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Abstract

O✏ine reinforcement learning (RL) involves learning policies from datasets,

rather than online interaction. The dissertation first investigates a critical

component in o✏ine RL: o✏ine policy selection (OPS). Given that most of-

fline RL algorithms require careful hyperparameter tuning, we need to select

the best policy amongst a set of candidate policies before deployment. In the

first part of the dissertation, we provide clarity on when OPS is sample e�-

cient by building a clear connection to o↵-policy policy evaluation (OPE) and

Bellman error estimation. This dissertation then presents algorithms to lever-

age o✏ine data. We begin by examining environments that include exogenous

variables with limited agent impact and endogenous variables under full agent

control. We show that policy evaluation and selection become straightfor-

ward under such conditions. Additionally, we present an algorithm based on

Fitted-Q Iteration with data augmentation and show its ability to find nearly

optimal policies with polynomial sample complexity. We then study OPE

in non-stationary environments and introduce the regression-assisted doubly

robust estimator, which e↵ectively incorporates the past data without intro-

ducing a large bias and improves on existing OPE estimators with the use of

auxiliary information and a regression approach. We evaluate our algorithms

across a variety of problems, some built using real-world datasets, including

optimal order execution, inventory management, hybrid car control and rec-

ommendation systems.
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Preface

This dissertation contains three original works by the author, including two

published works “Asymptotically Unbiased O↵-Policy Policy Evaluation when

Reusing Old Data in Nonstationary Environments” (V. Liu, Chandak, et al.,

2023) and “Exploiting Action Impact Regularity and Exogenous State Vari-

ables for O✏ine Reinforcement Learning” (V. Liu, Wright, et al., 2023), and

one under submission “When is O✏ine Policy Selection Sample E�cient for

Reinforcement Learning?”.
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Chapter 1

Introduction

Reinforcement learning (RL) is a framework for learning to make sequential

decisions by interacting with an unknown environment. At each time step,

the agent chooses an action based on its decision-making rule, which is called

a policy, and receives an immediate reward and the next observation from

the environment. The goal of the agent is learn a policy that maximizes the

cumulative rewards while interacting the environment.

There has been significant progress for RL on a number of simulated en-

vironments, such as video games (Mnih et al., 2015; Vinyals et al., 2019) and

and board games (Silver et al., 2017). However, the need for a large amount

of interactions prohibits many other real-world applications, beyond simulated

environments. This limitation arises for several reasons:

• Infeasibility of online interactions: In some cases, online interactions

with real-world environments is not feasible, as it can be unsafe or even

dangerous. For instance, when it comes to self-driving cars, direct inter-

actions with the real-world environment may carry significant risks.

• Costly simulator development: Building a simulator that accurately rep-

resents a real-world environment can be costly.

• Expense of simulation: Even when a simulator is available, the process

of simulation itself can be expensive in terms of computation.

For many real-world problems, we need to consider using previously col-

lected dataset, without further online interaction or simulation, to find a good
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policy. This problem setting is called the o✏ine setting. By leveraging static

datasets, o✏ine RL can bridge the gap between the remarkable success of RL

in simulated environments and its practical applicability in the real world.

O✏ine RL problem is known to be hard in general (Chen & Jiang, 2019).

That is, without assumptions on the data distribution and the environment

dynamics, one can easily construct an adversarial example such that the agent

cannot learn a good policy from a limited dataset with high probability. Sev-

eral works have made progress toward understanding when o✏ine RL is feasi-

ble. For example, it has been shown that a good data distribution alone is not

su�cient for sample e�cient o✏ine learning (Chen & Jiang, 2019; R. Wang

et al., 2021), so we can not expect o✏ine learning to work in all situations

even when we can choose the data distribution. We must consider assump-

tions on the environments. On the other hand, a good data coverage, which is

often measured by the concentration coe�cient (Munos, 2007), together with

a function class that has a low inherent Bellman error (Antos et al., 2008)

enables sample e�cient learning (Chen & Jiang, 2019).

These theoretical results provide useful insights on the conditions under

which o✏ine RL works; however, there are still many unsolved challenges in

practice. First, these theoretical results often relies on assumptions such as a

small concentration coe�cient, which are unrealistic, as we will discuss more

in Chapter 3. Moreover, even if we can derive a bound on the performance

loss of the output policy, the bounds often depend on quantities such as the

concentration coe�cient or the inherent Bellman error that are hard to com-

pute exactly. In practice, we still need to verify whether the output policy

can actually perform well in the underlying environment, and we often also

need to tune the hyperparameters to find a good output policy. These practi-

cal challenges are still not fully addressed by existing theoretical or empirical

works.

To address these challenges in the o✏ine setting, we focus on o↵-policy

policy evaluation (OPE) and o✏ine policy selection (OPS) in the this disser-

tation. OPE is the problem where we aim to estimate the expected return of

a given target policy. It allows us to evaluate the performance of the output
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policy with the data collected from a di↵erent policy. If we can perform OPE

accurately, we can use the estimators to check whether the policy is safe before

deployment (P. Thomas et al., 2015b). Similarly, OPS is the problem where

we aim to select the best-performing policy from a set of candidate policies.

With the help of a good OPS method, we can perform hyperparameter tun-

ing, unlocking the full potential of numerous state-of-art o✏ine policy learning

algorithm.

The goal of the thesis is to design practical o✏ine RL algorithms under real-

world scenarios. In most real-world applications, we often have limited data,

so achieving sample e�ciency becomes an important factor in determining the

practicality of o✏ine RL algorithms. Moreover, considering the deployment

of o✏ine RL algorithms, it is critical to ensure the safety and reliability of

the policy before deploying it. As a result, we place a strong emphasis on

providing sample e�ciency and performance guarantees.

1.1 Contributions

I list the main contributions included in the dissertation.

1.1.1 Towards sample e�cient o✏ine policy selection

In the first part of the dissertation, we study the o✏ine policy selection prob-

lem. Policy selection is a critical procedure before deploying RL algorithms

in real-world applications. However, there is little understanding about the

fundamental limitations of the o✏ine policy selection (OPS) problem. In this

part, we aim to provide clarity on when sample e�cient OPS is possible, pri-

marily by bringing together existing theoretical results about o↵-policy policy

evaluation (OPE) and Bellman error (BE) estimation. In particular, we first

show a negative result, that in the worst case, OPS is just as hard as OPE, by

proving a reduction of OPE to OPS. As a results, no OPS method can be more

sample e�cient than OPE in the worse case. Then we propose a simple BE

estimation method for OPS. We highlight that using BE generally has more

requirements, but if satisfied, has an easy method for selecting its own hyper-
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parameters and might be more sample e�cient than OPE. We conclude with

an empirical study comparing OPE and BE estimation for OPS in benchmark

environments.

1.1.2 Environments with exogenous structure

In the second part of the dissertation, we explore a restricted class of MDPs

to obtain guarantees for o✏ine policy learning and policy evaluation. The key

property, which we call Action Impact Regularity (AIR), is that actions pri-

marily impact the endogenous state and have limited impact on the remaining

part of the state (the exogenous component). We also assume we have the

knowledge of the endogenous dynamics. The assumption is strong, however,

it holds in a number of real-world domains including financial and operation

research problems. We propose and theoretically analyze an algorithm based

on Fitted-Q Iteration that exploits the property. We empirically show the pro-

posed algorithm outperforms existing o✏ine RL algorithms in several synthetic

and real-world environments that satisfy the AIR property.

1.1.3 Environments with nonstationarity

In the third part of the dissertation, we study the OPE problem for con-

textual bandits and finite horizon reinforcement learning in non-stationary

environments, where reusing old data is critical for sample e�cient policy eval-

uation. We introduce a variant of the doubly robust (DR) estimator, called

the regression-assisted DR estimator, that reuses the old data without intro-

ducing a large bias and unifies several existing o↵-policy evaluation methods.

We prove that the estimator has asymptotic properties, in particular, we can

construct a large sample confidence interval for the true policy value. We

empirically show the proposed estimator provide tight and valid confidence

intervals in several recommendation environments.
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1.2 Overview

The remainder of the dissertation is organized as follows. In Chapter 2, we

introduce the necessary background knowledge that will be used throughout

the entire thesis. In Chapter 3, we provide a summary of existing theoretical

results. Chapter 4 studies the sample complexity of OPS. Chapter 5 presents

the FQI-AIR algorithm for environments with exogenous structure. Chapter 6

presents the regression-assisted estimator for nonstatinoary environment. We

conclude in Chapter 7, with a discussion on the limitation of the thesis and

future directions.
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Chapter 2

Background

We provide the background knowledge in this section. The purpose of this

section is to provide a brief introduction of reinforcement learning and o✏ine

reinforcement learning that will be used throughout the entire dissertation,

and detailed problem settings and notation will be introduced in the following

chapters.

2.1 Value functions and Bellman operators

We formalize the agent-environment interaction as a finite horizon Markov

decision process (MDP) M = (S,A, Q,H, ⌫) where S is a set of states, and A

is an set of actions; for simplicity, we assume that both sets are finite but they

can be very large. H 2 Z+ is the planning horizon, and ⌫ 2 �(S) the initial

state distribution. Given a state s and an action a, the reward R and next

state S 0 are sampled from a stochastic kernel Q, that is, (R, S 0) ⇠ Q(·|s, a).

We assume the reward is bounded in [0, rmax] almost surely, so the total return

of each episode is bounded in [0, Vmax] with Vmax = Hrmax. The stochastic

kernel Q induces a transition probability P : S ⇥ A ! �(S), and a mean

reward function r : S ⇥ A ! [0, rmax] which gives the mean reward when

taking action a in state s.

In the finite horizon setting, the policies are non-stationary. A non-stationary

policy is a sequence of memoryless policies (⇡0, . . . , ⇡H�1) where ⇡h : S !

�(A). We assume that the set of states reachable at time step h, Sh ⇢ S, are

disjoint, without loss of generality, because we can always define a new state
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space S
0 = S ⇥ [H] where [n] := {0, 1, 2, . . . , n � 1}. Then, it is su�cient to

consider stationary policies ⇡ : S ! �(A).

Value functions. Given a policy ⇡, h 2 [H], and (s, a) 2 S ⇥A, we define

the value function and the action-value function as

v⇡h(s) := E⇡

"
H�1X

t=h

r(St, At)|Sh = s

#

and

q⇡h(s, a) := E⇡

"
H�1X

t=h

r(St, At)|Sh = s, Ah = a

#

where the expectation is with respect to P⇡
M (we may drop the subscript M

when it is clear from the context). P⇡ is the probability measure on the random

element (S0, A0, . . . , SH�1, AH�1) induced by the policy ⇡ and the MDP such

that P⇡(S0 = s) = ⌫(s), P⇡(At = a|S0, A0, . . . , St) = ⇡(a|St), and P⇡(St+1 =

s0|S0, A0, . . . , St, At) = P (St, At, s0) for t � 0 (Lattimore & Szepesvári, 2020;

Puterman, 2014).

Given a policy ⇡, we define the value of policy as J(⇡) = Es0⇠⌫ [v⇡0 (s0)]. The

visitation distribution (or sometimes called occupancy measure) of ⇡ at time

step h is given by d⇡h(s, a) = P⇡(Sh = s, Ah = a), and d⇡(s, a) = 1

H

P
h P⇡(Sh =

s, Ah = a).

A policy ⇡ is greedy with respect to the value function q = (q0, . . . , qH�1)

if ⇡(a|sh) = argmaxa2A qh(sh, a) for any h 2 [H] and sh 2 Sh. The optimal

action-value function is defined by q⇤h(s) := sup⇡ q
⇡
h(s). A policy achieving this

is called an optimal policy. The fundamental theorem of MDPs states that the

greedy policy with respect to q⇤ = (q⇤
0
, . . . , q⇤H�1

) is optimal, so knowing the

optimal action-value function is su�cient to behave optimally in the MDP.

Similar to the stationary policy, we also use an action-value function q

to denote the sequence of action-value function (q0, . . . , qH�1) since the set of

states reachable at each time step are disjoint. That is, for all h 2 [H] and

s 2 Sh, q(s, ·) = qh(s, ·).

7



Bellman operators. The Bellman operator is defined by

(T qh)(s, a) := r(s, a) +
X

s02S

P (s, a, s0)max
a02A

qh(s
0, a0).

The Bellman evaluation operator for a policy ⇡ is defined by

(T ⇡qh)(s, a) := r(s, a) +
X

s02S

P (s, a, s0)
X

a02A

⇡(a0|s0)qh(s
0, a0).

Most reinforcement learning algorithms can be viewed as applying the Bell-

man operator iteratively to find the optimal action-value function. Value It-

eration (VI) computes a sequence of action-value function by applying the

Bellman operator. Let qH = 0 and, for h = H � 1, . . . , 0, let

qh = T qh+1.

It can be verified that the output action-value function q = (q0, . . . , qH�1) is

optimal.

Policy Iteration (PI) alternates between the policy evaluation phase and

the policy improvement phase. Starting with an arbitrary policy ⇡, PI first

computes a sequence of action-value function by applying the Bellman evalu-

ation operator. Let qH = 0, and for h = H � 1, . . . , 0, let

qh = T
⇡qh+1.

It can also be verified that that the output action-value function q = (q0, . . . , qH�1)

is the true action-value function q⇡. Once the true action value function is

found, the policy improvement theorem shows that we can obtain a better

policy by greedifying q⇡. The procedure is repeated until the optimal solution

(q⇤, ⇡⇤) is found.

2.2 Value function approximation

In the previous part, we introduced Value Iteration and Policy Iteration. To

perform these methods exactly, we need to store individual values for each

state-action pair. This requirement for storing individual values can result in

a substantial memory cost, especially when dealing with a large state space.
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In practice, we often approximate the action-value function. For example,

we can use a model f✓ : S ⇥ A ! R to represent the action-value function

where ✓ 2 ⇥ is the parameter of the model, and the set of functions over the

state-action space is

F = {f✓ : S ⇥A! R | ✓ 2 ⇥}.

To ensure the approximated function is still accurate, we need some as-

sumptions on the function class. If our goal is to find the optimal action-value

function, we need a function class such that q⇤
0
, . . . , q⇤H�1

2 F . We call a func-

tion class q⇤-realizable if it satisfies the condition. Similarly, we say a function

class is q⇡-realizable if q⇡
0
, . . . , q⇡H�1

2 F .

Consider Value Iteration with function approximation, since we might not

be able to represent the function T qh in the function class, we need to project

the function back to the function class F . This can be done by a projection

operator. Let q 2 RS⇥A, we define

⇧Fq := argmin
f2F

kf � qkpp,⌫ ,

where kqkpp,⌫ =
P

s2S,a2A ⌫(s, a)|q(s, a)|
p is a weighted norm of q. There are

many choices of the distribution ⌫. Most commonly, if we have access to a

set of representable state-action pairs D, then we can consider the weighting

under the empirical distribution that puts a point mass to each state-action

pair in D, that is, kqkpp,D = 1

|D|
P

(s,a)2D |q(s, a)|p

The resulting algorithm is called Approximate Value Iteration, since we

approximate the Bellman operator. Let qh = 0 and

qh = ⇧FT qh+1.

We are not guaranteed to find the optimal solution with function approxima-

tion. However, there exists results that relate the supoptimiality of the ap-

proximated solution to the approximation power of the function class (Munos,

2005).
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Algorithm 1 Fitted Q Evaluation

1: Input: dataset D and function class F

2: qH = 0
3: for h = H � 1, . . . , 0 do

4: qh = argminq2F
P

(s,a,r,s0)2Dh
(q(s, a)� r �

P
a02A ⇡(a

0
|s0)qh+1(s0, a0))2

5: Output: Ĵ(⇡) = 1

n

P
s02D q0(s0)

2.3 O✏ine reinforcement learning

In the o✏ine setting, we are given a fixed set of transitions

D = {(Si, Ai, Ri, S
0
i)}

nH
i=1

with (Si, Ai) drawn from a data distribution µ over (S ⇥ A), and (R, S 0)

sampled from the stochastic kernel Q. In this thesis, we consider the data

collection scheme where the data is collected by a data collection policy ⇡b.

That is, D consists of n trajectories

⌧ (i) = (S(i)
0
, A(i)

0
, R(i)

0
, . . . , S(i)

H�1
, A(i)

H�1
, R(i)

H�1
)

induced by the the interaction of the policy ⇡b and the MDP M . We also use

Dh to denote the data at horizon h. The data distribution µh(s, a) = d⇡b

h (s, a)

is the visitation distribution of the data collection policy.

Policy evaluation. Given a target policy ⇡, the goal of policy evaluation is

to estimate the value of the policy ⇡, which is defined as J(⇡) := ES0⇠⌫ [v⇡0 (S0)].

A foundational strategy to estimate J(⇡) is to use the importance sampling

(IS) estimator, which corrects the sampled returns seen in the dataset by the

product of IS ratios:

ĴIS(⇡) =
1

n

nX

i=1

 
H�1Y

h=0

⇡(A(i)
h |S(i)

h )

⇡b(A
(i)
h |S(i)

h )

! 
H�1X

h=0

R(i)
h

!
.

The IS estimator is an unbiased estimator for J(⇡), as long as ⇡b(a|s) > 0

for any (s, a) such that ⇡(a|s) > 0. However, the estimator can have high

variance.

Another strategy is to applies the projected Bellman evaluation operator

to learn the action-value function. In the o✏ine setting, this method is called

10



Algorithm 2 Fitted Q Iteration

1: Input: dataset D and function class F

2: qH = 0
3: for h = H � 1, . . . , 0 do

4: qh = argminq2F
P

(s,a,r,s0)2Dh
(q(s, a)� r �maxa02A qh+1(s0, a0))2

5: ⇡h(s) = argmaxa2A qh(s, a) for all s 2 Sh

6: Output: ⇡ = (⇡0, . . . , ⇡H�1)

Fitted Q evaluation (FQE) (Le et al., 2019), described in Algorithm 1. The

FQE estimator has low variance but potentially high bias if we don’t choose

the function class carefully.

Note that in the o✏ine setting, we do not know the transition probability

and the mean reward function. Therefore, we cannot compute the projected

Bellman evaluation operator exactly. We need to approximate it with samples,

that is,

⇧FT
⇡q ⇡ argmin

f2F

1

|D|

X

(s,a,r,s0)2D

|f(s, a)� r �
X

a02A

⇡(a0|s0)q(s0, a0)|2.

Policy learning. For policy learning, the goal is to learn an optimal policy

from the o✏ine data. A representative algorithm for o✏ine policy learning is

Fitted Q Iteration (FQI) (Ernst et al., 2005), described in Algorithm 2. Similar

to FQE, FQI applies the projected Bellman operator to learn a sequence of

action-value function q = (q0, . . . , qH�1), and output the greedy policy with

respect to q.

In this thesis, our primary emphasis is on algorithms based on the use

of the Bellmen operators, such as FQE and FQI. These algorithms fall un-

der the category of approximate dynamic programming (ADP). Additionally,

there exist alternative algorithms designed to learn di↵erent quantities. For

example, model-based methods (Mannor et al., 2007) aim to learn a model

of the environment, which includes estimating the transition probability and

the reward function. Marginalized IS methods (Q. Liu et al., 2018; Uehara

et al., 2020; Xie et al., 2019) along with DICE methods (Nachum et al., 2019)

focus on estimating the density ratio between the visitation distribution of a

target policy and the data collection policy. We have chosen to focus on ADP
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methods since they already o↵er a comprehensive framework well-suited to

address the challenges in o✏ine RL that are central in this thesis.

Performance measure. To assess the quality of policy learning algorithms,

we measure the suboptimality (which is also called the performance loss or the

regret) of the policy. The suboptimality is the di↵erence between the value of

an optimal policy and the value of the output policy, that is, J(⇡⇤) � J(⇡).

Similarly, for policy evaluation, we can measure the distance between the true

value and the estimator: |J(⇡)� Ĵ(⇡)|p for some p � 1. For p = 1, we consider

the absolute error. For p = 2, we consider the squared error.

We are interested in finite sample guarantees in the PAC learning frame-

work. Suppose we run FQI with a finite function class F and find an out-

put policy ⇡̂. We want to guarantee that J(⇡⇤) � J(⇡̂)  " with probabil-

ity at least 1 � � using a sample size less than some polynomial function of

1/", 1/�, log |F|, and other relevant quantities such as H. We might derive

asymptotic guarantees instead of finite sample guarantees. For example, we

can show that J(⇡⇤) � J(⇡̂) ! 0 in probability and the rate of convergence

J(⇡⇤) � J(⇡̂) = oP (n↵). Detailed performance measures will be introduced

when needed.
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Chapter 3

The Practicality of O✏ine RL

“There is nothing as practical as a good theory”

— Kurt Lewin

The goal of the chapter is to provide a summary on existing theoretical

results and their insights for the practicality of o✏ine RL. We begin the chapter

by discussing the hardness of the o✏ine setting, then we discuss conditions that

enable sample e�cient o✏ine learning.

Achieving sample e�ciency is an important factor in determining the prac-

ticality of o✏ine RL algorithms. While we acknowledge the importance of

computational e�ciency as an additional practical consideration, our primary

focus revolves around sample complexity. In finite horizon o✏ine RL, sample

complexity is a measure that informs us about the smallest number of episodes

an algorithm requires to find a nearly optimal policy. We classify an algorithm

as sample e�cient if its sample complexity does not depend on the size of the

state space |S| and does not grow exponentially with other relevant factors,

such as the planning horizon H and number of actions |A|.

3.1 When does o✏ine RL not work?

The challenge in o✏ine RL is that the quality of the output policy can be

highly dependent on the data, the underlying environment, and the function

approximation. Most obviously, the data might not cover some parts of the

environment, resulting in two issues. The first is that the learned policy,

when executed in the environment, is likely to deviate from the behavior that
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generated its training data and reach a state-action pair that was unseen in the

dataset. For these unseen state-action pairs, the algorithm has no information

about how to choose a good action. The second issue is that if the dataset does

not contain transitions in the high-reward regions of the state-action space, it

may be impossible for any algorithm to return a good policy. One can easily

construct a family of MDPs with missing data such that no algorithm can

identify the MDP and su↵er a large suboptimality gap (Chen & Jiang, 2019).

The data distribution used to collect the o✏ine data (in our notation,

µ) is a critical component, however, a good data distribution alone is not

su�cient. We also need assumptions on the underlying MDPs. In particular,

Chen and Jiang (2019) showed that if we do not make assumptions on the

MDP dynamics, no algorithm can achieve a polynomial sample complexity to

return a near-optimal policy, even when the algorithm can choose any data

distribution. R. Wang et al. (2021) provide an exponential lower bound for

the sample complexity of o↵-policy policy evaluation (for a given policy ⇡)

under linear function approximation, even with q⇡-realizable function class

and when the data distribution induces a well-conditioned covariance matrix.

Zanette (2020) provide an example where o✏ine RL is exponentially harder

than online RL, even with the best data distribution, q⇡-realizable function

class and assuming the exact feedback is observed for each sample in the

dataset. Xiao et al. (2022) provide an exponential lower bound for the sample

complexity of obtaining nearly-optimal policies when the data is obtained by

following a data collection policy. All these results suggest designing a good

data distribution to collect data is not su�cient.

Additionally, o✏ine RL requires a strong representational condition on

function approximation. In supervised learning, the standard realizability con-

dition asserts that the function class can represent the optimal function to be

learned, such as the conditional mean in regression tasks. Similarly, in o✏ine

RL, we can consider an analogous optimal condition such that the function

class contains the optimal value function.

Nonetheless, a study by Foster et al. (2021) shows that this realizability
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condition, even when combined with standard data coverage requirement,1 is

insu�cient. These findings suggest that, in the context of o✏ine RL, additional

conditions beyond realizability is needed.

One such condition is the Bellman completeness condition, which asserts

that the function class should be capable of representing the Bellman operator

for all the value function within the class. That is, for any q 2 F , it should

hold that T q 2 F . It’s worth noting that the Bellman completeness condition

lacks a monotonic property: when we increase the complexity or the size of

the function class, it is possible that condition become unsatisfied. Hence,

increasing the size of the function class is not always a viable solution for

satisfying this condition.

An ongoing research direction is to explore the conditions under which

realizability alone su�ces for o✏ine RL. Zanette (2022) investigate the suf-

ficiency of realizability through a localized version of Bellman completeness.

Furthermore, Xie and Jiang (2021) propose an algorithm that relies solely on

realizability, but it comes with more stringent data coverage requirements and

is computationally intractable.

These challenges in o✏ine RL seem to resemble the well-known deadly triad

issue (Sutton & Barto, 2018), though is di↵erent in an important way. The

deadly triad issue states that convergence of an RL algorithm is not guaran-

teed when o↵-policy learning, bootstrapping, and function approximation are

combined. Specifically, the data coverage condition relates to the o↵-policy

aspect, while the representational condition pertains to bootstrapping and

function approximation. In the context of o✏ine RL, our primary concern is

the ability to find nearly-optimal policies from o✏ine data. The algorithm

itself does not need to be convergent (Chen & Jiang, 2019).

The message derived from these findings is that o✏ine RL presents inherent

challenges. It is necessary to consider problem-specific assumptions about the

data, the underlying MDPs, and function approximation. This forms the

principal motivation behind the thesis.

1We will discuss the data coverage requirement in the following subsection.
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3.2 When does o✏ine RL work?

In this section, we provide a summary of positive results and discuss how we

can obtain guarantees for o✏ine RL under specific conditions.

3.2.1 Warm-up: o✏ine contextual bandit

We begin by examining the feasibility of o✏ine learning for contextual bandit

(CB) problems. CB can be seen as a special case of RL with a short horizon

H = 1. As the horizon is short, we are not concerned with the exponential

lower bound mentioned in the previous section, making o✏ine learning in the

context of CB relatively straightforward.

For contextual bandit with logged data, we can employ importance sam-

pling (IS) for policy evaluation. For H = 1, the IS estimator is

Ĵ(⇡) =
1

n

X

(s,a,r)2D

⇡(a|s)

⇡b(a|s)
r.

We can then perform policy optimization using this estimate within a specified

policy class ⇧:

⇡̂ = argmin
⇡2⇧

Ĵ(⇡).

This approach is often referred to as counterfactual risk minimization (Swami-

nathan & Joachims, 2015a). To prevent overfitting, we can incorporate a sam-

ple variance term using empirical Bernstein bounds (Maurer & Pontil, 2009).

We only require a mild condition in which the behavior policy covers the

target policy. In other words, if ⇡(a|s) > 0 for some (s, a) 2 S ⇥ A, then

⇡b(a|s) > 0. This condition can be met by introducing randomness in the

data collection policy.

In applications involving a large number of actions, such as recommenda-

tion systems, fulfilling this assumption can be challenging. To address the lack

of coverage, particularly in scenarios with large action spaces, Sachdeva et al.

(2020) o↵er various approaches to enable o✏ine learning. These approaches

include action space restriction, policy space restriction, and the utilization of

reward extrapolation.
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3.2.2 Data coverage conditions

Now we explore the data coverage conditions required to obtain guarantees for

o✏ine RL, extending beyond CB. We can naturally apply IS, similar to what’s

done in CB, as long as the data collection policy is randomized. In this case,

we aim to find the best policy ⇡̂ within the policy class ⇧:

⇡̂ = argmax
⇡2⇧

1

n

nX

i=1

 
H�1Y

h=0

⇡(A(i)
h |S(i)

h )

⇡b(A
(i)
h |S(i)

h )

! 
H�1X

h=0

R(i)
h

!
.

However, the IS estimator comes with exponentially high variance. This im-

plies that, in the worst case, we may require an exponential number of episodes

to learn an e↵ective policy.

To mitigate the challenge of exponential sample complexity, we need to

consider more stringent data coverage conditions. Early works on approximate

dynamic programming (Munos, 2003, 2005, 2007) have o↵ered guarantees on

the suboptimality of the resulting policy, relying on assumptions related to

good data coverage and mild distribution shift.

All-policy concentrability. The concept of data coverage has primarily

been quantified using concentration coe�cients (Munos, 2003). Given a data

distribution µ, the concentration coe�cient C is defined to be the smallest

value such that, for any policy ⇡, the following holds:

max
h2[H�1]

max
s2Sh,a2Ah

P⇡(Sh = s, Ah = a)

µh(s, a)
 C.

If µ(s, a) = 0 for some (s, a), we conventionally set C = 1. In essence, the

concentration coe�cient serves to bound the ratio between the state-action

distribution induced by any policy and the data distribution µ.

Several results have established bounds on the suboptimality of Approx-

imate Policy Iteration (API) and Approximate Value Iteration (AVI) algo-

rithms in terms of the concentration coe�cient (Chen & Jiang, 2019; Farah-

mand et al., 2010; Munos, 2003, 2007). For example, it has been demonstrated

that FQI outputs a near-optimal policy when C is small and the value function

class satisfies the Bellman completeness condition. In such cases, the sample

complexity scales linearly with C.

17



It’s important to emphasize that the data coverage not only depends on

the data distribution µ, but also on the underlying environment dynamics

(implicitly in P⇡). The data coverage condition is designed to ensure that

the data su�ciently covers all parts of the environment that any policy can

encounter. This comprehensive coverage is crucial for obtaining reliable and

meaningful results in the o✏ine setting.

Various measures of data coverage have been introduced. For instance,

M. Yin et al. (2021) assume the visitation distribution of the least occupied

state-action pair is greater than or equal to dm. This leads to corresponding

sample complexity results that are on the order of O(1/dm). In a similar vein,

Xie et al. (2021) propose a measure that takes into account the function class

F :

max
h2[H�1]

max
f2F

kf � T fk2
2,P⇡

h

kf � T fk2
2,µh

 C.

The definition captures potential generalization across di↵erent state-action

pairs with function approximation.

However, for many real-world applications, achieving a small concentration

coe�cient can be a significant challenge. This is particularly true when the

data collection policy is not well-randomized or lacks exploratory behavior,

which is often the case in practical settings. In such scenarios, the concentra-

tion coe�cient may become very large or even infinite due to the omission of

some state-action pairs from the dataset.

Munos (2007) o↵ers valuable insights into the size of the concentration

coe�cient. To illustrate, consider a situation where the data distribution fol-

lows a uniform distribution (e.g., µ(s, a) = 1/|S||A|), while the environment

transition probabilities are less uniform. That is, certain policies may lead

to visitation distribution that concentrates on a single state-action pair (e.g.,

P⇡(Sh = s, Ah = a) = 1 for some s, a and h). In such cases, the concentration

coe�cient can grow as large as the number of state-action pairs.

Coverage of an optimal policy. To mitigate the issue on strong assump-

tions about the concentration coe�cient, an alternative condition is when the

data covers a near-optimal policy. The fundamental idea behind these methods
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is to constrain the policy to choose actions that have su�cient data coverage,

which is e↵ective if the given data contains near-optimal action selection.

For example, algorithms like BCQ (Fujimoto et al., 2019) and BEAR (Ku-

mar et al., 2019) follow this approach. They bootstrap values from actions a

only if the probability ⇡b(a|s) exceeds a certain threshold b. In other words,

they restrict action selection to those with su�cient data coverage. MBS-QI

(Y. Liu et al., 2020) takes this concept a step further by considering state-

action probabilities. It chooses to bootstrap from state-action pairs (s, a) only

if µ(s, a) is above a predefined threshold. The algorithm is modified from FQI

by replacing the bootstrap value qh(s, a) by q̃h(s, a) := I{µ(s, a) � b}qh(s, a)

and the policy is greedy with respect to q̃h(s, a). That is, if a state-action

pair lacks su�cient data coverage, its value is treated as zero. They show

that MBS-QI outputs a near-optimal policy if P⇡⇤
(µ(Sh, Ah)<b) is small for

all h 2 [H�1]. In other words, this method thrives when the data provides

su�cient coverage for state-action pairs visited under an optimal policy ⇡⇤.

Besides Y. Liu et al. (2020), other studies consider single-policy concen-

trability (Rashidinejad et al., 2021; Zhan et al., 2022). This means that they

only assume the ratio between the state-action distribution induced by an op-

timal policy ⇡⇤ and the data distribution µ is bounded by C. Rashidinejad

et al. (2021) demonstrate that a variant of value iteration with a pessimistic

penalty can find a near-optimal policy under single-policy concentrability in

the tabular case.

Empirically, these methods that constrain the policy to choose actions that

have su�cient data coverage can be categorized into to two primary directions.

The first direction focuses on constraining the divergence between the behavior

policy and the output policy during the policy improvement step, primarily

applicable to API algorithms. These constraints can be imposed either as

direct policy constraints or through a penalty term added to the value function

(Levine et al., 2020; Wu et al., 2019). Another approach involves constraining

the policy set, ensuring that it only selects actions or state-action pairs with

su�cient data coverage when updates are applied. This direction is primarily

associated with AVI algorithms (Kumar et al., 2019; Y. Liu et al., 2020).
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Another notable direction involves the adoption of pessimistic values for

unknown state-action pairs, to encourage the agent to learn an improved pol-

icy that stays within the data-covered regions. This approach is exemplified by

various algorithms: CQL (Kumar et al., 2020) penalizes the values for out-of-

distribution actions and e↵ectively learns a lower bound of the value estimates.

A related idea is to constrain the bootstrap target to avoid out-of-distribution

actions, introduced first in the BCQ algorithm (Fujimoto et al., 2019) with

practical improvements given by IQL (Kostrikov et al., 2022). MOReL (Ki-

dambi et al., 2020) learns a model and an unknown state-action detector to

partition states, similar to the R-Max algorithm (Brafman & Tennenholtz,

2002). It adopts the principle of pessimism for these unknown states rather

than optimism. Safe policy improvement methods (Laroche et al., 2019; P.

Thomas et al., 2015a) rely on a high-confidence lower bound on the output pol-

icy performance, performing policy improvement only when the performance

exceeds than a predefined threshold.

In practice, the results of pessimistic approaches are mixed. Some have

been shown to be e↵ective on the D4RL dataset (Fu et al., 2020). Other

results, however, show methods can be too conservative and fail drastically

when the behavior policy is not near-optimal (Kumar et al., 2020; Y. Liu et

al., 2020). Further, the practical implementation of these methods can present

challenges. Some of these methods require an estimate of the behavior policy

or data distribution (Kumar et al., 2019; Y. Liu et al., 2020). Additionally,

tuning hyperparameters for these methods in the o✏ine setting is a non-trivial

task, a topic that will be explored further in Chapter 4 of this thesis.

Though potentially less stringent than having a small concentration co-

e�cient, this condition that the data covers an optimal policy can, in many

practical scenarios, be challenging to meet. In simulated environments, such

as Atari or Mujoco, it may be feasible to satisfy this assumption by using

an online RL algorithm that can learn a good policy to collect optimal data.

However, in real-world applications, the use case of o✏ine RL is often driven

by the fact that optimal policies are unknown and we don’t have a simulator.

In fact, one of the primary purposes of using o✏ine RL is to get (significantly)
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improved policies, which highlights the absence of prior knowledge about op-

timal behavior. It is also hard to carefully design a data collection policy to

cover an unknown optimal policy, making it di�cult to even check whether

this assumption holds.

3.2.3 Function approximation conditions

Beyond data coverage, there is also an essential requirement on the function

class. Recall that we have previously discussed the Bellman completeness

condition. This condition, along with a standard data coverage condition, is

su�cient to establish performance guarantees (Chen & Jiang, 2019).

These results naturally extend when the Bellman completeness condition

holds approximately. In other words, the condition can be expressed as:

sup
q2F

inf
f2F
kf � T qkpµ,p  " (3.1)

for some p � 1 and " > 0. The quantity on the left-hand side is called the

inherent (one-step) Bellman error (Antos et al., 2008).

Theoretically, the condition can be satisfied under certain scenarios about

the environment transition and the reward function. Fan et al. (2020) show

that if the reward function and the transition probability are su�ciently smooth,

then the T q belongs to a set of Hölder smooth functions. They further show

that sparse ReLU networks can approximate the Hölder smooth functions ac-

curately. This finding highlights that the approximate Bellman completeness

condition can be satisfied even when neural networks are used as the func-

tion approximation. Additionally, the Bellman completeness condition is also

satisfied in linear MDPs (Jin et al., 2020). In linear MDPs, both the reward

function and transition probability can be represented as linear functions of a

known feature map.

Empirically, Chang et al. (2022) present a method for learning a linear

Bellman complete representation. Once the representation is learned, they

perform o✏ine policy evaluation with linear function approximation on top of

these representations. However, their experimental results reveal an intriguing
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finding. It appears that, in practice, FQE with a neural network still outper-

forms the proposed two-stage method. This outcome suggests that neural

networks already o↵er su�ciently strong approximation capabilities, resulting

in a low inherent Bellman error and consequently better performance.

Assuming the approximate Bellman completeness condition holds and the

function class has finite element, the performance loss is often takes on the

form of O(
p
"+

p
log |F|/n). In this expression, the first term is the inherent

Bellman error (approximation error) and the second term denotes the statis-

tical complexity of the function class (estimation error). When we expand the

size of the function class, the second term increases but it is possible that the

first term decreases. This raises the important question of choosing a function

class that balances between the approximation error and the estimation error.

This motivates the exploration of model selection in the subsequent chapter.

As previously discussed in the background section, our focus lies on ap-

proximate dynamic programming methods such as FQE and FQI that rely on

the Bellman completeness condition. However, there exist other approaches

aimed at estimating quantities beyond the Bellman operator, including the

density ratio (Xie et al., 2019) and the models of the MDP (Mannor et al.,

2007; Uehara & Sun, 2022). Consequently, we require realizability conditions

for the quantities under estimation.
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Chapter 4

Towards Sample E�cient O✏ine

Policy Selection

O✏ine reinforcement learning algorithms often require careful hyperparame-

ter tuning. Consequently, before deployment, we need to select amongst a

set of candidate policies. As yet, however, there is little understanding about

the fundamental limits of this o✏ine policy selection (OPS) problem. In this

chapter we aim to provide clarity on when sample e�cient OPS is possible,

primarily by connecting OPS and o↵-policy policy evaluation (OPE). We first

show a harndess result, that in the worst case, OPS is just as hard as OPE,

by proving a reduction of OPE to OPS. We show that a simple OPE method,

importance sampling, achieves a nearly minimax sample complexity. As a re-

sult, no OPS method can be more sample e�cient than OPE in the worst case.

Then we propose a Bellman error estimation method for OPS, and theoreti-

cally analyze when this method is sample e�cient. We highlight that using BE

generally has more requirements, but if satisfied, has an easy method for se-

lecting its own hyperparameters and may be more sample e�cient than OPE.

We conclude by showing the di�culty of OPS for an o✏ine Atari benchmark,

and an empirical study comparing OPE and BE estimation.

4.1 Introduction

O✏ine RL is useful for many real-world applications, where learning from on-

line interaction may be expensive or dangerous (Levine et al., 2020). There
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have been significant advances in o✏ine policy learning algorithms with demon-

strations that performant policies can be learned purely from o✏ine data (R.

Agarwal et al., 2020). Successful use of these algorithms, however, requires

careful hyperparameter selection (Gulcehre et al., 2020; Kumar et al., 2021;

Wu et al., 2019).

Despite the fact that it is essential, hyperparameter selection for o✏ine

policy learning algorithms remains relatively unexplored. One of the reasons

is that it is inherently hard, as we formalize in this chapter. Unlike supervised

learning where we can use validation performance, in o✏ine RL it is hard to

get an accurate measure of policy performance. In fact, it is well known that

o↵-policy policy evaluation (OPE)—estimating the performance of a policy

from o✏ine data—is hard (R. Wang et al., 2021). To emphasize this fact, in

Figure 4.1, we visualize the poor correlation between the true performance and

performance estimates using a standard OPE approach called Fitted Q Eval-

uation (FQE) (Le et al., 2019) . The datasets are not adversarially designed;

rather they are two Atari datasets that were designed to provide reasonable

data for o✏ine learning algorithms.

Consequently, most o✏ine RL papers sidestep the issue of hyperparam-

eter selection and show results for ideal performance. In other words, they

tune their hyperparameters by checking the performance of the policy in the

environment. Consider, for example, the Conservative Q-learning (CQL) al-

gorithm (Kumar et al., 2020), used to obtain the policies for Figure 4.1. For

their experiments, CQL is built on top of already-tuned online algorithms for

their environments, which implicitly relies on tuning using the environment

rather than just the o✏ine dataset. They then also directly tune the stepsize

using the performance of the o✏ine learned policy in the environment. Several

papers (Kostrikov et al., 2022; Kumar et al., 2019) use the same methodol-

ogy. Some works focus on designing algorithms that are robust to a specific

hyperparameter (Cheng et al., 2022), or require only a small number of hyper-

parameters to be tuned (Fujimoto & Gu, 2021). These approaches, however,

still require some hyperparameters to be tuned; they were tuned using the

performance in the environment.

24



Figure 4.1: Correlation between true performance and estimated performance
on two Atari datasets. We learn 90 policies o✏ine using an algorithm called
CQL (Kumar et al., 2020) and evaluate these policies using FQE on 5 di↵erent
random datasets. These policies are generated by running CQL with a variety
of di↵erent choices for two hyperparameters: the number of training steps and
the conservative parameter. Each point in the scatter plot corresponds to a
(policy, evaluation dataset) pair. The x-axis is the actual policy performance
for that policy and y-axis is the estimated policy performance for that pol-
icy using that evaluation dataset. Colors represent di↵erent random seeds,
namely di↵erent evaluation datasets. The Kendall rank correlation coe�cient
is shown in the label of the plot. If the FQE estimates accurately rank policies,
we expect to see a strong linear relationship and a Kendall rank correlation
coe�cient close to 1. Neither of these behaviors are seen here, and it is clear
FQE does not provide an e↵ective mechanism to rank policies.

There are, however, a handful of works that use only the o✏ine dataset to

select hyperparameters. These can be categorized as papers focused on algo-

rithms for hyperparameter selection in o✏ine RL (Paine et al., 2020; Tang &

Wiens, 2021; M. Yang et al., 2022), papers that provide theoretical algorithms

in specialized settings (Farahmand & Szepesvári, 2011; J. Lee et al., 2022),

or papers that introduce o✏ine RL algorithms and use sensible heuristics to

select hyperparameters in their experiments (Kumar et al., 2021; Qi et al.,

2022; Trabucco et al., 2021; T. Yu et al., 2021). For the first category, these

algorithms are all based on OPE. For the second category, these algorithms are

applicable only in specialized settings and require strong conditions to obtain

the provided theoretical guarantees. For the last category, the heuristics are

often tailored to the specific algorithm presented in these papers and do not

come with performance guarantees. For example, Kumar et al. (2021) used

statistics about the TD errors to select the number of training steps for CQL.
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Figure 4.2: The o✏ine RL pipeline with OPS. In the policy training phase, n
algorithm-hyperparameter pairs are trained on an o✏ine dataset to produce
n candidate policies. These n policies, combined again with o✏ine data (po-
tentially a validation dataset) are run with an OPS algorithm to find a final
policy amongst the candidate policies.

In general, there are as yet many open questions about the feasibility of

hyperparameter selection in o✏ine RL, both in theory and in practice. This is

doubly true if we go beyond hyperparameter selection and consider selecting

amongst di↵erent policy learning algorithms as well, each with their own hy-

perparameters. In this chapter, we consider this more general problem, called

o✏ine policy selection (OPS), that can be used to select policy learning algo-

rithms and their hyperparameters. Figure 4.2 shows the full o✏ine RL pipeline

with OPS.

As mentioned above, OPE is a general approach to OPS, but we want to

understand when, or even if, alternative approaches can outperform OPE for

OPS. OPE might not be the ideal answer to OPS. One reason is that OPE

requires a large number of samples to evaluate any given policy in the worst

case (R. Wang et al., 2021). We might intuit that OPS may, at least in some

cases, be easier than OPE, since OPS need only identify the best-performing

policy, whereas OPE aims to estimate each policy’s value accurately. For

example, Doroudi et al. (2017) designed a specialized importance sampling

(IS) estimator to compare two policies, to remove a bias towards policies that

result in shorter trajectories, improving on the standard IS estimator used

in OPE. Therefore, the first question that needs to be answered is: Is OPS

easier than OPE? Surprisingly, this basic question has not yet been explicitly

answered.

Another key reason current OPE estimators do not resolve the OPS prob-
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lem is because these OPE methods themselves have hyperparameters. For ex-

ample, the MAGIC estimator (P. Thomas & Brunskill, 2016) and the clipped

importance sampling (IS) estimator (Bottou et al., 2013) are sensitive to their

hyperparameters. Even a variant of the IS estimators designed specifically for

OPS (M. Yang et al., 2022) has hyperparameters. Other methods like FQE

require learning a value function, and how to select the function class is still

an open problem.

The natural alternative to OPE is to use Bellman errors (BE), but there

is mixed evidence on whether such approaches are e↵ective. Tang and Wiens

(2021) empirically show that selecting the candidate value function with the

smallest TD errors perform poorly because the value functions are often over-

estimated; they conclude OPE is necessary. Similarly, Paine et al. (2020)

present positive experimental results using FQE—an OPE approach—for OPS

but concluded that the use of TD errors was ine↵ective. Other works, how-

ever, have developed new OPS algorithms that rely on the use of BE. Zhang

and Jiang (2021) propose a value-function selection algorithm called BVFT,

which computes the (empirical) projected BE for each pair of candidate value

functions. J. N. Lee et al. (2022) provide a method for selecting the best func-

tion class from a nested set of function classes for Fitted Q-Iteration. These

theoretically-sound methods, however, either rely on strong assumptions or are

applicable only in specialized settings. It is unclear whether these methods are

better than OPE.

Contributions. In this chapter, we make contributions towards answering

the above question. Our first contribution is to prove that OPS inherits the

same hardness results as OPE, which has never been formally shown in the

literature. We show that the sample complexity of the OPS problem is lower-

bounded by the samples needed to perform OPE. We further show that an OPS

algorithm that simply chooses the policy with the highest IS estimate achieves

a nearly minimax sample complexity, which is exponential in the horizon. This

result implies no OPS approach can avoid the exponential sample complexity

in the worst case, and we must consider additional assumptions to enable
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sample e�cient OPS.

We then investigate the utility of using BE for OPS. We propose a simple

BE algorithm, called Identifiable BE selection (IBES), with a simple way to

select its own hyperparameters. This is contrast to many OPE methods, even

simpler approaches like FQE, for which it can be hard to select hyperparam-

eters. We show that IBES can provide improved sample e�ciency, but under

stricter requirements on data coverage and on the candidate set compared to

FQE. In an empirical study, we systematically compare di↵erent BE methods

with varying sample sizes and show IBES is consistently more sample e�cient

across multiple environments.

From our empirical study, we also show the inherent di�culty of OPS

in a larger scale experiment in Atari benchmark. Notably, we show that all

the OPS methods su↵er relatively high regret compared to using the tuned

hyperparameters, in many cases performing even worse than random hyper-

parameter selection. Recall that the tuned hyperparameters are obtained by

using performance in the real environment, which is not feasible in practice

but nonetheless commonplace in o✏ine RL experiments. This result in Atari

highlights that many results in the literature report unrealistically favorable

results for their o✏ine algorithms, because they show results for these tuned

hyperparameters rather than hyperparameters chosen using only the o✏ine

dataset.

4.2 On the sample complexity of OPS

We consider the o✏ine policy selection (OPS) problem and o↵-policy policy

evaluation (OPE) problem. We follow a similar notation and formulation used

in Xiao et al. (2022) to formally describe these problem settings. The OPS

problem for a fixed number of episodes n is given by the tuple (S,A, H, ⌫, n, I).

I is a set of instances of the form (M, db,⇧) whereM 2M(S,A, H, ⌫) specifies

an MDP with state space S, action space A, horizon H and the initial state

distribution ⌫, db is a distribution over a trajectory (S0, A0, R0, . . . , RH�1) by

running the behavior policy ⇡b on M , and ⇧ is a finite set of candidate policies.
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We consider the setting where ⇧ has a small size and does not depend on S,

A or H.

An OPS algorithm takes as input a batch of data D, which contains n

trajectories, and a set of candidate policies ⇧, and outputs a policy ⇡ 2 ⇧.

The aim is to find OPS algorithms that are guaranteed to return the best

candidacy policy with high probability.

Definition 1 ((", �)-sound OPS algorithm). Given " > 0 and � 2 (0, 1), an

OPS algorithm L is (", �)-sound on instance (M, db,⇧) if

Pr
D⇠db

(JM(L(D,⇧)) � JM(⇡†)� ") � 1� �,

where ⇡† is the best policy in ⇧. We say an OPS algorithm L is (", �)-sound

on the problem (S,A, H, ⌫, n, I) if it is sound on any instance (M, db,⇧) 2 I.

Given a pair (", �), the sample complexity of OPS is the smallest integer

n such that there exists a behavior policy ⇡b and an OPS algorithm L such

that L is (", �)-sound on the OPS problem (S,A, H, ⌫, n, I(⇡b)) where I(⇡b)

denotes the set of instances with data distribution db. That is, if the sample

complexity is lower-bounded by a number NOPS, then, for any behavior policy

⇡b, there exists an MDP M and a set of candidate policies ⇧ such that any

(", �)-sound OPS algorithm on (M, db,⇧) requires at least NOPS episodes.

Similarly, the OPE problem for a fixed number of episodes n is given by

(S,A, H, ⌫, n, I). I is a set of instances of the form (M, db, ⇡) where M and

db are defined as above, and ⇡ is a target policy. An OPE algorithm takes as

input a batch of data D and a target policy ⇡, and outputs an estimate of the

policy value. The goal is to estimate the true value accurately.

Definition 2 ((", �)-sound OPE algorithm). Given " 2 (0, Vmax/2) and � 2

(0, 1), an OPE algorithm L is (", �)-sound on instance (M, db, ⇡) if

Pr
D⇠db

(|L(D, ⇡)� JM(⇡)|  ") � 1� �.

We say an OPE algorithm L is (", �)-sound on the problem (S,A, H, ⌫, n, I)

if it is sound on any instance (M, db, ⇡) 2 I.

Note that " should be less than Vmax/2 otherwise the bound is trivial.
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4.2.1 OPE as subroutine for OPS

It is obvious that a sound OPE algorithm can be used for OPS, since we can

run the sound OPE algorithm to evaluate each candidate policy and select the

policy with the highest estimate. As a result, the sample complexity of OPS is

upper-bounded by the sample complexity of OPE up to a logarithmic factor.

For completeness, we state this formally in the theorem below.

Theorem 1 (Upper bound on sample complexity of OPS). Given an MDP

M , a data distribution db, and a set of policies ⇧, suppose that, for any pair

(", �), there exists an (", �)-sound OPE algorithm L on any OPE instance I 2

{(M, db, ⇡) : ⇡ 2 ⇧} with a sample size at most O(NOPE(S,A,H, 1/", 1/�)).

Then there exists an (", �)-sound OPS algorithm for the OPS problem instance

(M, db,⇧) which requires at most O(NOPE(S,A,H, 2/", |⇧|/�)) episodes.

In terms of the sample complexity, we have an extra
p

log |⇧|/n term for

OPS due to the union bound. For hyperparameter selection in practice, the

size of the candidate set is often much smaller than n, so this extra term is

negligible. However, if the set is too large, complexity regularization (Bartlett

et al., 2002) may need to be considered. In this chapter, we only consider a

finite candidate set.

4.2.2 OPS is not easier than OPE

We have shown that OPS is sample e�cient when OPE is sample e�cient.

However, it remains unclear whether OPS can be sample e�cient when OPE

is not. In the following theorem, we lower bound the sample complexity of

OPS by the sample complexity of OPE. As a result, both OPS and OPE su↵er

from the same hardness result.

Theorem 2 (Lower bound on sample complexity of OPS). Suppose for any

data distribution db and any pair (", �) with " 2 (0, Vmax/2) and � 2 (0, 1),

there exists an MDP M and a policy ⇡ such that any (", �)-sound OPE algo-

rithm requires at least ⌦(NOPE(S,A,H, 1/", 1/�)) episodes. Then there exists

an MDP M 0 with S 0 = S + 2, H 0 = H + 1, and a set of candidate policies
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action = a1

reward = r

action = a2

reward = 0
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s0

s1

⇡1

⇡2

(a) Constructing M 0 and a candidate
policy set

r1

OPS chooses ⇡1 OPS chooses ⇡2

r2 r2r3 r3 r3 r30 Vmax

(b) Searching for the true policy value

Figure 4.3: Visual depiction of the reduction of OPE to OPS. Given a MDP
M and a target policy ⇡, we can construct a new MDP M 0 and two candidate
policies {⇡1, ⇡2} for OPS, as shown in (a). The MDP construction was first
mentioned in R. Wang et al. (2021). ⇡1 chooses a1 in s0 and is otherwise
arbitrary, ⇡2 chooses a2 and is otherwise identical to the target policy ⇡. Figure
(b) describes the search procedure to find the policy value by calling the OPS
subroutine. When the OPS query returns ⇡1, we follow the green arrow. When
the OPS query returns ⇡2, we follow the blue arrow. We can keep searching for
the true policy value by setting r for the OPS query, until the desired precision
is reached.

such that for any pair (", �) with " 2 (0, Vmax/3) and � 2 (0, 1/m) where

m := dlog(Vmax/")e � 1, any (", �)-sound OPS algorithm also requires at least

⌦(NOPE(S,A,H, 3/2", 1/m�)) episodes.

The proof sketch is to construct an OPE algorithm that queries OPS as a

subroutine, as demonstrated in Figure 4.3. As a result, the sample complexity

of OPS is lower bounded by the sample complexity of OPE. The proof can be

found in Appendix A.

There exist several hardness results for OPE in tabular settings and with

linear function approximation (R. Wang et al., 2021; M. Yin & Wang, 2021).

Theorem 2 implies that the same hardness results hold for OPS since lower

bounds for OPE are also lower bounds for OPS. We should not expect to have

a sound OPS algorithm without additional assumptions to make OPE work.

Theorem 2, however, does not imply that OPS and OPE are always equally

hard. There are instances where OPS is easy but OPE is not. For example,

when all policies in the candidate set all have the same value, any random

policy selection is sound. However, OPE can still be di�cult in such cases.
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4.3 Minimax sample complexity for finite hori-

zon finite MDPs

In the previous section, we show that OPS and OPE problem are equally

di�cult in the worst case scenario. In this section, we show a lower bound on

sample complexity of OPS for finite horizon finite MDPs, and that an OPE

method (nearly) matches the lower bound.

We first present an exponential lower bound, using the lower bound con-

struction from Xiao et al. (2022) and Theorem 2.

Corollary 1 (Lower bound on the sample complexity of OPS). For any pos-

itive integers S,A,H with S > 2H and a pair (", �) with 0 < " 
p
1/8,

� 2 (0, 1), any (", �)-sound OPS algorithm needs at least ⌦̃(AH�1/"2) episodes.

We show that importance sampling (IS) achieves the lower bound. Recall

the IS estimator (Rubinstein, 1981) is given by

Ĵ(⇡) =
1

n

nX

i=1

H�1Y

h=0

⇡(A(i)
h |S(i)

h )/⇡b(A
(i)
h |S(i)

h )Gi

where Gi =
PH�1

h=0
R(i)

h and n is the number of episodes in the dataset D.

Corollary 2 (Upper bound on the sample complexity of OPS). Suppose the

data collection policy is uniformly random, that is, ⇡b(a|s) = 1/A for all

(s, a) 2 S ⇥ A, and |Gi|  Vmax almost surely. Then the selection algorithm

L that selects the policy with the highest IS estimate is (", �)-sound with

O(AHVmax ln (|⇧|/�)/"2) episodes.

Note that Y.-X. Wang et al. (2017) have shown that IS estimator achieved

the minimax mean squared error for the OPE problem. Our result shows that

IS also achieves a (nearly) minimax sample complexity for the OPS problem,

which is di↵erent from their work.

These results suggest that IS achieves a nearly minimax optimal sample

complexity for OPS up to a factor A and logarithmic factors. There are other

improved variants of IS, including per-decision IS and weighted IS (Precup et
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al., 2000; Sutton & Barto, 2018). None of these variants can help reduce sample

complexity in the worst case because the lower bound in Corollary 1 holds for

any OPS algorithm. This result suggests that we need to consider additional

assumptions on the environment, the data distribution, or the candidate set

to perform sample e�cient OPS.

One direction is to consider when OPE can be sample e�cient, since we

can leverage Theorem 1 to inherit the sample complexity result from OPE to

OPS. There is a wealth of literature on OPE, in particular, FQE and MIS (or

DICE) methods have been shown to be e↵ective for OPS empirically (Paine

et al., 2020; M. Yang et al., 2022). FQE and MIS methods require a standard

data coverage assumption, that is, we need data coverage for all the candidate

policies. Data coverage is commonly measured by the concentration coe�cient,

first introduced in Munos (2007).1 The precise definition will be provided in

the next section.

Besides data coverage, we also need additional assumptions on the func-

tion approximation. For FQE, we need a function class F that is closed under

T
⇡ for all ⇡ 2 ⇧, that is, T

⇡q 2 F for any q 2 F . Assume F has finitely

many elements (for simplicity only), the result from Duan et al. (2021) can

be extended to show that the sample complexity of using FQE for OPS is

O(H4 log (|F||⇧|H/�)/"2), under both assumptions on data coverage and func-

tion class. There are corresponding results for the MIS (or DICE) methods

(Nachum et al., 2019; Uehara et al., 2020). See Table 4.1 for a brief summary.

In summary, we showed an exponential lower bound on the sample com-

plexity for OPS, and we need to consider additional assumptions such as data

coverage and function approximation that enable sample e�cient OPE.

4.4 Bellman error selection for OPS

In this section, we shift our focus to the use of Bellman error (BE) for OPS.

There is mixed evidence on whether such approaches are e↵ective compared to

1There are other measures of data coverage (Xie et al., 2021; M. Yin & Wang, 2021).
However, we focus on the concentration coe�cient to clearly compare assumptions between
di↵erent methods.
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OPE. As a result, we first provide conditions when BE is useful for OPS, which

allows us to clearly compare OPE and BE methods. We then propose a BE

selection method that has a simple method to select its own hyperparameter,

and proved the sample complexity of the method.

Suppose we are given a set of candidate value functions Q := {q1, . . . , qK}

and let ⇧ = {⇡1, . . . , ⇡K} be the set of corresponding greedy policies, a com-

mon strategy is to select the action value function with the smallest BE (Farah-

mand & Szepesvári, 2011). In the finite horizon setting, we define the Bellman

error with respect to qi as

E(qi) :=
1

H

H�1X

h=0

kqi � T qik
2

2,µh

where kqkp,µh
:= (

P
(s,a)2Sh⇥A µh(s, a)|q(s, a)|p)1/p. We define (", �)-sound BE

selection in the following.

Definition 3 ((", �)-sound BE selection). Given a set of candidate value func-

tions Q, " > 0 and � 2 (0, 1), an BE selection algorithm L, which takes D,Q

as input and outputs q 2 Q, is (", �)-sound on Q if

E(L(D,Q))  min
i=1,...,|Q|

E(qi) + "

with probability at least 1� �.

4.4.1 When is BE selection useful for OPS?

In order to relate BE selection to OPS, we need data coverage for both the can-

didate policies ⇧ and an optimal policy (the first assumption in the following

corollary). We present an error bound for OPS using BE selection.

Corollary 3 (Error amplification for OPS using BE selection). Suppose

1. there exists a constant C such that 8⇡ 2 ⇧ [ {⇡⇤
}, max

h2[H]

max
s2Sh,a2Ah

d⇡
h
(s,a)

µh(s,a)


C,

2. the suboptimality of the candidate set is small, that is, min
q2Q

E(q)  "sub,

3. there exists an ("est, �)-sound BE selection algorithm L on Q,
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then the OPS algorithm outputs the greedy policy with respect to L(D,Q) is

(2H
p

C("sub + "est), �)-sound.

That is, even if we have a good BE selection algorithm with a small "est,

the error for OPS is amplified by C and "sub. Compared to OPE methods

such as FQE, BE has an additional error "sub which does not go to zero even

when we can collect more samples for OPS. Only "est goes to zero as n goes

to infinity, which will be discussed in the next subsection.

To see how poor the guarantee can be due to "sub, suppose we have two

action values q1 = 100q⇤ and q2 = q⇤+some random noise, then q1 has a large

Bellman error but ⇡1 is actually optimal. We would choose q2 since it has a

lower Bellman error, even when we can collect an infinite number of samples.

To obtain a meaningful guarantee, we need to include another value function,

for example, q3 = q⇤ to make "sub = 0. As we collect more samples, we can

estimate the Bellman error more accurately and eventually choose q3.

At the same time, as we get more o✏ine data, then we might actually

change our candidate set. If we have more samples for training o✏ine algo-

rithms and generating the candidate set, it is more likely that there is one

action value function in the candidate set that is close to optimal. That is, for

a fixed candidate set, "sub does not get smaller as we collect more samples for

OPS, but if we use those o✏ine samples to train the candidates policies, then

"sub might get smaller.

4.4.2 A sample-e�cient and hyperparameter-free BE

selection method

In this subsection, we propose a sound BE selection method, which we call

Identifiable BE Selection (IBES). In deterministic environments, the BE can

be easily estimated using TD errors. Given a state-action value q with vq(s) :=

maxa q(s, a) the corresponding state value, the BE estimate is TDE(q) :=
1

|D|
P

(s,a,s0,r)2D(q(s, a)� r � vq(s0))2.

In stochastic environments, estimating BE typically involves an additional

regression problem (Antos et al., 2008). Antos et al. (2008) propose an esti-
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mator for the BE by introducing an auxiliary function g 2 G:

Ê(q) = 1

|D|

X

(s,a,s0,r)2D

(q(s, a)� r � vq(s
0))2 �min

g2G
1

|D|

X

(s,a,s0,r)2D

(g(s, a)� r � vq(s
0))2

= max
g2G

2

4 1

|D|

X

(s,a,s0,r)2D

(q(s, a)� r � vq(s
0))2 � 1

|D|

X

(s,a,s0,r)2D

(g(s, a)� r � vq(s
0))2

3

5 .

(4.1)

The sample complexity of estimating the BE depends on the complexity of the

function class G, as shown in the theorem below.

Theorem 3. Suppose all q 2 Q and g 2 G take value in [0, Vmax]. Let q† be the

action value function with the smallest estimated Bellman error Ê(q). Then

with probability at least 1� �, for some constant c0 (ignoring approximation

and optimization error),

E(q†)  min
i=1,...,|Q|

E(qi) + c0V
2

max

p
log(2|⇧|H/�)/n+ c0VmaxR

µ
n(G)

where R
µ
n(G) is the Rademacher complexity of the function class G.

Assume G has finite elements (for simplicity only), the sample complexity of

finding a good action value function is O(H4 log (|G||⇧|H/�)/"2est). Compared

to deterministic environments, we have an additional term that depends on

the size of the function class. The proof can be found in Appendix A.

We can rewrite the inner term in Equation (4.1) by the change of variable

(Dai et al., 2018; Patterson et al., 2022). Let t(r, s0) := r+vq(s0) be the target

and �(s, a, r, s0) := t(r, s0)� q(s, a) be the TD error to simplify the equations.

Consider a new auxiliary function h(s, a) = g(s, a) � q(s, a), then the inner

term in Equation (4.1) is

1

|D|

X

(s,a,s0,r)2D

⇥
(q(s, a)� r � vq(s

0))2 � (g(s, a)� r � vq(s
0))2
⇤

= 1

|D|

X

(s,a,s0,r)2D

⇥
(t(r, s0)� q(s, a))2 � (t(r, s0)� g(s, a))2

⇤

= 1

|D|

X

(s,a,s0,r)2D

⇥
2h(s, a)�(s, a, r, s0)� h(s, a)2

⇤
. (4.2)

36



Algorithm 3 Identifiable BE Selection (IBES) with holdout validation

Input: Candidate set Q, training data D, validation data Dval, a set of
function classes G1, . . . ,GM (for model selection)
Let �(s, a, r, s0) := r + vq(s0)� q(s, a)
for q 2 Q do

for m = 1, . . . ,M do

Perform regression: ĝm  ming2Gm

1

|D|
P

D(g(s, a)� �(s, a, r, s
0))2

Compute validation error: l(ĝm) 
1

|Dval|
P

Dval
(ĝm(s, a)��(s, a, r, s0))2

Find the best function class: k  argminm=1,...,M l(ĝm)
Estimate the Bellman error for q: BE(q) 1

|D|
P

D 2ĝk(s, a)�(s, a, r, s0)�

ĝk(s, a)2

Output: q†  argminq2Q BE(q)

That is, we can also use an auxiliary function h to predict T q � q, instead

of T q, and use the auxiliary function to estimate the Bellman error. The

benefit is that the Bellman errors are more likely to be predictable. Under the

conditions for Corollary 3, if there is an action-value function q 2 Q with a

small BE, the Bellman errors are nearly zero everywhere and any reasonable

function class are able to represent the solution. The remaining part is to

find a function class that has low approximation error and a low statistical

complexity.

Fortunately, we can perform model selection to choose the function ap-

proximation G. This is because we are running regression with fixed targets

in Eq (4.1), and model selection for regression is well-studied. For example,

consider a finite set of potential function classes G1, . . . ,GM , we can use a hold-

out validation set to select the best function class and other hyperparameters.

Therefore, we can choose a function class such that it has a low approximation

error and a small complexity measure, which can potentially result in improved

sample e�ciency. We describe the full procedure of IBES in Algorithm 3.

Note that we can also directly use 1

|D|
P

(s,a) h(s, a)
2 as an estimate for the

Bellman error. In our experiment, we found that it performs similar as using

Eq (4.2).
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4.4.3 Comparison to existing methods

There are other works consider selecting a value function that has the smallest

BE or is the closest to the optimal value function. Farahmand and Szepesvári

(2011) consider selecting a value function such that, with high probability, the

output value functions has the smallest BE. They propose to fit a regression

model q̃i to predict T qi and bound the BE by kqi � q̃ik22,µ + bi where the

first term can be viewed as the (empirical) projected Bellman error, and the

second term bi is a high-probability upper bound on the excess risk of the

regression model, which is assumed to be given. There is a concurrent work

on using BE selection method for OPS (Zitovsky et al., 2023). They propose

a method called Supervised Bellman Validation (SBV), which is essentially

an empirical version of the method from Farahmand and Szepesvári (2011),

without an additional upper bound on the excess risk. They did not provide

any sample complexity guarantee. In our experiments, we find that our method

outperforms SBV in terms of sample e�ciency, likely because the auxiliary

function is used to predict the Bellman error, instead of T q.

Zhang and Jiang (2021) propose to use a (empirical) projected Bellman er-

ror, called BVFT loss, with piecewise constant function classes. Their selection

algorithm chooses the value function with the smallest BVFT loss, assuming

q⇤ is in the candidate set (approximately) and a stronger data assumption

is satisfied. Interestingly, this condition on having q⇤ is essentially equiva-

lent to our condition requiring small "sub, since q⇤ has exactly zero BE. The

algorithms, though, are quite di↵erent from our work. Their method is com-

putationally expensive since it scales with O(|⇧|
2) instead of O(|⇧|), making

the method impractical when the candidate set is large. Our method requires

a weaker data coverage assumption and the computation cost scales linearly

with O(|⇧|). Note that the sample complexity of our methods depends on the

function class that is used to perform the regression. BVFT can be viewed

as using the piecewise constant function classes to fit the Bellman target, the

sample complexity depends on the piecewise constant function classes, which

is measured by the number of discretization bins (Vmax/"dct)2 and "dct is the
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Method Assumptions Sample Complexity

IS ⇡b(a|s) > 0 if ⇡(a|s) > 0 for some ⇡ 2 ⇧ O(AHH ln (|⇧|/�)/"2)
FQE (1) Data coverage for ⇧ O(H4 log (|F||⇧|H/�)/"2)

(2) F is closed under T
⇡ for all ⇡ 2 ⇧

IBES (1) Data coverage for ⇧ [ {⇡⇤
} O(H4 log (|F||⇧|H/�)/"2est)

(2) Small "sub
(3) G realizes (T q � q) for q 2 Q

BVFT (1) Stronger data coverage Number of partitions
(2) q⇤ 2 Q (which implies small "sub)

Table 4.1: A summary of OPS methods. These sample complexity results are
derived in this chapter, except for the sample complexity of BVFT given in
Zhang and Jiang (2021). The first two methods are OPE methods and the
last two methods use action value functions. The assumptions for function
approximation can be relaxed to hold approximately.

discretization resolution.

4.4.4 Should we use BE selection or OPE?

Table 4.1 summarizes the comparison of BE and OPE methods. OPS using

IBES and BVFT requires stronger data coverage assumptions since it needs

coverage not only for the candidates policies, but also ⇡⇤. Moreover, the

guarantee for OPS using IBES and BVFT can be poor due to the additional

term "sub, which does not decrease as we collect more samples for OPS. We

need at least one of the action-value functions to be close to the optimal action-

value function. For OPE, we can perform OPS even if none of the candidate

policies are close to optimal. Therefore, OPE is a more robust and reliable

method for OPS.

On the other hand, if we satisfy this stronger data coverage condition and

have small "sub, then IBES has several advantages. IBES can be much more

sample e�cient in deterministic environments, or even in stochastic environ-

ments by choosing an appropriate function approximation. More importantly,

for IBES, we are not plagued by the issue of having hard-to-specify hyperpa-

rameters. This is critical for the o✏ine setting, where we cannot test di↵erent

hyperparameter choices in the environment.
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4.5 Experimental results

In this section, we empirically investigate the di↵erent BE methods as well as

FQE for OPS. The goal in the experiments is to gain a better understand-

ing of how IBES and FQE perform when we vary important factors such as

data coverage, sample size, and candidate policies. We first compare di↵erent

BE-based methods to show the advantage of our proposed method IBES, and

investigate the di↵erences between IBES and FQE in classic control environ-

ments where we vary the data coverage. Finally, we perform an experiment

on the Atari o✏ine benchmark dataset.

To evaluate the performance of OPS, we consider the normalized top-k

regret used in Zhang and Jiang (2021). Top-k regret is the gap between the

best policy within the top-k policies, and the best policy among all candidate

policies. We then normalized the regret by the di↵erence between the best and

the worst policy, so the normalized regret is between 0 and 1. The normalized

regret can be interpreted as the percentage of degradation if we use o✏ine

selection instead of online selection, since online selection with Monte Carlo

evaluation can always achieve a regret of zero. OPS corresponds to k = 1; for

most results we use k = 1, but include some results for k > 1. All hyperpa-

rameters for OPS methods are selected using only the datasets, not by peaking

at performance on the real environment; for more details, see Appendix A.2.

4.5.1 Comparison between BE-based methods

In the first set of experiments, we compare di↵erent BE-based methods for

OPS. We conduct experiments on two standard RL environments: Acrobot

and Cartpole. We also include the stochastic versions of these environments

with sticky actions (Machado et al., 2018), which we call Stochastic Acrobot

and Stochastic Cartpole. We generate a set of candidate policy-value pairs

by running CQL with di↵erent hyperparameters on a batch of data collected

by a trained policy with random actions taken 40% of the time, and generate

datasets for OPS that provide good data coverage. We then use either FQE

or IBES for OPS. We also included SBV (Zitovsky et al., 2023) and BVFT
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Figure 4.4: Comparison between BE methods. The figure shows the normal-
ized top-1 regret with varying sample size, averaged over 10 runs with one
standard error. IBES consistently achieves the lowest regret across environ-
ments.

Figure 4.5: Comparison to BE with a fixed number of hidden units. The figure
shows the normalized top-1 regret with varying sample size, averaged over 10
runs with one standard error. IBES with model selection consistently achieves
the lowest regret across environments.

(Zhang & Jiang, 2021),2 and a random selection baseline which selects a policy

uniformly at random from the candidate set.

We first compare di↵erent BE methods, and investigate the e↵ect of using

the Bellman error T q � q as target. We include a baseline that use T q as

target, called IBES-TQ. Note that we also perform model selection for SBV

and IBES-TQ, similar to IBES. In Figure 4.4, we can see all BE methods

converge to the same performance as sample size gets larger, but IBES using

the Bellman error as target is much more sample e�cient than IBES-TQ and

SBV across all environment. This is likely due to the fact that Bellman error is

easier to predict so using a smaller neural network is su�cient and has a better

sample e�ciency. We also found BVFT performs similar to TDE (which are

overlapping in Cartpole, Acrobot and Stochastic Cartpole), which is likely due

to the fact that BVFT with small discretization is equivalent to TDE.

2We modified the BVFT implementation from the author of Zhang and Jiang (2021)
(https://github.com/jasonzhang929/BVFT empirical experiments/).
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Now we show that the model selection procedure is important for IBES,

by comparing to IBES with a fixed number of hidden units. In our experi-

ment, we use a two layer neural network model as the function approximation,

and perform model selection to find the number of hidden units from the set

{32, 64, 128, 256} for IBES. In Figure 4.5, we include two baselines called IBES-

32 and IBES-256, which has the hidden units of size 32 and 256 respectively. In

general, IBES with model selection achieves regret less than or equal to IBES

with a fixed number of hidden units across all environments. The performance

of IBES with model selection and IBES-256 converges as the sample size gets

larger. This result shows an improvement in terms of sample e�ciency due

to model selection. In stochastic environments, IBES with a small number of

hidden units does not work well even with a large sample size. The results

suggest that the ability to perform model selection to balance approximation

and estimation error is important to improve sample e�ciency while achieving

low regret.

In Figure 4.5, we observe that IBES-32 does not have an decreasing re-

gret as sample size increases in stochastic environments. We believe this phe-

nomenon can be attributed primarily to two factors: (a) we report the top-1

regret so even minor variations in BE estimates might substantially change

the top-1 policy, and (b) in stochastic environments, small models like IBES-

32 may incur significant approximation errors, leading to a less pronounced

reduction in generalization error despite increased sample sizes. In contrast,

IBES models with larger hidden sizes do not demonstrate this behavior.

In summary, the experiment suggests the proposed BE method is more

same e�cient, due to the fact that the method predict the Bellman error, and

the model selection procedure.

4.5.2 Comparison between FQE and IBES under di↵er-

ent data coverage

In the second set of experiments, we aim to understand of how IBES and FQE

perform when we vary important factors such as data coverage and sample size.

We design two di↵erent datasets for the experiments: (a) well-covered data is
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Figure 4.6: Comparison between IBES and FQE under di↵erent sample size
and data distributions. The figure shows the normalized top-1 regret with
varying sample size, averaged over 10 runs with one standard error.

generated such that all candidate policies are well-covered, and (b) well-covered

data with optimal trajectories includes more diverse trajectories collected by

an "-greedy optimal policy (which used in the previous experiment).

Figure 4.6 shows the results for top-1 regret with varying numbers of

episodes. We first focus on the asymptotic performance (n ⇡ 103) across

di↵erent datasets. FQE performs very well with a small regret on well-covered

and diverse data. IBES performs better with optimal trajectories, especially

in Cartpole and Stochastic Acrobot. This result matches our theoretical result

that IBES requires a stronger data coverage for an optimal policy. Moreover,

IBES often performs better than FQE with a small sample size, suggesting

that it could o↵er a slightly better sample e�ciency than FQE.

Investigating the results deeper, we observed that when IBES does not

perform well (Acrobot with optimal trajectories), it is often the case that one

of the value functions has the smallest Bellman error but it is not far from

optimal. When FQE does not perform well (Stochastic Cartpole with optimal

trajectories), it is often the case that one of the candidate policies is highly

overestimated. Therefore, we include a simple two-stage method that first uses

FQE to select k1 policies, then use IBES to find the top-k2 policies amongst

the k1 selected policies. We set k1 = 10 and k2 = 1 in our experiment. The
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idea is similar to the two-stage method proposed in Tang and Wiens (2021).

We label the two-stage method as FQE+IBES in the figure. We can see that it

performs consistently well, better than either method alone. We hypothesize

the explanation is that FQE usually performs very well for top-k selection with

a large k, even though top-1 regret might be bad. We then use IBES to select

from a subset of reasonably good candidate policies, where the candidate with

the smallest error is more likely to be optimal. Further investigation about

combining multiple OPS methods might be a promising research direction.

4.5.3 Comparison between FQE and IBES on Atari

Finally, we conduct experiments on benchmark Atari datasets to show the

hardness of OPS for o✏ine RL, and compare IBES to FQE in a more prac-

tical setting. We use the o✏ine data on Breakout and Seaquest from the

DQN replay dataset3, a commonly used benchmark in o✏ine RL. We sample

1 million transitions from di↵erent learning stages to promote data coverage.

Unlike our previous experiment, the data coverage might be poor due to the

absent of explicit exploration to cover all candidate policies. We use 50%

of the data to generate a set of candidate policy-value pairs by running CQL

with di↵erent number of gradient steps and di↵erent regularization coe�cients,

as specified in Kumar et al. (2020). We use the other 50% data to perform

OPS using FQE or IBES. We generate two candidate sets for each environ-

ment. The early-learning candidate contains policies with gradient steps in

{50k, · · · , 500k} and final-learning candidate contains policies with gradient

steps in {550k, . . . , 1000k}. In this experiment, we use the CQL and FQE

implementation from the d3rlpy library (Seno & Imai, 2022).

Figure 4.7 shows the top-1 regret. We can see that these none of the

OPS methods can consistently outperform the random baseline, showing the

hardness of OPS in a practical situation where we can not control the data

coverage. For Breakout with early-learning candidate set, we found that IBES

tends to pick the candidate value function with a small number of gradient

steps. This is likely due to the fact that none of the candidate value functions

3https://research.google/resources/datasets/dqn-replay/
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Figure 4.7: Regret improvement over the random baseline on the Atari dataset.
We show the regret compared to the random baseline. A positive value means
the method outperforms random selection, and a negative value means the
method performs worse than random selection. We show the distribution of
the regret improvement across 5 random seeds (each seed is a single point
in the violin plots) and the regret of the random baseline under the x-axis la-
bels. None of these methods can consistently outperform the random baseline,
showing the hardness of OPS.

are close to optimal (that is, large "sub) and the value function with a small

number of training steps has a small magnitude and hence a small estimated

Bellman error. IBES performs better with the candidate set containing policies

in the final learning stage, where it is more likely to contain a value function

that is close to optimal. This shows the limitation of IBES, as discussed

in the previous section. We can also see that FQE is more robust to the

choice candidate set since it does not require one of the value function being

optimal, as long as all candidate set are covered by the data. However, it is

more sensitive to the data used to run FQE, and hence high variance across

di↵erent random seeds.

4.6 Related work

In this section we provide a more comprehensive survey of prior work on model

selection for RL. In the online setting, model selection has been studied ex-

tensively across contextual bandits (Foster et al., 2019) to RL (J. Lee et al.,

2021). In the online setting, the goal is to select model classes while balancing

exploration and exploitation to achieve low regret, which is very di↵erent from
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the o✏ine setting where no exploration is performed.

In the o✏ine setting, besides using OPE and BE selection, other work

on model selection in RL is in other settings: selecting models and selecting

amongst OPE estimators. Hallak et al. (2013) consider model selection for

model-based RL algorithms with batch data. They focus on selecting the

most suitable model that generates the observed data, based on the maximum

likelihood framework. Su, Srinath, et al. (2020) consider adaptive estimation

ion for OPE when the candidate estimators can be ordered with monotonically

increasing biases and decreasing confidence intervals.

In o✏ine RL pipelines, we often split the o✏ine data into training data

for generating multiple candidate policies and validation data for selecting

the best candidate policy. Nie et al., 2022 highlight the utility of performing

multiple random data splits for OPS. They do not study the hardness or sample

complexity of this procedure.

To the best of our knowledge, there is no previous work on understanding

the fundamental limits for OPS in RL. There is one related work in the batch

contextual bandit setting, studying the selection of a linear model (J. Lee et

al., 2022). They provide a hardness result suggesting it is impossible to achieve

an oracle inequality that balances the approximation error, the complexity of

the function class, and data coverage. Our work considers the more general

problem, selecting a policy from a set of policies, in the RL setting.

4.7 Conclusion

In this chapter, we made contributions towards understanding when OPS is

feasible for RL. One of our main results—that the sample complexity of OPS

is lower-bounded by the sample complexity of OPE—is perhaps expected.

However, to our knowledge, this has never been formally shown. This result

implies that without conditions to make OPE feasible, we cannot do policy

selection e�ciently. Our second contribution is the proposed IBES algorithm.

We provide a sample complexity analysis, and empirically show that it is more

sample e�cient than existing BE-based methods for OPS.
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We expect active research topics will be (1) to identify suitable conditions

on the policies, environments and data, to make OPS sample e�cient, (2)

to design o✏ine RL algorithms that have sound methods to select their own

hyperparameters, and (3) to investigate how to combine multiple methods for

a better OPS algorithm. In o✏ine RL, we cannot select hyperparameters by

testing in the real-world, and instead are limited to using the o✏ine data.

OPS is arguably one of the most critical steps towards bringing RL into the

real-world, and there is much more to understand.
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Chapter 5

Exploiting Exogenous

Structures for O✏ine RL

In Chapter 3, we discussed several negative results of o✏ine RL. These results

motivate the need to look at specific classes of MDPs where o✏ine RL can

be sample e�cient. In this chapter, we explore a restricted class of MDPs to

obtain guarantees for o✏ine RL. The key property, which we call Action Im-

pact Regularity (AIR), is that actions primarily impact a part of the state (an

endogenous component) and have limited impact on the remaining part of the

state (an exogenous component). AIR is a strong assumption, but it nonethe-

less holds in a number of real-world domains including financial markets. We

present an algorithm that exploits the AIR property, called FQI-AIR, and pro-

vide an analysis on the sample complexity of FQI-AIR. Finally, we demonstrate

that the algorithm outperforms existing o✏ine RL algorithms across di↵erent

data collection policies in simulated and real-world environments where the

regularity holds.

5.1 Introduction

We have discussed common conditions for sample e�cient RL, such as a small

concentration coe�cient or data coverage for an optimal policy. Intuitively,

there are settings where o✏ine RL should be e↵ective while these assumptions

do not hold. Consider a trading agent in a stock market. A policy that

merely observes stock prices and volumes without buying or selling any shares

48



Counterfactual 
Reasoning

Observed 
Exogenous
Trajectory 1

11001000 900

a = 0

a = 1

1100 51000 5

900 6

900 4

900 5

1100 6

Exogenous State Endogenous State

a = �1

1100 7

Figure 5.1: In the stock market example, the exogenous state corresponds to
the stock price, the endogenous state corresponds to number of shares the
agent has, and the action corresponds to the number of share to buy or sell at
each time step. Given an observed exogenous trajectory, the agent can coun-
terfactually reason about the outcomes of di↵erent actions and endogenous
state.

provides useful information about the environment. For this collected dataset,

an o✏ine agent can counterfactually reason about the utility of many di↵erent

actions as demonstrated in Figure 5.1, because its actions have limited impact

on the prices and volumes. Such MDPs, which are called Exogenous MDPs,

have states that separate into exogenous states (stock price), not impacted

by actions, and endogenous states (number of shares owned by the agent).

The structure in Exogenous MDPs has been used in online RL to learn more

e�ciently (Dietterich et al., 2018).

This exogenous structure, however, has yet to be formally investigated for

o✏ine RL, though it is likely already being exploited in industry. Exploiting

this structure is natural in applied financial applications, because datasets

allow for alternative trajectories to be simulated, as described in the above

example. One (unpublished) system uses RL and trajectory simulation for the

optimal order execution problem (Burhani et al., 2020); it seems likely that

there are other such systems in use. What has yet to be done, however, is to

understand the theoretical properties of such algorithms, as well as potential

algorithmic improvements.

In this chapter, we first generalize the definition of exogenous MDPs, and
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formalize the action impact regularity (AIR) property. We say an MDP has the

AIR property—or is "-AIR—if the actions have a limited impact on exogenous

dynamics, with the level of impact determined by " � 0. This generalizes the

previous definition, which required strict separation, corresponding to " = 0.

We develop both theory and algorithms for this more general setting, assuming

access only to an o✏ine dataset, an approximate (learned) endogenous model

and the reward function.1

We design an e�cient algorithm, called FQI-AIR, to exploit the AIR prop-

erty, that (1) does not require an estimate of the behavior policy or the data

distribution, (2) has a straightforward approach to select hyperparameters us-

ing just the given data and (3) is much less sensitive to the quality of the data

collection policy, if our assumptions hold. This algorithm is a simple extension

of FQI, but is significantly more computationally e�cient than the trajectory

simulation approach mentioned above and allows us to leverage and extend

the existing theory for FQI. We bound the suboptimality of the output policy

from FQI-AIR, in terms of " and other standard terms such as model errors

and the inherent Bellman error. Importantly, in place of the concentration co-

e�cient, we have a term that depends on the size of the endogenous state and

number of actions; when the concentration coe�cient is bounded and small,

it is on the same order as this term.

We then conduct a comprehensive empirical study of FQI-AIR. We com-

pare several algorithms in two simulated environments, across three di↵erent

data collection policies, with varying o✏ine dataset sizes, for " = 0 (assump-

tion perfectly satisfied) and a larger " (assumption somewhat violated). FQI-

AIR significantly outperforms the o✏ine RL algorithms that do not leverage

the AIR property—including FQI, MBS-QI, CQL and IQL; this outcome is

expected, but nonetheless verifies that exploiting the AIR property, when ap-

propriate, can have a big benefit. We show that these conclusions extend to

two environments based on real-world datasets (for bitcoin trading and for

1We could assume an approximate instead of exact reward model. However, in most RL
analysis, the error on the transition model is of a higher order than the error for reward
models (for example, see A. Agarwal et al. (2020)). For simplicity, it is often assumed the
reward model is known.
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controlling battery usage in a hybrid car). An important detail here is how

hyperparameters are chosen. FQI-AIR can exploit AIR for policy evaluation,

to automatically select hyperparameters. For the other algorithms, we do not

have such an approach, and instead report idealized performance by picking

hyperparameters based on performance in the environment.

Finally, these results all used the true endogenous model for FQI-AIR.

We chose to do so partly because the endogenous model is known for certain

AIR-MDPs (e.g., trading, inventory management) and partly to focus the

investigation on the role of " rather than model error. However, for certain

AIR-MDPs, we will not have access to the true endogenous model. In our final

experiment, we investigated the impact of using a learned endogenous model

in the hybrid car environment, and show that FQI-AIR remains e↵ective.

All of this is only possible because we make a strong assumption about

the environment. However, given the hardness results in o✏ine RL, we should

acknowledge that we likely need to restrict the class of MDPs. This work is

a step towards understanding for what classes of MDPs o✏ine RL is feasible.

At the same time, though we consider a restricted setting, it is by no means

a trivial setting. There are many real-world examples where this regularity

holds (as we discuss later in this chapter). This is doubly true given that

our generalization provides some flexibility in violating the assumption: the

regularity only needs to hold approximately rather than exactly. The algo-

rithms and theory developed here can benefit these real-world applications

now, by providing an approach that is well-designed and well-behaved with

strong theoretical guarantees for their specific problem setting.

5.2 Action impact regularity

Actions play an important role for the exponential lower bound constructions

cited in the last section. These lower bounds use tree structures where di↵erent

actions lead to di↵erent subtrees and hence di↵erent sequence of futures states

and rewards. A class of MDPs that do not su↵er from these lower bounds are

those where actions do not have such strong impact on the future states and
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rewards. In this section, we introduce the Action Impact Regularity (AIR)

property, a property of the MDP which allows for more e↵ective o✏ine RL.

The state is partitioned into an exogenous and endogenous component, and

the property reflects that the agent’s actions primarily impact the endogenous

state with limited influence on the exogenous state. We first provide the

formal definition and assumptions we leverage to design a practical o✏ine RL

algorithm and then discuss when these assumptions are likely to be satisfied.

5.2.1 Formal definition and assumptions

We use the standard state decomposition from Exogenous MDPs (Dietterich et

al., 2018; McGregor et al., 2017). We assume the state space is S = S
exo
⇥S

end

where S
exo is the exogenous variable and S

end is the endogenous variable. The

transition dynamics are P exo : S
exo
⇥ A ! �(Sexo) and P end : S ⇥ A !

�(Send) for exogenous and endogenous variable respectively. The transition

probability from a state s1 = (sexo
1

, send
1

) to another state s2 = (sexo
2

, send
2

) is

P (s1, a, s2) = P exo(sexo
1

, a, sexo
2

)P end(s1, a, send2
).

Definition 4 (The AIR Property). An MDP is "-AIR if S = S
exo
⇥S

end, and

for any actions a, a,0 2 A, the next exogenous variable distribution is similar

if either action a or a0 is taken. That is, for each state s 2 S,

DTV (P exo(sexo, a), P exo(sexo, a0))  "

whereDTV is the total variation distance between two probability distributions

on S
exo. For discrete spaces, the total variation distance is DTV (P, P 0) =

1

2
kP � P 0

k1 (`1 norm).

We define the AIR-MDP such that the property holds for all exogenous

state-action pairs. If the property does not hold for one of the exogenous state-

action pairs, then one can design an adversarial MDP that hides all di�culties

in this single exogenous state-action pair and assuming the properties hold for

all but one pair would be useless (Jiang, 2018).

Access to an (approximate) endogenous model is critical to exploit the AIR

property, and is a fundamental component of our algorithm. To be precise, we

make the following assumption in this chapter.
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Assumption 1 (AIR with an Approximate Endogenous Model). We assume

that the MDP is "air-AIR and that we have the reward model r : S ⇥ A !

[0, rmax] and an approximate endogenous model P̂ end : S ⇥A! �(Send) such

that DTV (P end(s, a), P̂ end(s, a))  "p for any (s, a) 2 S ⇥A.

As mentioned in the introduction, it is common to assume that only the

transition dynamics are approximated. Moreover, similar to Definition 4, we

need the error on the approximate model to hold uniformly. Finally, the

above assumption implicitly assumes that the separation between exogenous

and endogenous state is given to us. More generally, the separation could be

identified or learned by the agent, as has been done for contingency-aware RL

agents (Bellemare et al., 2012) and wireless networks (Dietterich et al., 2018).

Because there are many settings where the separation is clear, we focus on this

more clear case first where the separation is known.

5.2.2 When are these assumptions satisfied?

Many real-world problems can be formulated as "-AIR MDPs. Further, for

many of these environments, the separation between exogenous and endoge-

nous state is clear, and we either know or can reasonably approximate the

endogenous model. In this section, we go through several concrete examples.

We can first return to our stock trading example, from the introduction.

The exogenous component is the market information (stock prices and vol-

umes) and the endogenous component is the number of stock shares owned by

the agent. The agent’s actions influence their own number of shares, but as

an individual trader, have limited impact on stock prices. Using a dataset of

stock prices over time allows the agent to reason counterfactually about the

impact of many possible trajectories of actions (buying/selling) on its shares

(endogenous state) and profits (reward).

There are many settings where the agent has a limited impact on a part

of the state. The optimal order execution problem is a task to sell M shares

of a stock within H steps; the goal is to maximize the profit. The problem

can be formulated as an MDP where the exogenous variable is the stock price
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and endogenous variable is the number of shares left to sell. It is common to

assume infinite market liquidity (Nevmyvaka et al., 2006) or that actions have

a small impact on the stock price (Abernethy & Kale, 2013; Bertsimas & Lo,

1998); this corresponds to assuming the AIR property.

Another example is the secretary problem (Freeman, 1983), which a family

of problems that can often be used to model real-world application (Babaio↵

et al., 2007; Goldstein et al., 2020). The goal for the agent is to hire the best

secretary out of H, interviewed in random order. After each interview, they

have to decide if they will hire that applicant, or wait to see a potentially

better applicant in the future. The problem can be formulated as a 0-AIR

MDP where the endogenous variable is a binary variable indicating whether

we have chosen to stop or not.

Other examples include those where the agent only influences energy ef-

ficiency, such as in the hybrid vehicle problem (Lian et al., 2020; Shahamiri,

2008) and electric vehicle charging problem (Abdullah et al., 2021). In the

former problem, the agent controls the vehicle to use either the gas engine or

the electrical motor at each time step, with the goal to minimize gas consump-

tion; its actions do not impact the driver’s behavior. In the latter problem, the

agent controls the charging schedule of an electric vehicle to minimize costs;

its actions do not impact electricity cost.

In some settings we can even restrict the action set or policy set to make

the MDP "-AIR. For example, if we know that sellingM shares hardly impacts

the markets, we can restrict the action space to selling less than or equal to

M shares. In the hybrid vehicle example, if the driver can see which mode

is used, we can restrict the policy set to only switch actions periodically to

minimize distractions for the driver.

In these problems with AIR, we often know the reward and transitions for

the endogenous variables, or have a good approximation. For the optimal or-

der execution problem, the reward is simply the selling price times the number

of shares sold minus transaction costs, and the transition probability for P end

is the inventory level minus the number of shares sold. In other applications,

we may be able to use domain knowledge to build an accurate model for the
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endogenous dynamics. For the hybrid vehicle, we can use domain knowledge to

calculate how much gas would be used for a given acceleration. Such informa-

tion about the dynamics of the system can be simpler for engineers to specify,

than (unknown) behavior of di↵erent drivers and environment conditions. Our

theoretical results will include a term for the error in the endogenous model,

but it is reasonable to assume that for many settings we can get that error

to be relatively low, particularly in comparison to the error we might get if

trying to model the exogenous state.

5.2.3 Connections to the literature on exogenous MDPs

AIR MDPs can be viewed as an extension of Exogenous MDPs. (1) We allow

the action to have small impact on the environmental state, while the action

has no impact on the exogenous state in Exogenous MDPs. (2) We do not

assume the reward can be decomposed additively to an exogenous reward and

an endogenous reward (Dietterich et al., 2018) nor factor into a sum over each

exogenous state variable (Chitnis & Lozano-Pérez, 2020). For this previous

definition of Exogenous MDPs, the focus was on identifying and removing

the exogenous state/noise so that the learning problem could be solved more

e�ciently (Dietterich et al., 2018; Efroni et al., 2022; Efroni et al., 2021). Our

focus is o✏ine learning where we want to exploit the known structure to enable

counterfactual reasoning and avoid data coverage issues.

Weakly-coupled MDPs (Meuleau et al., 1998), share similarities with ex-

ogenous MDPs. Weakly-coupled MDPs can be decomposed into independent

sub-MDPs where the reward function and the transition dynamics of each

sub-MDP are independent of the others. These sub-MDP are linked only via

global resource constraints. In such models, it is typical to assume additive

utility independent, meaning that the global reward is the sum of individual

reward associated with each sub-MDP. Therefore, once we allocate the global

resources to these sub-problems, we can then solve these sub-problems inde-

pendently. In contrast, our AIR MDPs di↵er in two critical ways: (1) the

endogenous component can depend on the exogenous component. (2) We do

not assume the reward can be decomposed additively into exogenous and en-
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dogenous components.

5.3 O✏ine policy learning for AIR MDPs

In this section, we discuss several o✏ine algorithms that exploit the AIR prop-

erty for policy learning. We then theoretically analyze an FQI-based algorithm,

characterizing the performance of its outputted policy.

5.3.1 Algorithms for AIR MDPs

Two standard classes of algorithms in o✏ine RL are model-based algorithms—

that learn a model from the o✏ine dataset and then use dynamic programming—

and model-free algorithms like fitted Q-iteration (FQI). These two approaches

can be tailored to our setting with AIR MDPs, as we described below. There

is, however, an even more basic approach in our o✏ine RL setting using tra-

jectory simulation, that has previously been used (Burhani et al., 2020). We

start by describing this simpler approach, and then the modified model-based

and FQI approaches.

A natural approach is to reuse trajectories in the dataset to simulate al-

ternative trajectories for an online RL algorithm. For each episode, a random

trajectory is selected from the dataset. The online RL algorithm—such as an

actor-critic method or a Q-learning agent—takes actions and deterministically

transitions to the next exogenous state in the trajectory. The approximate

endogenous and reward model are used to sample the next endogenous vari-

able and reward. With such a trajectory simulator, we can run any online

reinforcement learning algorithm to find a good policy for the simulator.

This approach, however, does not exploit the fact that the agent is actually

learning o✏ine. The online RL algorithm cannot simply query the model

for any state and action, and needs a good exploration strategy to find a

reasonable policy. There are fewer theoretical guarantees for such online RL

algorithms, and arguably more open questions about their properties than

DP-based algorithms and fitted value iteration algorithms.

A more explicit model-based approach is to learn the exogenous model from
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data, to obtain a complete transition and reward model, and use any planning

approach. The transition model for exogenous states can be constructed as

if the action has no impact. With the model, we can use any query-e�cient

planning algorithm to find a good policy for the model. Because actions have

only small impact in the true MDP, we can learn an accurate exogenous model

even if we do not have full data coverage.

More precisely, recall the o✏ine data is randomly generated by running

⇡b on M , that is, D = {(S(i)
0
, A(i)

0
, . . . , S(i)

H�1
, A(i)

H�1
)}N

i=1
sampled according to

the probability measure P⇡b

M . The pertinent part is the transitions between

exogenous variables, so we define Dexo = {(S(i)
0
, S(i),exo

1
, . . . , S(i),exo

H�1
)}N

i=1
. The

model-based approach constructs an empirical MDP MD = (S,A, P̂ , r,H, ⌫̂).

For the tabular setting we have ⌫̂(s) = 1

N

PN
i=1

I(S(i)
0

= s), and

P̂ exo(sexoh , a, sexoh+1
)=

PN
i=1

I(S(i),exo
h = sexoh , S(i),exo

h+1
= sexoh+1

)
PN

i=1
I(S(i),exo

h = sexoh )

for all a 2 A. Exogenous variables not seen in the data are not reachable, and

so can either be omitted from P̂ exo or set to self-loop. For large or continu-

ous state spaces, we can learn p(sexoh+1
|sexoh ) using any conditional distribution

learning algorithm, and set P̂ exo(sexoh , a, sexoh+1
) = p(sexoh+1

|sexoh ) for all a 2 A.

For large or continuous states spaces, however, learning such a model and

planning can be impractical. Learning an accurate exogenous model might be

di�cult if the exogenous transition is complex or the exogenous state is high-

dimensional. Further, it is not possible to sweep through all states during

planning. Smarter approximate dynamic programming algorithms need to be

used, but even these can be quite computationally costly.

A reasonable alternative is FQI, which approximates value iteration with-

out the need to learn a model. Our FQI algorithm that exploits the AIR

property is described in Algorithm 4, which we call FQI-AIR. The algorithm

simulates all actions from a state, and assumes it transitions to the exoge-

nous state observed in the dataset. The reward and endogenous state for each

simulated action can be obtained using the reward model and approximate en-

dogenous model. Even though the true MDP is not necessarily 0-AIR MDP,

we will show in the analysis that as long as "air is small, the algorithm can
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Algorithm 4 FQI-AIR

Input: dataset D, value function class F , P̂ end, r
Let qH = 0, DH�1 = ;, ..., D1 = ;
for h = H � 1, . . . , 0 do

For all i 2 {1, . . . , N}, all sendh 2 S
end, all a 2 A

Sample s
0
end
⇠ P̂ end(s(i),exoh , sendh , a), compute target

t = r(s(i),exoh , sendh , a) + max
a02A

qh+1(s
(i),exo
h+1

, s
0
end, a0)

Add (synthetic) pair ((s(i),exoh , send, a), t) to Dh

After generating Dh

qh = argmin
f2F

X

(x,y)2Dh

(f(x)� y)2

⇡h(s) = argmax
a

qh(s, a) for all s 2 Sh

Output: ⇡ = (⇡0, . . . , ⇡H�1)

return a nearly optimal policy in the true MDP. This algorithm, although

simple, enjoys theoretical guarantees without making assumptions on the con-

centration coe�cient, and can be much more computationally e�cient than

trajectory simulation methods.

Note that the computational cost scales with the size of S
end and A. When

|S
end

| or |A| is large, we can modify FQI-AIR to no longer use full sweeps.

Instead, we can randomly sample from the endogenous state space and action.

We include a practical implementation of FQI-AIR in Algorithm 5. For each

exogenous state in the dataset, we sample an endogenous state and an action,

and query the approximate model to obtain a target for FQI update. As a

result, the computation can be independent of the size of Send and A. However,

for sample complexity, the performance loss of the algorithm would depend on

the squared root of the size |S
end

||A|, as shown in the next section.

5.3.2 Theoretical analysis of FQI-AIR

First we need the following definitions. For a given MDP M , we define

J(⇡,M) := E⇡
M [R(⌧)] where ⌧ = (S0, A0, . . . , SH�1, AH�1) is a random ele-
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Algorithm 5 FQI-AIR for large state spaces

Input: dataset D, an approximate model P̂ end, r, mini-batch size B, number
of training iteration K, number of updates per iteration M
Initialize a Q function q✓ : S

exo
⇥ S

end
⇥A⇥ [H]! R, parameterized by ✓

✓̄  ✓
for k = 1, . . . , K do

for m = 1, . . . ,M do

Sample a mini-batch of transitions {(sexoj , sendj , aj, hj, s
0
exo

j , s
0
end

j )}B
j=1

from D
For all j, sample an endogenous state s̃endj 2 S

end and an action ãj 2 A

randomly, sample s̃
0
end

j ⇠ P̂ end(sexoj , s̃endj , ãj), and compute target

tj = r(sexoj , s̃endj , ãj) + max
a02A

q✓̄(s
0
exo

j , s̃
0
end

j , a0, hj + 1)

Compute the mini-batch loss L(✓) =
PB

j=1
(q✓(sexoj , s̃endj , ãj, hj)� tj)2

Update ✓ to reduce L(✓)
✓̄  ✓

Output: the greedy policy with respect to q✓

ment in (S ⇥ A)H , the expectation E⇡
M is with respect to P⇡

M , and R(⌧) =
PH�1

h=0
r(Sh, Ah).

We also need the following assumption on the function approximation er-

ror. This is a common assumption to analyze approximate value iteration

algorithms (Antos et al., 2008; Munos, 2007). Let ⌫̃h(sexoh ) = P⇡b

M(Sexo

h = sexoh )

be the data distribution on S
exo at horizon h. Given a probability measure ⌫h

on S
exo and p 2 [1,1), define the weighted norm as

kqkpp,⌫h =
X

sexo2Sexo

X

send2Send

X

a2A

⌫h(sexo)

|Send||A|
|q(sexo, send, a)|p.

Assumption 2. Assume the function class F is finite and the inherent Bell-

man error is bounded by "apx, that is,

"apx = max
h2[H]

max
f 02F

min
f2F
kT f 0

� fk2
2,⌫̃h

.

We assume the function class is finite for simplicity, which is common in

many o✏ine RL papers (Chen & Jiang, 2019). If the function class is not
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finite but has a bounded complexity measure, we can derive similar results

by replacing the size of the function class with the complexity measure. For

example, Duan et al. (2021) analyze FQI with the Rademacher complexity.

Since studying the complexity measure is not a critical point in this chapter,

we decide to make the finite function class assumption.

Theorem 4 (Performance bound for FQI-AIR). Under Assumption 1 and 2,

let ⇡⇤
M be an optimal policy in M and ⇡ the output policy of FQI-AIR, then

with probability at least 1� ⇣

J(⇡,M) � J(⇡⇤
M ,M)� 2vmaxH("air + "p)�

(H + 1)H
p

|Send||A|

 r
72vmax

2 ln (H|F||Send||A|/⇣)

N
+ 2"apx

!
.

The bound on performance loss has three components: (1) a sampling error

term which decreases with more trajectories; (2) the AIR parameter; and (3) an

approximation error term which depends on the function approximation used.

The result implies that as long as we have a su�cient number of episodes,

a good function approximation, and small "air, then the algorithm can find

a nearly-optimal policy with high probability. For example, if "air, "p and

"apx are small enough, we only need N = Õ(H4vmax
2
|S

end
||A|/�) trajectories,

which is polynomial in H, to obtain a �-optimal policy.

The proof can be found in Appendix B.1. The key idea is to introduce

a baseline MDP Mb that is 0-AIR, that approximates M which is actually

"air-AIR. The baseline MDP Mb = (S,A, P̃ , r,H, ⌫) has

P̃ exo(sexoh , a, sexoh+1
) = P⇡b

M(Sexo

h = sexoh , Sexo

h+1
= sexoh+1

)/P⇡b

M(Sexo

h = sexoh )

and P̃ end(sh, a, sendh ) = P̂ end(sh, a, sendh ). The transition probability for exoge-

nous state does not depend on the action a taken, so Mb is 0-AIR. We show

that FQI returns a good policy in Mb, and that good policies in Mb are also

good in the true MDP M .

We can contrast this bound to others in o✏ine RL. For FQI results that

assume the concentration coe�cient is bounded and small, the error bound has

a term that scales with
p
C, which is on the same order as the term

p
|Send||A|
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in our bound. We can get a similar bound by considering this restricted class

of MDPs that are "-AIR, without having to make any assumptions on the

concentration coe�cient. For settings where this assumption is appropriate—

namely when the MDP is "-AIR—this is a significant success, as we need not

make these stringent conditions on data distributions.

5.4 Policy evaluation for AIR MDPs

We can also exploit the AIR property, and access to the approximate endoge-

nous model and reward model, to evaluate the value of a given policy. Given

a trajectories of exogenous states (S(i)
0
, S(i),exo

1
, . . . , S(i),exo

H�1
), we can rollout a

synthetic trajectory under ⇡ and P̂ end: ⌧ (i)D = (S(i)
0
, A(i)

0
, S(i)

1
, A(i)

1
, . . . ) where

A(i)
t ⇠ ⇡(S(i)

t ), S(i),end
t+1

⇠ P̂ end(S(i)
t , A(i)

t ) and S(i)
t+1

= [S(i),exo
t+1

, S(i),end
t+1

]. For

R(⌧ (i)D ) :=
PH�1

t=0
r(S(i)

t , A(i)
t ), the average return over the N synthetic trajec-

tories Ĵ(⇡,M) = 1

N

PN
i=1

R(⌧ (i)D ) is an estimator of J(⇡,M). This method is

simple, but very useful because we can do hyperparameter selection with only

the o✏ine dataset without introducing extra hyperparameters.

We can bound the policy evaluation error by Hoe↵ding’s inequality. More

sophisticated bounds for policy evaluation can be found in (P. Thomas et al.,

2015a).

Theorem 5. Under Assumption 1, given a deterministic policy ⇡, we have

that with probability at least 1� ⇣

���Ĵ(⇡,M)�J(⇡,M)
���vmax

✓
H"air+H"p+

q
ln (2/⇣)

2N

◆
.

The results suggests that if we have a su�cient number of trajectories

and small "air and "p, then Ĵ(⇡,M) is a good estimator for J(⇡,M). Even

though the estimator is biased and not consistent, we find it provides su�cient

information for hyperparameter selection in our experiments.

Theorem 5 only holds for a given policy that is independent of the o✏ine

data. If we want to evaluate the output policy, which depends on the data,

we need to apply an union bound for all deterministic policies. In that case,

the sampling error term becomes Õ(
p

|S|/N). To avoid the dependence on
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the state space, an alternative is to split the data into two subsets: one subset

is used to obtain an output policy and another subset is used to evaluate the

output policy.

5.5 Simulation experiments

We evaluate the performance of the FQI-based algorithm in two simulated

environments with the AIR property: an optimal order execution problem

and an inventory management problem. FQI-AIR is notably better than these

other approaches, and so we focus on it as the representative algorithm that

exploits the AIR property.

The first goal of these experiments is to demonstrate that existing o✏ine

RL algorithms fail to learn a good policy for some natural data collection poli-

cies, while our proposed algorithm returns a near-optimal policy. To demon-

strate this, we test three data collection policies: (1) a random policy which is

designed to give a small concentration coe�cient, (2) a learned near-optimal

policy obtained using DQN with 1000 episodes of online interactions, which

covers an optimal policy reasonably well, and (3) a constant policy which,

in theory, has an infinite concentration coe�cient due to missing state-action

pairs and does not cover an optimal policy. The second goal is to validate the

policy evaluation analysis with a varying number of trajectories N and "air.

5.5.1 Environments

We investigated the behavior of the algorithms on two simulated environments

that mimic two real-world problems that satisfy the AIR property: optimal

order execution and inventory management. In the optimal order execution

problem, the task is to sell M = 10 shares within H = 100 steps. The stock

prices X1, . . . , Xh are generated by an ARMA(2, 2) process and scaled to the

interval [0, 1]. Specifically, the ARMA(2, 2) process is

Xt = X̃t/20 + 1/2 where X̃t = c+ "t +
2X

i=1

'iX̃t�i +
2X

i=1

✓i"t�i,
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'1 ⇠ U(�0.9, 0.0), '2 ⇠ U(0.0, 0.9) and ✓i ⇠ U(�0.5, 0.5) for i = 1, 2. The

scaling parameters are chosen so that the process is stable and the price is in

the interval [0, 1]. The endogenous variable Ph is the number of shares left to

sell. To construct state, we use the most recent K = 3 prices with the most

recent endogenous variable, that is, Sh = (Xh�2, Xh�1, Xh, Ph). The action

space is A = [5]. The reward function is the stock price Xh multiplied by the

number of selling shares min{Ah, Ph}.

We consider both a setting with "air = 0 and "air > 0, as well as di↵erent

data generating policies. When the number of selling shares is greater than 0,

the stock price drops by 10% with probability "air. For "air = 0, this means

selling shares has no impact on the stock price. When "air > 0, it does, allowing

us to test how robust FQI-AIR is to some violation of the AIR property. The

random policy used in the environment chooses 0 with probability 75% and

choose 1, . . . , 5 with probability 5%. The constant policy always chooses action

0.

We design an inventory management problem based on existing lit-

erature (Kunnumkal & Topaloglu, 2008; Van Roy et al., 1997). The task

is to control the inventory of a product over H = 100 stages. At each

stage, we observe the inventory level Xt (endogenous) and the previous de-

mand Dt�1 (exogenous) and choose to place a order At 2 [10]. The in-

ventory level evolves as: Xt+1 = (Xt + At � Dt)+. The reward function is

cAt + h(Xt + At �Dt)+ � b(�Xt � At +Dt)+ where c is the order cost, h is

the holding cost, and b is the cost for lost sale. We use c = 0.1, h = 0.25

and b = 1.0 in the experiment. To make sure the reward is bounded, we clip

the reward at a large negative number �100. The endogenous variable is the

inventory level, which can be as large as 1000, so we restrict FQI-AIR to sweep

only for a subset of the endogenous space, that is, [15] ⇢ S
end.

As before, we consider both "air = 0 and "air > 0, which in this case impacts

the demand. The demand Dt = (D̃t)+ where D̃t follows a normal distribution

with mean µ and � = µ/3 and (d)+ := max{d, 0}. In the beginning of each

episode, µ is sampled from a uniform distribution in the interval [3, 9]. When

the order is greater than 0, the mean of the demand distribution decreases or
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increases by 10% with probability "air/2 respectively.

Again, we consider three di↵erent data generating policies. The random

policy used in the environment is a policy which chooses a value Ãt 2 [Dt�1�

3, Dt�1 + 3] uniformly and then choose the action At = max{min{Ãt, 10}, 0}.

The constant policy always chooses action At = min{Dt�1, 10}. The near-

optimal policy is obtained using DQN with online interaction, for both envi-

ronments.

There is an important nuance for the inventory problem. In this prob-

lem, the endogenous transition and reward depends on the next exogenous

variable. Fortunately, we can generalize the definition of exogenous MDPs

such that the endogenous transition is P end : S ⇥ A ⇥ S
exo
! �(Send)

and the reward is r : S ⇥ A ⇥ S
exo
! [0, rmax]. We assume we have an

approximate endogenous model P̂ end : S ⇥ A ⇥ S
exo
! �(Send) such that

DTV (P end(s, a, sexo), P̂ end(s, a, sexo))  "p for any (s, a, sexo) 2 S ⇥ A ⇥ S
exo.

With these changes, the algorithms and the theoretical analysis naturally ex-

tend to the new definition of exogenous MDPs.

5.5.2 Algorithm details

We compare FQI-AIR to FQI, MBS-QI (Y. Liu et al., 2020), CQL (Kumar

et al., 2020), IQL (Kostrikov et al., 2022). As we discussed in the previous

sections, FQI is expected to work well when the concentration coe�cient is

small. MBS-QI is expected to perform well when the data covers an opti-

mal policy. CQL and IQL are strong baselines which have been shown to be

e↵ective empirically for discrete-action environments such as Atari games.

We had several choices to make for the baseline algorithms. MBS-QI re-

quires density estimation for the data distribution µ. For the optimal or-

der execution problem, we use state discretization and empirical counts to

estimate the data distribution as used in the original paper. For the in-

ventory problem, the state space is already discrete so there is no need for

discretization. We show the results with the best threshold b from the set

{0.002, 0.001, 0.0001, 0.00005}. Note that it is possible that there is no data

for some states (or state discretization) visited by the output policy, and for
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these states, all action values are all zero. To break ties, we allow MBS-QI to

choose an action uniformly at random. The original MBS-QI algorithm does

not work with negative rewards. The reward in the inventory problem is in

the range [�100, 0], so we modify the pessimistic value for MBS-QI for the

problem:

q̃h(s, a) :=

(
qh(s, a), if µ̂(s, a) � b

�10000, if µ̂(s, a) < b

instead of q̃h(s, a) := I{µ̂(s, a) � b}qh(s, a) where µ̂ is the estimated data

distribution.

For CQL, we add the CQL(H) loss with a weighting ↵ when updating the

action values. We show the results with the best ↵ from the set {0.1, 0.5, 1.0, 5.0}

as suggested in the original paper. For IQL, we show the results with the best

⌧ from the set {0.7, 0.8, 0.9} and � from the set {10.0, 3.0, 1.0}.

We use the same value function approximation for all algorithms in our

experiments: two-layers neural networks with hidden size 128. The neural

networks are optimized by Adam (Kingma & Ba, 2014) or RMSprop with

learning rate in the set {0.001, 0.0003, 0.0001}. All algorithms are trained for

100 iterations. We also tried training the comparator algorithms for longer,

but it did not improve their performance.

The hyperparameters for FQI-AIR are selected based on Ĵ(⇡,M), which

only depends on the dataset. The hyperparameters for comparator algorithms

are selected based on J(⇡,M)—which should be a large advantage—estimated

by running the policy ⇡ on the true environment M with 100 rollouts.

5.5.3 Policy performance when "air = 0

Figure 5.2 shows the performance of our algorithm and the comparator algo-

rithms with a di↵erent number of trajectories N = {1, 5, 10, 25, 50, 100, 200}

and "air = 0. Our algorithm outperforms other algorithms for all data collec-

tion policies. This result is not too surprising, as FQI-AIR is the only algo-

rithm to exploit this important regularity in the environment; but nonetheless

it shows how useful it is to exploit this AIR property when it is possible.
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(a) Optimal order execution problem

(b) Inventory management problem

Figure 5.2: Comparison between algorithms in the optimal order execution
problem and inventory management problem, for "air = 0. The gray lines
show the performance of the data collection policies. Results are averaged
over 30 runs with error bars for one standard error.

We can first look more closely at the optimal order execution results. MBS

performs slightly better than FQI, however, we found it performs better be-

cause the tie-breaking is done with a uniform random policy especially under

the constant policy dataset.2 CQL and IQL fails when the data collection

policy is far from optimal (constant policy) and perform reasonably with a

learned policy. FQI-AIR exploits the AIR property, and so is robust to di↵er-

ent data collection policies. The results show that exploiting the AIR property

is critical for the robust performance.

We see similar patterns for the inventory management problem. FQI-AIR

outperforms the other algorithms for all data collection policies. CQL and IQL

perform well in this environment. MBS outperforms FQI under the learned

policy, but FQI outperforms MBS under the random policy. The results match

the expectation that FQI performs well with an uniform data and MBS-QI

performs well with an expert data.

2A uniform policy in this environment can achieve a performance J(⇡, M) ⇡ 5.
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(a) Optimal order execution problem

(b) Inventory management problem

Figure 5.3: Comparison between algorithms in two simulation problems with
"air = 0.8. The gray lines show the performance of the data collection policies.
The results are averaged over 30 runs with error bars representing one standard
error.

5.5.4 Policy performance with a large value of "air

Now we consider the impact of using these algorithms when "air > 0. We

should expect FQI-AIR to be most impacted, as the other algorithms do not

exploit the AIR property. We vary "air from 0.1 to 0.8 and find that the results

are similar to those with small "air. FQI-AIR still significantly outperforms

other o✏ine methods.

Figure 5.3 shows the result with "air = 0.8 where the performance of all

algorithms drop significantly. In theory, FQI-AIR can have a large performance

loss with large "air, however, FQI-AIR still consistently outperforms other

baselines in our experiments, except for the inventory management problem

with the learned policy. This is because the divergence between the true

exogenous transition and the synthetic exogenous transition in FQI-AIR does

not occur at every time step even when "air is large. For example, in the

optimal order execution problem, the divergence can only happen when we sell
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N=1
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N=100
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(a) Optimal order execution problem (b) Inventory management problem

Figure 5.4: The 90th percentile, over 90 runs, of the di↵erence |Ĵ(⇡,M) �
J(⇡,M)|, with varying N and "air. The di↵erence should be lower for a larger
N and smaller "air.

a positive number of shares. The theoretical result is the worst-case analysis

where the divergence can occur at every time step and we su↵er rmax loss

every time the divergence occurs. Therefore, the experiment results suggest

that these practical problems considered in the chapter are not the worst case

and FQI-AIR can perform well even with large "air.

5.5.5 Results for policy evaluation

To validate the policy evaluation analysis, we investigate the di↵erence |Ĵ(⇡,M)�

J(⇡,M)| with "air 2 {0, 0.05, 0.1, 0.2, 0.4} and N = {1, 5, 25, 100, 200} where ⇡

is the output policy of FQI-AIR. We show the 90th percentile of the di↵erence

for each combination of "air and N over 90 data points (30 runs under each

data collection policy) in Figure 5.4. The 90th percentiles scale approximately

linearly with "air and inversely proportional to N . The results suggest that

the dependence on "air is linear and the policy evaluation error goes to zero

at a sublinear rate, which reflects the bound of Theorem 5.

5.5.6 Comparing FQI-AIR to online RL with trajectory

simulation

We tested the other algorithms described in Section 5.3.1. We compare to

two online RL algorithms, approximate policy iteration (API) and actor critic

(AC) with "-greedy exploration, with the trajectory simulator discussed in

Section 5.3.1. We show the learning curves with random data collection policy

and N = 100. Each iteration contains a sweep over the entire dataset. The
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(a) Optimal order execution problem (b) Inventory management problem

Figure 5.5: Comparison to simulation-based algorithms. Results are averaged
over 30 runs with the shaded region representing plus and minus one standard
error.

results show that FQI-AIR converges to a nearly optimal solution within a

few iterations while the online RL algorithms require much more iterations

to find a good policy. AC in the optimal order execution problem does not

converge to a stable performance. The final performance of API and AC are

also worse than the performance of FQI-AIR. These results show that online

RL algorithms could be used for AIR MDPs. However, they are less direct and

e�cient, and they could find a slightly di↵erent solution with a finite amount

of data and computation.

5.6 Real-world experiments

To demonstrate the practicality of the proposed algorithm, we evaluate the

proposed algorithm for two real-world experiments: (1) Bitcoin: an optimal

order execution for the bitcoin market, and (2) Prius : a hybrid car control

problem. For the Bitcoin experiment, we use historical prices of bitcoin.3 The

problem is to sell one bitcoin within 60 steps where each step corresponds to

10 minutes in real world. On each step, the agent chooses to sell some numbers

of bitcoins in {0, 0.1, 0.2, 0.3, 0.4, 0.5}. Each episode corresponds to 10 hours,

with a start state chosen from a random time step in the data (consisting of

300 days). The exogenous state contains the most recent 60 closing prices, and

3The bitcoin data is downloaded from the kaggle competition https://www.kaggle.com/
c/g-research-crypto-forecasting/data.
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(a) Bitcoin (b) Prius

Figure 5.6: Performance on real-world datasets. For (a), the numbers represent
the total selling price minus the average price. For (b), the numbers represent
the fuel cost with a penalty for not maintaining a desired batter level. Results
are averaged over 30 runs, shown with one standard error.

the endogenous state contains the number of shares left to be sold. We collect

an o✏ine dataset by running a trained policy by DQN for N episodes, and

report performance of the output policy for the testing period (about 41 days).

For the Prius experiment, we use the hybrid car environment from Lian

et al. (2020).4 The agent can switch between using fuel or battery, with the

goal to minimize fuel consumption while maintaining a desired battery level.

The exogenous state is the driving patterns and the endogenous state contains

the state of charge and the previous action. We collect the o✏ine dataset by

running a learned policy with 10 di↵erent driving patterns, and test on 12

driving patterns. To better mimic the real-world, where we would not have

a random policy or constant policy, we use the learned policy from DQN as

the data collection policy. Further, now that the state space is larger, we run

FQI-AIR where we randomly sample endogenous states and actions, rather

than sweeping through all endogenous states and actions.

FQI-AIR performs significantly better than CQL, IQL and FQI, as shown

in Figure 5.6. MBS-QI does not scale to high-dimensional continuous state

spaces, and so is excluded. These results highlight that FQI-AIR can scale to

high-dimensional continuous state space and large endogenous state space.

4We used their code at https://github.com/lryz0612/DRL-Energy-Management/blob/
master/Prius model new.py.
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5.6.1 Learning an endogenous model in AIR-MDPs

In the previous experiments, we assume we are given the endogenous models.

In this section, we investigate the impact of using an approximate endogenous

model learned from o✏ine data. We perform this experiment in the hybrid car

environment, which reflects a setting where the endogenous dynamics might

in fact not be known and would be useful to estimate from data. We use a

neural network to approximate the endogenous state and reward model, and

run FQI-AIR with the learned endogenous model.

Let us first reason about when it might be feasible to learn a reasonably

accurate endogenous model. In the worse case, learning an accurate endoge-

nous and reward model would require data coverage for the entire state space.

However, in many practical scenarios, the endogenous model can be easy to

learn and does not require full data coverage. For example, in the optimal

order execution problem, the endogenous dynamics does not depend on the

exogenous variables, as a result, we only need coverage for the endogenous

state. In the Prius environment, collecting data from just one driving cycle is

su�cient to learn a good endogenous model, as we will demonstrate in these

experiments.

We first collect a dataset from the hybrid car environment by running a

random policy in one of the driving cycles and a deterministic policy for the

other driving cycles. This data generation approach mimics a scenario we

might see in practice. In the factory, we might have a test system for which

it is acceptable to try many di↵erent actions (using gas or the battery), and

so get a more varied dataset for learning the endogenous model. We would

only get this data from one limited course (one driving cycle). The rest of the

data would be collected in the wild, where the deployed solution should not

be exploring many actions and should largely be deterministic.

We also test two model-based baselines (MB): (1) The first baseline has

full knowledge of the reward and endogenous models, and learns the exogenous

model from o✏ine data without exploiting the AIR property. The algorithm is

similar to Algorithm 4 but sexoh+1
is generated from the learned exogenous model.
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(a) Comparison to model-based base-
lines

(b) Learning the endogenous model with
data from one cycle

Figure 5.7: Experiment on the Prius dataset. We include IQL with 500
episodes as a baseline (purple line). Results are averaged over 30 runs, shown
with one standard error.

(2) The second baseline does not have knowledge of the reward, endogenous

models and exogenous models. It learns a full model to from a state-action pair

to the next state. For these model-based baselines, the model is parameter-

ized by a two-layer neural network and learned by minimizing the `2 distance

between predicted states and next states recorded in the data. The transi-

tions in these environments are deterministic, so it is appropriate to learn an

expectation model.

In Figure 5.7 (a), we perform an ablation study to compare FQI-AIR and

MB with the true endogenous model or a learned endogenous model. The

result shows that (1) MB with the true endogenous model performs slightly

worse than FQI-AIR with a small data size. (2) FQI-AIR with a learned en-

dogenous model perform worse than FQI-AIR, however, it outperforms IQL

and MB without the true endogenous model. (3) MB with a learned endoge-

nous model performs worse than FQI-AIR with a learned endogenous model.

This suggests that it is useful to separate the exogenous state and endogenous

state especially when we need to learn an endogenous model.

Next, we test FQI-AIR when learning the endogenous model only from

a more limited dataset: a dataset based solely on one cycle. We collect a

dataset from the hybrid car environment by running a random policy in one

of the driving cycles for 500 episodes. This reflects a practical scenario that

we can just run our vehicle in a closed area and still are able to obtain a good

endogenous model for running FQI-AIR. Figure 5.7 (b) shows that FQI-AIR
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with the learned endogenous model performs well and is close to FQI-AIR

with true endogenous model.

5.7 Conclusion

Our goal in this chapter is to study an MDP property that (1) is realistic for

several important real-world problems and (2) makes o✏ine RL feasible. We

introduced an MDP property, which we call Action Impact Regularity (AIR).

We developed an algorithm for MDPs satisfying AIR, that (1) has strong the-

oretical guarantees on the supoptimality, without making assumptions about

concentration coe�cients or data coverage, (2) provides a simple way to select

hyperparameters o✏ine, without introducing extra hyperparameters and (3)

is simple to implement and computationally e�cient. We showed empirically

that the proposed algorithm significantly outperforms existing o✏ine RL algo-

rithms, across two simulated environments and two real-world environments.
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Chapter 6

Dealing with Nonstationarity

for O✏ine RL

In this chapter, we consider the o↵-policy policy evaluation (OPE) problem

for contextual bandits and finite horizon RL in the non-stationary setting.

Reusing old data is critical for policy evaluation, but existing estimators that

reuse old data introduce large bias such that we can not obtain a valid con-

fidence interval. Inspired from a related field called survey sampling, we in-

troduce a variant of the doubly robust (DR) estimator, called the regression-

assisted DR estimator, that can incorporate the past data without introducing

a large bias. The estimator unifies several existing OPE methods and improves

on them with the use of auxiliary information and a regression approach. We

prove that the new estimator is asymptotically unbiased, and provide a con-

sistent variance estimator to a construct a large sample confidence interval.

Finally, we empirically show that the new estimator improves estimation for

the current and future policy values, and provides a tight and valid interval

estimation in several non-stationary recommendation environments.

6.1 Introduction

OPE is the problem of estimating the expected return of a target policy from

a dataset collected by a di↵erent behavior policy. OPE has been used success-

fully for many real-world systems, such as recommendation systems (Li et al.,

2011) and digital marketing (P. S. Thomas et al., 2017), to select a good policy
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to be deployed in the real world. A variety of estimators have been proposed,

particularly based on importance sampling (IS) (Hammersley & Handscomb,

1964) and modifications to reduce variance, such as self-normalization (Swami-

nathan & Joachims, 2015b), direct methods that use reward models and vari-

ance reduction techniques like the doubly robust (DR) estimator (Dudik et al.,

2011; Jiang & Li, 2016; P. Thomas & Brunskill, 2016). Often high-confidence

estimation is key, with the goal to estimate confidence intervals around these

value estimates that maintain coverage without being too loose (Kuzborskij et

al., 2021; Swaminathan & Joachims, 2015a; P. Thomas et al., 2015a, 2015b).

Much less work has been done, however, for the non-stationary setting

where the reward and transition dynamics change over time. Extending these

approaches to the non-stationary setting is key as most real-world systems

change with time, or appear to due to partial observability. In this setting, we

face a critical bias-variance tradeo↵: using past data introduces bias, but not

using past data introduces variance. Jagerman et al. (2019) introduced the

sliding-window IS and exponential-decay IS estimator, that gradually reduces

the impact of older data to control the bias-variance tradeo↵. There is some

other work predicting future OPE values for a target policy in a non-stationary

environment, by using time-series forecasting (Chandak et al., 2020; P. S.

Thomas et al., 2017); the goal there, however, is to forecast future policy

values using past value estimates, rather than to estimate the current value.

Much of the other work tackling non-stationary problems has been for

policy optimization. There is a relatively large body of work on non-stationary

bandits in the on-policy setting (e.g., see J. Y. Yu and Mannor, 2009). More

pertinent to this work is a recent approach in the o↵-policy setting (Hong

et al., 2021). Their focus, however, is on the use of change point detection

and hidden Markov models for policy optimization in the online phase. As a

result, these ideas do not directly apply to non-stationary OPE.

In this chapter, we consider the piecewise stationary setting with known

change points. This setting can be viewed as a special case of the multi-task

settings, where we have o✏ine data gathered from di↵erent intervals or “tasks”.

Lazaric et al. (2008) introduce a algorithm designed to transfer samples from
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di↵erent tasks to the source task, which can be potentially used in the piecewise

stationary setting. Nevertheless, it’s important to note that this method might

still result in considerable bias.

In this chapter, we propose a new approach for non-stationary OPE by

exploiting ideas from a related field called survey sampling (Cochran, 1977),

where handling non-stationary data has been a bigger focus. We propose a

variant of the DR estimator, called the regression-assisted DR estimator, for

non-stationary environments. We exploit two ideas: (1) using auxiliary vari-

ables from the past data to build a proxy value and incorporate the proxy value

in the estimator without introducing bias, and (2) a regression approach on top

of the proxy value to reduce variance further. Using the regression approach

introduces some bias, however, we prove that the estimator is asymptotically

unbiased and provide a consistent variance estimator to construct a large sam-

ple confidence interval (CI). Moreover, we show that this regression-assisted

estimator unifies several existing OPE methods, including the weighted IS es-

timator. We empirically show that in several recommendation problems, for-

malized as contextual bandits, that the new estimator improves the estimation

and provides a tighter and valid CI empirically compared to the sliding-window

estimators. We then extend the idea to finite horizon RL, and highlight similar

improvements.

6.2 Problem setup

In this section, we describe our main problem setting: OPE in the non-

stationary setting. To convey the core insights of this chapter precisely, we

first focus on contextual bandits.

Notation. We start by describing the standard stationary setting for OPE in

the contextual bandit setting. Let S be a set of contexts, A be a set of actions,

and r : S ⇥A! R be the reward function. The goal is to evaluate the value

of a target policy ⇡, that is, estimate J(⇡) = ES⇠P,A⇠⇡(·|S)[r(S,A)], using an

o✏ine (o↵-policy) dataset. The dataset is created through the interaction of
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a behavior policy with the environment: (1) the environment draws a context

si from P 2 �(S) and (2) the behavior policy draws an action ai from ⇡b(·|si)

and observes ri = r(si, ai). This process repeats n times, giving dataset D =

{(si,xi, ai, ri)}n
i=1

. We assume that we also observe the context feature xs 2 Rd

for each context s in the dataset.

Non-stationary OPE. Dealing with arbitrary nonstationarity may not be

possible. Fortunately, many real-world environments have structures than can

be exploited. We consider a piecewise stationary setting with known change

points, where the reward function changes across intervals but remains sta-

tionary within each interval. For example, an environment can be stationary

within each day or each week or for a number of interactions. We assume the

set of contexts and the set of actions do not change over time.

Let rk denote the reward function for the k-th interval and

Dk = {(si, ai, rk(si, ai))}
nk

i=1

denote the data of size nk collected over the k-th interval. The goal is to

estimate

Jk(⇡) =
X

s2S,a2A

P (s)⇡(a|s)rk(s, a)

given previous datasets D1, . . . , Dk�1 and a newly sampled Dk. The problem

mirrors the real world where we have plenty of past data D1, . . . , Dk�1 but

only a small amount of new data Dk to estimate the current value Jk(⇡). We

consider a stationary context distribution to present this chapter succinctly,

however, our methods described in this chapter are applicable to the settings

where the context distribution is also changing.

It is often necessary in high-stakes applications to provide confidence in-

tervals. Let D = (Dt)kt=1
denote the set of all data collected across di↵erent

intervals. Given D and a desired level of failure probability ↵ 2 (0, 1), it would

be ideal to estimate a high-confidence lower bound CI� and a high-confidence

upper bound CI+ such that

Pr
�
CI�(D,↵)  Jk(⇡)  CI+(D,↵)

�
= 1� ↵
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where the probability is under the randomness of Dk and conditional on all

old data D1, . . . , Dk�1.

6.3 Estimators for stationary OPE and survey

sampling

In this section, we review existing estimators for stationary OPE and describe

how OPE can be written using the survey sampling formulation. We use this

survey sampling formulation to introduce the proposed estimators in the next

section.

6.3.1 Estimators for stationary OPE

A foundational strategy to estimate J(⇡) in stationary OPE is to use impor-

tance sampling. The IS estimator is given by

ĴIS(⇡) =
1

n

nX

i=1

⇡(ai|si)

⇡b(ai|si)
r(si, ai).

This IS estimator can have high variance since the importance ratio can be

very large. The weighted IS (WIS) estimator (Sutton & Barto, 2018), also

known as the self-normalized estimator (Swaminathan & Joachims, 2015b),

normalizes the importance weights and is more commonly used. The WIS

estimator is given by

ĴWIS(⇡) =
nX

i=1

⇡(ai|si)/⇡b(ai|si)Pn
j=1

⇡(aj|sj)/⇡b(aj|sj)
r(si, ai).

Besides these IS-based estimators, another common estimator is the direct

method (DM). We learn a reward prediction model r̂ and use

ĴDM(⇡) =
1

n

nX

i=1

X

a2A

⇡(a|si)r̂(si, a).

The doubly robust (DR) estimator (Dudik et al., 2011) combines the DR and

the IS estimator,

ĴDR(⇡) =
1

n

nX

i=1

"
⇡(ai|si)

⇡b(ai|si)
(r(si, ai)� r̂(si, ai)) +

X

a2A

⇡(a|si)r̂(si, a)

#
.
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There are other OPE estimators such as estimators with clipping (Bottou

et al., 2013) or shrinkage (Su, Dimakopoulou, et al., 2020). Dudik et al. (2012)

studied the setting where the policies are non-stationary (history-dependent)

but the environment is stationary, which is di↵erent from our setting. Chandak

et al. (2021) focus on estimating the reward distribution and do not discuss

how to e�ciently leverage past data under non-stationarity.

6.3.2 OPE as survey sampling

Survey sampling can be dated back to Hansen and Hurwitz, 1943; Horvitz

and Thompson, 1952, where they consider the problem of selecting a sample

of units from a finite population to estimate unknown population parameters.

Formally, let U = {1, . . . , N} be the population of interest, yi be the study

variable and xi be the auxiliary variable for the unit i 2 U . A subset of the

population, called a sample, is selected according to a sampling design. We

observe the study variable for units in the sample, and the goal is to estimate

the population total of the study variables ty =
P

i2U yi.

To formalize OPE under survey sampling, let the population be U = S⇥A

and the study variable be ys,a = P (s)⇡(a|s)r(s, a). The population total of y

is the value of the policy: ty =
P

(s,a)2U ys,a = J(⇡). The weighting P (s)⇡(a|s)

goes into the study variable since the goal is to estimate the total of study

variable without weighting. Even though we have P (s) in the study variable,

the term often cancels out in the estimator.

This formulation has some subtle di↵erences from the standard OPE for-

mulation. First, it assumes that S ⇥ A is finite, since U is finite in survey

sampling. Second, the study variable is fixed, that is, the reward function is

deterministic. These limitations can be overcome by assuming that the finite

population is generated as a random sample from an infinite superpopulation;

this superpopulation model is discussed in the appendix. For the main body,

we assume a finite population with fixed study variables.

Of particular interest for nonstationarity is the model-assisted approach for

survey sampling (Särndal et al., 1992). The key idea is to use the auxiliary

variable xs,a to form a proxy value ŷs,a such that ŷs,a is close to the study
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variable ys,a. A simple example is that the auxiliary variable xs,a might be

the value of ys,a at a past time and we can use proxy value ŷs,a = xs,a. A

general form for a model-assisted estimator, assuming the population total

of the proxy value is known, is the di↵erence estimator (Cassel et al., 1976):
P

(s,a)2U ŷs,a +
P

(s,a)2D
ys,a�ŷs,a
nps,a

where ps,a is the probability of selecting the

pair (s, a). This estimator is unbiased and can be much lower variance, if

the proxy value is close to the study variable. This strategy is like adding a

control variate, but specific to survey sampling since the source of stochasticity

is di↵erent than the typical Monte Carlo setting.

6.4 Regression-assisted estimators under non-

stationarity

In the section, we propose an estimator for non-stationary environments.

There are two popular strategies that consider the bias-variance tradeo↵ when

reusing the past data in non-stationary environments: sliding window IS and

exponential decay IS (Jagerman et al., 2019). The sliding window IS estima-

tor directly uses the IS estimator for the data in the most recent B intervals.

Though not proposed in the original work, it is natural to extend this idea to

other estimators. For example, for the direct method, we can build a reward

model from the data in the most recent B intervals and evaluate the policy

with the reward prediction.

The window size B controls the bias-variance tradeo↵. If B = 0 then

we only use the most recent data Dk: the estimator does not introduce bias

by using past data but su↵ers high variance due to having a small sample

size. If we use a large B, the estimator might introduce large bias but might

have lower variance due to a larger sample size. Sliding window estimators

require carefully choosing B to balance the bias from using past data and the

variance from not using past data. The balance usually depend on how fast

the environment is changing, which is usually unknown. Moreover, even with a

small value of B, the bias of the sliding window estimator can be so large that

the confidence interval is invalid, as we will show in the experiment section.
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Therefore, the main question that we aim to address is:

How can we reuse the past data for non-stationary OPE without introducing

large bias?

One natural way to leverage the past data would be to use the DR estima-

tor with a reward prediction learned from the past data, as described in the

following section. However, naively using the past data to construct a reward

prediction may not be the best approach in the non-stationary setting. This

raises a followup question: How can we obtain a good reward prediction to both

reduce the error of estimation and also obtain tight CIs? To address this chal-

lenge we draw inspiration from the survey sampling literature, and propose

the regression-assisted DR estimator, that helps reduce variance further and

provides tighter CIs.

6.4.1 The di↵erence and DR estimator

We can leverage the idea of the di↵erence estimator in survey sampling, for

our non-stationary OPE setting. We can use the past data Dk�B, . . . , Dk�1 to

build a reward prediction r̂k as a function of the context feature and the action:

r̂k(s, a) = m(xs, a; ✓) for some function m parameterized by ✓. The reward

prediction can be used as the proxy value in the estimator. The resulting

di↵erence estimator, for interval k, is

t̂Di↵,k =
X

(s,a)2U

P (s)⇡(a|s)r̂k(s, a) +
1

n

X

(s,a)2Dk

⇡(a|s)

⇡b(a|s)
(r(s, a)� r̂k(s, a)). (6.1)

The elegance of this approach is that we can leverage past data by incorpo-

rating it into the proxy value in the di↵erence estimator, without introducing

any bias.

While the estimator is unbiased, the variance depends on the quality of

the reward prediction r̂k (P. Thomas & Brunskill, 2016). The environment is

non-stationary, so past data has to be used carefully to get a good estimate,

and in some cases, the estimate may be poor. In the next section, we discuss

how to obtain a better prediction by fitting a regression on top of the reward

prediction.
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A careful reader would have noticed one other nuance with the above dif-

ference estimator: it requires the population total of the proxy value ŷs,a =

P (s)⇡(a|s)r̂k(s, a), which is the first term in Eq (6.1). In some cases, this infor-

mation may be known and it should be leveraged to get a better estimator for

OPE. In other cases, we will need to estimate it. In the standard contextual

bandit setting, given a sample Dk, we often assume that we know the auxiliary

variable xs,a for all units in the set {(s, a) : s 2 Dk, a 2 A}. If we estimate the

population total from Dk with the information about the auxiliary variables,

the estimator becomes

t̂DR,k =
1

n

X

s2Dk

X

a2A

⇡(a|s)r̂k(s, a) +
1

n

X

(s,a)2Dk

⇡(a|s)

⇡b(a|s)
(rk(s, a)� r̂k(s, a)).

(6.2)

This estimator reduces to the DR estimator. Therefore, the DR estimator

is the di↵erence estimator when the population total of the proxy value is

estimated by sample Dk.

However, there are other options to estimate the population total, that do

not result in the standard DR estimator. Of particular relevance here is that

we can use past data D0 to estimate this population total:

1

|D0|

X

s2D0

X

a2A

⇡(a|s)r̂k(s, a).

This term does not rely on rewards in the past data—which might not be cor-

rect due to nonstationarity—and only requires access to the auxiliary variables

xs in these datasets. If we assume only the rewards are non-stationary, rather

than the context distribution, making these old datasets a perfectly viable

option to estimate this population total. In survey sampling, this is usually

motivated by assuming that there might be another survey that contains the

auxiliary variables (S. Yang & Kim, 2020).

6.4.2 The regression-assisted DR estimator

We consider a model on top of the reward prediction from the past data to

mitigate variance further. Let �k(s, a)> = (1, r̂k(s, a)) be the augmented fea-

ture vector with the reward prediction and define zs,a = P (s)⇡(a|s)�k(s, a).
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Note that zs,a is a function of the auxiliary variable xs. We consider a (het-

eroscedastic) linear regression model such that the study variables ys,a :=

P (s)⇡(a|s)rk(s, a) are realized values of the random variables Ys,a with E⇠[Ys,a] =

z
>
s,a� and V⇠(Ys,a) = �2

s,a = P (s)⇡(a|s)�2 where the expectation and variance

are with respect to the model ⇠, and �, � are the model coe�cients. These are

the assumptions underlying the regression estimator, rather than assumptions

about the real world. Further, even though we consider a linear regression

on the feature vector � for the regression-assisted DR estimator, the reward

prediction itself can be non-linear (e.g., a neural network).

The weighted least squares estimate of � is

�k = argmin
�

X

(s,a)2U

1

�2
s,a

�
z
>
s,a� � ys,a

�2
.

Suppose the relevant matrix is invertible, �k can be estimated using sample

data Dk:

�̂k =

0

@
X

(s,a)2Dk

⇡(a|s)

⇡b(a|s)
�k(s, a)�k(s, a)

>

1

A
�10

@
X

(s,a)2Dk

⇡(a|s)

⇡b(a|s)
�k(s, a)rk(s, a)

1

A .

(6.3)

If we know the population total of z
>
s,a�̂k, then the regression-assisted DR

(Reg) estimator is

t̂Reg,k =
X

(s,a)2U

P (s)⇡(a|s)�k(s, a)
>�̂k

+
1

n

X

(s,a)2Dk

⇡(a|s)

⇡b(a|s)

⇣
rk(s, a)� �k(s, a)

>�̂k
⌘
. (6.4)

More generally, we can use the same data or the past data to estimate the

population total, as described above.

This �̂k consists only of the weight on the past reward model and the bias

unit. This may not seem like a particularly useful addition, but because it is

estimated using Dk, it allows us to correct the past reward prediction.

Further, the regression-assisted DR estimator actually provides a natural

way to combine existing estimators in the OPE literature, depending on the
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choice of the feature vector � and the coe�cients �. To see this, we first show

how WIS can be seen as an instance of this estimator.1

We provide the theoretical result in the stationary setting where � is fixed,

so we can drop the subscript k for simplicity. For the non-stationary setting,

the inference for t̂Reg,k is conducted conditional on the past data D1, . . . , Dk�1,

so � is again fixed and all results extends to the non-stationary setting. The

proofs can be found in Appendix C.2.

Theorem 6 (WIS as a special case of the regression-assisted estimator). Sup-

pose we use a linear regression model with univariate feature �(s, a) = 1.

Then the regression-assisted DR estimator with estimated coe�cient �̂ from

Eq (6.3) has the same form as the WIS estimator:

t̂Reg =
X

(s,a)2D

⇡(a|s)/⇡b(a|s)P
(s0,a0)2S ⇡(a

0|s0)/⇡b(a0|s0)
r(s, a). (6.5)

The result provides a novel perspective for the WIS estimator: it can be

viewed as fitting a regression to predict the reward with a constant feature.

As a result, the only di↵erence between the regression-assisted DR estimator

and the WIS estimator is the choice of feature vector for reward prediction.

If there are other features that might be useful for predicting the reward, we

can include it with the regression approach and potentially improve the WIS

estimator.

In Table 6.1, we show that we can recover other estimators based on

di↵erent choices for the coe�cients � = (�1, �2)> with the feature vector

�(s, a)> = (1, r̂(s, a)). If �1 = 0, �2 = 0, we recover the IS estimator. If

�1 = 0, �2 = 1, we recover the di↵erence estimator or the DR estimator. If

�2 = 0 and �1 is learned from data, we recover the WIS estimator.

There are other approaches to estimate the coe�cients from data. The

more robust DR estimator (Farajtabar et al., 2018) minimizes the estimated

variance V̂(t̂Reg) with respect to the coe�cient to achieve the lowest asymp-

totic variance among all coe�cient � under some mild conditions. Kallus and

1Mahmood et al., 2014 have a similar observation that the solution �̂ is the WIS estimator
if �(s, a) = 1 for all (s, a). They also extend the estimate with linear features � and use
�(s, a)�̂ directly, which is more related to the model-based approach. In our work, the
model prediction is used as the proxy value so the resulting estimators are di↵erent.
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Table 6.1: A unifying view of existing estimators.

IS DR WIS Reg

�1 0 0 �̂1 �̂1
�2 0 1 0 �̂2

Uehara, 2019 further consider an expanded model class on top of the reward

prediction and minimize the estimated variance among both the expanded

model class and the reward prediction model class. However, it often unclear

how large the sample size needs to be such that the estimator with the low-

est asymptotic variance indeed has a lower variance against other estimators

in practice. On the other hand, there is a considerable literature in survey

sampling on improving estimation for the total and variance estimator when

the sample size is small or the feature vector is high dimensional. For exam-

ple, Breidt and Opsomer, 2000; K. S. McConville et al., 2017 propose di↵erent

models as an alternative to the linear regression model. These regression mod-

els can be potentially more useful for feature selection or to find a model that

fits the population well.

6.5 Theoretical analysis

In the regression approach, if the coe�cients are estimated from the same data

Dk, the estimator becomes biased. For example, the DR estimator is unbiased

since the coe�cients are fixed, and the WIS estimator is biased since one of

the coe�cients is estimated. In this section, we show that even if we run the

regression on the same data we use to build the estimator, the regression-

assisted DR estimator still enjoys asymptotic properties.

To prove these theoretical properties, there are a number of results from

the survey sampling literature that we build on. For completeness, we provide

a brief overview of survey sampling in Appendix C.1, and the proof of these

properties under survey sampling notation in Appendix C.2.

Theorem 7 (Properties of the estimator). Let AV(·) denote the asymptotic

variance in term of the first order, that is V(·) = AV(·) + o(n�1), we have (1)
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t̂Reg is asymptotically unbiased with a bias of order O(n�1), and (2)

AV(t̂Reg) =
1

n

0

@
X

(s,a)2U

P (s)
⇡(a|s)2

⇡b(a|s)
(r(s, a)� �(s, a)>�)2 � t2e

1

A

where te =
P

U P (s)⇡(a|s)(r(s, a)� �(s, a)>�).

Variance estimation for the regression-assisted DR estimator. The

exact form of the variance of the regression-assisted DR estimator is often di�-

cult to obtain, so we use the approximate variance from Theorem 7. Replacing

the unknown � by the sample-based estimate �̂, we have a variance estimator

V̂(t̂Reg) =
1

n(n� 1)

2

4
X

(s,a)2D

✓
⇡(a|s)

⇡b(a|s)
(r(s, a)� �(s, a)>�̂)

◆2

� nt̂2e

3

5

where t̂e =
P

D
⇡(a|s)

n⇡b(a|s)
(r(s, a) � �(s, a)>�̂). Särndal et al., 1989 propose the

weighted residual technique which can potentially result in better interval es-

timation.

Finally, we show the variance estimator is consistent and the regression-

assisted estimator is asymptotically normal.

Theorem 8. The variance estimator V̂(t̂Reg) is consistent, and t̂Reg�typ
V̂(t̂Reg)

D
!

N (0, 1).

Based on Theorem 8, we can construct a large sample CI.

Corollary 4. Let �̂ =
q

V̂(t̂Reg) and z↵ denote the 100(1 � ↵) percentile of

the standard normal distribution, then

Pr
�
t̂Reg � z↵/2�̂  J(⇡)  t̂Reg + z↵/2�̂

�
! 1� ↵.

6.6 Simulation and real-world experiments

In this section, we demonstrate the e↵ectiveness of the regression-assisted DR

estimators in a semi-synthetic and a real-world recommendation environment.

We compare the proposed estimator to existing estimators, including IS, WIS,

DM and Di↵ (which is DR without estimating the population total). We also

86



include the IS, WIS, DM with the sliding window (SW) approach of window

size B. When B = 0, SW-IS and SW-WIS is the standard IS and WIS. For

Di↵, Reg, we use the past data Dk�B, . . . , Dk�1 to learn a reward prediction.

For the semi-synthetic dataset, we follow the experimental design from

Dudik et al., 2011. We use the supervised-to-bandit conversion to construct

a partially labeled dataset from the YouTube dataset in the LibSVM reposi-

tory. We construct a non-stationary environment by generating a sequence of

reward functions based on the environment design in Chandak et al., 2020. For

each true positive context-action pair in the original classification dataset, the

reward follows a sine wave with some noise over time. We use PCA to reduce

the dimension of the context features to 32. The target policy is obtained by

training a classifier on a small subset of the original classification dataset.

We adapt the Movielens25m dataset (Harper & Konstan, 2015) for the real-

world experiment. To construct a non-stationary environment, we divide the

rating data chronologically. Each interval contains the rating data for 60 days

and we use the rating data for K = 24 intervals ending November 21, 2019.

We consider only active users who gave at least one rating for at least half

of the K intervals, resulting in a total number of around 2000 users. During

each interval, we compute the rating matrix r(u, g) for each user and genre by

averaging the user u’s rating for all rated movies in the genre g. As a result,

we have a sequence of rating functions which represent users’ average rating

for each genre over time. The user features are built by matrix factorization on

the average rating data with hidden size 32, and the target policy is obtained

by training a classifier on a small subset of the average rating data.

For the OPE objective, we consider an uniform weighting P (s) = 1/|S| for

all users s. We also let nk = ↵|S| for all k and ↵ 2 {0.1, 1.0}. For each interval

k = 0, . . . , K, we sample data Dk using a random policy. For estimators that

require a reward prediction, we build the reward prediction by linear regression

on historical data for each action separately, which is the same approach used

in Dudik et al., 2011. More experiment details can be found in Appendix C.3,

and Algorithm 6 describes the experimental procedure.

In non-stationary OPE, the aim is to estimate Jk(⇡) with data from D1
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Algorithm 6 Non-stationary OPE experimental procedure

Input: dataset (D1, . . . , Dk), target policy ⇡ with true policy value
J1(⇡), . . . , Jk(⇡), behavior policy ⇡b , prediction subroutine Pred(X, Y, xtest)
using linear regression with basis function  
Hyperparameter: window size B
for k = 1, . . . , K do

# Estimate Jk(⇡) using regression-assisted DR estimator
Compute t̂Reg,k from D1, . . . , Dk

# Predict Jk+1(⇡) using linear regression
t̂Pred,k+1 = Pred(X = [ (1), . . . , (k)], Y = [t̂Reg,1, . . . , t̂Reg,k], xtest =
 (k + 1))

Compute the true value J1(⇡), . . . , Jk(⇡)
Output:

RMSE for Jk =
q

1

K

PK
k=1

(t̂Reg,k � Jk(⇡))2

RMSE for Jk+1 =
q

1

K�d

PK
k=d+1

(t̂Pred,k � Jk(⇡))2

to Dk. All of the estimators discussed in this chapter, however, can be ex-

tended to predict the future values using the ideas from Chandak et al. (2020)

and P. S. Thomas et al. (2017). Suppose we have the OPE estimators for

each interval up to interval k, that is, Ĵ1(⇡), . . . , Ĵk(⇡), we can fit these data

to a forecasting model to predict the future value Jk+1(⇡), . . . , Jk+�(⇡). We

therefore test both settings: estimating Jk(⇡) and predicting Jk+1(⇡). For

the experiments predicting Jk+1(⇡), we adapt the method proposed in Chan-

dak et al., 2020 and predict the future values by fitting a regression. That is,

Ĵk+�(⇡) =  (k+�)>ŵk where ŵk is the OLS estimator for the regression prob-

lem with feature map  (t) = (cos(2⇡tn))d�1

n=0
and target Ĵt(⇡) for t = 1, . . . , k,

where we set d = 5 in the experiment. For clarity, we provide the pseudocode

for our experiment procedure in Algorithm 6.

Sensitivity to window size and sample size. We vary the window size

B and sample size n, and report the sensitivity plot in Figure 6.1. The error is

averaged over K intervals, that is, RMSE =
q

1

K

PK
k=1

(Ĵk(⇡)� Jk(⇡))2. We

can see that the sliding window (SW) estimators, including SW-IS, SW-WIS

and SW-DM, are sensitive to the window size, while Di↵ and Reg are robust

to the window size. Reg outperforms IS and WIS and simply using B = 1
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Figure 6.1: Sensitivity curves. Top row: estimating Jk(⇡). Bottom row:

predicting Jk+1(⇡). “True J” is the baseline if we use the true values to
predict the future values. The number are averaged over 30 runs with one
standard error. Across runs, the target policy and the sequence of reward
functions are fixed, but the sampled data is random.

reduces the error by a large margin. Reg also has a lower error compared to

Di↵, especially with small window size and sample size. This suggests that Reg

is more robust to a bad reward prediction from the past data, which implies

it is more robust to the speed of the nonstationarity.

We report the error for predicting the future value Jk+1(⇡) in Figure 6.1.

Reg has the lowest error for predicting the future values except in MovieLens

with small sample size. We also find that even SW-DM and SW-IS have

low error for estimating the current value Jk for some hyperparameters, they

still have high error for predicting the future value Jk+1. We hypothesize

that approximately unbiased estimators generally have better future prediction

even though they might have high variance. It is possible that the forecasting

model cancels out the noise in approximately unbiased estimators and results

in better future value prediction.

Empirical validation of the interval estimation. We use Ĵk(⇡) ±

1.96
q

V̂(Ĵk(⇡)) as the approximate 95% CI. We report the empirical coverage

of the CI using the estimated variance in Figure 6.2. The empirical coverage

is defined as the number of rounds such that the CI contains the true value
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Figure 6.2: The empirical coverage and the width of CIs. Higher coverage and
lower width is better.

divided by the total number of rounds K. The results shown here are with

n = 1.0|S|. IS (B = 0), WIS (B = 0), Di↵ and Reg all have the desired cover-

age and Reg has the smallest width. All sliding window estimators have large

bias when B > 0, so the coverage is poor and it is unclear how to compare to

estimators with the desired coverage. Note that even with a small value of B,

for example, B = 1 in MovieLens, sliding window estimators fail to provide a

valid CI. The result suggests that Reg provides an accurate and tight CI.

Empirical investigation of the feature vectors. Besides using one past

reward prediction as the only feature, we also investigate the utility when we

(1) include the context features; and (2) include separate past reward predic-

tions, that is, �k(s, a) = (1, r̂k�B(s, a), . . . , r̂k�1(s, a)) where we learn a reward

model r̂t for interval t from data Dt separately. Since these additional features

could be correlated, we use ridge regression when estimating the coe�cients.

The regularization parameter is chosen by cross-validation.

We aim to answer two questions: (1) whether including the context feature

or the past reward predictions helps, and (2) how we should include the past

reward information. To answer the questions, we test five di↵erent feature

vectors: (a) Reg: we use one past reward prediction as described in Section

6.4.2, with and without the context features, (b) Reg-AR: we use separate past

reward predictions with and without context features, and (c) Reg-Feature:

we use context features only. We show the comparison in Figure 6.3. We

find that including the context features helps in general, however, using only

the context features is not su�cient. The past reward information helps deal
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Figure 6.3: Comparison of di↵erent feature vectors for estimating Jk(⇡).

with nonstationarity. Moreover, using separate predictions only improves the

accuracy in MovieLens with n = 0.1|S|. In these experiments, there was no one

dominant way to include past reward information, and more experimentation

is needed to understand when one might be preferred.

Ablation study: estimating the population total of the proxy values.

We provide an ablation study to investigate the impact when the population

total of the proxy value is estimated. For the previous experiments, we use the

population total of the proxy values for the DM, Di↵ and Reg estimator. In

this experiment, we test the regression-assisted estimator when the population

total of the proxy values are being estimated, that results in the estimator using

Eq (6.2), which we call RegDR, and the estimator with an independent survey

D0, described in the last paragraph of Section 6.4.1, which we call RegDR2.

In Figure 6.4, we found that RegDR2 has a similar RMSE compared to

Reg, and both are slightly better than RegDR. This suggests that using the

past data to estimate the population total results in very similar performance

as we know the population total. Moreover, using an independent survey has

potential to improve the standard DR estimator in the non-stationary setting.

6.7 Extension to RL

The estimators for contextual bandits can be extended to finite horizon

RL. Let M = (S,A, P, r,H, ⌫) be a finite horizon finite MDP. Our goal

is to estimate the value of a policy J(⇡) =
P

⌧2(S⇥A)H
P⇡
M(⌧)R(⌧) where

P⇡
M(⌧) = ⌫(s0)⇡(a0|s0)P (s1|s0, a0) . . . ⇡(aH�1|sH�1) is the probability of see-
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Figure 6.4: Comparison when the population total of the proxy value is esti-
mated. Top: estimating Jk(⇡). Bottom: predicting Jk+1(⇡).

ing the trajectory ⌧ = (s0, a0, . . . , sH�1, aH�1) by running ⇡ in M , and

R(⌧) =
PH�1

h=0
r(sh, ah).

To formalize OPE for RL under survey sampling, let U = (S ⇥ A)H be

the population containing all trajectories and y⌧ = P⇡
M(⌧)R(⌧) be the study

variable. The corresponding estimator is the trajectory-wise IS estimator:

t̂IS =
1

n

X

⌧2D

P⇡
M(⌧)

P⇡b

M(⌧)
R(⌧) =

1

n

X

⌧2D

H�1Y

h=0

⇡(ah|sh)

⇡b(ah|sh)
R(⌧).

Note that there are many ways to view OPE for RL in the survey sampling

framework, which corresponds to di↵erent existing estimators for RL such as

the per-decision IS (PDIS) estimator and marginalized IS estimator, but we

will focus on the trajectory IS estimator in this section.

The regression-assisted estimator with FQE. We use FQE, which

has been shown to be e↵ective for stationary OPE benchmarks empirically

(Voloshin et al., 2021), to build a proxy value R̂(⌧) for each trajectories ⌧ 2 U .

In non-stationary environments, FQE outputs Q̂k�1(s, a) from the past

data Dk�B, . . . , Dk�1, and we use R̂(⌧) = V̂k�1(s0) =
P

a2A ⇡(a|s0)Q̂k�1(s0, a)

as the proxy value where s0 is the initial state of the trajectory ⌧ . Similar

to the estimator for contextual bandits, we first estimate the coe�cient with

the feature vector �(s0)> = (1, V̂k�1(s0)) and use the regression-assisted DR
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Figure 6.5: Results for the RL environment. First column: estimating

Jk(⇡). Second column: predicting Jk+1(⇡). Third and fourth column:

coverage and width of CI.

estimator

t̂Reg-FQE,k =
X

s02S

⌫(s0)�(s0)
>�̂k +

1

n

X

⌧2Dk

H�1Y

h=0

⇡(ah|sh)

⇡b(ah|sh)
(R(⌧)� �(s0)

>�̂k).

When ⌫ is unknown, we can estimate the population total of the proxy value

by 1/|D0
|
P

s02D0 �(s0)>�̂ from the past data D0 or the same data Dk. The

regression-assisted DR estimator can be viewed as a biased-corrected FQE

estimator for non-stationary environments.

Experimental results. We consider an RL environment with a binary tree

structure, that is, a finite horizon MDP with H = 10, |A| = 2, |S| = |A|
H
�1,

and an initial state s0. For each state, taking action 1 leads to the left child and

taking action 2 leads to the right child. The reward for each state-action pair

follows a sine wave with di↵erent frequency and amplitude. The environment

mimics the session-aware recommendation problem where we take a sequence

of actions for one customer during a short session. We use a random policy to

collect 10 trajectories for every interval. The target policy is a trained policy

using Q-learning on the underlying environment.

From Figure 6.5, Reg has the lowest error for estimating the current value

and predicting the future value in general. We show the coverage of the one-

sided CI since we mainly care about the lower bound on the policy value for

safe policy improvement. The results show that Reg again provides a valid

and tight interval estimation, and is promising for safe policy improvement in

non-stationary RL environments.
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6.8 Conclusion

We proposed the regression-assisted DR estimator for OPE in the non-

stationary setting, inspired by estimators from the survey sampling literature.

The estimator incorporates past data into a proxy value without introducing

large bias, and uses a regression approach to build a reward prediction well

suited for non-stationary environments. As far as we know, these two ideas

have not been applied to non-stationary OPE. We theoretically show that we

can construct a large sample confidence interval and empirically demonstrate

that the proposed estimator provides tight and valid high-confidence estima-

tion in several recommendation environments in contextual bandits and finite

horizon RL.
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Chapter 7

Conclusion

This thesis aims to bridge the gap between theory and practice, ultimately

paving the way for real-world o✏ine RL systems. Our objective is to enhance

our understanding of the practical aspects of o✏ine RL, and to develop sample

e�cient algorithms with provable performance guarantees.

We first studied the policy selection problem in the o✏ine setting. We

established a clear and fundamental connection between OPE and OPS, high-

lighting that OPE represents the optimal approach for OPS in the worst case

scenarios. We then proposed a sample e�cient OPS method based on BE esti-

mation, and explored the scenarios in which BE has advantages over OPE for

OPS. The findings from this chapter provide a better understanding on when

OPS can be sample e�cient, and valuable insights for future development of

sample e�cient OPS methods.

We then introduced an MDP property, called Action Impact Regularity.

Building upon this concept, an FQI-based algorithm, called FQI-AIR, was de-

veloped for MDPs satisfying AIR. We proved that the algorithm can return

a nearly optimal policy with polynomial sample complexity, without relying

on impractical data coverage assumptions. Furthermore, extensive empirical

evaluations were performed, demonstrating the superior performance of the

proposed algorithm compared to existing o✏ine RL methods that do not ex-

ploit the property.

The focus shifted towards exploring o✏ine RL in non-stationary environ-

ments, which are prevalent in real-world applications. To address this chal-
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lenging scenario, we proposed the regression-assisted doubly robust estimator

to leverage past data without introducing large bias. The theoretical analysis

demonstrated the construction of large sample confidence intervals, ensuring

reliable high-confidence estimation. Empirical investigations were carried out

in various recommendation environments, a�rming the e↵ectiveness of the

proposed estimator, which provides tight and valid high-confidence estimates.

7.1 Limitations and future directions

Query e�ciency when learning with simulators. The FQI-AIR algo-

rithm presented in Chapter 5 randomly samples the endogenous state and ac-

tion to generate synthetic transitions. However, the uniform sampling might

not be e↵ective for large endogenous state space and action space. There

are several e�cient and theoretically sound approaches under linear function

approximation (Lattimore et al., 2020; Shari↵ & Szepesvari, 2020). It is an

interesting direction to extend such ideas to design e↵ective sampling distri-

bution with general function approximation.

More generally, consider the setting that we have a simulator of the under-

lying environment that we can query the reward and the next state from some

state-action pairs. For example, we might be able to query the state-action

pairs that the agent has visited in the past, which is called the local access

protocol (D. Yin et al., 2022). A natural question is to study how we can

better use the local access simulator to find a good policy in terms of query

e�ciency.

Non-stationary OPE for long horizon tasks. We proposed a regression-

assisted estimator for short horizon RL tasks in Chapter 6. However, the

estimator still uses the product of IS ratios, so it would have high variance for

long horizon tasks. An important direction is to design estimators that work

for long horizon tasks and have small bias from reusing past data.

Beyond fully o✏ine setting: hybrid RL. In this thesis, we mainly focus

on the setting where we learn purely from an o✏ine data. In some applica-
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tions, we might be able to perform a certain amount of online interactions or

simulation, which could greatly improve the applicability of RL. The setting

is called hybrid RL (Song et al., 2023).

In Chapter 4, we highlighted the di�culty of OPS in the fully o✏ine setting.

If we can perform online iteration or simulations (similar to online AB testing),

we would be able to evaluate candidate policies even though the o✏ine data

does not provide full coverage. There are several important research questions

toward this direction; for example, how can we design better OPS approachs

that leverage the o✏ine data and a budget of online interactions? We can also

consider using o✏ine data to design safe data collection policies to improve

data coverage.
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Appendix A

Supplementary Material for

OPS

We provide supplementary material for Chapter 4.

A.1 Theoretical analysis

A.1.1 Proof of Theorem 1

Theorem 1 (Upper bound on sample complexity of OPS). Given an MDP

M , a data distribution db, and a set of policies ⇧, suppose that, for any pair

(", �), there exists an (", �)-sound OPE algorithm L on any OPE instance I 2

{(M, db, ⇡) : ⇡ 2 ⇧} with a sample size at most O(NOPE(S,A,H, 1/", 1/�)).

Then there exists an (", �)-sound OPS algorithm for the OPS problem instance

(M, db,⇧) which requires at most O(NOPE(S,A,H, 2/", |⇧|/�)) episodes.

Proof. The OPS algorithm L(D,⇧) for a given (", �) works as follows: we

query an ("0, �0)-sound OPE algorithm for each policy in ⇧ and select the

policy with the highest estimated value. That is, L(D,⇧) outputs the policy

⇡̄ := argmax⇡2⇧ Ĵ(⇡), where Ĵ(⇡) is the value estimate for policy ⇡ by the

("0, �0)-sound OPE algorithm with data D.

By definition of an ("0, �0)-sound OPE algorithm we have

Pr
D⇠db

(|Ĵ(⇡)� J(⇡)|  "0) � 1� �0, 8⇡ 2 ⇧.

Applying the union bound, we have

Pr
D⇠db

(8⇡ 2 ⇧, |Ĵ(⇡)� J(⇡)|  "0) � 1� �0|⇧|.
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Let ⇡† denote the best policy in the candidate set ⇧, that is, ⇡† :=

argmax⇡2⇧ J(⇡). With probability 1� �0|⇧|, we have

J(⇡̄) � Ĵ(⇡̄)� ✏0 � Ĵ(⇡†)� "0 � J(⇡†)� 2"0.

The second inequality follows from the definition of ⇡̄. Finally, by setting

�0 = �/|⇧| and "0 = "/2, we get

Pr
D⇠db

(J(⇡̄) � J(⇡†)� ") � 1� �.

That is, L is an (", �)-sound OPS algorithm, and it requires at most

O(NOPE(S,A,H, 2/", |⇧|/�)) samples.

A.1.2 Proof of Theorem 2

Theorem 2 (Lower bound on sample complexity of OPS). Suppose for any

data distribution db and any pair (", �) with " 2 (0, Vmax/2) and � 2 (0, 1),

there exists an MDP M and a policy ⇡ such that any (", �)-sound OPE algo-

rithm requires at least ⌦(NOPE(S,A,H, 1/", 1/�)) episodes. Then there exists

an MDP M 0 with S 0 = S + 2, H 0 = H + 1, and a set of candidate policies

such that for any pair (", �) with " 2 (0, Vmax/3) and � 2 (0, 1/m) where

m := dlog(Vmax/")e � 1, any (", �)-sound OPS algorithm also requires at least

⌦(NOPE(S,A,H, 3/2", 1/m�)) episodes.

Proof. Our goal is to construct an (", �)-sound OPE algorithm with � 2 (0, 1)

and " 2 [0, Vmax/2]. To evaluate any policy ⇡ in M with dataset D sampled

from db, we first construct a new MDP Mr with two additional states: an

initial state s0 and a terminal state s1. Taking a1 at s0 transitions to s1 with

reward r. Taking a2 at s0 transitions to the initial state in the original MDP

M . See Figure 4.3 in the main paper for visualization.

Let ⇧ = {⇡1, ⇡2} be the candidate set inMr where ⇡1(s0) = a1 and ⇡2(s0) =

a2 and ⇡2(a|s) = ⇡(a|s) for all (s, a) 2 S ⇥A. Since ⇡1 always transitions to

s1, it never transitions to states in MDP M . Therefore, ⇡1 can be arbitrary

for all (s, a) 2 S ⇥A. We can add any number of transitions (s0, a1, r, s) and

(s0, a2, 0, s) in D to construct the dataset Dr with distribution db,r arbitrarily.
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Suppose we have an ("0, �0)-sound OPS algorithm, where we set "0 = 2"/3

and �0 = �/m with m := dlog(Vmax/"0)e. Note that if this assumption does not

hold, then it directly implies that the sample complexity of OPS is larger than

⌦(NOPE(S,A,H, 1/", 1/�)). Our strategy will be to iteratively set the reward

r of MDP Mr and run our sound OPS algorithm on ⇧ and using bisection

search to estimate a precise interval for J(⇡).

The process is as follows. By construction, our OPS algorithm will out-

put either ⇡1, which has value JMr
(⇡1) = r, or output ⇡2, which has value

JMr
(⇡2) = JM(⇡). That is, it has the same value as ⇡ in the original MDP.

Let us consider the following two cases. Let ⇡† be the best policy in ⇧ for

MDP Mr.

Case 1: the OPS algorithm selects ⇡1. We know, by definition of a

sound OPS algorithm, that

Pr(JMr
(⇡1) � JMr

(⇡†)� "0) � 1� �0

=) Pr(r � max(r, JMr
(⇡2))� "

0) � 1� �0

=) Pr(JMr
(⇡2)  r + "0) � 1� �0.

Case 2: the OPS algorithm selects ⇡2.

Pr(JMr
(⇡2) � JMr

(⇡†)� "0) � 1� �0

=) Pr(JMr
(⇡2) � max(r, JMr

(⇡2))� "
0) � 1� �0

=) Pr(JMr
(⇡2) � r � "0) � 1� �0.

Given this information, we describe the iterative process by which we pro-

duce the estimate Ĵ(⇡). We first set U = Vmax, L = 0 and r = U+L
2

and run

the sound OPS algorithm with input Dr of sample size nr and the candidate

set ⇧. Then if the selected policy is ⇡1, then we conclude the desired event

J(⇡)  r + "0 occurs with probability at least 1� �0, and set U equal to r. If

the selected policy is ⇡2, then we know the desired event J(⇡) � r� "0 occurs

with probability at least 1 � �0, and set L equal to r. We can continue the

bisection search until the accuracy is less than "0, that is, U �L  "0, and the

output value estimate is Ĵ(⇡) = U+L
2

.
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Figure A.1: Lower bound construction.

If all desired events at each call occur, then we conclude that L � "0 

J(⇡)  U + "0 and thus |J(⇡) � Ĵ(⇡)|  ". The total number of OPS calls is

at most m. Setting �0 = �/m and applying a union bound, we can conclude

that with probability at least 1� �, |J(⇡)� Ĵ(⇡)|  ".

Finally, since any (", �)-sound OPE algorithm on the instance (M, db, ⇡)

needs at least ⌦(NOPE(S,A,H, ", 1/�)) samples, the ("0, �0)-sound OPS

algorithm also needs at least ⌦(NOPE(S,A,H, ", 1/�)), or equivalently

⌦(NOPE(S,A,H, 3/(2"0), 1/(m�0))) samples for at least one of the instances

(Mr, db,r,⇧).

A.1.3 Proof of Corollary 2

Theorem A.1 (Exponential lower bound on the sample complexity of OPE).

For any positive integers S,A,H with S > 2H and a pair (", �) with 0 < " 
p

1/8, � 2 (0, 1), any (", �)-sound OPE algorithm needs at least ⌦(AH ln (1/�)/"2)

episodes.

Proof. We provide a proof which uses the construction from Xiao et al. (2022).

They provide the result for the o✏ine RL problem with Gaussian rewards.

Here we provide the result for OPE problem with Bernoulli rewards since we

assume rewards are bounded to match Theorem 2.

We can construct an MDP with S states, A actions and 2H states. See

Figure A.1 for the construction. Given any behavior policy ⇡b, let ah =

argmina ⇡b(a|sh) be the action that leads to the next state sh+1 from state

sh, and all other actions lead to an absorbing state soh. Once we reach an

absorbing state, the agent gets zero reward for all actions for the remainder of

the episode. The only nonzero reward is in the last state sH�1. Consider a tar-

get policy that chooses ah for state sh for all h = 0, . . . , H � 1, and two MDPs
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where the only di↵erence between them is the reward distribution in sH�1.

MDP 1 has Bernoulli distribution with mean 1/2 and MDP 2 has Bernoulli

distribution with mean 1/2� 2". Let P1 denote the probability measure with

respect to MDP 1 and P2 denote the probability measure with respect to MDP

2.

Let r̂ denote the OPE estimate by an algorithm L. Define an event E =

{r̂ < 1

2
� "}. Then L is not (", �)-sound if (P1(E) + P2(Ec))/2 � �. This is

because L is not (", �)-sound if either P1(r̂ <
1

2
� ") � � or P2(r̂ >

1

2
� ") � �.

Using the Bretagnolle–Huber inequality (see Theorem 14.2 of Lattimore

and Szepesvári (2020)), we know

P1(E) + P2(Ec)

2
�

1

4
exp (�DKL(P1,P2)).

By the chain rule for KL-divergence and the fact that P1 and P2 only di↵er in

the reward for (sH�1, aH�1), we have

DKL(P1,P2)

= E1

"
nX

i=1

I{S(i)
H�1

= sH�1, A
(i)
H�1

= aH�1}

✓
1

2
log (

1/2

1/2� "
) +

1

2
log (

1/2

1/2 + "
)

◆#

=
nX

i=1

P1(S
(i)
H�1

= sH�1, A
(i)
H�1

= aH�1)

✓
�
1

2
log (1� 4"2)

◆


n8"2

AH

The last inequality follows from � log (1� 4"2)  8"2 if 4"2  1/2 (Krishna-

murthy et al., 2016) and P1(S
(i)
H�1

= sH�1, A
(i)
H�1

= aH�1) < 1/AH from the

construction of the MDPs.

Finally,

P1(E) + P2(Ec)

2
�

1

4
exp (�

n8"2

AH
)

which is larger than � if n  AH ln(1/4�)/8"2. As a result, we need at least

⌦(AH ln (1/�)/"2) episodes.

Corollary 2 (Upper bound on the sample complexity of OPS). Suppose the

data collection policy is uniformly random, that is, ⇡b(a|s) = 1/A for all
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(s, a) 2 S ⇥ A, and |Gi|  Vmax almost surely. Then the selection algorithm

L that selects the policy with the highest IS estimate is (", �)-sound with

O(AHVmax ln (|⇧|/�)/"2) episodes.

Proof. Since the policy is uniform random, we know |WiGi| < AHVmax almost

surely. Moreover, the importance sampling estimator is unbiased, that is,

E[WiGi] = J(⇡). Using the Bernstein’s inequality, we can show that the IS

estimator satisfies

Pr

 ���Ĵ(⇡k)� J(⇡k)
��� 

2AHVmax ln (2/�)

3n
+

r
2Var(WiGi) ln (2/�)

n

!
� 1� �

for one candidate policy ⇡k. Using the union bound over all candidate policies,

we have

Pr

 ���Ĵ(⇡k)� J(⇡k)
��� 

2AHVmax ln (2|⇧|/�)

3n
+

r
2V(WiGi) ln (2|⇧|/�)

n
, 8k

!

� 1� �.

That is,

Pr

 
J(L(D,⇧)) � J(⇡†)�

4AHVmax ln (2|⇧|/�)

3n
+

r
8V(WiGi) ln (2|⇧|/�)

n

!

� 1� �.

For the variance term,

V(WiGi) = E[W 2

i G
2

i ]� E[WiGi]
2
 E[W 2

i G
2

i ] 
q
E[W 2

i ]E[G2

i ]  AHVmax.

The second inequality follows from the Cauchy-Schwarz inequality. Therefore,

if n > 32AHVmax ln (2|⇧|/�)/"2, L is (", �)-sound.

A.1.4 Proof of Corollary 3

We first present the telescoping performance di↵erence lemma, originally from

Theorem 2 of Xie and Jiang (2020) for discounting setting, and Lemma 3.2 of

Duan et al. (2021) for finite horizon setting.

Lemma A.2 (Lemma 3.2 of Duan et al. (2021)). Assume there exists a con-

stant C such that, for any ⇡ 2 ⇧ [ {⇡⇤
}, maxh maxs2Sh,a2Ah

d⇡
h
(s,a)

µh(s,a)
 C. For
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any q 2 Q, let ⇡ denotes the greedy policy with respect to q = (q0, . . . , qH�1),

then

J(⇡) � J(⇡⇤)� 2H
p

C

vuut 1

H

H�1X

h=0

kqh � T qh+1k2,µh
.

Corollary 3 (Error amplification for OPS using BE selection). Suppose

1. there exists a constant C such that 8⇡ 2 ⇧ [ {⇡⇤
}, max

h2[H]

max
s2Sh,a2Ah

d⇡
h
(s,a)

µh(s,a)


C,

2. the suboptimality of the candidate set is small, that is, min
q2Q

E(q)  "sub,

3. there exists an ("est, �)-sound BE selection algorithm L on Q,

then the OPS algorithm outputs the greedy policy with respect to L(D,Q) is

(2H
p

C("sub + "est), �)-sound.

Proof. Since E(qk) =
1

H

P
h kqk,h � T qk,h+1k

2

µ  "sub + "est with probability at

least 1� �, Lemma A.2 implies that

J(⇡k) � J(⇡⇤)� 2H
p

C("sub + "est) � J(⇡†)� 2H
p
C("sub + "est)

where ⇡† is the best performing policy in ⇧.

By definition, the OPS algorithm is (2H
p

C("sub + "est), �)-sound for this

instance.

A.1.5 Proof of Theorem 3

Assumption A.4 (Approximation error). For any h 2 [H] and any candidate

function f 2 Q (here we use f instead of g to avoid confusion between q and

g), we assume the approximation error is bounded by "apx, that is,

inf
g2G
kg � T fk2

2,µh
 "apx.
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Definition A.5 (Rademacher complexity). Given a function class F , let X =

{x1, . . . , xn} denotes n fixed data points at horizon h following the distribution

µh, the empirical Rademacher complexity is defined as

RX(F) = E
"
sup
f2F

1

n

nX

i=1

�if(xi) | X

#

where the expectation is with respect to the Rademacher random variables

�i. The Rademacher complexity is defined as Rµh

n (F) = E[RX(F)] where

the expectation is with respect to the n data points. Finally, to simply the

notation, we define Rµ
n(F) = maxh2[H] Rµh

n (F) as the maximum Rademacher

complexity over all horizons.

Definition A.6. Given an action value function f , define the state value

function vf (s) = argmaxa2A f(s, a), and four loss functions:

LDh
(g, f) :=

1

n

X

(s,a,r,s0)2Dh

(g(s, a)� r � vf (s
0))2

LD(g, f) :=
1

H

X

h

1

n

X

(s,a,r,s0)2Dh

(g(s, a)� r � vf (s
0))2

Lµh
(g, f) := E(s,a,r,s0)⇠µh

[(g(s, a)� r � vf (s
0))2]

Lµ(g, f) :=
1

H

X

h

E(s,a,r,s0)⇠µ[(g(s, a)� r � vf (s
0))2].

Theorem 9 (Bellman error selection in stochastic environments). Suppose all

f 2 Q and g 2 G take value in [0, Vmax]. Let k = argmini LD(fi, fi)�LD(ĝi, fi)

where ĝi = argming2G LD(g, fi). Then the following holds with probability at

least 1� �,

E(qk)  min
i=1,...,|Q|

E(qi) + c0"apx + c0VmaxR
µ
n(G) + c0V

2

max

r
2 log(2|⇧|H/�)

n

for some constant c0 > 0.

Proof. Fix a horizon h and a target function f . By concentration with Rademacher

complexity (e.g., Lemma G.1 of Duan et al. (2021)), with probability at least

1� �/2, we know, for any g 2 G,

|LDh
(g, f)� Lµh

(g, f)|  2Rµh

n (LDh
� G) + V 2

max

r
log(2/�)

2n
.
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We note that the loss function LDh
is (2Vmax)-Lipschitz in its first argument,

that is,

|LDh
(g, f)(s, a, r, s0)� LDh

(g0, f)(s, a, r, s0)|

= |(g(s, a)� r � Vf (s
0))2 � (g0(s, a)� r � Vf (s

0))2|

= |(g(s, a)� g0(s, a))(g(s, a) + g0(s, a)� 2r � 2Vf (s
0))|

 |g(s, a)� g0(s, a)||g(s, a) + g0(s, a)� 2r � 2Vf (s
0)|

 |g(s, a)� g0(s, a)|2Vmax.

Therefore,

|LDh
(g, f)� Lµh

(g, f)|  4VmaxR
µh

n (G) + V 2

max

r
log(2/�)

2n
.

By Hoe↵ding’s inequality, we also know, with probability at least 1� �/2,

|LDh
(f, f)� Lµh

(f, f)|  V 2

max

r
log(2/�)

2n
.

By the union bound over all h 2 [H], we have, with probability at least

1� �,

|LD(g, f)� Lµ(g, f)|  4VmaxR
µ
n(G) + V 2

max

r
log(2H/�)

2n
, 8g 2 G, and

|LD(f, f)� Lµ(f, f)|  V 2

max

r
log(2H/�)

2n
.

Recall that we define ĝ as the empirical minimizer, that is, ĝ = argming2G LD(g, f),

and let g† be the population minimizer, that is, g† = argming2G Lµ(g, f). It

follows that with probability at least 1� �,

|LD(f, f)� LD(ĝ, f)� (Lµ(f, f)� Lµ(T f, f))|

 |LD(f, f)� Lµ(f, f)| + |LD(ĝ, f)� Lµ(T f, f)|

 |LD(f, f)� Lµ(f, f)| + |LD(ĝ, f)� LD(g
†, f)| {z }

0

| + |LD(g
†, f)� Lµ(g

†, f)|+

|Lµ(g
†, f)� Lµ(T f, f)|| {z }
=kg†�T fk22,µ

 |LD(f, f)� Lµ(f, f)| + |LD(g
†, f)� Lµ(g

†, f)| + "apx

 "apx + 4VmaxR
µ
n(G) + V 2

max

r
2 log(2H/�)

n
.
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Note that Lµ(f, f) � Lµ(T f, f) = E(f). Now apply the union bound for

all f in the candidate set by setting � = �/|⇧|, then the following holds for all

f

|LD(f, f)� LD(ĝ, f)� E(f)|  "apx + 4VmaxR
µ
n(G) + V 2

max

r
2 log(2|⇧|H/�)

n
.

Let k = argmini LD(fi, fi)�LD(ĝi, fi), the following holds with probability

at least 1� �,

E(f)  min
i=1,...,|Q|

E(fi) + c0"apx + c0VmaxR
µ
n(G) + c0V

2

max

r
2 log(2|⇧|H/�)

n

for some constant c0 > 0.

Assume F has finite elements, and "apx = 0, then we need a sample size of

n = O(H4 log (|F||⇧|H/�)/"2est).

A.1.6 Sample complexity of FQE for OPS

Consider a function class F = F1 ⇥ · · · ⇥ FH�1 such that F is closed under

T
⇡ for all ⇡ 2 ⇧ and |Fh| is finite for all h. Assume rmax = 1 for simplicity.

Given a policy ⇡ 2 ⇧, we can show that

kq⇡
0
� q0k1,d⇡0

=
X

a

⇡(a|s0)|q
⇡
0
(s0, a)� q0(s0, a)|

=
X

a

⇡(a|s0)|(T
⇡q⇡

1
)(s0, a)� (T ⇡q1)(s0, a) + (T ⇡q1)(s0, a)� q0(s0, a)|



X

a,s0,a0

⇡(a|s0)p(s
0
|s, a)⇡(a0|s0)|q⇡

1
(s, a)� q1(s, a)| +

X

a

⇡(a|s0)|(T
⇡q1)(s0, a)� q0(s0, a)|

= kq⇡
1
� q1k1,d⇡1 + kT

⇡q1 � q0k1,d⇡0 .

Apply the same inequality recursively, we have

kq⇡
0
� q0k1,d⇡0 

H�1X

h=0

kT
⇡qh+1 � qhk1,d⇡

h

 H

vuut 1

H

H�1X

h=0

kT ⇡qh+1 � qhk22,d⇡
h

 H

vuutC
1

H

H�1X

h=0

kT ⇡qh+1 � qhk22,µh
.
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The second inequality follows from the Cauchy-Schwarz inequality, and the

last inequality follows from data coverage assumption.

Theorem 5.3 and Proposition 6.1 and of Duan et al. (2021) imply that for

some constant c0, with probability at least 1� �,

�����J(⇡)�
X

a2A

⇡(a|s0)q0(s0, a)

�����  c0H

vuutCH

 
X

h

H log |Fh|

n
+H2

log (H/�)

n

!

 c0H

r
CH2

log (|F|H/�)

n
.

Apply the union bound, we know the following holds for all ⇡ 2 ⇧ with

probability at least 1� �
�����J(⇡)�

X

a2A

⇡(a|s0)q0(s0, a)

�����  c0H

r
CH2

log (|F||⇧|H/�)

n
.

To get an accuracy of "/2, we need n � c1H4C log (|F||⇧|H/�)/"2 for some

constant c1.

A.2 Experimental details

In this section, we provide the experimental details for classic RL environments

and Atari environments.

A.2.1 FQE implementation

Since it is unclear how to perform model selection for FQE, we fix the function

approximation as a two layer neural network model with hidden size 256 for

classic RL experiment, and as a convolutional neural network followed by one

layer neural network for atari experiments.

It is known that FQE can diverge, due to the fact that it combines o↵-

policy learning with bootstrapping and function approximation, known as the

deadly triad (Sutton & Barto, 2018). If one of the candidate policies is not

well-covered, then the FQE estimate may overestimate the value of the uncov-

ered policy (or even diverge to a very large value) and resulting in poor OPS.

To circumvent the issue of uncovered policies, we need assign low value esti-

mates for uncovered policies. In our FQE implementation, we assign low value
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Algorithm 7 OPS using FQE

Input: Candidate set ⇧, training data D, function class F , threshold U
for ⇡ 2 ⇧ do

Initialize qH�1 = 0
for h = H � 2, . . . , 0, qh  argminf2F l̂h(f, qh+1) where

l̂h(f, qh+1) :=
1

|Dh|

X

(s,a,r,s0)2Dh

(f(s, a)� r � qh+1(s
0, ⇡(s0)))2

Estimate the policy value Ĵ(⇡) Ea⇠⇡(·|s0)[q0(s0, a)]

if Ĵ(⇡) > U then

Ĵ(⇡) �1
Output: ⇡†

 argmax⇡2⇧ Ĵ(⇡)

estimates to policies for which FQE diverges so the OPS algorithm would

not choose these policies. We provide a pseudocode for OPS using FQE in

Algorithm 7. In our experiment, we set U = Vmax + 100.

A.2.2 Classic RL experiments

Stochastic environments. We implement stochastic environments by sticky

actions. That is, when the agent selects an action to the environment, the ac-

tion might be repeated with probability 25%, up to a maximum of 4 repeats.

Generating candidate policies. To generate a set of candidate policies,

we run CQL with di↵erent hyperparameter configurations on a batch of data

with 300 episodes collected with an "-greedy policy with respect to a trained

policy where " = 0.4. The hyperparameter configuration includes:

• Learning rate 2 {0.001, 0.0003, 0.0001}

• Network hidden layer size 2 {128, 256, 512}

• Regularization coe�cient 2 {1.0, 0.1, 0.01, 0.001, 0.0}

• Iterations of CQL 2 {100, 200}

As a result, we have 90 candidate policies.
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Generating data for OPS. To generate data for o✏ine policy selection,

we use three di↵erent data distributions: (a) a data distribution collected by

running the mixture of all candidate policies. As a result, the data distribution

covers all candidate policies well; and (b) a data distribution collected by

running the mixture of all candidate policies and an "-greedy optimal policy

that provides more diverse trajectories than (a).

Randomness across multiple runs. To perform experiments with multi-

ple runs, we fix the o✏ine data and the candidate policies and only resample

the o✏ine data for OPS. This better reflects the theoretical result that the

randomness is from resampling the data for an OPS algorithm. In our experi-

ments, we use 10 runs and report the average regret with one standard error.

Since the variability across runs is not large, we find using 10 runs is enough.

Random selection baseline. We include a random selection baseline that

randomly chooses k policies. Since the random selection algorithm has very

high variance, we estimate the expected regret of random selection by repeating

the random selection 10000 times, and report the average regret.

BVFT. BVFT has a hyperparameter: the discretization resolution. We fol-

low the method described in the original paper to search for the best resolution

from a set of predefined values. Note that in the authors’ implementation, they

use di↵erent sets for di↵erent environments.

A.2.3 Atari experiments

Generating candidate policies. To generate a set of candidate policies,

we run CQL with the hyperparameters used in the original paper:

• Regularization coe�cient 2 {0.5, 4.0, 5.0}

• Number of gradient steps 2 {50k, 100k, 150k, . . . , 1000k}
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Randomness across multiple runs. Similar to the classic RL experi-

ments, we fix the candidate policies and only resample the o✏ine data for

OPS. In our experiments, we use 5 di↵erent DQN replay dataset and report

the average regret with one standard error.
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Appendix B

Supplementary Material for

FQI-AIR

We provide the proof for the theoretical results presented in Chapter 5.

B.1 Theoretical analysis

We first provide lemmas that would be useful for proving our main theorems.

Lemma 1. Given a MDPM , suppose the sequence of value function (q0, . . . , qH�1)

satisfies that kT qh+1 � qhk2,d⇡
h
 " for all policy ⇡ with qH = 0. Let ⇡ be the

greedy policy with respect to (q0, . . . , qH�1), then we have that

J(⇡,M) � J(⇡⇤
M ,M)� (H + 1)H".

Proof. By the performance di↵erence lemma (Lemma 5.2.1 of Kakade (2003)
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or Chen and Jiang (2019)), we get

J(⇡⇤,MD)� J(⇡,MD)

= E⇡

"
H�1X

h=0

q⇤(Sh, ⇡
⇤(Sh))� q⇤(Sh, ⇡h(Sh))

#

 E⇡

"
H�1X

h=0

q⇤(Sh, ⇡
⇤(Sh))� qh(Sh, ⇡

⇤(Sh)) + qh(Sh, ⇡h(Sh))� q⇤(Sh, ⇡h(Sh))

#

 E⇡

"
H�1X

h=0

|q⇤(Sh, ⇡
⇤(Sh))� qh(Sh, ⇡

⇤(Sh))| + |qh(Sh, ⇡h(Sh))� q⇤(Sh, ⇡h(Sh))|

#



H�1X

h=0

kq⇤ � qhk1,d⇡
h
⇡⇤ + kq⇤ � qhk1,d⇡

h
⇡h



H�1X

h=0

kq⇤ � qhk2,d⇡
h
⇡⇤ + kq⇤ � qhk2,d⇡

h
⇡h

where d⇡h is the state-action distribution at horizon h induced by policy ⇡.

The first inequality follows because ⇡h is greedy with respect to qh, so for any

sh 2 Sh, qh(sh, ⇡⇤(sh))  qh(sh, ⇡h(sh)). The last inequality follows from the

Jensen’s inequality.

Consider a state-action distribution �0 that is induced by some policy, then

kq⇤ � q0k2,�0  kT q⇤ � T q1 + T q1 � q0k2,�0

 kT q⇤ � T q1k2,�0 + kT q1 � q0k2,�0

 kq⇤ � q1k2,�1 + "

where

�1(s
0, a0) =

X

s,a

�0(s, a)P (s, a, s0)I{a0 = argmax
a002A

(q⇤(s0, a00)� q1(s
0, a00))2}

is also induced by some policy. The first inequality follows by the fact that

q⇤ is the fixed point of the operator T . We can recursively apply the same

process for kq⇤ � qhk2,�h
, h > 0, and we can get

kq⇤ � qhk2,�h
 (H � h)".

Plug in the inequality to the performance di↵erence lemma, we get

J(⇡⇤,MD)� J(⇡,MD) 
H�1X

h=0

2(H � h)" = (H + 1)H".
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The simulation lemma was first introduced for discounted setting in Kearns

and Singh (2002), and here we prove a modified version of the simulation

lemma for the finite horizon MDPs.

Lemma 2 (Finite Horizon Simulation Lemma). Given a policy ⇡, let M =

(S,A, P, r,H, µ) and M̂ = (S,A, P̂ , r,H, µ) be two finite horizon MDPs and

⇡ be a policy satisfying that for all s 2 S and a 2 A, kP (s, a)� P̂ (s, a)k1  ".

Then, |v⇡M(s)� v⇡
M̂
(s)|  "H

2rmax

2
for s 2 S0.

Proof. For all s 2 S0, a 2 A,

|v⇡M(s)� v⇡
M̂
(s)|

= |r⇡(s)+
X

a2A

⇡(a|s)
X

s02S1

P (s, a, s0)v⇡M(s0)�r⇡(s)�
X

a2A

⇡(a|s)
X

s02S1

P̂ (s, a, s0)v⇡
M̂
(s0)|

= |

X

a2A

⇡(a|s)
X

s02S1

P (s, a, s0)v⇡M(s0)�
X

a2A

⇡(a|s)
X

s02S1

P̂ (s, a, s0)v⇡
M̂
(s0)|

= |

X

a2A

⇡(a|s)
X

s02S1

P (s, a, s0)v⇡M(s0)�
X

a2A

⇡(a|s)
X

s02S1

P̂ (s, a, s0)v⇡M(s0)

+
X

a2A

⇡(a|s)
X

s02S1

P̂ (s, a, s0)v⇡M(s0)�
X

a2A

⇡(a|s)
X

s02S1

P̂ (s, a, s0)v⇡
M̂
(s0)|



X

a2A

⇡(a|s)|
X

s02S1

(P (s, a, s0)� P̂ (s, a, s0))v⇡M(s0)| +max
s02S1

|v⇡M(s0)� v⇡
M̂
(s0)|

 "(H � 1)rmax +max
s02S1

|v⇡M(s0)� v⇡
M̂
(s0)|

 "(H � 1)rmax + "P (H � 2)rmax + · · · + "P1rmax

 "
H2rmax

2
= "

Hvmax

2

The first equality follows from the Bellman equation. The second and third

inequalities follow from that v⇡
M̂
(s) is at most (H � h)rmax for s 2 Sh.

Lemma 3. Let M = (S,A, P exo, P end, r,H) be an "air-AIR MDP and Mb =

(S,A, P̃ exo, P̃ end, r,H) with DTV (P end(s, a), P̃ end(s, a))  "p, then for any pol-

icy ⇡,

|J(⇡,M)� J(⇡,Mb)|  vmaxH("air + "p).
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Proof. Since M is "air-AIR, we have

DTV (P exo(sexo, a), P exo(sexo, a0)) =
1

2
kP exo(sexo, a)� P exo(sexo, a0)k

1
 "air

Let e(s, a, s0end) = P end(s, a, s0end)� P̃ end(s, a, s0end), we know

DTV

⇣
P end(s, a), P̃ end(s, a)

⌘
=

1

2
ke(s, a, ·)k

1
=

1

2

X

s0end

|e(s, a, s0end)|  "p.

For any s = (sexo, send) 2 S
exo
⇥ S

end and a 2 A, we have
���P (s, a)� P̃ (s, a)

���
1

=
X

s0

|P ([sexo, send], a, s0)� P̃ ([sexo, send], a, s0)|

=
X

s0

|P exo(sexo, a, s0exo)P end(s, a, s0end)� P̃ exo(sexo, a, s0exo)P̃ end(s, a, s0end)|

=
X

s0

|P exo(sexo, a, s0exo)(P̃ end(s, a, s0end) + e(s, a, s0end))

� P̃ exo(sexo, a, s0exo)P̃ end(s, a, s0end)|

=
X

s0

|P̃ end(s, a, s0end)[P exo(sexo, a, s0exo)� P̃ exo(sexo, a, s0exo)]

+ P exo(sexo, a, s0exo)e(s, a, s0end)|



X

s0

P̃ end(s, a, s0end)|P exo(sexo, a, s0exo)�
X

a0

⇡0(a0|sexo)P exo(sexo, a0, s0exo)|

+
X

s0

P exo(sexo, a, s0exo)|e(s, a, s0end)|



X

a0

⇡0(a|sexo)
X

s0exo

|P exo(sexo, a, s0exo)� P exo(sexo, a0, s0exo)|

+
X

s0end

|e(s, a, s0end)|

 2"air + 2"p.

The first inequality follows by writing

P̃ exo(sexo, a, s0exo) =
X

a02A

⇡0(a0|sexo)P exo(sexo, a0, s0exo)

where ⇡0(a0|sexoh ) =
P⇡

b

M
(Sexo

h
=sexo

h
,Ah=a0)

P⇡
b

M
(Sexo

h
=sexo

h
)

when the denominator is nonzero, and

otherwise let ⇡0(·|sexoh ) be an arbitrary distribution. Applying Lemma 2, we

get

|J(⇡,M)� J(⇡,Mb)| =
X

s0

µ(s0)|v
⇡
M(s0)� v⇡Mb

(s0)|  vmax("air + "p)H.
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Theorem 4 (Performance bound for FQI-AIR). Under Assumption 1 and 2,

let ⇡⇤
M be an optimal policy in M and ⇡ the output policy of FQI-AIR, then

with probability at least 1� ⇣

J(⇡,M) � J(⇡⇤
M ,M)� 2vmaxH("air + "p)�

(H + 1)H
p

|Send||A|

 r
72vmax

2 ln (H|F||Send||A|/⇣)

N
+ 2"apx

!
.

Proof. First fix a horizon h 2 [H] and f 0 = qh+1 2 F . Define

R(f)

= kT f 0
� fk2

2,⌫̃h

=
X

sexo
h

2Sexo
h

X

send
h

2Send
h

X

a2A

⌫̃h(sexoh )

|Send||A|
(f(sexoh , sendh , a)� r � E[max

a0
f 0(Sexo

h+1
, Send

h+1
, a0)])2

and

Rn(f)

=
1

N

NX

i=1

X

send
h

2Send
h

X

a2A

1

|Send||A|
(f(s(i),exoh , sendh , a)� r �max

a0
f 0(s(i),exoh+1

, sendh+1
, a0))2

where sendh+1
⇠ P̂ end(s(i),exoh , sendh , a).

Let

f̂ = argmin
f2F

Rn(f), f̃ = argmin
f2F

R(f),

our goal is to bound R(f̂) with high probability. This is similar to bounding

the generalization error in the statistical learning literature. We follow the

proof technique of Lemma A.11 in A. Agarwal et al. (2019) to bound the

excess risk.

Fix u = (sendh , a) 2 U := S
end
⇥ A, let xu

i = (sexoh , sendh , a) and yui =

r(sexoh , sendh , a) + maxa0 f 0(sexoh+1
, sendh+1

, a0) with (xu
i , y

u
i ) ⇠ ⌫, f ⇤(xu

i ) = E[yui |xu
i ].

Note that our goal is to bound R(f̂) = 1

|U|
P

u2U E[(f̂(xu
i )� f ⇤(xu

i ))
2].

First note that

E[(f(xu
i )� yui )

2
� (f ⇤(xu

i )� yui )
2] = E[(f(xu

i )� f ⇤(xu
i ))

2]
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and

Vu,f := V[(f(xu
i )� yui )

2
� (f ⇤(xu

i )� yui )
2]

 E[((f(xu
i )� yui )

2
� (f ⇤(xu

i )� yui )
2)2]

 4vmax
2E[(f(xu

i )� f ⇤(xu
i ))

2].

We can bound the deviation from the mean for all f 2 F with one-sided

Bernstein’s inequality: the following holds with probability 1� ⇣,

E[(f(xu
i )� f ⇤(xu

i ))
2]�

1

N

NX

i=1

[(f(xu
i )� yui )

2
� (f ⇤(xu

i )� yui )
2]



r
2Vu,f ln (|F|/⇣)

N
+

4vmax
2 ln (|F|/⇣)

3N



r
8vmax

2E[(f(xu
i )� f ⇤(xu

i ))
2] ln (|F|/⇣)

N
+

4vmax
2 ln (|F|/⇣)

3N
.

We need this holds for all u 2 U . By the union bound, we have for all u 2 U

E[(f(xu
i )� f ⇤(xu

i ))
2]�

1

N

NX

i=1

[(f(xu
i )� yui )

2
� (f ⇤(xu

i )� yui )
2]



r
8vmax

2E[(f(xu
i )� f ⇤(xu

i ))
2] ln (|F||U|/⇣)

N
+

4vmax
2 ln (|F||U|/⇣)

3N
.

Since f̂ is the empirical minimizer, we have

1

|U|

X

u2U

1

N

NX

i=1

[(f̂(xu
i )� yui )

2
� (f ⇤(xu

i )� yui )
2]


1

|U|

X

u2U

1

N

NX

i=1

[(f̃(xu
i )� yui )

2
� (f ⇤(xu

i )� yui )
2].

Since f̃ 2 F , we have

1

N

NX

i=1

[(f̃(xu
i )� yui )

2
� (f ⇤(xu

i )� yui )
2]� E[(f̃(xu

i )� f ⇤(xu
i ))

2]



s
8vmax

2E[(f̃(xu
i )� f ⇤(xu

i ))
2] ln (|F||U|/⇣)

N
+

4vmax
2 ln (|F||U|/⇣)

3N
.
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Since 1

|U|
P

u2U E[(f̃(xu
i )� f ⇤(xu

i ))
2]  "apx, we have

1

|U|

X

u2U

1

N

NX

i=1

[(f̃(xu
i )� yui )

2
� (f ⇤(xu

i )� yui )
2]

 "apx +

r
8vmax

2"apx ln (|F||U|/⇣)

N
+

4vmax
2 ln (|F||U|/⇣)

3N


3

2
"apx +

16vmax
2 ln (|F||U|/⇣)

3N
.

The second inequality follows by the fact that
p
ab  a+b

2
for a, b � 0. Then,

1

|U|

X

u2U

E[(f̂(xu
i )� f ⇤(xu

i ))
2]



s
8vmax

2 1

|U|
P

u2U E[(f̂(xi)� f ⇤(xi))2] ln (|F||U|/⇣)

N
+

20vmax
2 ln (|F||U|/⇣)

3N

+
3

2
"apx.

Solving for the quadratic formula, we get

1

|U|

X

u2U

E[(f̂(xu
i )� f ⇤(xu

i ))
2] 

36vmax
2 ln (|F||U|/⇣)

N
+ 2"apx.

Now define d̃⇡h(s
exo) = P⇡

Mb
(Sexo

h = sexoh ) and d⇡h(s
exo, send, a) = P⇡

Mb
(Sexo

h =

sexoh , Send

h = sexoh , Ah = a). By the construction of Mb, we have

8⇡, sexoh 2 Sexo

h ,
d̃⇡h(s

exo)

⌫̃h(sexo)
 1, and

8⇡, sexoh 2 Sexo

h , sendh 2 Send

h , a 2 A,
d⇡h(s

exo, send, a)

⌫̃h(sexo)/|Send||A|
 |S

end
||A|.

Therefore, for any policy ⇡, we have with probability 1� ⇣

kT qh+1 � qhk2,d⇡
h


p
|Send||A|kT qh+1 � qhk2,⌫̃h



p
|Send||A|(

r
36vmax

2 ln (|F||Send||A|/⇣)

N
+ 2"apx).

Note that this holds for a fixed h 2 [H] and f 0
2 F . Use the union bound, we

have that, for any policy ⇡, h 2 [H] and qh+1 2 F , with probability 1� ⇣

kT qh+1 � qhk2,d⇡
h


p
|Send||A|(

r
72vmax

2 ln (H|F||Send||A|/⇣)

N
+ 2"apx).
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By Lemma 1, the output policy ⇡ satisfies

J(⇡⇤
Mb

,Mb)� J(⇡,Mb)

 (H + 1)H
p

|Send||A|(

r
72vmax

2 ln (H|F||Send||A|/⇣)

N
+ 2"apx) = "1.

By Lemma 3, the output policy ⇡ satisfies

J(⇡⇤
M ,M)� J(⇡,M)

= J(⇡⇤
M ,M)� J(⇡⇤

M ,Mb) + J(⇡⇤
M ,Mb)� J(⇡,M)

 J(⇡⇤
M ,M)� J(⇡⇤

M ,Mb) + J(⇡⇤
Mb

,Mb)� J(⇡,M)

 J(⇡⇤
M ,M)� J(⇡⇤

M ,Mb) + J(⇡,Mb)� J(⇡,M) + "1

 |J(⇡⇤
M ,M)� J(⇡⇤

M ,Mb)| + |J(⇡,Mb)� J(⇡,M)| + "1

 2vmaxH("air + "P )

+ (H + 1)H
p

|Send||A|(

r
72vmax

2 ln (H|F||Send||A|/⇣)

N
+ 2"apx).

Note that
p

|Send||A| comes from the fact that we run FQI for all endogenous

state and action uniformly. This term can be viewed as the concentration

coe�cient in the standard FQI analysis and is unavoidable. However, if we

can adapt the weight on the endogenous state and action, we might be able

to reduce the dependence.

Theorem 5. Under Assumption 1, given a deterministic policy ⇡, we have

that with probability at least 1� ⇣

���Ĵ(⇡,M)�J(⇡,M)
���vmax

✓
H"air+H"p+

q
ln (2/⇣)

2N

◆
.

Proof. We first show that R(⌧ (i)D ) :=
PH�1

t=0
r(s(i)t , a(i)t ) for i 2 [N ] are i.i.d.

samples with mean J(⇡,Mb). Let P⇡
D be the probability measure on trajecto-

ries ⌧D. Note that the randomness of ⌧D comes from the generation of exoge-

nous variables in by the interaction between ⇡b and M , and the generation of

actions and endogenous variables by ⇡ and P̂ end. Let P⇡
Mb

be the probability

measure on the trajectories sampled by running ⇡ onMb. It is su�cient to show

that P⇡
D = P⇡

Mb
then E[R(⌧D)] =

R
R(⌧)dP⇡

D(⌧) =
R
R(⌧)dP⇡

Mb
(⌧) = J(⇡,Mb).
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For all trajectories ⌧ = (s0, a0, . . . , sH�1, aH�1) 2 (S ⇥A)H , we have

P⇡
D(⌧)

= P⇡b

M(s0, s
exo

1
, . . . , sexoH�1

)P⇡
D(a0, s

end

1
, . . . , sendH�1

, aH�1 | s0, s
exo

1
, . . . , sexoH�1

)

= µ(s0)⇡(a0|s0)P⇡b

M(sexo
1

|s0)P̂
end(s0, a0, s

end

1
)⇡(a1|s1) . . .

= µ(s0)⇡(a0|s0)P̃ (s0, a0, s1)⇡(a1|s1) · · · = P⇡
Mb

(⌧).

By Hoe↵ding’s inequality, with probability at least 1� ⇣,

���Ĵ(⇡,M)� J(⇡,Mb)
��� =

�����
1

N

NX

i=1

R(⌧ (i)D )� E[R(⌧D)]

�����  vmax

r
1

2N
ln

2

⇣
.

Finally by Lemma 3, the followings hold with probability at least 1� ⇣:

|Ĵ(⇡,M)� J(⇡,M)|  |Ĵ(⇡,M)� J(⇡,Mb)| + |J(⇡,Mb)� J(⇡,M)|

 vmaxH(✏AIR + ✏P ) + vmax

r
ln (2/⇣)

2N
.
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Appendix C

Supplementary Material for

Regression-Assisted Estimators

We provide supplementary material for Chapter 6.

C.1 Overview of survey sampling

In this section, we introduce the survey sampling terminology and how to use

it for OPE. The terminology will be used for proving our theoretical results.

Survey sampling can be dated back to Hansen and Hurwitz, 1943; Horvitz

and Thompson, 1952, where they consider the problem of selecting a sample

of units from a finite population to estimate unknown population parameters.

For example, if the goal is to estimate the customer satisfaction rate for a

product, survey sampling is concerned with selecting a subset of customers to

conduct surveys. Since then, the field has investigated a variety of practical

scenarios, including dealing with missing data, handling nonstationarity and

understanding to how to leverage auxiliary information.

Formally, let U = {1, . . . , N} be the population of interest, yi be the study

variable and xi be the auxiliary variable for the unit i 2 U . Continuing the

above example, the population could be all customers, the study variable could

be the satisfaction level, and the auxiliary variable could be the information

about the customer. A subset of the population, called a sample, is selected

according to a sampling design. We observe the study variable for units in the

sample, and the goal is to estimate the population total of the study variables
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ty =
P

i2U yi.

A sampling design I = (I1, . . . , IN) is a random vector describing how the

sample is drawn from the population: Ii > 0 means that the unit i is selected in

the sample and Ii = 0 means the unit is not selected. For example, a multino-

mial design is a with-replacement and fixed-size design where we draw n units

independently and identically according to probability pi with
P

i2U pi = 1.

In this case, the design vector I follows the multinomial distribution with pa-

rameters n and (pi)Ni=1
, that is, P (I1 = ii, . . . , IN = iN) = n!

⇧
N

i=1ii!
piii . . . piNN if

P
i ii = n and 0 otherwise. In survey sampling, the study variable is fixed and

the randomness comes from the sampling design I.

Given a sample D of fixed size n, the Hansen-Hurwitz (HH) estimator

(Hansen & Hurwitz, 1943) for multinomial design is t̂HH =
P

i2D
yi

E[Ii] =
P

i2D
yi
npi

. The estimator t̂HH is an unbiased estimator for ty if pi > 0 for

all i 2 U .

This formalize OPE under survey sampling, let the population be U =

S ⇥ A and the study variable be ys,a = P (s)⇡(a|s)r(s, a). The population

total of y is the value of the policy: ty =
P

(s,a)2U ys,a = J(⇡). The weighting

P (s)⇡(a|s) goes into the study variable since the goal is to estimate the total

of study variable without weighting. Even though we have P (s) in the study

variable, the term often cancels out as we will see for the HH estimator.

For OPE, the sampling design is the multinomial design with sampling

probability ps,a = P (s)⇡(a|s). Given a sample D = {(si, ai, r(si, ai))}n
i=1

, the

HH estimator is

t̂HH =
X

(s,a)2D

ys,a
nps,a

=
X

(s,a)2D

P (s)⇡(a|s)r(s, a)

nP (s)⇡b(a|s)
=

1

n

X

(s,a)2D

⇡(a|s)

⇡b(a|s)
r(s, a).

It has the same form as the IS estimator. In the case where the sampling

design p is not known and needs to be estimated by a propensity model, it is

called the inverse propensity score (IPS) estimator.

The HH estimator is called the design-based estimator in the survey sam-

pling literature. This is because the primary source of randomness is from the

sampling design. Another approach is called the model-based approach which

assumes the study variables are generated by a superpopulation model. The
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goal is to model the relationship between the study variable and the auxiliary

variable. The resulting estimator is similar to the direct method.

The model-based approach. The model-based approach is a popular ap-

proach in the survey sampling literature. Chambers and Clark, 2012 provide

an introduction for the model-based approach. Di↵erent from design-based

and model-assisted approaches, the study variables are assumed to be gen-

erated by a superpopulation model and typically depends on the auxiliary

variable. More previously, we assume the values yi, . . . , yn are realization of

random variables Y1, . . . , Yn. The joint distribution of Y1, . . . , Yn is denoted by

⇠, which is called the superpopulation distribution. For example, we assume

E⇠[Yi|xi] = x
>
i � and V⇠(Yi|xi) = �2

i for some unknown model parameter � and

�i. The selected sample D is treated as a constant and the sample values of yi

are random. Estimation and inference are deduced conditional on the selected

sample and the model.

For OPE, we have ys,a = P (s)⇡(a|s)r(s, a) and auxiliary vector xs,a =

P (s)⇡(a|s)�(s, a). We assume a linear model: E⇠[Ys,a|xs,a] = x
>
s,a�, V⇠(Ys,a|xs,a) =

�2

s,a = (P (s)⇡(a|s)�)2, and Ys,a’s are independent. Using the WLS estimator

to estimate �

�̂ =

0

@
X

(s,a)2D

xs,ax
>
s,a

�2
s,a

1

A
†0

@
X

(s,a)2D

xs,ays,a
�2
s,a

1

A

=

0

@
X

(s,a)2D

�(s, a)�(s, a)>

1

A
†0

@
X

(s,a)2D

�(s, a)r(s, a)

1

A ,

we have the model-based estimator

t̂MB =
X

(s,a)2D

ys,a +
X

(s,a) 62D

x
>
s,a�̂.

That is, the population total is estimated by the total of study variables in

the sample and the total of the study variables of units not in the sample.

The model-based estimator is similar to the direct method (DM) in OPE.

The key di↵erence is that DM does not use the sample value of ys,a but uses
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the prediction for all units, that is,

t̂DM =
X

(s,a)2U

x
>
s,a�̂.

The model-based survey sampling framework provide a way to do inference

for the DM estimator, which is conditional on the selected sample and the

model ⇠. Let tx =
P

(s,a)2U xs,a, then

V⇠(t̂DM) = V⇠

0

@
X

(s,a)2U

x
>
s,a�̂

1

A = t>xV⇠(�̂)tx = �2t>x

0

@
X

(s,a)2D

�(s, a)�(s, a)>

1

A
†

tx.

Plugging in the estimator �̂2 = 1

n�p

P
(s,a)2D(r(s, a) � �(s, a)>�̂)2 for �, we

have an estimated variance

V̂(t̂DM) = �̂2t>x

0

@
X

(s,a)2D

�(s, a)�(s, a)>

1

A
†

tx.

C.2 Theoretical analysis

For the theoretical analysis, we make the following assumptions:

1. 8(s, a) 2 U , Lp  ps,a for some real number Lp > 0.

2. 8(s, a) 2 U , Ly  ys.a  Uy for some real number Ly, Uy.

3. 8(s, a) 2 U , Lx  �(s, a)  Ux for some real vector Lx, Ux. The inequal-

ity holds element-wise.

4. The estimated matrix of the covariates
P

(s,a)2D
⇡(a|s)
⇡b(a|s)

�(s, a)�(s, a)> and

the finite population matrix
P

(s,a)2U �(s, a)�(s, a)
> are invertible.

In short, we need to make sure the data collection policy chooses each action

with a non-zero probability, and the reward and feature vector are bounded.

C.2.1 Proof of Theorem 6

Definition 5 (The ratio estimator). Let zs,a 2 R be the auxiliary variable,

tz be the populating total of the auxiliary variable, which is assumed to be
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known, and t̂HH and t̂z be the HH estimator for ty and tz respectively. The

ratio estimator is given by

t̂Ratio = tz
t̂HH

t̂z
.

Now we show that the ratio estimator is a special case of the regression

estimator.

Lemma 4. Suppose that we have univariate auxiliary information zs,a. In the

linear model E⇠[Ys,a] = �zs,a and V⇠(Ys,a) = �2

s,a = zs,a�2 for some � 2 R and

� 2 R+, the regression estimator is equivalent to the ratio estimator.

Proof. First, note that the regression estimator has an alternative expression

as

t̂Reg =
X

(s,a)2U

zs,a�̂ +
X

(s,a)2D

ys,a � zs,a�̂

nps,a

=
X

(s,a)2D

ys,a
nps,a

+

0

@
X

(s,a)2U

zs,a �
X

(s,a)2D

zs,a
nps,a

1

A �̂

=
X

(s,a)2D

ys,a
nps,a

+

0

@
X

(s,a)2U

zs,a �
X

(s,a)2D

zs,a
nps,a

1

A

0

@
X

(s,a)2D

zs,azs,a
nps,a�2

s,a

1

A
�10

@
X

(s,a)2D

zs,ays,a
nps,a�2

s,a

1

A

=
X

(s,a)2D

ys,a
nps,a

2

41 +

0

@
X

(s,a)2U

zs,a �
X

(s,a)2D

zs,a
nps,a

1

A

0

@
X

(s,a)2D

zs,azs,a
nps,a�2

s,a

1

A
�1

zs,a
�2
s,a

3

5

| {z }
gs.a

=
X

(s,a)2D

gs,ays,a
nps,a

where gs,a can be viewed as the weight for each unit in the sample.
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Under the model �2

s,a = zs,a�2, for each (s0, a0) 2 D, we have

gs0,a0 = 1 +

0

@
X

(s,a)2U

zs,a �
X

(s,a)2D

zs,a
nps,a

1

A

0

@
X

(s,a)2D

zs,azs,a
nps,a�2zs,a

1

A
�1✓

zs0,a0

�2zs0,a0

◆

= 1 +

0

@
X

(s,a)2U

zs,a �
X

(s,a)2D

zs,a
nps,a

1

A

0

@
X

(s,a)2D

zs,a
nps,a

1

A
�1

= 1 +

0

@
X

(s,a)2U

zs,a

1

A

0

@
X

(s,a)2D

zs,a
nps,a

1

A
�1

� 1

= tz/

0

@
X

(s,a)2D

zs,a
nps,a

1

A

The second equality follows by cancelling out the right most term with the �2

in the inverse bracket. Note that the weight is the same for each unit in the

sample. Plugging into the previous equation, we have

t̂Reg = tz

P
(s,a)2D ys,a/nps,aP
(s,a)2D zs,a/nps,a

= t̂Ratio.

Theorem 6 (WIS as a special case of the regression-assisted estimator). Sup-

pose we use a linear regression model with univariate feature �(s, a) = 1.

Then the regression-assisted DR estimator with estimated coe�cient �̂ from

Eq (6.3) has the same form as the WIS estimator:

t̂Reg =
X

(s,a)2D

⇡(a|s)/⇡b(a|s)P
(s0,a0)2S ⇡(a

0|s0)/⇡b(a0|s0)
r(s, a). (6.5)

Proof. We first show that the WIS estimator belongs to a class of estimators

called the ratio estimator in survey sampling in Definition 5. Suppose the

auxiliary variable zs,a = P (s)⇡(a|s), and we know tz =
P

(s,a)2U P (s)⇡(a|s) =

1. Then, the ratio estimator is

t̂Ratio = tz
t̂HH

t̂z
=

0

@
X

(s,a)2D

ys,a
nps,a

1

A

0

@
X

(s,a)2D

zs,a
nps,a

1

A
�1

=
X

(s,a)2D

⇡(a|s)/⇡b(a|s)P
(s0,a0)2D ⇡(a

0|s0)/⇡b(a0|s0)
r(s, a)
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which is the WIS estimator in the OPE literature.

Then, we prove a more general statement that a ratio estimator with uni-

variate auxiliary information zs,a is a special case of the regression estimator

under the linear model E⇠[Ys,a] = �zs,a and V⇠(Ys,a) = �2

s,a = zs,a�2 for some

� 2 R and � 2 R+ in Lemma 4.

C.2.2 Proof of Theorem 7

Lemma 5 (Variance of the HH estimator for multinomial design). Let z be

a mapping from S ⇥ A to [a, b] for two constants a < b, and t̂HH be the HH

estimator for the variable ys,a = P (s)⇡(a|s)z(s, a). With multinomial design

n and ps,a = P (s)⇡b(a|s), the variance is given by

V(t̂HH) =
1

n

0

@
X

(s,a)2U

y2s,a
ps,a
� t2y

1

A =
1

n

0

@
X

(s,a)2U

P (s)⇡(a|s)
⇡(a|s)

⇡b(a|s)
z(s, a)2 � t2y

1

A .

Proof. Recall the HH estimator is

t̂HH =
X

D

ys,a
nps,a

=
X

U

Is,ays,a
nps,a

.

where Is,a is the (s, a)-th element of the design vector I. The variance is

V(t̂HH) = V

 
X

U

Is,a
ys,a
nps,a

!

=
X

(s,a)2U

V(Is,a)

✓
ys,a
nps,a

◆2

+
X

(s,a) 6=(s0,a0)

Cov(Is,a, Is0,a0)

✓
ys,a
nps,a

◆✓
ys0,a0

nps0,a0

◆
.

We know V(Is,a) = nps,a(1 � ps.a) and Cov(Is,a, Is0,a0) = �nps.aps0,a0 from the

properties of the multinomial distribution, hence, after some calculation, we

have V(t̂HH) =
1

n

⇣P
(s,a)2U

y2s,a
ps,a
� t2y

⌘
. The proof is completed by plugging in

the value of ys,a and ps,a.

Theorem 7 (Properties of the estimator). Let AV(·) denote the asymptotic

variance in term of the first order, that is V(·) = AV(·) + o(n�1), we have (1)

t̂Reg is asymptotically unbiased with a bias of order O(n�1), and (2)

AV(t̂Reg) =
1

n

0

@
X

(s,a)2U

P (s)
⇡(a|s)2

⇡b(a|s)
(r(s, a)� �(s, a)>�)2 � t2e

1

A

where te =
P

U P (s)⇡(a|s)(r(s, a)� �(s, a)>�).
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Proof. Note that we assume the first term in Eq (6.3) is invertible. We can

write the estimator as t̂Reg = t̂y + (tz � t̂z)Â
�1Ĉ where t̂y is the HH estimator

for ty =
P

U P (s)⇡(a|s)r(s, a) and tz =
P

U zs,a and t̂z be the HH estimator

for tz. Â and Ĉ denote the first and second matrix is Eq (6.3) respectively.

Moreover, let tzj be the j-th element of the vector tz, and t̂zj be the j-th

element of the vector t̂zj.

Let A =
P

U P (s)⇡(a|s)�(s, a)�(s, a)>, C =
P

U P (s)⇡(a|s)�(s, a)r(s, a)

and B = A�1C. Using the Taylor linearization technique (see Section 6.6 of

Särndal et al., 1992), and we can approximate t̂Reg at t̂y = ty, t̂1 = t1, t̂z = tz,

Â = A and Ĉ = C:

t̂Reg = ty + 1(t̂y � ty)�
X

j

Bj(t̂z,j � tz,j)

+
X

i,j

(tz � tz)
>[�A�1EijA

�1]C(Âij � Aij)

+
X

j

(tz � t̂z)
>ej(Ĉj � Cj) + . . .

= t̂y + (tz � t̂z)
>B + ...

where Eij is a matrix where the ij- and ji-th elements are one and all other

elements are zero, and ej is a vector where the j-th element is one and zero

otherwise.

Since the random variable is bounded, the moments exist. Taking the

expectation, we get

E[t̂Reg] = E[t̂y + (tz � t̂z)
>B] +O(n�1) = ty +O(n�1). (C.1)

The first equality follows from the remainder terms of the Taylor expansion

are the expectations of (t̂y � ty)p and (t̂z,j � tz,j)p for p � 2, which is of order

O(1/n). The second equality follows from t̂z is an unbiased estimator for tz.

Therefore, t̂Reg is asymptotically unbiased.
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Furthermore,

V(t̂Reg) = E[(t̂Reg � E[t̂Reg])
2]

= E[(t̂Reg � ty + ty � E[t̂Reg])
2]

= E[(t̂Reg � ty)
2 + (ty � E[t̂Reg])

2 + 2(t̂Reg � ty)(ty � E[t̂Reg])]

= E[(t̂Reg � ty)
2] + o(n�1)

= E[(t̂y � t̂zB| {z }
(a)

�ty + txB)2] + o(n�1)

The last equality comes from Eq (C.1). Note that (a) is the HH estimator

t̂e =
P

D
⇡(a|s)

n⇡b(a|s)
(r(s, a) � �(s, a)>B) so the expectation (the first term in the

last line) is the variance of (a) which is given by

1

n

0

@
X

(s,a)2U

P (s)⇡(a|s)
⇡(a|s)

⇡b(a|s)
(r(s, a)� �(s, a)>B)2 � t2e

1

A

with te =
P

U P (s)⇡(a|s)(r(s, a)� �(s, a)>B) by Lemma 5.

Since the variance converges to zero and the estimator is asymptotically

unbiased, we also know t̂Reg

p
! ty.

C.2.3 Proof of Theorem 8

Proof of consistency. Define

V̂n(�) =
1

n(n� 1)

2

4
X

(s,a)2D

✓
⇡(a|s)

⇡b(a|s)
(r(s, a)� �(s, a)>�)

◆2

� nt̂e(�)
2

3

5 , and

Vn(�) =
1

n

0

@
X

(s,a)2U

P (s)⇡(a|s)
⇡(a|s)

⇡b(a|s)
(r(s, a)� �(s, a)>�)2 � te(�)

2

1

A

where t̂e(�) =
P

D
⇡(a|s)

n⇡b(a|s)
(r(s, a)��(s, a)>�) and te(�) =

P
U P (s)⇡(a|s)(r(s, a)�

�(s, a)>�). Then it is su�cient to show that

n|V̂n(�̂n)� Vn(�WLS)|
p
! 0.

For ✏ > 0, by the triangle inequality, we have

Pr(n|V̂n(�̂n)� Vn(�WLS)| > ✏)

 Pr(n|V̂n(�̂n)� V̂n(�WLS)| > ✏/2) + Pr(n|V̂n(�WLS)� Vn(�WLS)| > ✏/2).
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For the first term, using the fact that �̂n
p
! �WLS and the continuous mapping

theorem, we get V̂n(�̂n)
p
! V̂n(�WLS), which implies limn!1 Pr(n|V̂n(�̂n) �

V̂n(�WLS)| > ✏/2) = 0.

Define es,a(�) = r(s, a)� �(s, a)>�, twe2(�) =
P

U P (s)⇡(a|s) ⇡(a|s)
⇡b(a|s)

es,a(�)2

(the first term of Vn(�)) and t̂we2(�) =
P

D

⇣
⇡(a|s)

n⇡b(a|s)
es,a(�)

⌘2
(the first term

of V̂(�)). Then, for the second term, we have

Pr(n
���V̂n(�WLS)� Vn(�)

��� > ✏/2)

= Pr(

����
n

n� 1
t̂we2(�WLS)�

n

n� 1
t̂e(�WLS)

2
� twe2(�WLS) + te(�WLS)

2

���� > ✏/2)

 Pr(

����
n

n� 1
t̂we2(�WLS)� twe2(�WLS)

���� > ✏/4)

+ Pr(

����
n

n� 1
t̂e(�WLS)

2
� te(�WLS)

2

���� < ✏/4).

Note that t̂we2(�WLS) and t̂(�WLS)2 are the HH estimators for twe2(�WLS) and

te(�WLS) respectively, so they are consistent. As a result, we have

lim
n!1

Pr(n
���V̂n(�̂WLS)� Vn(�WLS)

��� > ✏/2) = 0,

which completes the proof.

Proof of asymptotic normality. It is known that the HH estimator for with-

replacement sampling is asymptotically normal (for example, see Theorem 2

of Félix-Medina, 2003 or K. McConville, 2011), that is,

p
n(t̂y � ty)
p
n(t̂z � tz)

�
D
! N

✓
0,


⌃y

⌃
yz

⌃
zy

⌃
z

�◆

where ⌃y,⌃yz,⌃zy and ⌃
z are the limiting covariance matrices. Then we

follow the proof idea from Theorem 3.2 of K. McConville, 2011. Using the

Slutsky’s Theorem and the fact that �̂n
p
! �WLS, we have

 p
n(t̂y � ty)

p
n(t̂z � tz)�̂n

�
D
! N (0,


⌃y

⌃
yz�WLS

�>
WLS⌃

zy �>
WLS⌃

z�WLS

�
).

Note that
p
n(t̂Reg� ty) =

p
n(t̂y� ty)�

p
n(t̂z � tz)�̂n. By the Delta method,

we have
p
n(t̂Reg � ty)

D
! N (0, �2) where �2 = ⌃y

� ⌃yz�WLS � �>
WLS⌃

zy +

�>
WLS⌃

z�WLS. Note that we can write the variance of t̂y � t̂z�WLS as V(t̂y �
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t̂z�WLS) =
1

n(⌃
y
�⌃yz�WLS � �>

WLS⌃
zy + �>

WLS⌃
z�WLS), and in the proof for

Theorem 7, we show that the asymptotic variance of t̂Reg is AV(t̂Reg) = V(t̂y�

t̂z�WLS). Therefore, AV(t̂Reg) = �2/n, and (t̂Reg � ty)/
q

AV(t̂Reg)
D
! N (0, 1).

By the consistency of the variance estimator and Slutsky’s theorem, we

have

t̂Reg � tyq
V̂(t̂Reg)

=
t̂Reg � tyq
AV(t̂Reg)

q
AV(t̂Reg)
q

V̂(t̂Reg)

D
! N (0, 1).

C.3 Experiment details

For the semi-synthetic datase, we generate a sequence of reward functions

based on the non-stationary recommendation environment used in Chandak

et al., 2020. For each positive context-action pair in the original classifica-

tion dataset, the reward follows a sine wave with noises: rk(s, a) = 0.5 +

amplitudes,a ⇤ sin(k ⇤ frequencys,a) + 0.01" where " ⇠ Unif([0, 1]). For each

interval, we also randomly sample some context-action pairs and set their re-

wards to positive random values to increase the noise.

To obtain a target policy for the Youtube and MovieLens dataset, we fist

train a classifier on a small subset of the original multi-label classification

dataset. Then we apply the softmax function on the outputs of the trained

classifiers to obtain a probability distribution over actions for each context.

The conditional distribution is used as the target policy.

Similarly for the RL environment, the reward follows rk(s, a) = µs,a +

0.25 ⇤ sin(k ⇤ frequencys,a) + 0.01 ⇤ " where " ⇠ Unif([0, 1]). To obtain a

target policy, we fist train a Q-learning agent on the underlying environment

for 1000 episodes and then apply the softmax function on the Q-value as the

target policy.
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