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Abstract

Co-embedding is the process of mapping elements from multiple sets into a com-

mon latent space, which can be exploited to infer element-wise associations by con-

sidering the geometric proximity of their embeddings. Such an approach underlies

the state of the art for link prediction, relation learning, multi-label tagging, rele-

vance retrieval and ranking. This dissertation provides contributions to the study of

co-embedding for solving association problems.

First, a unifying view for solving association problems with co-embedding is

presented, which covers both alignment-based and distance-based models. Al-

though current approaches rely on local training methods applied to non-convex

formulations, I demonstrate how general convex formulations can be achieved for

co-embedding. I then empirically compare convex versus non-convex formulations

of the training problem under an alignment model. Surprisingly, the empirical re-

sults reveal that, in most cases, the two are equivalent.

Second, the connection between metric learning and co-embedding is inves-

tigated. I show that heterogeneous metric learning can be cast as distance-based

co-embedding, and propose a scalable algorithm for solving the training problem

globally. The co-embedding framework allows metric learning to be applied to a

wide range of association problems—including link prediction, relation learning,

multi-label tagging and ranking. I investigate the relation between the standard

non-convex training formulation and the proposed convex reformulation of hetero-

geneous metric learning, both empirically and analytically. Again, it is discovered

that under certain conditions, the objective values achieved by the two approaches

are identical. I develop a formal characterization of the conditions under which this

equality holds.
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Finally, a constrained form of co-embedding is proposed for structured output

prediction. A key bottleneck in structured output prediction is the need for inference

during training and testing, usually requiring some form of dynamic programming.

Rather than using approximate inference or tailoring a specialized inference method

for a particular structure I instead pre-compile prediction constraints directly into

the learned representation. By eliminating the need for explicit inference a more

scalable approach to structured output prediction can be achieved, particularly at

test time. I demonstrate the idea for hierarchical multi-label prediction under sub-

sumption and mutual exclusion constraints, where a relationship to maximum mar-

gin structured output prediction can be established. Experiments demonstrate that

the benefits of structured output training can still be realized even after inference

has been eliminated.
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Chapter 1

Introduction

Many machine learning sub-communities have converged on a common approach

of co-embedding to tackle machine learning problems. The idea is to first embed

elements from multiple sets into a common low dimensional Euclidean space and

then use Euclidean geometry to infer associations between elements. The target

problems that can be addressed by such an approach are diverse, ranging from link

prediction (Yamanishi, 2008) to question answering (Bordes et al., 2014).

In this thesis, I focus on studying the power of co-embedding to solve such

association problems, where elements from a number of sets are associated with

one another. Examples include ranking, multilabel tagging, multiclass classifica-

tion, and link prediction. A dominant and common approach for solving this class

of problems is to learn an intermediate association score given target association

information. For example, multiclass training of Crammer and Singer (2001) at-

tempts to learn intermediate association score functions so that the true label of

each training example receives higher association with that example (by a margin)

than the other labels. Similarly, multilabel prediction (Fürnkranz et al., 2008) in-

volves learning an intermediate association score as well as threshold scores so that

labels with association scores above the threshold coincide with the correct labels

for a given example. Finally, for label ranking (Hüllermeier et al., 2008), one at-

tempts to learn an association function that gives similar rankings on labels as that

of the true labels. Not surprisingly, to be useful, the learned models should also

generalize well on unseen data.

Despite the varied history of association problems, co-embedding approaches
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solve these problems in a unique fashion by providing a geometric basis for defining

association scores. In particular, one can exploit the alignment (i.e., inner product)

between embedding vectors to determine the association strength; or, alternatively,

the Euclidean distance between embedding vectors can be used for this purpose.

Yet other distance models can be considered based on the L1 norm (Chopra et al.,

2005; Bordes et al., 2011; Wang et al., 2014) or the L∞ norm. Co-embedding ap-

proaches now provide the state of the art in a wide range of applications, achieving

improved association quality. Furthermore, co-embedding can provide additional

insight by revealing relationships between items in a common space (Globerson

et al., 2007). Such approaches can also be extended to a multi-relational setting by

considering items from more than two sets, for example in query adaptive item rec-

ommendation, where users, queries and items are associated (Weston et al., 2012).

Remarkably, by sharing feature representations between target items, co-embedding

also offers a natural approach to zero shot learning, where assignments to previously

unseen labels are queried at test time (Li et al., 2003; Palatucci et al., 2009).

Distance based co-embedding is closely related to metric learning (Xing et al.,

2002; Kulis, 2013), where a distance function between data instances is learned to

help simplify a target task. The case where data instances belong to different sets

is referred to as heterogeneous metric learning (Zhai et al., 2013). It is notable that

the application of metric learning to co-embedding expands the range of problems

that can be addressed by metric learning to all association problems. Moreover,

efficient formulations and fast computational strategies for co-embedding directly

lead to advances in heterogeneous metric learning, which to date has only received

efficient formulations for restricted cases.

Co-embedding is not only a powerful approach for tackling standard association

problems, but also for solving structured association problems over sets that have

additional special structure. For example, suppose we wish to annotate images with

tags “animal”, “flower”, “cat”, etc., where any number of tags can be assigned to

each image, but the tags also form a hierarchy such that any “cat” is an “animal”

while nothing can be both an “animal” and a “flower”. Approaching this problem

from the perspective of distance based co-embedding, one would embed both the
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images and tags into a joint latent space, where images that fit the description of a

tag category are embedded nearby. However, to enforce the hierarchy and mutual

exclusion constraints, the Euclidean geometry of embeddings can also be exploited

further. Let the decision region for each tag be modeled with a Euclidean ball

centered at the embedding point of the tag, so that any image is tagged as, say, “cat”

if and only if it is embedded inside the Euclidean ball corresponding to the “cat”

tag. Then enforcing hierarchical structure becomes straightforward: By requiring

that first, the Euclidean ball corresponding to the “cat” object must lie inside the

Euclidean ball corresponding to the “animal” object, and second, the Euclidean

balls corresponding to “animal” and “flower” objects must be disjoint, one can

guarantee that the hierarchical and mutual exclusion constraints are enforced.

Structured association problems are usually tackled by structured output pre-

diction methods (Taskar, 2004; Tsochantaridis et al., 2005), which require explicit

inference to be performed over joint label predictions, usually in the form of a dy-

namic program. However, rather than use approximate inference or tailor a special-

ized inference method for a particular structure, a co-embedding approach makes it

possible to insert prediction constraints directly into the learned representation. By

eliminating the need for explicit inference, particularly at test time, a more scalable

approach to structured output prediction can be achieved. This property is essential

for time-sensitive user-facing applications.

Despite their success, current co-embedding methods do have some drawbacks.

Beyond special cases, current formulations of co-embedding are not convex, and

existing approaches rely on local training methods (often alternating descent) to ac-

quire the embeddings. A consequence is that the results are not easily repeatable,

since every detail of the training algorithm can, in principle, affect the result. A

related drawback is that the problem specification is no longer decoupled from the

details of the implementation, which can prevent end users, who otherwise under-

stand the specifications, from successfully deploying the technology.

In this dissertation, I first offer a unified view of co-embedding by presenting a

simple framework that expresses association problems in a common format. Within

this general framework, I then demonstrate how a convex training formulation can
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be achieved by relaxing the low rank constraint on the embeddings. Importantly,

the proposed reformulation can be applied to both alignment based and distance

based score models. In the experimental analysis, I evaluate a global training algo-

rithm in different case studies, where it is observed that the training objective values

achieved by local and global solvers are often identical.

Next, I further investigate the topic of co-embedding within the framework of

convex heterogeneous metric learning. Effective training algorithms in this case

require an efficient approach to imposing a semidefinite matrix constraint. For this

purpose, I propose a particular algorithmic strategy that is both scalable and correct,

providing a proof of convergence to a globally optimal solution. In addition, I

empirically investigate the relation between the solutions provided by local and

global solvers.

Finally, I tackle the association problem of structured multilabel prediction un-

der implication and mutual exclusion constraints. The main result is to demonstrate

how inference can be eliminated from structured output prediction by imposing

convex constraints on the learned representations that encode the prior knowledge

about the label relationships. That is, the intuition underlying the aforementioned

image tagging example (with “cats”, “animals”, and “flowers”) is developed in a

principled way to guarantee consistency of label assignments with simple logical

constraints. The outcome is a useful model in which a relationship to maximum

margin structured output prediction can be established. Experiments demonstrate

that the benefits of structured output training can still be realized, even after infer-

ence has been eliminated.

1.1 Contributions

Key contributions of this dissertation are the following.

– A unified view of association problems is developed that includes link predic-

tion in graphs, multilabel classification, ranking, and applications including

knowledge graph completion, image tagging, question answering, and rec-

ommendation.
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– A unified view of co-embedding approaches to association problems is devel-

oped that encompasses both distance based and alignment based co-embedding.

– A tractable training procedure for alignment based co-embedding methods is

developed by

– formulating a convex training problem,

– identifying a scalable training algorithm,

– making an interesting empirical observation about the relation between

the locally and globally optimal trained models.

– A further understanding of distance based co-embedding, also known as met-

ric learning, is achieved by

– offering a way to solve association problems via metric learning by re-

lating distance based co-embedding methods to metric learning,

– establishing a convex training formulation,

– developing a scalable training algorithm with a proof of convergence,

– formally characterizing the conditions under which local training meth-

ods applied to the standard non-convex formulation are equivalent to the

proposed convex reformulation of heterogeneous metric learning.

– An important new observation is made that inference can be completely elim-

inated from structured multi-label classification by embedding the logical re-

lationships between labels directly into the score model.

– A concrete demonstration of this structure pre-compilation idea is provided

for multilabel prediction models, where it is shown that implication and mu-

tual exclusion relationships can be easily embedded in the score model while

maintaining convexity in model parameters.

– A novel convex approach to structured multi-label prediction is proposed.
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1.2 Publication Notes

This research has been published in three peer reviewed publications. The material

in Chapter 3 was presented at the Twenty-Eighth Annual Conference on Artificial

Intelligence (AAAI) in 2014 (Mirzazadeh et al., 2014); the content of Chapter 4 was

published presented at the European Conference on Machine Learning (ECML) in

2015 (Mirzazadeh et al., 2015b); and the results of Chapter 5 were presented in

Neural Information Processing Systems (NIPS) in 2015 (Mirzazadeh et al., 2015a).
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Chapter 2

Background

Euclidean co-embedding considers the simple, but effective, approach of mapping

items from multiple sets into a common low dimensional Euclidean space. Once

so embedded, simple Euclidean geometry can be used to solve many types of asso-

ciation problems, as illustrated in Figure 2.1. Co-embedding is sometimes referred

to as joint embedding (Bengio and Weston, 2011) or semantic embedding (Norouzi

et al., 2013) and underlies many useful formulations in machine learning. For ex-

ample, Yamanishi (2008) embeds nodes of a heterogeneous graph to support link

prediction, Bordes et al. (2014) use co-embedding of questions and answers to rank

appropriate answers to a query for retrieval and recommendation, and Rendle et al.

(2009) embed users, items, and tags for user-specific tag recommendation.

In the following, we formally define co-embedding, but for clarity focus on the

case where two sets are embedded into a common space. The extension to more

than two sets is straightforward.

2.1 Definition

The process of co-embedding begins with an initial representation of data given

as feature vectors; that is, we let φ(x) ∈ Rm denote the initial representation of

x ∈ X and let ψ(y) ∈ Rn denote the initial representation of y ∈ Y . Then objects

from X and Y are mapped into finite dimensional vectors in a common embed-

ding space using a function of their feature representations. The simplest and still

most common form of such mapping is a parametric linear map that computes the
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Figure 2.1: An illustration of co-embedding. Here a user x with features φ(x) ∈
Rm and an item y with features ψ(y) ∈ Rn are mapped into a single Rd space.

embedding φ(x) 7→ u(x) ∈ Rd via

u(x) = Uφ(x) for some U ∈ Rd×m, (2.1)

and the embedding ψ(y) 7→ v(y) ∈ Rd via

v(y) = Vψ(y) for some V ∈ Rd×n, (2.2)

where u(x) and v(y) are embedding vectors of objects x and y respectively, and U

and V are parameters; see Figure 2.1.

Although co-embedding can be viewed as a stand-alone preprocessing proce-

dure that optimizes a structure preserving objective function independent of the end

task—for example by minimizing the distance distortion—such a task independent

approach is suboptimal. Instead, to obtain a useful task-specific embedding without

substantial manual design, the co-embedding parameters U and V are normally op-

timized to minimize a task specific objective. We will discuss this in more detail in

Section 3.1 of Chapter 3, where we show how co-embedding can be used to solve

association problems.
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2.2 Initial Representation

The nature of the initial representations, φ(x) and ψ(y), play a major role in deter-

mining what generalizations can or cannot be easily captured. Recently, exploiting

rich features learned via deep neural networks has become a popular approach for

learning such representations. For instance, Frome et al. (2013), for the purpose

of visual-semantic co-embedding, employ the deep convolutional neural network

of Krizhevsky et al. (2012) to obtain initial visual features. Also, a well-known

two-layer architecture, the skip-gram model (Word2Vec) (Mikolov et al., 2013),

has been used to obtain the initial features representations for language modeling.

Another particularly simple form of initial representation is the indicator vector

φ(x) = 1x, (2.3)

where 1x is, conceptually, a vector of all zeros except for a single 1 in the position

corresponding to x ∈ X . Such a representation explicitly enumerates elements of

a finite set X . Although indicators have obvious shortcomings, they are common

in practice. For example, work on community identification from the link structure

of a graph is based on indicators (Newman, 2010). Also, the tags in image anno-

tation tasks are often represented with indicators (Weston et al., 2011). Similarly,

most work on multilabel prediction use label indicators when no prior knowledge is

encoded about labels y. Note that the embeddings v(y) = V 1y = V:y assign a sepa-

rate embedding vector V:y to y independently of the other elements ofY , which does

not support direct generalization between objects, does not support out-of-sample

prediction, and can be onerous to store if the sets are large.

2.2.1 Zero Shot Learning and Out of Sample Prediction

Recently, there has been renewed interest in endowing objects with meaningful

property based features, or “attributes” in computer vision research (Al-Halah et al.,

2016; Akata et al., 2013; Farhadi et al., 2009); see Figure 2.2 for an example. Prop-

erty based features are also common in link prediction (Bleakley et al., 2007; Menon

and Elkan, 2011; Gong et al., 2014) and recommender systems (Gantner et al.,
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Figure 2.2: Endowing label objects with attribute representations enables the
prospect of zero shot learning (figure from Deng et al. (2014)).

2010; Pazzani and Billsus, 2007). Property based features like these allow gener-

alization between objects based on prior knowledge, even if an object has not been

seen in the training data. In particular, attribute based features for a label y ∈ Y

allow the prospect of zero-shot learning where one can predict an object x’s as-

sociation with a target label y that was not seen during training1 (Li et al., 2003;

Larochelle et al., 2008a; Palatucci et al., 2009; Socher et al., 2013c; Ba et al., 2015;

Xian et al., 2016; Vinyals et al., 2016). Similarly, a property based feature repre-

sentation φ(x) for an element x ∈ X allows out of sample prediction for objects x

not seen during training; a standard goal in supervised learning.

In the framework of co-embedding, these issues are particularly intuitive: a new

object, say y, that has not been seen during training can still be embedded in the

latent space. If y’s feature representation ψ(y) is similar to other objects from Y

seen in the training data, then y’s embedding v(y) = Vψ(y) should also be similar,

hence y will exhibit similar geometric relationships to a given x.

2.3 Number of Sets

Thus far I have focused on the case of embedding items from two sets, but many

applications involve associating items from different numbers of sets.

1In the language of the recommender system literature, attributes are referred to as “content-
based features” (Pazzani and Billsus, 2007) and zero shot learning is referred to as “cold start rec-
ommendation”. (Schein et al., 2002).
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Figure 2.3: A sample of image descriptions from the Google Research page.

2.3.1 Two-set co-embedding

For the most common case of associating items between two sets, typical tasks

include image annotation (with zero shot learning), item recommendation to users

(collaborative filtering) and multi-modal representation learning.

In natural language processing, Bordes et al. (2014) co-embed questions and

answers to retrieve appropriate answers to a query, while Bordes et al. (2012) em-

bed words and senses for word sense disambiguation. In computer vision, Weston

et al. (2010) and Akata et al. (2013) embed images and tags for image tagging.

Kiros et al. (2014) embed images and sentences for image retrieval, as well as im-

age description retrieval and generation; see Figure 2.3 for an illustration. Recently,

Vendrov et al. (2016) jointly embed text and images for the task of image-caption

retrieval and hierarchy prediction. In recommender systems, (Rendle et al., 2009)

co-embed users and items. Finally, Yamanishi (2008) embeds nodes of a heteroge-

neous graph for link prediction. Notably, while not recognized before, the majority

of standard multi-label prediction methods (eg (Guo and Schuurmans, 2011)) can

be viewed as the co-embedding of data examples and labels into a pre-prediction

space.

Another class of methods addresses multi-modal representation learning. For
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Figure 2.4: A sample knowledge graph where nodes represent entities and edge
labels represent type of relations (figure from Nickel et al. (2016)).

example, Ngiam et al. (2011) use deep networks to learn features for two modalities,

demonstrating that cross modal feature learning can improve the features learned for

each modality individually (e.g., audio and video).

2.3.2 Three-set or More Co-embedding

While nothing conceptually limits the number of sets that can be associated, co-

embedding of more than three sets is uncommon. Three set co-embedding is mainly

useful when a third criteria (context, side information) is added to, say, a recommen-

dation scenario. For example, in a personalized tag recommendation for webpages,

a model that assumes each person has a different preference for assigning tags can

be expressed by a three-way co-embedding (Rendle and Schmidt-Thieme, 2010).

Similarly, Weston et al. (2012) consider personalized query-based item retrieval,

where they embed users, items and queries. Later in the process, a three-way de-

pendence might be decomposed to a number of two-way dependencies for the sake

of simplicity. In addition to recommendation, three-set co-embedding can also be

beneficial in semantic analysis; for example Globerson et al. (2007) embed docu-

ments, words and authors for semantic document analysis.

A particularly important application of three-set co-embedding is the represen-

tation and completion of knowledge graphs. Knowledge graphs model facts about

the world in the form of entities and relationships between them, using a triple,

(head, relation, tail), to annotate each edge; see Figure 2.4 for an illustration. Large

knowledge graphs, such as Wordnet (Miller, 1995), Freebase (Bollacker et al.,

2008), and the Google Knowledge Graph, provide useful sources of knowledge

12



for question answering. Several works have therefore focused on the representa-

tion and completion of such graphs (Bordes et al., 2011; Nickel et al., 2011; Socher

et al., 2013a; Nickel et al., 2016).

A co-embedding approach to knowledge graph representation can be obtained

by embedding each head, relation, and tail into a joint space. Such a unified rep-

resentation can flexibly encode structural and symbolic information from a knowl-

edge base to support new uses. For example, co-embedding of knowledge graphs

has allowed the integration of knowledge bases by exploiting recent machine learn-

ing methods for prediction and retrieval tasks (Bordes et al., 2011). Sometimes

only the entities at the head and tail of a relation are embedded, and the relation is

represented as a transformation or matrix multiplication; for example as in (Bordes

et al., 2013).

Whenever items from more than two sets are embedded, there is a question of

how best to aggregate their geometric proximity. Depending on the type of prox-

imity used, different approaches have been considered. For distance based proxim-

ities, whenever three or more points are to be related, their pair-wise proximities

are typically aggregated. Although some novel notions of three-way distance have

been proposed in the literature, see for example (Joly and Le Calvé, 1995), these

have rarely been explicitly used for association tasks. For proximities expressed by

inner products, an extension to three-way relations can naturally be handled by us-

ing tensors to model 3-way interactions; see Section 3.2.3 of Chapter 3 for a more

detailed treatment.

2.3.3 Single-set Embedding

A special case occurs when elements of a single set are mapped into a low di-

mensional space, reducing the problem to conventional Euclidean embedding. In

standard embedding, the entities to be mapped are considered to belong to the same

set; i.e., possessing the same type or modality. Many supervised learning models

are based on single-set embedding. For instance, Vert and Yamanishi (2004) and

Menon and Elkan (2011) develop techniques to embed nodes from a homogeneous

graph into a low dimensional space, which can be used to support supervised link
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prediction in domains ranging from social networks and protein-protein interaction

networks to co-authorship networks. Chopra et al. (2005) embed images of faces in

a low dimensional space to support face recognition. In fact, most metric learning

methods also fall in this class (Kulis, 2013).

Another class of embedding models are used to learn continuous representa-

tions for discrete structures. The best known example is embedding words in a low

dimensional space to capture their semantics, which is a classic unsupervised learn-

ing approach used in text retrieval. In particular, the skip-gram method of Mikolov

et al. (2013) (also known as Word2Vec) embeds words in a low dimensional space

such that the context of each word (i.e., the window of surrounding words) is pre-

served. Shaw and Jebara (2009) embed nodes of a graph to preserve structure in

support of graph compression and representation learning. Recently, the Node2Vec

method of Grover and Leskovec (2016) adapted the skip-gram model to graphs,

which they apply to link prediction and multi-label classification.

It should be noted that embedding is a mature subject in both the machine learn-

ing and theoretical computer science literatures. For example, a large body of work

explores embedding for the purpose of dimensionality reduction in an unsupervised

setting, such as Principal Component Analysis (PCA) (Hastie et al., 2009a), Local

Linear Embedding (LLE) (Roweis and Saul, 2000), and Metric Multidimensional

Scaling (MDS) (Cox and Cox, 2000). Another major subject covered in the theo-

retical field of metric embedding investigates the problem of embedding a weighted

graph satisfying the triangle inequality (i.e., a metric) in a Euclidean space while

(approximately) preserving the weights (Sidiropoulos, 2008). These works lie out-

side the scope of this thesis.
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Chapter 3

Solving Association Problems with
Alignment Based Co-embedding

In this chapter, we first describe our observation that a large group of problems

tackled independently by different machine learning subcommunities are in fact

very similar in nature. We unify these under the title of association problems. Next,

we describe our second observation that many existing solutions to this class of

problems are also very similar: they all employ a form of co-embedding. Then,

we highlight that existing work typically exploits local optimization techniques to

train co-embedding models; we instead propose convex re-formulations for train-

ing. While similar convex relaxations apply to both alignment and distance models,

in this chapter we focus on alignment models. We defer the study of distance based

co-embedding to Chapter 4, where we explore it in the context of metric learning.

After setting up the framework and formulating training of alignment based

models, we identify an efficient algorithm that makes training computationally pos-

sible. Finally, we evaluate the performance of the method on real data for a number

of interesting case studies: namely, multilabel prediction and tag recommendation.

In the first application, which is a two set co-embedding problem, a model is to

be learned from labeled training data to assign a suitable subset of labels to a new

data example. In the second application, given a tensor (i.e. a 3-way array with one

element for each (user, item, tag) triple) and two sets, one of known and another of

unknown elements, the task is to predict the unknown elements. In other words, the

task is to predict which of the candidate tags would the corresponding user assign
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to the corresponding item.

The key contributions of this chapter are the following:

Contribution 1 A unified view of association problems is proposed.

Contribution 2 A unified approach to solving association problems based on co-

embedding is proposed that captures typical strategies.

Contribution 3 A convex reformulation of training for co-embedding models is

developed.

Contribution 4 An appropriate training algorithm for alignment-based co-embedding

is identified.

Contribution 5 We make a notable empirical observation that, under random ini-

tialization, solutions to the convex and non-convex formulations of training for

alignment models are the same.

3.1 Score-based Association Learning

Associating elements of sets is a fundamental problem in applications as diverse as

ranking, retrieval, recommendation, link prediction, relation learning, tagging, and

multilabel classification. Despite the diversity of these tasks, a unified approach can

be achieved through the concept of an association score function that evaluates as-

sociative strength between items. For example, retrieval and recommendation can

be expressed as identifying elements from a collection that exhibit the strongest as-

sociation to a given query object; ranking can be expressed as sorting items based on

their associative strength to a given object; multilabel tagging can be expressed as

predicting which subset of a set of label elements are associated with a given query

object; link prediction involves determining which elements from a set are related

to elements from another set; and so on. These problems can be extended to a multi-

relational setting by introducing a third criterion as context or side-information to

the associations. For example, a user dependent query answering.

In this section, we offer a unified perspective on co-embedding by presenting a

simple framework that expresses association problems in a common format.
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3.1.1 A Unified View of Association Problems

We consider binary association problems between two sets X and Y , which could

be identical or non-identical, finite or infinite, depending on the circumstance. The

three most common association problems are the following:

Ranking: given x ∈ X , sort the elements y ∈ Y in descending order of their

association with x. This is a common approach to retrieval and recommendation

problems.

Prediction: given x ∈ X , enumerate those y ∈ Y that are associated with x.

This is a common formulation of directed link prediction, tagging and multilabel

classification problems.

Query answering: given a query pair (x, y), indicate whether or not x and y

are associated. This is a common formulation of relation learning problems.

Although other prominent forms of association problems exist, particularly those

requiring a numerical response for instance (Bennett and Lanning, 2007), we focus

on discrete problems in this dissertation.

In association problems that consider two sets, observations are typically dyads,

i.e. pairs with one element from each of the sets (Hofmann et al., 1998; Hoff, 2005;

Meeds et al., 2006; Menon and Elkan, 2010a,b). The extension to problems where

more than two sets are considered is discussed in Section 3.2.3.

3.1.2 Score-based Solutions

To tackle association problems, several solutions have been proposed in the ma-

chine learning literature. A natural and common approach is to use an intermedi-

ate function—called a score or utility function—to facilitate association learning

(Fürnkranz et al., 2008). In particular, we consider using an association score func-

tion

s : X × Y → R,

and, when appropriate a decision threshold function

t : X → R.
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Many models preset the threshold value instead of parameterizing and learning it. In

some other models (such as (Socher et al., 2013a)), the threshold is selected based

on validation data as a post processing step after training. However, a parametrized

threshold that is learned jointly with other model parameters can adapt to the data

distribution. In Chapter 4 we show that two threshold functions, one for each set,

can be used to generalize the proposed framework to a more symmetric model.

Given score and threshold functions, the test phase of an association problem is

summarized as follows.

Ranking: Given x ∈ X , sort the elements of Y according to the scores s(x, yi1) ≥

s(x, yi2) ≥ · · · .

Prediction: Given x ∈ X , enumerate the elements y ∈ Y that satisfy s(x, y) >

t(x).

Query answering: Given (x, y), return sign(s(x, y)− t(x)).

Although Y is normally considered to be finite, which supports a simple view

of ranking and prediction, it need not be: zero-shot problems consider unobserved

y elements.

3.1.3 Co-embedding for Defining the Association Score

Suppose linear maps U and V jointly embed elements of X and Y respectively to

a common space. Given such a co-embedding, there are two standard models for

expressing an association score.

The alignment model uses the score and threshold functions:

s(x, y) = 〈u(x),v(y)〉 = φ(x)>U>Vψ(y) (3.1)

t(x) = 〈u(x),u0〉 = φ(x)>U>u0, (3.2)

where U> denotes the transpose of a matrix U and the threshold is based on a

direct embedding, u0, of a null object. This approach is common in many areas,

including image tagging (Weston et al., 2011), multilabel classification (Guo and

Schuurmans, 2011), and link prediction (Bleakley et al., 2007).
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The distance model uses the score and threshold functions:

s(x, y) = −‖u(x)− v(y)‖2 = −‖Uφ(x)− Vψ(y)‖2 (3.3)

t(x) = −‖u(x)− u0‖2 = −‖Uφ(x)− u0‖2, (3.4)

where again the decision threshold function is usually based on a direct embed-

ding, u0, of a null object. This latter model underlies work on “metric learning”

(Globerson et al., 2007; Weinberger and Saul, 2009), and has also been used in the

area of multi-relation learning (Sutskever and Hinton, 2008), with renewed interest

(Bordes et al., 2013, 2011). Chapter 4 studies such distance models in more detail.

Interestingly, most work has adopted one of these two models without consid-

ering the other, although some recent work in multi-relational learning has started

to relate these representations (Socher et al., 2013a).

3.1.4 Evaluating Score Functions on Data

Association models are most often learned from large data collections, where train-

ing examples come in the form of positive or negative associations between pairs

of objects (x, y), sometimes called “must link” and “must not link” constraints re-

spectively (Chopra et al., 2005). Let E denote the set of “must link” pairs, let Ē

denote the set of “must not link” pairs, let S = E ∪ Ē, and let E0 denote the set of

remaining pairs. That is, E ∪ Ē ∪ E0 form a partition of X × Y . The sets E and

Ē are presumed to be finite, although obviously E0 need not be. For a given object

x ∈ X , we let Y (x) = {y : (x, y) ∈ E} and Ȳ (x) = {ȳ : (x, ȳ) ∈ Ē}. For sets Y ,

we use |Y | to denote cardinality.

The nature of the training set can vary between different settings. For exam-

ple, in link prediction and tagging, observations are often only positive “must link”

pairs; whereas, in multilabel classification one often assumes that a complete set

of link/no-link information over Y is provided for each x given in the training set

(hence assuming Y is finite). Ranking and retrieval problems usually fall between

these two extremes, with unobserved positive links primarily assumed to be nega-

tive pairs.
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How to use such data to train the score function is determined by how one

wishes to evaluate the result.

Ranking: In ranking, performance has most often been assessed by the AUC

(Joachims, 2002; Cortes and Mohri, 2003; Menon and Elkan, 2011). For a given x,

the AUC of a score function s is given by

1

|Y (x)|
1

|Ȳ (x)|
∑
y∈Y (x)

∑
ȳ∈Ȳ (x)

1
(
s(x, y) > s(x, ȳ)

)
, (3.5)

where 1(ξ) denotes the indicator function that returns 1 when ξ is true, 0 other-

wise. More recently the ordered weighted average (OWA) family of ranking error

functions has become preferred (Usunier et al., 2009). OWA generalizes AUC by

allowing emphasis to be shifted to ranking errors near the top of the list, through

the introduction of penalties α ≥ 0 such that α>1 = 1 and α1 ≥ α2 ≥ · · · . For a

given x, the OWA is defined by∑
y∈Y (x)

∑
ȳ∈Ȳ (x)

απ(x,ȳ)1
(
s(x, y) ≤ s(x, ȳ)

)
, (3.6)

where π(x, ȳ) denotes the position of ȳ in the list sorted by

s(x, ȳ1) ≥ s(x, ȳ2) ≥ · · · .

To better understand the effect of the ordered weighting, we can first investigate

the two extreme cases. One is when the weight given to the top ranking element is

not more than any other element, where ordered weighting reduces to an average.

The other extreme case is when the total weight is concentrated on the top ranking

element only, where ordered weighting reduces to finding a maximum. All other

cases are something in between. By changing the distribution of ordered weights,

relative concentration or attention on the higher ranking elements can be tuned. For

example one can imagine an OWA weighting that top element receives 2
3

of atten-

tion and the second top element 1
3
. It is not hard to play with weights to come up

with other reasonable weightings that distribute attention differently. This is useful

in retrieval applications, because often being accurate at the top is very important

there.
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Query answering: For query answering, performance is most often assessed

by the point-wise prediction error, given by∑
y∈Y (x)

1
(
s(x, y) ≤ t(x)

)
+
∑
ȳ∈Ȳ (x)

1
(
s(x, ȳ) > t(x)

)
. (3.7)

The first summation in (3.7) counts the false negative predictions: i.e. the number

of queries with true values being positive, but predicted negative. Similarly the

second summation takes care of counting false positives.

Prediction: There are many performance measures used to evaluate prediction

performance (Sebastiani, 2002; Tsoumakas et al., 2009). Point-wise prediction er-

ror is common, but it is known to be inappropriate in scenarios like extreme class

imbalance (Joachims, 2005; Menon and Elkan, 2011), where it favors the trivial

classifier that always predicts the most common label. Other standard performance

measures are the precision, recall and F1 measure (macro or micro averaged) (Se-

bastiani, 2002; Tsoumakas et al., 2009). Here we propose a useful generalization

of pointwise prediction error that also provides a useful foundation for formulating

later training algorithms: The idea is to introduce an OWA error measure for pre-

diction instead of ranking. For a given x, this new OWA-prediction error is defined

by ∑
y∈Y (x)

ασ(x,y)1
(
s(x, y) ≤ t(x)

)
+
∑
ȳ∈Ȳ (x)

απ(x,ȳ)1
(
s(x, ȳ) > t(x)

)
, (3.8)

in which αi is the ith element of a vector α with length len(α) = |Y (x)|+ |Ȳ (x)|

and σ(x, y) and π(x, ȳ) are defined as follows. The function σ(x, y) gives the

position of y in the list of scores s(x, y1) ≤ s(x, y2) ≤ · · · sorted in ascending

order among y1, y2, · · · ∈ Y (x). The function π(x, ȳ) gives the position of ȳ in

the list of scores s(x, ȳ1) ≥ s(x, ȳ2) ≥ · · · sorted in descending order among

ȳ1, ȳ2, · · · ∈ Ȳ (x).

An upper bound on the exact match error is achieved by setting α = 11 (i.e., all

0s except a 1 in the first position), whereas the pointwise prediction error (3.7) is

achieved by setting α = 1.
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Proposition 1 An upper bound on the exact match error is achieved by setting

α = 11 in the OWA-prediction error (3.8), i.e.

1
(
y ∈ Y (x), ȳ ∈ Ȳ (x),

(
s(x, y) < t(x)

)
∨
(
t(x) ≤ s(x, ȳ)

))
≤∑

y∈Y (x)

ασ(x,y) 1
(
s(x, y) ≤ t(x)

)
+
∑
ȳ∈Ȳ (x)

απ(x,ȳ) 1
(
s(x, ȳ) > t(x)

)
. (3.9)

See Appendix A.1 for a proof.

3.1.5 Training the Score Function

Given a target task, a standard approach to training, arising from work on classifi-

cation, is to minimize a convex upper bound on the performance measure of interest

(Tsochantaridis et al., 2005; Joachims, 2005).

For example, for ranking, using a convex upper bound on OWA loss has proved

to provide state of the art results (Usunier et al., 2009; Weston et al., 2011). In our

co-embedding framework, the training problem is

min
U,V

∑
x∈S

∑
y∈Y (x)

∑
ȳ∈Ȳ (x)

απ(x,ȳ)L
(
s(x, y)− s(x, ȳ)

)
, (3.10)

whereL
(
s(x, y)−s(x, ȳ)

)
≥ 1
(
s(x, y) ≤ s(x, ȳ)

)
for a convex and non-increasing

loss functionL. Here the parametersU and V appear in the score model, either (3.1)

or (3.3).

For prediction, recent improvements in multilabel classification and tagging

have resulted from the use of so-called calibrated losses (Fürnkranz et al., 2008;

Guo and Schuurmans, 2011). Interestingly, these losses are both convex upper

bounds on (3.8) for different choices of α (not previously realized). For exam-

ple, the first approach uses α=a1 to upper bound point-wise error (3.7), while the

second uses α=11 to achieve an upper bound on exact match error. The resulting

training problem can be formulated as

min
U,V,u0

∑
x∈S

∑
y∈Y (x)

ασ(x,y)L
(
s(x, y)− t(x)

)
+
∑
x∈S

∑
ȳ∈Ȳ (x)

απ(x,ȳ)L
(
t(x)− s(x, ȳ)

)
, (3.11)
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where

L
(
s(x, y)− t(x)

)
≥ 1
(
s(x, y) ≤ t(x)

)
and

L
(
t(x)− s(x, ȳ)

)
≥ 1
(
s(x, ȳ) > t(x)

)
for a convex and non-increasing loss function L. Here the parameter u0 appears in

the threshold model, either (3.2) or (3.4).

Unfortunately, even though convex loss functions are common in co-embedding

approaches, they do not make the training problems (3.10) and (3.11) convex. For

the alignment model (3.1), non-convexity arises from the bilinear interaction be-

tween U and V , whereas the nonlinearity of the distance model (3.3) creates non-

convexity when composed with the loss. Therefore, it is currently standard practice

in co-embedding to resort to local optimization algorithms with no guarantee of

solution quality. The most popular choice is alternating descent in the alignment

model, since the problems are convex in U given V , and vice versa. Even then,

the distance model does not become convex even in single parameters, and local

descent is used (Sutskever and Hinton, 2008; Hinton and Paccanaro, 2002).

3.2 Alignment-based Co-embedding for Association
Learning

We now introduce the main formulation we consider in this chapter. Our goal is to

first demonstrate that the previous training formulations (3.10) and (3.11) can be re-

expressed in a convex form, subject to a relaxation of the implicit rank constraint.

Interestingly, the convex reformulation extends to the distance based score model

(3.3) as well as the alignment based score model (3.1), after an initial change of

variables. In this section, we focus on the alignment score model only.

3.2.1 Convex Relaxations for Alignment Model

For the alignment model (3.1), one can re-parametrize the score function as

sM(x, y) = φ(x)>Mψ(y) (3.12)
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for a matrix variable M = U>V ∈ Rm×n. This simple change of variables allows

the problems (3.10) and (3.11) to be expressed equivalently as minimization overM

subject to the constraint that rank(M) ≤ d. Since rank is not convex, we introduce

a relaxation and replace rank with a trace norm regularization of M .1

Since we assumed the loss function in (3.10) and (3.11) was convex, a linear

parametrization of the score function s (3.12) coupled with replacing the rank con-

straint by trace norm regularization leads to a convex formulation of the training

problems (3.10) and (3.11) respectively. In particular, (3.10) becomes minimizing

the following over M∑
x∈S

∑
y∈Y (x)

∑
ȳ∈Ȳ (x)

απ(x,ȳ)L
(
sM(x, y)−sM(x, ȳ)

)
+λ‖M‖tr, (3.13)

where we have introduced a regularization parameter λ, which allows the desired

rank to be achieved by a suitable choice (Cai et al., 2008).

Similarly, for prediction, (3.11) becomes

min
M,m

∑
x∈S

∑
y∈Y (x)

ασ(x,y)L
(
sM(x, y)− tm(x)

)
∑
ȳ∈Ȳ (x)

απ(x,ȳ)L
(
tm(x)− sM(x, ȳ)

)
+ λ‖M‖tr, (3.14)

which is jointly convex in the optimization variables M and m = U>u0 using the

model (3.1) and (3.2). Although these reformulations are not surprising, below we

discuss how the resulting optimization problems can be solved efficiently.

3.2.2 Efficient Training Algorithm

Let us write the training problem as

min
M

F (M) + λ‖M‖tr, (3.15)

whereF denotes the convex training objective of interest. Significant recent progress

has been made in developing efficient algorithms for solving such problems (Dudik

1 The trace norm is known to be the tightest convex approximation to rank, in that it is the
bi-conjugate of the rank function over the spectral-norm unit sphere (Recht et al., 2010).
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et al., 2012). Early approaches were based on alternating direction methods that

exploited variational representations of the trace norm via, for example

‖M‖tr =
1

2
min
Ω�0

tr(M>Ω−1M) + tr(Ω). (3.16)

Given such a characterization, an alternating direction strategy can successively

optimize M and Ω, exploiting the fact that Ω will have a closed form update (Ar-

gyriou et al., 2008; Grave et al., 2011). Unfortunately, such methods do not scale

well to large problems because a full factorization must be computed after each

iteration.

Another prominent strategy has been to exploit a simple projection operator,

singular value thresholding (Cai et al., 2008), in a proximal gradient descent al-

gorithm (Ji and Ye, 2009). Unfortunately, once again scaling is hampered by the

requirement of computing a full singular value decomposition (SVD) in each iter-

ate.

A far more scalable approach has recently been developed based on a coordinate

descent. Here the idea is to keep a factored representation A and B of M such that

M = AB>,

where the search begins with thin A and B matrices and incrementally grows them

(Dudik et al., 2012). The benefit of this approach is that only the top singular vector

pair is required on each iteration, which is a significant saving over requiring the

full SVD.

A useful improvement is the recent strategy of Zhang et al. (2012), which com-

bines the approach of Dudik et al. (2012) with an earlier method of Srebro et al.

(2004). Here the idea is to start with thin factors A and B as before, but locally op-

timize these matrices by replacing the trace norm of M with a well known identity

‖M‖tr = min
A,B:AB>=M

1

2

(
‖A‖2

F + ‖B‖2
F

)
(3.17)

(Srebro et al., 2004). The key is to escape a local minimum when the local opti-

mization terminates: here the strategy of (Dudik et al., 2012) is used to escape by
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generating a column to add to A and B. In particular, to escape local minima one

need only solve

max
a,b:‖a‖≤1,‖b‖≤1

−a>∇F (M)b (3.18)

to recover a new column a and b to add to A and B respectively, subject to a small

line search

min
µ≥0,ν≥0

F
(
µM + νab>

)
+ λ(µc+ ν) (3.19)

for scalar µ and ν, where c = 1
2
(‖A‖2

F+‖B‖2
F ) at the current iterate. The solution to

(3.18) can be efficiently computed via the leading left and right singular vector pair

of−∇F (M). This method, which is actually a boosting approach, is quite effective

(Zhang et al., 2012), often requiring only a handful of outer escapes to produce an

optimalM in our experiments. For reduction to boosting and in particular Adaboost

see page 82, Example 4.2 of Yu (2013).

3.2.3 Multi-relational Extension

Often an association problem involves additional context that determines the rela-

tionships between objects x and y. Such context can be side information, or specify

which of an alternative set of relations is of interest. To accommodate this exten-

sion, it is common to introduce a third set of objectsZ . Obviously, more sets can be

introduced. Section 2.3.2 provides some examples on multi-relational association

learning problems.

A typical form of training data still consists of “must link” and “must not link”

tuples (x, y, z) ∈ X × Y × Z . (The problem is now implicitly a hyper-graph.)

Let E denote the set of positive “must link” tuples, let Ē denote the set of negative

“must not link” tuples, let S = E ∪ Ē, and let E0 denote the set of remaining

tuples. The sets E and Ē are presumed to be finite. For a given pair (x, z), we let

Y (x, z) = {y : (x, y, z) ∈ E} and Ȳ (x, z) = {ȳ : (x, ȳ, z) ∈ Ē}.

Such an extension can easily be handled in the framework of score functions. In

particular, one can extend the concept of an association score to now hold between

three objects via s(x, y, z). Standard problems can still be posed.

Ranking: given (x, z) sort the elements ofY according to the scores s(x, yi1 , z) ≥

s(x, yi2 , z) ≥ · · · .
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Prediction: given (x, z) enumerate y ∈ Y that satisfy s(x, y, z) > t(x, z) for a

threshold t(x, z).

Query answering: given (x, y, z) return sign(s(x, y, z)− t(x, z)).

The embedding framework can be extended to handle such additional objects

by also mapping z to a latent representation from an initial feature representation

ξ(z) ∈ Rp.

The linear alignment based model (3.12) can be easily extended by expanding

the matrix M to a three-way tensor T , allowing a general alignment score function

to be expressed

sT (x, y, z) =
∑
ijk

Tijkφ(x)iψ(y)jξ(z)k (3.20)

which is still linear in the parameter tensor T .

Such a parametrization will maintain convexity of the previous formulations.

However, tensor variables introduce two problems in the context of co-embedding.

First, there is no longer a simple notion of rank, nor a simple convex regularization

strategy that can effectively approximate rank. Second, the tensor variable can be-

come quite large if the initial feature dimensionsm, n and p are large. Some current

work ignores this issue and uses a full tensor (Socher et al., 2013a; Jenatton et al.,

2012), but others have found success by working with compressed representations

(Nickel et al., 2011; Gantner et al., 2010; Rendle and Schmidt-Thieme, 2009).

In Section 3.4 we will consider a compact linear representation used by Rendle

and Schmidt-Thieme (2009), which decomposes T into the repeated sum of two

base matrices N and P , such that Tijk = Nij + Pkj . Convex co-embedding can be

recovered with such a representation, but controlling the rank of N and P through

trace norm regularization.

3.3 Case Study: Multilabel Prediction

To investigate the efficacy of convex embedding, we conducted an initial experi-

ment on multilabel classification with the multilabel data sets shown in Table 3.1.

In each case, we used 1000 examples for training and the rest for testing (except

27



Data set examples features labels
Emotion 593 72 6
Scene 2407 294 6
Yeast 2417 103 14
Mediamill 3000 120 30
Corel5K 4609 499 30

Table 3.1: Data properties for co-embedding experiments for multilabel prediction.
1000 examples used for training and the rest for testing (2/3-1/3 split for Emotion).

Emotion where we used a 2
3
, 1

3
train-test split), repeating 10 times for different ran-

dom splits.

In particular, we used the alignment score model (3.12) and a smoothed version

(3.22) of the large margin multilabel loss in (3.21), which gave state of the art results

(Guo and Schuurmans, 2011):

∑
x∈S

max
y∈Y (x)

L
(
m(x, y)

)
+ max

ȳ∈Ȳ (x)
L(m̄

(
x, ȳ)

)
(3.21)

≤
∑
x∈S

softmax
y∈Y (x)

L̃
(
m(x, y)

)
+ softmax

ȳ∈Ȳ (x)
L̃
(
m̄(x, ȳ)

)
, (3.22)

where

m(x,y)=s(x,y)−t(x), m̄(x,ȳ)= t(x)− s(x,ȳ),

L(m)=(1−m)+; L̃(m)=

{
1
4
(2−m)2

+ if 0≤m≤2

(1−m)+ otherwise,

and

softmax
y∈Y

f(y) = ln
∑
y∈Y

exp
(
f(y)

)
.

(Note that (3.21) follows from the loss in (3.14) using α=11.)

The aim of this study is to compare the global training method developed above

(CVX), which uses a convex parametrization (M and m), against a conventional

alternating descent strategy (ALT) that uses the standard factored parametrization

(U>V = M and U>u0 = m). To ensure a fair comparison, we first run the global

method to extract the rank of M , then fixed the dimensions of U and V to match.

For a regularization parameter λ, we regularize the trace norm of M in the convex
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Corel Emot. Media. Scene Yeast
CVX time 6.0s 0.3s 10.6s 3.4s 3.6s
ALT time 9.2s 3.0s 497.6s 19.5s 8.0s
CVX obj 4014 1060 3996 2593 3635
ALT obj 4014 1060 3996 2593 3635
ALT0 obj 4022 1077 4126 2603 3637
CVX err 7% 29% 11% 18% 46%
ALT err 7% 29% 11% 18% 46%
ALT0 err 7% 31% 14% 18% 51%

λ 0.3 0.45 0.2 3.0 1.0
CVX rank 19 4 3 4 3

Table 3.2: Multilabel prediction results averaged over 10 splits: time in seconds; aver-
age objective value over 100 random initializations (ALT0 indicates initializing from 0);
pointwise test error; regularization parameter and rank of CVX solution.

parametrization as λ‖M‖tr, while the squared Frobenius norm of U and V in the

factored form as λ
2
(‖U‖2

F + ‖V ‖2
F ). Recall from (3.17) that

‖M‖tr = min
U,V : U>V=M

1

2

(
‖U‖2

F + ‖V ‖2
F

)
.

The results of this experiment, given in Table 3.2, are surprising in two respects.

First, under random initializations, we found that the local optimizer, ALT, achieves

the global objective in all the data splits on all data sets for all 100 initializations

in this setting. Consequently, the same training objectives and test errors were ob-

served for both global and local training. Evidently there are no local minima in the

problem formulation (3.14) using loss (3.22) with squared Frobenius norm regular-

ization, even when using the factored parametrization U>V = M and U>u0 = m.

An additional investigation reveals that there are non-optimal critical points in the

local objective, as shown by initializing ALT with all zeros; see Table 3.2.

3.4 Case Study: Tag Recommendation

Next, we undertook a study on a multi-relational problem: solving Task 2 of the

2009 ECML/PKDD Discovery Challenge. This problem considers three sets of

entities—users, items, and tags—where each user has labeled a subset of the items

with relevant tags. The goal is to predict the tags the users will assign to other items.

No explicit features are available. Here we let X denote the set of users, Z the set
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of items, and Y the set of tags respectively; and used the feature representations

φ(x) = 1x, ψ(y) = 1y and ξ(z) = 1z in the tensor model (3.20). The training

examples are provided in a data tensor E, such that E(x, y, z) = 1 indicates that

tag y is among the tags user x has assigned to item z; E(x, y, z) = −1 indicates

that tag y is not among those user x assigned to item z; and E(x, y, z) = 0 denotes

an unknown element. The goal is to predict unknown values subject to a constraint

that at most five tags can be active for any (user, item) pair.

The winner of this challenge (Rendle and Schmidt-Thieme, 2009) used a co-

embedding model in the non-convex form outlined above, hence they only consid-

ered local training. Here, we investigate whether a convex formulation can improve

on such an approach, using the Challenge data provided by BibSonomy. Following

Jäschke et al. (2008) we exploit the core at level 10 subsample, which reduces the

data set to 109 unique users, 192 unique items and 229 unique tags.

For prediction, following Rendle and Schmidt-Thieme (2009), we rank the tags

that each user assigns to an item. Given a score function s, the top five tags y are

predicted for a given user-item pair (x, z) via

Ê(x, y, z) =

{
1 if s(x, y, z) in top 5 values of s(x, :, z)
−1 otherwise.

Experimental Settings We parametrize the tensor with the pairwise interaction

model (Rendle and Schmidt-Thieme, 2010; Chen et al., 2013b), which uses the

decomposition

s(x, y, z) = Txyz = Nx,y + Pz,y ∀x, y, z. (3.23)

Following (Rendle and Schmidt-Thieme, 2009), we use the ranking logistic loss

function for learning N and P in the formulation (3.13), but replace their low rank

assumptions on N and P with a trace norm relaxation

Reg(N,P ) = λ1‖N‖tr + λ2‖P‖tr. (3.24)

The aim of this study is, again, to compare the global training method devel-

oped above (CVX), which uses the convex parametrization (N and P ), against a
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Method λ d1 d2 obj F1 time
CVX 10 59 73 42 0.42 41
ALT 10 59 73 42 0.42 980
ALT0 10 59 73 1402 0.08 6
ALT1 10 59 73 150 0.32 880
ALT 1e-4 32 32 3.5 0.32 582
ALT 1e-4 64 64 3.5 0.34 597
ALT 1e-4 128 128 3.5 0.36 627
ALT 1e-4 256 256 3.5 0.36 669
ALT 5e-5 32 32 3.5 0.33 589
ALT 5e-5 64 64 3.5 0.32 594
ALT 5e-5 128 128 3.5 0.34 619
ALT 5e-5 256 256 3.5 0.34 690
ALT 0 32 32 3.5 0.32 583
ALT 0 64 64 3.5 0.33 593
ALT 0 128 128 3.5 0.33 634
ALT 0 256 256 3.5 0.31 688

Table 3.3: Tag recommendation results. All methods were initialized randomly, except
ALT0 indicates initializing from all 0s, and ALT1 indicates initializing from all 1s.

conventional alternating descent strategy (ALT) that uses a factored parametriza-

tion (U>V =N and Q>R=P ). We also include a Frobenius norm regularizer on

U , V , Q, and R following (Rendle and Schmidt-Thieme, 2009).

Reg(U, V,Q,R) =
λ1

2
(‖U‖2

F + ‖V ‖2
F ) +

λ2

2
(‖Q‖2

F + ‖R‖2
F ) (3.25)

Equation (3.17) explains the relation between regularizers used in the two settings

(3.24) and (3.25). Below, we apply a common regularization parameter λ = λ1 =

λ2 to the trace and squared Frobenius norm regularizers, and consider the rank

returned by CVX as well as the hard rank choices d1, d2 ∈ {32, 64, 128, 256}.

Experimental Results The results of this study are shown in Table 3.3 below.

The first four columns report the settings used: the training method, the shared reg-

ularization parameter λ, the rank of N and the rank of P . The final three columns

report the outcomes: the final objective value obtained, the value of the per-instance

averaged F1 measure on the test data (which is the evaluation criterion of the Dis-

covery Challenge), and the training time (in minutes).

The table is also organized into four vertical blocks. The top block provides a
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controlled comparison between the global training method developed in this sec-

tion, CVX, an alternating minimization, ALT. In this block, the global method is

first trained using the fixed regularization parameter λ, after which the rank of its

solutions are recovered, d1 = rank(N) and d2 = rank(P ). These are then used

to determine the dimensions of the matrices U>V = N and Q>R = P used by

ALT. The second and third block show the results for ALT using the fixed param-

eter values (d1, d2 and λ) that were used in the award winning approach of Rendle

and Schmidt-Thieme (2009). Finally, the fourth block shows the results for ALT

without any regularization, but imposing only rank constraints.

There are a number of interesting conclusions one can draw from these results.

First, it can be seen that both CVX and ALT with the parameter values shown in the

top block achieve the best F1 value among all methods, even surpassing the result

quality of the award winning parametrization on this data set.

More interestingly, we see that, once again, ALT with random initialization

achieves the same result as CVX when controlling for rank and regularization. This

result suggests that one or a combination of the introduction of trace norm regular-

ization, the parametrization, or the optimization method has somehow eliminated

local minima from the problem once again. Indeed, by initializing ALT with all

0s or all 1s one can see again that convergence to non-optimal critical points is

obtained; such points are avoided by CVX.

3.5 Conclusion

We have investigated a general approach to co-embedding that unifies alignment

based and distance based score models. Based on this unification, we provided a

general convex formulation of alignment models by replacing the intractable rank

constraint with a trace norm regularization. To achieve scalable training for these

models, we adopted a recent hybrid training strategy that combines an outer “boost-

ing” loop with inner smooth optimization. The resulting training procedure is more

efficient than alternating descent while yielding global instead of local solutions.

In terms of the training objective value achieved with local and global optimization
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strategies, in our experiments for all random initializations of local optimization, for

both experiments local and global objective values have been equal. However, there

have been specific initializations of local training, that led to non-optimal critical

points.
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Chapter 4

Scalable Metric Learning for
Distance Based Co-embedding

The goal of metric learning is to learn a distance function that is tuned to a target

task. For example, a useful distance between person images would be significantly

different when the task is pose estimation versus identity verification. Since many

machine learning algorithms rely on distances, metric learning provides an impor-

tant alternative to hand-crafting a distance function for specific problems. For data

with a single modality, metric learning has been well explored (Xing et al., 2002;

Globerson and Roweis, 2005; Davis et al., 2007; Weinberger and Saul, 2008, 2009;

Jain et al., 2012). However, for multi-modal data, such as comparing text and im-

ages, metric learning has been less explored, consisting primarily of a slow semi-

definite programming approach (Zhang et al., 2011) and local alternating descent

approaches (Xie and Xing, 2013).

Concurrently, there is a growing literature that tackles co-embedding problems,

where multiple sets or modalities are embedded into a common space so that their

elements could be associated. Current approaches to these problems are mainly

based on deep neural networks (Ngiam et al., 2011; Srivastava and Salakhutdinov,

2012; Socher et al., 2013b; Frome et al., 2013) and simpler non-convex objectives

(Chopra et al., 2005; Larochelle et al., 2008b; Weston et al., 2010; Cheng, 2013;

Akata et al., 2013). Unlike metric learning, the focus of this previous work has been

on exploring heterogeneous data, but without global optimization techniques. This

disconnect appears to be unnecessary however, since the standard association score
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used for distance based co-embedding is the squared Euclidean distance metric.

In this chapter, we study distance based co-embedding and demonstrate that

it can be cast as metric learning. Once formalized, this connection allows metric

learning methods to be applied to the wide class of association problems such as link

prediction, multilabel and multiclass tagging, and ranking. Previous formulations of

co-embedding as metric learning were either non-convex (Zhai et al., 2013; Duan

et al., 2012), introduced approximation (Akata et al., 2013; Huang et al., 2014),

dropped positive semi-definiteness (Chechik et al., 2009; Kulis et al., 2011), or

required all data to share the same dimensionality (Garreau et al., 2014). Instead,

we provide a convex formulation applicable to heterogeneous data.

Once the general framework has been established, the chapter then investigates

optimization strategies for metric learning that guarantee convergence to a global

optimum. Typically, metric learning approaches are expressed with convex formu-

lations subject to a semi-definite constraint over a matrix variable, C � 0. Standard

attempts to solve such a convex constrained problem suffer from scalability issues.

An alternative approach that is gaining popularity works with a low-rank factoriza-

tion Q instead, implicitly maintains positive semi-definiteness through C = QQ>

(Burer and Monteiro, 2003). This approach allows one to optimize over smaller ma-

trices while avoiding the semi-definite constraint. Recently, Journée et al. (2010)

proved that if Q has more columns than the globally optimal rank, a local minimum

Q∗ provides a global solution C∗ = Q∗Q∗>, as long as the objective is smooth and

convex in C. This result is often neglected in the metric learning literature. How-

ever, as discussed in this chapter, it can be directly used to perform a single local

search and achieve global results to metric learning.

Moreover, by using this result, we have been able to develop a fast iterative ap-

proach to metric learning that improves previous approaches (Journée et al., 2010;

Zhang et al., 2012). Next, we empirically compare the run time of the proposed and

original versions of the algorithm on three examples. This chapter then concludes

with an empirical investigation of two distance based co-embedding tasks: multi-

label classification and tagging. In these tasks, we first train co-embedding models

both in a convex form in the presence of a semidefinite constraint and also the non-
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convex factored form. For different local minima achieved from local optimization

applied to the the non-convex formulations, we illustrate the changes in geometrical

spread of local minima over different ranks of Q. The outcome graphs demonstrate

that the diversity of local minima contracts rapidly in these problems and that local

solutions approach global optimality well before the true rank is attained. We then

evaluate the performance of the approach on these case studies.

The main contributions of this chapter are the following:

Contribution 6 The relationship between association problems and metric learn-

ing is demonstrated.

Contribution 7 A convex training formulation for distance based co-embedding,

and hence for heterogeneous metric learning, is developed.

Contribution 8 We illustrate how the distribution of local minima in the non-

convex factored formulation of metric learning is affected by increasing rank.

Contribution 9 A scalable iterative algorithm for training a smooth convex objec-

tive function subject to a semi-definite constraint is developed.

Contribution 10 A proof of convergence is provided for the proposed algorithm.

Contribution 11 The conditions under which the non-convex training formulation

yields globally optimal solutions are identified.

4.1 Preliminaries: Metric Learning

The goal of metric learning is to learn a distance function between data instances

that helps solve prediction problems. For example, to recognize individual people

in images a distance function needs to emphasize certain distinguishing features

(such as hair color, etc.), whereas to recognize person-independent facial expres-

sions in the same data, different features should be emphasized (such as mouth

shape, etc.). To obtain task-specific distances without extensive manual design, su-

pervised metric learning attempts to exploit task-specific information to guide the

learning process.
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Suppose one has a sample of t observations, xi∈X , and a feature map φ where

φ : X →Rn. Then a training matrix φ(X) =
[
φ(x1), . . . , φ(xt)

]
∈ Rn×t can be

obtained by applying φ to each of the original data points.1 A natural distance

function between points x1, x2 ∈ X can then be given by a Mahalanobis distance

over the feature space

dC(x1,x2) =
(
φ(x1)− φ(x2)

)>
C
(
φ(x1)− φ(x2)

)
(4.1)

specified by some positive semi-definite inverse covariance matrix C ∈ C ⊂ Rn×n.

Although an inverse covariance in this form can be learned in an unsupervised

manner, there is often task dependent information that should influence the learn-

ing and improve it compared to an unsupervised disance learning. As a general

framework, Kulis (2013) unifies metric learning problems as learning a positive

semi-definite matrix C that minimizes a sum of loss functions plus a regularizer:2

min
C�0,C∈C

∑
i

Li
(
φ(X)>Cφ(X)

)
+ β reg(C). (4.2)

For example, in large margin nearest neighbor learning (Weinberger and Saul, 2009),

one might want to minimize

L
(
φ(X)>Cφ(X)

)
=
∑

(i,j)∈S

dC(xi,xj) +
∑

(i,j,k)∈R

[
1 + dC(xi,xj)− dC(xi,xk)

]
+

where S is a set of “should link” pairs, and R provides a set of triples (i, j, k)

specifying that if (i, j) ∈ S then xk should have a label different than xi.

Although supervised metric learning has typically been used for classification,

one can apply it to other settings where distances between data points are useful,

like kernel regression or ranking. Interestingly, the applicability of metric learning

can be extended well beyond the framework (4.2) by additionally observing that co-

embedding elements from different sets can be expressed as a joint metric learning

problem.

1 Throughout the document we extend functions R→ R to vectors or matrices element-wise.
2 Kulis (2013) equivalently places the trade-off parameter on the loss rather than the regularizer.
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4.2 Distance-based Co-embedding as Metric Learn-
ing

Recall the distance based co-embedding framework from Chapter 3: we are given

two sets of data objects X and Y and wish to map the elements x ∈ X and y ∈ Y

from each set into a common Euclidean space. Importantly, the modality of data

in X and Y and the number of features in the initial representation of elements

from these sets could be different. The association score s(x, y) is then computed

based on the Euclidean distances between co-embedding vectors. In other words,

the closer two objects are in embedding space, the more associated they are con-

sidered. Based on the association score and decision thresholds, the final outputs

are determined (which could be predictions, answers to queries, or a ranking over

items of one of the sets). To provide adaptive decision thresholds, when required, a

dummy element is also embedded from each set as a distance keeper.

Input layer

Embedding layer

Co-embedding layer

Output layer

targetd(x,y)

t1(x)

t2(y)

...

...

...

...

φ(x)1
φ(x)2

φ(x)n

ψ(y)1
ψ(y)2

ψ(y)m

U

V

...

...

u0

v0

Figure 4.1: A neural network view of co-embedding

Figure 4.1 depicts this set-up for prediction or query answering as a neural net-

work. The inputs to the network are the feature representations φ(x) ∈ Rn and

ψ(y) ∈ Rm. The first hidden layer, the embedding layer, linearly maps input to

embeddings in a common d dimensional space via,

u(x) = Uφ(x), v(y) = V ψ(y).

The second hidden layer, the co-embedding layer, computes the distance func-
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tion, d(x,y) that holds the distance between embedding vectors u(x) and v(y)

(outputs of the previous layer), via

d(x,y) = −s(x, y) = ‖u(x)− v(y)‖2, (4.3)

Here, association score s(x, y) equals −d(x,y).

In addition to the distance function, two decision thresholds, t1(x) and t2(y) are

computed in co-embedding layer, via

t1(x) = ‖u(x)− u0‖2, (4.4)

t2(y) = ‖v(y)− v0‖2. (4.5)

Function t1(x) models the association threshold that an element x ∈ X uses. Simi-

larly t2(y) holds association threshold that an element y ∈ Y uses. Data dependent

modeling of thresholds, can increase the expressiveness of the model. To ensure

that the threshold functions return valid distances, particularly to avoid negative

values, we simply model them as a distance in first place, which is nonnegative by

definition. In particular, t1(x), is modeled as the distance between the embedding

point u(x) and a reference point u0, where a single u0 is used for every x ∈ X .

Here, u0 could be viewed as the embedding of a null object. Note that u0 is in

turn a parameter to be learned. Similarly, t2(y) is the distance between v(y) and a

reference point v0, where a single v0 is used for every y ∈ Y .

The output layer nonlinearly combines the association scores and thresholds

to predict targets. For example, in a multilabel classification problem, given an

element x∈X , its association to each y∈Y can be determined via:

label(y|x) = sign
(
t1(x)− d(x,y)

)
. (4.6)

Alternatively, in a symmetric (i.e. undirected) link prediction problem, the associa-

tion between a pair of elements x∈X , y∈Y can be determined by

label(x,y) = sign
(

min(t1(x), t2(y))− d(x,y)
)
, (4.7)

and so on.3 As shown in Figure 4.1, in this neural network with two hidden layers,

the trainable parameters, U , V , u0 and v0, appear in the first layer only.
3Intuitive examples of the application of the above prediction formulations could be provided in
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Although the relationship to metric learning might not be obvious, it is useful

to observe that the quantities in (4.3) can be expressed in terms of a symmetric

semidefinite matrix C (4.8), where C ∈ Rp×p, p = n+m+ 2.

C =


U>U V >U u>0 U v>0 U
U>V V >V u>0 V v>0 V
U>u0 V >u0 u>0 u0 v>0 u0

U>v0 V >v0 u>0 v0 v>0 v0


=
[
U V u0 v0

]
>
[
U V u0 v0

]
(4.8)

The recovery formulations are presented as:

dist(x,y) =
[
φ(x),−ψ(y), 0, 0

]
C
[
φ(x),−ψ(y), 0, 0

]>, (4.9)

t1(x) =
[
φ(x), 0, −1, 0

]
C
[
φ(x), 0, −1, 0

]>, (4.10)

t2(y) =
[

0, −ψ(y), 0, −1
]
C
[

0, −ψ(y), 0, −1
]>. (4.11)

This yields a novel distance function with mutually consistent threshold represen-

tation, all linear in C.

Modeling comparison An important advantage that the distance based reformu-

lation (4.8) holds over the alignment based co-embedding reformulation (3.12) of

Chapter 3, is that (4.8) allows an effective way to encode side information about

elements of each set (in addition to information about elements from different sets)

with price of using more parameters. For example, if prior information is available

that allows one to specify linear distance constraints between elements y ∈ Y , then

these same constraints can be imposed on the learned embedding while maintaining

convexity. In particular, let C̃ denote them×m submatrix ofC in (4.8) correspond-

ing to V >V . If one would like to impose the constraint that object y1 is closer to

the context of modeling customer purchase decisions or modeling social relationships. For exam-
ple, (4.6) could be useful to model a customer’s purchase decision. By this model, each customer
buys any item whose distance in the co-embedding space is close enough for the threshold he/she
puts for buying stuff. On the other hand, 4.7 could be useful in a model for predicting friendship
relationships. By this model, a friendship relationship between x and y is formed if their distance in
co-embedding space is small enough for the personal thresholds each of them put for forming their
friendships.
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y2 than y3, i.e., d(y1, y2) < d(y1, y3) (say, based on prior knowledge), then this can

be directly enforced in the joint embedding submatrix C̃ via the linear constraint in

(4.12) below: (
ψ(y1)−ψ(y2)

)>
C̃
(
ψ(y1)−ψ(y2)

)
<

(
ψ(y1)−ψ(y3)

)>
C̃
(
ψ(y1)−ψ(y3)

)
. (4.12)

In Chapter 5, we exploit this idea to impose structure on prediction models, in

particular in structured multi-label prediction.

While, alignment models can encode between-set prior knowledge in a similar

way:

φ(x1)>Mψ(y1) < φ(x1)>Mψ(y2), (4.13)

encoding in-set information is not straightforward in the alignment representation

(3.12) without losing convexity.

On the other hand, alignment models enjoy smaller number of parametersO(mn)

compared to distance modelsO(m2 +n2 +mn). Hence learning an alignment mod-

els is supposed to need less data.

Finally, the semantic of score in alignment models and distance models are

different. Alignment models tend to match angles while distance models tend to

lower distances between associated items.

Convex heterogeneous metric learning framework Finally, based on the new

representation proposed, one can extend the general metric learning framework

(4.2) to encompass co-embedding in a novel formulation.

Let Y ∈ Rty×m denote the data matrix from the Y space and let ψ̂(Y ) ∈ Rt×m

denote a zero-padded version of ψ(Y ); that is, a matrix whose top ty ×m block is

ψ(Y ) with the remaining t− ty rows being all zero. Then, defining f(X, Y ) as,

f(X, Y ) =
[
φ(X)>,−ψ̂(Y )>,−1,−1

]> ∈ Rt×(n+m+2), (4.14)

where 1 denotes an all-one vector (of dimension t in this case), we propose to find

the matrix C by solving

min
C∈Rp×p,C�0

∑
i

Li
(
f(X, Y )>C f(X, Y )

)
+ β reg(C) . (4.15)
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Similar to the alignment model of Chapter 3, using general convex loss functions

Li in (4.15) makes the training loss function totally convex in the optimization

parameter C.

Duan et al. (2012) developed a similar algorithm for domain adaptation, which

learned a matrix C � 0 instead of U and V ; however, they approached a less

general setting, which, for example, did not include thresholds nor general losses.

Furthermore, their formulation leads to a non-convex optimization problem, due

to an outer optimization over a dual variable α, while (4.15) leads to a convex

optimization problem when the losses Li and the regularizer are convex and β ≥ 0.

Regularization Regularization is an important and standard consideration in met-

ric learning, since the risk of overfitting is ever present. We select the most widely

used regularizer, the Frobenius norm, which, interestingly, if applied to the factors

yields the trace norm regularizer on C,

‖U‖2
F + ‖V ‖2

F + ‖u0‖2
F + ‖v0‖2

F = tr(C) = ‖C‖tr, (4.16)

where the trace norm ‖.‖tr (also known as nuclear norm) of a matrix is the sum of

its singular values. For a square matrix, the trace tr(.) is the sum of the elements

on its main diagonal. Crucially, the equality (4.16) allows one to optimize over

C directly without considering the implicit U , V , u0 or v0 components. This is a

common choice for metric learning since it is the tightest convex lower bound to

the rank of a matrix, a widely desired objective for compact learned models and

generalization. Moreover, for metric learning, since we have the constraint C � 0,

the non-smooth trace norm simplifies to ‖C‖tr = tr(C), a smooth function which

allows efficient optimization.

4.3 Algorithm

In this section we propose a scalable training algorithm, the Iterative Local Algo-

rithm (ILA). After presenting the goal, we describe the rough idea and then proceed

to the formal statement of the algorithm and the theory behind it. The section con-

cludes with the proof of convergence of the ILA algorithm.
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4.3.1 The Goal

Given the convex training problem (4.15) and the regularizer in (4.16), the immedi-

ate question is how to efficiently solve it.

First note that, using the loss formulation

L(C) =
∑
i

Li

(
f(X, Y )>Cf(X, Y )

)
,

and the common regularizer tr(C), the training objective can be written as

min
C∈Rp×p,C�0

f(C) where f(C) = L(C) + β tr(C). (4.17)

One way to encode the semidefinite constraint is via a change of variable C =

QQ>:

min
Q∈Rp×d

f(QQ>) = min
Q∈Rp×d

L(QQ>) + β tr(QQ>). (4.18)

This optimization, however, becomes non-convex inQ. The reason is that convexity

of a function L is not preserved with respect to the variable Q after composing with

a quadratic function of that variable, i.e. QQ>.

Recently, however, Journée et al. (2010) showed that local optimization of a

related trace constrained problem attains global solutions for rank-deficient local

minima Q ∈ Rp×d; that is, if Q is a local minimum of (4.18) with rank(Q) < d,

then QQ> is a global optimum of (4.17). This is useful, since once conditions are

satisfied, enables one to apply a single local search and find the globally optimal

solution. In what follows, C∗ will denote an optimum of (4.17) and d∗ its rank. Al-

though we have inequality rather than equality constraints, the proof follows easily

for our case using the techniques developed in (Bach et al., 2008; Journée et al.,

2010; Haeffele et al., 2014), and is a consequence of the following, more general

result.

4.3.2 General idea

Finding global minima of a convex function (such as the bowl-shaped function in

Figure 4.2 (left)) is straightforward, since any local minimum of a convex function
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Figure 4.2: Convex optimization (left) versus non-convex optimization (right) for
metric learning or distance based co-embedding

must also be a global minimum. In particular, for a smooth function, one can simply

apply gradient descent or any efficient local minimization method that can find a

local minimum. By contrast, finding a global minimum of a non-convex function is

a hard problem in general.

Recently, however, there has been renewed interest in developing algorithms

that can efficiently find global minima for certain non-convex objectives (see Figure

4.2 (right)) , and some recent advances have been achieved. A specific example is

optimizing the non-convex objective function in (4.18). Here, I first explain the

basic idea of how Journée et al. (2010) solve such a problem globally, then explain

a proposed improvement. For the purpose of these explanations, I exploit the toy

graphs in Figure 4.2.

Suppose one seeks the global minimum of a non-convex function with the form

shown on the right of Figure 4.2. Journée et al. (2010) suggest an iterative approach

where, starting from an initial point, a local search is performed until a critical point

is reached (depicted by the red dot shown in right graph of Figure 4.2). For the

problems of interest, we will establish that, for any critical point on the boundary of

the rank constraint that is not a global minimizer, a descent direction is guaranteed

to be available and easily recoverable. Notably, computing this descent direction

will not require computing the Hessian, which is usually too expensive even to

store. Once a direction has been identified, the process of escaping the current point

consists of adding a suitable column to the factor Q of C, as shown in Figure 4.3.

By repeatedly escaping boundary saddle points, a critical point will eventually

be reached where a descent direction is no longer available; in such a case, for the
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Figure 4.3: Iteratively inserting columns to factors Q of a positive semi-definite matrix C,
where C = QQ>.

specific objectives we consider below, Journée et al. (2010) have proved that such a

point must be a global minimum. The main drawback with this strategy is that each

local search for a critical point can be expensive, and the number of such searches

can be large.

Therefore, to reduce the overall number of iterations, a natural idea is to add

more than one column to Q in each iteration; in particular, we consider doubling

the number of columns added in successive updates. Similar to binary search, such

a strategy is intended to reduce the overall number of column expansions needed to

find the target solution from linear to logarithmic, while simultaneously exploiting

the fact that the local optimization is more efficient when the Q matrix has fewer

columns. In the next section, I therefore develop a strategy for generating a guar-

anteed descent direction that consists of k columns. We will be able to detect when

a sufficient number of columns has been added so that further descent is no longer

possible, and a global minimum found. Section 4.3.3 formalizes these statements

and proves them.

An important technicality we consider is that determining whether a critical

point is a saddle point or a local minimum depends on the domain of the function.

For example, a point in the domain A = {M | rank(M) ≤ r} could achieve a

local minimum but at the same time be a saddle point in a larger domain B where

B = {M | rank(M) ≤ r + 1} ⊃ A. Such a case only happens if the saddle

point is located on the boundary of A, which corresponds to the constraint being

active; that is, the rank of the matrix is exactly r and not smaller; see Figure 4.4 for
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Figure 4.4: Local minimum of the inner domain A happens to be a saddle point of the
outer domain B for A ⊂ B

an illustration. It is important to differentiate between these two types of critical

points in the upcoming argument. For example, although a local descent search

initiated from a randomly generated point is unlikely to settle on an interior saddle

point, our experiments show that local descents often converge to boundary points

that are saddles in a larger domain, such as illustrated in Figure 4.4.

4.3.3 Formal statement

In this section, I first establish some of the key technical claims that are required

before proposing the specific algorithm.

Proposition 1 Consider any local solution Q of the optimization problem (4.18),

i.e. a Q such that ∇L(QQ>)Q + βQ = 0. Let u1, ...,uk be the eigenvectors

corresponding to the top k positive eigenvalues λ1, ..., λk of −∇L(C) − βI , for

C = QQ>. Then, if C is not a solution to (4.17), it follows that

1. k > 0 (i.e. for a non-optimal solution C of (4.17), at least one eigenvalue of

−∇f(C) is positive),

2. Eigenvectors u1, ...,uk are orthogonal toQ, yielding Qk = [Q u1 ... uk] such

that Ck = QkQ
>
k = C +

∑k
i=1 uiu

>
i satisfies rank(Ck) = rank(C) + k; and

3. the descent direction
∑k

i=1 uiu
>
i is the solution to

argmin
‖ui‖≤1,i=1,...,k

u>i uj=0,i6=j, ui 6=0

〈
−∇L(C)− βI,

∑k
i=1 uiu

>
i

〉
. (4.19)
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See Appendix B.1 for the proof of the proposition.

Proposition 1 has a simple interpretation: Part 1 introduces a certificate of global

optimality for the optimization problem in (4.17), which will be used to design a

stopping criterion for the algorithm.

Part 2 identifies a strategy for selecting an initial point for the local optimization

of Problem (4.18) provided that the rank has been increased after encountering a

critical point. This is needed to restart the local search for the next critical point

after reaching a rank-constrained critical point in the current iteration. The new

initial point is generated by appending the new columns u1 ... uk (eigenvectors) to

the current local solution Q.

Part 3 shows that the proposed direction
∑k

i=1 uiu
>
i is in fact, a descent direc-

tion of the objective (4.17) at point C = QQ>. In other words, taking a sufficiently

small step from C in the proposed direction is guaranteed to decrease the value of

the objective (4.17), verifying that progress is made toward a global minimum at

every iteration (if the local search is performed properly).

Corollary 1 Let Q ∈ Rp×d. If

(i) Q is a local minimum of f(QQ>) with rank(Q) < d, or

(ii) Q is a critical point of f(QQ>) with rank(Q) = p,

then QQ> is a solution of (4.17).

Corollary 1 characterizes the conditions on the rank of a local solution that im-

ply it is globally optimal. The optimization can be halted as soon as one of these

conditions is fulfilled; see Appendix B.2 for a proof.

To efficiently solve (4.17), we now propose the Iterative Local Algorithm (ILA)

shown in Algorithm 1. ILA iteratively adds groups of columns to an initially empty

Q and performs a local optimization over Q ∈ Rp×d until convergence; see Figure

4.3 for an illustration.

The main advantage of this approach over simply setting d = p is that good ini-

tial points are generated, and incrementally growing d optimizes over much smaller

Q variables. Furthermore, one expects that when the number of columns d of Qinit
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Algorithm 1 Iterative local algorithm (ILA)
1: Input: L : C → R, β > 0
2: Output: Q, such that QQ> = minC:C�0 L(C) + β tr(C)
3: Q← 0, k ← 1, ε← 10−6 . Note L(QQ>) + tr(QQ>) is evaluable without forming
QQ>

4: while not converged do
5: {u1, ...,uj} ← up-to-k-top-positive-eigenvectors(−∇L(QQ>)− βI)
6: {λ1, ..., λj} ← up-to-k-top-positive-eigenvalues(−∇L(QQ>)− βI)
7: if j = 0 or λ1 ≤ ε then break . converged
8: k ← j
9: U ←

∑
i uiu

>
i

10: (a, b)← argmin
a≥0,b≥0

L(aQQ> + bU) + βa tr(QQ>) + βbk . Line search

11: Qinit ← [
√
aQ,
√
bu1, ...,

√
buk] . Start local optimization from Qinit

12: Q← locally optimize(Qinit, L(QQ>) + β tr(QQ>))
13: k ← 2k

14: return C = QQ>

is at least d∗, ILA will find the global optimum. In particular, if the local optimizer

in Line 12 of ILA always returns a local optimum whose rank is smaller than d if

d > d∗ (we call this a nice local optimizer), then the optimality of a rank-deficient

local minimum implies that ILA finds the global optimum when d > d∗. While in

theory we cannot guarantee such a behavior of the local algorithm, it always hap-

pened in our experiments, similar to what was reported in earlier work (Journée

et al., 2010; Haeffele et al., 2014).

The main novelty of ILA over previous approaches is in the initialization and

expansion of columns in Q, which reduces the number of iterations from d∗ to

O(log d∗) for nice local optimizers. In particular, motivated by Proposition 1, to

generate the candidate columns, ILA uses eigenvectors corresponding to the top k

positive eigenvalues of −∇L(C)− βI capped at 2i−1 columns on the ith iteration.

Such an exponential search quickly covers the space of possible d, even when d∗ is

large, while still initially optimizing over smaller Q matrices. This approach can be

significantly faster than the typical single column increment (Journée et al., 2010;

Zhang et al., 2012), whose complexity typically grows linearly with d∗.4

4 One can create problems where adding single columns improves performance, but we observe
in our experiments that the proposed approach is more effective in practice.
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Compared to earlier work, there are also small differences in the optimization:

Zhang et al. (2012) do not constrain C to be positive semi-definite. Journée et al.

(2010) assume an equality constraint on the trace of C; their Lagrange variable (i.e.,

regularization parameter) can therefore be negative. Finally, ILA more efficiently

exploits the local algorithm. The convergence analysis of Zhang et al. (2012) does

not include local training. In practice, we find that solely using boosting (with the

top eigenvector as the weak learner) without local optimization, results in much

slower convergence.

Corollary 1 immediately implies ILA solves (4.17) when the local optimizer

avoids interior saddle points.

Corollary 2 Suppose the local optimizer always finds a local optimum, where d is

the number of columns in Q. Then ILA stops with a solution to (4.17) in line 12

with rank(Q)<d or d= p. If, in addition, the local optimizer is nice, this happens

for d>d∗.

Due to the exponential search in ILA, the algorithm stops in at most log(p) iter-

ations when the local optimizer avoids interior saddle points, and in about log(d∗)

iterations for nice local optimizers. However, ILA can potentially be slower if there

are not enough eigenvectors to add in a given iteration; i.e., j < k in line 5.

Similarly to Journée et al. (2010); Zhang et al. (2012); Haeffele et al. (2014)

we have found that the local optimizer always returns local minima in practice.

However, all of these search-based algorithms risk strange behavior if the local

optimizer returns an interior saddle point. Note that even in this case, if d reaches

p in any iteration, ILA finds an optimum by Corollary 1. However, there is no

guarantee that this is possible, because there is no guarantee that the rank of Q

is not reduced in the local optimization step. If the rank reduction happens and

Q is a local optimum, QQ> is optimal by Corollary 1 and the algorithm halts.

Unfortunately, this is not the only possibility: in every iteration of ILA we obtain

Qinit by increasing the rank of the previous Q, but the ranks might be subsequently

reduced during the local optimization step. This creates the potential for a loop

where rank(Q) never reaches p.
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Such potential effects of interior saddle points have not been considered in pre-

vious papers. On the contrary, below we show that that ILA is still consistent under

mild technical conditions on L, even if the local optimizer can get trapped at interior

saddle points.

Proposition 2 Suppose that f is ν-smooth; that is, ‖∇f(C + S) − ∇f(C)‖tr ≤

νρ(S) for all C, S ∈ Rp×p, C, S � 0 and some ν ≥ 0, where ρ(S) denotes the

spectral norm of S. Assume furthermore, for simplicity, that L(C) ≥ 0 for all

C � 0. A local optimizer in line 12, i.e. an optimizer that returns a critical point

Q such that ∇f(QQ>)Q = 0, the matrix QQ> in ILA converges to the globally

optimal solution of (4.17).

(See Appendix B.3 for a proof.)

4.4 Empirical Computational Efficiency

To compare the exponential versus linear rank expansion strategies for ILA we first

consider a standard metric learning problem. In this experiment, we generated syn-

thetic dataX ∈ Rn×t from a standard normal distribution, systematically increasing

the data dimension from n = 1 to n = 1000 and increasing the sample sizes from

t = 250 to t = 2000. The training objective was set to

min
C�0
‖X>X −X>CX‖2

F + β tr(C) (4.20)

with a regularization parameter β = 0.5.

Figure 4.5 compares the run times of the linear versus exponential expansion

strategies, both of which optimize over Q of increasing width rather than C =

QQ>. Both methods used the same local optimizer but differed in how many new

columns were generated for Q in ILA Line 8. For the smaller sample size t = 250,

the exponential search already demonstrates an advantage as data dimension is in-

creased. For larger sample sizes, the advantage of the exponential approach be-

comes even more pronounced. In this case, when n is increased from 0 to 1000 the

run time of the linear expansion strategy goes from being about the same as of the

exponential strategy to much slower. The trend indicates that the exponential search

becomes more useful as the data dimension and number of samples increases.
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Figure 4.5: Comparing the run time in minutes (y-axis) of linear versus exponential
strategies in ILA as data dimension (x-axis) is increased. Top shows t = 250, bottom left
shows t = 1000, and bottom right shows t = 2000.
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4.5 Case Study: Multilabel Prediction

Next, we evaluated ILA on the challenging setting of multilabel classification with

real data, as in Section 3.3. Recall that, in this setting one can view the labels them-

selves as objects to be co-embedded with data instances; given such an embedding,

the multilabel classification of an input instance x can be determined by comparing

the distance of its embedding to the embedded locations of each label. In particular,

given a feature representation φ(x) ∈ Rn for data instances x ∈ X , we introduce a

simple indicator feature map ψ(y) ∈ Rm over y ∈ Y , which specifies a vector of

all zeros with a single 1 in the entry corresponding to label y.

We can cast multilabel learning as an equivalent metric learning problem, where

one learns the matrix C. Following the development in Section 4.2 (but here not

using the threshold for y since it is not needed), the co-embedding parameters U ,

V and u0 can first be combined into a joint matrix Q =
[
U, V, u0

]
∈ Rp×d, where

p = n + m + 1. Then, as in (4.8), the co-embedding problem of optimizing U , V

and u0 can be equivalently expressed as a metric learning problem of optimizing

the matrix C = QQ> ∈ Rp×p.

Training objective To develop a novel metric learning based approach to multil-

abel classification, we adopt a standard training loss that encourages small distances

between an instance’s embedding and the embeddings of its associated labels while

encouraging large distances to embeddings of disassociated labels. In particular,

we adapt the convex large margin loss (3.22) used for this purpose in Section (3.3)

as below.

min
C�0

β tr(C)+∑
x∈X

[
softmax
y∈Y(x)

L̃
(
dC(x,y)−tC(x)

)
+softmax

ȳ∈Ȳ(x)
L̃
(
tC(x)−dC(x, ȳ)

)]
, (4.21)

where softmax is defined as

softmax
y∈Y

(zy) = ln
∑

y∈Y exp(zy),
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and we have

tC(x) =

[
φ(x), 0, −1

]
C

[
φ(x), 0, −1

]>
,

dC(x,y) =

[
φ(x), −ψ(y), 0

]
C

[
φ(x), −ψ(y), 0

]>
.

Results Here we use Y(x) ⊂ Y to denote the subset of labels associated with x,

and Ȳ(x) ⊂ Y to denote the subset of labels disassociated with x. Note that in the

non-convex form of (4.21) used in Line 12 of Algorithm 1, we use Frobenius norm

regularization on the co-embedding parameters U , V and u0, which was shown in

Section 4.2 to yield trace regularization of C,

‖U‖2
F +‖V ‖2

F +‖u0‖2
2 = tr(U>U)+tr(V >V )+u>0 u0 = tr(C).

We investigate the behavior of ILA on the multilabel classification data sets

that we summarized in Table 3.1 of Section 3.3. To establish the suitability of

metric learning for multilabel classification, we evaluated test performance using

three commonly used criteria for multilabel classification: the Hamming score (Ta-

ble 4.1), micro averaged F1 measure (Table 4.2) and macro averaged F1 measure

(Table 4.3). We chose β by cross-validation over {1, 0.5, 0.1, 0.05, 0.01, 0.005}.

Next, we compared the performance of the proposed approach against six stan-

dard competitors: BR(SMO), an independent SVM classifiers for each label (Platt,

1998); BR(LOG), an independent logistic regression (LOG) classifiers for each la-

bel (Hastie et al., 2009b); CLR(SMO) and CLR(LOG), the calibrated pairwise label

ranking method of Fürnkranz et al. (2008) with SVM and LOG, respectively; and

CC(SMO) and CC(LOG), a chain of SVM classifiers and a chain of logistic re-

gression classifiers for multi-label classification by Read et al. (2011). The results

in Tables 4.1–4.3 are averaged over 10 splits and demonstrate comparable perfor-

mance to the best competitors consistently in all three criteria for all data sets.

Next, to illustrate the distribution of objective values reached at local minima,

as the rank of Q is changed, we ran local optimization from 1000 random initializa-

tions of Q at successive values d = r of the number of columns of Q, using β = 1.

The objective values at the local optima we observed are plotted in Figure 4.6 as a
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BR(SMO) BR(LOG) CLR(SMO) CLR(LOG) CC(SMO) CC(LOG) ILA
Emotion 80.9 ±1.0 77.1 ±1.2 79.9 ±0.7 76.0 ±1.4 79.0 ±0.9 75.2 ±1.1 80.2 ±0.8
Scene 88.7 ±0.4 81.9 ±0.6 89.7 ±0.3 85.7 ±0.4 88.9 ±0.4 80.9 ±0.4 88.0 ±0.5
Yeast 79.8 ±0.2 77.0 ±0.2 77.2 ±0.2 75.3 ±0.3 78.9 ±0.5 76.0 ±0.2 78.9 ±0.3
Mediamill 90.3 ±0.1 87.4 ±0.2 87.8 ±0.1 87.7 ±0.1 89.9 ±0.1 86.3 ±0.3 90.4 ±0.5
Corel5K 89.8 ±0.1 88.5 ±0.2 88.8 ±0.1 88.0 ±0.1 89.6 ±0.1 83.1 ±0.4 87.8 ±0.4

Table 4.1: Comparison of ILA with competitors in terms of Hamming score, show-
ing average over 10 splits ± standard deviation.

BR(SMO) BR(LOG) CLR(SMO) CLR(LOG) CC(SMO) CC(LOG) ILA
Emotion 66.3 ±2.3 63.2 ±1.8 70.1 ± 1.2 64.5 ± 2.1 65.9 ± 1.8 60.3 ± 1.9 65.9 ± 1.3
Scene 66.8 ±1.0 49.5 ±1.5 72.2 ± 0.7 61.8 ± 1.3 68.8 ± 1.1 50.1 ± 1.1 65.9 ± 0.8
Yeast 63.2 ±0.3 62.0 ±0.4 65.0 ± 0.3 61.9 ± 0.4 63.7 ± 0.8 60.0 ± 0.4 62.4 ± 0.5
Mediamill 55.4 ±0.5 55.1 ±0.6 59.7 ± 0.4 58.7 ± 0.4 50.7 ± 0.9 53.1 ± 0.7 58.0 ± 0.7
Corel5K 21.9 ±0.7 17.4 ±0.5 27.6 ± 0.4 26.3 ± 0.5 21.9 ± 0.5 16.7 ± 0.6 21.9 ± 0.6

Table 4.2: Comparison of ILA with competitors in terms of Micro F1, showing
average over 10 splits ± standard deviation.

function of d. Notably, all local minima achieved for d = r, are not larger in value

than local minima achieved for the relaxed problem defined by d = r + 1, for any

r investigated. Moreover, as expected from the theory, the local optimizer always

achieves the globally optimal value when d ≥ d∗. Interestingly, for d < d∗ we

see that the initially wide diversity of local optimum values contracts quickly to a

singleton, with values approaching the global minimum before reaching d = d∗. Al-

though not displayed in the graphs, other useful properties can be observed. First,

for d ≥ d∗, the global optimum is achieved by local optimization under random

initialization, but not with initialization to any of the critical points of smaller d

observed in Figure 4.6, which traps the optimization in a saddle point. Overall, em-

pirically and theoretically, we find that ILA quickly finds global solutions for the

multilabel objective, while typically producing good solutions before d = d∗.

BR(SMO) BR(LOG) CLR(SMO) CLR(LOG) CC(SMO) CC(LOG) ILA
Emotion 62.3 ±3.1 62.0 ±1.9 69.0 ±1.0 63.8 ±2.0 64.3 ±1.8 59.3 ±2.0 64.4 ±1.4
Scene 67.6 ±0.9 50.6 ±1.6 73.3 ±0.6 63.3 ±1.3 69.8 ±1.0 50.9 ±1.0 66.8 ±0.9
Yeast 32.9 ±0.7 41.9 ±0.8 40.3 ±0.6 42.6 ±0.7 35.1 ±0.4 40.4 ±0.4 37.8 ±0.8
Mediamill 10.0 ±0.4 29.9 ±0.7 21.4 ±0.7 31.7 ±0.8 8.9 ±1.0 29.5 ±0.8 16.2 ±0.9
Corel5K 17.8 ±0.4 11.6 ±0.4 21.4 ±0.5 22.0 ±0.5 17.6 ±0.5 14.4 ±0.6 17.8 ±0.6

Table 4.3: Comparison of ILA with competitors in terms of Macro F1, showing
average over 10 splits ± standard deviation.
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Figure 4.6: Illustrating the distribution of training objective values at locally optimal
solutions. The plots show training objective values achieved by local optimization shown
given 1000 initializations of Q for different number of columns d of Q ∈ Rp×d. For small
d a diversity of local minima are observed, but the set of local optima contracts rapidly as d
increases, reaching a singleton at the global optimum by d = d∗, where d∗ = [4, 7, 5, 3, 5]
respectively.
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4.6 Case Study: Tag Recommendation

Again, we explored Task 2 of the 2009 ECML/PKDD Discovery Challenge: a

multi-relational problem involving users, items and tags. Recall the learning sce-

nario from Section 3.4: users have tagged subsets of the items and the task is to rec-

ommend tags to them for other items. Again the training data is given in form of a

tensor E, where E(x, y, z)=1 indicates that x has tagged z with y, E(x, y, z)=−1

indicates that y is not a tag of z according to x, and E(x, y, z) = 0 denotes an un-

known entry. The goal is to predict the unknown values, subject to a constraint that

at most five tags can be active for any user-item pair.

Training Objective We first express the problem in terms of a multi-way co-

embedding where users, tags and items are mapped to a joint embedding space:

x 7→ σ, y 7→ τ and z 7→ ρ where σ, τ , ρ ∈ Rd. The training problem can then be

expressed in terms of proximities between embeddings.

In particular, we summarize the three-way interaction between a user, item and

tag by the sum of squared distance between the user and tag embeddings, and be-

tween the item and tag embeddings

d(x, y, z) := d(x, y) + d(z, y) = ‖σ − τ‖2 + ‖ρ− τ‖2.

Given this definition, for a given user-item pair (x, z), tags can be predicted via

Ê(x, y, z) =

{
1 if d(x, y, z) among smallest five d(x, ·, z)
−1 otherwise

.

The training problem can be expressed as metric learning by exploiting a con-

struction reminiscent of Section 4.2: the embedding vectors can conceptually be

stacked in matrix factor Q =
[
σ, τ, ρ

]>, to define a matrix C = QQ>. To learn

C, we use the same loss L proposed by Rendle and Schmidt-Thieme (2009) and

used in Section 3.4, regularized by the Frobenius norm over σ, τ and ρ (which again

corresponds to trace regularization of C), yielding the convex training problem

min
C�0

β tr(C) +
∑
x,z

∑
y∈tag(x,z)

∑
ȳ /∈tag(x,z)

L
(
dC(x, z, ȳ)− dC(x, z, y)

)
. (4.22)
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Figure 4.7: F1 measure achieved by ILA on test data with an increasing number of
columns. Optimal rank is 84 in this case.

Figure 4.8: Training objectives for β ∈ {0.01, 0.1, 1} as a function of the rank of C,
where the optimal ranks are 105, 84 and 62 respectively.

Results To establish the suitability of metric learning for multi-relational pre-

diction, we evaluated the test performance achieved on the down-sampled data of

Section 3.4 with 109, 192, 229 unique users, items, and tags respectively. Figure 4.7

shows that ILA efficiently approaches state of the art F1 performance of 0.42 re-

ported in Section 3.4.

Next, we investigated the behavior of local minima at different d by comparing

the training objective values achieved by local optimization compared to the global

minimum, here using β ∈ {0.01, 0.1, 1}. Figure 4.8 shows that although the optimal

rank can be larger in this scenario, the properties of the local solutions become even

more apparent: the local minima approach the training global minimum at ranks

much smaller than the optimum. These results further support the effectiveness

of metric learning and the potential for ILA to solve these problems much more

efficiently than standard semi-definite programming approaches.
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4.7 Conclusion

We have demonstrated a unification of co-embedding and metric learning that en-

ables a new perspective on several machine learning problems while expanding the

range of applicability for metric learning methods. Additionally, by using recent

insights from semi-definite programming theory, we developed a fast local opti-

mization algorithm that is able to preserve global optimality while significantly

improving the speed of existing methods. Both the framework and the efficient

algorithm were investigated in different contexts, including metric learning, multi-

label classification and multi-relational prediction—demonstrating their generality.

The unified perspective and general algorithm show that a surprisingly large class of

problems can be tackled from a simple perspective, while exhibiting a local-global

property that can be usefully exploited to achieve faster training methods.
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Chapter 5

Eliminating Inference from
Structured Multilabel Prediction

Structured output prediction has been an important topic in machine learning. Many

prediction problems involve complex structures, such as predicting parse trees for

sentences (Taskar, 2004), predicting sequence labelings for language and genomic

data (Bakir et al., 2007), or predicting multilabel taggings for documents and im-

ages (Deng et al., 2010, 2014; Joachims, 1999; Lewis et al., 2004).

Initial breakthroughs in this area arose from tractable discriminative training

methods—conditional random fields (Lafferty et al., 2001; Sun, 2014) and struc-

tured large margin training (Srikumar and Manning, 2014; Taskar et al., 2003;

Tsochantaridis et al., 2005)—that compare complete output configurations against

given target structures rather than simply learning to predict each component in

isolation.

More recently, search based approaches that exploit sequential prediction meth-

ods have also proved effective for structured prediction (Doppa et al., 2012; Daume

and Langford, 2009; Li et al., 2013a; Weiss and Taskar, 2013). Despite the improve-

ments contributed by these approaches, the need to conduct inference or search over

complex outputs both during the training and testing phase proves to be a significant

bottleneck in practice.

In this chapter, we investigate an alternative approach to structured output pre-

diction based on co-embedding that eliminates the need for inference or search at

test time. The idea is to shift the burden of coordinating predictions to the train-

59



ing phase, by pre-compiling constraints in the learned representation that ensure

prediction relationships are satisfied. The primary benefit of this approach is that

prediction cost can be significantly reduced without sacrificing the desired coordi-

nation of structured output components. Since prediction phase is the recurring step

in learning systems and typically requires quick if not real time response, reducing

the prediction time would be beneficial in practice.

We demonstrate the proposed approach concretely for the problem of multilabel

classification with hierarchical and mutual exclusion constraints on output labels

(Deng et al., 2014). Multi-label classification is an important subfield of structured

output prediction where multiple labels must be assigned to a single object that re-

spect semantic relationships such as subsumption, mutual exclusion or weak forms

of correlation. The problem is of growing importance as larger tag sets are being

used to annotate images and documents on the Web. Research on multi-label classi-

fication has focused on how to improve independent label classification (Joachims,

1999) by incorporating dependence information between labels, distinguished by

whether they exploit known relationships between the labels or have to infer or

adapt to such relationships without explicit prior knowledge.

In the latter case, many works have developed tailored training losses for mul-

tilabel prediction that penalize joint prediction behavior (Crammer and Singer,

2003; Dembczyński et al., 2012, 2013a; Elisseeff and Weston, 2001; Mencı́a and

Fürnkranz, 2008; Guo and Schuurmans, 2011; Tsoumakas et al., 2009) without as-

suming any specific form of prior knowledge. Li et al. (2013b) use Restricted Boltz-

mann Machines (RBMs) to infer high order relations between labels in the context

of image segmentation. More recently, several works have focused on coping with

large label spaces by using low dimensional projections to label subspaces (Bi and

Kwok, 2013; Chen et al., 2013a; Chen and Lin, 2012; Cissé et al., 2013; Hsu et al.,

2009; Kapoor et al., 2012; Lin et al., 2014). Belanger and McCallum (2016) exploit

a deep architecture to capture dependencies between labels that leads to intractable

graphical models, and perform structure learning by automatically learning fea-

tures of the structured output. Other works have focused on exploiting weak forms

of prior knowledge expressed as similarity information between labels that can be
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obtained from auxiliary sources (Akata et al., 2013; Hariharan et al., 2012; Ji et al.,

2010).

Unfortunately, none of these approaches strictly enforce prior logical relation-

ships between label predictions. By contrast, other research has sought to exploit

known prior relationships between labels. The most prominent such approaches

have been to exploit generative or conditional graphical models over the label set

(Dembczynski et al., 2010), (Jin and Ghahramani, 2002; Kae et al., 2013), and

(Ueda and Saito, 2002). Unfortunately, the graphical model structures that can be

imposed are limited to junction trees with small treewidth (Dembczynski et al.,

2010). When general structure is possible the score function would be limited to

discrete and sub-modular functions, so that inference can performed tractably via

efficient graph cut or other algorithmic approaches (Kohli and Torr, 2007; Tarlow

et al., 2011; Kolmogorov and Zabih, 2002). Here, the definition of submodular-

ity requires the label set to be a totally ordered set. This condition is not gener-

ally applicable (Li and Huber, 2017). Other graphical models require approxima-

tion (Jancsary et al., 2013; Marchand et al., 2014; Petterson and Caetano, 2011).

Other work, using output kernels, has also been shown able to model complex re-

lationships between labels (Dinuzzo and Fukumizu, 2011; Kadri et al., 2013) but is

hampered by an intractable pre-image problem1 at test time, unless the kernels are

restricted and special losses are used (Guo and Schuurmans, 2013).

In this chapter, we focus on tractable methods and consider the scenario where

a set of logical label relationships is given a priori; in particular, implication and

mutual exclusion relationships that arise naturally in document and image tagging

scenarios. These relationships have been the subject of extensive work on multil-

abel prediction, where it is known that if the implication/subsumption relationships

form a tree (Rousu et al., 2006) or a directed acyclic graph (Bi and Kwok, 2012,

2011; Deng et al., 2014) then efficient dynamic programming algorithms can be

developed for tractable inference during training and testing, while for general pair-

wise models (Weston et al., 2010, 2011) approximate inference is required. The

1Pre-image problem in the context of output kernels is the problem of mapping back from the
kernel to the output set.
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Figure 5.1: Embedding constraints for multilabel prediction: A Venn diagram is
formed in embedding space over labels to impose hierarchy and exclusion con-
straints.

main contribution of this chapter is to show how these relationships can be en-

forced without the need for dynamic programming. The idea is to impose label

relationships as constraints on the underlying score model during training so that a

trivial labeling algorithm can be employed at test time, a process that can be viewed

as pre-compiling inference during the training phase.

The focus of literature has been on many other relevant topics not addressed

by this chapter including learning from incomplete labelings (Gentile and Orabona,

2014; Wu et al., 2011; Xu et al., 2013; Yu et al., 2014), exploiting hierarchies for

multiclass rather than multilabel prediction (Bengio et al., 2010; Deng et al., 2011;

Gao and Koller, 2011; Weinberger and Chapelle, 2008), exploiting multimodal data

to improve prediction (Frome et al., 2013; Socher et al., 2013a), deriving general-

ization bounds for structured output and multilabel prediction problems (Giguère

et al., 2013; London et al., 2013; Punyakanok et al., 2005), and investigating the

consistency of multilabel losses (Dembczyński et al., 2013b; Gao and Zhou, 2013).

Another interesting large margin approach that applies multilabel prediction over

structured outputs is given by (Lampert, 2011). On the other hand, it might worth

mentioning that following the proposed method in Mirzazadeh et al. (2015a), a

related method is also proposed in Vendrov et al. (2016) independently via a co-

embedding-based approach for hierarchical multilabel prediction.
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Recall the intuition underlying the proposed method described in Chapter 1,

which was based on considering a multi-label image tagging problem with labels

“animal”, “flower”, and “cat” tags. The idea is to ensure that the decision regions

for the labels are constrained to match a conceptual Venn diagram that expresses

the desired logical constraints between the labels, in terms of their inclusion and

exclusion relationships. See Figure 5.1 for a demonstration of the idea.

The main contributions of this chapter are the following.

Contribution 12 We observe that inference in structured output prediction can be

completely eliminated by embedding the logical relationships between labels di-

rectly into the score model.

Contribution 13 As a concrete demonstration of this idea for multi-label predic-

tion models, we show that implication and mutual exclusion relationships can be

easily embedded in the score model, ensuring the constraints hold over the whole

domain while maintaining convexity in model parameters.

Contribution 14 We show that inference is not necessary, either at train or test

time, for structured multi-label classification, even when logical relationships be-

tween labels are strictly enforced.

Contribution 15 By exploiting these ideas, we show that the efficiency of the re-

sulting structured multi-label predictor can be dramatically improved.

5.1 Preliminaries

5.1.1 Structured Output Prediction

We consider a standard prediction model where a score function s,

s : X × Y → R

with parameters θ is used to determine the prediction for a given input x via

ŷ = arg max
y∈Y

s(x,y). (5.1)
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Here y is a configuration of assignments over a set of components (that might de-

pend on x). Since Y is a combinatorial set, (5.1) cannot usually be solved by enu-

meration; some structure is required for efficient prediction. For example, s might

decompose as s(x,y) =
∑

c∈C s(x,yc) over a set of cliques C that form a junc-

tion tree, where yc denotes the portion of y covered by clique c. Furthermore, Y

might encode constraints to aid tractability, such as y forming a consistent match-

ing in a bipartite graph, or a consistent parse tree (Taskar, 2004). The key practical

requirement is that s and Y allow an efficient solution to (5.1). The operation of

maximizing or summing over all y ∈ Y is referred to as inference, and usually

involves a dynamic programming step tailored to the specific structure encoded by

s and Y .

For supervised learning one attempts to infer a useful score function given a

set of t training pairs (x1,y1), (x2,y2), ..., (xt,yt) that specify the correct output

associated with each input. The training phase for conditional random fields (Laf-

ferty et al., 2001) and structured large margin learning (below with margin scaling)

(Taskar et al., 2003; Tsochantaridis et al., 2005; Lampert, 2011) can both be ex-

pressed as optimizations over the score model parameters θ respectively:

min
θ∈Θ

r(θ) +
t∑
i=1

log
(∑

y∈Y

exp(sθ(xi,y))
)
− sθ(xi,yi) (5.2)

min
θ∈Θ

r(θ) +
t∑
i=1

max
y∈Y

(
∆(y,yi) + sθ(xi,y)

)
− sθ(xi,yi), (5.3)

where r(θ) is a suitable regularizer over θ ∈ Θ. Equations (5.1), (5.2) and (5.3)

suggest that inference over y ∈ Y is required at each stage of training and testing,

which typically raise scaling challenges. However, our goal is to show this is not

necessarily the case whether to compute the training loss or (sub)gradient at an

example at training time, or to compute a prediction at test time.

5.1.2 Structured Multilabel Prediction

To demonstrate how inference might be avoided, consider the special case of multi-

label prediction with label constraints. Multi-label prediction specializes the pre-

vious set up by assuming y is a Boolean assignment to a fixed set of variables
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y1, . . . , y`, where each label is assigned 1 (true) or 0 (false), i.e.

y = (y1, y2, ..., y`), yk ∈ {0, 1}.

As noted, an extensive literature that has investigated various structural assump-

tions on the score function to enable tractable prediction. For simplicity we adopt

the factored form that has been reconsidered in recent work (Deng et al., 2014;

Hariharan et al., 2012) (and originally (Joachims, 1999)):

s(x,y) =
∑
k

s(x, yk).

This form allows (5.1) to be simplified to

ŷ = arg max
y∈Y

∑
k

s(x, yk) = arg max
y∈Y

∑
k

yksk(x) (5.4)

where

sk(x) = s(x, yk = 1)− s(x, yk = 0)

gives the decision function associated with label yk ∈ {0, 1}. That is, based on

(5.4), if the constraints in Y were ignored, one would have the relationship

ŷk = 1⇔ sk(x) ≥ 0.

The constraints in Y play an important role however: Deng et al. (2014) show

that imposing prior implications and mutual exclusions as constraints in Y yields

state of the art accuracy results for image tagging on the ILSVRC corpus (Rus-

sakovsky et al., 2015). This result was achieved in (Deng et al., 2014) by devel-

oping a novel and rather sophisticated dynamic program that can efficiently solve

(5.4) under these constraints. Here we show how such a dynamic program can be

eliminated.

5.2 Inserting Label Constraints into the Representa-
tion

The main contribution of this chapter is to observe that inference can be completely

eliminated by embedding the logical relationships between labels directly into the
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score model. In particular, we give a concrete demonstration of this idea for mul-

tilabel prediction models, showing that implication and mutual exclusion relation-

ships can be easily embedded in the score model, ensuring the constraints hold over

the whole domain while maintaining convexity in model parameters.

Consider the two common forms of logical relationships between labels: impli-

cation and mutual exclusion. For implication one would like to enforce relation-

ships of the form y1 ⇒ y2, meaning that whenever the label y1 is set to 1 (true) then

the label y2 must also be set to 1 (true). For mutual exclusion one would like to en-

force relationships of the form ¬y1 ∨¬y2, meaning that at least one of the labels y1

and y2 must be set to 0 (false) (i.e., not both can be simultaneously true). These con-

straints arise naturally in multilabel classification, where label sets are increasingly

large and embody semantic relationships between categories (Bi and Kwok, 2012;

Deng et al., 2014; Weston et al., 2011). For example, images can be tagged with

labels “dog”, “cat” and “Siamese” where “Siamese” implies “cat”, while “dog” and

“cat” are mutually exclusive (but an image could depict neither). These implication

and mutual exclusion constraints constitute the “HEX” constraints considered in

(Deng et al., 2014).

Our goal is to express the logical relationships between label assignments as

constraints on the score function that hold universally over all x ∈ X . In par-

ticular, using the decomposed representation (5.4), the desired label relationships

correspond to the following constraints

Implication y1 ⇒ y2: s1(x) ≥ −δ ⇒ s2(x) ≥ δ ∀x ∈ X (5.5)

Mutual exclusion ¬y1 ∨ ¬y2: s1(x) < −δ or s2(x) < −δ ∀x ∈ X (5.6)

where we have introduced the additional margin quantity δ ≥ 0 for subsequent

large margin training.

5.2.1 Score Model

The first key consideration is representing the score function in a manner that al-

lows the desired relationships to be expressed. Unfortunately, the standard linear

form s(x,y) = 〈θ, f(x,y)〉 cannot allow the needed constraints to be enforced over
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all x ∈ X without further restricting the form of the feature representation f , how-

ever, this is a constraint one needs to avoid since it rules out most natural feature

representations.

More specifically, consider a standard set up where there is a mapping f(x, yk)

that produces a feature representation for an input-label pair (x, yk). For clarity, we

additionally make the standard assumption that the inputs and outputs each have

independent feature representations (Hariharan et al., 2012), hence f(x, yk) could

be expressed as

f(x, yk) = φ(x)⊗ ψk

for an input feature map φ and label feature representation ψk , where ⊗ is the

Kronecker product. In this case, a score function expressed in bilinear form (in

feature representations) has the form

sk(x) = φ(x)>Aψk + b>φ(x) + c>ψk + d

for parameters θ = (A, b, c, d).

Unfortunately, such a score function does not allow sk(x) ≥ 0 to be expressed

over all x ∈ X without either assuming A = 0 and b = 0, or special structure in φ.

The inability to express universal constraints on sk(x) that hold over all x is likely

why such an approach has not been previously proposed in the literature.

To overcome this restriction we consider a more general scoring model that

extends the standard bi-linear form to a form that is linear in the parameters but

quadratic in the feature representations: This is a key step that allows the con-

straints to be embedded while retaining linearity in the score model parameters. In

particular, we consider

−sk(x) =

 φ(x)
ψk
1

>  P A b
A> Q c
b> c> r

 φ(x)
ψk
1

 (5.7)

for

θ =

 P A b
A> Q c
b> c> r

 . (5.8)
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Here θ = θ> and sk is linear in θ for each k. The benefit of a quadratic form in

the features is that it allows constraints over x ∈ X to be easily imposed on label

scores via convex constraints on θ.

Lemma 1 If θ � 0 then −sk(x) = ‖Uφ(x) + u− V ψk‖2 for some U , V and u.

(See Appendix C.1 for a proof.)

The representation (5.7) generalizes both the standard bi-linear (alignment-based)

and distance-based models. The standard bi-linear model is achieved by P = 0,

Q = 0 and r = 0. By Lemma 1, the semidefinite assumption θ � 0 also yields a

model that has a co-embedding interpretation: the feature representations φ(x) and

ψk are both mapped (linearly) into a common Euclidean space where the score is

determined by the squared distance between the embedded vectors (with an addi-

tional offset u).

To aid the presentation below we simplify this model a bit further. Set b = 0

and observe that (5.8) reduces to

sk(x) = γk −
[
φ(x)
ψk

]> [
P A
A> Q

] [
φ(x)
ψk

]
(5.9)

= γk − ‖Uφ(x)− V ψk‖2 (5.10)

= γk − ‖µ(x)− ν(y)‖2, (5.11)

where the term γk = −r − 2c>ψk = −u>u − 2u>V ψk. can be interpreted as

specifying a y-dependent decision threshold over the squared distances and the

form (5.11) provides a convenient shorthand that focuses on the squared distance

between the embedding vectors µ(x) and ν(y) for x and y respectively. (Decision

thresholds in distance-based co-embedding models are introduced in Section 4.2.

For example, see Figure 4.1 .)

In particular, we modify the parametrization to θ = {γk}`k=1∪{θPAQ} such that

θPAQ denotes the matrix of parameters in (5.9). Importantly, (5.9) remains linear in

the new parametrization, which is essential for obtaining a convex training formu-

lation. Lemma 1 can then be modified accordingly for a similar convex constraint

on θ.
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Lemma 2 If θPAQ � 0 then there exist U and V such that for all labels k and l

sk(x) = γk − ‖Uφ(x)− V ψk‖2 (5.12)

ψ>k Qψk − ψ>k Qψl − ψ>l Qψk + ψ>l Qψl = ‖V ψk − V ψl‖2. (5.13)

(See Appendix C.2 for a proof.)

This representation now allows us to embed the desired label relationships as

simple convex constraints on the score model parameters θ.

5.2.2 Implication Constraints

Theorem 1 Assume the quadratic-linear score model (5.9) and θPAQ � 0. Then

for any δ ≥ 0 and α > 0, the implication constraint in (5.5) is implied for all x ∈ X

by:

γ1 + δ + (1 + α)
(
ψ>1 Qψ1 − ψ>1 Qψ2 − ψ>2 Qψ1 + ψ>2 Qψ2

)
≤ γ2 − δ (5.14)(

α
2

)2 (
ψ>1 Qψ1 − ψ>1 Qψ2 − ψ>2 Qψ1 + ψ>2 Qψ2

)
≥ γ1 + δ. (5.15)

(See Appendix C.3 for a proof.)

An illustration of the geometric interpretation for implication constraints is

shown in Figure 5.2 (left). Implications constraints guarantee that the region in

the embedding space assigned to the implying variable is inside the region assigned

to the implied variable. The margin δ tends to prevent the boundary of regions from

getting too close. In order to guarantee implication, for the implying label, the mar-

gin has to be outside of the region, while for the implied variable the margin has to

be inside.

5.2.3 Mutual Exclusion Constraints

Theorem 2 Assume the quadratic-linear score model (5.9) and θPAQ � 0. Then

for any δ ≥ 0 the mutual exclusion constraint in (5.6) is implied for all x ∈ X by:

1
2

(
ψ>1 Qψ1 − ψ>1 Qψ2 − ψ>2 Qψ1 + ψ>2 Qψ2

)
> γ1 + γ2 + 2δ. (5.16)

(See Appendix C.4 for a proof.)
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Figure 5.2: Implication constraints (left) guarantee that the region assigned to an
implying variable is inside the region assigned to the implied variable. Mutual
exclusion constraints (right) guarantee that regions assigned to the two variables
are mutually exclusive.

Importantly, once θPAQ � 0 is imposed, the other constraints in Theorems 1

and 2 are all linear in the parameters Q and γ.

An illustration of the geometric interpretation of mutual exclusive constraints

appears in Figure 5.2 (right). Mutual exclusion constraints guarantee that the re-

gions in embedding space assigned to mutually exclusive variables are in turn mu-

tually exclusive. A margin of confidence guarantees that the two regions do not get

too close. For both regions the margin (shown in red) must be outside the boundary

to guarantee the desirable structure.

5.3 Properties

We now establish that the above constraints on the parameters in (5.9) achieve the

desired properties. In particular, we show that given the constraints, inference can

be removed both from the prediction problem (5.4) and from structured large mar-

gin training (5.3).

5.3.1 Prediction Equivalence

First note that the decision of whether a label yk is associated with x can be deter-

mined by

s(x, yk = 1) ≥ s(x, yk = 0) ⇔ max
yk∈{0,1}

yksk(x) ≥ 0

⇔ arg max
yk∈{0,1}

yksk(x) = 1. (5.17)
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Consider joint assignments y = (y1, ..., yl) ∈ {0, 1}l and let Y denote the set of

joint assignments that are consistent with a set of implication and mutual exclu-

sion constraints. (It is assumed the constraints are satisfiable; that is, Y is not the

empty set.) Then the optimal joint assignment for a given x can be specified by

arg maxy∈Y
∑l

k=1 yksk(x).

Proposition 1 If the constraint set Y imposes the implication and mutual exclusion

constraints in (5.5) and (5.6) (and is nonempty), and the score function s satisfies

the corresponding constraints for some δ > 0, then

max
y∈Y

l∑
k=1

yksk(x) =
l∑

k=1

max
yk

yksk(x) (5.18)

(See Appendix C.5 for a proof.)

Since the feasible set Y embodies non-trivial constraints over assignment vec-

tors in (5.18), interchanging maximization with summation is not normally justi-

fied. However, Proposition 1 establishes that, if the score model also satisfies its

respective constraints (e.g., as established in the previous section), then maximiza-

tion and summation can be interchanged, and inference over predicted labelings

can be replaced by greedy componentwise labeling, while preserving equivalence.

5.3.2 Re-expressing Large Margin Structured Output Training

Given a target joint assignment over labels t = (t1, ..., tl) ∈ {0, 1}l, and using the

score model (5.9), the standard structured output large margin training loss (5.3)

can then be written as∑
i

max
y∈Y

∆(y, ti) +
l∑

k=1

s(xi, yk)− s(xi, tik) =

∑
i

max
y∈Y

∆(y, ti) +
l∑

k=1

(yk − tik)sk(xi), (5.19)

using the simplified score function representation such that tik denotes the k-th label

of the i-th training example. If we furthermore make the standard assumption that

∆(y, ti) decomposes as ∆(y, ti) =
∑l

k=1 δk(yk, tik), the loss can be simplified to∑
i

max
y∈Y

l∑
k=1

δk(yk, tik) + (yk − tik)sk(xi). (5.20)
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Note also that since yk ∈ {0, 1} and tik ∈ {0, 1} the margin functions δk typically

have the form δk(0, 0) = δk(1, 1) = 0 and δk(0, 1) = δk01 and δk(1, 0) = δk10

for constants δk01 and δk10, which for simplicity we will assume are equal, δk01 =

δk10 = δ for all k (although label specific margins might be possible). This is the

same δ used in the constraints (5.5) and (5.6).

The difficulty in computing this loss is that it apparently requires an exponential

search over y. When this exponential search can be avoided, it is normally avoided

by developing a dynamic program. Instead, we can now see that the search over y

can now be eliminated.

Proposition 2 If the score function s satisfies the implication and mutual exclusion

constraints in (5.5) and (5.6), then

∑
i

max
y∈Y

l∑
k=1

δ(yk, tik) + (yk − tik)sk(xi)

=
∑
i

l∑
k=1

max
yk

δ(yk, tik) + (yk − tik)sk(xi). (5.21)

(See Appendix C.6 for a proof.)

Similar to Section 5.3.1, Proposition 2 demonstrates that if the constraints (5.5)

and (5.6) are satisfied by the score model s, then structured large margin training

(5.3) reduces to independent labelwise training under the standard hinge loss, while

preserving equivalence. That is, once again, inference can be entirely removed from

consideration, although label coordination is still being considered in the constraints

on s.

5.4 Efficient Implementation

Even though Section 5.2 achieves the primary goal of demonstrating how desired

label relationships can be embedded as convex constraints on score model param-

eters, the linear-quadratic representation (5.9) unfortunately does not allow conve-

nient scaling: the number of parameters in θPAQ (5.9) is
(
n+ `

2

)
(accounting for

symmetry), which is quadratic in the number of features, n, in φ and the number of
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labels, `. Such a large optimization variable is not practical for most applications,

where n and ` can be quite large. The semidefinite constraint θPAQ � 0 can also

be costly in practice. Therefore, to obtain scalable training we require some further

refinement.

In our experiments below we obtained a scalable training procedure by exploit-

ing trace norm regularization on θPAQ to reduce its rank. The key benefit of trace

norm regularization is that efficient solution methods exist that work with a low rank

factorization of the matrix variable while automatically ensuring positive semidef-

initeness and still guaranteeing global optimality (Haeffele et al., 2014; Journée

et al., 2010). Therefore, we conducted the main optimization in terms of a smaller

matrix variable B such that BB> = θPAQ. As shown in Chapter 4, provided that

B has sufficient rank, then any local solution is globally optimal based on works of

(Haeffele et al., 2014; Journée et al., 2010). Second, to cope with the constraints,

we employed an augmented Lagrangian method (Nocedal and Wright, 2006) that

increasingly penalizes constraint violations, but otherwise allows simple uncon-

strained optimization. All optimizations for smooth problems were performed us-

ing LBFGS and non-smooth problems were solved using a bundle method (Mäkelä,

2003).

5.5 Experimental Evaluation

To evaluate the proposed approach, we conducted experiments on multilabel text

classification data that has a natural hierarchy defined over the label set. In partic-

ular, we investigated three multilabel text classification data sets, that have hierar-

chical label sets with mutual exclusion constraints, and repeatable train/test splits.

The data sets are Enron, WIPO and Reuters, obtained from https://sites.

google.com/site/hrsvmproject/datasets-hier ; see Table 5.1 for

details. Some preprocessing was performed on the label relations to ensure con-

sistency with our assumptions. In particular, all implications were added to each

instance to ensure consistency with the hierarchy, while mutual exclusions were

defined between siblings whenever this did not create a contradiction.
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Dataset Features Labels Depth # Train # Test Reference
Enron 1001 57 4 988 660 (Klimt and Yang, 2004)
Wipo 74435 183 5 1352 358 (Rousu et al., 2006)
Reuters 47235 103 5 3000 3000 (Lewis et al., 2004)

Table 5.1: Data set properties for constrained co-embedding experiments to pre-
compile inference into representation

We conducted experiments to compare the effects of replacing inference with

the constraints outlined in Section 5.2, using the score model (5.9). For comparison,

we trained using the structured large margin formulation (5.3), and trained under a

multilabel prediction loss without inference, but both including then excluding the

constraints. For the multilabel training loss we used the smoothed calibrated separa-

tion ranking loss (3.22) of Chapter 3. In each case, the regularization parameter was

simply set to 1. For inference, we implemented the inference algorithm outlined in

(Deng et al., 2014).

% test error Enron WIPO Reuters
unconstrained 12.4 21.0 27.1
constrained 9.8 2.6 4.0
inference 6.8 2.7 29.3

test time (sec) Enron WIPO Reuters
unconstrained 0.054 0.070 0.60
constrained 0.054 0.070 0.60
inference 0.481 0.389 5.20

Table 5.2: Test set prediction error in percent (top); Test set prediction time in
Seconds (bottom)

The results are given in Table 5.2, showing both the test set prediction error (us-

ing labelwise prediction error, i.e. Hamming loss) and the test prediction times. As

expected, one can see benefits from incorporating known relationships between the

labels when training a predictor. In each case, the addition of constraints leads to

a significant improvement in test prediction error, versus training without any con-

straints or inference added. Training with inference (i.e., classical structured large

margin training) still proves to be an effective training method overall, in one case

improving the results over the constrained approach, providing an example where
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the proposed constraints are sufficient but not necessary for imposing relations be-

tween labels. In two other case inference only falls slightly behind the constraint

method. The key difference between the approach using constraints versus that us-

ing inference is in terms of the time it takes to produce predictions on test examples.

Using inference to make test set predictions clearly takes significantly longer than

applying labelwise predictions from either a constrained or unconstrained model,

as shown in the right subtable of Table 5.2.

5.6 Conclusion

We have demonstrated a novel approach to structured multilabel prediction where

inference is replaced with constraints on the score model. On multilabel text classi-

fication data, the proposed approach does appear to be able to achieve competitive

generalization results, while reducing the time needed to make predictions at test

time. In cases where logical relationships are known to hold between the labels,

using either inference or imposing constraints on the score model appears to yield

benefits over generic training approaches that ignore the prior knowledge.
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Chapter 6

Conclusions

This thesis has studied the power of co-embedding in solving standard and struc-

tured association problems. The main advantage of this approach stems from its

simplicity and intuitiveness, due primarily to its geometric basis. Even when other

approaches are available, models with a geometric interpretation allow practitioners

to exploit their intuition during the design process, even while maintaining a sound

theoretical basis. The combination of intuition and theory can greatly simplify the

design of a learning system and make it more understandable.

Co-embedding offers a novel perspective on classical problems such as clas-

sification. In the classical view of classification, input examples are embedded

into a target (output) space, where each candidate class has a pre-embedded rep-

resentative. The dimension of the embedding space is typically set to be equal to

the number of candidate classes, and the association score is often computed with

an alignment model. Predictions are then made by returning the label (or labels)

whose embedding has an inner product with the example embedding that is highest

(or exceeds some threshold). Alternatively, a co-embedding approach to classifica-

tion considers embedding both the inputs and outputs into a common latent space,

where the embeddings are learned from data. In other words, none of the input or

output sides have pre-embedded representatives. Additionally, the computation of

an association score is not necessarily limited to only using inner product; on the

contrary, both an alignment model and a distance model are equally applicable. This

more general perspective makes it easier to envision extensions to novel classifica-

tion scenarios, such as zero shot learning (e.g. by learning an embedding function
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that can map the representation of a new label into the latent space to coherently

associate input examples to the new class).

6.1 Summary

Through these investigations, we faced a series of questions. Initially, we addressed

the following question:

• Are there common general tractable solutions for problems such as super-

vised link prediction in graphs and multilabel classification?

We found that the answer to this question is affirmative. From a particular

perspective, not only are these problems similar, they are similar to other problems,

such as ranking, prediction, and query answering. We unified these under the title

of association problems, and found that standard approaches are also very similar,

in that they share a basic strategy of co-embedding. That is, to associate elements

between sets, these approaches first joint embed items from the sets into a common

low dimensional space, and then use geometry to associate them.

To incorporate geometry, an association score can be based on inner product

or Euclidean distance. We established a connection between metric learning and

distance based score models. We noted that common training formulations of co-

embedding are non-convex, but showed how these can be reformulation to convex

forms by relaxing the rank constraint with the trace norm. We then developed

scalable training algorithms for co-embedding models, leading to tractable learning

paradigm.

During the empirical evaluation of co-embedding models in different case stud-

ies, we made the surprising observation that the training objectives achieved by the

non-convex and convex formulations are often identical. This observation lead to

the next major question that we addressed in this dissertation:

• Is there any theoretical basis for observing the equality of objective values in

local and global optimization to train co-embedding models?
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We obtained a positive answer to this question as well. By adapting existing the-

oretical results to our setting, we established that, under certain conditions, training

is guaranteed to reach the same objective, whether using the convex or non-convex

formulations. This result led to the design of a scalable and correct computational

strategy for training co-embedding models.

We finally addressed the following question:

• Suppose some structure is known to underlie a specific association problem.

Is there a way to perform co-embedding while ensuring that the structure

holds in the output, without adding computational overhead to the prediction

phase?

The answer to this question was also found to be positive. For structured mul-

tilabel prediction, we demonstrated that a constrained form of co-embedding could

be performed, where prior structure is pre-compiled via convex constraints in the

training phase. The basic idea is to express the desired structure in a Venn dia-

gram so that so that geometric objects (such as Euclidean balls) can be embedded

in the latent space to express various constraints, such as implications and mutual

exclusions. In this way, the burden of imposing structure is transferred entirely to

the training phase. The advantage of this approach is that the training phase need

only be performed once, while structure preserving prediction can be efficiently

performed for each test example with no computational overhead added. In many

real applications, this is a beneficial trade-off.

6.2 Limitations

One limitation of the convex co-embedding framework presented in this dissertation

is that only linear maps are expressed in a convex form. It is not obvious that

this restriction can be lifted while ensuring efficient global training. However, if

one does not care about global optimality, nonlinear mappings can be immediately

applied.

A potential limitation of the constrained optimization approach we developed

for structured output co-embedding is that, so far, we have only considered a max-
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imum margin structured output training objective. It is not immediately obvious

whether this approach can be extended to conditional random fields, for example.

We also only demonstrated the approach for implication and mutual exclusion con-

straints in multi-label prediction; extending the approach to more general structured

output prediction problems remains future work. A second limiting assumption

here concerns the large margin training, since it assumes the loss is decompos-

able. Extensions to cases where this assumption does not hold would be a valuable

achievement if possible.

6.3 Research Directions

A number of follow-up directions are suggested by this research.

– Other linear compressions of tensor representations for three-set association

problems need to be investigated, seeking alternatives from existing approaches

that allow greater freedom to trade off space versus expressiveness.

– Other distance functions need to be investigated for distance based associ-

ation models, particularly based on the L1 and L∞ norms, to see if other

properties, such as sparsity, might be beneficial.

– Alternative, tighter approximations of rank need to be investigated for when

the target dimensionality is pre-specified.

– The proposed approach to structured association learning needs to be ex-

tended to more general structures, potentially by combining the method with

search based prediction methods.

– A particularly achievable extension is the prediction when the output vector

is known to be maximally sparse, in particular when it has cardinality one.

The approach in Chapter 5 could be directly applied by embedding mutually

exclusive classes.

– In the same line as the last suggestion, sparse representation learning and

Cardinality Restricted Boltzmann Machines (Swersky et al., 2012) are other
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interesting generalization to study.

– Strategies for coping with missing labels need to be investigated.

– Efficient data structures need to be exploited to reduce prediction time to sub-

linear in the cardinality of the embedded sets.

– The rate of convergence for the proposed algorithm, ILA, needs to be ana-

lyzed in detail, for given local optimization algorithms.

– Unsupervised models of co-embedding need to be developed, which would

support novel forms of co-clustering.

– In the applied terms, the application of the unstructured and structured co-

embedding methods proposed in this document, to huge datasets such as for

learning knowledge graph relations, image captioning, large scale ranking,

and question answering would be useful.

– Empirical study of the semantic meaning of translation vectors in the co-

embedding space would be another interesting direction to pursue.

– The possibility of adapting co-embedding to regression problems needs to be

investigated.

– The applicability of co-embedding to different learning paradigms, such as

reinforcement learning, are yet to be considered. Interestingly, embedding

is already proved highly successful in reinforcement learning, but not scal-

able enough (Bowling et al., 2005). The proposed advances in scalable co-

embedding could potentially be useful here.

Finding answers to some of these questions can hopefully open new directions

of research.
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Appendix A

Proofs for Chapter 3

A.1 Proof of Proposition 1

We are considering the case when α = [1, 0, ..., 0]>, which means the loss is de-

termined only by the first entry in each sorted list. For a particular x, let y1 be

the y ∈ Y (x) that has the lowest score s(x, y), which will be the first y in the list

σ(x, y). Also let ȳ1 be the ȳ ∈ Ȳ (x) that has the highest score s(x, ȳ), which will

be the first ȳ in the list π(x, ȳ). The loss then becomes

1
(
s(x, y1) ≤ t(x)

)
+ 1
(
t(x) > s(x, ȳ1)

)
.

Observe that this loss would be zero only if s(x, y1) > t(x) and s(x, ȳ1) < t(x).

However, if that were true, then by construction we would have:

s(x, y) > t(x), ∀y ∈ Y (x) (A.1)

s(x, ȳ) ≤ t(x), ∀ȳ ∈ Ȳ (x) (A.2)

that is, the loss would only be zero if there was an exact match.

In other words, for a particular example, the first term indicates the presence

of a false negative prediction and the second term indicates the presence of false

positive prediction. If the right hand side of (3.9) is zero, then neither any false

positive nor any false negative exists , i.e. exact match error must be zero.
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Appendix B

Proofs for Chapter 4

B.1 Proof of Proposition 1

Part 1: First, form the Lagrangian of (4.17), given by L(C) + β tr(C) − tr(SC)

with S � 0, and consider the necessary KKT conditions:

S = ∇L(C) + βI, S � 0, C � 0, SC = 0. (B.1)

The problem is strictly feasible, since C = I is a strictly feasible point; therefore,

Slater’ s condition holds and (B.1) is also sufficient for optimality. Consequently,

an optimal solution is reached when −S � 0; that is, the largest eigenvalue of

−∇L(C) − βI is negative or zero. We assumed that C is not optimal, therefore

k > 0.

Part 2: We know that 0 = ∇L(QQ>)Q + βQ = SQ. Therefore, either S = 0, in

which case we are at a global minimum (which we assumed was not the case) or S

is orthogonal to Q. It follows that −λiu>i Q = (u>i S
>)Q = u>i (S>Q) = u>i 0 = 0

since ui is an eigenvector of S and S is symmetric.

Part 3: To optimize the inner product (4.19), introduce Lagrange multipliers ξi >

0 for the norm constraints. Since −S is symmetric, we can re-express the inner

objective as

argmin
u1,...,uk

u>i uj=0,i6=j, ui 6=0

∑
i

u>i (−S)>ui −
∑
i

ξiu
>
i ui.

Considering the gradients yields ∂
∂ui

= −Sui−2ξiui = 0, which implies (−S)ui =

2ξiui; that is ui is an eigenvector of−S corresponding to eigenvalue λi = 2ξi > 0.
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B.2 Proof of Corollary 1

First assume condition (i) holds and argue by contradiction. Assume QQ> is not a

global optimum of (4.17), and let u1 ∈ Rp be as defined in Proposition 1. Then,

f(QQ> + βu1u
>
1 ) < f(QQ>) for a sufficiently small β > 0. Furthermore, since

rank(Q) < d, there exists an orthogonal matrix V ∈ Rd×d such that QV has a zero

column. Let Q̂α be the matrix obtained from QV by replacing this zero column

by αu1, α =
√
β. Then limα→0 Q̂αV

> = QV V > = Q. Moreover, since u1 is

orthogonal to the columns of Q, it is also orthogonal to the columns of QV , so

Q̂αV (Q̂αV )> = QV (QV )>+α2u1u
>
1 = QQ>+ βu1u

>
1 . Therefore, f(Q̂αQ̂

>
α ) =

f(QQ> + βu1u
>
1 ) < f(QQ>) for Qα ∈ Rp×d, hence Q is not a local optimum of

f .

Next assume (ii). Since Q is a critical point of f(QQ>), ∇f(QQ>)Q = 0.

Since Q has rank p, the null-space of ∇f(QQ>) is of dimension p, yielding that

∇f(QQ>) = 0. Since QQ> � 0 and f is convex, C = QQ> is an optimum of

(4.17).

B.3 Proof of Proposition 2

Let Qm and Um denote the matrix Q and U in ILA when line 10 is executed the

mth time, and let Qinit,m denote Qinit obtained from Qm. Note that Qinit,m =
√
aQm+

√
bUm andQm+1 is obtained fromQinit,m via local optimization in line 12.

Furthermore, let Cm = QmQ
>
m and Cinit,m = Qinit,mQ

>
init,m = amCm + bmUmU

>
m.

If Cm is not a global optimum of (4.17), then f(Cinit,m) < f(Cm) by Proposi-

tion 1. Furthermore, we assume that the local optimizer in line 12 cannot increase

the function value f of Cinit,m, hence f(Cm+1) ≤ f(Cinit,m), and consequently

f(Cm+1) < f(Cm). Note that since L(Cm) ≥ 0, we have ‖Qm‖2
F = tr(Cm) ≤

f(C0), thus the entries of Cm are uniformly bounded for all m. Therefore, (Cm)m

has a convergent subsequence, and denote its limit point by Ĉ. We will show that

Ĉ is an optimal solution of (4.17) by verifying the KKT conditions (B.1) with

S = ∇f(Ĉ). First notice that Ĉ is positive semi-definite, ∇f(Ĉ)Ĉ = 0 by conti-

nuity since ∇f(Cm)Cm = ∇f(QQ>)QQ> = 0. Thus, we only need to verify that
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∇f(Ĉ) is positive semi-definite.

To show the latter, we first apply Lemma 1 (provided in the appendix) to obtain

a lower bound ILA’s progress:

f(Cm+1) ≤ f(Cinit,m+1) = f(aCm + bUmU
>
m) ≤ f(Cm + b̂UmU

>
m)

≤ f(Cm) + tr((b̂UmU
>
m)>∇f(Cm)) +

ν

2
ρ(b̂UmU

>
m)2

= f(Cm) + tr(b̂U>m∇f(Cm)Um) +
νb̂2

2
(B.2)

for any b̂ ≥ 0, where the last equality holds since UmU>m has km eigenvalues equal

1, and p − km equal 0, where km denotes the number of columns of Um. Now

consider

b̂ = −tr(U>m∇f(Cm)Um)

ν
=

tr(U>mΛmUm)

ν
=

1

ν

km∑
i=1

λm,i,

where λ1 ≥ · · · ≥ λkm > 0 are the eigenvalues of −∇f(Cm), and Λm is the diago-

nal matrix of the eigenvalues padded with p−mk zeros. Then tr(b̂U>m∇f(Cm)Um) =

−νb̂2, hence (B.2) yields

f(Cm)− f(Cm+1) ≥ ν

2
b̂2 =

1

2ν

(
km∑
i=1

λm,i

)2

≥
λ2
m,1

2ν
.

By our assumptions, f(C0) ≥ 0, and so using the monotonicity of f(Cm), we

have

f(C0) ≥ lim
m→∞

f(C0)− f(Cm+1) = lim
m→∞

m∑
i=0

f(Ci)− f(Ci+1) ≥ 1

2ν

∞∑
m=0

λ2
m,1.

Therefore, limm→∞ λm,1 = 0. Thus, by continuity, −∇f(Ĉ) has no positive eigen-

values, implying that ∇f(Ĉ) is positive semi-definite, concluding the proof.

B.4 An Auxiliary Lemma

This lemma is used in Appendix B.3.

Lemma 1 Suppose f is ν-smooth. Then for any positive semi-definiteC, S ∈ Rp×p,

f(C + S) ≤ f(C) + tr(S>∇f(C)) +
ν

2
ρ(S)2 . (B.3)
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Proof: Define h(η) = f(C + ηS) for η ∈ [0, 1]. Note that h(0) = f(C), h(1) =

f(C + S), and h>(η) = tr(S>∇f(C + ηS)) for any η ∈ (0, 1). Then

f(C + S)− f(C)− tr(S>∇f(C))

= h(1)− h(0)− tr(S>∇f(C)) =

∫ 1

0

h>(η)dη − tr(S>∇f(C))

=

∫ 1

0

tr(S>∇f(C+ηS))dη−tr(S>∇f(C))

=

∫ 1

0

tr
(
S>(∇f(C+ηS)−∇f(C))

)
dη

≤
∫ 1

0

ρ(S)‖∇f(C+ηS)−∇f(C)‖tr dη

≤
∫ 1

0

νρ(S)ρ(ηS)dη =

∫ 1

0

νηρ(S)2dη =
ν

2
ρ(S)2

where the first inequality holds by the Cauchy-Schwarz inequality, and the second

by the Lipschitz condition on∇f . Reordering the inequality establishes the lemma.
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Appendix C

Proofs for Chapter 5

C.1 Proof of Lemma 1

First expand (5.8), obtaining

−sk(x) = φ(x)>Pφ(x) + 2φ(x)>Aψk + 2b>φ(x) + ψ>k Qψk + 2c>ψk + r.

Since θ � 0 there must exist U , V and u such that

θ = [U>,−V >,u]>[U>,−V >,u]

, where U>U = P , U>V = −A, U>u = b, V >V = Q, V >u = −c, and u>u = r.

A simple substitution and rearrangement shows the claim.

C.2 Proof of Lemma 2

Similar to Lemma 1, since θPAQ � 0, there exist U and V such that

θPAQ = [U>,−V >]>[U>,−V >]

where

U>U = P, V >V = Q, U>V = −A.

Expanding (5.9) and substituting gives (5.12).

For (5.13) note

ψ>k Qψk − ψ>k Qψl − ψ>l Qψk + ψ>l Qψl = (ψk − ψl)>Q(ψk − ψl).
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Expanding Q gives

(ψk − ψl)>Q(ψk − ψl) = (ψk − ψl)>V >V (ψk − ψl)

= ‖V ψk − V ψl‖2.

C.3 Proof of Theorem 1

First, since θPAQ � 0 we have the relationship (5.13), which implies that there must

exist vectors ν1 = V ψ1 and ν2 = V ψ2 such that ψ>1 Qψ1 − ψ>1 Qψ2 − ψ>2 Qψ1 +

ψ>2 Qψ2 = ‖ν1 − ν2‖2. Therefore, the constraints (5.14) and (5.15) can be equiva-

lently re-expressed as

γ1 + δ + (1 + α)‖ν1 − ν2‖2 ≤ γ2 − δ (C.1)(
α
2

)2 ‖ν1 − ν2‖2 ≥ γ1 + δ (C.2)

with respect to these vectors. Next let µ(x) := Uφ(x) (which exists by (5.12)) and

observe that

‖µ(x)− ν2‖2 = ‖µ(x)− ν1 + ν1 − ν2‖2

= ‖µ(x)− ν1‖2 + ‖ν1 − ν2‖2 + 2〈µ(x)− ν1, ν1 − ν2〉 ,(C.3)

Consider two cases.

Case 1: 2〈µ(x) − ν1, ν1 − ν2〉 > α‖ν1 − ν2‖2. In this case, by the Cauchy

Schwarz inequality we have

2‖µ(x)− ν1‖‖ν1 − ν2‖ ≥ 2〈µ(x)− ν1, ν1 − ν2〉 > α‖ν1 − ν2‖2,

which implies ‖µ(x)− ν1‖ > α
2
‖ν1 − ν2‖, hence

‖µ(x)− ν1‖2 >
(α

2

)2

‖ν1 − ν2‖2 ≥ γ1 + δ

by constraint (C.2). But this implies that s1(x) < −δ therefore it does not matter

what value s2(x) has.

Case 2: 2〈µ(x)− ν1, ν1− ν2〉 ≤ α‖ν1− ν2‖2. In this case, assume that s1(x) ≥

−δ, i.e. ‖µ(x)− ν1‖2 ≤ γ1 + δ, otherwise it does not matter what value s2(x) has.

Then from (C.3) it follows that

‖µ(x)−ν2‖2 ≤ ‖µ(x)−ν1‖2+(1+α)‖ν1−ν2‖2 ≤ γ1+δ+(1+α)‖ν1−ν2‖2 ≤ γ2−δ
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by constraint (C.1). But this implies that s2(x) ≥ δ, hence the implication is en-

forced.

C.4 Proof of Theorem 2

As before, since θPAQ � 0 we have the relationship (5.13), which implies that there

must exist vectors ν1 = V ψ1 and ν2 = V ψ2 such that

ψ>1 Qψ1 − ψ>1 Qψ2 − ψ>2 Qψ1 + ψ>2 Qψ2 = ‖ν1 − ν2‖2.

Observe that the constraint (5.16) can then be equivalently expressed as

1
2
‖ν1 − ν2‖2 > γ1 + γ2 + 2δ, (C.4)

and observe that

‖ν1 − ν2‖2 = ‖ν1 − µ(x) + µ(x)− ν2‖2

= ‖ν1 − µ(x)‖2 + ‖µ(x)− ν2‖2 + 2〈ν1 − µ(x), µ(x)− ν2〉. (C.5)

using µ(x) := Uφ(x) as before (which exists by (5.12)).

Therefore

‖µ(x)− ν1‖2 + ‖µ(x)− ν2‖2 = ‖ν1 − ν2‖2 − 2〈ν1 − µ(x), µ(x)− ν2〉 (C.6)

= ‖(ν1 − µ(x)) + (µ(x)− ν2)‖2 − 2〈ν1 − µ(x), µ(x)− ν2〉 (C.7)

≥ 1
2
‖(ν1 − µ(x)) + (µ(x)− ν2)‖2 (C.8)

= 1
2
‖ν1 − ν2‖2. (C.9)

(To prove the inequality (C.8) observe that, since 0 ≤ 1
2
‖a − b‖2, we must have

〈a, b〉 ≤ 1
2
‖a‖2 + 1

2
‖b‖2, hence 2〈a, b〉 ≤ 1

2
‖a‖2 + 1

2
‖b‖2 +〈a, b〉 = 1

2
‖a+b‖2, which

establishes −2〈a, b〉 ≥ −1
2
‖a + b‖2. The inequality (C.8) then follows simply by

setting a = ν1 − µ(x) and b = µ(x)− ν2.)

Now combining (C.9) with the constraint (C.4) implies that ‖µ(x) − ν1‖2 +

‖µ(x)−ν2‖2 ≥ 1
2
‖ν1−ν2‖2 > γ1 +γ2 +2δ, therefore one of ‖µ(x)−ν1‖2 > γ1 +δ

or ‖µ(x)−ν2‖2 > γ2+δ must hold, hence at least one of s1(x) < −δ or s2(x) < −δ

must hold. Therefore, the mutual exclusion is enforced.
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C.5 Proof of Proposition 1

First observe that

max
y∈Y

l∑
k=1

yksk(x) ≤ max
y

l∑
k=1

yksk(x) =
l∑

k=1

max
yk

yksk(x) (C.10)

so making local classifications for each label gives an upper bound. However, if

the score function satisfies the constraints, then the concatenation of the local label

decisions y = (y1, ..., yl) must be jointly feasible; that is, y ∈ Y . In particular,

for the implication y1 ⇒ y2 the score constraint (5.5) ensures that if s1(x) > 0 ≥

−δ (implying 1 = arg maxy1 y1s1(x)) then it must follow that s2(x) ≥ δ, hence

s2(x) > 0 (implying 1 = arg maxy2 y2s2(x)). Similarly, for the mutual exclusion

¬y1 ∨ ¬y2 the score constraint (5.6) ensures min(s1(x), s2(x)) < −δ ≤ 0, hence

if s1(x) > 0 ≥ −δ (implying 1 = arg maxy1 y1s1(x)) then it must follow that

s2(x) < −δ ≤ 0 (implying 0 = arg maxy2 y2s2(x)), and vice versa. Therefore,

since the maximizer y of (C.10) is feasible, we actually have that the leftmost term

in (C.10) is equal to the rightmost.

C.6 Proof of Proposition 2

For a given x and t ∈ Y , let fk(y) = δ(y, tk) + (y − tk)sk(x), hence

yk = arg max
y∈{0,1}

fk(y).

It is easy to show that

1 ∈ arg max
y∈{0,1}

fk(y) ⇐⇒ sk(x) ≥ tkδ − (1− tk)δ, (C.11)

which can be verified by checking the two cases, tk = 0 and tk = 1. When tk = 0

we have fk(0) = 0 and fk(1) = δ + s(x), therefore 1 = yk ∈ arg maxy∈{0,1} fk(y)

iff δ + s(x) ≥ 0. Similarly, when tk = 1 we have fk(0) = δ − s(x) and fk(1) = 0,

therefore 1 = yk ∈ arg maxy∈{0,1} fk(y) iff δ − s(x) ≤ 0.

Combining these two conditions yields (C.11).

Next, we verify that if the score constraints hold, then the logical constraints

over y are automatically satisfied even by locally assigning yk, which implies the

optimal joint assignment is feasible, i.e. y ∈ Y , establishing the claim.
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Implication In particular, for the implication y1 ⇒ y2, it is assumed that t1 ⇒ t2

in the target labeling and also that score constraints hold, ensuring s1(x) ≥ −δ ⇒

s2(x) ≥ δ.

Consider the cases over possible assignments to t1 and t2:

If t1 = 0 and t2 = 0 then y1 = 1 ⇒ f1(1) ≥ f1(0) ⇒ δ + s1(x) ≥ 0 ⇒ s1(x) ≥

−δ ⇒ s2(x) ≥ δ (by assumption)⇒ s2(x) ≥ −δ ⇒ δ + s2(x) ≥ 0 ⇒ f2(1) ≥

f2(0)⇒ y2 = 1.

If t1 = 0 and t2 = 1 then y1 = 1 ⇒ f1(1) ≥ f1(0) ⇒ δ + s1(x) ≥ 0 ⇒ s1(x) ≥

−δ ⇒ s2(x) ≥ δ (by assumption)⇒ 0 ≥ δ − s2(x) ⇒ f2(1) ≥ f2(0) ⇒ y2 = 1

(tight case).

The case t1 = 1 and t2 = 0 cannot happen by the assumption that t ∈ Y .

If t1 = 1 and t2 = 1 then y1 = 1 ⇒ f1(1) ≥ f1(0) ⇒ 0 ≥ δ − s1(x) ⇒ s1(x) ≥

−δ ⇒ s2(x) ≥ δ (by assumption)⇒ 0 ≥ δ − s2(x)⇒ f2(1) ≥ f2(0)⇒ y2 = 1.

Mutual Exclusion Similarly, for the mutual exclusion ¬y1 ∨ ¬y2, it is assumed

that ¬t1∨¬t2 in the target labeling and also that the score constraints hold, ensuring

min(s1(x), s2(x)) < −δ.

Consider the cases over possible assignments to t1 and t2:

If t1 = 0 and t2 = 0 then y1 = 1 and y2 = 1 implies that s1(x) ≥ −δ and

s2(x) ≥ −δ, which contradicts the constraint that min(s1(x), s2(x)) < −δ (tight

case).

If t1 = 0 and t2 = 1 then y1 = 1 and y2 = 1 implies that s1(x) ≥ −δ and s2(x) ≥ δ,

which contradicts the same constraint.

If t1 = 1 and t2 = 0 then y1 = 1 and y2 = 1 implies that s1(x) ≥ δ and s2(x) ≥ −δ,

which again contradicts the same constraint.

The case t1 = 1 and t2 = 1 cannot happen by the assumption that t ∈ Y .

Therefore, since the concatenation, y, of the independent maximizers of (5.21)

is feasible, i.e. y ∈ Y , we have that the rightmost term in (5.21) equals the leftmost.
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