This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
- 3Reinforcement learning
- 1Artificial Intelligence
- 1Dyna
- 1Exploration
- 1Off-policy policy evaluation
- 1Offline reinforcement learning
-
Spring 2020
Reinforcement Learning is a formalism for learning by trial and error. Unfortunately, trial and error can take a long time to find a solution if the agent does not efficiently explore the behaviours available to it. Moreover, how an agent ought to explore depends on the task that the agent is...
-
Fall 2021
A common scientific challenge for putting a reinforcement learning agent into practice is how to improve sample efficiency as much as possible with limited computational or memory resources. Such available physical resources may vary in different applications. My thesis introduces some approaches...
-
Towards Practical Offline Reinforcement Learning: Sample Efficient Policy Selection and Evaluation
DownloadSpring 2024
Offline reinforcement learning (RL) involves learning policies from datasets, rather than online interaction. The dissertation first investigates a critical component in offline RL: offline policy selection (OPS). Given that most offline RL algorithms require careful hyperparameter tuning, we...