · A
1/p · (1 + τ logA)

(1− γ)2
· 1

mins ‖θ̃t(s, ·)‖p
(C.549)

= 1− ξ · η · p · A
1/p · (1 + τ logA)

(1− γ)2
. (C.550)(

‖θ̃t(s, ·)‖p = 1, for all s, Algorithm 3
)

(C.551)
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Note that η = (1−γ)3

10·p2·A2/p·(1+τ logA)
. We have,

min
s
‖θ̃λt(s, ·)‖p ≥ 1− λt · η ·

p · A1/p · (1 + τ logA)

(1− γ)2
(C.552)

(by Eq. (C.548)) (C.553)

= 1− λt ·
(1− γ)3

10 · p2 · A2/p
· p · A

1/p

(1− γ)2
(C.554)

≥ 1− 1− γ
10 · p · A1/p

(C.555)

=

(
1− 2√

5

)
·

(
1− 5 + 2

√
5

10
· 1− γ
p · A1/p

)
+

2√
5

(C.556)

≥ 2√
5
.

(
p ≥ 2, A1/p ≥ 1, 1− γ ∈ (0, 1]

)
(C.557)

Combining Eqs. (C.535) and (C.552), we have,∣∣∣∣∣Ṽ πζ̃t+1 (µ)− Ṽ πθ̃t (µ)−
〈∂Ṽ πθ̃t (µ)

∂θ̃t
, ζ̃t+1 − θ̃t

〉∣∣∣∣∣ (C.558)

≤ 4 · p2 · A2/p + cτ
(1− γ)3

· ‖ζ̃t+1 − θ̃t‖2
2

mins ‖θ̃λt(s, ·)‖2
p

(C.559)

≤ 4 · p2 · A2/p + cτ
(1− γ)3

· 5

4
· ‖ζ̃t+1 − θ̃t‖2

2 (C.560)

=
5 · p2 · A2/p + cτ

(1− γ)3
· ‖ζ̃t+1 − θ̃t‖2

2, (C.561)
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which implies,

Ṽ πθ̃t (µ)− Ṽ πθ̃t+1 (µ) = Ṽ πθ̃t (µ)− Ṽ πζ̃t+1 (µ) (C.562)(
θ̃t+1(s, a) =

ζ̃t+1(s, a)

‖ζ̃t+1(s, ·)‖p
, Algorithm 3

)
(C.563)

≤ −
〈∂Ṽ πθ̃t (µ)

∂θ̃t
, ζ̃t+1 − θ̃t

〉
+

5 · p2 · A2/p + cτ
(1− γ)3

· ‖ζ̃t+1 − θ̃t‖2
2 (C.564)

(by Eq. (C.558)) (C.565)

= −η ·

∥∥∥∥∥∂Ṽ πθ̃t (µ)

∂θ̃t

∥∥∥∥∥
2

2

+
5 · p2 · A2/p + cτ

(1− γ)3
· η2 ·

∥∥∥∥∥∂Ṽ πθ̃t (µ)

∂θ̃t

∥∥∥∥∥
2

2

(C.566)(
ζ̃t+1 = θ̃t + η · ∂Ṽ

πθ̃t (µ)

∂θ̃t
, Algorithm 3

)
(C.567)

= − (1− γ)3

20 · p2 · A2/p + cτ
·

∥∥∥∥∥∂Ṽ πθ̃t (µ)

∂θ̃t

∥∥∥∥∥
2

2

(C.568)(
η =

(1− γ)3

10 · p2 · A2/p + cτ

)
(C.569)

≤ − (1− γ)3

20 · SSp2 · A2/p + cτ
· 2τ

S
·min

s
µ(s) ·

SSp
2 ·mins,a πθ̃t(a|s)

2−2/p

maxs ‖θ̃t(s, ·)‖2
p

(C.570)

·

∥∥∥∥∥ dπ
∗
τ
µ

d
πθ̃t
µ

∥∥∥∥∥
−1

∞

·
[
Ṽ π∗τ (µ)− Ṽ πθ̃t (µ)

]
(Lemma 48) (C.571)

= − (1− γ)3 · τ
(10 · A2/p + cτ ) · S

·

∥∥∥∥∥ dπ
∗
µ

d
πθ̃t
µ

∥∥∥∥∥
−1

∞

·min
s,a

πθ̃t(a|s)
2−2/p (C.572)

·
[
Ṽ π∗τ (µ)− Ṽ πθ̃t (µ)

] (
‖θ̃t(s, ·)‖p = 1, for all s

)
(C.573)

≤ − (1− γ)4 · τ
(10 · A2/p + cτ ) · S

·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
−1

∞

·min
s,a

πθ̃t(a|s)
2−2/p (C.574)

·
[
Ṽ π∗τ (µ)− Ṽ πθ̃t (µ)

]
, (by Eq. (C.389)) (C.575)
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which implies,

Ṽ πθt (µ)− Ṽ πθt+1 (µ) = Ṽ πθ̃t (µ)− Ṽ πθ̃t+1 (µ) (by Lemma 46) (C.576)

≤ − (1− γ)4 · τ
(10 · A2/p + cτ ) · S

·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
−1

∞

·min
s,a

πθt(a|s)2−2/p (C.577)

·
[
Ṽ π∗τ (µ)− Ṽ πθt (µ)

]
, (by Eq. (C.562) and Lemma 46) (C.578)

≤ − (1− γ)4 · τ
(10 · A2/p + cτ ) · S

·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
−1

∞

· c2−2/p ·
[
Ṽ π∗τ (µ)− Ṽ πθt (µ)

]
, (C.579)

which is equivalent to,

Ṽ π∗τ (µ)− Ṽ πθt (µ) (C.580)

≤

1− (1− γ)4 · τ · c2−2/p

(10 · A2/p + cτ ) · S
·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
−1

∞

 · [Ṽ π∗τ (µ)− Ṽ πθt−1 (µ)
]

(C.581)

≤ exp

−(1− γ)4 · τ · c2−2/p

(10 · A2/p + cτ ) · S
·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
−1

∞

 · [Ṽ π∗τ (µ)− Ṽ πθt−1 (µ)
]
(C.582)

≤ exp

−(1− γ)4 · τ · c2−2/p

(10 · A2/p + cτ ) · S
·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
−1

∞

· (t− 1)

 · [Ṽ π∗τ (µ)− Ṽ πθ1 (µ)
]

(C.583)

≤ exp

−(1− γ)4 · τ · c2−2/p

(10 · A2/p + cτ ) · S
·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
−1

∞

· (t− 1)

 · 1 + τ logA

1− γ
,

(C.584)

which leads to the final result,

Ṽ π∗τ (ρ)− Ṽ πθt (ρ) ≤ 1

1− γ
·
∥∥∥∥ 1

µ

∥∥∥∥
∞
·
[
Ṽ π∗τ (µ)− Ṽ πθt (µ)

]
(by Eq. (C.530))

(C.585)

≤
∥∥∥∥ 1

µ

∥∥∥∥
∞
· exp

− (1− γ)4 · τ · c′2

(10 · A2/p + cτ ) · S
·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
−1

∞

· (t− 1)

 · 1 + τ logA

(1− γ)2
,

(C.586)

where c′ = c1−1/p ≥ c = inf(s,a) inft πθt(a|s) > 0.
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C.3 Proofs for Section 3.5: Escort Cross En-

tropy

Lemma 49 (Non-uniform Smoothness). Let πθ := fp(θ), and πθ′ := fp(θ
′).

Denote θζ := θ + ζ · (θ′ − θ) with some ζ ∈ [0, 1]. Then for p = 2, we have

DKL(y‖πθ) is β-smooth, i.e.,∣∣∣∣DKL(y‖πθ′)−DKL(y‖πθ)−
〈d{DKL(y‖πθ)}

dθ
, θ′ − θ

〉∣∣∣∣ ≤ β

2
· ‖θ′ − θ‖2

2,

(C.587)

with β = 6
‖θζ‖2p

+ 2 ·
(

maxi
y(i)
θ(i)2

)
.

Proof. The gradient of DKL(y‖πθ) w.r.t. θ is

d{DKL(y‖πθ)}
dθ

=
d{−y> log πθ}

dθ
(C.588)

=

(
dπθ
dθ

)>(
d{−y> log πθ}

dπθ

)
(C.589)

= p · diag

(
1

θ

)(
diag(πθ)− πθπ>θ

)
diag

(
1

πθ

)
(−y) (C.590)

= p · diag

(
1

θ

)
(πθ − y). (C.591)

Denote the second derivative w.r.t. θ (i.e., Hessian) as

K(y, θ) =
d

dθ

{
d{DKL(y‖πθ)}

dθ

}
(C.592)

= p · d
dθ

{
diag

(
1

θ

)
(πθ − y)

}
. (C.593)

We have K(y, θ) ∈ RK×K , whose element at position (i, j) ∈ [K]2 is

Ki,j = p ·
d{πθ(i)−y(i)

θ(i)
}

dθ(j)
(C.594)

= p ·
p
θ(j)
· [δijπθ(j)− πθ(i)πθ(j)] · θ(i)− (πθ(i)− y(i)) · δij

θ(i)2
(C.595)

= p · (p− 1) · δij ·
πθ(i)

θ(i)2
− p2 · πθ(i)

θ(i)
· πθ(j)
θ(j)

+ δij · p ·
y(i)

θ(i)2
, (C.596)
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where the δ notation is defined in Eq. (C.47). For any x ∈ RK ,

∣∣x>K(y, θ)x
∣∣ =

∣∣∣∣∣
K∑
i=1

K∑
j=1

Ki,jx(i)x(j)

∣∣∣∣∣ (C.597)

=

∣∣∣∣p · (p− 1)
∑
i

πθ(i)

θ(i)2
· x(i)2 (C.598)

− p2
∑
i

πθ(i)

θ(i)
· x(i)

∑
j

πθ(j)

θ(j)
· x(j) + p

∑
i

y(i)

θ(i)2
· x(i)2

∣∣∣∣ (C.599)

≤ p · (p− 1) ·

[∑
i

πθ(i)

θ(i)2
· x(i)2

]
(C.600)

+ p2 ·

[∑
i

πθ(i)

θ(i)
· x(i)

]2

+ p
∑
i

y(i)

θ(i)2
· x(i)2, (C.601)

where the last inequality is by triangle inequality. The first term is upper

bounded as, ∑
i

πθ(i)

θ(i)2
· x(i)2 =

1

‖θ‖2
p

∑
i

πθ(i)
1−2/p · x(i)2 (C.602)

≤ 1

‖θ‖2
p

∑
i

1 · x(i)2 (p = 2) (C.603)

=
1

‖θ‖2
p

· ‖x‖2
2. (C.604)

The second term is upper bounded as,[∑
i

πθ(i)

θ(i)
· x(i)

]2

≤
∑
i

(
πθ(i)

θ(i)

)2

· ‖x‖2
2 (by Cauchy-Schwarz) (C.605)

=
1

‖θ‖2
p

·
∑
i

(
πθ(i)

1−1/p
)2 · ‖x‖2

2 (C.606)

≤ 1

‖θ‖2
p

·

[∑
i

πθ(i)

]
· ‖x‖2

2 (p = 2) (C.607)

=
1

‖θ‖2
p

· ‖x‖2
2. (C.608)

The last term is upper bounded as,∑
i

y(i)

θ(i)2
· x(i)2 ≤

(
max
i

y(i)

θ(i)2

)
· ‖x‖2

2. (C.609)
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Combining Eqs. (C.597), (C.602), (C.605) and (C.609), for p = 2, for any

x ∈ RK , we have,∣∣x>K(y, θ)x
∣∣ ≤ p · (p− 1) · 1

‖θ‖2
p

· ‖x‖2
2 (C.610)

+ p2 · 1

‖θ‖2
p

· ‖x‖2
2 + p ·

∥∥∥∥ y

θ � θ

∥∥∥∥
∞
· ‖x‖2

2 (C.611)

=
6

‖θ‖2
p

· ‖x‖2
2 + 2 ·

(
max
i

y(i)

θ(i)2

)
· ‖x‖2

2. (C.612)

According to Taylor’s theorem, we have,∣∣∣∣DKL(y‖πθ′)−DKL(y‖πθ)−
〈d{DKL(y‖πθ)}

dθ
, θ′ − θ

〉∣∣∣∣ (C.613)

=
1

2
·
∣∣∣(θ′ − θ)>K(y, θζ) (θ′ − θ)

∣∣∣ (C.614)

≤
[

3

‖θζ‖2
p

+ max
i

y(i)

θζ(i)2

]
· ‖θ′ − θ‖2

2.

Lemma 50 (Non-uniform  Lojasiewicz). Let πθ = fp(θ). For any p ≥ 2, we

have, ∥∥∥∥d{DKL(y‖πθ)}
dθ

∥∥∥∥2

2

≥ p2

‖θ‖2
p

·min
a
πθ(a)1−2/p ·DKL(y‖πθ). (C.615)
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Proof. According to the definition of KL-divergence, we have,

DKL(y‖πθ) =
∑
a

y(a) · log

(
y(a)

πθ(a)

)
(C.616)

≤
∑
a

y(a) ·
(
y(a)

πθ(a)
− 1

)
(log x ≤ x− 1) (C.617)

=
∑
a

(y(a)− πθ(a) + πθ(a)) · y(a)− πθ(a)

πθ(a)
(C.618)

=
∑
a

(y(a)− πθ(a))2

πθ(a)
(C.619)

=
∑
a

(y(a)− πθ(a))2

πθ(a)2/p
· 1

πθ(a)1−2/p
(C.620)

=
∑
a

(y(a)− πθ(a))2

θ(a)2
· ‖θ‖2

p ·
1

πθ(a)1−2/p
(C.621)(

πθ(a) =
|θ(a)|p∑
a′ |θ(a′)|p

)
(C.622)

≤ ‖θ‖2
p ·

1

mina πθ(a)1−2/p
·
∑
a

(y(a)− πθ(a))2

θ(a)2
(C.623)

= ‖θ‖2
p ·

1

mina πθ(a)1−2/p
· 1

p2
·
∥∥∥∥p · diag

(
1

θ

)
(y − πθ)

∥∥∥∥2

2

. (C.624)

The proof is completed with the observation that

d{DKL(y‖πθ)}
dθ

= p · diag

(
1

θ

)
(πθ − y).

Theorem 15. Using the escort transform with p = 2 on the cross entropy

objective, we obtain for all t ≥ 1,

(gradient flow) with ηt =
‖θt‖2p
p2 ,

DKL(y‖πθt) ≤ DKL(y‖πθ1) · e−(t−1), (C.625)

(gradient ascent) with ηt =
‖θt‖2p

4·(3+c21)
,

− log πθt(ay) = DKL(y‖πθt) (C.626)

≤ DKL(y‖πθ1) · exp
{
− (t− 1)

2 · (3 + c2
1)

}
, (C.627)

where 1/c2
1 = πθ1(ay) ∈ (0, 1] only depends on initialization.
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Proof. First part. For the gradient flow, we have the following update,

dθt
dt

= −ηt ·
d{DKL(y‖πθt)}

dθt
. (C.628)

Then we have,

d{DKL(y‖πθt)}
dt

=

(
dθt
dt

)>(
d{DKL(y‖πθt)}

dθt

)
(C.629)

= −ηt ·
∥∥∥∥d{DKL(y‖πθt)}

dθt

∥∥∥∥2

2

(by Eq. (C.628)) (C.630)

≤ −ηt ·
p2

‖θt‖2
p

·min
a
πθt(a)1−2/p ·DKL(y‖πθt) (by Lemma 50)

(C.631)

= −min
a
πθt(a)1−2/p ·DKL(y‖πθt)

(
ηt =

‖θt‖2
p

p2

)
(C.632)

= −DKL(y‖πθt), (p = 2) (C.633)

which implies,

d {logDKL(y‖πθt)}
dt

=
1

DKL(y‖πθt)
· d{DKL(y‖πθt)}

dt
≤ −1. (C.634)

Taking integral, we have,

logDKL(y‖πθt)− logDKL(y‖πθ1) ≤ −(t− 1), (C.635)

which is equivalent to

DKL(y‖πθt) ≤ DKL(y‖πθ1) · e−(t−1). (C.636)

Second part. For the gradient descent, according to Lemma 49, we have,

DKL(y‖πθt+1)−DKL(y‖πθt)−
〈d{DKL(y‖πθt)}

dθt
, θt+1 − θt

〉
(C.637)

≤ β

2
· ‖θt+1 − θt‖2

2, (C.638)

where

β =
6

‖θζt‖2
p

+ 2 ·
(

max
i

y(i)

θζt(i)
2

)
(C.639)

=
6

‖θζt‖2
p

+
2

θζt(ay)
2
, (y is one-hot) (C.640)
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and

θζt := θt + ζt · (θt+1 − θt) = θt − ζt · ηt ·
d{DKL(y‖πθt)}

dθt
. (C.641)

The `p gradient norm is upper bounded as,

∥∥∥∥d{DKL(y‖πθt)}
dθt

∥∥∥∥
p

=

[∑
a

∣∣∣∣πθt(a)− y(a)

θt(a)

∣∣∣∣p
] 1
p

(C.642)

=

∑
a6=ay

∣∣∣∣πθt(a)

θt(a)

∣∣∣∣p +

∣∣∣∣πθt(ay)− 1

θt(ay)

∣∣∣∣p
 1
p

(y(ay) = 1) (C.643)

≤

∑
a6=ay

∣∣∣∣πθt(a)

θt(a)

∣∣∣∣p +
1

|θt(ay)|p

 1
p

(πθt(ay) ∈ (0, 1]) (C.644)

=

 1

‖θt‖pp

∑
a6=ay

πθt(a)p−1 +
1

|θt(ay)|p

 1
p

(C.645)

≤
[

1

‖θt‖pp
+

1

|θt(ay)|p

] 1
p

(p = 2) (C.646)

≤ 1

‖θt‖p
+

1

|θt(ay)|
.

(√
x+ y ≤

√
x+
√
y
)

(C.647)

Next, we have,

θt+1(ay) = θt(ay)− ηt ·
p

θt(ay)
· (πθt(ay)− 1) (C.648){

≥ θt(ay), if θt(ay) > 0,

≤ θt(ay), if θt(ay) < 0.
(C.649)

Therefore we have |θt+1(ay)| ≥ |θt(ay)|. On the other hand, for all a 6= ay, we

have,

θt+1(a) = θt(a)− ηt ·
p

θt(a)
· πθt(a) (C.650){

≤ θt(ay), if θt(ay) > 0,

≥ θt(ay), if θt(ay) < 0.
(C.651)

Therefore we have for all a 6= ay, |θt+1(a)| ≤ |θt(a)|. Denote 1
c1

= |θ1(ay)|
‖θ1‖p . We
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have, for all t ≥ 1,

|θt(ay)|
‖θt‖p

=
|θt(ay)|

(
∑

a |θt(a)|p)1/p
≥ |θt(ay)|(∑

a6=ay |θ1(a)|p + |θt(ay)|p
)1/p

(C.652)

≥ |θ1(ay)|(∑
a6=ay |θ1(a)|p + |θ1(ay)|p

)1/p
(C.653)

=
|θ1(ay)|
‖θ1‖p

=
1

c1

. (C.654)

Combining Eqs. (C.642) and (C.652), we have,∥∥∥∥d{DKL(y‖πθt)}
dθt

∥∥∥∥
p

≤ 1

‖θt‖p
+

1

|θt(ay)|
≤ 1

‖θt‖p
· (1 + c1) . (C.655)

Then we have,

‖θζt‖p =

∥∥∥∥θt − ζt · ηt · d{DKL(y‖πθt)}
dθt

∥∥∥∥
p

(by Eq. (C.641)) (C.656)

≥ ‖θt‖p − ζt · ηt ·
∥∥∥∥d{DKL(y‖πθt)}

dθt

∥∥∥∥
p

(by triangle inequality)

(C.657)

≥ ‖θt‖p − ζt · ηt ·
1

‖θt‖p
· (1 + c1) . (by Eq. (C.655)) (C.658)

= ‖θt‖p ·
[
1− ζt ·

1 + c1

4 · (3 + c2
1)

] (
ηt =

‖θt‖2
p

4 · (3 + c2
1)

)
(C.659)

≥ ‖θt‖p ·
[
1− 1 + c1

4 · (3 + c2
1)

]
(ζt ∈ [0, 1]) (C.660)

= ‖θt‖p ·

[(
1− 1√

2

)
·

(
1−
√

2 + 1

2
√

2
· 1 + c1

3 + c2
1

)
+

1√
2

]
(C.661)

≥ ‖θt‖p√
2
. (1/c1 ∈ (0, 1], c1 ≥ 1) (C.662)

Similar to Eq. (C.652), we have,

β =
6

‖θζt‖2
p

+
2

θζt(ay)
2

(by Eq. (C.639)) (C.663)

≤ 1

‖θζt‖2
p

·
(
6 + 2 · c2

1

)
. (C.664)
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Combining the results, we have,

DKL(y‖πθt+1)−DKL(y‖πθt)−
〈d{DKL(y‖πθt)}

dθt
, θt+1 − θt

〉
(C.665)

≤ 1

2
· 1

‖θζt‖2
p

·
(
6 + 2 · c2

1

)
· ‖θt+1 − θt‖2

2 (C.666)

(by Eqs. (C.637) and (C.663)) (C.667)

≤ 2

‖θt‖2
p

·
(
3 + c2

1

)
· ‖θt+1 − θt‖2

2, (by Eq. (C.656)) (C.668)

which implies (using the update θt+1 = θt − ηt ·
d{DKL(y‖πθt )}

dθt
),

DKL(y‖πθt+1)−DKL(y‖πθt) (C.669)

≤ −ηt ·
∥∥∥∥d{DKL(y‖πθt)}

dθt

∥∥∥∥2

2

(C.670)

+
2 · (3 + c2

1)

‖θt‖2
p

· η2
t ·
∥∥∥∥d{DKL(y‖πθt)}

dθt

∥∥∥∥2

2

(C.671)

= −
‖θt‖2

p

8 · (3 + c2
1)
·
∥∥∥∥d{DKL(y‖πθt)}

dθt

∥∥∥∥2

2

(
ηt =

‖θt‖2
p

4 · (3 + c2
1)

)
(C.672)

≤ −
H
HH‖θt‖2

p

8 · (3 + c2
1)
· p2

HHH‖θt‖2
p

·min
a
πθt(a)1−2/p ·DKL(y‖πθt) (C.673)

(by Lemma 50) (C.674)

= − 1

2 · (3 + c2
1)
·DKL(y‖πθt), (p = 2) (C.675)

which is equivalent to,

DKL(y‖πθt) ≤
[
1− 1

2 · (3 + c2
1)

]
·DKL(y‖πθt−1) (C.676)

≤ DKL(y‖πθt−1) · exp
{
− 1

2 · (3 + c2
1)

}
(C.677)

≤ DKL(y‖πθ1) · exp
{
− (t− 1)

2 · (3 + c2
1)

}
, (C.678)

where 1
c21

= |θ1(ay)|2
‖θ1‖22

= πθ1(ay) ∈ (0, 1].

C.4 Miscellaneous Extra Supporting Results

Lemma 51. Let π ∈ ∆(A) and q ≥ 0. For any vector x ∈ RK, we have,∥∥∥∥diag(q)
(
Id− 1π>

)(
x− x>1

K
· 1
)∥∥∥∥

2

≥ min
a
q(a) ·

∥∥∥∥x− x>1

K
· 1
∥∥∥∥

2

. (C.679)
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Proof. Denote G = G(π, q) = diag(q)
(
Id− 1π>

)
∈ RK×K . Denote the eigen-

values of G>G as

λ1 ≤ λ2 ≤ · · · ≤ λK . (C.680)

First, we show that λ1 = 0.

G>G1 = G>diag(q)
(
Id− 1π>

)
1 (C.681)

= G>diag(q) (1− 1) = 0 · 1, (C.682)

which means 1 is an eigenvector of G>G with eigenvalue 0. And for any vector

x ∈ RK , we have,

x>G>Gx = ‖Gx‖2
2 ≥ 0, (C.683)

which means G>G is semi-positive definite. Therefore λ1 = 0.

Second, for any vector x ∈ RK , x can be written as linear combination of

eigenvectors of G>G,

x = a1 ·
1√
K

+ a2 · v2 + · · ·+ aK · vK (C.684)

=
x>1

K
· 1 + a2 · v2 + · · ·+ aK · vK . (C.685)

Since G>G is symmetric,
{

1√
K
, v2, . . . , vK

}
are orthonormal. The last equation

is because the representation is unique, and

a1 = x>
1√
K

=
x>1√
K
. (C.686)

Denote

x′ = x− x>1

K
· 1 = a2 · v2 + · · ·+ aK · vK . (C.687)

We have,

‖x′‖2
2 = a2

2 + · · ·+ a2
K . (C.688)

Since v2, . . . , vK are eigenvectors of G>G,

G>Gx′ = a2 · λ2 · v2 + · · ·+ aK · λK · vK . (C.689)
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Therefore we have,

‖Gx′‖2 =
(
‖Gx′‖2

2

) 1
2 =

(
x′
>
G>Gx′

) 1
2

(C.690)

=
(
a2

2 · λ2 + · · ·+ a2
K · λK

) 1
2 (C.691)

≥
(
a2

2 · λ2 + · · ·+ a2
K · λ2

) 1
2 (C.692)

=
√
λ2 · ‖x′‖2. (by Eq. (C.688)) (C.693)

Next, we have,

λ2 =
v>2 G

>Gv2

v>2 v2

=
1

v>2 v2

· ‖Gv2‖2
2 (C.694)

=
1

v>2 v2

·
∥∥diag(q)

(
v2 − π>v2 · 1

)∥∥2

2
(C.695)

=
1

v>2 v2

·

[
K∑
a=1

q(a)2 ·
(
v2(a)− π>v2

)2

]
(C.696)

≥ 1

v>2 v2

·min
a
q(a)2 ·

∥∥v2 − π>v2 · 1
∥∥2

2
(C.697)

= min
a
q(a)2 · v

>
2 v2 +K · (π>v2)2

v>2 v2

(
v>2 1 = 0

)
(C.698)

≥ min
a
q(a)2. (C.699)

Combining Eqs. (C.690) and (C.694), we have,∥∥∥∥diag(q)
(
Id− 1π>

)(
x− x>1

K
· 1
)∥∥∥∥

2

= ‖Gx′‖2 (C.700)

≥
√
λ2 · ‖x′‖2 (C.701)

≥ min
a
q(a) ·

∥∥∥∥x− x>1

K
· 1
∥∥∥∥

2

.
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Appendix D

Proofs for Chapter 4:
Non-uniform Analysis

D.1 Proofs for Section 4.5: Non-uniform Anal-

ysis for General Optimization

Theorem 16. Suppose f : Θ→ R satisfies NS with β(θ) and the N L inequal-

ity with (C(θ), ξ). Suppose C := inft≥1 C(θt) > 0 for GD and GNGD. Let

δ(θ) := f(θ)− f(θ∗) be the sub-optimality gap. The following hold:

(1a) if β(θ) ≤ c · δ(θ)1−2ξ with ξ ∈ (−∞, 1/2), then the conclusions of (1b)

hold;

(1b) if β(θ) ≤ c · ‖∇f(θ)‖
1−2ξ
1−ξ

2 with ξ ∈ (−∞, 1/2), then GD with η ∈ O(1)

achieves δ(θt) ∈ Θ(1/t
1

1−2ξ ), and GNGD achieves δ(θt) ∈ O(e−c
′·t).

(2a) if β(θ) ≤ L0 + L1 · ‖∇f(θ)‖2, then the conclusions of (2b) hold;

(2b) if β(θ) ≤ L0 · ‖∇f(θ)‖2
δ(θ)2−2ξ +L1 · ‖∇f(θ)‖2, then GD and GNGD both achieve

δ(θt) ∈ O(1/t
1

1−2ξ ) when ξ ∈ (−∞, 1/2), and O(e−c
′·t) when ξ = 1/2.

GNGD has strictly better constant than GD (1 > C > C2).

(3a) if β(θ)≤ c ·‖∇f(θ)‖
1−2ξ
1−ξ

2 with ξ ∈ (1/2, 1), then the conclusions of (3b)

hold;

(3b) if β(θ) ≤ c · δ(θ)1−2ξ with ξ ∈ (1/2, 1), then GD with η ∈ Θ(1) does not

converge, while GNGD achieves δ(θt) ∈ O(e−c
′·t).

Proof. (1a) First part: O(1/t
1

1−2ξ ) upper bound for GD update θt+1 ← θt −

η · ∇f(θt) with η ∈ O(1).
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We show that using GD with learning rate η = 1
c·δ(θ1)1−2ξ , the sub-optimality

δ(θt) is monotonically decreasing. And thus there exists a universal constant

β > 0 such that β(θt) ≤ β, for all t ≥ 1.

Denote β := c · δ(θ1)1−2ξ. We have β ∈ (0,∞), since f(θ∗) > −∞, and

f(θ∗) < f(θ1) < ∞. By assumption, we have β(θ1) ≤ β. According to

Lemma 33, using GD with η = 1
β
, we have,

δ(θ2)− δ(θ1) = f(θ2)− f(θ1) ≤ 0. (D.1)

Therefore, we have,

β(θ2) ≤ c · δ(θ2)1−2ξ (by assumption) (D.2)

≤ c · δ(θ1)1−2ξ (0 < δ(θ2) ≤ δ(θ1) and ξ < 1/2) (D.3)

= β. (D.4)

Repeating similar arguments of Eqs. (D.1) and (D.2), we have, for all t ≥ 1,

β(θt) ≤ β and,

0 < δ(θt+1) ≤ δ(θt). (D.5)

Therefore, we have, for all t ≥ 1 (or using Lemma 33),

δ(θt+1)− δ(θt) = f(θt+1)− f(θt) (D.6)

≤ ∇f(θt)
> (θt+1 − θt) +

β(θt)

2
· ‖θt+1 − θt‖2

2 (NS) (D.7)

≤ ∇f(θt)
> (θt+1 − θt) +

β

2
· ‖θt+1 − θt‖2

2 (β(θt) ≤ β) (D.8)

= − 1

2β
· ‖∇f(θt)‖2

2

(
θt+1 ← θt −

1

β
· ∇f(θt)

)
(D.9)

≤ − 1

2β
· C(θt)

2 · δ(θt)2−2ξ (N L) (D.10)

≤ − 1

2β
· C2 · δ(θt)2−2ξ.

(
C := inf

t≥1
C(θt) > 0

)
(D.11)

According to Lemma 53, given any α > 0, we have, for all x ∈ [0, 1],

1

α
· (1− xα) ≥ xα · (1− x) . (D.12)
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Let α = 1−2ξ > 0, since ξ < 1/2. Also let x = δ(θt+1)
δ(θt)

∈ (0, 1] due to Eq. (D.5).

We have,

1

1− 2ξ
·
[
1− δ(θt+1)1−2ξ

δ(θt)1−2ξ

]
≥ δ(θt+1)1−2ξ

δ(θt)1−2ξ
·
[
1− δ(θt+1)

δ(θt)

]
. (D.13)

Next, we have,

1

δ(θt)1−2ξ
=

1

δ(θ1)1−2ξ
+

1

δ(θt)1−2ξ
− 1

δ(θ1)1−2ξ
(D.14)

=
1

δ(θ1)1−2ξ
+

t−1∑
s=1

[
1

δ(θs+1)1−2ξ
− 1

δ(θs)1−2ξ

]
(D.15)

=
1

δ(θ1)1−2ξ
+

t−1∑
s=1

1− 2ξ

δ(θs+1)1−2ξ
· 1

1− 2ξ
·
[
1− δ(θs+1)1−2ξ

δ(θs)1−2ξ

]
(D.16)

≥ 1

δ(θ1)1−2ξ
+

t−1∑
s=1

1− 2ξ
XXXXXXδ(θs+1)1−2ξ

·
XXXXXXδ(θs+1)1−2ξ

δ(θs)1−2ξ
·
[
1− δ(θs+1)

δ(θs)

]
(D.17)

(by Eq. (D.13)) (D.18)

=
1

δ(θ1)1−2ξ
+

t−1∑
s=1

1− 2ξ

δ(θs)2−2ξ
· [δ(θs)− δ(θs+1)] (D.19)

≥ 1

δ(θ1)1−2ξ
+

t−1∑
s=1

1− 2ξ
XXXXXδ(θs)

2−2ξ ·
C2

2β
·XXXXXδ(θs)

2−2ξ (by Eq. (D.6)) (D.20)

=
1

δ(θ1)1−2ξ
+

(1− 2ξ) · C2

2β
· (t− 1), (D.21)

which implies for all t ≥ 1,

f(θt)− f(θ∗) = δ(θt) (D.22)

≤

[
1

(f(θ1)− f(θ∗))1−2ξ
+

(1− 2ξ) · C2

2β
· (t− 1)

]− 1
1−2ξ

(D.23)

∈ O
(

1

t
1

1−2ξ

)
. (D.24)

(1a) Second part: Ω(1/t
1

1−2ξ ) lower bound for GD update θt+1 ← θt − ηt ·

∇f(θt) with ηt ∈ (0, 1].

According to the NS property of Definition 6, we have, for all θ and θ′,

f(θ′) ≤ f(θ) +∇f(θ)> (θ′ − θ) +
β(θ)

2
· ‖θ′ − θ‖2

2 . (D.25)
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Fix θ and take minimum over θ′ on both sides of the above inequality. Then

we have,

f(θ∗) ≤ f(θ) + min
θ′

{
∇f(θ)> (θ′ − θ) +

β(θ)

2
· ‖θ′ − θ‖2

2

}
(D.26)

= f(θ)− 1

β(θ)
· ‖∇f(θ)‖2

2 +
1

2 · β(θ)
· ‖∇f(θ)‖2

2 (D.27)(
θ′ = θ − 1

β(θ)
· ∇f(θ)

)
(D.28)

= f(θ)− 1

2 · β(θ)
· ‖∇f(θ)‖2

2 , (D.29)

which implies,

‖∇f(θ)‖2
2 ≤ 2 · β(θ) · δ(θ) (D.30)

≤ 2 · c · δ(θ)2−2ξ.
(
β(θ) ≤ c · δ(θ)1−2ξ

)
(D.31)

Therefore, we have,

δ(θt)− δ(θt+1) (D.32)

= f(θt)− f(θt+1) +∇f(θt)
> (θt+1 − θt)−∇f(θt)

> (θt+1 − θt) (D.33)

≤ β

2
· ‖θt+1 − θt‖2

2 −∇f(θt)
> (θt+1 − θt) (D.34)

(by NS and β(θt) ≤ β) (D.35)

=

(
β

2
· η2

t + ηt

)
· ‖∇f(θt)‖2

2 (θt+1 ← θt − ηt · ∇f(θt)) (D.36)

≤
(
β

2
· η2

t + ηt

)
· 2 · c · δ(θt)2−2ξ (by Eq. (D.30)) (D.37)

≤ (β + 2) · c · δ(θt)2−2ξ. (ηt ∈ (0, 1]) (D.38)

Next, we show that δ(θt+1)
δ(θt)

≥ 3−4ξ
4−4ξ

holds for all large enough t ≥ 1 by con-

tradiction. According to the upper bound results in the first part, we have

δ(θt)→ 0 as t→∞. Suppose δ(θt+1)
δ(θt)

< 3−4ξ
4−4ξ

, where t ≥ 1 is large enough and

δ(θt) is small enough. We have,

δ(θt+1) ≥ δ(θt)− (β + 2) · c · δ(θt)2−2ξ (by Eq. (D.32)) (D.39)

>
4− 4ξ

3− 4ξ
· δ(θt+1)− (β + 2) · c ·

(
4− 4ξ

3− 4ξ

)2−2ξ

· δ(θt+1)2−2ξ, (D.40)
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where the last inequality is because of the function f : x 7→ x− a · x2−2ξ with

a > 0 is monotonically increasing for all 0 < x ≤ 1

[(2−2ξ)a]1/(1−2ξ) . Eq. (D.39)

implies that,

δ(θt+1)1−2ξ >
1

3− 4ξ
· 1

(β + 2) · c
·
(

3− 4ξ

4− 4ξ

)2−2ξ

, (D.41)

for large enough t ≥ 1, which is a contradiction with δ(θt) → 0 as t → ∞.

Thus we have δ(θt+1)
δ(θt)

≥ 3−4ξ
4−4ξ

holds for all large enough t ≥ 1. Denote

t0 := min
{
t ≥ 1 :

δ(θs+1)

δ(θs)
≥ 3− 4ξ

4− 4ξ
, for all s ≥ t

}
. (D.42)

According to Lemma 54, given any α > 0, we have, for all x ∈
[

2α+1
2α+2

, 1
]
,

1

2α
· (1− xα) ≤ xα · (1− x) . (D.43)

Let α = 1−2ξ > 0, since ξ < 1/2. We have 2α+1
2α+2

= 3−4ξ
4−4ξ

. Also let x = δ(θt+1)
δ(θt)

∈[
3−4ξ
4−4ξ

, 1
]
. We have,

1

2 · (1− 2ξ)
·
[
1− δ(θt+1)1−2ξ

δ(θt)1−2ξ

]
≤ δ(θt+1)1−2ξ

δ(θt)1−2ξ
·
[
1− δ(θt+1)

δ(θt)

]
, (D.44)

for all t ≥ t0. On the other hand, since t0 ∈ O(1) and 1− 2ξ > 0, we have, for

all t < t0,

δ(θt+1)1−2ξ ≥ c0 > 0. (D.45)
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Next, we have, for all t ≥ t0,

1

δ(θt)1−2ξ
=

1

δ(θ1)1−2ξ
+

t−1∑
s=1

[
1

δ(θs+1)1−2ξ
− 1

δ(θs)1−2ξ

]
(D.46)

=
1

δ(θ1)1−2ξ
+

t0−1∑
s=1

1

δ(θs+1)1−2ξ
·
[
1− δ(θs+1)1−2ξ

δ(θs)1−2ξ

]
(D.47)

+
t−1∑
s=t0

2 · (1− 2ξ)

δ(θs+1)1−2ξ
· 1

2 · (1− 2ξ)
·
[
1− δ(θs+1)1−2ξ

δ(θs)1−2ξ

]
(D.48)

≤ 1

δ(θ1)1−2ξ
+

t0−1∑
s=1

1

c0

· 1 (D.49)

+
t−1∑
s=t0

2 · (1− 2ξ)
XXXXXXδ(θs+1)1−2ξ

·
XXXXXXδ(θs+1)1−2ξ

δ(θs)1−2ξ
·
[
1− δ(θs+1)

δ(θs)

]
(D.50)

(by Eq. (D.44)) (D.51)

=
1

δ(θ1)1−2ξ
+
t0 − 1

c0

+
t−1∑
s=t0

2 · (1− 2ξ)

δ(θs)2−2ξ
· [δ(θs)− δ(θs+1)] (D.52)

≤ 1

δ(θ1)1−2ξ
+
t0 − 1

c0

+
t−1∑
s=t0

2 · (1− 2ξ)
XXXXXδ(θs)

2−2ξ · (β + 2) · c ·XXXXXδ(θs)
2−2ξ (D.53)

(by Eq. (D.32)) (D.54)

=
1

δ(θ1)1−2ξ
+
t0 − 1

c0

+ 2 · (1− 2ξ) · (β + 2) · c · (t− t0), (D.55)

which implies for all large enough t ≥ 1,

f(θt)− f(θ∗) = δ(θt) (D.56)

≥
[

1

(f(θ1)− f(θ∗))1−2ξ
+
t0 − 1

c0

(D.57)

+ 2 · (1− 2ξ) · (β + 2) · c · (t− t0)

]− 1
1−2ξ

(D.58)

∈ Ω

(
1

t
1

1−2ξ

)
. (D.59)

(1a) Third part: O(e−c
′·t) upper bound for GNGD update θt+1 ← θt−∇f(θt)

β(θt)
.
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We have, for all t ≥ 1 (or using Lemma 52),

δ(θt+1)− δ(θt) = f(θt+1)− f(θt) (D.60)

≤ ∇f(θt)
> (θt+1 − θt) +

β(θt)

2
· ‖θt+1 − θt‖2

2 (NS) (D.61)

= − 1

β(θt)
· ‖∇f(θt)‖2

2 +
1

2
· 1

β(θt)
· ‖∇f(θt)‖2

2 (D.62)(
θt+1 ← θt −

∇f(θt)

β(θt)

)
(D.63)

= − 1

2 · β(θt)
· ‖∇f(θt)‖2

2 (D.64)

≤ − 1

2 · β(θt)
· C(θt)

2 · δ(θt)2−2ξ (N L) (D.65)

≤ − 1

2 · β(θt)
· C2 · δ(θt)2−2ξ

(
C := inf

t≥1
C(θt) > 0

)
(D.66)

≤ − C2

2 · c
· δ(θt),

(
β(θt) ≤ c · δ(θt)1−2ξ

)
(D.67)

which implies for all t ≥ 1,

f(θt)− f(θ∗) = δ(θt) ≤
(
1− C2/(2 · c)

)
· δ(θt−1) (D.68)

≤ exp
{
−C2/(2 · c)

}
· δ(θt−1) (D.69)

≤ exp
{
−(t− 1) · C2/(2 · c)

}
· δ(θ1) (D.70)

= exp
{
−(t− 1) · C2/(2 · c)

}
· (f(θ1)− f(θ∗)) . (D.71)

(1b) First part: O(1/t
1

1−2ξ ) upper bound for GD update θt+1 ← θt−η·∇f(θt)

with η ∈ O(1).

Denote β1 := c·‖∇f(θ1)‖
1−2ξ
1−ξ

2 . We have β1 ∈ (0,∞), since f is differentiable

(Definition 6). Using η ≤ 1
β1

and according to Lemma 33, we have δ(θ2) ≤

δ(θ1). Denote β2 := c · ‖∇f(θ2)‖
1−2ξ
1−ξ

2 . We also have β2 ∈ (0,∞). Repeating

the update, we generate {θt}t≥1 such that δ(θt+1) ≤ δ(θt). Denote

β := sup
t≥1
{βt} = sup

t≥1

{
c · ‖∇f(θ2)‖

1−2ξ
1−ξ

2

}
. (D.72)

Now we have 0 ≤ δ(θt+1) ≤ δ(θt) ≤ · · · ≤ δ(θ1). According to the mono-

tone convergence theorem, δ(θt) converges to some finite value. And the gra-

dient ‖∇f(θt)‖2 → 0, otherwise a small gradient update can decrease the
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sub-optimality, which is a contradiction with convergence. Thus we have

β ∈ (β1,∞), since βt → 0 as t → ∞. Using η = 1
β
, we have η ≤ 1

βt
holds for

all t ≥ 1, and,

β(θt) ≤ c · ‖∇f(θt)‖
1−2ξ
1−ξ

2 = βt ≤ β. (D.73)

Using similar calculations in the first part of (1a), we have the O(1/t
1

1−2ξ )

upper bound.

(1b) Second part: Ω(1/t
1

1−2ξ ) lower bound for GD update θt+1 ← θt − ηt ·

∇f(θt) with ηt ∈ (0, 1].

According to Eq. (D.30), we have,

‖∇f(θ)‖2
2 ≤ 2 · β(θ) · δ(θ) (D.74)

≤ 2 · c · ‖∇f(θ)‖
1−2ξ
1−ξ

2 · δ(θ),
(
β(θ) ≤ c · ‖∇f(θ)‖

1−2ξ
1−ξ

2

)
(D.75)

which is equivalent to,

‖∇f(θ)‖2
2 ≤ 2 · c1 · δ(θ)2−2ξ, (D.76)

where c1 := 1
2
· (2 · c)2−2ξ. According to Eq. (D.32), we have,

δ(θt)− δ(θt+1) ≤
(
β

2
· η2

t + ηt

)
· ‖∇f(θt)‖2

2 (D.77)

≤ (β + 2) · c1 · δ(θt)2−2ξ. (by Eq. (D.76) and ηt ∈ (0, 1]) (D.78)

Using similar calculations in the second part of (1a), we have the Ω(1/t
1

1−2ξ )

lower bound.

(1b) Third part: O(e−c
′·t) upper bound for GNGD update θt+1 ← θt−∇f(θt)

β(θt)
.

According to Lemma 52, we have, for all t ≥ 1,

δ(θt+1)− δ(θt) ≤ −
1

2 · β(θt)
· ‖∇f(θt)‖2

2 (D.79)

≤ − 1

2 · c
· ‖∇f(θt)‖

1
1−ξ
2

(
β(θt) ≤ c · ‖∇f(θt)‖

1−2ξ
1−ξ

2

)
(D.80)

≤ − 1

2 · c
· C(θt)

1
1−ξ · δ(θt) (N L) (D.81)

≤ − 1

2 · c
· C

1
1−ξ · δ(θt),

(
C := inf

t≥1
C(θt) > 0

)
(D.82)
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which implies (similar to Eq. (D.68)),

f(θt)− f(θ∗) = δ(θt) (D.83)

≤ exp
{
−(t− 1) · C

1
1−ξ /(2 · c)

}
· (f(θ1)− f(θ∗)) . (D.84)

(2a) First part: O(1/t
1

1−2ξ ) upper bound for GD when ξ < 1/2.

Similar to the first part of (1b), we denote βt := L0 + L1 · ‖∇f(θt)‖2 and

β := supt≥1 {βt} ∈ (L0,∞) since ‖∇f(θt)‖2 → 0 as t → ∞. Using η = 1
β
, we

have η ≤ 1
βt

holds for all t ≥ 1 and β(θt) ≤ L0 +L1 ·‖∇f(θt)‖2 ≤ β. According

to Eq. (D.6) and the first part of (1a), we have the O(1/t
1

1−2ξ ) upper bound.

(2a) Second part: O(e−c
′·t) upper bound for GD when ξ = 1/2.

According to Lemma 33, we have, for all t ≥ 1,

δ(θt+1)− δ(θt) ≤ −
1

2β
· ‖∇f(θt)‖2

2 (D.85)

≤ − 1

2β
· C(θt)

2 · δ(θt) (N L with ξ = 1/2) (D.86)

≤ − 1

2β
· C2 · δ(θt),

(
C := inf

t≥1
C(θt) > 0

)
(D.87)

which implies (similar to Eq. (D.68)),

f(θt)− f(θ∗) = δ(θt) (D.88)

≤ exp
{
−(t− 1) · C2/(2β)

}
· (f(θ1)− f(θ∗)) . (D.89)

(2a) Third part: O(1/t
1

1−2ξ ) upper bound for GNGD when ξ < 1/2.
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According to Lemma 52, we have, for all t ≥ 1,

δ(θt+1)− δ(θt) ≤ −
1

2 · β(θt)
· ‖∇f(θt)‖2

2 (D.90)

≤ −1

2
· ‖∇f(θt)‖2

2

L0 + L1 · ‖∇f(θt)‖2

(β(θt) ≤ L0 + L1 · ‖∇f(θt)‖2) (D.91)

≤ −1

2
· ‖∇f(θt)‖2

2

L0 + L1 · β
(D.92)(

β := sup
t≥1
{‖∇f(θt)‖2} ∈ (‖∇f(θ1)‖2 ,∞)

)
(D.93)

≤ −1

2
· C2

L0 + L1 · β
· δ(θt)2−2ξ, (D.94)(

N L and C := inf
t≥1

C(θt) > 0

)
(D.95)

which is similar to Eq. (D.6). Using similar calculations in the first part of

(1a), we have the O(1/t
1

1−2ξ ) upper bound.

(2a) Fourth part: O(e−c
′·t) upper bound for GNGD when ξ = 1/2.

We have, for all t ≥ 1,

δ(θt+1)− δ(θt) ≤ −
1

2
· ‖∇f(θt)‖2

2

L0 + L1 · β
(by Eq. (D.92)) (D.96)

≤ −1

2
· C2

L0 + L1 · β
· δ(θt), (D.97)(

N L with ξ = 1/2 and C := inf
t≥1

C(θt) > 0

)
(D.98)

which implies (similar to Eq. (D.68)),

f(θt)− f(θ∗) = δ(θt) (D.99)

≤ exp
{
−(t− 1) · C2/(2 · (L0 + L1 · β))

}
· (f(θ1)− f(θ∗)) . (D.100)

(2b) First part: O(1/t
1

1−2ξ ) upper bound for GD when ξ < 1/2.

Denote βt := L0 · ‖∇f(θt)‖2
δ(θt)2−2ξ +L1 · ‖∇f(θt)‖2 and β := supt≥1 {βt} ∈ (β1,∞).

According to Eq. (D.6) and the first part of (1a), we have the O(1/t
1

1−2ξ ) upper

bound.
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(2b) Second part: O(e−c
′·t) upper bound for GD when ξ = 1/2.

According to Lemma 33, we have, for all t ≥ 1 (same as the second part of

(2a)),

δ(θt+1)− δ(θt) ≤ −
1

2β
· ‖∇f(θt)‖2

2 (D.101)

≤ − 1

2β
· C(θt)

2 · δ(θt) (N L with ξ = 1/2) (D.102)

≤ − 1

2β
· C2 · δ(θt),

(
C := inf

t≥1
C(θt) > 0

)
(D.103)

which implies (similar to Eq. (D.68)),

f(θt)− f(θ∗) = δ(θt) (D.104)

≤ exp
{
−(t− 1) · C2/(2β)

}
· (f(θ1)− f(θ∗)) . (D.105)

(2b) Third part: O(1/t
1

1−2ξ ) upper bound for GNGD when ξ < 1/2.

According to Lemma 52, we have, for all t ≥ 1,

δ(θt+1)− δ(θt) ≤ −
1

2 · β(θt)
· ‖∇f(θt)‖2

2 (D.106)

≤ −1

2
· ‖∇f(θt)‖2

2

L0 · ‖∇f(θt)‖2
δ(θt)2−2ξ + L1 · ‖∇f(θt)‖2

(D.107)

(
β(θt) ≤ L0 ·

‖∇f(θt)‖2

δ(θt)2−2ξ
+ L1 · ‖∇f(θt)‖2

)
(D.108)

= −1

2
· δ(θt)

2−2ξ

L0 + L1 · δ(θt)
2−2ξ

‖∇f(θt)‖2

(D.109)

≤ −1

2
· δ(θt)

2−2ξ

L0 + L1 · δ(θt)
1−ξ

C(θt)

(
‖∇f(θt)‖2 ≥ C(θt) · δ(θt)1−ξ) (D.110)

≤ −1

2
· δ(θt)

2−2ξ

L0 + L1 · δ(θt)
1−ξ

C

(
C := inf

t≥1
C(θt) > 0

)
(D.111)

≤ −1

2
· δ(θt)

2−2ξ

L0 + L1 · δ(θ1)1−ξ

C

, (δt+1 ≤ δt, by Eq. (D.64)) (D.112)

which is similar to Eq. (D.6). Using similar calculations in the first part of

(1a), we have the O(1/t
1

1−2ξ ) upper bound.

(2b) Fourth part: O(e−c
′·t) upper bound for GNGD when ξ = 1/2.
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We have, for all t ≥ 1,

δ(θt+1)− δ(θt) ≤ −
1

2
· δ(θt)

2−2ξ

L0 + L1 · δ(θ1)1−ξ

C

(D.113)

(δt+1 ≤ δt by Eq. (D.106)) (D.114)

= −1

2
· δ(θt)

L0 + L1 · δ(θ1)1/2

C

, (ξ = 1/2) (D.115)

which implies (similar to Eq. (D.68)),

f(θt)− f(θ∗) = δ(θt) (D.116)

≤ exp

{
− C · (t− 1)

2 · (L0 · C + L1 · δ(θ1)1/2)

}
· (f(θ1)− f(θ∗)) (D.117)

≤ exp

{
− C · (t− 1)

2 · (L0 + L1 · δ(θ1)1/2)

}
· (f(θ1)− f(θ∗)) . (D.118)

(if C ≤ 1) (D.119)

(3a) O(e−c
′·t) upper bound for GNGD update when ξ ∈ (1/2, 1).

According to Lemma 52, we have, for all t ≥ 1 (same as the third part of

(1b)),

δ(θt+1)− δ(θt) ≤ −
1

2 · β(θt)
· ‖∇f(θt)‖2

2 (D.120)

≤ − 1

2 · c
· ‖∇f(θt)‖

1
1−ξ
2

(
β(θt) ≤ c · ‖∇f(θt)‖

1−2ξ
1−ξ

2

)
(D.121)

≤ − 1

2 · c
· C(θt)

1
1−ξ · δ(θt) (N L) (D.122)

≤ − 1

2 · c
· C

1
1−ξ · δ(θt),

(
C := inf

t≥1
C(θt) > 0

)
(D.123)

which implies (similar to Eq. (D.68)),

f(θt)− f(θ∗) = δ(θt) (D.124)

≤ exp
{
−(t− 1) · C

1
1−ξ /(2 · c)

}
· (f(θ1)− f(θ∗)) . (D.125)

(3b) O(e−c
′·t) upper bound for GNGD update when ξ ∈ (1/2, 1).

According to Lemma 52, we have, for all t ≥ 1 (same as the third part of
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(1a)),

δ(θt+1)− δ(θt) ≤ −
1

2 · β(θt)
· ‖∇f(θt)‖2

2 (D.126)

≤ − 1

2 · β(θt)
· C(θt)

2 · δ(θt)2−2ξ (N L) (D.127)

≤ − 1

2 · β(θt)
· C2 · δ(θt)2−2ξ

(
C := inf

t≥1
C(θt) > 0

)
(D.128)

≤ − C2

2 · c
· δ(θt),

(
β(θt) ≤ c · δ(θt)1−2ξ

)
(D.129)

which implies (similar to Eq. (D.68)),

f(θt)− f(θ∗) = δ(θt) (D.130)

≤ exp
{
−(t− 1) · C2/(2 · c)

}
· (f(θ1)− f(θ∗)) .

D.1.1 Function Classes in Fig. 4.2

Proposition 7. The following hold for an objective f :

(1) D ⊆ C. If f satisfies N L with degree ξ, it satisfies N L with degree ξ′ < ξ;

(2) F⊆D. A strongly convex f satisfies N L with ξ=1/2;

(3) F ∩ A = ∅. A strongly convex f cannot satisfy NS with β(θ) → 0 as

θ, θ′ → θ∗;

(4) E⊆C. A (not strongly) convex f satisfies N L with ξ=0.

Proof. (1) D ⊆ C. Suppose a function f : Θ→ R satisfies N L with ξ, i.e.,∥∥∥∥df(θ)

dθ

∥∥∥∥
2

≥ C(θ) · |f(θ)− f(θ∗)|1−ξ , (D.131)

where ξ ∈ (−∞, 1], and C(θ) > 0 holds for all θ ∈ Θ. Let ξ′ < ξ. If

|f(θ)− f(θ∗)| > 0, then we have,

|f(θ)− f(θ∗)|1−ξ =
|f(θ)− f(θ∗)|1−ξ

′

|f(θ)− f(θ∗)|ξ−ξ′
(D.132)

≥ c(θ) · |f(θ)− f(θ∗)|1−ξ
′
, (D.133)

where c(θ) := 1

|f(θ)−f(θ∗)|ξ−ξ′
> 0, and c(θ) 6→ 0 as θ → θ∗ (or c(θ) > c > 0

for all θ within a finite distance of θ∗). If |f(θ)− f(θ∗)| = 0, then it trivially

holds that

|f(θ)− f(θ∗)|1−ξ ≥ |f(θ)− f(θ∗)|1−ξ
′
. (D.134)
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(2) F ⊆ D. Suppose a function f : Θ→ R is strongly convex. We have, there

exists µ > 0, for all θ, θ′ ∈ Θ,

f(θ′) ≥ f(θ) +∇f(θ)>(θ′ − θ) +
µ

2
· ‖θ′ − θ‖2

2 . (D.135)

Fix θ and take minimum over θ′ on both sides of the above inequality. Then

we have,

f(θ∗) ≥ f(θ) + min
θ′

{
∇f(θ)> (θ′ − θ) +

µ

2
· ‖θ′ − θ‖2

2

}
(D.136)

= f(θ)− 1

µ
· ‖∇f(θ)‖2

2 +
1

2µ
· ‖∇f(θ)‖2

2 (D.137)(
θ′ = θ − 1

µ
· ∇f(θ)

)
(D.138)

= f(θ)− 1

2µ
· ‖∇f(θ)‖2

2 , (D.139)

which is equivalent to,

‖∇f(θ)‖2 ≥
√

2µ · (f(θ)− f(θ∗))
1
2 , (D.140)

which means f satisfies N L inequality with ξ = 1/2.

(3) F∩A = ∅. Suppose a function f : Θ→ R is strongly convex. There exists

µ > 0, for all θ ∈ Θ, ∣∣∣∣z>∂2f(θ)

∂θ2
z

∣∣∣∣ ≥ µ · ‖z‖2
2 , (D.141)

holds for all vector z that has the same dimension as θ. Next we show f 6∈ A.

Suppose f ∈ A. We have,

β(θ∗) = sup
z

∣∣∣∣z>∂2f(θ∗)

∂(θ∗)2
z

∣∣∣∣ = 0, (D.142)

which is a contradiction with Eq. (D.141). Therefore f 6∈ A, and F ∩ A = ∅.

(4) E ⊆ C. Suppose a function f : Θ → R is convex. We have, for all θ,

θ′ ∈ Θ,

f(θ′) ≥ f(θ) +∇f(θ)>(θ′ − θ). (D.143)

Take θ′ = θ∗. We have,

f(θ∗) ≥ f(θ) +∇f(θ)>(θ∗ − θ), (D.144)
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which implies,

‖∇f(θ)‖2 =
1

‖θ − θ∗‖2

· ‖∇f(θ)‖2 · ‖θ − θ
∗‖2 (D.145)

≥ 1

‖θ − θ∗‖2

· ∇f(θ)>(θ∗ − θ) (by Cauchy-Schwarz) (D.146)

≥ 1

‖θ − θ∗‖2

· (f(θ)− f(θ∗)) , (by Eq. (D.144)) (D.147)

and C(θ) = 1
‖θ−θ∗‖2

6→ 0 as θ → θ∗ (or C(θ) > c > 0 for all ‖θ − θ∗‖2 smaller

than a finite value, e.g., within a bounded constraint). Therefore f satisfies

N L inequality with ξ = 0.

Proposition 8. The following results hold:

(1) ACE 6= ∅. There exists at least one (not strongly) convex function which

satisfies N L with ξ < 1/2 and NS with β(θ)→ 0 as θ, θ′ → θ∗.

(2) ADE 6= ∅. There exists at least one (not strongly) convex function which

satisfies N L with ξ ≥ 1/2 and NS with β(θ)→ 0 as θ, θ′ → θ∗.

(3) BCE 6= ∅. There exists at least one (not strongly) convex function which

satisfies N L with ξ < 1/2 and NS with β(θ)→ β > 0 as θ, θ′ → θ∗.

(4) BDE 6= ∅. There exists at least one (not strongly) convex function which

satisfies N L with ξ ≥ 1/2 and NS with β(θ)→ β > 0 as θ, θ′ → θ∗.

(5) BF 6= ∅. There exists at least one strongly convex function which satisfies

NS with β(θ)→ β > 0 as θ, θ′ → θ∗.

Proof. (1) ACE 6= ∅. Consider minimizing the following function f : R→ R,

f(x) = x4. (D.148)

The second order derivative (Hessian) is f ′′(x) = 12 · x2 ≥ 0, which means

f is (not strongly) convex. According to Taylor’s theorem, we have, for all

x, x′ ∈ R,∣∣∣∣f(x′)− f(x)−
〈df(x)

dx
, x′ − x

〉∣∣∣∣ ≤ |f ′′(xζ)|2
· ‖θ′ − θ‖2

2 (D.149)

=
12 · x2

ζ

2
· ‖θ′ − θ‖2

2, (D.150)
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where xζ := x+ζ ·(x′−x) with some ζ ∈ [0, 1]. Thus we have β(x) = 12·x2
ζ → 0

as x, x′ → 0. Next, we have,

|f ′(x)| =
∣∣4 · x3

∣∣ = 4 ·
(
|x|4
) 3

4 = 4 · (f(x)− f(0))1− 1
4 , (D.151)

which means f satisfies N L inequality with ξ = 1/4 < 1/2.

(2) ADE 6= ∅. Consider minimizing the following function f : RK → R,

f(θ) = DKL(y‖πθ) = DKL(y‖softmax(θ)), (D.152)

where y ∈ {0, 1}K is a one-hot vector. We show that f is a (not strongly)

convex function. The gradient of f is,

∂f(θ)

∂θ
=

(
dπθ
dθ

)>(
d{DKL(y‖πθ)}

dπθ

)
(D.153)

=
(
diag(πθ)− πθπ>θ

)
diag

(
1

πθ

)
(−y) (D.154)

= πθ − y. (D.155)

Therefore the Hessian is,

∂2f(θ)

∂θ2
=
dπθ
dθ

= diag(πθ)− πθπ>θ . (D.156)

According to Lemma 37, we have,

diag(πθ)− πθπ>θ � 0, (D.157)

and the minimum eigenvalue of diag(πθ)−πθπ>θ is 0, which means f is convex

but not strongly convex. Next, according to Lemma 50, we have,

DKL(y‖πθ) =
∑
a

y(a) · log

(
y(a)

πθ(a)

)
(D.158)

≤
∑
a

y(a) ·
(
y(a)

πθ(a)
− 1

)
(log x ≤ x− 1) (D.159)

=
∑
a

(y(a)− πθ(a) + πθ(a)) · y(a)− πθ(a)

πθ(a)
(D.160)

=
∑
a

(y(a)− πθ(a))2

πθ(a)
(D.161)

≤ 1

mina πθ(a)
·
∑
a

(y(a)− πθ(a))2, (D.162)

278



which implies,∥∥∥∥∂f(θ)

∂θ

∥∥∥∥
2

= ‖πθ − y‖2 (by Eq. (D.153)) (D.163)

≥ min
a

√
πθ(a) · [DKL(y‖πθ)−DKL(y‖y)]

1
2 , (D.164)

(by Eq. (D.158)) (D.165)

which means f satisfies N L with ξ = 1/2. Denote θζ := θ + ζ · (θ′ − θ) with

some ζ ∈ [0, 1]. We have, as πθ, πθ′ → y,

β(θ) = sup
z

∣∣∣∣∣z>∂2f(θζ)

∂θ2
ζ

z

∣∣∣∣∣ (D.166)

= sup
z

∣∣∣z> (diag(πθζ)− πθζπ>θζ
)
z
∣∣∣ (by Eq. (D.156)) (D.167)

→ sup
z

∣∣z> (diag(y)− yy>
)
z
∣∣ (D.168)

= sup
z

∣∣z>0z
∣∣ (y is one-hot) (D.169)

= 0. (D.170)

(3) BCE 6= ∅. Consider the (modified) Huber loss function,

f(x) =

{
x2, if |x| ≤ 1,

2 · |x| − 1, otherwise
(D.171)

which is a (not strongly) convex function. According to (4) in Proposition 7,

f satisfies N L inequality with ξ = 0. Denote xζ := x + ζ · (x′ − x) with some

ζ ∈ [0, 1]. We have β(x) = |f ′′(xζ)| → 2 > 0, as x, x′ → 0.

(4) BDE 6= ∅. Consider minimizing the same function as in (2),

f(θ) = DKL(y‖πθ) = DKL(y‖softmax(θ)), (D.172)

where y ∈ (0, 1)K is a probability vector with mina y(a) > 0, i.e., y is bounded

away from the boundary of probability simplex. As shown in (2), f is (not

strongly) convex and f satisfies N L with ξ = 1/2. Next, we have,

β(θ) = sup
z

∣∣∣z> (diag(πθζ)− πθζπ>θζ
)
z
∣∣∣ (by Eq. (D.156)) (D.173)

→ sup
z

∣∣z> (diag(y)− yy>
)
z
∣∣ (D.174)

= sup
z

∣∣∣∣∣ Ea∼y[z(a)2]−
(

E
a∼y

[z(a)]

)2
∣∣∣∣∣ (D.175)

= sup
z
|Vara∼y[z(a)]| > 0. (D.176)
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(5) BF 6= ∅. Consider minimizing the following function,

f(x) = x2, (D.177)

where x ∈ R. f is strongly convex, and β(x) = β = 2. Thus β(x)→ 2 > 0 as

x, x′ → 0 in Definition 6.

Proposition 9. The following results hold:

(1) W := AC\(AD∪ACE) 6= ∅. There exists at least one non-convex function

which satisfies N L with ξ < 1/2 and NS with β(θ)→ 0 as θ, θ′ → θ∗.

(2) X := AD\ADE 6= ∅. There exists at least one non-convex function which

satisfies N L with ξ ≥ 1/2 and NS with β(θ)→ 0 as θ, θ′ → θ∗.

(3) Y := BC\ (BD∪BCE) 6= ∅. There exists at least one non-convex function

which satisfies N L with ξ < 1/2 and NS with β(θ)→ β > 0 as θ, θ′ → θ∗.

(4) Z := BD\(BDE∪BF) 6= ∅. There exists at least one non-convex function

which satisfies N L with ξ ≥ 1/2 and NS with β(θ)→ β > 0 as θ, θ′ → θ∗.

Proof. (1) W := AC \ (AD ∪ ACE) 6= ∅. Consider maximizing the expected

reward,

f(θ) = π>θ r, (D.178)

where πθ = softmax(θ) and θ ∈ RK . According to Proposition 1, f is non-

concave. According to Lemma 3, we have,∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≥ πθ(a
∗) · (π∗ − πθ)>r, (D.179)

which means f satisfies N L inequality with ξ = 0. As shown in Lemma 21, we

have β(θζ) = 3 ·
∥∥∥dπ>θζ rdθζ

∥∥∥
2
. Therefore, β(θζ)→ 0 as πθ, πθ′ → π∗.

(2) X := AD \ ADE 6= ∅. Consider minimizing the function f : RK → R,

f(θ) = ‖πθ − y‖2
2 , (D.180)

where πθ = softmax(θ), θ ∈ RK , and y ∈ {0, 1} is a one-hot vector. We show

that f is non-convex using one example. Let y = (1, 0, 0)>. Let θ1 = (0, 0, 0)>,
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πθ1 = softmax(θ1) = (1/3, 1/3, 1/3)>, θ2 = (log 4, log 36, log 100)>, and πθ2 =

softmax(θ2) = (4/140, 36/140, 100/140)>. We have,

f(θ1) = ‖πθ1 − y‖
2
2 =

2

3
, and f(θ2) = ‖πθ2 − y‖

2
2 =

38

25
. (D.181)

Denote θ̄ = 1
2
· (θ1 + θ2) = (log 2, log 6, log 10)> we have πθ̄ = softmax(θ̄) =

(2/18, 6/18, 10/18)> and

f(θ̄) = ‖πθ̄ − y‖
2
2 =

98

81
. (D.182)

Therefore we have,

1

2
· (f(θ1) + f(θ2)) =

82

75
=

2214

2025
<

2450

2025
=

98

81
= f(θ̄), (D.183)

which means f is non-convex. Denote H(πθ) := diag(πθ)− πθπ>θ as the Jaco-

bian of θ 7→ softmax(θ). We have,∥∥∥∥∂f(θ)

∂θ

∥∥∥∥
2

=

∥∥∥∥∥
(
dπθ
dθ

)>(
df(θ)

dπθ

)∥∥∥∥∥
2

(D.184)

= 2 · ‖H(πθ) (πθ − y)‖2 (D.185)

≥ 2 ·min
a
πθ(a) · ‖πθ − y‖2 (by Lemma 38) (D.186)

= 2 ·min
a
πθ(a) · [f(θ)− f(y)]

1
2 , (D.187)

which means f satisfies N L inequality with ξ = 1/2. Denote S := S(y, θ) ∈

RK×K as the second derivative (Hessian) of f . We have,

S =
d

dθ

{
df(θ)

dθ

}
(D.188)

=
d

dθ
{H(πθ) (πθ − y)} . (D.189)
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Continuing with our calculation fix i, j ∈ [K]. Then,

S(i,j) =
d{πθ(i) ·

[
πθ(i)− y(i)− π>θ (πθ − y)

]
}

dθ(j)
(D.190)

=
dπθ(i)

dθ(j)
·
[
πθ(i)− y(i)− π>θ (πθ − y)

]
(D.191)

+ πθ(i) ·
d{πθ(i)− y(i)− π>θ (πθ − y)}

dθ(j)
(D.192)

= (δijπθ(j)− πθ(i)πθ(j)) ·
[
πθ(i)− y(i)− π>θ (πθ − y)

]
(D.193)

+ πθ(i) ·
[
δijπθ(j)− πθ(i)πθ(j) (D.194)

− πθ(j) ·
(
πθ(j)− y(j)− π>θ (πθ − y)

)
(D.195)

− πθ(j) ·
(
πθ(j)− π>θ πθ

) ]
(D.196)

= δijπθ(j) ·
[
πθ(i)− y(i)− π>θ (πθ − y)

]
(D.197)

− πθ(i)πθ(j) ·
[
πθ(i)− y(i)− π>θ (πθ − y)

]
(D.198)

− πθ(i)πθ(j) ·
[
πθ(j)− y(j)− π>θ (πθ − y)

]
(D.199)

+ πθ(i)πθ(j) ·
[
δij − πθ(i)− πθ(j) + π>θ πθ

]
, (D.200)

where

δij =

{
1, if i = j,

0, otherwise
(D.201)

is Kronecker’s δ-function. To show the bound on the spectral radius of S, pick

z ∈ RK . Then,

∣∣z>Sz∣∣ =

∣∣∣∣∣
K∑
i=1

K∑
j=1

S(i,j) · z(i) · z(j)

∣∣∣∣∣ (D.202)

=
∣∣∣ (H(πθ) (πθ − y))> (z � z)− 2 · (H(πθ) (πθ − y))> z ·

(
π>θ z

)
(D.203)

+ (πθ � πθ)> (z � z)− 2 · (πθ � πθ)> z ·
(
π>θ z

)
(D.204)

+
(
π>θ z

)2 ·
(
π>θ πθ

) ∣∣∣, (D.205)

where � is Hadamard (component-wise) product. We have, as πθ → y,

(H(πθ) (πθ − y))> (z � z)− 2 · (H(πθ) (πθ − y))> z ·
(
π>θ z

)
(D.206)

→ (H(y)0)> (z � z)− 2 · (H(y)0)> z ·
(
y>z

)
(D.207)

= 0. (D.208)

282



Since y is one-hot vector, we have, as πθ → y,

(πθ � πθ)> (z � z)− 2 · (πθ � πθ)> z ·
(
π>θ z

)
+
(
π>θ z

)2 · π>θ πθ (D.209)

→ y> (z � z)− 2 ·
(
y>z

)2
+
(
y>z

)2 · y>y (D.210)

=
(
y>z

)2 − 2 ·
(
y>z

)2
+
(
y>z

)2
= 0, (D.211)

which means β(θ)→ 0 as θ, θ′ → θ∗ in Definition 6.

(3) Y := BC \ (BD∪BCE) 6= ∅. Consider minimizing the function f : R→ R,

f(θ) =

{
2 · (πθ − πθ∗)2 , if |πθ − πθ∗ | ≤ 0.2,

25 · (πθ − πθ∗)4 + 0.04, otherwise
(D.212)

where θ ∈ R, θ∗ = 0, and πθ is defined as,

πθ = σ(θ) =
1

1 + e−θ
, (D.213)

where σ : R→ (0, 1) is the sigmoid activation. Fig. D.1 shows the image of f ,

indicating that f is a non-convex function.
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Figure D.1: The image of f .

Since θ∗ = 0, we have πθ∗ = 1/2, and for all |πθ − πθ∗ | > 0.2,∣∣∣∣df(θ)

dθ

∣∣∣∣ =

∣∣∣∣dπθdθ · df(θ)

dπθ

∣∣∣∣ (D.214)

=
∣∣πθ · (1− πθ) · 100 · (πθ − πθ∗)3

∣∣ (D.215)

= 100 · πθ · (1− πθ) ·
[
(πθ − πθ∗)4] 3

4 (D.216)

= 100 · πθ · (1− πθ) · [f(θ)− f(θ∗)]1−
1
4 , (D.217)
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which means f satisfies N L inequality with ξ = 1/4 < 1/2. For all |πθ − πθ∗ | ≤

1, the Hessian of f is,∣∣∣∣d2f(θ)

dθ2

∣∣∣∣ =

∣∣∣∣ ddθ {100 · πθ · (1− πθ) · (πθ − πθ∗)}
∣∣∣∣ (D.218)

=
∣∣100 · πθ · (1− πθ) · (πθ − πθ∗) · (1− 2πθ) (D.219)

+ 100 · π2
θ · (1− πθ)

2
∣∣. (D.220)

As πθ → πθ∗ = 1/2, we have

100 · πθ · (1− πθ) · (πθ − πθ∗) · (1− 2πθ)→ 0, (D.221)

and,

100 · π2
θ · (1− πθ)

2 → 100 · 1

4
· 1

4
=

25

4
> 0, (D.222)

which means β(θ)→ β > 0 as θ, θ′ → θ∗ in Definition 6.

(4) Z := BD \ (BDE ∪BF) 6= ∅. Consider minimizing the same function as in

(2),

f(θ) = ‖πθ − y‖2
2 , (D.223)

where πθ = softmax(θ), θ ∈ RK , and y ∈ (0, 1) is a probability vector

with mina y(a) > 0, i.e., y is bounded away from the boundary of prob-

ability simplex. We show that f is non-convex using one example. Let

y = (1/2, 1/4, 1/4)>. Let θ1 = (0, 0, 0)>, πθ1 = softmax(θ1) = (1/3, 1/3, 1/3)>,

θ2 = (log 4, log 36, log 100)>, and πθ2 = softmax(θ2) = (4/140, 36/140, 100/140)>.

We have,

f(θ1) = ‖πθ1 − y‖
2
2 =

1

24
, and f(θ2) = ‖πθ2 − y‖

2
2 =

613

1400
. (D.224)

Denote θ̄ = 1
2
· (θ1 + θ2) = (log 2, log 6, log 10)> we have πθ̄ = softmax(θ̄) =

(2/18, 6/18, 10/18)> and

f(θ̄) = ‖πθ̄ − y‖
2
2 =

163

648
. (D.225)

Therefore we have,

1

2
· (f(θ1) + f(θ2)) =

1007

4200
=

27189

113400
<

28525

113400
=

163

648
= f(θ̄), (D.226)
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which means f is non-convex. Similar as (2), we have the Hessian of f ,

S(i,j) = δijπθ(j) ·
[
πθ(i)− y(i)− π>θ (πθ − y)

]︸ ︷︷ ︸
(a)

(D.227)

− πθ(i)πθ(j) ·
[
πθ(i)− y(i)− π>θ (πθ − y)

]︸ ︷︷ ︸
(b)

(D.228)

− πθ(i)πθ(j) ·
[
πθ(j)− y(j)− π>θ (πθ − y)

]︸ ︷︷ ︸
(c)

(D.229)

+ πθ(i)πθ(j) ·
[
δij − πθ(i)− πθ(j) + π>θ πθ

]︸ ︷︷ ︸
(d)

, (D.230)

where (a) = (b) = (c) = 0 when πθ = y. Hence, at the optimal point θ∗, we

have,

S =
1

128
·

12 −6 −6

−6 7 −1

−6 −1 7

 , (D.231)

and the eigenvalues of S are 0, 1
16

, and 9
64

. Thus as θ, θ′ → θ∗, the Hessian

spectral radius of f satisfies β(θ)→ β = 9
64

.

Proposition 10. The convex function f : x 7→ |x|p with p > 1 satisfies the

N L inequality with ξ = 1/p and the NS property with β(x) ≤ c1 · δ(x)1−2ξ.

Proof. For p > 1, f is differentiable, and we have,

|f ′(x)| =
∣∣p · |x|p−1 · sign{x}

∣∣ = p · (|x|p)
p−1
p = p · (f(x)− f(0))1− 1

p , (D.232)

which means f satisfies N L inequality with ξ = 1/p. On the other hand, the

Hessian of f is,

|f ′′(x)| =
∣∣p · (p− 1) · |x|p−2

∣∣ (D.233)

= p · (p− 1) · (|x|p)
p−2
p (D.234)

= p · (p− 1) · (f(x)− f(0))1− 2
p .
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D.2 Proofs for Section 4.6: Geometry-aware

Normalized Policy Gradient

D.2.1 One-state MDPs

Lemma 21 (NS) . Denote θζ := θ + ζ · (θ′ − θ) with some ζ ∈ [0, 1]. For

any r ∈ [0, 1]K , θ 7→ π>θ r satisfies β(θζ) non-uniform smoothness with β(θζ) =

3 ·
∥∥∥dπ>θζ rdθζ

∥∥∥
2
.

Proof. Let S := S(r, θ) ∈ RK×K be the second derivative of the value map

θ 7→ π>θ r. By Taylor’s theorem, it suffices to show that the spectral radius

of S is upper bounded. Denote H(πθ) := diag(πθ) − πθπ>θ as the Jacobian of

θ 7→ softmax(θ). Now, by its definition we have

S =
d

dθ

{
dπ>θ r

dθ

}
(D.235)

=
d

dθ
{H(πθ)r} (D.236)

=
d

dθ

{
(diag(πθ)− πθπ>θ )r

}
. (D.237)

Continuing with our calculation fix i, j ∈ [K]. Then,

S(i,j) =
d{πθ(i) · (r(i)− π>θ r)}

dθ(j)
(D.238)

=
dπθ(i)

dθ(j)
· (r(i)− π>θ r) + πθ(i) ·

d{r(i)− π>θ r}
dθ(j)

(D.239)

= (δijπθ(j)− πθ(i)πθ(j)) · (r(i)− π>θ r) (D.240)

− πθ(i) · (πθ(j)r(j)− πθ(j)π>θ r) (D.241)

= δijπθ(j) · (r(i)− π>θ r) (D.242)

− πθ(i)πθ(j) · (r(i)− π>θ r)− πθ(i)πθ(j) · (r(j)− π>θ r), (D.243)

where

δij =

{
1, if i = j,

0, otherwise
(D.244)

is Kronecker’s δ-function as defined in Eq. (D.201). To show the bound on the
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spectral radius of S, pick y ∈ RK . Then,

∣∣y>Sy∣∣ =

∣∣∣∣∣
K∑
i=1

K∑
j=1

S(i,j) · y(i) · y(j)

∣∣∣∣∣ (D.245)

=

∣∣∣∣∑
i

πθ(i)(r(i)− π>θ r)y(i)2 (D.246)

− 2
∑
i

πθ(i)(r(i)− π>θ r)y(i)
∑
j

πθ(j)y(j)

∣∣∣∣ (D.247)

=
∣∣∣(H(πθ)r)

> (y � y)− 2 · (H(πθ)r)
> y ·

(
π>θ y

)∣∣∣ (D.248)

≤ ‖H(πθ)r‖∞ · ‖y � y‖1 + 2 · ‖H(πθ)r‖2 · ‖y‖2 · ‖πθ‖1 · ‖y‖∞ (D.249)

≤ 3 · ‖H(πθ)r‖2 · ‖y‖
2
2 . (D.250)

According to Taylor’s theorem, ∀θ, θ′,∣∣∣∣(πθ′ − πθ)>r − 〈dπ>θ rdθ
, θ′ − θ

〉∣∣∣∣ =
1

2
·
∣∣∣(θ′ − θ)> S(r, θζ) (θ′ − θ)

∣∣∣ (D.251)

≤ 3

2
·
∥∥H(πθζ)r

∥∥
2
· ‖θ′ − θ‖2

2 (by Eq. (D.245)) (D.252)

=
3

2
·
∥∥∥∥dπ>θζrdθζ

∥∥∥∥
2

· ‖θ′ − θ‖2
2. (by Lemma 55)

Lemma 22. Let

θ′ = θ + η · dπ
>
θ r

dθ

/∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

. (D.253)

Denote θζ := θ+ ζ · (θ′− θ) with some ζ ∈ [0, 1]. We have, for all η ∈ (0, 1/3),∥∥∥∥dπ>θζrdθζ

∥∥∥∥
2

≤ 1

1− 3η
·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

. (D.254)

Proof. Denote ζ1 := ζ. Also denote θζ2 := θ+ζ2 ·(θζ1−θ) with some ζ2 ∈ [0, 1].
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We have,∥∥∥∥∥dπ
>
θζ1
r

dθζ1
− dπ>θ r

dθ

∥∥∥∥∥
2

=

∥∥∥∥∥
∫ 1

0

〈d2{π>θζ2r}
dθ2

ζ2

, θζ1 − θ
〉
dζ2

∥∥∥∥∥
2

(D.255)

≤
∫ 1

0

∥∥∥∥∥d
2{π>θζ2r}
dθ2

ζ2

∥∥∥∥∥
2

· ‖θζ1 − θ‖2 dζ2 (D.256)

≤
∫ 1

0

3 ·

∥∥∥∥∥dπ
>
θζ2
r

dθζ2

∥∥∥∥∥
2

· ζ1 · ‖θ′ − θ‖2 dζ2 (by Eq. (D.245)) (D.257)

≤
∫ 1

0

3 ·

∥∥∥∥∥dπ
>
θζ2
r

dθζ2

∥∥∥∥∥
2

· η dζ2, (D.258)(
ζ1 ∈ [0, 1], using θ′ = θ + η · dπ

>
θ r

dθ

/∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

)
(D.259)

where the second last inequality is because of the Hessian is symmetric, and

its operator norm is equal to its spectral radius. Therefore we have,∥∥∥∥∥dπ
>
θζ1
r

dθζ1

∥∥∥∥∥
2

(D.260)

≤
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

+

∥∥∥∥∥dπ
>
θζ1
r

dθζ1
− dπ>θ r

dθ

∥∥∥∥∥
2

(by triangle inequality) (D.261)

≤
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

+ 3η ·
∫ 1

0

∥∥∥∥∥dπ
>
θζ2
r

dθζ2

∥∥∥∥∥
2

dζ2. (by Eq. (D.255)) (D.262)

Denote θζ3 := θ + ζ3 · (θζ2 − θ) with some ζ3 ∈ [0, 1]. Using similar calculation

as in Eq. (D.255), we have,∥∥∥∥∥dπ
>
θζ2
r

dθζ2

∥∥∥∥∥
2

≤
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

+

∥∥∥∥∥dπ
>
θζ2
r

dθζ2
− dπ>θ r

dθ

∥∥∥∥∥
2

(D.263)

≤
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

+ 3η ·
∫ 1

0

∥∥∥∥∥dπ
>
θζ3
r

dθζ3

∥∥∥∥∥
2

dζ3. (D.264)

Combining Eqs. (D.260) and (D.263), we have,∥∥∥∥∥dπ
>
θζ1
r

dθζ1

∥∥∥∥∥
2

≤ (1 + 3η) ·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

(D.265)

+ (3η)2 ·
∫ 1

0

∫ 1

0

∥∥∥∥∥dπ
>
θζ3
r

dθζ3

∥∥∥∥∥
2

dζ3dζ2, (D.266)
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which implies,∥∥∥∥∥dπ
>
θζ1
r

dθζ1

∥∥∥∥∥
2

≤

[
∞∑
i=0

(3η)i

]
·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

(D.267)

=
1

1− 3η
·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

. (η ∈ (0, 1/3))

Lemma 23 (Non-vanishing N L coefficient) . Using normalized policy gradient

method, we have inft≥1 πθt(a
∗) > 0.

Proof. The proof is similar to Mei et al. (2020b, Lemma 5). Let

c =
K

2∆
·
(

1− ∆

K

)
(D.268)

and

∆ = r(a∗)−max
a6=a∗

r(a) > 0 (D.269)

denote the reward gap of r. We will prove that inft≥1 πθt(a
∗) = min1≤t≤t0 πθt(a

∗),

where t0 = min{t : πθt(a
∗) ≥ c

c+1
}. Note that t0 depends only on θ1 and c,

and c depends only on the problem. Define the following regions,

R1 =

{
θ :

dπ>θ r

dθ(a∗)
≥ dπ>θ r

dθ(a)
, ∀a 6= a∗

}
, (D.270)

R2 = {θ : πθ(a
∗) ≥ πθ(a), ∀a 6= a∗} , (D.271)

Nc =

{
θ : πθ(a

∗) ≥ c

c+ 1

}
. (D.272)

We make the following three-part claim.

Claim 2. The following hold :

a) Following a normalized PG update θt+1 = θt+η ·
dπ>θt

r

dθt

/∥∥∥dπ>θtrdθt

∥∥∥
2
, if θt ∈ R1,

then (i) θt+1 ∈ R1 and (ii) πθt+1(a∗) ≥ πθt(a
∗).

b) We have R2 ⊂ R1 and Nc ⊂ R1.

c) For η = 1/6, there exists a finite time t0 ≥ 1, such that θt0 ∈ Nc, and thus

θt0 ∈ R1, which implies that inft≥1 πθt(a
∗) = min1≤t≤t0 πθt(a

∗)..
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Claim a) Part (i): We want to show that if θt ∈ R1, then θt+1 ∈ R1. Let

R1(a) =

{
θ :

dπ>θ r

dθ(a∗)
≥ dπ>θ r

dθ(a)

}
. (D.273)

Note that R1 = ∩a6=a∗R1(a). Pick a 6= a∗. Clearly, it suffices to show that

if θt ∈ R1(a) then θt+1 ∈ R1(a). Hence, suppose that θt ∈ R1(a). We consider

two cases.

Case (a): πθt(a
∗) ≥ πθt(a). Since πθt(a

∗) ≥ πθt(a), we also have θt(a
∗) ≥ θt(a).

After an update of the parameters,

θt+1(a∗) = θt(a
∗) +

η∥∥∥dπ>θtrdθt

∥∥∥
2

·
dπ>θtr

dθt(a∗)
(D.274)

≥ θt(a) +
η∥∥∥dπ>θtrdθt

∥∥∥
2

·
dπ>θtr

dθt(a)
(D.275)

= θt+1(a), (D.276)

which implies that πθt+1(a∗) ≥ πθt+1(a). Since r(a∗) − π>θt+1
r > 0 and r(a∗) >

r(a),

πθt+1(a∗) ·
(
r(a∗)− π>θt+1

r
)
≥ πθt+1(a) ·

(
r(a)− π>θt+1

r
)
, (D.277)

which is equivalent to
dπ>θt+1

r

dθt+1(a∗)
≥

dπ>θt+1
r

dθt+1(a)
, i.e., θt+1 ∈ R1(a).

Case (b): Suppose now that πθt(a
∗) < πθt(a). First note that for any θ and

a 6= a∗, θ ∈ R1(a) holds if and only if

r(a∗)− r(a) ≥
(

1− πθ(a
∗)

πθ(a)

)
·
(
r(a∗)− π>θ r

)
. (D.278)

Indeed, from the condition
dπ>θ r

dθ(a∗)
≥ dπ>θ r

dθ(a)
, we get

πθ(a
∗) ·
(
r(a∗)− π>θ r

)
≥ πθ(a) ·

(
r(a)− π>θ r

)
(D.279)

= πθ(a) ·
(
r(a∗)− π>θ r

)
− πθ(a) · (r(a∗)− r(a)) , (D.280)

which, after rearranging, is equivalent to Eq. (D.278). Hence, it suffices to

show that Eq. (D.278) holds for θt+1 provided it holds for θt. From the latter

condition, we get

r(a∗)− r(a) ≥ (1− exp {θt(a∗)− θt(a)}) ·
(
r(a∗)− π>θtr

)
. (D.281)
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After an update of the parameters, according to Lemma 52 (or Eq. (D.302)

below), π>θt+1
r ≥ π>θtr, i.e.,

0 < r(a∗)− π>θt+1
r ≤ r(a∗)− π>θtr . (D.282)

On the other hand,

θt+1(a∗)− θt+1(a) = θt(a
∗) +

η∥∥∥dπ>θtrdθt

∥∥∥
2

·
dπ>θtr

dθt(a∗)
(D.283)

− θt(a)− η∥∥∥dπ>θtrdθt

∥∥∥
2

·
dπ>θtr

dθt(a)
(D.284)

≥ θt(a
∗)− θt(a), (D.285)

which implies that

1− exp {θt+1(a∗)− θt+1(a)} ≤ 1− exp {θt(a∗)− θt(a)} . (D.286)

Furthermore, by our assumption that πθt(a
∗) < πθt(a), we have

1− exp {θt(a∗)− θt(a)} = 1− πθt(a
∗)

πθt(a)
> 0. (D.287)

Putting things together, we get

(1− exp {θt+1(a∗)− θt+1(a)}) ·
(
r(a∗)− π>θt+1

r
)

(D.288)

≤ (1− exp {θt(a∗)− θt(a)}) ·
(
r(a∗)− π>θtr

)
(D.289)

≤ r(a∗)− r(a), (D.290)

which is equivalent to(
1−

πθt+1(a∗)

πθt+1(a)

)
·
(
r(a∗)− π>θt+1

r
)
≤ r(a∗)− r(a), (D.291)

and thus by our previous remark, θt+1 ∈ R1(a), thus, finishing the proof of

part (i).

Part (ii): Assume again that θt ∈ R1. We want to show that πθt+1(a∗) ≥
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πθt(a
∗). Since θt ∈ R1, we have

dπ>θt
r

dθt(a∗)
≥ dπ>θt

r

dθt(a)
, ∀a 6= a∗. Hence,

πθt+1(a∗) =
exp {θt+1(a∗)}∑
a exp {θt+1(a)}

(D.292)

=
exp

{
θt(a

∗) + η · dπ>θt
r

dθt(a∗)

/∥∥∥dπ>θtrdθt

∥∥∥
2

}
∑

a exp
{
θt(a) + η · dπ

>
θt
r

dθt(a)

/∥∥∥dπ>θtrdθt

∥∥∥
2

} (D.293)

≥
exp

{
θt(a

∗) + η · dπ>θt
r

dθt(a∗)

/∥∥∥dπ>θtrdθt

∥∥∥
2

}
∑

a exp
{
θt(a) + η · dπ>θt

r

dθt(a∗)

/∥∥∥dπ>θtrdθt

∥∥∥
2

} (D.294)

(
using

dπ>θtr

dθt(a∗)
≥

dπ>θtr

dθt(a)

)
(D.295)

=
exp {θt(a∗)}∑
a exp {θt(a)}

= πθt(a
∗). (D.296)

Claim b); Claim c) The proof of those claims are exactly the same as

Lemma 5, since they do not involve the update rule.

Theorem 17. Using normalized PG θt+1 = θt + η · dπ
>
θt
r

dθt

/∥∥∥dπ>θtrdθt

∥∥∥
2
, with

η = 1/6, for all t ≥ 1, we have,

(π∗ − πθt)>r ≤ e−
c·(t−1)

12 · (π∗ − πθ1)> r, (D.297)

where c = inft≥1 πθt(a
∗) > 0 is from Lemma 23, and c is a constant that

depends on r and θ1, but not on the time t.

Proof. Denote θζt := θt + ζt · (θt+1 − θt) with some ζt ∈ [0, 1]. According to

Lemma 21, ∣∣∣∣(πθt+1 − πθt)>r −
〈dπ>θtr
dθt

, θt+1 − θt
〉∣∣∣∣ (D.298)

≤ 3

2
·
∥∥∥∥dπ>θζtrdθζt

∥∥∥∥
2

· ‖θt+1 − θt‖2
2 (D.299)

≤ 3

2
· 1

1− 3η
·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

· ‖θt+1 − θt‖2
2, (D.300)

(η = 1/6, by Lemma 22) (D.301)
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which implies,

π>θtr − π
>
θt+1

r (D.302)

≤ −
〈dπ>θtr
dθt

, θt+1 − θt
〉

+
3

2 · (1− 3η)
·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

· ‖θt+1 − θt‖2
2 (D.303)

= −η ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

+
3 · η2

2 · (1− 3η)
·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

(D.304)(
using θt+1 = θt + η ·

dπ>θtr

dθt

/∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

)
(D.305)

= − 1

12
·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

(using η = 1/6) (D.306)

≤ − 1

12
· πθt(a∗) · (π∗ − πθt)>r (by Lemma 3) (D.307)

≤ − 1

12
· inf
t≥1

πθt(a
∗) · (π∗ − πθt)>r. (D.308)

According to Eq. (D.302), we have,

(π∗ − πθt)
> r (D.309)

≤
(

1− c

12

)
·
(
π∗ − πθt−1

)>
r

(
c := inf

t≥1
πθt(a

∗) > 0

)
(D.310)

≤ exp {−c/12} ·
(
π∗ − πθt−1

)>
r (D.311)

≤ exp {−(t− 1) · c/12} · (π∗ − πθ1)> r.

D.2.2 General MDPs

Lemma 24 (NS) . Let Assumption 2 hold and denote θζ := θ + ζ · (θ′ − θ)

with some ζ ∈ [0, 1]. θ 7→ V πθ(µ) satisfies β(θζ) non-uniform smoothness with

β(θζ) =

[
3 +

2 · (C∞ − (1− γ))

(1− γ) · γ

]
·
√
S ·
∥∥∥∥∂V πθζ (µ)

∂θζ

∥∥∥∥
2

, (D.312)

where C∞ := maxπ

∥∥∥dπµµ ∥∥∥∞ ≤ 1
mins µ(s)

<∞.

Proof. The main part is to prove that for all y ∈ RSA and θ,∣∣∣∣y>∂2V πθ(µ)

∂θ2
y

∣∣∣∣ (D.313)

≤
[
3 +

2 · (C∞ − (1− γ))

(1− γ) · γ

]
·
√
S ·
∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

· ‖y‖2
2. (D.314)
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We first calculate the second order derivative of V πθ(µ) w.r.t. θ.

Denote θα = θ + αu, where α ∈ R and u ∈ RSA. For any (s, a) ∈ S ×A,

∂πθα(a|s)
∂α

∣∣∣
α=0

=
〈∂πθα(a|s)

∂θα

∣∣∣
α=0

,
∂θα
∂α

〉
(D.315)

=
〈∂πθ(a|s)

∂θ
, u
〉

(D.316)

=
〈∂πθ(a|s)
∂θ(s, ·)

, u(s, ·)
〉
,

(
∂πθ(a|s)
∂θ(s′, ·)

= 0, ∀s′ 6= s

)
(D.317)

Similarly, for any (s, a) ∈ S ×A,

∂2πθα(a|s)
∂α2

∣∣∣
α=0

=
〈 ∂

∂θα

{
∂πθα(a|s)

∂α

} ∣∣∣
α=0

,
∂θα
∂α

〉
(D.318)

=
〈∂2πθα(a|s)

∂θ2
α

∣∣∣
α=0

∂θα
∂α

,
∂θα
∂α

〉
(D.319)

=
〈∂2πθ(a|s)
∂θ2(s, ·)

u(s, ·), u(s, ·)
〉
. (D.320)

Define Π(α) ∈ RS×SA as follows,

Π(α) :=


πθα(·|1)> 0> · · · 0>

0> πθα(·|2)> · · · 0>

...
...

. . .
...

0> 0> · · · πθα(·|S)>

 . (D.321)

Denote P ∈ RSA×S such that,

P(sa,s′) := P(s′|s, a). (D.322)

Define P (α) := Π(α)P ∈ RS×S, where ∀(s, s′),

[P (α)](s,s′) =
∑
a

πθα(a|s) · P(s′|s, a). (D.323)

The derivative w.r.t. α is

∂P (α)

∂α
=
∂Π(α)P
∂α

=
∂Π(α)

∂α
P . (D.324)

And ∀(s, s′), we have,[
∂P (α)

∂α

∣∣∣
α=0

]
(s,s′)

=
∑
a

[
∂πθα(a|s)

∂α

∣∣∣
α=0

]
· P(s′|s, a). (D.325)
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Next, consider the state value function of πθα ,

V πθα (s) =
∑
a

πθα(a|s) · r(s, a) (D.326)

+ γ
∑
a

πθα(a|s)
∑
s′

P(s′|s, a) · V πθα (s′), (D.327)

which implies,

V πθα (s) = e>sM(α)rθα (D.328)

V πθα (µ) = µ>M(α)rθα , (D.329)

where

M(α) = (Id− γP (α))−1 , (D.330)

and rθα ∈ RS is given by

rθα = Π(α)r, (D.331)

where r ∈ RSA. Taking derivative w.r.t. α in Eq. (D.329),

∂V πθα (µ)

∂α
= γ · µ>M(α)

∂P (α)

∂α
M(α)rθα + µ>M(α)

∂rθα
∂α

(D.332)

= µ>M(α)

[
γ · ∂P (α)

∂α
M(α)rθα +

∂rθα
∂α

]
(D.333)

= µ>M(α)

[
γ · ∂Π(α)

∂α
PM(α)rθα +

∂Π(α)

∂α
r

]
(D.334)

(by Eqs. (D.324) and (D.331)) (D.335)

= µ>M(α)
∂Π(α)

∂α
Qπθα , (D.336)

where Qπθα ∈ RSA is the state-action value and it satisfies,

Qπθα = r + γ · PM(α)rθα (D.337)

= r + γ · PV πθα . (by Eq. (D.328)) (D.338)
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Similarly, taking second derivative w.r.t. α,

∂2V πθα (µ)

∂α2
= 2γ2 · µ>M(α)

∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)rθα (D.339)

+ γ · µ>M(α)
∂2P (α)

∂α2
M(α)rθα (D.340)

+ 2γ · µ>M(α)
∂P (α)

∂α
M(α)

∂rθα
∂α

+ µ>M(α)
∂2rθα
∂α2

(D.341)

= 2γ · µ>M(α)
∂P (α)

∂α
M(α)

∂Π(α)

∂α
(γ · PM(α)rθα + r) (D.342)

+ µ>M(α)
∂2Π(α)

∂α2
(γ · PM(α)rθα + r) (D.343)

= 2γ · µ>M(α)
∂P (α)

∂α
M(α)

∂Π(α)

∂α
Qπθα (D.344)

+ µ>M(α)
∂2Π(α)

∂α2
Qπθα . (D.345)

For the last term, we have,[
∂2Π(α)

∂α2
Qπθα

∣∣∣
α=0

]
(s)

=
∑
a

∂2πθα(a|s)
∂α2

∣∣∣
α=0
·Qπθ(s, a) (D.346)

=
∑
a

〈∂2πθ(a|s)
∂θ2(s, ·)

u(s, ·), u(s, ·)
〉
·Qπθ(s, a) (D.347)

(by Eq. (D.318)) (D.348)

= u(s, ·)>
[∑

a

∂2πθ(a|s)
∂θ2(s, ·)

·Qπθ(s, a)

]
u(s, ·). (D.349)

Let S(a, θ) = ∂2πθ(a|s)
∂θ2(s,·) ∈ RA×A. ∀i, j ∈ [A], the value of S(a, θ) is,

S(i,j) =
∂{δiaπθ(a|s)− πθ(a|s)πθ(i|s)}

∂θ(s, j)
(D.350)

= δia · [δjaπθ(a|s)− πθ(a|s)πθ(j|s)] (D.351)

− πθ(a|s) · [δijπθ(j|s)− πθ(i|s)πθ(j|s)] (D.352)

− πθ(i|s) · [δjaπθ(a|s)− πθ(a|s)πθ(j|s)] , (D.353)

where the δ notation is as defined in Eq. (D.201). Then we have,[∑
a

∂2πθ(a|s)
∂θ2(s, ·)

·Qπθ(s, a)

]
(i,j)

=
∑
a

S(i,j) ·Qπθ(s, a) (D.354)

= δij · πθ(i|s) · [Qπθ(s, i)− V πθ(s)] (D.355)

− πθ(i|s) · πθ(j|s) · [Qπθ(s, i)− V πθ(s)] (D.356)

− πθ(i|s) · πθ(j|s) · [Qπθ(s, j)− V πθ(s)] . (D.357)
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Therefore we have,[
∂2Π(α)

∂α2
Qπθα

∣∣∣
α=0

]
(s)

(D.358)

=
A∑
i=1

A∑
j=1

u(s, i) · u(s, j) ·

[∑
a

∂2πθ(a|s)
∂θ2(s, ·)

·Qπθ(s, a)

]
(i,j)

(D.359)

= (H(πθ(·|s))Qπθ(s, ·))> (u(s, ·)� u(s, ·)) (D.360)

− 2 ·
[
(H(πθ(·|s))Qπθ(s, ·))> u(s, ·)

]
·
(
πθ(·|s)>u(s, ·)

)
, (D.361)

where H(π) := diag(π)−ππ>. Combining the above results with Eq. (D.339),

we have,∣∣∣∣µ>M(α)
∂2Π(α)

∂α2
Qπθα

∣∣∣
α=0

∣∣∣∣ (D.362)

≤ 1

1− γ
·
∑
s

dπθµ (s) ·

∣∣∣∣∣
[
∂2Π(α)

∂α2
Qπθα

∣∣∣
α=0

]
(s)

∣∣∣∣∣ (D.363)

(by triangle inequality) (D.364)

≤ 1

1− γ
·
∑
s

dπθµ (s) · 3 · ‖H(πθ(·|s))Qπθ(s, ·)‖2 · ‖u‖
2
2 (D.365)

(by Hölder’s inequality) (D.366)

≤ 3 ·
√
S

1− γ
·

[∑
s

dπθµ (s)2 · ‖H(πθ(·|s))Qπθ(s, ·)‖2
2

] 1
2

· ‖u‖2
2 (D.367)

(by Cauchy-Schwarz) (D.368)

= 3 ·
√
S ·
∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

· ‖u‖2
2 . (by Lemma 55) (D.369)

For the first term in Eq. (D.339), we have,

µ>M(α)
∂P (α)

∂α
M(α)

∂Π(α)

∂α
Qπθα

∣∣∣
α=0

(D.370)

=
∑
s′

[
µ>M(α)

∂P (α)

∂α

∣∣∣
α=0

]
(s′)

·
[
M(α)

∂Π(α)

∂α
Qπθα

∣∣∣
α=0

]
(s′)

, (D.371)

since,(
µ>M(α)

∂P (α)

∂α

)>
∈ RS, and M(α)

∂Π(α)

∂α
Qπθα ∈ RS. (D.372)
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Next we have,[
M(α)

∂Π(α)

∂α
Qπθα

∣∣∣
α=0

]
(s′)

(D.373)

=
1

1− γ
·
∑
s

dπθs′ (s) ·
[
∂Π(α)

∂α
Qπθα

∣∣∣
α=0

]
(s)

(D.374)(
∂Π(α)

∂α
Qπθα ∈ RS

)
(D.375)

=
1

1− γ
·
∑
s

dπθs′ (s) ·
∑
a

∂πθα(a|s)
∂α

∣∣∣
α=0
·Qπθ(s, a) (D.376)

=
1

1− γ
·
∑
s

dπθs′ (s) ·
∑
a

〈∂πθ(a|s)
∂θ(s, ·)

, u(s, ·)
〉
·Qπθ(s, a) (D.377)

(by Eq. (D.315)) (D.378)

=
1

1− γ
·
∑
s

dπθs′ (s) ·
〈∑

a

∂πθ(a|s)
∂θ(s, ·)

·Qπθ(s, a), u(s, ·)
〉

(D.379)

=
1

1− γ
·
∑
s

dπθs′ (s) · (H(πθ(·|s))Qπθ(s, ·))> u(s, ·), (D.380)

(H(πθ) is the Jacobian of θ 7→ softmax(θ)) (D.381)

which implies,∣∣∣∣∣
[
M(α)

∂Π(α)

∂α
Qπθα

∣∣∣
α=0

]
(s′)

∣∣∣∣∣ (D.382)

≤ 1

1− γ
·
∑
s

dπθs′ (s) · ‖H(πθ(·|s))Qπθ(s, ·)‖2 · ‖u(s, ·)‖2 (D.383)

≤ ‖u‖2

1− γ
·
∑
s

dπθs′ (s) · ‖H(πθ(·|s))Qπθ(s, ·)‖2. (D.384)
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On the other hand,[
µ>M(α)

∂P (α)

∂α

∣∣∣
α=0

]
(s′)

=
1

1− γ
·
∑
s

dπθµ (s) ·
[
∂P (α)

∂α

∣∣∣
α=0

]
(s,s′)

(D.385)(
∂P (α)

∂α
∈ RS×S

)
(D.386)

=
1

1− γ
·
∑
s

dπθµ (s) ·
∑
a

[
∂πθα(a|s)

∂α

∣∣∣
α=0

]
· P(s′|s, a) (D.387)

(by Eq. (D.325)) (D.388)

=
1

1− γ
·
∑
s

dπθµ (s) ·
∑
a

〈∂πθ(a|s)
∂θ(s, ·)

, u(s, ·)
〉
· P(s′|s, a) (D.389)

(by Eq. (D.315)) (D.390)

=
1

1− γ
·
∑
s

dπθµ (s) ·
∑
a

πθ(a|s) · P(s′|s, a) (D.391)

·
[
u(s, a)− πθ(·|s)>u(s, ·)

]
, (D.392)

which implies,∣∣∣∣∣
[
µ>M(α)

∂P (α)

∂α

∣∣∣
α=0

]
(s′)

∣∣∣∣∣ (D.393)

≤ 1

1− γ
·
∑
s

dπθµ (s) ·
∑
a

πθ(a|s) · P(s′|s, a) · 2 · ‖u(s, ·)‖∞ (D.394)

≤ 2 · ‖u‖2

1− γ
·
∑
s

dπθµ (s) ·
∑
a

πθ(a|s) · P(s′|s, a). (D.395)

According to

dπθµ (s′) = (1− γ) · µ(s′) (D.396)

+ γ ·
∑
s

dπθµ (s) ·
∑
a

πθ(a|s) · P(s′|s, a), ∀s′ ∈ S (D.397)
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we have, ∣∣∣∣∣
[
µ>M(α)

∂P (α)

∂α

∣∣∣
α=0

]
(s′)

∣∣∣∣∣ (D.398)

≤ 2 · ‖u‖2

(1− γ) · γ
·
[
dπθµ (s′)− (1− γ) · µ(s′)

]
(D.399)

=
2 · ‖u‖2

(1− γ) · γ
·
[
dπθµ (s′)

µ(s′)
· µ(s′)− (1− γ) · µ(s′)

]
(D.400)

≤ 2 · ‖u‖2

(1− γ) · γ
· (C∞ − (1− γ)) · µ(s′). (D.401)(

C∞ := max
π

∥∥∥∥dπµµ
∥∥∥∥
∞
<

∥∥∥∥ 1

µ

∥∥∥∥
∞
<∞

)
(D.402)

Combining Eqs. (D.370), (D.382) and (D.398), we have,∣∣∣∣µ>M(α)
∂P (α)

∂α
M(α)

∂Π(α)

∂α
Qπθα

∣∣∣
α=0

∣∣∣∣ (D.403)

≤
∑
s′

2 · ‖u‖2

(1− γ) · γ
· (C∞ − (1− γ)) · µ(s′) · ‖u‖2

1− γ
(D.404)

·
∑
s

dπθs′ (s) · ‖H(πθ(·|s))Qπθ(s, ·)‖2 (D.405)

=
2 · (C∞ − (1− γ))

(1− γ)2 · γ
·
∑
s

dπθµ (s) · ‖H(πθ(·|s))Qπθ(s, ·)‖2 · ‖u‖
2
2 (D.406)

≤ 2 · (C∞ − (1− γ)) ·
√
S

(1− γ)2 · γ
(D.407)

·

[∑
s

dπθµ (s)2 · ‖H(πθ(·|s))Qπθ(s, ·)‖2
2

] 1
2

· ‖u‖2
2 (D.408)

(by Cauchy-Schwarz) (D.409)

=
2 · (C∞ − (1− γ)) ·

√
S

(1− γ) · γ
·
∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

· ‖u‖2
2 . (D.410)

(by Lemma 55) (D.411)

Combining Eqs. (D.339), (D.362) and (D.403),∣∣∣∣∂2V πθα (µ)

∂α2

∣∣∣
α=0

∣∣∣∣ (D.412)

≤
[
3 +

2 · (C∞ − (1− γ))

(1− γ) · γ

]
·
√
S ·
∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

· ‖u‖2
2 , (D.413)
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which implies for all y ∈ RSA and θ,∣∣∣∣y>∂2V πθ(µ)

∂θ2
y

∣∣∣∣ =

∣∣∣∣∣
(

y

‖y‖2

)>
∂2V πθ(µ)

∂θ2

(
y

‖y‖2

)∣∣∣∣∣ · ‖y‖2
2 (D.414)

≤ max
‖u‖2=1

∣∣∣∣〈∂2V πθ(µ)

∂θ2
u, u
〉∣∣∣∣ · ‖y‖2

2 (D.415)

= max
‖u‖2=1

∣∣∣∣〈∂2V πθα (µ)

∂θ2
α

∣∣∣
α=0

∂θα
∂α

,
∂θα
∂α

〉∣∣∣∣ · ‖y‖2
2 (D.416)

= max
‖u‖2=1

∣∣∣∣〈 ∂

∂θα

{
∂V πθα (µ)

∂α

} ∣∣∣
α=0

,
∂θα
∂α

〉∣∣∣∣ · ‖y‖2
2 (D.417)

= max
‖u‖2=1

∣∣∣∣∂2V πθα (µ)

∂α2

∣∣∣
α=0

∣∣∣∣ · ‖y‖2
2 (D.418)

≤
[
3 +

2 · (C∞ − (1− γ))

(1− γ) · γ

]
·
√
S ·
∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

· ‖y‖2
2. (D.419)

(by Eq. (D.412)) (D.420)

Denote θζ = θ+ ζ(θ′− θ), where ζ ∈ [0, 1]. According to Taylor’s theorem, ∀s,

∀θ, θ′, ∣∣∣∣V πθ′ (µ)− V πθ(µ)−
〈∂V πθ(µ)

∂θ
, θ′ − θ

〉∣∣∣∣ (D.421)

=
1

2
·

∣∣∣∣∣(θ′ − θ)> ∂2V πθζ (µ)

∂θ2
ζ

(θ′ − θ)

∣∣∣∣∣ (D.422)

≤ 3 · (1− γ) · γ + 2 · (C∞ − (1− γ))

2 · (1− γ) · γ
·
√
S (D.423)

·
∥∥∥∥∂V πθζ (µ)

∂θζ

∥∥∥∥
2

· ‖θ′ − θ‖2
2, (by Eq. (D.414)) (D.424)

thus finishing the proof.

Lemma 25. Let η = (1−γ)·γ
6·(1−γ)·γ+4·(C∞−(1−γ))

· 1√
S

and

θ′ = θ + η · ∂V
πθ(µ)

∂θ

/∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

. (D.425)

Denote θζ := θ + ζ · (θ′ − θ) with some ζ ∈ [0, 1]. We have,∥∥∥∥∂V πθζ (µ)

∂θζ

∥∥∥∥
2

≤ 2 ·
∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

. (D.426)

Proof. Using the similar arguments of Lemma 22 (replacing 3 in Lemma 21

with 3·(1−γ)·γ+2·(C∞−(1−γ))
(1−γ)·γ ·

√
S in Lemma 24), we have the results.
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Lemma 26 (Non-vanishing N L coefficient) . Let Assumption 2 hold. We have,

c := infs∈S,t≥1 πθt(a
∗(s)|s) > 0, where {θt}t≥1 is generated by Algorithm 2.

Proof. The proof is similar to Lemma 9 and is an extension of the proof for

Lemma 23. Denote ∆∗(s) = Q∗(s, a∗(s)) − maxa6=a∗(s) Q
∗(s, a) > 0 as the

optimal value gap of state s, where a∗(s) is the action that the optimal policy

selects under state s, and ∆∗ = mins∈S ∆∗(s) > 0 as the optimal value gap of

the MDP. For each state s ∈ S, define the following sets:

R1(s) =

{
θ :

∂V πθ(µ)

∂θ(s, a∗(s))
≥ ∂V πθ(µ)

∂θ(s, a)
, ∀a 6= a∗

}
, (D.427)

R2(s) = {θ : Qπθ(s, a∗(s)) ≥ Q∗(s, a∗(s))−∆∗(s)/2} , (D.428)

R3(s) =
{
θt : V πθt (s) ≥ Qπθt (s, a∗(s))−∆∗(s)/2, (D.429)

for all t ≥ 1 large enough
}
, (D.430)

Nc(s) =

{
θ : πθ(a

∗(s)|s) ≥ c(s)

c(s) + 1

}
, (D.431)

where c(s) =
A

(1− γ) ·∆∗(s)
− 1. (D.432)

Similarly to the previous proof, we have the following claims:

Claim I. R1(s)∩R2(s)∩R3(s) is a “nice” region, in the sense that, following

a gradient update, (i) if θt ∈ R1(s)∩R2(s)∩R3(s), then θt+1 ∈ R1(s)∩

R2(s) ∩R3(s); while we also have (ii) πθt+1(a∗(s)|s) ≥ πθt(a
∗(s)|s).

Claim II. Nc(s) ∩R2(s) ∩R3(s) ⊂ R1(s) ∩R2(s) ∩R3(s).

Claim III. There exists a finite time t0(s) ≥ 1, such that θt0(s) ∈ Nc(s) ∩

R2(s) ∩ R3(s), and thus θt0(s) ∈ R1(s) ∩ R2(s) ∩ R3(s), which implies

inft≥1 πθt(a
∗(s)|s) = min1≤t≤t0(s) πθt(a

∗(s)|s).

Claim IV. Define t0 = maxs t0(s). Then, we have

inf
s∈S,t≥1

πθt(a
∗(s)|s) = min

1≤t≤t0
min
s
πθt(a

∗(s)|s). (D.433)

Clearly, claim IV suffices to prove the lemma since for any θ, mins,a πθ(a|s) > 0.

In what follows we provide the proofs of these four claims.
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Claim I. First we prove part (i) of the claim. If θt ∈ R1(s)∩R2(s)∩R3(s),

then θt+1 ∈ R1(s) ∩ R2(s) ∩ R3(s). Suppose θt ∈ R1(s) ∩ R2(s) ∩ R3(s). We

have θt+1 ∈ R3(s) by the definition of R3(s). We have,

Qπθt (s, a∗(s)) ≥ Q∗(s, a∗(s))−∆∗(s)/2. (D.434)

According to monotonic improvement of Eq. (D.500), we have V πθt+1 (s′) ≥

V πθt (s′), and

Qπθt+1 (s, a∗(s)) = Qπθt (s, a∗(s)) +Qπθt+1 (s, a∗(s))−Qπθt (s, a∗(s)) (D.435)

= Qπθt (s, a∗(s)) + γ
∑
s′

P(s′|s, a∗(s)) · [V πθt+1 (s′)− V πθt (s′)] (D.436)

≥ Qπθt (s, a∗(s)) + 0 (D.437)

≥ Q∗(s, a∗(s))−∆∗(s)/2, (D.438)

which means θt+1 ∈ R2(s). Next we prove θt+1 ∈ R1(s). Note that ∀a 6= a∗(s),

Qπθt (s, a∗(s))−Qπθt (s, a) (D.439)

= Qπθt (s, a∗(s))−Q∗(s, a∗(s)) +Q∗(s, a∗(s))−Qπθt (s, a) (D.440)

≥ −∆∗(s)/2 +Q∗(s, a∗(s))−Q∗(s, a) +Q∗(s, a)−Qπθt (s, a) (D.441)

≥ −∆∗(s)/2 +Q∗(s, a∗(s)) (D.442)

− max
a6=a∗(s)

Q∗(s, a) +Q∗(s, a)−Qπθt (s, a) (D.443)

= −∆∗(s)/2 + ∆∗(s) + γ
∑
s′

P(s′|s, a) · [V ∗(s′)− V πθt (s′)] (D.444)

≥ −∆∗(s)/2 + ∆∗(s) + 0 (D.445)

= ∆∗(s)/2. (D.446)

Using similar arguments we also have Qπθt+1 (s, a∗(s))−Qπθt+1 (s, a) ≥ ∆∗(s)/2.

According to Lemma 1,

∂V πθt (µ)

∂θt(s, a)
=

1

1− γ
· dπθtµ (s) · πθt(a|s) · Aπθt (s, a) (D.447)

=
1

1− γ
· dπθtµ (s) · πθt(a|s) · [Qπθt (s, a)− V πθt (s)] . (D.448)

Furthermore, since ∂V
πθt (µ)

∂θt(s,a∗(s))
≥ ∂V

πθt (µ)
∂θt(s,a)

, we have

πθt(a
∗(s)|s) · [Qπθt (s, a∗(s))− V πθt (s)] (D.449)

≥ πθt(a|s) · [Qπθt (s, a)− V πθt (s)] . (D.450)
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Similarly to the first part in the proof for Lemma 23. There are two cases.

Case (a): If πθt(a
∗(s)|s) ≥ πθt(a|s), then θt(s, a

∗(s)) ≥ θt(s, a). After an

update of the parameters,

θt+1(s, a∗(s)) = θt(s, a
∗(s)) + η · ∂V πθt (µ)

∂θt(s, a∗(s))

/∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥
2

(D.451)

≥ θt(s, a) + η · ∂V
πθt (µ)

∂θt(s, a)

/∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥
2

(D.452)

= θt+1(s, a), (D.453)

which implies πθt+1(a∗(s)|s) ≥ πθt+1(a|s). Since Qπθt+1 (s, a∗(s))−Qπθt+1 (s, a) ≥

∆∗(s)/2 ≥ 0, ∀a, we have Qπθt+1 (s, a∗(s)) − V πθt+1 (s) = Qπθt+1 (s, a∗(s)) −∑
a πθt+1(a|s) ·Qπθt+1 (s, a) ≥ 0, and

πθt+1(a∗(s)|s) · [Qπθt+1 (s, a∗(s))− V πθt+1 (s)] (D.454)

≥ πθt+1(a|s) · [Qπθt+1 (s, a)− V πθt+1 (s)] , (D.455)

which is equivalent to ∂V
πθt+1 (µ)

∂θt+1(s,a∗(s))
≥ ∂V

πθt+1 (µ)
∂θt+1(s,a)

, i.e., θt+1 ∈ R1(s).

Case (b): If πθt(a
∗(s)|s) < πθt(a|s), then by ∂V

πθt (µ)
∂θt(s,a∗(s))

≥ ∂V
πθt (µ)

∂θt(s,a)
,

πθt(a
∗(s)|s) · [Qπθt (s, a∗(s))− V πθt (s)] (D.456)

≥ πθt(a|s) · [Qπθt (s, a)− V πθt (s)] (D.457)

= πθt(a|s) ·
[
Qπθt (s, a∗(s))− V πθt (s) (D.458)

+Qπθt (s, a)−Qπθt (s, a∗(s))
]
, (D.459)

which, after rearranging, is equivalent to

Qπθt (s, a∗(s))−Qπθt (s, a) (D.460)

≥
(

1− πθt(a
∗(s)|s)

πθt(a|s)

)
· [Qπθt (s, a∗(s))− V πθt (s)] (D.461)

= (1− exp {θt(s, a∗(s))− θt(s, a)}) · [Qπθt (s, a∗(s))− V πθt (s)] . (D.462)

Since θt+1 ∈ R3(s), we have,

Qπθt+1 (s, a∗(s))− V πθt+1 (s) ≤ ∆∗(s)/2 (D.463)

≤ Qπθt+1 (s, a∗(s))−Qπθt+1 (s, a). (D.464)

304



On the other hand,

θt+1(s, a∗(s))− θt+1(s, a) (D.465)

= θt(s, a
∗(s)) + η · ∂V πθt (µ)

∂θt(s, a∗(s))

/∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥
2

− θt(s, a) (D.466)

− η · ∂V
πθt (µ)

∂θt(s, a)

/∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥
2

(D.467)

≥ θt(s, a
∗(s))− θt(s, a), (D.468)

which implies

1− exp {θt+1(s, a∗(s))− θt+1(s, a)} (D.469)

≤ 1− exp {θt(s, a∗(s))− θt(s, a)} . (D.470)

Furthermore, since 1− exp {θt(s, a∗(s))− θt(s, a)} = 1− πθt (a
∗(s)|s)

πθt (a|s)
> 0 (in this

case πθt(a
∗(s)|s) < πθt(a|s)),

(1− exp {θt+1(s, a∗(s))− θt+1(s, a)}) · [Qπθt+1 (s, a∗(s))− V πθt+1 (s)] (D.471)

≤ Qπθt+1 (s, a∗(s))−Qπθt+1 (s, a), (D.472)

which after rearranging is equivalent to

πθt+1(a∗(s)|s) · [Qπθt+1 (s, a∗(s))− V πθt+1 (s)] (D.473)

≥ πθt+1(a|s) · [Qπθt+1 (s, a)− V πθt+1 (s)] , (D.474)

which means ∂V
πθt+1 (µ)

∂θt+1(s,a∗(s))
≥ ∂V

πθt+1 (µ)
∂θt+1(s,a)

i.e., θt+1 ∈ R1(s). Now we have (i) if

θt ∈ R1(s) ∩R2(s) ∩R3(s), then θt+1 ∈ R1(s) ∩R2(s) ∩R3(s).

Let us now turn to proving part (ii). We have πθt+1(a∗(s)|s) ≥ πθt(a
∗(s)|s).

If θt ∈ R1(s) ∩ R2(s) ∩ R3(s), then ∂V
πθt (µ)

∂θt(s,a∗(s))
≥ ∂V

πθt (µ)
∂θt(s,a)

, ∀a 6= a∗. After an
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update of the parameters,

πθt+1(a∗(s)|s) =
exp {θt+1(s, a∗(s))}∑

a exp {θt+1(s, a)}
(D.475)

=
exp

{
θt(s, a

∗(s)) + η · ∂V
πθt (µ)

∂θt(s,a∗(s))

/∥∥∥∂V πθt (µ)
∂θt

∥∥∥
2

}
∑

a exp
{
θt(s, a) + η · ∂V

πθt (µ)
∂θt(s,a)

/∥∥∥∂V πθt (µ)
∂θt

∥∥∥
2

} (D.476)

≥
exp

{
θt(s, a

∗(s)) + η · ∂V
πθt (µ)

∂θt(s,a∗(s))

/∥∥∥∂V πθt (µ)
∂θt

∥∥∥
2

}
∑

a exp
{
θt(s, a) + η · ∂V

πθt (µ)
∂θt(s,a∗(s))

/∥∥∥∂V πθt (µ)
∂θt

∥∥∥
2

} (D.477)

(
because

∂V πθt (µ)

∂θt(s, a∗(s))
≥ ∂V πθt (µ)

∂θt(s, a)

)
(D.478)

=
exp {θt(s, a∗(s))}∑

a exp {θt(s, a)}
= πθt(a

∗(s)|s). (D.479)

Claim II, Claim III, Claim IV. The proof of those claims are exactly the

same as Lemma 9, since they do not involve the update rule.

Theorem 18. Let Assumption 2 hold and let {θt}t≥1 be generated using

Algorithm 2 with learning rate

η =
(1− γ) · γ

6 · (1− γ) · γ + 4 · (C∞ − (1− γ))
· 1√

S
, (D.480)

where C∞ := maxπ

∥∥∥dπµµ ∥∥∥∞. Denote C ′∞ := maxπ

∥∥∥dπρµ ∥∥∥∞. Let c be the positive

constant from Lemma 26. We have, for all t ≥ 1,

V ∗(ρ)− V πθt (ρ) ≤ (V ∗(µ)− V πθ1 (µ)) · C ′∞
1− γ

· e−C·(t−1), (D.481)

where

C =
(1− γ)2 · γ · c

12 · (1− γ) · γ + 8 · (C∞ − (1− γ))
· 1

S
·
∥∥∥dπ∗µ
µ

∥∥∥−1

∞
. (D.482)

Proof. First note that for any θ and µ,

dπθµ (s) = E
s0∼µ

[
dπθµ (s)

]
(D.483)

= E
s0∼µ

[
(1− γ) ·

∞∑
t=0

γt Pr(st = s|s0, πθ,P)

]
(D.484)

≥ E
s0∼µ

[(1− γ) · Pr(s0 = s|s0)] (D.485)

= (1− γ) · µ(s). (D.486)
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Next, according to Lemma 36, we have,

V ∗(ρ)− V πθ(ρ) =
1

1− γ
∑
s

dπθρ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) (D.487)

=
1

1− γ
∑
s

dπθρ (s)

dπθµ (s)
· dπθµ (s)

∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) (D.488)

≤ 1

1− γ
·
∥∥∥∥dπθρdπθµ

∥∥∥∥
∞

∑
s

dπθµ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) (D.489)(∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) ≥ 0

)
(D.490)

≤ 1

(1− γ)2
·
∥∥∥∥dπθρµ

∥∥∥∥
∞

∑
s

dπθµ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a)

(D.491)(
by Eq. (B.346) and min

s
µ(s) > 0

)
(D.492)

≤ 1

(1− γ)2
· C ′∞ ·

∑
s

dπθµ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) (D.493)

=
1

1− γ
· C ′∞ · [V ∗(µ)− V πθ(µ)] . (by Lemma 36) (D.494)

Denote θζt := θt + ζt · (θt+1 − θt) with some ζt ∈ [0, 1]. And note η =
(1−γ)·γ

6·(1−γ)·γ+4·(C∞−(1−γ))
· 1√

S
. According to Lemma 24, we have,∣∣∣∣V πθt+1 (µ)− V πθt (µ)−

〈∂V πθt (µ)

∂θt
, θt+1 − θt

〉∣∣∣∣ (D.495)

≤ 3 · (1− γ) · γ + 2 · (C∞ − (1− γ))

2 · (1− γ) · γ
·
√
S (D.496)

·
∥∥∥∥∂V πθζt (µ)

∂θζt

∥∥∥∥
2

· ‖θt+1 − θt‖2
2 (D.497)

≤ 3 · (1− γ) · γ + 2 · (C∞ − (1− γ))

(1− γ) · γ
·
√
S (D.498)

·
∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥
2

· ‖θt+1 − θt‖2
2. (by Lemma 25) (D.499)

307



Denote δt = V ∗(µ)− V πθt (µ). We have,

δt+1 − δt = V πθt (µ)− V πθt+1 (µ) (D.500)

≤ −
〈∂V πθt (µ)

∂θt
, θt+1 − θt

〉
(D.501)

+
3 · (1− γ) · γ + 2 · (C∞ − (1− γ))

(1− γ) · γ
·
√
S (D.502)

·
∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥
2

· ‖θt+1 − θt‖2
2 (D.503)

= − (1− γ) · γ
12 · (1− γ) · γ + 8 · (C∞ − (1− γ))

· 1√
S
·
∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥
2

(D.504)

(using the value of η) (D.505)

≤ − (1− γ) · γ
12 · (1− γ) · γ + 8 · (C∞ − (1− γ))

· 1√
S

(D.506)

· mins πθt(a
∗(s)|s)√

S ·
∥∥dπ∗µ /dπθtµ

∥∥
∞

· δt (D.507)

(by Lemma 8) (D.508)

≤ − (1− γ)2 · γ
12 · (1− γ) · γ + 8 · (C∞ − (1− γ))

· 1

S
(D.509)

·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
−1

∞

· inf
s∈S,t≥1

πθt(a
∗(s)|s) · δt, (D.510)

where the last inequality is by d
πθt
µ (s) ≥ (1 − γ) · µ(s) (cf. Eq. (D.483)).

According to Lemma 26, c = infs∈S,t≥1 πθt(a
∗(s)|s) > 0. Therefore we have,

V ∗(µ)− V πθt (µ) ≤ (V ∗(µ)− V πθ1 (µ)) (D.511)

· exp

− (1− γ)2 · γ · c · (t− 1)

12 · (1− γ) · γ + 8 · (C∞ − (1− γ))
· 1

S
·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
−1

∞

 ,

(D.512)

which leads to the final result,

V ∗(ρ)− V πθt (ρ) ≤ (V ∗(µ)− V πθ1 (µ)) · C ′∞
1− γ

(D.513)

· exp

− (1− γ)2 · γ · c · (t− 1)

12 · (1− γ) · γ + 8 · (C∞ − (1− γ))
· 1

S
·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
−1

∞

 ,

(D.514)

thus, finishing the proof.
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D.3 Proofs for Section 4.7: Generalized Lin-

ear Models

Lemma 27 (N L) . Denote

u(θ) := min
i∈[N ]
{πi · (1− πi)}, and (D.515)

v := min
i∈[N ]
{π∗i · (1− π∗i )}. (D.516)

We have,

∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

≥ C(θ, φ) ·

[
1

N
·
N∑
i=1

(πi − π∗i )
2

] 1
2

, (D.517)

holds for all θ ∈ Rd, where

C(θ, φ) = 8 · u(θ) ·min {u(θ), v} ·
√
λφ, (D.518)

and λφ is the smallest positive eigenvalue of 1
N
·
∑N

i=1 φiφ
>
i .

Proof. Denote π′i := σ(z′i), where z′i := φ>i θ + ζ ·
(
φ>i θ − φ>i θ∗

)
for some ζ ∈

[0, 1]. We have,

(πi − π∗i )
2 = (πi − π∗i ) ·

dσ(z′i)

dz′i
·
(
φ>i θ − φ>i θ∗

)
(D.519)

(by the mean value theorem) (D.520)

= π′i · (1− π′i) · (πi − π∗i ) ·
(
φ>i θ − φ>i θ∗

)
(D.521)

≤ 1

4
· (πi − π∗i ) ·

(
φ>i θ − φ>i θ∗

)
. (D.522)(

x · (1− x) ≤ 1

4
, ∀x ∈ [0, 1]; (πi − π∗i ) ·

(
φ>i θ − φ>i θ∗

)
≥ 0

)
(D.523)
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Therefore we have,

1

N
·
N∑
i=1

(πi − π∗i )
2 ≤ 1

4N
·
N∑
i=1

(πi − π∗i ) ·
(
φ>i θ − φ>i θ∗

)
(D.524)

(by Eq. (D.519)) (D.525)

=
1

4N
·
N∑
i=1

1

πi · (1− πi)
· πi · (1− πi) · (πi − π∗i ) (D.526)

·
(
φ>i θ − φ>i θ∗

)
(D.527)

≤ 1

4N
· 1

mini πi · (1− πi)
·
N∑
i=1

πi · (1− πi) · (πi − π∗i ) (D.528)

·
(
φ>i θ − φ>i θ∗

) (
(πi − π∗i ) ·

(
φ>i θ − φ>i θ∗

)
≥ 0
)

(D.529)

=
1

8
· 1

mini πi · (1− πi)
(D.530)

·

(
2

N
·
N∑
i=1

πi · (1− πi) · (πi − π∗i ) · φi

)>
(θ − θ∗ − c · vφ,⊥) (D.531)

=
1

8
· 1

mini πi · (1− πi)
·
(
∂L(θ)

∂θ

)>
(θ − θ∗ − c · vφ,⊥) (D.532)(

∂L(θ)

∂θ
=

2

N
·
N∑
i=1

πi · (1− πi) · (πi − π∗i ) · φi

)
(D.533)

≤ 1

8
· 1

mini πi · (1− πi)
·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

· ‖θ − θ∗ − c · vφ,⊥‖2 (D.534)

(by Cauchy-Schwarz) (D.535)

=
1

8
· 1

u(θ)
·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

· ‖θ − θ∗ − c · vφ,⊥‖2 , (D.536)(
u(θ) := min

i
{πi · (1− πi)}

)
(D.537)

where vφ,⊥ is orthogonal to the space Span {φ1, φ2, . . . , φN}, and θ−θ∗−c ·vφ,⊥
refers to the vector after cutting off all the components vφ,⊥ from θ− θ∗, such
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that θ − θ∗ − c · vφ,⊥ ∈ Span {φ1, φ2, . . . , φN}. Next, we have,

1

N
·
N∑
i=1

(πi − π∗i )
2 =

1

N
·
N∑
i=1

(
dσ(z′i)

dz′i

)2

·
(
φ>i θ − φ>i θ∗

)2
(D.538)

(by the mean value theorem) (D.539)

=
1

N
·
N∑
i=1

(π′i)
2 · (1− π′i)

2 ·
(
φ>i θ − φ>i θ∗

)2
(D.540)

(by Eq. (D.519)) (D.541)

≥ min
i

{
(π′i)

2 · (1− π′i)
2
}
· 1

N
·
N∑
i=1

(
φ>i θ − φ>i θ∗

)2
(D.542)

= min
i

{
(π′i)

2 · (1− π′i)
2
}
· (θ − θ∗)>

(
1

N
·
N∑
i=1

φiφ
>
i

)
(θ − θ∗) (D.543)

= min
i

{
(π′i)

2 · (1− π′i)
2
}

(D.544)

· (θ − θ∗ − c · vφ,⊥)>
(

1

N
·
N∑
i=1

φiφ
>
i

)
(θ − θ∗ − c · vφ,⊥) (D.545)

≥ min
{
u(θ)2, v2

}
(D.546)

· (θ − θ∗ − c · vφ,⊥)>
(

1

N
·
N∑
i=1

φiφ
>
i

)
(θ − θ∗ − c · vφ,⊥) (D.547)(

v := min
i
{π∗i · (1− π∗i )}

)
(D.548)

≥ min
{
u(θ)2, v2

}
· λφ · ‖θ − θ∗ − c · vφ,⊥‖2

2 , (D.549)

where λφ is the smallest positive eigenvalue of 1
N
·
∑N

i=1 φiφ
>
i . Therefore, we

have,

1

N
·
N∑
i=1

(πi − π∗i )
2 ≤ 1

8
· 1

u(θ)
·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

· ‖θ − θ∗ − c · vφ,⊥‖2 (D.550)

(by Eq. (D.524)) (D.551)

≤ 1

8
· 1

u(θ)
·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

· 1

min {u(θ), v}
· 1√

λφ
(D.552)

·

[
1

N
·
N∑
i=1

(πi − π∗i )
2

] 1
2

, (by Eq. (D.538)) (D.553)

which implies,∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

≥ 8 · u(θ) ·min {u(θ), v} ·
√
λφ ·

[
1

N
·
N∑
i=1

(πi − π∗i )
2

] 1
2

.
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Lemma 28. Denote u(θ) := mini {πi · (1− πi)}, v := mini {π∗i · (1− π∗i )},

and λφ is the smallest positive eigenvalue of 1
N
·
∑N

i=1 φiφ
>
i . We have, L(θ)

satisfies β smoothness with

β =
3

8
·max
i∈[N ]
‖φi‖2

2, (D.554)

and β(θ) NS with

β(θ) = L1 ·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

+ L0 ·

(∥∥∥∥∂L(θ)

∂θ

∥∥∥∥2

2

/
L(θ)

)
, (D.555)

where

L1 =
maxi ‖φi‖2

2

32 · (min{u(θ), v} ·
√
λφ)3/2

, and (D.556)

L0 =
17 ·maxi ‖φi‖2

2

512 · u(θ)2 ·min {u(θ)2, v2} · λφ
. (D.557)

Proof. Note that the gradient of L(θ) is,

∂L(θ)

∂θ
=

2

N
·
N∑
i=1

πi · (1− πi) · (πi − π∗i ) · φi ∈ Rd. (D.558)

Denote the second order derivative (Hessian) of L(θ) as,

S(θ) :=
∂

∂θ

{
∂L(θ)

∂θ

}
∈ Rd×d. (D.559)

For all j, k ∈ [d], we calculate the corresponding component value of S(θ)

matrix as follows,

S(j,k) =
d

dθ(k)

{
2

N
·
N∑
i=1

πi · (1− πi) · (πi − π∗i ) · φi(j)

}
(D.560)

=
2

N
·
N∑
i=1

d {πi · (1− πi) · (πi − π∗i )}
dθ(k)

· φi(j) (D.561)

=
2

N
·
N∑
i=1

d {πi · (1− πi) · (πi − π∗i )}
d
{
φ>i θ

} ·
d
{
φ>i θ

}
dθ(k)

· φi(j) (D.562)

=
2

N
·
N∑
i=1

[
πi · (1− πi)2 · (πi − π∗i ) (D.563)

− π2
i · (1− πi) · (πi − π∗i ) + π2

i · (1− πi)
2 ] · φi(k) · φi(j) (D.564)

=
2

N
·
N∑
i=1

[
πi · (1− πi) · (1− 2πi) · (πi − π∗i ) (D.565)

+ π2
i · (1− πi)

2 ] · φi(k) · φi(j). (D.566)
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To calculate the smoothness coefficient, take a vector z ∈ Rd. We have,

∣∣z>S(θ)z
∣∣ =

∣∣∣∣∣
d∑
j=1

d∑
k=1

S(j,k) · z(j) · z(k)

∣∣∣∣∣ (D.567)

=

∣∣∣∣ 2

N
·
N∑
i=1

[
πi · (1− πi) · (1− 2πi) · (πi − π∗i ) (D.568)

+ π2
i · (1− πi)

2 ] · (φ>i z)2

∣∣∣∣ (by Eq. (D.560)) (D.569)

≤ 2

N
·max

i

(
φ>i z

)2
(D.570)

·
N∑
i=1

∣∣πi · (1− πi) · (1− 2πi) · (πi − π∗i ) + π2
i · (1− πi)

2
∣∣ (D.571)

(by Hölder’s inequality) (D.572)

≤ 2

N
·max

i

(
φ>i z

)2
(D.573)

·
N∑
i=1

[
πi · (1− πi) · |1− 2πi| · |πi − π∗i |+ π2

i · (1− πi)
2] (D.574)

(by triangle inequality) (D.575)

≤ 2

N
·max

i

(
φ>i z

)2 ·
N∑
i=1

[
1

8
+

1

16

]
(D.576)

(x · (1− x) ≤ 1/4, and x · (1− x) · |1− 2x| ≤ 1/8, ∀x ∈ [0, 1])
(D.577)

=
3

8
·max

i

[
φ>i

(
z

‖z‖2

)]2

· ‖z‖2
2 (D.578)

≤ 3

8
·max

i
‖φi‖2

2 · ‖z‖
2
2 . (D.579)

Therefore, L(θ) satisfies β (uniform) smoothness with β = 3
8
·maxi ‖φi‖2

2. Next,

we calculate the NS. We have,

N∑
i=1

π2
i · (1− πi)2 · L(θ) =

N∑
i=1

π2
i · (1− πi)2 · 1

N
·
N∑
j=1

(πj − π∗j )2 (D.580)

≤ N

16
· 1

N
·
N∑
j=1

(πj − π∗j )2 (D.581)

≤ N

16
· 1

64 · u(θ)2 ·min {u(θ)2, v2} · λφ
·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥2

2

, (D.582)

(by Lemma 27) (D.583)
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which implies,

N∑
i=1

π2
i · (1− πi)2 (D.584)

≤ N

2
· 1

512 · u(θ)2 ·min {u(θ)2, v2} · λφ
·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥2

2

/
L(θ). (D.585)

According to Eq. (D.538), we have

N∑
i=1

(πi − π∗i )2√
L(θ) · ‖θ − θ∗ − c · vφ,⊥‖3/2

2

(D.586)

≥
N∑
i=1

(πi − π∗i )2√
L(θ)

· (min{u(θ)2, v2} · λφ)3/4 · 1

L(θ)3/4
(D.587)

= (min{u(θ)2, v2} · λφ)3/4 ·
N∑
i=1

(πi − π∗i )2

L(θ)5/4
(D.588)

= N · (min{u(θ)2, v2} · λφ)3/4 · L(θ)

L(θ)5/4
(D.589)

≥ N · (min{u(θ), v} ·
√
λφ)3/2. (L(θ) ∈ (0, 1]) (D.590)
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Therefore we have,

N∑
i=1

πi · (1− πi) · |1− 2πi| · |πi − π∗i | (D.591)

≤
N∑
i=1

πi · (1− πi) · |πi − π∗i | (D.592)

≤

(
N∑
i=1

πi · (1− πi) · |πi − π∗i |

)
(D.593)

·

(
N∑
i=1

(πi − π∗i )2√
L(θ) · ‖θ − θ∗ − c · vφ,⊥‖3/2

2

)
(D.594)

· 1

N · (min{u(θ), v} ·
√
λφ)3/2

(D.595)

=
1

N · (min{u(θ), v} ·
√
λφ)3/2

·

(
N∑
i=1

πi · (1− πi) · |πi − π∗i |√
‖θ − θ∗ − c · vφ,⊥‖2

)
(D.596)

·

(
N∑
i=1

(πi − π∗i )2√
L(θ) · ‖θ − θ∗ − c · vφ,⊥‖2

)
(D.597)

≤ 1

(min{u(θ), v} ·
√
λφ)3/2

·
( N∑

i=1

π2
i · (1− πi)2 · (πi − π∗i )2

2 · ‖θ − θ∗ − c · vφ,⊥‖2

(D.598)

+
(πi − π∗i )4

2 · L(θ) · ‖θ − θ∗ − c · vφ,⊥‖2
2

)
(D.599)

≤ 1

(min{u(θ), v} ·
√
λφ)3/2

(D.600)

·

(
1

32
·
N∑
i=1

πi · (1− πi) · (πi − π∗i ) · (φ>i θ − φ>i θ∗)
‖θ − θ∗ − c · vφ,⊥‖2

)
(D.601)

+
1

(min{u(θ), v} ·
√
λφ)3/2

(D.602)

·
(

1

32 · u(θ)2
·
N∑
i=1

π2
i · (1− πi)2 · (πi − π∗i )2 · (φ>i θ − φ>i θ∗)2

L(θ) · ‖θ − θ∗ − c · vφ,⊥‖2

)
(D.603)

≤ N

64 · (min{u(θ), v} ·
√
λφ)3/2

·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

(D.604)

+
N

64 · u(θ)2 · (min{u(θ), v} ·
√
λφ)3/2

·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥2

2

/
L(θ), (D.605)
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where the third inequality is according to,(
N∑
i=1

ai

)
·

(
N∑
i=1

bi

)
=

N∑
i=1

N∑
j=1

ai · bj (D.606)

≤ 1

2
·
N∑
i=1

N∑
j=1

(
a2
i + b2

j

)
=
N

2
·
N∑
i=1

(
a2
i + b2

i

)
, (D.607)

and the last inequality is from the intermediate results in Eq. (D.524). Com-

bining Eqs. (D.567), (D.584) and (D.591), we have∣∣z>S(θ)z
∣∣ ≤ 2

N
·max

i

(
φ>i z

)2
(D.608)

·

[
N∑
i=1

πi · (1− πi) · |πi − π∗i |+
N∑
i=1

π2
i · (1− πi)2

]
(D.609)

≤ max
i

(
φ>i z

)2
(D.610)

·
(

1

32 · (min{u(θ), v} ·
√
λφ)3/2

·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

(D.611)

+
17

512 · u(θ)2 ·min {u(θ)2, v2} · λφ
·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥2

2

/
L(θ)

)
(D.612)

≤ max
i
‖φi‖2

2 · ‖z‖
2
2 (D.613)

·
(

1

32 · (min{u(θ), v} ·
√
λφ)3/2

·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

(D.614)

+
17

512 · u(θ)2 ·min {u(θ)2, v2} · λφ
·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥2

2

/
L(θ)

)
. (D.615)

Therefore, L(θ) satisfies β(θ) NS with

β(θ) = L1 ·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

+ L0 ·

(∥∥∥∥∂L(θ)

∂θ

∥∥∥∥2

2

/
L(θ)

)
, (D.616)

where

L1 =
maxi ‖φi‖2

2

32 · (min{u(θ), v} ·
√
λφ)3/2

, and (D.617)

L0 =
17 ·maxi ‖φi‖2

2

512 · u(θ)2 ·min {u(θ)2, v2} · λφ
.

Theorem 20. With η = 1/β, GD update satisfies for all t ≥ 1,

L(θt) ≤ L(θ1) · e−C2·(t−1). (D.618)
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With η ∈ Θ(1), GNGD update satisfies for all t ≥ 1,

L(θt) ≤ L(θ1) · e−C·(t−1), (D.619)

where C ∈ (0, 1), i.e., GNGD is strictly faster than GD.

Proof. Combining Lemmas 27 and 28, and the second part of (2b) in Theo-

rem 16, we have the results for GD. Using the fourth part of (2b) in Theo-

rem 16, we have the results for GNGD.

D.4 Miscellaneous Extra Supporting Results

Lemma 52 (Descent lemma for NS function). Let f : Rd → R be a function

that satisfies NS with β(θ) > 0, for all θ ∈ Rd and θ′ = θ − 1
β(θ)
· ∂f(θ)

∂θ
. We

have,

f(θ′) ≤ f(θ)− 1

2 · β(θ)
·
∥∥∥∥∂f(θ)

∂θ

∥∥∥∥2

2

. (D.620)

Proof. According to Definition 6, we have,

f(θ′)− f(θ) ≤
〈∂f(θ)

∂θ
, θ′ − θ

〉
+
β(θ)

2
· ‖θ′ − θ‖2

2 (D.621)

= − 1

β(θ)
·
∥∥∥∥∂f(θ)

∂θ

∥∥∥∥2

2

+
1

2 · β(θ)
·
∥∥∥∥∂f(θ)

∂θ

∥∥∥∥2

2

(D.622)(
θ′ = θ − 1

β(θ)
· ∂f(θ)

∂θ

)
(D.623)

= − 1

2 · β(θ)
·
∥∥∥∥∂f(θ)

∂θ

∥∥∥∥2

2

.

Lemma 53. Given any α > 0, we have, for all x ∈ [0, 1],

1

α
· (1− xα) ≥ xα · (1− x) . (D.624)

Proof. Define f : x 7→ 1
α
· (1 − xα) − xα · (1− x). We show that f(x) ≥ 0 for

all x ∈ [0, 1]. Note that,

f(0) =
1

α
> 0, and f(1) = 0. (D.625)
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On the other hand,

f ′(x) = −xα−1 − α · xα−1 · (1− x) + xα (D.626)

= −xα−1 · [1 + α · (1− x)− x] (D.627)

= −xα−1 · (1 + α) · (1− x) (D.628)

≤ 0, (α > 0, and x ∈ [0, 1]) (D.629)

which means f is monotonically decreasing over [0, 1]. Therefore f(x) ≥ 0 for

all x ∈ [0, 1], finishing the proof.

Lemma 54. Given any α > 0, we have, for all x ∈
[

2α+1
2α+2

, 1
]
,

1

2α
· (1− xα) ≤ xα · (1− x) . (D.630)

Proof. Define g : x 7→ xα · (1− x)− 1
2α
· (1− xα). The derivative of g is,

g′(x) = α · xα−1 · (1− x)− xα + (1/2) · xα−1 (D.631)

= xα−1 · [α · (1− x)− x+ 1/2] (D.632)

= xα−1 · [(1 + α) · (1− x)− 1/2] . (D.633)

Then we have,

g′(x) > 0 for all x ∈ [0, (2α + 1)/(2α + 2)) , and (D.634)

g′(x) ≤ 0 for all x ∈ [(2α + 1)/(2α + 2), 1] , (D.635)

which means g is monotonically increasing over [0, (2α + 1)/(2α + 2)) and de-
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creasing over [(2α + 1)/(2α + 2), 1]. On the other hand,

g((2α + 1)/(2α + 2)) (D.636)

=

(
2α + 1

2α + 2

)α
·
(

1− 2α + 1

2α + 2

)
− 1

2α
·
[
1−

(
2α + 1

2α + 2

)α]
(D.637)

=
1

2α
·
[(

2α + 1

2α + 2

)α
· 2α + 1

α + 1
− 1

]
(D.638)

=
1

2α
·
[
exp

{
log

(
2α + 1

α + 1

)
− α · log

(
1 +

1

2α + 1

)}
− 1

]
(D.639)

≥ 1

2α
·
[
exp

{
log

(
2α + 1

α + 1

)
− α

2α + 1

}
− 1

]
(1 + x ≤ ex) (D.640)

≥ 1

2α
·
[
exp

{
α

2α + 1
− α

2α + 1

}
− 1

]
(D.641)

(log(x) ≥ 1− 1/x for x > 0) (D.642)

= 0. (D.643)

Also note that g(1) = 0. Therefore we have, for all x ∈ [(2α + 1)/(2α + 2), 1],

g(x) ≥ 0, finishing the proof.

Lemma 55. Softmax policy gradient norm is

∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

=
1

1− γ
·

[∑
s

dπθµ (s)2 · ‖H(πθ(·|s))Qπθ(s, ·)‖2
2

] 1
2

. (D.644)

Proof. We have,

∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

=

[∑
s,a

(
∂V πθ(µ)

∂θ(s, a)

)2
] 1

2

(D.645)

=

[∑
s

∥∥∥∥∂V πθ(µ)

∂θ(s, ·)

∥∥∥∥2

2

] 1
2

(D.646)

=
1

1− γ
·

[∑
s

dπθµ (s)2 · ‖H(πθ(·|s))Qπθ(s, ·)‖2
2

] 1
2

. (D.647)

(by Lemma 1)
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Appendix E

Proofs for Chapter 5:
Understanding Stochasticity in
Policy Optimization

E.1 Proofs for Section 5.2: Algorithm Prefer-

ability

Lemma 29 (Natural N L inequality, continuous). Let r ∈ (0, 1)K . Denote

∆(a) := r(a∗) − r(a), and ∆ := r(a∗) − maxa6=a∗ r(a) as the reward gap of r.

We have, for any policy πθ := softmax(θ),〈dπ>θ r
dθ

, r
〉
≥ πθ(a

∗) ·∆ · (π∗ − πθ)> r. (E.1)
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Proof. Without loss of generality, let r(1) > r(2) > · · · > r(K). We have,〈dπ>θ r
dθ

, r
〉

= r>
(
diag(πθ)− πθπ>θ

)
r (E.2)

=
K∑
i=1

πθ(i) · r(i)2 −

[
K∑
i=1

πθ(i) · r(i)

]2

(E.3)

=
K∑
i=1

πθ(i) · r(i)2 −
K∑
i=1

πθ(i)
2 · r(i)2 (E.4)

− 2 ·
K−1∑
i=1

πθ(i) · r(i) ·
K∑

j=i+1

πθ(j) · r(j) (E.5)

=
K∑
i=1

πθ(i) · r(i)2 · [1− πθ(i)] (E.6)

− 2 ·
K−1∑
i=1

πθ(i) · r(i) ·
K∑

j=i+1

πθ(j) · r(j) (E.7)

=
K∑
i=1

πθ(i) · r(i)2 ·
∑
j 6=i

πθ(j) (E.8)

− 2 ·
K−1∑
i=1

πθ(i) · r(i) ·
K∑

j=i+1

πθ(j) · r(j) (E.9)

=
K−1∑
i=1

πθ(i) ·
K∑

j=i+1

πθ(j) ·
[
r(i)2 + r(j)2

]
(E.10)

− 2 ·
K−1∑
i=1

πθ(i) · r(i) ·
K∑

j=i+1

πθ(j) · r(j) (E.11)

=
K−1∑
i=1

πθ(i) ·
K∑

j=i+1

πθ(j) · [r(i)− r(j)]2, (E.12)

which can be lower bounded as,〈dπ>θ r
dθ

, r
〉
≥ πθ(1) ·

K∑
j=2

πθ(j) · [r(1)− r(j)]2 (fewer terms) (E.13)

= πθ(a
∗) ·

∑
a6=a∗

πθ(a) ·∆(a)2 (a∗ = 1) (E.14)

≥ πθ(a
∗) ·∆ ·

∑
a6=a∗

πθ(a) ·∆(a) (∆(a) ≥ ∆) (E.15)

= πθ(a
∗) ·∆ · (π∗ − πθ)> r.

Remark 22. The natural N L inequality of Lemma 29 is tight. Consider K =
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2, we have,

r>
(
diag(πθ)− πθπ>θ

)
r (E.16)

= πθ(1) · r(1)2 + πθ(2) · r(2)2 − [πθ(1) · r(1) + πθ(2) · r(2)]2 (E.17)

= πθ(1) · r(1)2 · [1− πθ(1)] + πθ(2) · r(2)2 · [1− πθ(2)] (E.18)

− 2 · πθ(1) · r(1) · πθ(2) · r(2) (E.19)

= πθ(1) · r(1)2 · πθ(2) + πθ(2) · r(2)2 · πθ(1) (E.20)

− 2 · πθ(1) · r(1) · πθ(2) · r(2) (πθ(1) + πθ(2) = 1) (E.21)

= πθ(1) · πθ(2) · [r(1)− r(2)]2 (E.22)

= πθ(a
∗) ·∆ · (π∗ − πθ)> r, (E.23)(
a∗ = 1, ∆ = r(1)− r(2), (π∗ − πθ)> r = πθ(2) · [r(1)− r(2)]

)
(E.24)

which means the equality holds for the above problem.

Remark 23. For the continuous natural PG flow: dθt
dt

= η · r, and πθt =

softmax(θt), Lemma 29 can be used to characterize the progress at each time

step. We have, for all t ≥ 1,

d (π∗ − πθt)
> r

dt
= −

dπ>θtr

dt
(E.25)

= −
(
dθt
dt

)>(dπ>θtr
dθt

)
(E.26)

= −η · r>
(
diag(πθt)− πθtπ>θt

)
r (NPG flow) (E.27)

≤ −η · πθt(a∗) ·∆ · (π∗ − πθt)
> r, (by Lemma 29) (E.28)

which means the progress at time t is proportional to the sub-optimality gap

(π∗ − πθt)
> r, leading to a linear convergence rate.

Lemma 30 (Natural N L, discrete). Given any policy π, define π′ as

π′(a) :=
π(a) · eη·r(a)∑
a′ π(a′) · eη·r(a′)

, for all a ∈ [K], (E.29)

where η > 0 is the learning rate. We have,

(π′ − π)
>
r ≥

[
1− 1

π(a∗) · (eη·∆ − 1) + 1

]
· (π∗ − π)> r. (E.30)
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Proof. Without loss of generality, let r(1) > r(2) > · · · > r(K). We have,

(π′ − π)
>
r =

K∑
i=1

[π′(i) · r(i)− π(i) · r(i)] (E.31)

=
K∑
i=1

[
π(i) · eη·r(i) · r(i)∑K
j=1 π(j) · eη·r(j)

− π(i) · r(i)

]
(by definition of π′) (E.32)

=
1∑K

j=1 π(j) · eη·r(j)
·
[ K∑
i=1

π(i) · eη·r(i) · r(i) (E.33)

−
K∑
i=1

π(i) · r(i) ·
K∑
j=1

π(j) · eη·r(j)
]
, (E.34)

Next, we have,

K∑
i=1

π(i) · eη·r(i) · r(i)−
K∑
i=1

π(i) · r(i) ·
K∑
j=1

π(j) · eη·r(j) (E.35)

=
K∑
i=1

π(i) · eη·r(i) · r(i)−
K∑
i=1

π(i)2 · eη·r(i) · r(i) (E.36)

−
K∑
i=1

π(i) · r(i) ·
∑
j 6=i

π(j) · eη·r(j) (E.37)

=
K∑
i=1

π(i) · eη·r(i) · r(i) · [1− π(i)] (E.38)

−
K∑
i=1

π(i) · r(i) ·
∑
j 6=i

π(j) · eη·r(j) (E.39)

=
K∑
i=1

π(i) · eη·r(i) · r(i) ·
∑
j 6=i

π(j) (E.40)

−
K∑
i=1

π(i) · r(i) ·
∑
j 6=i

π(j) · eη·r(j) (E.41)

=
K−1∑
i=1

π(i) ·
K∑

j=i+1

π(j) ·
[
eη·r(i) · r(i) + eη·r(j) · r(j)

]
(E.42)

−
K−1∑
i=1

π(i) ·
K∑

j=i+1

π(j) ·
[
eη·r(j) · r(i) + eη·r(i) · r(j)

]
(E.43)

=
K−1∑
i=1

π(i) ·
K∑

j=i+1

π(j) ·
[
eη·r(i) − eη·r(j)

]
· [r(i)− r(j)], (E.44)
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which can be lower bounded as,

K∑
i=1

π(i) · eη·r(i) · r(i)−
K∑
i=1

π(i) · r(i) ·
K∑
j=1

π(j) · eη·r(j) (E.45)

≥ π(1) ·
K∑
j=2

π(j) ·
[
eη·r(1) − eη·r(j)

]
· [r(1)− r(j)] (E.46)

(fewer terms) (E.47)

≥ π(1) ·
K∑
j=2

π(j) ·
[
eη·r(1) − eη·r(2)

]
· [r(1)− r(j)] (E.48)

(r(j) ≤ r(2), for all j ≥ 2) (E.49)

= π(1) · eη·r(2) ·
(
eη·∆ − 1

)
·
∑
a6=a∗

π(a) ·∆(a) (E.50)

(∆ = r(1)− r(2)) (E.51)

= π(1) · eη·r(2) ·
(
eη·∆ − 1

)
· (π∗ − π)> r. (E.52)

Combining Eqs. (E.31) and (E.35), we have,

(π′ − π)
>
r ≥

π(1) · eη·r(2) ·
(
eη·∆ − 1

)
π(1) · eη·r(1) +

∑K
j=2 π(j) · eη·r(j)

· (π∗ − π)> r (E.53)

=
π(1) ·

(
eη·∆ − 1

)
π(1) · eη·∆ +

∑K
j=2 π(j) · eη·[r(j)−r(2)]

· (π∗ − π)> r (E.54)

≥
π(1) ·

(
eη·∆ − 1

)
π(1) · eη·∆ +

∑K
j=2 π(j)

· (π∗ − π)> r (E.55)

(r(j)− r(2) ≤ 0, for all j ≥ 2) (E.56)

=
π(1) ·

(
eη·∆ − 1

)
π(1) · eη·∆ + 1− π(1)

· (π∗ − π)> r (E.57)

=

[
1− 1

π(a∗) · (eη·∆ − 1) + 1

]
· (π∗ − π)> r. (a∗ = 1)

Remark 24. The natural N L inequality of Lemma 30 is tight. Consider K =
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2, we have,

(π′ − π)
>
r (E.58)

=
π(1) · eη·r(1) · r(1) + π(2) · eη·r(2) · r(2)

π(1) · eη·r(1) + π(2) · eη·r(2)
(E.59)

− [π(1) · r(1) + π(2) · r(2)] (E.60)

=
π(1) · π(2) · [r(1)− r(2)] ·

[
eη·r(1) − eη·r(2)

]
π(1) · eη·r(1) + π(2) · eη·r(2)

(E.61)

=
π(1) ·

(
eη·[r(1)−r(2)] − 1

)
π(1) · eη·[r(1)−r(2)] + π(2)

· π(2) · [r(1)− r(2)] (E.62)

=
π(a∗) ·

(
eη·∆ − 1

)
π(a∗) · eη·∆ + 1− π(a∗)

· (π∗ − π)> r, (E.63)

(a∗ = 1, ∆ = r(1)− r(2)) (E.64)

which means the equality holds for the above problem.

Theorem 21. Using Update 4 with any η > 0, i.e., ∀t ≥ 1,

θt+1 ← θt + η · r, and πθt+1 = softmax(θt+1), (E.65)

where η > 0 is the learning rate. We have, for all t ≥ 1,

(π∗ − πθt)
> r ≤ (π∗ − πθ1)> r · e−c·(t−1), (E.66)

where c := log
(
πθ1(a∗) ·

(
eη·∆ − 1

)
+ 1
)
> 0 for any η > 0, and ∆ = r(a∗) −

maxa6=a∗ r(a) > 0.

Proof. We have, for all t ≥ 1,

(
π∗ − πθt+1

)>
r = (π∗ − πθt)

> r −
(
πθt+1 − πθt

)>
r (E.67)

≤ 1

πθt(a
∗) · (eη·∆ − 1) + 1

· (π∗ − πθt)
> r (by Lemma 30) (E.68)

≤ 1

πθ1(a∗) · (eη·∆ − 1) + 1
· (π∗ − πθt)

> r (see below) (E.69)

≤ 1

[πθ1(a∗) · (eη·∆ − 1) + 1]t
· (π∗ − πθ1)> r (E.70)

=
(π∗ − πθ1)> r

ec·t
, (E.71)
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where the second inequality is because of for all t ≥ 1,

πθt+1(a∗) =
πθt(a

∗) · eη·r(a∗)∑
a πθt(a) · eη·r(a)

(E.72)

=
πθt(a

∗)∑
a πθt(a) · e−η·∆(a)

(E.73)

≥ πθt(a
∗). (∆(a) ≥ 0)

Lemma 31. Let r̂ be the IS estimator using on-policy sampling a ∼ πθ(·).

The stochastic softmax PG estimator is unbiased and bounded, i.e.,

E
a∼πθ(·)

[
dπ>θ r̂

dθ

]
=
dπ>θ r

dθ
, and (E.74)

E
a∼πθ(·)

∥∥∥∥dπ>θ r̂dθ

∥∥∥∥2

2

≤ K

2
. (E.75)

Proof. First part. Ea∼πθ(·)

[
dπ>θ r̂

dθ

]
=

dπ>θ r

dθ
.

We have, for all i ∈ [K], the true softmax PG is,

dπ>θ r

dθ(i)
= πθ(i) ·

(
r(i)− π>θ

)
. (E.76)

On the other hand, we have, for all i ∈ [K],

dπ>θ r̂

dθ(i)
= πθ(i) ·

(
r̂(i)− π>θ r̂

)
(E.77)

= πθ(i) ·

(
I {a = i}
πθ(i)

· r(i)−
∑
j

I {a = j} · r(j)

)
(E.78)

(by Definition 10) (E.79)

= I {a = i} · r(i)− πθ(i) · r(a). (E.80)

The expectation of stochastic softmax PG is,

E
a∼πθ(·)

[
dπ>θ r̂

dθ(i)

]
=
∑
a∈[K]

πθ(a) · (I {a = i} · r(i)− πθ(i) · r(a)) (E.81)

= πθ(i) · r(i)− πθ(i) · π>θ r (E.82)

=
dπ>θ r

dθ(i)
. (E.83)

Second part. Ea∼πθ(·)

∥∥∥dπ>θ r̂dθ

∥∥∥2

2
≤ K

2
.
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The squared stochastic PG norm is,∥∥∥∥dπ>θ r̂dθ

∥∥∥∥2

2

=
K∑
i=1

(
dπ>θ r̂

dθ(i)

)2

=
K∑
i=1

πθ(i)
2 ·
(
r̂(i)− π>θ r̂

)2
(E.84)

=
K∑
i=1

πθ(i)
2 ·

[
(I {a = i})2

πθ(i)2
· r(i)2 (E.85)

− 2 · I {a = i}
πθ(i)

· r(i) ·
K∑
j=1

I {a = j} · r(j) (E.86)

+

( K∑
j=1

I {a = j} · r(j)
)2
]

(E.87)

=
K∑
i=1

[
I {a = i} · r(i)2 (E.88)

− 2 ·
( K∑

i=1

πθ(i) · I {a = i} · r(i)
)
·
( K∑

j=1

I {a = j} · r(j)
)

(E.89)

+

( K∑
i=1

I {a = i} · r(i)
)
·
( K∑

j=1

I {a = j} · r(j)
)]

. (E.90)

The expected squared stochastic PG norm is,

E
a∼πθ(·)

∥∥∥∥dπ>θ r̂dθ

∥∥∥∥2

2

=
∑
a∈[K]

πθ(a) · r(a)2 (E.91)

− 2 ·
∑
a∈[K]

πθ(a)2 · r(a)2 +
∑
a∈[K]

πθ(a) · r(a)2 (E.92)

= 2 · r> (diag(πθ)− diag(πθ � πθ)) r (E.93)

= 2 ·
∑
a∈[K]

πθ(a) · (1− πθ(a)) · r(a)2 (E.94)

≤ 2

4
·
K∑
i=1

r(i)2 (x · (1− x) ≤ 1/4, for all x ∈ [0, 1]) (E.95)

≤ K

2
.

(
r ∈ (0, 1]K

)
Lemma 56 (Non-uniform Smoothness (NS) between two iterations). Let θ′ =

θ + η · dπ
>
θ r

dθ
. We have, for η = 1

3·K ·
∥∥∥dπ>θ rdθ

∥∥∥
2
,∣∣∣∣(πθ′ − πθ)>r − 〈dπ>θ rdθ

, θ′ − θ
〉∣∣∣∣ ≤ 3 ·

∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

· ‖θ′ − θ‖2
2. (E.96)
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Proof. Denote θζ := θ+ ζ · (θ′− θ) with some ζ ∈ [0, 1]. According to Taylor’s

theorem, ∀θ, θ′,∣∣∣∣(πθ′ − πθ)>r − 〈dπ>θ rdθ
, θ′ − θ

〉∣∣∣∣ =
1

2
·

∣∣∣∣∣(θ′ − θ)> d
2π>θζr

dθζ
2 (θ′ − θ)

∣∣∣∣∣ (E.97)

=
3

2
·
∥∥∥∥dπ>θζrdθζ

∥∥∥∥
2

· ‖θ′ − θ‖2
2. (by Lemma 21) (E.98)

Denote ζ1 := ζ. Also denote θζ2 := θ + ζ2 · (θζ1 − θ) with some ζ2 ∈ [0, 1]. We

have,∥∥∥∥∥dπ
>
θζ1
r

dθζ1
− dπ>θ r

dθ

∥∥∥∥∥
2

=

∥∥∥∥∥
∫ 1

0

〈d2{π>θζ2r}
dθ2

ζ2

, θζ1 − θ
〉
dζ2

∥∥∥∥∥
2

(E.99)

≤
∫ 1

0

∥∥∥∥∥d
2{π>θζ2r}
dθ2

ζ2

∥∥∥∥∥
2

· ‖θζ1 − θ‖2 dζ2 (E.100)

≤
∫ 1

0

3 ·

∥∥∥∥∥dπ
>
θζ2
r

dθζ2

∥∥∥∥∥
2

· ζ1 · ‖θ′ − θ‖2 dζ2 (by Lemma 21) (E.101)

≤
∫ 1

0

3 ·

∥∥∥∥∥dπ
>
θζ2
r

dθζ2

∥∥∥∥∥
2

· η ·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

dζ2, (E.102)(
ζ1 ∈ [0, 1], using θ′ = θ + η · dπ

>
θ r

dθ

)
(E.103)

where the second inequality is because of the Hessian is symmetric, and its

operator norm is equal to its spectral radius. Therefore we have,∥∥∥∥∥dπ
>
θζ1
r

dθζ1

∥∥∥∥∥
2

≤
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

+

∥∥∥∥∥dπ
>
θζ1
r

dθζ1
− dπ>θ r

dθ

∥∥∥∥∥
2

(E.104)

(by triangle inequality) (E.105)

≤
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

+ 3η ·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

·
∫ 1

0

∥∥∥∥∥dπ
>
θζ2
r

dθζ2

∥∥∥∥∥
2

dζ2. (E.106)

(by Eq. (E.99)) (E.107)

Denote θζ3 := θ + ζ3 · (θζ2 − θ) with ζ3 ∈ [0, 1]. Using similar calculation in

Eq. (E.99), we have,∥∥∥∥∥dπ
>
θζ2
r

dθζ2

∥∥∥∥∥
2

≤
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

+

∥∥∥∥∥dπ
>
θζ2
r

dθζ2
− dπ>θ r

dθ

∥∥∥∥∥
2

(E.108)

≤
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

+ 3η ·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

·
∫ 1

0

∥∥∥∥∥dπ
>
θζ3
r

dθζ3

∥∥∥∥∥
2

dζ3. (E.109)
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Combining Eqs. (E.104) and (E.108), we have,∥∥∥∥∥dπ
>
θζ1
r

dθζ1

∥∥∥∥∥
2

≤
(

1 + 3η ·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

)
·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

(E.110)

+

(
3η ·

∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

)2

·
∫ 1

0

∫ 1

0

∥∥∥∥∥dπ
>
θζ3
r

dθζ3

∥∥∥∥∥
2

dζ3dζ2, (E.111)

which implies,∥∥∥∥∥dπ
>
θζ1
r

dθζ1

∥∥∥∥∥
2

≤
∞∑
i=0

(
3η ·

∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

)i
·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

(E.112)

=
1

1− 3η ·
∥∥∥dπ>θ rdθ

∥∥∥
2

·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

(E.113)

(
3η ·

∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

∈ (0, 1), see below

)
(E.114)

=
1

1− 1
K
·
∥∥∥dπ>θ rdθ

∥∥∥2

2

·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

(E.115)

(
η =

1

3 ·K
·
∥∥∥dπ>θ r
dθ

∥∥∥
2

)
(E.116)

≤ 1

1− 1
2
·
∥∥∥dπ>θ rdθ

∥∥∥2

2

·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

(K ≥ 2) (E.117)

≤ 2 ·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

, (E.118)

where the first equation and the last inequality are from,∥∥∥∥dπ>θ rdθ

∥∥∥∥2

2

=
∑
a∈[K]

πθ(a)2 · (r(a)− π>θ r)2 (E.119)

≤
∑
a∈[K]

πθ(a)2
(
r ∈ (0, 1]K

)
(E.120)

≤ 1. (‖x‖2 ≤ ‖x‖1) (E.121)

Combining Eqs. (E.97) and (E.112) finishes the proof.

Theorem 22. Using Update 6, (π∗ − πθt)
> r → 0 as t→∞ with probability

1.

Proof. See (Chung et al., 2020, Proposition 4). We include a proof for com-

pleteness.
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Denote δ(θt) := (π∗− πθt)>r. Let η = 1
3·K ·

∥∥∥dπ>θtrdθt

∥∥∥
2

for all t ≥ 1. We have,

for all t ≥ 1,

δ(θt+1)− δ(θt) (E.122)

= −π>θt+1
r + π>θtr +

〈dπ>θtr
dθt

, θt+1 − θt
〉
−
〈dπ>θtr
dθt

, θt+1 − θt
〉

(E.123)

≤ 3 ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

· ‖θt+1 − θt‖2
2 −

〈dπ>θtr
dθt

, θt+1 − θt
〉

(E.124)

(by Lemma 56) (E.125)

= 3 · η2 ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

·
∥∥∥∥dπ>θt r̂tdθt

∥∥∥∥2

2

− η ·
〈dπ>θtr
dθt

,
dπ>θt r̂t

dθt

〉
. (E.126)

(using Update 6) (E.127)

Next, taking expectation over the random sampling on Eq. (E.122), we have,

E [δ(θt+1)]− E [δ(θt)] (E.128)

= 3 · η2 ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

· E

[∥∥∥∥dπ>θt r̂tdθt

∥∥∥∥2

2

]
− η ·

〈dπ>θtr
dθt

,E
[
dπ>θt r̂t

dθt

]〉
(E.129)

= 3 · η2 ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

· E

[∥∥∥∥dπ>θt r̂tdθt

∥∥∥∥2

2

]
− η ·

∥∥∥∥dπ>θtrdθt

∥∥∥∥2

2

(E.130)

(unbiased PG, by Lemma 31) (E.131)

≤ 3 ·K
2
· η2 ·

∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

− η ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥2

2

, (by Lemma 31) (E.132)

= − 1

6 ·K
·
∥∥∥∥dπ>θtrdθt

∥∥∥∥3

2

(
using η =

1

3 ·K
·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

)
(E.133)

≤ − 1

6 ·K
· E
[
πθt(a

∗)3
]
· E
[
δ(θt)

3
]

(by Lemma 3) (E.134)

≤ − c

6 ·K
· (E [δ(θt)])

3 , (by Jensen’s inequality) (E.135)

where

c := inf
t≥1

E
[
πθt(a

∗)3
]

(E.136)

≥ inf
t≥1

(E [πθt(a
∗)])3 , (by Jensen’s inequality) (E.137)

> 0, (E.138)

and the last inequality is from Lemma 5, since the expected iteration equals

the true gradient update, which converges to global optimal policy. Denote
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δ̃(θt) := E [δ(θt)]. We have, for all t ≥ 1,

1

δ̃(θt)2
=

1

δ̃(θ1)2
+

t−1∑
s=1

[
1

δ̃(θs+1)2
− 1

δ̃(θs)2

]
(E.139)

=
1

δ̃(θ1)2
+

t−1∑
s=1

1

δ̃(θs+1)2
·

[
1− δ̃(θs+1)2

δ̃(θs)2

]
(E.140)

≥ 1

δ̃(θ1)2
+

t−1∑
s=1

2
XXXXXδ̃(θs+1)2 ·

XXXXXδ̃(θs+1)2

δ̃(θs)2
·

[
1− δ̃(θs+1)

δ̃(θs)

]
(E.141)(

1− x2 ≥ 2 · x2 · (1− x) for all x ∈ (0, 1]
)

(E.142)

=
1

δ̃(θ1)2
+ 2 ·

t−1∑
s=1

1

δ̃(θs)3
·
(
δ̃(θs)− δ̃(θs+1)

)
(E.143)

≥ 1

δ̃(θ1)2
+ 2 ·

t−1∑
s=1

1
H
HHHδ̃(θs)

3
· c

6 ·K
·HHHHδ̃(θs)

3 (by Eq. (E.128)) (E.144)

=
1

δ̃(θ1)2
+

c

3 ·K
· (t− 1) (E.145)

≥ c · t
3 ·K

,

(
δ̃(θ1)2 ≤ 1 <

3 ·K
c

)
(E.146)

which implies that,

E
at∼πθt (·)

[
(π∗ − πθt)>r

]
≤
√

3 ·K√
c
· 1√

t
, (E.147)

where c is from Eq. (E.136). This implies (π∗ − πθt)
> r → 0 as t → ∞ with

probability 1.

Lemma 32. For NPG, we have, Ea∼πθ(·) [r̂] = r, and Ea∼πθ(·) ‖r̂‖2
2 =

∑
a∈[K]

r(a)2

πθ(a)
.

Proof. First part. Ea∼πθ(·) [r̂] = r.

We have, for all i ∈ [K],

E
a∼πθ(·)

[r̂(i)] =
∑
a∈[K]

πθ(a) · I {a = i}
πθ(i)

· r(i) = r(i). (E.148)

Second part. Ea∼πθ(·) ‖r̂‖2
2 =

∑
a∈[K]

r(a)2

πθ(a)
.

The squared `2 norm of natural policy gradient is,

‖r̂‖2
2 =

∑
i

r̂(i)2 =
∑
i

(I {a = i})2

πθ(i)2
· r(i)2 (E.149)

=
∑
i

I {a = i}
πθ(i)2

· r(i)2. (E.150)
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The expected squared norm is,

E
a∼πθ(·)

‖r̂‖2
2 =

∑
a∈[K]

πθ(a) ·
∑
i

I {a = i}
πθ(i)2

· r(i)2 (E.151)

=
∑
a∈[K]

πθ(a) · 1

πθ(a)2
· r(a)2 (E.152)

=
∑
a∈[K]

r(a)2

πθ(a)
.

Theorem 23. Using Update 7, we have: (i) with positive probability, as

t→∞,
∑

a6=a∗ πθt(a)→ 1; (ii) ∀a ∈ [K], with positive probability, πθt(a)→ 1,

as t→∞.

Proof. First part. With positive probability,
∑

a6=a∗ πθt(a)→ 1 as t→∞.

We show that
∏∞

t=1

(∑
a6=a∗ πθt(a)

)
> 0, which implies

∑
a6=a∗ πθt(a) → 1

as t → ∞ with positive probability. The meaning of
∏∞

t=1

(∑
a6=a∗ πθt(a)

)
is “the probability of sampling sub-optimal actions forever using on-policy

sampling at ∼ πθt(·)”. Note that,

∞∏
t=1

(∑
a6=a∗

πθt(a)

)
= lim

T→∞

T∏
t=1

(∑
a6=a∗

πθt(a)

)
(E.153)

= lim
T→∞

Pr (a1 6= a∗, a2 6= a∗, · · · , aT 6= a∗ | at ∼ πθt(·), ∀t ≥ 1) (E.154)

= lim
T→∞

T∏
t=1

Pr (at 6= a∗ | a1 6= a∗, a2 6= a∗, · · · , at−1 6= a∗). (E.155)

(by chain rule) (E.156)

Next, we calculate Pr (at 6= a∗ | a1 6= a∗, a2 6= a∗, · · · , at−1 6= a∗), i.e., the sum

of probabilities of all sub-optimal actions
∑

a6=a∗ πθt(a) at t-th iteration, given

that the optimal action a∗ has not been sampled for the first t− 1 iterations.

Now suppose a1 6= a∗, a2 6= a∗, · · · , at−1 6= a∗. We have, for each sub-optimal
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action a 6= a∗,

θt(a) = θ1(a) + η ·
t−1∑
s=1

r̂s(a) (by Update 7) (E.157)

= θ1(a) + η ·
t−1∑
s=1

I {as = a}
πθs(a)

· r(a) (by Definition 10) (E.158)

≥ θ1(a) + η ·
t−1∑
s=1

I {as = a} · r(a) (πθs(a) ∈ (0, 1), r(a) ∈ (0, 1])

(E.159)

≥ θ1(a) + η · rmin ·
t−1∑
s=1

I {as = a},
(
rmin := min

a6=a∗
r(a)

)
(E.160)

where rmin ∈ (0, 1] according to Assumption 3, i.e., r(a) ∈ (0, 1] for all a ∈ [K].

Then we have,

∑
a6=a∗

exp {θt(a)} ≥ (K − 1) · exp

{∑
a6=a∗ θt(a)

K − 1

}
(E.161)

(by Jensen’s inequality) (E.162)

≥ (K − 1) · exp

{∑
a6=a∗ θ1(a) + η · rmin ·

∑
a6=a∗

∑t−1
s=1 I {as = a}

K − 1

}
(E.163)

(by Eq. (E.157)) (E.164)

= (K − 1) · exp

{∑
a6=a∗ θ1(a) + η · rmin · (t− 1)

K − 1

}
. (E.165)

(a1 6= a∗, a2 6= a∗, · · · , at−1 6= a∗) (E.166)

On the other hand, we have,

θt(a
∗) = θ1(a∗) + η ·

t−1∑
s=1

I {as = a∗}
πθs(a

∗)
· r(a∗) (E.167)

(by Update 7 and Definition 10) (E.168)

= θ1(a∗). (as 6= a∗ for all s ∈ {1, 2, . . . t− 1}) (E.169)
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Next, we have,∑
a6=a∗

πθt(a) = 1− πθt(a∗) (E.170)

= 1− exp {θt(a∗)}∑
a6=a∗ exp {θt(a)}+ exp {θt(a∗)}

(E.171)

≥ 1− exp {θ1(a∗)}

(K − 1) · exp
{∑

a 6=a∗ θ1(a)+η·rmin·(t−1)

K−1

}
+ exp {θ1(a∗)}

. (E.172)

(by Eqs. (E.161) and (E.167)) (E.173)

According to Lemma 58, for all x ∈ (0, 1),

1− x ≥ exp
{ −1

1/x− 1

}
. (E.174)

Let

x =
exp {θ1(a∗)}

(K − 1) · exp
{∑

a 6=a∗ θ1(a)+η·rmin·(t−1)

K−1

}
+ exp {θ1(a∗)}

∈ (0, 1). (E.175)

We have,

∑
a6=a∗

πθt(a) ≥ exp

 −1

(K−1)·exp
{∑

a 6=a∗ θ1(a)+η·rmin·(t−1)

K−1

}
+exp{θ1(a∗)}

exp{θ1(a∗)} − 1

 (E.176)

(by Eqs. (E.170) and (E.174)) (E.177)

= exp

 − exp {θ1(a∗)}

(K − 1) · exp
{∑

a 6=a∗ θ1(a)+η·rmin·(t−1)

K−1

}
 . (E.178)
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Therefore we have,

∞∏
t=1

(∑
a6=a∗

πθt(a)

)
(E.179)

≥
∞∏
t=1

exp

 − exp {θ1(a∗)}

(K − 1) · exp
{∑

a 6=a∗ θ1(a)+η·rmin·(t−1)

K−1

}
 (E.180)

(by Eq. (E.176)) (E.181)

= exp

− exp {θ1(a∗)}

exp
{∑

a 6=a∗ θ1(a)

K−1

} · exp
{
η·rmin

K−1

}
K − 1

·
∞∑
t=1

1

exp
{
η·rmin·t
K−1

}
 (E.182)

≥ exp

− exp {θ1(a∗)}

exp
{∑

a 6=a∗ θ1(a)

K−1

} · exp
{
η·rmin

K−1

}
K − 1

·
∫ ∞
t=0

1

exp
{
η·rmin·t
K−1

}dt

(E.183)

= exp

− exp {θ1(a∗)}

exp
{∑

a 6=a∗ θ1(a)

K−1

} · exp
{
η·rmin

K−1

}
K − 1

· K − 1

η · rmin

 (E.184)

= exp

− exp {θ1(a∗)}

exp
{∑

a 6=a∗ θ1(a)

K−1

} · exp
{
η·rmin

K−1

}
η · rmin

. (E.185)

Note that rmin ∈ Θ(1), exp {θ1(a∗)} ∈ Θ(1), η ∈ Θ(1), exp
{
η·rmin

K−1

}
∈ Θ(1)

and,

exp

{∑
a6=a∗ θ1(a)

K − 1

}
∈ Θ(1). (E.186)

Therefore, we have “the probability of sampling sub-optimal actions forever

using on-policy sampling at ∼ πθt(·)” is lower bounded by a constant of

1
exp{Θ(1)} ∈ Θ(1), which implies that with positive probability Θ(1), we have∑

a6=a∗ πθt(a)→ 1 as t→∞.

Second part. ∀a ∈ [K], with positive probability, πθt(a)→ 1, as t→∞.

For each action a ∈ [K], we show that
∏∞

t=1 πθt(a) > 0, which implies

πθt(a) → 1 as t → ∞. The meaning of
∏∞

t=1 πθt(a) is “the probability of
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sampling action a forever using on-policy sampling at ∼ πθt(·)”. Note that,

∞∏
t=1

πθt(a) = lim
T→∞

T∏
t=1

πθt(a) (E.187)

= lim
T→∞

Pr (a1 = a, a2 = a, · · · , aT = a | at ∼ πθt(·), ∀t ≥ 1) (E.188)

= lim
T→∞

T∏
t=1

Pr (at = a | a1 = a, a2 = a, · · · , at−1 = a). (E.189)

(by chain rule) (E.190)

Next, we calculate Pr (at = a | a1 = a, a2 = a, · · · , at−1 = a), i.e., the proba-

bility of sampling action a at t-th iteration, given that the action a has been

sampled for the first t−1 iterations. Now suppose a1 = a, a2 = a, · · · , at−1 = a.

We have,

θt(a) = θ1(a) + η ·
t−1∑
s=1

r̂s(a) (by Update 7) (E.191)

= θ1(a) + η ·
t−1∑
s=1

I {as = a}
πθs(a)

· r(a) (by Definition 10) (E.192)

= θ1(a) + η ·
t−1∑
s=1

r(a)

πθs(a)
(as = a for all s ∈ {1, 2, . . . t− 1}) (E.193)

≥ θ1(a) + η ·
t−1∑
s=1

r(a) (πθs(a) ∈ (0, 1)) (E.194)

= θ1(a) + η · r(a) · (t− 1) . (E.195)

On the other hand, we have, for any other action a′ 6= a,

θt(a
′) = θ1(a′) + η ·

t−1∑
s=1

I {as = a′}
πθs(a

′)
· r(a′) (E.196)

(by Update 7 and Definition 10) (E.197)

= θ1(a′). (as 6= a′ for all s ∈ {1, 2, . . . t}) (E.198)
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Therefore, we have,

πθt(a) = 1−
∑
a′ 6=a

πθt(a
′) (E.199)

= 1−
∑

a′ 6=a exp{θt(a′)}
exp{θt(a)}+

∑
a′ 6=a exp{θt(a′)}

(E.200)

≥ 1−
∑

a′ 6=a exp{θ1(a′)}
exp{θ1(a) + η · r(a) · (t− 1)}+

∑
a′ 6=a exp{θ1(a′)}

. (E.201)

(by Eqs. (E.191) and (E.196)) (E.202)

Let

x =

∑
a′ 6=a exp{θ1(a′)}

exp{θ1(a) + η · r(a) · (t− 1)}+
∑

a′ 6=a exp{θ1(a′)}
∈ (0, 1). (E.203)

We have,

πθt(a) ≥ 1− x (by Eq. (E.199)) (E.204)

≥ exp

 −1
exp{θ1(a)+η·r(a)·(t−1)}+

∑
a′ 6=a exp{θ1(a′)}∑

a′ 6=a exp{θ1(a′)} − 1

 (E.205)

(by Eq. (E.174)) (E.206)

= exp

{ −
∑

a′ 6=a exp{θ1(a′)}
exp{θ1(a) + η · r(a) · (t− 1)}

}
. (E.207)

Therefore we have,

∞∏
t=1

πθt(a) (E.208)

≥
∞∏
t=1

exp

{ −
∑

a′ 6=a exp{θ1(a′)}
exp{θ1(a) + η · r(a) · (t− 1)}

}
(by Eq. (E.204))

(E.209)

= exp

{
−
∑
a′ 6=a

exp{θ1(a′)} · exp{η · r(a)}
exp{θ1(a)}

·
∞∑
t=1

1

exp{η · r(a) · t}

}
(E.210)

≥ exp

{
−
∑
a′ 6=a

exp{θ1(a′)} · exp{η · r(a)}
exp{θ1(a)}

·
∫ ∞
t=0

1

exp{η · r(a) · t}
dt

}
(E.211)

= exp

{
− exp{η · r(a)}

η · r(a)
·
∑

a′ 6=a exp{θ1(a′)}
exp{θ1(a)}

}
(E.212)

∈ Ω(1), (E.213)
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where the last line is due to r(a) ∈ Θ(1), exp {θ1(a)} ∈ Θ(1) for all a ∈ [K],

and η ∈ Θ(1). With Eq. (E.208), we have “the probability of sampling action

a forever using on-policy sampling at ∼ πθt(·)” is lower bounded by a constant

of Ω(1). Therefore, for all a ∈ [K], with positive probability Ω(1), πθt(a)→ 1,

as t→∞.

Lemma 57. Using on-policy IS estimator of Definition 10, the stochastic

GNPG is biased, i.e.,

E
a∼πθ(·)

[
dπ>θ r̂

dθ

/∥∥∥∥dπ>θ r̂dθ

∥∥∥∥
2

]
6= dπ>θ r

dθ

/∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

. (E.214)

Proof. Consider a two-action example with r(1) > r(2). The true normalized

PG of a∗ = 1 is,

g(1) :=
dπ>θ r

dθ(1)

/∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

(E.215)

=
πθ(1) ·

(
r(1)− π>θ r

)√
πθ(1)2 ·

(
r(1)− π>θ r

)2
+ πθ(2)2 ·

(
r(2)− π>θ r

)2
(E.216)

=
πθ(1) · πθ(2) · (r(1)− r(2))√

πθ(1)2 · πθ(2)2 · (r(1)− r(2))2 + πθ(1)2 · πθ(2)2 · (r(1)− r(2))2

(E.217)

=
1√
2
. (E.218)
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On the other hand, the stochastic normalized PG of a∗ = 1 is,

ĝ(1) := E
a∼πθ(·)

[
dπ>θ r̂

dθ(1)

/∥∥∥∥dπ>θ r̂dθ

∥∥∥∥
2

]
(E.219)

= πθ(1) ·
πθ(1) ·

(
r(1)
πθ(1)
− πθ(1) · r(1)

πθ(1)

)
√
πθ(1)2 ·

(
r(1)
πθ(1)
− πθ(1) · r(1)

πθ(1)

)2

+ πθ(2)2 ·
(

0− πθ(1) · r(1)
πθ(1)

)2

(E.220)

+ πθ(2) ·
πθ(1) ·

(
0− πθ(2) · r(2)

πθ(2)

)
√
πθ(1)2 ·

(
0− πθ(2) · r(2)

πθ(2)

)2

+ πθ(2)2 ·
(
r(2)
πθ(2)
− πθ(2) · r(2)

πθ(2)

)2

(E.221)

= πθ(1) · πθ(2) · r(1)√
πθ(2)2 · r(1)2 + πθ(2)2 · r(1)2

(E.222)

− πθ(2) · πθ(1) · r(2)√
πθ(1)2 · r(2)2 + πθ(1)2 · r(2)2

(E.223)

=
1√
2
· (πθ(1)− πθ(2)) . (E.224)

It is clear that the true normalized PG of a∗ = 1 is always positive g(1) > 0,

while the expectation of the stochastic normalized PG estimator of a∗ = 1 is

negative when πθ(1) < πθ(2).

Theorem 24. Using Update 8, we have, ∀a ∈ [K], with positive probability,

πθt(a)→ 1, as t→∞.

Proof. The proof is similar to the second part of Theorem 23. We first calcu-

late the stochastic normalized PG in each iteration. Denote at as the action

sampled at t-th iteration. We have,

dπ>θt r̂t

dθt(at)
= πθt(at) · (r̂t(at)− π>θt r̂t) (E.225)

= πθt(at) ·
(
r(at)

πθt(at)
− πθt(at) ·

r(at)

πθt(at)

)
(by Definition 10) (E.226)

= (1− πθt(at)) · r(at). (E.227)
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On the other hand, for all a′ 6= at,

dπ>θt r̂t

dθt(a′)
= πθt(a

′) · (r̂s(a′)− π>θt r̂t) (E.228)

= πθt(a
′) ·
(

0− πθt(at) ·
r(at)

πθt(at)

)
(by Definition 10) (E.229)

= −πθt(a′) · r(at). (E.230)

Therefore, the stochastic PG norm is,

∥∥∥∥dπ>θt r̂tdθt

∥∥∥∥
2

=

[(
dπ>θt r̂t

dθt(at)

)2

+
∑
a′ 6=at

(
dπ>θt r̂t

dθt(a′)

)2
] 1

2

(E.231)

=

[
(1− πθt(at))

2 · r(at)2 +
∑
a′ 6=at

πθt(a
′)2 · r(at)2

] 1
2

(E.232)

(by Eqs. (E.225) and (E.228)) (E.233)

≤

[
(1− πθt(at))

2 · r(at)2 +

( ∑
a′ 6=at

πθt(a
′)

)2

· r(at)2

] 1
2

(E.234)

(‖x‖2 ≤ ‖x‖1) (E.235)

=
√

2 · (1− πθt(at)) · r(at). (E.236)

Similar to the second part of Theorem 23, we show that
∏∞

t=1 πθt(a) > 0, which

implies πθt(a)→ 1 as t→∞. The meaning of
∏∞

t=1 πθt(a) is “the probability

of sampling action a forever using on-policy sampling at ∼ πθt(·)”. Note that,

∞∏
t=1

πθt(a) = lim
T→∞

T∏
t=1

πθt(a) (E.237)

= lim
T→∞

Pr (a1 = a, a2 = a, · · · , aT = a | at ∼ πθt(·), ∀t ≥ 1) (E.238)

= lim
T→∞

T∏
t=1

Pr (at = a | a1 = a, a2 = a, · · · , at−1 = a). (E.239)

(by chain rule) (E.240)

Next, we calculate Pr (at = a | a1 = a, a2 = a, · · · , at−1 = a), i.e., the proba-

bility of sampling action a at t-th iteration, given that the action a has been

sampled for the first t−1 iterations. Now suppose a1 = a, a2 = a, · · · , at−1 = a.
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We have,

θt(a) = θ1(a) + η ·
t−1∑
s=1

dπ>θs r̂s

dθs(a)

/∥∥∥∥dπ>θs r̂sdθs

∥∥∥∥
2

(by Update 8) (E.241)

≥ θ1(a) + η ·
t−1∑
s=1

(1− πθs(a)) · r(a)√
2 · (1− πθs(a)) · r(a)

(E.242)

(by Eqs. (E.225) and (E.231)) (E.243)

= θ1(a) +
η√
2
· (t− 1) . (E.244)

On the other hand, for all a′ 6= a, we have,

θt(a
′) = θ1(a′)− η ·

t−1∑
s=1

(πθs(a
′) · r(a))

/∥∥∥∥dπ>θs r̂sdθs

∥∥∥∥
2

(E.245)

(by Update 8 and Eq. (E.228)) (E.246)

≤ θ1(a′). (E.247)

Then we have,

πθt(a) = 1−
∑

a′ 6=a exp{θt(a′)}
exp{θt(a)}+

∑
a′ 6=a exp{θt(a′)}

(E.248)

≥ 1−
∑

a′ 6=a exp{θ1(a′)}
exp

{
θ1(a) + η√

2
· (t− 1)

}
+
∑

a′ 6=a exp{θ1(a′)}
(E.249)

(by Eqs. (E.241) and (E.245)) (E.250)

≥ exp

{ −
∑

a′ 6=a exp{θ1(a′)}
exp

{
θ1(a) + η√

2
· (t− 1)

}}. (by Eq. (E.174)) (E.251)

Using similar calculation to Eq. (E.176), we have,
∞∏
t=1

πθt(a) (E.252)

≥
∞∏
t=1

exp

{ −
∑

a′ 6=a exp{θ1(a′)}
exp

{
θ1(a) + η√

2
· (t− 1)

}} (by Eq. (E.248)) (E.253)

= exp

{
−
∑

a′ 6=a exp{θ1(a′)}
exp{θ1(a)}

· exp
{ η√

2

}
·
∞∑
t=1

1

exp
{

η√
2
· t
}} (E.254)

≥ exp

{
−
∑

a′ 6=a exp{θ1(a′)}
exp{θ1(a)}

· exp
{ η√

2

}
·
∫ ∞
t=0

1

exp
{

η√
2
· t
}dt}

(E.255)

= exp

{
−
∑

a′ 6=a exp{θ1(a′)}
exp{θ1(a)}

·

√
2 · exp

{
η√
2

}
η

}
(E.256)

∈ Ω(1), (E.257)
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where the last line is due to, exp {θ1(a)} ∈ Θ(1) for all a ∈ [K], and η ∈

Θ(1). With Eq. (E.252), we have “the probability of sampling action a forever

using on-policy sampling at ∼ πθt(·)” is lower bounded by a constant of Ω(1).

Therefore, for all a ∈ [K], with positive probability Ω(1), πθt(a) → 1, as

t→∞.

E.2 Proofs for Section 5.3: Committal Rate

Theorem 25. Consider a policy optimization method A. Fix r ∈ (0, 1]K

an action a ∈ [K] which is sub-optimal under r so that κ(A, a) > 1. Fix

θ1 ∈ RK so that πθ1(a) > 0 and let {θt}t≥1 be the parameter sequence obtained

by using A with online sampling, i.e., when at ∼ πθt(·). Then, the event

E = {at = a holds for all t ≥ 1} happens with positive probability, and it also

holds that πθt converges to a sub-optimal deterministic policy with positive

probability.

Proof. Suppose κ(A, a) > 1 for action a ∈ [K]. For convenience, denote

α := κ(A, a). Define the history of actions for the first t iterations,

Ht := (a1, a2, · · · , at) . (E.258)

Given the historical iterations, sampled actions and rewards, the next iteration

is a deterministic result of the algorithm,

θt = A (θ1, a1, r(a1), θ2, a2, r(a2), · · · , θt−1, at−1, r(at−1)) . (E.259)

We have, almost surely for all a and t ≥ 1,

Pr (at = a | Ht−1) = πθt(a). (E.260)

Define the following event, for all t ≥ 1,

Et := {as = a, for all 1 ≤ s ≤ t} . (E.261)

We have Et ⊇ Et+1, and Et approaches the limit event,

E := {at = a, for all t ≥ 1} . (E.262)
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We have Pr (Et) is monotonically decreasing and lower bounded by zero. Ac-

cording to monotone convergence theorem,

Pr (E) = lim
t→∞

Pr (Et). (E.263)

Next, we prove by induction on t the following holds

Pr (Et) = Pr (at = a | Et−1) · Pr (Et−1) (E.264)

=
t∏

s=1

πθ̃s(a), (E.265)

where θ̃1 = θ1, and,

θ̃t = A
(
θ1, a, r(a)︸ ︷︷ ︸

s=1

, · · · , a, r(a)︸ ︷︷ ︸
s=t−1

)
, (E.266)

which means a is used for the first t− 1 iterations.

First, by definition of θ̃1, we have,

Pr (E1) = πθ1(a) = πθ̃1(a), (E.267)

where the first equation is from Eq. (E.260). Suppose the equation holds up

to t− 1. We have,

Pr (Et) = E [Pr (at = a, · · · , a1 = a | Ht−1)] (by the tower rule) (E.268)

= E [I {at−1 = a, · · · , a1 = a} · Pr (at = a | Ht−1)] (E.269)

(determined by Ht−1) (E.270)

= E [I {at−1 = a, · · · , a1 = a} · πθt(a)] (by Eq. (E.260)) (E.271)

= E
[
I {at−1 = a, · · · , a1 = a} · πθ̃t(a)

]
(E.272)

= πθ̃t(a) · Pr (Et−1) (E.273)

=
t∏

s=1

πθ̃s(a). (E.274)
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Next, we show that
∏∞

t=1 πθ̃t(a) > 0. Note that,

∞∏
t=1

πθ̃t(a) = lim
T→∞

T∏
t=1

πθ̃t(a) (E.275)

= lim
T→∞

T∏
t=1

Pr (at = a | a1 = a, a2 = a, · · · , at−1 = a) (E.276)

(by chain rule) (E.277)

= lim
T→∞

T∏
t=1

Pr (at = a | Et−1). (E.278)

In Eq. (E.278), Pr (at = a | Et−1) is the value of πθ̃t(a) given A is used when

in the first t − 1 iterations action a is used. This is the sequence used in

the definition of committal rate κ. Further, for simplicity, assume that in the

definition of κ, the supremum is achieved. (To deal with the general case, one

can redefine α to be α = 1+κ(A,a)
2

> 1). It follows that there exists a universal

constant C > 0 such that on E , for all t ≥ 1,

1− πθ̃t(a) = tα ·
[
1− πθ̃t(a)

]
· 1

tα
(E.279)

≤ C

tα
. (by Definition 11) (E.280)

Let ut := 1− πθ̃t(a) ∈ (0, 1) for all t ≥ 1. We have,

∞∑
t=1

ut ≤
∞∑
t=1

C

tα
(by Eq. (E.279)) (E.281)

<∞. (by Lemma 59, α := κ(A, a) > 1) (E.282)

Therefore we have,

∞∏
t=1

πθ̃t(a) =
∞∏
t=1

(1− ut) (E.283)

> 0. (by Lemma 60 and Eq. (E.281)) (E.284)

Hence, we have,

Pr(E) = lim
T→∞

Pr(ET ) = lim
T→∞

T∏
t=1

πθ̃t(a) =
∞∏
t=1

πθ̃t(a) > 0, (E.285)

and thus πθt(a)→ 1 as t→∞.
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Theorem 26. Let Assumption 3 holds. For the stochastic updates NPG and

GNPG from Updates 7 and 8 we obtain κ(NPG, a) =∞ and κ(GNPG, a) =∞

for all a ∈ [K] respectively.

Proof. First part (NPG). We first show that κ(NPG, a) =∞ for all a ∈ [K].

According to Definition 11, let action a be sampled forever after initialization.

We have, for stochastic NPG update,

1− πθt(a) =
∑
a′ 6=a

πθt(a
′) (E.286)

≤
∑

a′ 6=a exp{θ1(a′)}
exp{θ1(a) + η · r(a) · (t− 1)}+

∑
a′ 6=a exp{θ1(a′)}

. (E.287)

(by Eq. (E.199)) (E.288)

Since exp{θ1(i)} ∈ Θ(1) for all i ∈ [K], we have, for any finite α ∈ (0,∞),

lim
t→∞

tα · [1− πθt(a)] (E.289)

≤ lim
t→∞

tα ·
∑

a′ 6=a exp{θ1(a′)}
exp{θ1(a) + η · r(a) · (t− 1)}+

∑
a′ 6=a exp{θ1(a′)}

(E.290)

(by Eq. (E.286)) (E.291)

= lim
t→∞

Θ(tα)

Θ(exp{η · r(a) · (t− 1)})
= 0, (E.292)

which means κ(NPG, a) =∞ for all a ∈ [K].

Second part (GNPG). We next show that κ(GNPG, a) =∞ for all a ∈ [K].

Let action a be sampled forever after initialization. We have, for stochastic

GNPG update,

1− πθt(a) =
∑
a′ 6=a

πθt(a
′) (E.293)

≤
∑

a′ 6=a exp{θ1(a′)}
exp

{
θ1(a) + η√

2
· (t− 1)

}
+
∑

a′ 6=a exp{θ1(a′)}
. (E.294)

(by Eq. (E.248)) (E.295)

Using similar arguments to Eq. (E.289), we have κ(GNPG, a) = ∞ for all

a ∈ [K].

Theorem 27. Softmax PG obtains κ(PG, a) = 1 for all a ∈ [K].
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Proof. First part. κ(PG, a) ≥ 1.

According to Definition 11, let action a be sampled forever after initializa-

tion. We have, for stochastic PG update,(
1− πθt+1(a)

)
− (1− πθt(a)) (E.296)

= πθt(a)− πθt+1(a) +
〈dπθt(a)

dθt
, θt+1 − θt

〉
(E.297)

−
〈dπθt(a)

dθt
, θt+1 − θt

〉
(E.298)

≤ 5

4
· ‖θt+1 − θt‖2

2 −
〈dπθt(a)

dθt
, θt+1 − θt

〉
(by Lemma 2) (E.299)

=
5 · η2

4
·
∥∥∥∥dπ>θt r̂tdθt

∥∥∥∥2

2

− η ·
〈
dπθt(a)

dθt
,
dπ>θt r̂t

dθt

〉
(E.300)

(using Update 6) (E.301)

=
5 · η2

4
·
(∑
a′ 6=a

πθt(a
′)2 · r(a)2 + (1− πθt(a))2 · r(a)2

)
(E.302)

− η ·
〈
dπθt(a)

dθt
,
dπ>θt r̂t

dθt

〉
(by Eqs. (E.225) and (E.228))

(E.303)

≤ 5 · η2

2
· (1− πθt(a))2 · r(a)2 − η ·

〈
dπθt(a)

dθt
,
dπ>θt r̂t

dθt

〉
(E.304)

(‖x‖2 ≤ ‖x‖1) (E.305)

=
5 · η2

2
· (1− πθt(a))2 · r(a)2 (E.306)

− η · πθt(a) · r(a) ·
(∑
a′ 6=a

πθt(a
′)2 + (1− πθt(a))2

)
(E.307)

(see below) (E.308)

≤ 5 · η2

2
· (1− πθt(a))2 · r(a)2 − η · πθt(a) · r(a) · (1− πθt(a))2 , (E.309)

where the first inequality is because πθ(a) = π>θ ea, where ea ∈ {0, 1}K with

ea(a) = 1 and ea(a
′) = 0 for all a′ 6= a, and the second last equality is because

of

dπθt(a)

dθt(i)
=

{
πθt(i) · (1− πθt(i)) , if i = a,

−πθt(i) · πθt(a). otherwise
(E.310)

Using η =
πθt (a)

5·r(a)
, for all t ≥ 1, we have,(

1− πθt+1(a)
)
− (1− πθt(a)) ≤ − 1

10
· πθt(a)2 · (1− πθt(a))2 , (E.311)
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which means πθt+1(a) ≥ πθt(a) for all t ≥ 1. Therefore, we have η ≥ πθ1 (a)

5·r(a)
∈

Θ(1) and,

(
1− πθt+1(a)

)
− (1− πθt(a)) ≤ − 1

10
· πθ1(a)2 · (1− πθt(a))2 . (E.312)

Then we have,

1

1− πθt(a)
=

1

1− πθ1(a)
+

t−1∑
s=1

[
1

1− πθs+1(a)
− 1

1− πθs(a)

]
(E.313)

=
1

1− πθ1(a)
+

t−1∑
s=1

(1− πθs(a))−
(
1− πθs+1(a)

)(
1− πθs+1(a)

)
· (1− πθs(a))

(E.314)

≥ 1

1− πθ1(a)
+

t−1∑
s=1

(1− πθs(a))2(
1− πθs+1(a)

)
· (1− πθs(a))

· πθ1(a)2

10
(E.315)

(by Eq. (E.312)) (E.316)

≥ 1

1− πθ1(a)
+
πθ1(a)2

10
· (t− 1)

(
πθt+1(a) ≥ πθt(a)

)
(E.317)

≥ πθ1(a)2

10
· t,

(
1

1− πθ1(a)
≥ 1 ≥ πθ1(a)2

10

)
(E.318)

which implies for all t ≥ 1,

t · [1− πθt(a)] ≤ t ·
[

10

πθ1(a)2
· 1

t

]
(by Eq. (E.313)) (E.319)

=
10

πθ1(a)2
, (E.320)

which means κ(PG, a) ≥ 1 for all a ∈ [K] according to Definition 11.

Second part. κ(PG, a) ≤ 1.

Let action a be sampled forever after initialization. We show that 1−πθt(a)
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cannot decrease faster than O(1/t). Similar to Eq. (E.296), we have,

(1− πθt(a))−
(
1− πθt+1(a)

)
(E.321)

= πθt+1(a)− πθt(a)−
〈dπθt(a)

dθt
, θt+1 − θt

〉
(E.322)

+
〈dπθt(a)

dθt
, θt+1 − θt

〉
(E.323)

≤ 5

4
· ‖θt+1 − θt‖2

2 +
〈dπθt(a)

dθt
, θt+1 − θt

〉
(by Lemma 2) (E.324)

=
5 · η2

4
·
∥∥∥∥dπ>θt r̂tdθt

∥∥∥∥2

2

+ η ·
〈
dπθt(a)

dθt
,
dπ>θt r̂t

dθt

〉
(E.325)

(using Update 6) (E.326)

=
5 · η2

2
· (1− πθt(a))2 · r(a)2 + η ·

〈
dπθt(a)

dθt
,
dπ>θt r̂t

dθt

〉
(E.327)

(by Eqs. (E.225) and (E.228)) (E.328)

=
5 · η2

2
· (1− πθt(a))2 · r(a)2 (E.329)

+ η · πθt(a) · r(a) ·
(∑
a′ 6=a

πθt(a
′)2 + (1− πθt(a))2

)
(E.330)

≤ 5 · η2

2
· (1− πθt(a))2 · r(a)2 (E.331)

+ 2 · η · πθt(a) · r(a) · (1− πθt(a))2 (‖x‖2 ≤ ‖x‖1) (E.332)

≤ 9

2
· (1− πθt(a))2 · r(a), (E.333)

where the last inequality is due to πθt(a) ∈ (0, 1), r(a) ∈ (0, 1], and η ∈ (0, 1].

Denote δ(θt) := 1− πθt(a). We have, for all t ≥ 1,

δ(θt)− δ(θt+1) ≤ 9

2
· r(a) · δ(θt)2, (E.334)

which is similar to Eq. (B.730). Therefore, using similar calculations in the

proofs for Theorem 11, we have, for all large enough t ≥ 1,

t · [1− πθt(a)] ≥ t ·
[

1

6 · r(a)
· 1

t

]
(E.335)

=
1

6 · r(a)
, (E.336)

which means κ(PG, a) ≤ 1 for all a ∈ [K] according to Definition 11.

Theorem 28. Using Update 9, (π∗ − πθt)
> r → 0 as t→∞ with probability

1.
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Proof. Consider the sequence {πθt(a∗)}t≥1 produced by Update 9 using on-

policy sampling at ∼ πθt(·). We show that πθt(a
∗) → 1 as t → ∞ with

probability 1.

First, for convenience, we duplicate Update 9 here.

Update 9 (NPG with oracle baseline). θt+1 ← θt+η ·
(
r̂t− b̂t

)
, where b̂t(a) =(

I{at=a}
πθt (a)

− 1
)
· b for all a ∈ [K], and b ∈ (r(a∗)−∆, r(a∗)).

Note that Update 9 is equivalent to the following update,

θt+1(a) =

{
θt(a) + η

πθt (a)
· (r(a)− b) , if a = at,

θt(a), otherwise
(E.337)

Next, we show that πθt+1(a∗) ≥ πθt(a
∗) using on-policy sampling at ∼ πθt(·).

There are two cases.

Case (a): If at = a∗, then we have,

θt+1(a∗) = θt(a
∗) +

η

πθt(a
∗)
· (r(a∗)− b) (by Eq. (E.337)) (E.338)

> θt(a
∗), (r(a∗) > b) (E.339)

while θt+1(a) = θt(a) for all sub-optimal actions a 6= a∗. Then we have,

πθt+1(a∗) =
exp{θt+1(a∗)}

exp{θt+1(a∗)}+
∑

a6=a∗ exp{θt+1(a)}
(E.340)

>
exp{θt(a∗)}

exp{θt(a∗)}+
∑

a6=a∗ exp{θt+1(a)}
(by Eq. (E.338)) (E.341)

=
exp{θt(a∗)}

exp{θt(a∗)}+
∑

a6=a∗ exp{θt(a)}
(E.342)

(θt+1(a) = θt(a), for all a 6= a∗) (E.343)

= πθt(a
∗). (E.344)

Case (b): If at = a 6= a∗, then we have,

θt+1(a) = θt(a) +
η

πθt(a)
· (r(a)− b) (by Eq. (E.337)) (E.345)

< θt(a), (r(a) ≤ r(a∗)−∆ < b) (E.346)

where ∆ = r(a∗)−maxa6=a∗ r(a) > 0 is the reward gap. Also θt+1(a′) = θt(a
′)
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for all the other actions a′ 6= a. Then we have,

πθt+1(a∗) =
exp{θt+1(a∗)}

exp{θt+1(a)}+
∑

a′ 6=a exp{θt+1(a′)}
(E.347)

>
exp{θt+1(a∗)}

exp{θt(a)}+
∑

a′ 6=a exp{θt+1(a′)}
(by Eq. (E.345)) (E.348)

=
exp{θt(a∗)}

exp{θt(a)}+
∑

a′ 6=a exp{θt(a′)}
(E.349)

(θt+1(a′) = θt(a
′), for all a′ 6= a) (E.350)

= πθt(a
∗). (E.351)

Therefore, we have πθt+1(a∗) ≥ πθt(a
∗), for all t ≥ 1. Note that πθt(a

∗) ≤ 1.

According to monotone convergence theorem, we have πθt+1(a∗) approaches to

some finite value as t→∞.

Suppose πθt(a
∗) → πθ∞(a∗) as t → ∞. We show that πθ∞(a∗) = 1 by

contradiction. Suppose πθ∞(a∗) < 1. Then at the convergent point, according

to Eqs. (E.340) and (E.347), we can further improve the probability of a∗ by

online sampling and updating once, which is a contradiction with convergence.

Thus we have πθt(a
∗)→ 1 as t→∞ with probability 1, which implies that

(π∗ − πθt)
> r → 0 as t→∞ with probability 1.

The Stochastic Approximation Markov Bandit Algorithm (SAMBA) (Denisov

and Walton, 2020) algorithm is mentioned in Section 5.4 and Fig. 5.1.

Update 10 (SAMBA). At iteration t ≥ 1, denote the greedy action āt :=

arg maxa∈[K] πt(a). Sample action at ∼ πt(·). (i) If at = āt, then perform

update πt+1(a′) ← πt(a
′) − η · πt(a′)2 · r(at)

πt(at)
for all non-greedy action a′ 6= at;

(ii) If at 6= āt, then perform update πt+1(at)← πt(at) + η ·πt(at)2 · r(at)
πt(at)

. After

doing (i) or (ii), calculate πt+1(āt) = 1−
∑

a′ 6=āt πt+1(a′).

The SAMBA algorithm does not maintain parameters θ, and the last step

πt+1(āt) = 1 −
∑

a′ 6=āt πt+1(a′) in Update 10 is a necessary projection to the

probability simplex, such that πt is a valid probability distribution over [K].

As shown in (Denisov and Walton, 2020), if the learning rate has the knowledge

of the optimal action’s reward and reward gap, i.e.,

η <
∆

r(a∗)−∆
, (E.352)

350



then Update 10 converges to π∗ almost surely with a O(1/t) rate, i.e.,

(π∗ − πt)> r ≤ C/t. (E.353)

We calculate the committal rate of SAMBA.

Proposition 14. For SAMBA from Update 10, we have κ(SAMBA, a) = 1

for all a ∈ [K].

Proof. First part. κ(SAMBA, a) ≥ 1.

According to Definition 11, let action a be the greedy action and be sampled

forever. According to (i) in Update 10, we have, for all a′ 6= a,

πt+1(a′) = πt(a
′)− η · πt(a′)2 · r(at)

πt(at)
(E.354)

= πt(a
′)− η · πt(a′)2 · r(a)

πt(a)
(at = a by fixed sampling) (E.355)

≤ πt(a
′)− η · πt(a′)2 · r(a). (πt(a) ∈ (0, 1)) (E.356)

Using similar calculations in Eq. (B.46), we have, for all a′ 6= a,

1

πt(a′)
=

1

π1(a′)
+

t−1∑
s=1

[
1

πs+1(a′)
− 1

πs(a′)

]
(E.357)

=
1

π1(a′)
+

t−1∑
s=1

1

πs+1(a′) · πs(a′)
· (πs(a′))− πs+1(a′)) (E.358)

≥ 1

π1(a′)
+

t−1∑
s=1

1

πs+1(a′) · πs(a′)
· η · πs(a′)2 · r(a) (E.359)

(by Eq. (E.354)) (E.360)

≥ 1

π1(a′)
+ η · r(a) · (t− 1) (E.361)

(πt+1(a′) ≤ πt(a
′), by Eq. (E.354)) (E.362)

≥ η · r(a) · t,
(

1

π1(a′)
≥ 1 ≥ η · r(a)

)
(E.363)

which implies, for all large enough t ≥ 1,

t · [1− πt(a)] = t ·
∑
a′ 6=a

πt(a
′) (E.364)

≤ t ·
∑
a′ 6=a

1

η · r(a) · t
(by Eq. (E.357)) (E.365)

=
∑
a′ 6=a

1

η · r(a)
, (E.366)
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which means κ(SAMBA, a) ≥ 1 for all a ∈ [K] according to Definition 11.

Second part. κ(SAMBA, a) ≤ 1.

Let action a be the greedy action and be sampled forever. According to

(i) in Update 10, we have, for all a′ 6= a,

πt+1(a′) = πt(a
′)− η · πt(a′)2 · r(at)

πt(at)
(E.367)

= πt(a
′)− η · πt(a′)2 · r(a)

πt(a)
(at = a by fixed sampling) (E.368)

≥ πt(a
′)− η ·K · πt(a′)2 · r(a), (E.369)

(πt(a) ≥ 1/K, a is greedy action) (E.370)

which is similar to Eq. (B.730). Therefore, using similar calculations in the

proofs for Theorem 9, we have, for all large enough t ≥ 1, we have,

πt+1(a′)

πt(a′)
≥ 1

2
. (E.371)

Denote

t0 := min
{
t ≥ 1 :

πt+1(a′)

πt(a′)
≥ 1

2
, for all s ≥ t

}
. (E.372)

On the other hand, since t0 ∈ O(1), we have, for all t < t0,

πt+1(a′) ≥ c0 > 0. (E.373)

Next, we have, for all t ≥ t0,

1

πt(a′)
=

1

π1(a′)
+

t0−1∑
s=1

1

πs+1(a′)
·
(

1− πs+1(a′)

πs(a′)

)
(E.374)

+
t−1∑
s=t0

1

πs+1(a′) · πs(a′)
· (πs(a′))− πs+1(a′)) (E.375)

≤ 1

c0

+

t0−1∑
s=1

1

c0

· 1 +
t−1∑
s=t0

1

πs+1(a′) · πs(a′)
· η ·K · πs(a′)2 · r(a) (E.376)

(by Eqs. (E.367) and (E.373)) (E.377)

≤ t0
c0

+ 2 · η ·K · r(a) · (t− t0), (by Eq. (E.371)) (E.378)
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which implies, for all large enough t ≥ 1,

t · [1− πt(a)] = t ·
∑
a′ 6=a

πt(a
′) (E.379)

≥ t ·
∑
a′ 6=a

1

t0/c0 + 2 · η ·K · r(a) · (t− t0)
(by Eq. (E.374)) (E.380)

≥
∑
a′ 6=a

1

3 · η ·K · r(a)
, (t0/c0 ≤ η ·K · r(a) · t) (E.381)

which means κ(SAMBA, a) ≤ 1 for all a ∈ [K] according to Definition 11.

E.3 Proofs for Section 5.4: Geometry-Convergence

Trade-off

First, we show that the algorithms we study in this paper, i.e., softmax PG,

NPG, and GNPG, are optimality-smart. Recall from the main paper that, a

policy optimization method is said to be optimality-smart if for any t ≥ 1,

πθ̃t(a
∗) ≥ πθt(a

∗) holds where θ̃t is the parameter vector obtained when a∗ is

chosen in every time step, starting at θ1, while θt is any parameter vector that

can be obtained with t updates (regardless of the action sequence chosen), but

also starting from θ1.

Proposition 15. Softmax PG, NPG, and GNPG are optimality-smart.

Proof. We show that for softmax PG, NPG, and GNPG, if at = a∗, then

πθt+1(a∗) ≥ πθt(a
∗); if at = a 6= a∗, then πθt+1(a∗) ≤ πθt(a

∗) (for softmax PG

and GNPG the later claim holds when πθt(a
∗) is the dominating action, i.e.,

πθt(a
∗) ≥ πθt(a

′) for all a′ 6= a∗).

First part. Softmax PG and GNPG are optimality-smart.

If at = a∗, then we have,

θt+1(a∗) = θt(a
∗) + η ·

dπ>θt r̂t

dθt(a∗)
(E.382)

= θt(a
∗) + η · (1− πθt(a∗)) · r(a∗) (by Eq. (E.225)) (E.383)

≥ θt(a
∗).

(
r ∈ (0, 1]K

)
(E.384)
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And for any a 6= a∗, we have,

θt+1(a) = θt(a) + η ·
dπ>θt r̂t

dθt(a)
(E.385)

= θt(a)− η · πθt(a) · r(a∗) (by Eq. (E.228)) (E.386)

≤ θt(a).
(
r ∈ (0, 1]K

)
(E.387)

Therefore, we have,

πθt+1(a∗) =
exp{θt+1(a∗)}

exp{θt+1(a∗)}+
∑

a6=a∗ exp{θt+1(a)}
(E.388)

≥ exp{θt(a∗)}
exp{θt(a∗)}+

∑
a6=a∗ exp{θt(a)}

(E.389)

(by Eqs. (E.382) and (E.385)) (E.390)

= πθt(a
∗). (E.391)

On the other hand, given at = a 6= a∗, we show that if πθt(a
∗) ≥ πθt(a

′) for all

a′ 6= a∗, then πθt+1(a∗) ≤ πθt(a
∗). We have,

θt+1(a) = θt(a) + η · (1− πθt(a)) · r(a) (by Eq. (E.225)) (E.392)

≥ θt(a)− η · πθt(a∗) · r(a). (E.393)

And for any a′ 6= a, we have,

θt+1(a′) = θt(a
′)− η · πθt(a′) · r(a) (by Eq. (E.228)) (E.394)

≥ θt(a
′)− η · πθt(a∗) · r(a). (πθt(a

∗) ≥ πθt(a
′)) (E.395)

Therefore, we have,

πθt+1(a∗) =
exp{θt+1(a∗)}

exp{θt+1(a)}+
∑

a′ 6=a exp{θt+1(a′)}
(E.396)

≤ exp{θt(a∗)− η · πθt(a∗) · r(a)}
exp{θt(a)− η · πθt(a∗) · r(a)}+

∑
a′ 6=a exp{θt(a′)− η · πθt(a∗) · r(a)}

(E.397)

(by Eqs. (E.392) and (E.394)) (E.398)

=
exp{θt(a∗)}

exp{θt(a)}+
∑

a′ 6=a exp{θt(a′)}
(E.399)

= πθt(a
∗). (E.400)
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Second part. NPG is optimality-smart.

If at = a∗, then we have,

θt+1(a∗) = θt(a
∗) + η · r(a

∗)

πθt(a
∗)

(E.401)

> θt(a
∗). (E.402)

while θt+1(a) = θt(a) for all sub-optimal actions a 6= a∗. Then we have,

πθt+1(a∗) =
exp{θt+1(a∗)}

exp{θt+1(a∗)}+
∑

a6=a∗ exp{θt+1(a)}
(E.403)

≥ exp{θt(a∗)}
exp{θt(a∗)}+

∑
a6=a∗ exp{θt(a)}

(E.404)

= πθt(a
∗). (E.405)

If at = a 6= a∗, then we have,

θt+1(a) = θt(a) + η · r(a)

πθt(a)
(E.406)

≥ θt(a), (E.407)

while θt+1(a′) = θt(a
′) for all the other actions a′ 6= a. Then we have,

πθt+1(a∗) =
exp{θt+1(a∗)}

exp{θt+1(a)}+
∑

a′ 6=a exp{θt+1(a′)}
(E.408)

≤ exp{θt(a∗)}
exp{θt(a)}+

∑
a′ 6=a exp{θt(a′)}

(E.409)

= πθt(a
∗).

Theorem 29. Let A be optimality-smart and pick a bandit instance. If A

together with on-policy sampling leads to {θt}t≥1 such that {πθt}t≥1 converges

to a globally optimal policy at a rate O(1/tα) with positive probability, for

α > 0, then κ(A, a∗) ≥ α.

Proof. Fix an instance r ∈ (0, 1]K with a unique optimal action a∗. For any

θ ∈ RK , we have,

(π∗ − πθ)> r =
∑
a6=a∗

πθ(a) · (r(a∗)− r(a)) (E.410)

≥ (1− πθ(a∗)) ·∆, (E.411)
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where ∆ = r(a∗) − maxa6=a∗ r(a) > 0 is the reward gap. Let {θt}t≥1 be the

sequence obtained by using A together with online sampling on r. For α > 0

let Eα be the event when for all t ≥ 1,

(π∗ − πθt)
> r ≤ C

tα
, (E.412)

By our assumption, there exists α > 0 such that Pr(Eα) > 0. On this event,

for any t ≥ 1,

tα · (1− πθt(a∗)) ≤
1

∆
· tα · (π∗ − πθt)

> r (by Eq. (E.410)) (E.413)

≤ C

∆
. (by Eq. (E.412)) (E.414)

Let
{
θ̃t
}
t≥1

with θ̃1 = θ1 be the sequence obtained by using A with fixed

sampling on r, such that at = a∗ for all t ≥ 1. Since, by the assumption, A is

optimality-smart, we have πθ̃t(a
∗) ≥ πθt(a

∗). Then, on Eα, for any t ≥ 1

tα ·
(
1− πθ̃t(a

∗)
)
≤ tα · (1− πθt(a∗)) (E.415)

≤ C

∆
, (by Eq. (E.413)) . (E.416)

Since P(Eα) > 0 and tα ·
(
1− πθ̃t(a

∗)
)

is non-random, it follows that for any

t ≥ 1, tα ·
(
1− πθ̃t(a

∗)
)
≤ C/∆, which, by Definition 11, means that κ(A, a∗) ≥

α.

Theorem 30 (Geometry-Convergence trade-off). If an algorithmA is optimality-

smart, and κ(A, a∗) = κ(A, a) for at least one a 6= a∗, then A with on-policy

sampling can only exhibit at most one of the following two behaviors: (i) A

converges to a globally optimal policy almost surely; (ii) A converges to a

deterministic policy at a rate faster than O(1/t) with positive probability.

Proof. We prove that A cannot achieve both of the two behaviors at the same

time by contradiction. Suppose an algorithm A can (i) converge to a globally

optimal policy almost surely; and (ii) converges at a rate O(1/tα) with positive

probability, where α > 1.

Since (ii) holds, according to Theorem 29, we have κ(A, a∗) ≥ α > 1.

By condition, there exists at least one sub-optimal action a 6= a∗, such that
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κ(A, a) = κ(A, a∗) > 1. According to Theorem 25, we have πθt(a) → 1 as

t → ∞ with positive probability, which contradicts (i). Therefore, (i) and

(ii) cannot hold simultaneously.

E.4 Proofs for Section 5.5: Ensemble Meth-

ods

Theorem 31. With probability 1− δ, the best single run among O(log (1/δ))

independent runs of NPG (GNPG) converges to a globally optimal policy at

an O(e−c·t) rate.

Proof. According to Theorem 23, stochastic NPG of Update 7 will sample the

optimal action a∗ forever (thus converge to the optimal policy) with probability

at least

p(NPG, a∗) (E.417)

:= exp

{
− exp{η · r(a∗)}

η · r(a∗)
·
∑

a6=a∗ exp{θ1(a)}
exp{θ1(a∗)}

}
(E.418)

(by Eq. (E.208)) (E.419)

∈ Ω(1). (E.420)

Moreover, with probability at least p(NPG, a∗), the convergence rate is,

(π∗ − πθt)
> r =

∑
a6=a∗

πθt(a) · (r(a∗)− r(a)) (E.421)

≤ 1− πθt(a∗)
(
r ∈ (0, 1]K

)
(E.422)

≤
∑

a6=a∗ exp{θ1(a)}
exp{θ1(a∗) + η · r(a∗) · (t− 1)}+

∑
a6=a∗ exp{θ1(a)}

(E.423)

(by Eq. (E.286)) (E.424)

∈ O(e−c·t). (E.425)

Consider n(NPG) ∈ O(log (1/δ)) independent runs of NPG, where

n(NPG) :=
1

log
(

1
1−p(NPG,a∗)

) · log (1/δ). (E.426)
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The probability that all the n(NPG) runs do not converge to global optimal

policy is at most

[1− p(NPG, a∗)]n(NPG) =
[
exp

{
log
(
1− p(NPG, a∗)

)}]n(NPG)

(E.427)

= exp

{
− log

(
1

1− p(NPG, a∗)

)
· 1

log
(

1
1−p(NPG,a∗)

) · log (1/δ)

}
(E.428)

(by Eq. (E.426)) (E.429)

= e− log (1/δ) = δ, (E.430)

which means with probability at least 1 − δ, the best single run converges to

a globally optimal policy at an O(e−c·t) rate.

For stochastic GNPG of Update 8, similar calculations show that with

probability at least 1− δ, the best single run among n(GNPG) ∈ O(log (1/δ))

independent runs of GNPG converges to a globally optimal policy at an

O(e−c·t) rate, where

n(GNPG) :=
1

log
(

1
1−p(GNPG,a∗)

) · log (1/δ), (E.431)

and

p(GNPG, a∗) (E.432)

:= exp

{
−
∑

a6=a∗ exp{θ1(a)}
exp{θ1(a∗)}

·

√
2 · exp

{
η√
2

}
η

}
(E.433)

(by Eq. (E.252)) (E.434)

∈ Ω(1), (E.435)

thus finishing the proof.

E.5 Miscellaneous Extra Supporting Results

Lemma 58. We have, for all x ∈ (0, 1),

1− x ≥ e−1/(1/x−1). (E.436)

Proof. See the proof in (Chung et al., 2020, Proposition 1). We include a proof

for completeness.

358



We have, for all x ∈ (0, 1),

1− x = exp {log (1− x)} (E.437)

≥ exp
{

1− e− log (1−x)
} (

y ≥ 1− e−y
)

(E.438)

= exp
{ −1

1/x− 1

}
.

Lemma 59. Let α > 0. We have,

(i) if α ∈ (1,∞), then for all C > 0,

∞∑
t=1

C

tα
<∞, (E.439)

which means the series
∑∞

t=1
C
tα

converges to a finite value.

(ii) if α ∈ (0, 1], then for all C > 0,

∞∑
t=1

C

tα
=∞, (E.440)

which means the series
∑∞

t=1
C
tα

diverges to positive infinity.

(iii) for all C > 0, C ′ > 0,

∞∑
t=1

C

exp{C ′ · t}
<∞, (E.441)

which means the series
∑∞

t=1
C

exp{C′·t} converges to a finite value.

Proof. It is easy to verify the results by calculating integrals. We include a

proof for completeness.

First part. We have, for all α ∈ (1,∞) and C > 0,

∞∑
t=1

C

tα
≤ C ·

(
1 +

∫ ∞
t=1

1

tα
dt

)
(E.442)

=
C · α
α− 1

. (E.443)

Second part. We have, for all α ∈ (0, 1), C > 0, and T ≥ 1,

T∑
t=1

C

tα
≥
∫ T+1

t=1

C

tα
dt (E.444)

=
C · ((T + 1)1−α − 1)

1− α
. (E.445)

359



Similarly, for α = 1,

T∑
t=1

C

t
≥
∫ T+1

t=1

C

t
dt (E.446)

= C · log (T + 1). (E.447)

Therefore, the partial sum approaches to positive infinity as T →∞.

Third part. We have, for all C > 0 and C ′ > 0,

∞∑
t=1

C

exp{C ′ · t}
≤
∫ ∞
t=0

C

exp{C ′ · t}
(E.448)

=
C

C ′
.

Lemma 60. Let ut ∈ (0, 1) for all t ≥ 1. The infinite product
∏∞

t=1 (1− ut)

converges to a positive value if and only if the series
∑∞

t=1 ut converges to a

finite value.

Proof. See Knopp (1947, p. 220). We include a proof for completeness.

Define the following partial products and partial sums,

pT :=
T∏
t=1

(1− ut), (E.449)

sT :=
T∑
t=1

ut. (E.450)

Since pT is monotonically decreasing and non-negative, the infinite product

converges to positive values, i.e.,

∞∏
t=1

(1− ut) = lim
T→∞

T∏
t=1

(1− ut) = lim
T→∞

pT > 0, (E.451)

if and only if pT is lower bounded away from zero (boundedness convergence

criterion for monotone sequence) (Knopp, 1947, p. 80).

Similarly, since sT is monotonically increasing, the series converges to finite

values, i.e.,

∞∑
t=1

ut = lim
T→∞

T∑
t=1

ut = lim
T→∞

sT <∞, (E.452)
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if and only if sT is upper bounded.

First part.
∏∞

t=1 (1− ut) converges to a positive value only if
∑∞

t=1 ut con-

verges to a finite value.

Suppose
∏∞

t=1 (1− ut) converges to a positive value. We have, for all T ≥ 1,

qT ≥ q > 0. (E.453)

Then we have,

q ≤ qT (E.454)

= exp

{
log

( T∏
t=1

(1− ut)
)}

(E.455)

= exp

{ T∑
t=1

log (1− ut)
}

(E.456)

≤ exp

{
−

T∑
t=1

ut

}
(log (1− x) < −x) (E.457)

= exp{−sT}, (E.458)

which implies that,

sT ≤ − log q <∞. (E.459)

Therefore, we have
∑∞

t=1 ut converges to a finite value.

Second part.
∏∞

t=1 (1− ut) converges to a positive value if
∑∞

t=1 ut converges

to a finite value.

Suppose
∑∞

t=1 ut converges to a finite value. Then we have, ut → 0 as

t → ∞. There exists a finite number t0 ≥ 1, such that for all t ≥ t0, we have

ut ≤ 1/2. Also, we have, for all T ≥ 1,

sT ≤ s <∞. (E.460)
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Then we have,

T∏
t=t0

(1− ut) = exp

{ T∑
t=t0

log (1− ut)
}

(E.461)

≥ exp

{
−

T∑
t=t0

2 · ut
}

(E.462)

(−2 · x ≤ log (1− x) for all x ∈ [0, 1/2]) (E.463)

= exp{−2 · sT}, (E.464)

which implies that, for all large enough T ≥ 1,

qT =

(
t0−1∏
t=1

(1− ut)

)
·

(
T∏
t=t0

(1− ut)

)
(E.465)

≥

(
t0−1∏
t=1

(1− ut)

)
· exp{−2 · sT} (E.466)

≥

(
t0−1∏
t=1

(1− ut)

)
· exp{−2 · s} (E.467)

> 0. (E.468)

Therefore, we have
∏∞

t=1 (1− ut) converges to a positive value.

Lemma 61. Let ut ∈ (0, 1) for all t ≥ 1. We have

∞∏
t=1

(1− ut) = lim
T→∞

T∏
t=1

(1− ut) = 0, (E.469)

if and only if the series
∑∞

t=1 ut diverges to a positive infinity.

Proof. First part.
∏∞

t=1 (1− ut) diverges to 0 only if
∑∞

t=1 ut diverges to

positive infinity.

Suppose
∏∞

t=1 (1− ut) diverges to 0. According to Lemma 60,
∑∞

t=1 ut

diverges. And since the partial sum sT :=
∑T

t=1 ut is monotonically increasing,

we have
∑∞

t=1 ut diverges to positive infinity.

Second part.
∏∞

t=1 (1− ut) diverges to 0 if
∑∞

t=1 ut diverges to a positive

infinity.

Suppose
∑∞

t=1 ut diverges to positive infinity. According to Lemma 60,∏∞
t=1 (1− ut) diverges. And since the partial product qT :=

∏T
t=1 (1− ut) is

362



non-negative and monotonically decreasing, we have
∏∞

t=1 (1− ut) diverges to

0.

Lemma 62. Let πθt(a) ∈ (0, 1) be the probability of sampling action a using

online sampling at ∼ πθt(·), for all t ≥ 1. If 1 − πθt(a) ∈ Θ(1/tα) with

α ∈ [0, 1], then
∏∞

t=1 πθt(a) = 0.

This lemma means if πθt(a) approaches to 1 slowly, i.e., no faster than

O(1/t), then the probability of sampling a forever using on-policy sampling

at ∼ πθt(·) is zero, i.e., the other actions a′ 6= a always have a chance to be

sampled.

Proof. Suppose 1−πθt(a) ∈ Θ(1/tα) and α ∈ (0, 1]. Let ut := 1−πθt(a) ∈ (0, 1)

for all t ≥ 1. According to Lemma 59, we have,

∞∑
t=1

ut =
∞∑
t=1

(1− πθt(a)) =∞, (E.470)

i.e., the series diverges to positive infinity. According to Lemma 61, we have,

∞∏
t=1

πθt(a) =
∞∏
t=1

(1− ut) = 0, (E.471)

which means it is impossible to sample a forever using on-policy sampling

at ∼ πθt(·).
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