
An Empirical Study of Exploration Strategies for
Model-Free Reinforcement Learning

by

Nikolaus Winget Yasui

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Nikolaus Winget Yasui, 2020

Abstract

Reinforcement Learning is a formalism for learning by trial and error. Unfor-

tunately, trial and error can take a long time to find a solution if the agent

does not efficiently explore the behaviours available to it. Moreover, how an

agent ought to explore depends on the task that the agent is trying to learn. In

this thesis we study how an agent’s exploration strategy affects how quickly

it learns to solve different problems. In particular, we focus on model-free

algorithms that learn value functions. We first examine the space of prob-

lems, or environments, that reinforcement learning agents are expected to

solve. We identify six properties of environments that can make exploration

difficult, and design a prototypical environment expressing each property.

We also survey the exploration literature and categorize existing exploration

methods by the heuristic that guides their behaviour. Lastly, we conduct an

empirical study evaluating the performance of several explorationmethods on

our prototypical exploration environments. We found that only one method,

Linear Upper Confidence Least Squares, was able to consistently perform well

in every environment. We also found that methods which add a bonus to their

value function tended to explore much more effectively than methods which

add a bonus to their rewards. Our investigation of value-based exploration

provides a novel, systematic approach to understanding the strengths and

weaknesses of exploration algorithms in reinforcement learning.

ii

Acknowledgements

I would first like to thank my supervisor Martha White for her invaluable

support and advice. She encouraged my diverse research interests and was

always able to help when I needed it. The research atmosphere she created

was truly fantastic.

I would also like to acknowledge the other professors in the department for

supporting student research. In particular, Adam White provided substantial

encouragement, support, and feedback during my degree. James Wright also

introduced me to several interesting topics, and has been incredibly patient

while waiting for me to start my PhD. I would also like to acknowledge NSERC

for providing funding during my degree, and Matthew Pietrosanu from the

University of Alberta Training and Consulting Center for providing statistical

advice.

My thanks goes to the members of the RLAI lab, with whom I have spent

countless hours discussing various problems in research and in life. Without

those lively discussions, my time at the University of Alberta would be much

less interesting and fulfilling. Thank you for everything.

Finally, I would like to thank my family, my partner Ashley, and her family

for their continued love and support throughout my degree. The majority of

this thesis was written under their care and hospitality, and I am very fortu-

nate to have them in my life.

I am very thankful for all the support I have received and I look forward

to passing it on to others in the future.

iii

Contents

1 Introduction 1

2 Background & Notation 6
2.1 Problem setting . 6
2.2 Solution methods . 8

2.2.1 Algorithms . 8
2.2.2 Algorithmic considerations 10

2.3 Summary . 11

3 Categorizing Environments 13
3.1 Exploration properties concerning reward 13

3.1.1 High variance rewards 14
3.1.2 Misleading rewards . 14
3.1.3 Reward sparsity . 16

3.2 Exploration properties concerning transition dynamics 17
3.2.1 High variance transitions 18
3.2.2 Antagonistic transitions 20
3.2.3 Number of states and actions 21

3.3 Combining difficult rewards and transition dynamics 23
3.4 Impact of the state representation 23
3.5 Summary . 24

4 Exploration methods 26
4.1 Optimistic methods . 29

4.1.1 Optimism in the Face of Uncertainty 29
4.1.2 Thompson Sampling 30

4.2 Learning progress methods 31
4.2.1 Optimistic Initialization 33

4.3 Noisy methods . 35
4.4 Summary . 36

5 Experimental setup 37
5.1 Environments . 38

5.1.1 High-variance reward: VarianceWorld 39
5.1.2 Misleading reward: Antishaping 39
5.1.3 Sparse reward: Sparse MountainCar 40
5.1.4 High-variance transitions: WindyJump 40
5.1.5 Antagonistic transitions: AlpineSki 41
5.1.6 Large state-action space: Hypercube 41

5.2 Exploration methods included in the study 42
5.2.1 Optimism in the face of uncertainty 43
5.2.2 Thompson sampling 47

iv

5.2.3 Learning progress methods 50
5.2.4 Noisy methods . 52
5.2.5 Baselines . 54

5.3 Summary . 55

6 Results 56
6.1 Main analysis . 57

6.1.1 Highlights . 57
6.1.2 High-variance reward: VarianceWorld 59
6.1.3 Misleading reward: Antishaping 59
6.1.4 Sparse reward: Sparse MountainCar 61
6.1.5 High-variance transitions: WindyJump 63
6.1.6 Antagonistic transitions: AlpineSki 64
6.1.7 Large state-action space: Hypercube 66

6.2 Supplementary analyses . 67
6.2.1 Parameter Study . 67
6.2.2 Statistical Analysis . 68

6.3 Discussion . 69
6.4 Summary . 71

7 Conclusion & Future Work 73
7.1 Future Work . 74

Bibliography 77

Appendix A Hyperparameter settings 82

Appendix B Results for all Hyperparameter Settings 86

Appendix C Quantile Regression Table 90

v

List of Tables

A.1 Best hyperparameter settings in VarianceWorld 82
A.2 Best hyperparameter settings in WindyJump 83
A.3 Best hyperparameter settings in Antishaping 83
A.4 Best hyperparameter settings in AlpineSki 84
A.5 Best hyperparameter settings in Sparse MountainCar 84
A.6 Best hyperparameter settings in Hypercube 85

C.1 Quantile regression coefficients 90

vi

List of Figures

3.1 VarianceWorld environment diagram 14
3.2 Antishaping environment diagram 15
3.3 Sparse MountainCar environment diagram 16
3.4 WindyJump environment diagram 18
3.5 AlpineSki environment diagram 19
3.6 Hypercube environment diagram 22

6.1 Cumulative reward distributions in VarianceWorld 58
6.2 Cumulative reward distributions in Antishaping 60
6.3 Cumulative reward distributions in Sparse MountainCar . . . 62
6.4 Cumulative reward distributions in WindyJump 63
6.5 Cumulative reward distributions in AlpineSki 65
6.6 Cumulative reward distributions in Hypercube 66

B.1 Cumulative reward distributions in VarianceWorld for all hy-
perparameter settings . 87

B.2 Cumulative reward distributions in Antishaping for all hyper-
parameter settings . 87

B.3 Cumulative reward distributions in Sparse MountainCar for all
hyperparameter settings . 88

B.4 Cumulative reward distributions in WindyJump for all hyper-
parameter settings . 88

B.5 Cumulative reward distributions in AlpineSki for all hyperpa-
rameter settings . 89

B.6 Cumulative reward distributions in Hypercube for all hyperpa-
rameter settings . 89

vii

Chapter 1

Introduction

Technology improves the efficiency of production. Recently, we have begun

to study technologies that not only perform useful tasks in our lives, but au-

tomatically learn how to perform those tasks on their own. At the center of

these advances is reinforcement learning (RL), a computational framework

for learning that captures a huge variety of tasks and suggests how algorithms

might learn to perform those tasks. Thanks to RL, algorithms have learned

how to play board games like chess, go, and shogi at a high level (Silver

et al. 2017). RL is popular enough and effective enough that large technol-

ogy companies such as Amazon and Facebook have released RL development

platforms and products (Facebook 2020; Services 2020).

Reinforcement learning describes tasks as an interaction between a learn-

ing agent and an environment. The agent is an algorithm, either running on

a computer, or a brain, or a robot. The environment can be anything that the

agent interacts with, from a simulation, to a game, to the real world. Con-

sider an agent that learns to drive a car. The agent is an algorithm running

on a computer within the car. The environment is the real world, where the

car is driving. At each point in time the agent chooses an action, such as how

to accelerate and steer, in response to the current situation.

Importantly, the agent is not set free in the environment to behave with-

out purpose. Its goal is to maximize a reward signal produced by the en-

vironment, which typically depends on the situation and the agent’s action.

The reward signal describes the most important properties of the behaviour

1

the human designer wishes the agent to learn to the agent. In games, the

reward is often the agent’s score, or a simply binary indicator of whether the

agent won which is only provided the end of the game. In a self-driving car

the reward would be larger if the agent drives well, and smaller when the

agent drives poorly or dangerously. To allow agents to find solutions that are

better than those already used by humans, the reward signal is usually only

non-zero in situations that are unambiguously good or bad. Moreover, the

agent does not know what the reward will be in every situation. So the agent

must explore the environment to identify which actions and which situations

will produce large reward. In general, changing the reward signal changes

the task that the agent learns to perform, even if the rest of the environment

is kept fixed. Together, the set of situations, actions, and rewards completely

describes an environment and its associated learning problem.

It is natural to imagine that an agent could learn how to do something in

the same way that humans do, namely by attempting to do it and learning

from mistakes that are made along the way. In a general sense, this is how all

the algorithms we study behave. As a field, we typically think of the problem

of learning to perform a task as two subproblems: that of learning, and that

of performing the task. For example, consider how a person behaves as they

learn how to cook. Sometimes, they experiment with flavors and techniques

to learn how they impact the final dish. Other times, they do their best to cook

something delicious. If the person always tries to cook delicious food, they

will lose out on critical learning experiences that might substantially improve

their cooking in the long run. A person might be able to intuitively identify

the cooking experiments that will help them learn quickly, but developing an

algorithm that learns as quickly is another challenge altogether.

Part of the challenge in developing learning algorithms is that they should

be applicable to a huge variety of problem settings — for example, an algo-

rithm that can only learn to predict stock prices is of limited use to society.

To ensure that algorithms can learn to do many tasks, RL uses an expressive

mathematical language to describe environments. Unfortunately, possessing

2

the language and understanding the environments that it can express are

quite different. We are especially interested in understanding why some en-

vironments are more difficult for agents to explore than others. While some

authors have tried to identify environments that embody disparate challenges

for RL agents (Langford 2018; Osband, Doron, et al. 2019), understanding

the relationship between an agent and its environment remains an exciting

area of research. We present several properties of environments that make

them easier or harder to explore in Chapter 3. These properties will help re-

searchers develop algorithms that learn efficiently in a wider variety of prob-

lem settings.

Just as it is useful to understandwhat kinds of environments exist and how

they impact learning, it can also help researchers to understand the different

heuristics that can guide exploration. There is a huge number of exploration

methods, but it is not immediately obvious how they relate to each other or

how they should be expected to perform in a given environment. In Chap-

ter 4 we categorize several recent exploration methods by the heuristic that

the method employs. Our categorization allows researchers to compare the

potential of each method and understand their unique contributions to the

field.

While discussing the fundamental properties of reinforcement learning

can be informative, it is often useful to observe the empirical behaviour of

algorithms as well. We present a carefully controlled empirical evaluation of

exploration methods in Chapter 5. These experiments are carried out in a set

of environments we design to reflect the exploration properties outlined in

Chapter 3. Ours is the first systematic study of a diverse set of exploration

methods in simple, interpretable environments. The results of our experi-

ments provide additional context to the results presented in the literature, as

well as a critical evaluation of our claims elsewhere in this thesis.

In summary, this work studies the environmental factors that make ex-

ploration difficult and surveys the different strategies that are used to drive

exploration in the literature. We categorize exploration methods according

3

to their underlying exploration strategies. Finally, we empirically compare a

selection of methods from each category on a set of environments that each

present a different exploration challenge.

Our proposed contributions are as follows:

1. We identify six distinct properties of environments that make explo-

ration difficult. These properties are derived from the mathematical

framework underlying RL problems, and are present in every environ-

ment to a different extent. By taking these properties into account,

exploration researchers can ensure that their methods address the full

scope of RL problems.

2. We design a set of six toy environments that each capture one of the

difficult exploration properties. These environments act as a test suite

in the sense that a general exploration method should be able to find a

near-optimal policy in these small toy environments.

3. We propose a novel categorization of online, model-free exploration

methods according to their underlying exploration heuristic. We iden-

tify new similarities between methods and discuss how these similari-

ties might affect learning.

4. We present an empirical study of existing exploration methods in the

difficult exploration environments described previously. We find that

Linear Upper Confidence Least Squares (Kumaraswamy et al. 2018) is

able to find a near-optimal policy in all the environments, while other

methods find suboptimal policies in at least one environment. We also

find that evaluation-phase performance is impacted more by algorithm-

level design choices than by the method’s exploration heuristic.

The purpose of this thesis is to study incremental, model-free, value-based

exploration in reinforcement learning. We begin with a review of the problem

setting, where we discuss the reasons that some problems are more difficult

4

to solve than others. We then survey the exploration literature and catego-

rize methods according to their underlying exploration strategies. Finally, we

study the empirical behaviour of each category of methods in environments

that pose distinct exploration challenges. By deconstructing the exploration

problem and a selection of value-based solution methods, we highlight the

importance of developing algorithms that simultaneously address every facet

of exploration.

5

Chapter 2

Background & Notation

This chapter begins by introducing the RL setting and the mathematical ob-

jects we consider in the rest of the thesis. We then outline two distinct prob-

lem settings that both fall under the exploration umbrella. After covering

the problem setting, we turn to solution methods. We first describe a simple

learning algorithm, then discuss algorithmic considerations that are relevant

to our experiments in Chapter 5.

2.1 Problem setting

The RL problem setting considers an agent interacting with an environment

over a series of discrete time-steps. At some time t, the environment is in

a certain configuration, or state, St. We use uppercase variable names to

denote random variables, and lowercase names to denote fixed quantities.

Depending on the state of the environment, the agent takes an action At. The

environment then generates a next state St+1 using a fixed probabilistic rule

that can only depend on the current state St and action At. In addition to the

next state St+1, the environment also generates a reward signal Rt+1 using a

fixed rule that can depend on the current state St, the current action At, and

the next state St+1. This model of agent-environment interaction is known as

a Markov Decision Process (MDP).

We restrict our attention to episodic environments, in which the agent’s

experience is partitioned into episodes. Each episode begins with a state S0

6

that is drawn from a fixed distribution p0. Episodes end when the agent

transitions into a special terminal state, which can be reached from every

state by at least one sequence of states and actions.

MDPs can be unrealistic in settings where the complete state of the en-

vironment is not available to the agent. For example, consider a gardening

robot. Suppose there are not sensors embedded throughout the garden, so

the robot can only observe the environment through the sensors on its body.

This gardening robot and its environment cannot be described by an MDP.

Fortunately, we can easily extend the MDP framework to model the garden-

ing robot.

Suppose that instead of receiving the complete state St, the agent only

receives an observation φ(St) that is a function of state. This model is a gen-

eralization of MDPs called a Partially Observable Markov Decision Process.

In this thesis we only consider MDPs and POMDPs with a finite number of

actions.

A learning agent’s goal is typically to maximize the rewards that it accu-

mulates over time. In this formalism, the agent must learn about the envi-

ronment at the same time that it maximizes reward. Trying to learn quickly

while at the same time accumulating reward creates tension between tak-

ing actions to explore unknown regions of the environment, and taking the

most rewarding actions given the agent’s current understanding of the en-

vironment. This formalism is therefore called the exploration-exploitation

problem after the tension between exploring the environment and exploiting

the agent’s knowledge.

Here we primarily discuss a simpler setting that lacks this tension, called

the pure exploration problem. In this formalism, the agent explores for a

finite number of time-steps. After this exploration phase, the agent suggests

a fixed behaviour strategy that it believes will accumulate a large amount of

reward. The agent is then evaluated by the amount of reward its proposed

behaviour accumulates over time.

7

2.2 Solution methods

Agents who solve the pure exploration problem typically learn a probabil-

ity distribution over actions in each state called a policy π, which describes

the behaviour the agent believes will lead to the largest amount of reward

over time. The reward a policy accumulates over time following a state St is

expressed by the discounted sum of future rewards, called the return:

Gt � Rt+1 + γ
2Rt+2 + γ

3Rt+3 + . . .

Here γ ∈ [0, 1] is a discount rate describing how much the agent cares about

rewards in the future relative to the immediate reward.

Since the environment and policy can be stochastic, the return is gener-

ally stochastic as well. Pure exploration agents therefore learn a policy that

maximizes the expected return, or value, from each state. The value of a pol-

icy π can easily be expressed in a state-value function, which maps states to

expected returns

vπ (s) = Eπ[
∞∑
k=0

γkRt+k+1 | St = s, At ∼ π(s)],

or in an action-value function, which maps state-action pairs to expected re-

turns

qπ (s, a) = Eπ[
∞∑
k=0

γkRt+k+1 | St = s, At = a],

where the expectation over the π implies that actions following At are sampled

from π.

2.2.1 Algorithms

In this section we discuss the two broad classes of reinforcement learning

algorithms which can be used to learn a policy π or action-value function

Qπ. The first are value-based algorithms, which learn an action-value func-

tion that forms the basis of their behavior. The second are policy-gradient

algorithms, which learn a policy parameterized by θ directly. Policy-gradient

8

algorithms learn by gradient descent on the objective J(θ) = ES0∼p0[vπθ (S0)].

In this work we focus on value-based algorithms.

Value-based algorithms learn using individual transitions from a state-

action pair to state-action pair. A transition is a tuple (St, At, Rt+1, St+1, At+1).

One of the simplest algorithms, Sarsa, takes its name from the order of the

variables in the tuple and in its learning update. At every time-step, Sarsa

updates its action-values as follows:

Q(St, At) ← Q(St, At) + α(Rt+1 + γQ(St+1, At+1) − Q(St, At)).

These action-value estimates learn the value of the policy π that generates the

stream of experience.

Value-based agents like Sarsa do not directly learn a policy, so how do they

address the pure exploration problem? Consider the action-value function Q

learned by Sarsa. At the end of the learning phase, the action-value function

Q can be converted into a policy by taking actions with maximal value in

each state. This process is called greedification, because the policy π acts to

greedily maximize the learned values. Greedy policies follow the constraint

π(a | s) > 0 ⇐⇒ Q(s, a) = maxb Q(s, b) for all states s. Since Sarsa learns

action-values for the policy it follows during learning, Sarsa’s performance in

the pure exploration problem is dependent on the performance of the policy

it is following when the learning phase ends.

Agents are not restricted to learning the values of the policy that they

follow. In the pure exploration problem, where the agent’s goal is to learn

an optimal policy π∗, it may be more appropriate to learn the action-value

function corresponding to an optimal policy. We note that optimal policies

have values in each state that are at least as high as those of every other

policy, and are guaranteed to exist in every MDP (Sutton and Barto 2018).

An algorithm that learns the optimal action-value function can accumulate a

small amount of reward during the learning phase because it is exploring, but

still propose a high-quality policy for the testing phase.

Q-learning (Watkins 1989) is one such algorithm. Its update rule looks

9

remarkably similar to that of Sarsa, but crucially Q-learning learns the values

qπ∗ of the optimal policy π∗, regardless of the policy that it is following. Sarsa,

in contrast, can only learn the values of the optimal policy π∗ if it is already

following it. Q-learning’s update rule is as follows:

Q(St, At) ← Q(St, At) + α(Rt+1 + γmax
a

Q(St+1, a) − Q(St, At)).

Both Sarsa and Q-learning can be used in POMDPs, where the agent re-

ceives an observation φ(St) rather than St at each time-step. In this case,

the action-values can be approximated by a linear or nonlinear function of

the observations φ(St). Many algorithms developed in the last few years

use deep neural networks to approximate the value function. While neu-

ral networks can express a huge space of functions, and they can be easily

trained using gradient descent, these so-called deep RL algorithms have a

huge number of hyperparameters whose effects are not well-understood the-

oretically. An agent can also estimate its action-values using a linear function

Q(φ(St), At) ≈ θ>φ(St) that is parameterized by a weight vector θ. Using a lin-

ear function to approximate action-values requires fewer hyperparameters,

and can be more easily analyzed theoretically (Melo et al. 2008; Zou et al.

2019).

2.2.2 Algorithmic considerations

There are a number of algorithmic adjustments that can be made to Sarsa and

Q-learning that change their learning dynamics. We describe a few below to

help contextualize the scope of our experiments in Chapter 5.

The Sarsa and Q-learning algorithms both learn from a single, continuous

stream of experience that is broken only by the beginning and end of episodes.

They only use the data from each transition (St, At, Rt+1, St+1, At+1) to do a

single learning update, before throwing that data away and moving on to

the next transition (St+1, At+1, Rt+2, St+2, At+2). We say that an algorithm that

learns using one transition at a time is an incremental algorithm. Incremental

algorithms contrast with batch algorithms like Least Squares Policy Iteration

10

(Lagoudakis et al. 2003), which use the entire history of data available to an

agent to compute a value function at once.

Learning updates can also be modified to use data from multiple transi-

tions at once. In n-step updates, the value function is updating using multiple

time-steps worth of data (De Asis et al. 2018; Hernandez-Garcia et al. 2019).

For example, the 3-step Sarsa update is

Q(St, At) ← Q(St, At) + α(Rt+1 + γRt+2 + γ
2Rt+3 + γ

3Q(St+3, At+3) − Q(St, At)).

The learning update can also use a mini-batch of transitions without any spe-

cific temporal structure, as in most algorithms that approximate their value

functions with neural networks such as DQN (Mnih et al. 2015). We restrict

our definition of incremental algorithms to those that use a single transition

at a time in their learning updates.

The final algorithmic adjustment we consider is the distinction between

so-called model-based and model-free algorithms. The original model-based

algorithms used a model of the environment to simulate transitions that the

agent would use to update its value function in an incremental manner (Sut-

ton 1991). Later work identified an equivalence between learning from tran-

sitions simulated by a model and randomly selected past transitions (van Sei-

jen et al. 2015). We therefore include algorithms that learn from samples of

past transitions under the model-based umbrella. Model-free algorithms are

those that learn without a model, which typically means that they update the

value function from temporally consecutive transitions from the immediate

past.

2.3 Summary

This chapter described the background necessary to understand the remain-

der of this work. We introduced the agent-environment interaction central

to RL and two mathematical models that represent this interaction, MDPs

and POMDPs. We also discussed two of the problem settings within RL: the

exploration-exploitation problem in which agents maximize the reward they

11

receive as well as their learning speed, and the pure exploration problem, in

which agents try to learn as quickly as possible without regard to the reward

they receive during learning.

We also discuss the objects that agents learn, namely policies and value

functions. We present Sarsa and Q-learning, two algorithms that learn value

functions using slightly different update equations. Beyond Sarsa and Q-

learning, there are several considerations that affect how an algorithm learns.

We identify incremental algorithms as those that use a single transition at a

time in their learning updates, andmodel-based algorithms as those that learn

from simulated transitions or from samples of past transitions.

12

Chapter 3

Categorizing Environments

From the perspective of any fixed learning agent, some environments are eas-

ier to learn than others. When designing algorithms — or even formulating

the MDP — it is important to understand what makes an environment more

difficult. In particular, it is important to identify the characteristics of MDPs

that make them more difficult to explore, and in which the agent is more

likely to find a suboptimal policy.

We outline six exploration properties that might cause an agent to learn a

sub-optimal policy, and give examples of environments that exemplify these

properties. These examples will be more thoroughly discussed in Section 5.1.

While the exploration properties we present are not complete, we believe that

each presents a distinct challenge to an exploring agent. We also consider ex-

tensions to the partially observable setting, where the environment presents

an observation rather than a Markov state.

3.1 Exploration properties concerning reward

In this section we present three properties of reward that make exploration

difficult for value-based RL agents. The reward signal represents how imme-

diately beneficial it is for the agent to take an action in a state. Since an agent

takes actions to maximize the discounted sum of rewards, the reward plays

a significant role in the agent’s decision-making.

13

Figure 3.1: Environment diagram for VarianceWorld. The agent starts in the
center of the environment and can move left or right. It receives a small, low-
variance reward when entering the terminal state on the left, and a large,
high-variance reward when entering the terminal state on the right. The
environment is about 20 steps across.

3.1.1 High variance rewards

Our first exploration property, high variance, simply increases the difficulty

of estimating any random variable. As the variance of the reward increases,

functions of reward from a state-action pair require more data to estimate

accurately. As a result, action-values are more difficult to estimate when re-

wards are high-variance, and the agent will expect suboptimal actions to be

optimal a larger proportion of the time. While this effect can be averaged out

over large numbers of runs, we argue that an algorithm with high-variance

performance is undesirable to use in practice.

This property is exemplified by VarianceWorld, a continuous navigation

environment adapted from White et al. (2010) presented in Figure 3.1. This

environment is a short, one-dimensional corridor with a small fixed reward on

one side and a large, highly varying reward on the other. The agent begins

in the center of the corridor, and episodes terminate when the agent visits

either end of the corridor. Despite its simplicity and similarity to a two-armed

bandit problem, this environment has proven to be a challenging environment

for exploration (White et al. 2010).

3.1.2 Misleading rewards

Reinforcement learning agents explore in state-action space by examining

local reward signals. If these local signals are misleading, the agent may fail

to make globally optimal decisions. Suppose the gradient of the reward with

14

Figure 3.2: Environment diagram for Antishaping. The agent starts at the
left of the environment and can move left or right. It receives a small reward,
which decreases as the agent moves right. The agent receives a large reward
when entering the terminal state on the right. The optimal policy is to move
right in every state. The environment is about 200 steps across.

respect to states points in the opposite direction of the gradient of the true

action-values in a large region of the state space. Then, as the agent explores,

its value function will reflect the gradient of the reward. Depending on how

heavily the agent relies on its action-value estimates to select actions, it may

fail to explore enough in the direction of greater return, and never visit the

most rewarding part of the state space at all.

Consider Antishaping, another one-dimensional corridor environment adapted

from Langford (2018) and shown in Figure 3.2. In this environment, the

agent starts at the left end of a one-dimensional corridor. As the agent moves

right, the reward it receives at each time-step decreases. However, at the right

end of the corridor there is a terminal state with high expected reward, so the

optimal policy is to always move right. Some agents may be incentivized to

focus their exploration on the locally rewarding left side of the environment,

and learn a policy with much lower value than the optimal one.

Misleading and high-variance rewards can be combined to create even

more difficult environments. For example, consider a modified version of the

Antishaping environment in which the agent does not always receive the large

reward at the terminal state. Instead, with large probability 1 − ε, the agent

will receive some minimal reward. Depending on ε, the agent can spend

arbitrarily many time-steps trying to verify that the right end of the corridor

15

Figure 3.3: Environment diagram for Sparse MountainCar. The agent starts
in the valley and can accelerate left or right. It does not have enough force to
move up the hill, so it must drive part-way up the left hill and then accelerate
towards the right to build up enough momentum to reach the goal. The agent
receives a reward when entering the terminal state on the right, and zero
reward otherwise. The optimal policy requires roughly 120 time-steps.

has high expected reward. The rewards in this example can be scaled to

make the policy of staying at the left end of the corridor arbitrarily worse

than staying at the right end.

3.1.3 Reward sparsity

When the rewards observed by the agent are all equal to zero, there is no

signal in the reward for the agent to optimize. In this case, the agent can only

expect all the state-action pairs it has visited to have a value of zero. This zero-

everywhere value function implies that all policies are equally rewarding.

The example environment for reward sparsity is a variant of the two-

dimensionalMountainCar problem (Moore 1990). In this environment, shown

in Figure 3.3, the agent must drive an underpowered car up a hill to a goal.

Driving uphill requires a sequence of mildly coordinated actions, but even an

agent that chooses actions randomly can reach the goal fairly frequently. The

original version of MountainCar uses a discount factor of 1 and a reward of

-1 at each time-step, which encourages agents to terminate episodes quickly.

16

As a result, the original version can be solved by a greedy Q-learning agent

(Sutton and Barto 2018). Sparse MountainCar uses a discount factor of 0.99,

and generates a reward that is positive when transitioning into the terminal

state, but zero everywhere else. We discuss the exploration challenges posed

by MountainCar and Sparse MountainCar further in Section 3.2.2.

Fortunately, zero reward almost everywhere does not prevent agents from

exploring. As we will see in Chapter 4, many exploration methods rely on the

heuristic "take actions that the agent has tried less frequently" when rewards

are sparse. This heuristic helps agents explore in the following way. Imagine

that states are arranged in a graph, with two states connected by an edge

if the agent has taken an action in one state to transition to the other. The

agent’s current state is connected to all other states that it has visited, while

unvisited states are not connected to any other nodes. By taking actions that

have been tried less frequently, the agent will move towards the boundaries

of this graph and eventually visit a new state. The agent can use this heuristic

to visit all of the state-action pairs in the MDP.

If the agent plans, as in model-based reinforcement learning, simply vis-

iting each state-action pair enough times to estimate their average rewards is

enough to identify the optimal policy. The agent can simply carry out plan-

ning updates, which are possible from any state, to learn the optimal action-

values. However, exploring the entire MDP is only one of the challenges that

reward sparsity presents to model-free agents. Model-free agents must visit a

state-action pair to update its value estimate, further increasing the amount

of time they need to explore before their action-value estimates reflect the

non-zero reward in far-away regions of the state space.

3.2 Exploration properties concerning transition
dynamics

In this section we present three properties of the transition dynamics that

make exploration difficult for value-based RL agents. Since any state-action

17

Figure 3.4: Environment diagram for WindyJump. The agent starts in the
center of the enviromnent and can move left or right. The agent receives a
small reward when entering the terminal state on the left, a large reward
when entering the green terminal state on the right, and a large negative
reward when entering the red terminal state on the right. Otherwise, the
agent receives zero reward. Movement on the right half of the domain is
highly stochastic. The environment is about 86 steps across.

pair can have large expected reward, agents must sample the entire state-

action space while learning their value functions. Environments in which it is

difficult to frequently visit all states can be challenging to explore, especially

when the states that are more difficult to visit have high reward. An envi-

ronment can also be challenging to explore if the states that are likely to be

visited cause the agent to believe that suboptimal actions are optimal. Lastly,

environments can be difficult to explore if the state-action space is quite large,

even if the optimal policy only visits a small fraction of state-action pairs. We

describe these properties, with examples, in more detail below.

3.2.1 High variance transitions

When transitions are high-variance, the sequence of states visited by an agent

are also high-variance. As a result, it can be difficult to estimate the value of a

state-action pair without a large number of samples. Consider a state-action

pair that might transition to one state with high-probability and another state

with low probability. Now suppose the high-probability state has low reward,

and the low-probability state has high reward. Similarly to the high-variance

18

Figure 3.5: Environment diagram for AlpineSki. The agent starts at the top
of the mountain, and can ski down to terminate the episode and receive a
small reward, or traverse to the right. If it traverses beyond the trees, it can
ski down to receive a large reward. The environment is about 20 steps across.

reward case, samples of the return from the original state-action pair are high-

variance, and the agent may require many samples to accurately estimate the

mean return.

We can modify the high-variance reward domain to have high-variance

transitions in the WindyJump domain, shown in Figure 3.4. Again, the left

end of the environment contains a small, terminating reward. The right half

of the environment now has highly stochastic transitions that may move the

agent to any state in a certain region around the agent’s current position. At

the right end of the environment is a goal region, with a pit immediately left

of the goal. If the agent falls into the pit it receives a very small reward, but if

the agent reaches the goal region it receives a very large reward. The optimal

policy is to move towards the goal region. Due to the stochastic transition

dynamics, even the optimal policy has high-variance returns from most state-

action pairs.

19

3.2.2 Antagonistic transitions

These environments are difficult to traverse unless the agent takes the correct

sequence of actions. In some environments it is easier to imagine that the

agent is trapped within a certain set of states unless a sustained effort is

made to visit outer states. For example, the RiverSwim environment uses a

leftwards-flowing "current" that makes it much easier to move to the left in the

MDP than to the right. Since MDPs with antagonistic transitions require more

time-steps to traverse, it can take a large amount of time to obtain samples

from outer state-action pairs.

The transition dynamics in environments like RiverSwim are not as an-

tagonistic as other domains, such as ComboLock (Langford 2018), DeepSea

(Osband, Roy, et al. 2019), or IndexQuery (Du et al. 2019). In these en-

vironments, a large reward is given to the agent at a certain goal state or

state-action pair. The trick is the goal can only be reached by following a

unique sequence of state-action pairs. Since this sequence must be followed

exactly to reach the high-value state, stochasticity in the agent’s action selec-

tion or environment can easily cause the agent’s trajectory to deviate from

the sequence. The transition dynamics in these environments are antagonis-

tic due to the deterministic connectivity between states in the MDP, rather

than gravity in the transition probabilities.

Note that environments with antagonistic transitions do not necessarily

have to have sparse rewards. The rewards can have any structure, as long

as the policy that most frequently reaches the goal is much better according

to the desired evaluation metric. The environments mentioned above all use

sparse rewards tomake explorationmore difficult, and DeepSea even includes

a high-variance reward at the goal state.

We give another example of an environment with antagonistic transitions

inspired by Combolock called AlpineSki, which is shown in Figure 3.5. In

AlpineSki the agent begins each episode at the left side of a mountaintop,

which is represented by a one-dimensional corridor. At any time-step, it can

20

choose to ski down and receive a reward. The agent prefers to ski down at the

right side of the mountain, where it receives a large reward. If it skis down

anywhere else the agent recieves a small reward. The only way to reach the

right side of the environment is to consistently take a ’traverse’ action. This

action sequence is unlikely to be executed by agents with stochastic policies.

In contrast with DeepSea, AlpineSki episodes can last forever, and there is

no stochasticity in the reward. As a result AlpineSki presents a simple and

focused exploration challenge.

Transition dynamics in Sparse MountainCar

Having introduced antagonistic transitions, we can now make a final point

concerning the (Sparse) MountainCar environment. MountainCar has a two-

dimensional state space, but it is impossible to travel through the state space

in a straight line from the start to the goal— instead, the optimal policy traces

out a spiral. Intuitively, this description suggests that MountainCar is difficult

because of its transition dynamics. However, a Q-learning agent can find the

optimal policy in MountainCar without using any exploration method at all

(Sutton and Barto 2018). We interpret Q-learning’s performance to mean

that MountainCar does not possess antagonistic transitions. Since Mountain-

Car does not pose an exploration challenge, the difficulty of exploration in

Sparse MountainCar can be attributed to its sparse rewards.

3.2.3 Number of states and actions

In the general case, every state and action in an MDP must be explored to

identify the optimal policy. Even if an agent uses a function approximator

that can generalize over state-action pairs, it may generalize incorrectly if it

doesn’t explore sufficiently thoroughly. As a result, large state-action spaces

force the agent to explore for longer periods of time, even when the optimal

policy only visits a small fraction of the state space.

Since any environment can be made trivially more difficult to explore by

adding states and actions that are not visited by the optimal policy, our exam-

21

Figure 3.6: Environment diagram for Hypercube. The agent starts in the
center of a hypercube and can move in either direction along any axis. To
help the agent explore, the reward increases by a factor of around 1

1−γ for
each additional wall the agent touches. When the agent touches a corner of
the hypercube, the episode terminates with a large reward. The hypercube
has a radius of roughly 10 steps.

22

ple environment demonstrates a different effect. We propose the Hypercube

environment, which is a small n-dimensional cube shown in Figure 3.6. The

agent can move in either direction along any of the axes, with the goal of

reaching one of the corners of the hypercube, where the episode terminates.

To help the agent reach a corner, a shaping reward is provided to the agent

that depends on the number of walls it is touching. While the number of

states and actions both increase exponentially with the number of dimen-

sions, the symmetry in the environment means that the number of corners,

or goal states, increases exponentially as well. This symmetry tempers the

difficulty of exploration, especially if the agent can generalize accordingly.

3.3 Combining difficult rewards and transition dy-
namics

Transition dynamics can have an even greater effect when combined with

misleading rewards — we consider the simple example of RiverSwim (Strehl

et al. 2008). In RiverSwim, a current pushes the agent to the left, where at the

end of the river the agent can continuously receive a small reward. However, if

the agent swims upstream, to the right, it will eventually find a state where it

continuously receives a large reward. Between the small downstream reward

and the relative difficulty of swimming upstream, some agents never explore

the high-value state at the source of the river.

3.4 Impact of the state representation

The exploration problem changes slightly when the the agent only sees a par-

tial observation φ(St) rather than the complete state St. The above properties

will generally still apply in partially observed settings, especially those based

on modifying the reward. Due to the close relationship between the state

representation and the state transition dynamics, the exploration properties

related to the transition dynamics should be interpreted in the context of the

agent’s function approximation. For example, if the agent’s function approx-

23

imation generalizes appropriately, it may be able to learn more quickly in

an environment with a large state-action space by sharing weights between

similar state-action pairs. However, if the function approximation generalizes

poorly, those same shared weights will induce incorrect beliefs, and the agent

will spend an extended period of time exploring.

How the state representation interacts with exploration is an active area

of research. Quite recently, Lattimore et al. (2019) showed that near-optimal

policies can be identified in time polynomial in the function approximation’s

error, number of features, and horizon γ. The runtime of their algorithm

notably does not depend on the size of the state-action space. This result

relies on features that are able to express the optimal value function fairly

closely, including for example generalizing between similar state-action pairs,

as discussed previously. For further discussion see Du et al. (2019) or Van

Roy et al. (2019). While reinforcement learning may be efficient with the

appropriate choice of features, it remains to be seen whether those features

can be learned efficiently during interaction with the environment.

3.5 Summary

Reinforcement learning problems can be made more difficult by modifying

the distribution of rewards or state-action transitions. Variance in rewards

and state-action transitions can increase the number of samples necessary to

estimate the optimal value function. If an agent’s behaviour relies too heav-

ily on its value estimates in early learning, misleading rewards can cause the

agent to stop exploring prematurely. Antagonistic transitions can have a sim-

ilar effect. Alternatively, they can greatly extend the exploration time if the

agent is committed to a minimum number of samples from each state-action

pair. Sparse rewards lack information thatmay help guide exploration in early

learning, which can be exacerbated by large state-action spaces. Model-free

algorithms also take longer to propagate information through environments

with large state-action spaces since they only update the value of state-action

24

pairs when visiting them.

Partial observability adds another layer of complexity to the reinforcement

learning problem, but not all is lost. Agents in this regime estimate the value

function using a function approximator, whose generalization properties may

help the agent avoid sampling every state-action pair. Several authors (Latti-

more et al. 2019; Van Roy et al. 2019) have recently identified characteristics

of feature representations that are necessary for agents to learn near-optimal

policies in polynomial time. It remains to be seen whether it is possible to

learn such features efficiently in an online and incremental manner.

25

Chapter 4

Exploration methods

Now that we have seen how environments can challenge a reinforcement

learning agent, it is time to review the literature and see what kinds of ex-

ploration methods have been proposed. To focus the thesis and our empirical

study, we restrict our attention to value-based agents that are incremental and

model-free. Despite these restrictions, a large body of exploration research

remains within our scope.

Notably, we omit methods that behave according to a softmax (Duncan

1959) or Boltzmann distribution over the action-values. This strategy is typ-

ically used with policy gradient methods (Degris et al. 2012), or in entropy

regularized reinforcement learning (Asadi et al. 2017; Azar et al. 2012; Haarnoja

et al. 2017; Kozuno et al. 2019; Nachum et al. 2017; Peters et al. 2010; Still

2009), which effectively changes the MDP being solved. Neither of these set-

tings are within our scope.

There are three main approaches that drive exploration methods. The

first approach, optimism, takes actions if they are part of a policy that might

be optimal. The second approach measures the agent’s learning progress ac-

cording to the error in some prediction, and encourages the agent to revisit

states where it can learn more quickly. The third approach behaves greedily

according to the agent’s value function, but adds noise so that exploratory

actions are chosen by chance.

Optimistic methods choose actions greedily with respect to a plausible

model of the environment, often represented by a value function. They de-

26

termine whether an action could be optimal using one of two strategies: Opti-

mism in the Face of Uncertainty (OFU), or Thompson Sampling. takes the ac-

tion with the highest value according to some index. The index is frequently

an upper confidence bound on the optimal action-value function, or some

proxy thereof. At each time-step, the action with the highest index, or high-

est potential value, is chosen in each state. This strategy is called Optimism

in the Face of Uncertainty because the agent behaves as if this high potential

value can be realized.

What does OFU have to do with exploration? Well, an upper confidence

bound (or its proxy) might be high for two reasons. It could be a tight bound,

in which case the action is known to have a high value. It could also be a loose

bound, in which case not much is known about the action. The exploration

problem asks when it is appropriate to exploit known high-value actions and

when it is necessary to explore lesser-known actions further. By identifying

a measure that expresses uncertainty in the same units as value, OFU can

leverage existing statistical tools to efficiently test the most relevant actions.

While OFUmethods are deterministic, our next strategy is inherently stochas-

tic. This strategy maintains a distribution over value functions that estimates

how probable it is that any given value function is optimal. The agent samples

a value function from the distribution and behaves greedily, or optimistically,

with respect to the sampled function. The experience it gains is then used to

update the distribution. This strategy is called Thompson Sampling (TS) after

Thompson (1933), who applied it to a simple bandit. In its original Bayesian

formulation, the probability mass will eventually be concentrated over the

optimal value function. However, some recent implementations do not up-

date the distribution in a Bayesian fashion. In problems where it is difficult

to design a confidence interval that is both statistically and computationally

efficient, Thompson Sampling often outperforms OFU methods (D. J. Russo

et al. 2018).

Explorationmethodsmust ensure that states are sampled sufficiently often

to learn a high-value policy. But how can the agent know when it has enough

27

samples? Our next strategy uses the learning progress of a secondary function

to chart how optimistic the agent should be. Suppose that in addition to

learning action-values, the agent also estimates the output of an arbitrary

function over the agent’s feature space. Then, the error in this secondary

prediction approximates how well the agent has learned the value function in

the corresponding region of the state space. A high secondary error suggests

that the agent may not have observed enough samples from that region of the

state-action space, and is converted into a reward or value bonus.

The Learning Progress methods we survey all behave greedily with re-

spect to value estimates that are inflated by a bonus. Despite their use of in-

flated value functions, we claim that Learning Progress methods are concep-

tually distinct from Optimistic methods. Optimistic methods are optimistic

in a statistical sense; their inflated value estimates are inflated to form an

upper confidence bound on the true value estimates. Their use of confidence

bounds means that Optimistic value bonuses decay polynomially in the num-

ber of samples that the agent observes. In learning progress methods, value

bonuses decay as quickly as the auxiliary function is learned. Since most of

the surveyed methods learn their auxiliary functions using gradient descent,

the auxiliary function’s error decays exponentially in the number of samples

seen by the agent. These different decay rates are the primary reason we

do not believe Learning Progress methods are rough approximations of OFU

methods.

The third approach to exploration is to add noise to the value function or

action-selection mechanism. This noise can be fixed or adapt according to

the agent’s experience. While adding noise is a heuristic, these methods have

enjoyed a long history of empirical success, and are among the most popular

exploration methods used today (M. Bellemare et al. 2016).

28

4.1 Optimistic methods

In this section we describe the properties of Optimistic exploration methods,

including OFU and Thompson sampling methods. These methods behave

greedily, or optimistically, with respect to a statistically plausible value func-

tion. The restriction to statistically plausible value functions typically means

that these methods’ optimism decays with 1√
(n)

in the number of samples as

it would decay in a confidence bound. The rigorous statistical theory un-

derlying optimistic methods has resulted in strong performance across many

implementations and domains.

4.1.1 Optimism in the Face of Uncertainty

There is no shortage of OFU exploration methods. This line of study focuses

on maintaining upper confidence bounds over action values, and taking the

action with the highest upper bound on each step. These methods are based

on the famous Upper Confidence Bound algorithm (T. L. Lai et al. 1985) for

multi-armed bandits. OFU is typically used in RL by adding a per-step uncer-

tainty estimate to the reward during the learning update. This update creates

an approximate confidence interval around the value function, and was intro-

duced to RL through the Interval Estimation Q-learning (IEQL+) algorithm

(MEULEAU 1999). IEQL+ inspired a model-based algorithm with strong

theoretical guarantees called Model-Based Interval Estimation—Exploration

Bonus (MBIE-EB) (Strehl et al. 2008) which is the foundation of most recent

model-free OFU methods.

The first extension of MBIE-EB to the non-linear function approximation

setting combined Deep QNetworks (DQN) (Mnih et al. 2015) with MBIE-EB’s

approximate confidence intervals (M. Bellemare et al. 2016). These intervals

were computed with approximate state-visitation counts, computed with the

help of a separate network that estimated the probability of visiting each

state. This work inspired awave of papers that extend themethod by counting

state visitation counts in different ways.

29

One method hashes observations into clusters, and counts the frequency

of visitation to each cluster (Tang et al. 2017). Other methods use the agent’s

existing feature representation to estimate state visitation: φ-pseudocounts

approximates state visitation frequency based on the distribution of activa-

tions of the agent’s features (Martin et al. 2017).

More recent methods use value functions of different rewards to count

state visitation. DORA (Choshen et al. 2018) predicts a single constant-zero

value function that is initialized to one everywhere, then use a log-transform

of the values to approximate state visitation. State visitation can also be

approximated by the L1 norm of a vector called the successor representa-

tion (Machado, M. G. Bellemare, et al. 2018). The successor representation

(Dayan 1993) contains one value function for each feature, where the reward

is the magnitude of that feature on each time-step.

However the agent counts how often it has visited a state or state-action

pair, the above methods all encourage exploration by adding a multiple of
1

n(s)2 to the agent’s reward, where n(s) is the number of visits to state s.

While most of the OFU methods we survey use a reward bonus to ap-

proximate an upper bound on the value function, upper bounds can also be

estimated directly. Kumaraswamy et al. (2018) propose a method called Lin-

ear Upper Confidence Bound Least Squares (L-UCLS), which estimates the

variance of the value function using a second set of weights. The variance

estimate is then used to construct an upper confidence bound on the values.

At each time-step, the agent takes the action that has the highest upper con-

fidence bound.

4.1.2 Thompson Sampling

Thompson Sampling (TS) requires the agent to sample a solution from a dis-

tribution and test its performance. The following methods each represent a

distribution over value functions and behave greedily with respect to samples

from the distribution. We note that L-UCLS’s variance estimates can be used

to construct an OFU method that behaves greedily with respect to upper con-

30

fidence bounds, or a TS method which samples from a distribution over value

functions on each time-step.

Gal et al. (2016) represent their value function distribution with a single

neural network. The authors show that a popular method to prevent overfit-

ting called dropout (Srivastava et al. 2014) can enable the network to rep-

resent a distribution. Dropout randomly excludes nodes from each forward

pass, allowing the network to generate samples. This method can be easily

extended to any reinforcement learning agent that uses a neural network to

represent the value function.

Alternative techniques such as the statistical bootstrap can also be used

to maintain and sample from a distribution over value functions. Bootstrap

DQN (Osband, Blundell, et al. 2016) uses a set of neural networks or other

function approximator to construct a bootstrap distribution. Bootstrap DQN

explores by choosing actions greedily with respect to a randomly selected

value function. The authors stress the importance of using the same bootstrap

sample for the duration of an episode, which allows the agent to coordinate

its behaviour over multiple time-steps.

The randomization in a bootstrap sample that drives exploration exclu-

sively comes from data from the environment. Early exploration can be im-

proved by adding an initial source of randomness, as in Bootstrap DQN with

Randomized Prior Functions (Osband, Aslanides, et al. 2018). These ran-

domized prior functions also motivate the agent to explore in the absence of

environmental stochasticity.

4.2 Learning progress methods

In addition to learning an action-value function, learning progress agents

learn an secondary function over a state-action feature space. The errors in

predictions of the secondary function act as a proxy for errors in the value

function, providing a signal roughly describing how well the value function

has been learned. Note that the secondary function does not need to mir-

31

ror the value function by mapping features to real numbers. For example,

some methods learn models of the environment dynamics with their sec-

ondary functions. However, these methods are still considered "model-free"

because they do not update the value function using transitions generated by

the model.

When the agent receives observation signals rather than state, it is of-

ten useful to preprocess the observations into a more compact space before

making a prediction. Stadie et al. (2015) begin by learning a compact em-

bedding of the observation using an autoencoder. The current observation’s

embedding is used to predict the code of the next time-step’s observation. The

corresponding error is passed to the RL agent as a reward bonus. Since this

method predicts embeddings of observations, this method is most appropri-

ate when every observation contains enough information to create a Markov

state.

The observation code learned by an autoencoder may capture information

that is irrelevant to the agent’s policy. A different preprocessing approach is to

use the features learned by amodel that predicts the current time-step’s action

given the current and next observations (Pathak et al. 2017). At each time-

step, the current action and features are used to predict the next time-step’s

features. Then, the prediction error is passed to the agent as a reward bonus.

In this method, the model only needs to learn features of the observations

that cause or are caused by actions. In particular, there is no incentive for it

to learn features of the environment that are not controllable by the agent.

This differs from an observation embedding learned by an autoencoder, which

might learn any number of irrelevant features, unnecessarily increasing the

difficulty of the resulting prediction problem.

In some situations the prediction error may not behave as desired to guide

exploration. For example, a state that generates a random observation will

always result in a high prediction error, even after the agent observes many

samples. This affinity for stochastic observations can be avoided if the agent’s

secondary function predicts a deterministic target rather than a stochastic tar-

32

get like the next observation. In Random Network Distillation (Burda et al.

2018), the secondary function f̂w (St) with weights w predicts a fixed, ran-

domly initialized target f (St). Since the target function is deterministic, the

agent will not receive large reward bonuses for visiting stochastic areas of the

environment. However, as desired, the prediction error will decrease as the

agent observes more samples each region of the state space.

A common theme in learning progress agents is that their reward bonuses

decay at the rate that the agent learns its secondary function. Since most

methods learn using a variant of stochastic gradient descent, the learning

rate is geometric in the number of samples. This learning rate is preserved in

a method called Optimistic Initialization, which implements exploration by

decreasing the agent’s action-value estimates.

4.2.1 Optimistic Initialization

The final Learning Progress method is Optimistic Initialization, which ex-

plores by acting greedily with respect to an initially inflated value function.

We describe it in detail and discuss our reasons for categorizing it as a Learn-

ing Progress method rather than an Optimistic method.

When an optimistically initialized agent first takes an action a from a state

s, it discovers that the resulting reward is not nearly as high as the agent ex-

pects. To compensate, the agent decreases its action-value estimate Q(s, a) for

the action that it took. Since Q(s, a) is now lower than action-values for un-

explored actions, the agent will choose a different action next time it revisits

that area of the state space.

At first glance, Optimistic Initialization does not appear to be a Learning

Progress method, or even a proper exploration method at all. However, it

has the characteristics of a Learning Progress method: it behaves greedily

with respect to an inflated value function, the value function is inflated by the

prediction error of a secondary function, and the error decays geometrically in

the number of samples observed by the agent. It is easy to see that Optimistic

Initialization behaves greedily with respect to inflated values, but it is harder

33

to see what acts as the secondary function.

The secondary function can be found by considering the difference be-

tween the value estimates learned by an optimistically initialized agentQopt
t (s, a)

and by an agent with a different initialization scheme Qt (s, a). Call the dif-

ference

Q+t (s, a) = Qopt
t (s, a) − Qt (s, a). (4.1)

In most RL algorithms such as Sarsa, there is no difference between learn-

ing the combined value function Qopt
t with a reward of ropt = r+0, or learning

the value functions Qt and Q+t separately with with rewards of r and 0 respec-

tively, where r is the reward signal from the environment. Not only will both

processes produce the same final value function Qopt(s, a) = Q(s, a) = q(s, a),

but equation 4.1 will also hold during learning, as long as both processes

learn from the same trajectory of experience.

Notice that the secondary function Q+t has a target that is 0 everywhere.

Consequently, its error at a state-action pair (s, a) is simply Q+t (s, a) itself. So

Optimistic Initialization is a Learning Progress method that uses the error in

its secondary function Q+t (s, a) − 0 as a value bonus to inflate its action-value

estimates Qt (s, a).

Astute readers may notice that equation 4.1 does not hold in general when

Q-learning is used, because the same action might not maximize the value of

the next state for both Qt and Q+t . On those time-steps, Qopt
t ≤ Qt +Q+t due to

Jensen’s inequality. Fortunately, as long as the agent behaves greedily with

respect to the combined action values, the Q-learning update and the Sarsa

update become identical, so equation 4.1 will always hold. The underestima-

tion due to Jensen’s inequality only appears when optimistic initialization is

combined with another exploration technique like epsilon-greedy.

Optimistic Initialization is implemented slightly differently depending on

the function approximation used by the agent. If the agent’s value function is

estimated with a linear function of weights or in a table, over-estimation can

be ensured by simply setting the initial weights much higher than the designer

expects they should be in the optimal value function. However, methods that

34

update weights globally, like neural networks, typically do not maintain initial

overestimation during learning. Optimistic Initialization can still be used in

neural networks by decreasing the rewards instead of increasing the initial

values (Machado, Srinivasan, et al. 2015).

4.3 Noisy methods

These methods are among the oldest exploration heuristics to be used in rein-

forcement learning. They are also the onlymethods we survey that randomize

action-selection on every time-step, falling into the category of undirected ex-

ploration (Kumaraswamy et al. 2018; Thrun 1992). These methods can take

exponentially many time-steps to exploring environments with antagonistic

transitions (Osband, Roy, et al. 2019). Despite their theoretical shortcomings,

these methods are simple and are the most commonly used in practice.

Epsilon-greedy is an incredibly popular strategy that randomizes the agent’s

choice of actions. It usually selects the action with the highest estimated

value, but with probability epsilon it selects a random action. Since the ex-

ploration is independent across time-steps, it is difficult for the agent to visit

distant states that would not otherwise be visited by the greedy policy. De-

spite this limitation, epsilon-greedy exploration is sufficient for Q-learning to

converge to the optimal policy in tabular MDPs (Melo 2001; Tsitsiklis 1994),

and frequently improves performance when using function approximation as

well.

Rather than randomizing the policy, the agent can randomize the action-

value function as well. This is the idea behind Noisy Networks (Fortunato

et al. 2018), which parameterizes the value function with mean and noise

parameters. To calculate the values, the noise parameters are multiplied by

a sample from a fixed, zero-mean noise distribution and added to the mean

parameters. The noise parameters are updated using gradient descent in the

same manner as the mean estimates, creating a simple method whose ex-

ploration is tuned automatically as the agent learns. A similar method is

35

presented by Plappert et al. (2018).

4.4 Summary

We have reviewed a wide range of methods that have been used to explore

in incremental, online, and model-free reinforcement learning. There are

three main categories of methods. Optimistic methods, which can be fur-

ther divided into those based on OFU and Thompson Sampling, take actions

that could plausibly have high value. Learning progress methods adjust the

actions the agent takes based on the learning progress of another function.

Finally, Noisy methods randomize the agent’s action-selection process to ex-

plore around the agent’s estimate of the optimal policy. In Chapter 5 we

outline a set of experiments to better understand the empirical performance

of these exploration methods.

36

Chapter 5

Experimental setup

We examine a selection of exploration methods and evaluate their perfor-

mance on a series of simple environments. The selection consists of repre-

sentative methods from each category defined earlier in Chapter 4. To keep

the experiments practical we restrict our scope to incremental, model-free

methods whose computation scales linearly in the number of features every

time-step. These methods only use the data from each transition once to

update the value function, then throw the data away.

Each exploration method is adapted to work with a Q-learning agent with

tile-coded linear function approximation augmented by a bias feature. Our

environments are modeled after the properties described in Chapter 3 They

are each designed to present a single challenging facet of the exploration

problem in reinforcement learning.

Since this is the first systematic empirical study of value-based exploration

in RL, we consider the most fundamental exploration setting. This setting is

pure exploration, in which agents explore for a certain amount of time and

then output a near-optimal policy. Pure exploration provides a simple, con-

crete evaluation metric — the performance of the final output policy. Perfor-

mance is harder to measure in the exploration-exploitation tradeoff because

both the reward accumulated during learning and the quality of the final

policy must be accounted for.

The following experiments are split into a training phase and a testing

phase. The training phase lasts 500000 time-steps, which is more than suffi-

37

cient to learn the optimal policy in each of these environments. In the testing

phase, the agent’s learning and exploration mechanisms are disabled, and

performance of the greedy policy with respect to the agent’s value function

is evaluated for 100000 time-steps. The testing phase is long so that there

is time to average over stochasticity in the environment or starting condi-

tions. Episodes are not cut off for any reason unless the budgeted number of

time-steps is exceeded.

Each hyperparameter is swept over a group of candidates that were cho-

sen based on reported values from the papers that originally proposed these

exploration methods. They are appropriately diverse, since most methods

performed best with different settings on each environment, and rarely per-

formed best with the most extreme parameter settings.

We chose hyperparameters, including function approximation settings,

separately for each environment. Since performance tended to be distributed

bimodally, we identified the best hyperparameters by their median cumula-

tive reward during the testing phase. Each hyperparameter setting was run

72 times to ensure that the median was representative of the underlying dis-

tribution over performance.

It is unclear whether there is a sensible way to disable exploration during

the testing phase for some of the tested methods. Both the ensemble learned

by BootstrapQ and the random value function learned by NoisyNetwork can-

not easily be determinized, so we opted to evaluate the frozen ensemble and

random value function while keeping their exploration strategies intact. Soft-

maxAC also learns an inherently stochastic policy, so we allowed the policy to

be stochastic during the testing phase.

5.1 Environments

The following environments are designed to be as simple as possible. They

have continuous state, which contributes to their partial observability, and

simple finite action sets. In these experiments we use a discount factor of

38

γ = 0.99. Each environment is structured so that the value of the optimal

policy from the start state is roughly 1. In some of the environments, agents

who do not explore enough will tend to learn a specific suboptimal policy.

These suboptimal policies have a value around 0.01 from the start state.

5.1.1 High-variance reward: VarianceWorld

This environment is adapted from the noisy reward navigation task by White

et al. (2010). In many ways it is similar to a multi-armed bandit. The agent

starts near the center of a one-dimensional corridor, roughly 10 steps away

from either edge. The state is a corridor, represented by (0, 1). The agent

starts uniformly in state [0.45, 0.55], and has two actions that move the agent

to the left or the right according to a N (1
20, 10

−4) distribution. Episodes ter-

minate when the agent moves past s = 0, in which case the agent receives

0.011 reward, or past s = 1, in which case the agent receives reward drawn

uniformly from 10, −10, 1, −1, 5.5. As promised, the ‘always go left’ policy

has a value near 0.01, and the ‘always go right’ policy has a value near 1.

5.1.2 Misleading reward: Antishaping

This environment was adapted from Langford’s (2018) Antishaping environ-

ment. It is also a corridor with state in (0, 1), and the agent starts uniformly

in [0.45, 0.55]. In this environment it takes 100 steps to reach the edge,

as agents can move N (1
200, 10

−4) to the left or the right. The reward signal

in Antishaping is designed so that the policy that moves to s = 0.5 and re-

mains there forever has a discounted value of about 0.01, as measured from

the start state distribution. For this implementation, the non-terminating re-

ward in state s is PN (0.5−s)/0.15
3989 , where PN is the probability density function

of a standard normal distribution. Antishaping also provides a reward of 2.73

when the agent terminates the episode by exiting the boundaries of the corri-

dor. This terminal reward was chosen so that the expected start state’s value

under the policy that always moves towards the nearest end of the corridor

is roughly 1.

39

5.1.3 Sparse reward: Sparse MountainCar

The MountainCar environment (Moore 1990) is a classic toy problem in RL.

The agent is an underpowered car that uses momentum to drive to the top

of a hill, where the episode terminates. The reward is typically −1 per time-

step, incentivizing discounted agents to terminate the episode as quickly as

possible. In our implementation, the reward is 0 everywhere, with 3.34 re-

ward upon termination. This reward was chosen so that the optimal policy

has value close to 1 in the start state distribution. MountainCar’s dynamics

are defined by the position xt, velocity ẋt, and action At ∈ {−1, 0, 1} of the

agent-car. The following state update rules are copied from Sutton and Barto

(2018) for the reader’s convenience.

xt+1 = bound [xt + ẋt+1]

ẋt+1 = bound [ẋt + 0.001At − 0.0025 cos(3xt)]

The bound operator keeps the position within [−1.2, 0.5] and the velocity

within [−0.07, 0.07]. If the dynamics update causes the agent’s position xt+1

to go beyond −1.2, the velocity ẋt+1 is set to 0.

5.1.4 High-variance transitions: WindyJump

The WindyJump environment is similar in spirit to the VarianceWorld envi-

ronment, this time creating stochasticity in samples of the return by random-

izing the state transition dynamics rather than the rewards. Episodes begin

with the agent standing in a corridor represented by [0, 1], in a state drawn

uniformly from (0.45, 0.55). The agent’s goal is to jump over a pit on the

right side of the environment to reach a large reward of 9.5. The location

of the pit corresponds to (1, 1.06]. Whether the agent jumps over the pit or

falls into it, the episode terminates when the agent leaves the [0, 1] interval.

There is also small reward of 0.01γ−43 at the left end of the corridor.

WindyJump has two actions, which behave quite consistently in the left

half of the environment where there is nowind, and quite stochastically on the

40

right half of the environment where there is wind. In the wind-free region, the

agent can move left or right according to a N (0.0116, 10−4) distribution. On

the windy right half of the environment, the agent’s movement is much more

stochastic, going left or right according to aU (−0.1, 0.125) distribution. The

value of the policy that always takes the left action is roughly 0.01, while the

value of the policy that always takes the right action is roughly 1.

5.1.5 Antagonistic transitions: AlpineSki

AlpineSki is a simple combinatorial search problem inspired by Combolock

(Langford 2018) and a highway commute environment (D. Russo 2019). The

agent is an alpine skier moving downhill towards the bottom of the mountain,

where the episode terminates. At each time-step, the skier can choose to ski

down, terminating the episode, or to traverse across the top of the mountain

in search of a steeper slope. We represent the top of the mountain with a state

s ∈ [0, 1], where the skier starts at s = 0. The traverse action moves the agent

to the right according to a N (1
20, 10

−4) distribution. The skier prefers to ski

down sufficiently steep slopes, which can be found by taking the ski action

in states s ∈ [0.95, 1]. Skiing down a steep slope results in a reward of γ−20,

whereas skiing down another slope results in a reward of 0.01. Like the other

environments, the value of the optimal policy from the start state is roughly

1, and the value of skiing down immediately is 0.01.

5.1.6 Large state-action space: Hypercube

The Hypercube environment has a very large 3-dimensional state-space. As

you may have guessed, the environment is a hypercube represented by s ∈

[−10, 10]k. The agent starts each episode at the origin, and can move in ei-

ther direction along any of the axes by a distance sampled from N (1, 0.152).

The objective of the agent is to travel to the corner of the hypercube, where

the episode will terminate. Since the state-action space is so large, we add

shaping rewards to help the agent find the optimal policy. The agent receives

increased reward as it touches more walls of the hypercube. The increase in

41

reward when the agent touches another wall is such that the reward from one

time-step of touching 2 walls is larger than the discounted return from touch-

ing just one wall forever. The rewards are 7.3 × 10−7, 8.1 × 10−5, 9 × 10−3,

and 1.245}. They are scaled so that the optimal policy has a value near 1 at

the origin.

5.2 Exploration methods included in the study

We test variations of each representative method where applicable. For ex-

ample, reward bonuses based on state visitation can also be computed from

state-action visitation. We also test three different settings of tile-coding to

empirically study the relationship between an algorithm’s features and how

it explores during learning.

Tile-coding differs from neural networks, the typical non-linear function

approximation used in reinforcement learning, in two major ways. First, neu-

ral networks must be augmented in several ways to become stable enough to

use with reinforcement learning (Mnih et al. 2015). These augmentations in-

teract with reinforcement learning in ways that are not yet fully understood,

as well as adding several hyperparameters that must be appropriately tuned.

As a result, using linear function approximation is both more interpretable

and less computationally taxing than using neural networks for reinforce-

ment learning.

Second, tile-coded features are fixed over time. If a tile-coded feature is

activate, it is always caused by the same phenomenon in the agent’s observa-

tion. The closest analogue to linear features in neural networks is the nodes

in the last layer of the network. However, neural networks typically learn

features concurrently with the value function, so the same node in the last

layer may be activated by different environmental phenomenon at different

time-steps during learning. In a general exploration context, an agent would

have to learn a mapping from some compression of its experience to expected

returns. Unfortunately, this is an open problem and remains an interesting

42

direction for future work. In these experiments we restrict our attention to

exploration with linear function approximation, which remains a vibrant area

of research (Du et al. 2019; Lattimore et al. 2019; Van Roy et al. 2019).

We use three variants of tilecoding to ensure that the results are robust to

different feature settings. The first uses two tiles and 32 tilings, which allows

the agent to generalize significantly, but prevents it from discriminating finely

between nearby states in the early stages of learning. The second variant uses

8 tiles and 8 tilings, while the third uses 32 tiles and 2 tilings. This last variant

has a more local function approximation, so that values learned in one area of

the state space does not generalize to other regions. All variants include a bias

weight whose associated feature is always 1. While not representative of all

linear function approximation schemes, these representations differ greatly

in the ways they generalize over the state space and discriminate between

values of nearby states.

We set the learning rate α = α0
#tiles for each algorithm and sweep over

α0 ∈ {1.0, 0.5, 0.25, 0.125, 0.0625, 0.03125}. Unless otherwise specified we

initialize all weights to zero at the beginning of the training phase.

5.2.1 Optimism in the face of uncertainty

OFU methods provide a reward bonus to the agent based on the number of

visits to the current state. We can approximate these counts by estimating a

feature visitation density function, as in φ-pseudocounts (Martin et al. 2017).

This method constructs a feature visitation density that is the product of in-

dependent visitation densities for each element of the feature vector. The

density for the ith feature at time t is

ρit (φi) =
Nt (φi) + 1

2

t + 1
,

where Nt (φi) is the number of activations of φi up to and including time t.

The density over the whole feature space is calculated as a product over all

individual feature densities ρt (φ) =
∏

i ρ
i
t (φi). Now let ρt (φ) be the density

after observing φτ up to time t, and ρ′t (φ) be the density after observing φτ up
43

Algorithm 1: Q-learning with state-action count-based reward bonuses
Input: arbitrary value function weights w ∈ Rd

Input: discount factor γ ∈ [0, 1]
Parameters: learning rate α > 0, reward scaling parameter β > 0,

feature map φ : S × A→ Rd

Output: action-value function Q(S, A) = w>φ(S, A)

until training budget exhausted do
S ← initial state of the episode
A← argmaxaw

>φ(S, a)
until episode terminates do

Take action A, observe R, S′

A′ ← argmaxaw
>φ(S′, a)

Update visitation count estimates N̂ (S, A)

w ← w + α
[
R + β

N̂ (S, A)
+ γmaxaw>φ(S′, a) −w>φ(S, A)

]
φ(S, A)

S ← S′, A← A′

Exit if training budget exhausted
end
Update visitation count estimates N̂ (S, A)

w ← w + α
[
R + β

N̂ (S, A)
+ γmaxaw>φ(S′, a) −w>φ(S, A)

]
φ(S, A)

end

44

Algorithm 2: IEQL+ for estimating Q ≈ q∗

Input: arbitrary value function weights w ∈ Rd

Input: discount factor γ ∈ [0, 1]
Parameters: learning rate α > 0, reward scaling parameter β > 0,

standard deviation of return σmax, confidence interval
width 1 − θ, feature map φ : S × A→ Rd

Output: action-value function Q(S, A) = w>φ(S, A)

Initialize Q(S, A) = σmaxZθ/2
1−γ

until training budget exhausted do
S ← initial state of the episode
A← argmaxaw

>φ(S, a)
until episode terminates do

Take action A, observe R, S′

A′ ← argmaxaw
>φ(S′, a)

Update visitation count estimates N̂ (S, A)

w ← w+α
[
R + βσmaxZθ/2

N̂ (S, A)
+ γmaxaw>φ(S′, a) −w>φ(S, A)

]
φ(S, A)

S ← S′, A← A′

Exit if training budget exhausted
end
Update visitation count estimates N̂ (S, A)

w ← w + α
[
R + βσmaxZθ/2

N̂ (S, A)
+ γmaxaw>φ(S′, a) −w>φ(S, A)

]
φ(S, A)

end

Algorithm 3: UpdateWeightsL-UCLS
δ ← R + γw>φ(S′, A′) −w>φ(S, A)
w ← w + αδφ(S, A)
δvar ← δ + γwvar

>φ(S′, A′) −wvar
>φ(S, A)

wvar ← wvar + αvarδvarφ(S, A)
temp← vinit
vinit ← max(vinit, wvar

2
1, . . . , wvar

2
d)

if temp , vinit then
wvarInit ← wvarInit + (vinit − temp)c

end
for i such that φ(S, A)i , 0 do

ci ← (1 − β)ci
wvarInit ← (1 − β)wvarInit

end

45

Algorithm 4: L-UCLS (OFU) for estimating Q ≈ q∗

Input: arbitrary value function weights w ∈ Rd

Input: discount factor γ ∈ [0, 1]
Parameters: value function learning rate α > 0, variance function

learning rate αvar > 0, confidence interval width 1 − θ,
feature map φ : S × A→ Rd

Output: action-value function Q(S, A) = w>φ(S, A)

Initialize vinit ← 1, c ← 1, β ← 0.001
Initialize wvar ← 0, wvarInit ← 1
until training budget exhausted do

S ← initial state of the episode
foreach action a do

ua ←

√(
1 − 1

θ

) (
(w>φ(S, a))2 ‖φ(S, a)‖2wvarInit

)
end
A← argmaxaw

>φ(S, a) + ua

until episode terminates do
Take action A, observe R, S′

foreach action a do

ua ←

√(
1 − 1

θ

) (
(w>φ(S′, a))2 ‖φ(S′, a)‖2wvarInit

)
end
A′ ← argmaxaw

>φ(S′, a) + ua

Run UpdateWeightsL-UCLS
S ← S′, A← A′

Exit if training budget exhausted
end
Run UpdateWeightsL-UCLS

end

46

to time t, followed by an additional φ. Then, we can write the φ-pseudocount

as

N̂φt (s) =
ρt (φ(s))(1 − ρ′t (φ(s)))
ρ′t (φ(s)) − ρt (φ(s))

.

These counts can be used to count state visitation or state-action visitation

in all OFU methods. We evaluate each variant, which we call S-counts and

SA-counts, in our experiments. Pseudocode for SA-counts is presented in Al-

gorithm 1. The counts, n, are used to form a reward bonus of the form r+ = β
√
n
,

where β is a hyperparameter. We sweep over β ∈ {0.005, 0.01, 0.05, 0.1, 0.5}.

IEQL+ tries to maintain approximate confidence bounds around the op-

timal value function. It uses a global standard deviation parameter σmax

and a confidence interval size parameter θ to create a reward bonus r+ =
σmaxZθ/2
√
n

, where Zθ/2 is the value at which the cumulative distribution func-

tion of the standard normal distribution has value 1 − θ2 . Pseudocode is

included in Algorithm 2 We sweep σmax ∈ {0.001, 0.005, 0.01, 0.015}, and

θ ∈ {0.5, 0.75, 0.9, 0.95, 0.99}.

Our final OFU method is L-UCLS, which also maintains upper confidence

bounds on the action-value function. The upper bounds are calculated using

a variance estimate which is learned using a secondary set of weights. The

secondary weights are updated with a separate learning learning parameter

αvar, and are scaled by an additional parameter p =
√
1 − 1

θ . Pseudocode

is shown in Algorithm 4. We sweep αvar ∈ {0.005, 0.01, 0.05, 0.1, 0.5}, and

p ∈ {0.05, 0.5, 1, 5, 10}.

L-UCLS is the only method we test that learns its value function using

Sarsa rather than Q-learning. Since Sarsa does not directly estimate the opti-

mal value function, it may be at a disadvantage in the pure exploration setting

that we study here.

5.2.2 Thompson sampling

Our first TS method is also L-UCLS. Instead of using the variance estimate to

create an upper bound, L-UCLS (TS) uses it to constructs a normal distribu-

tion around the mean value estimates. Actions are taken by sampling from

47

Algorithm 5: L-UCLS (TS) for estimating Q ≈ q∗

Input: arbitrary value function weights w ∈ Rd

Input: discount factor γ ∈ [0, 1]
Parameters: value function learning rate α > 0, variance function

learning rate αvar > 0, confidence interval width 1 − θ,
feature map φ : S × A→ Rd

Output: action-value function Q(S, A) = w>φ(S, A)

Initialize vinit ← 1, c ← 1, β ← 0.001
Initialize wvar ← 0, wvarInit ← 1
until training budget exhausted do

S ← initial state of the episode
foreach action a do

ua ←

√(
1 − 1

θ

) (
(w>φ(S, a))2 ‖φ(S, a)‖2wvarInit

)
v a ∼ N (w>φ(S, A), u2a)

end
A← argmaxav a

until episode terminates do
Take action A, observe R, S′

foreach action a do

ua ←

√(
1 − 1

θ

) (
(w>φ(S′, a))2 ‖φ(S′, a)‖2wvarInit

)
v a ∼ N (w>φ(S, A), u2a)

end
A′ ← argmaxav a

Run UpdateWeightsL-UCLS
S ← S′, A← A′

Exit if training budget exhausted
end
Run UpdateWeightsL-UCLS

end

48

Algorithm 6: BootstrapQ for estimating Q ≈ q∗

Input: arbitrary value function weights wi ∈ R
d for i = 1, 2, . . . , k

Input: discount factor γ ∈ [0, 1]
Parameters: learning rate α > 0, feature map φ : S × A→ Rd

Output: k action-value functions Qi(S, A) = wi
>φ(S, A)

until training budget exhausted do
S ← initial state of the episode
i← uniformly select one of the heads until episode terminates do

Take action A, observe R, S′

A′ ← argmaxawi
>φ(S, a)

foreach i = 1, 2, . . . , k do
Sample bootstrap mask m ∼ Poisson(1)
wi ← wi + αm[R + γmaxawi

>φ(S′, a) −wi
>φ(S, A)]φ(S, A)

end
S ← S′, A← A′

Exit if training budget exhausted
end
foreach i = 1, 2, . . . , k do

Sample bootstrap mask m ∼ Poisson(1)
wi ← wi + αm[R + γmaxawi

>φ(S′, a) −wi
>φ(S, A)]φ(S, A)

end
end

49

the distribution of action-values in the current state and selecting the action

with the highest sampled value. The pseudocode, Algorithm 5, is the same

as that of L-UCLS (OFU) above in, but uses ua to form a Gaussian distribution

over action-values instead of simply adding it to the mean value estimates.

We also test an implementation of BootstrapDQN that uses Q-learning.

BootstrapQ learns an ensemble of k = 10 action-value functions. Actions are

selected greedily with respect to one of the value functions, which is randomly

selected at the beginning of the episode. The 10 action-value functions are

updated every time-step, but their updates are multiplied by a Poisson(1)

random variable which acts to maintain the statistical validity of interpreting

the ensemble as a bootstrap. Pseudocode is shown in Algorithm 6.

5.2.3 Learning progress methods

Algorithm 7: Optimistic Initialization for estimating Q ≈ q∗

Input: arbitrary value function weights w ∈ Rd

Input: discount factor γ ∈ [0, 1]
Parameters: learning rate α > 0, feature map φ : S × A→ Rd, value

bonus wbonus ∈ R
d
>0

Output: action-value function Q(S, A) = w>φ(S, A)

w ← w +wbonus
until training budget exhausted do

S ← initial state of the episode
A← argmaxaw

>φ(S, a)
until episode terminates do

Take action A, observe R, S′

A′ ← argmaxaw
>φ(S′, a)

w ← w + α[R + γmaxaw>φ(S′, a) −w>φ(S, A)]φ(S, A)
S ← S′, A← A′

Exit if training budget exhausted
end
w ← w + α[R −w>φ(S, A)]φ(S, A)

end

We test two learning progress methods, Random Network Distillation

(RND) and Optimistic Initialization (OptInit). Pseudocode for RND is shown

in Algorithm 8. RND’s auxiliary function is from the domain of the state-

50

Algorithm 8: Random Network Distillation for estimating Q ≈ q∗

Input: arbitrary value function weights w ∈ Rd

Input: discount factor γ ∈ [0, 1]
Input: arbitrary secondary function weights U ∈ Rd×k

Parameters: learning rate α > 0, reward scaling parameter β > 0,
feature map φ : S × A→ Rd

Output: action-value function Q(S, A) = w>φ(S, A)

Randomly initialize U∗ ∈ Rd×k

until training budget exhausted do
S ← initial state of the episode
A← argmaxaw

>φ(S, a)
until episode terminates do

Take action A, observe R, S′

A′ ← argmaxaw
>φ(S′, a)

. update secondary function
δU ← Uφ(S, A) −U∗φ(S, A)
U ← U + αδU
. update value function
σ ← StandardDev iation(δU,1:t)
w ← w + α

[
R + β‖δU ‖2σ + γmaxaw>φ(S′, a) −w>φ(S, A)

]
φ(S, A)

S ← S′, A← A′

Exit if training budget exhausted
end
. update secondary function
δU ← Uφ(S, A) −U∗φ(S, A)
U ← U + αδU
. update value function
σ ← StandardDev iation(δU,1:t)
w ← w + α

[
R + β‖δU ‖2σ −w>φ(S, A)

]
φ(S, A)

end

51

value function, for RND-S, or action-value function, for RND-SA, to a k = 10-

dimensional vector. The target function is a (#heads × #features) matrix

with uniformly random values between 0 and 1, which is generated at the

beginning of each trial. The auxiliary function is learned using stochastic

gradient descent with the same learning step-size as Q-learning. The reward

bonus is based on the L2-norm of the error between the auxiliary function’s

value and the target function’s value. We normalize the reward bonus by di-

viding it by the standard deviation of the norm of the error, then scale it by a

hyperparameter β ∈ {0.005, 0.01, 0.05, 0.1, 0.5}.

Our implementation of OptInit is shown in Algorithm 7. It is equivalent to

Q-learning, but with weights initialized to a certain value rather than zero.

We sweep over initial weights w ∈ {−1, 1, 10, 20, 50, 100}.

5.2.4 Noisy methods

Algorithm 9: Epsilon-greedy Q-learning for estimating Q ≈ q∗

Input: arbitrary value function weights w ∈ Rd

Input: discount factor γ ∈ [0, 1]
Parameters: learning rate α > 0, feature map φ : S × A→ Rd, small

ε > 0
Output: action-value function (S, A) = w>φ(S, A)

until training budget exhausted do
S ← initial state of the episode
Select action A according to epsilon-greedy
until episode terminates do

Take action A, observe R, S′

Select action A′ according to epsilon-greedy
w ← w + α[R + γmaxaw>φ(S′, a) −w>φ(S, A)]φ(S, A)
S ← S′, A← A′

Exit if training budget exhausted
end
w ← w + α[R −w>φ(S, A)]φ(S, A)

end

We test Epsilon-greedy and NoisyNets. For Epsilon-greedy, we sweep over

ε ∈ {0.015625, 0.03125, 0.0625, 0.125, 0.25, 0.5}. Powers of two were cho-

52

Algorithm 10: NoisyNets for estimating Q ≈ q∗

Input: arbitrary value function mean weights w ∈ Rd

Input: arbitrary value function noise weights u ∈ Rd

Input: discount factor γ ∈ [0, 1]
Parameters: learning rate α > 0, feature map φ : S × A→ Rd

Output: action-value function Q(S, A) =
(
w +

(
u � ξ

))> φ(S, A)

until training budget exhausted do
S ← initial state of the episode
ξ ← d independent standard normal RVs
A← argmaxa

(
w +

(
u � ξ

))> φ(S, a)
until episode terminates do

Take action A, observe R, S′

ξ′ ← d independent standard normal RVs
A′ ← argmaxa

(
w +

(
u � ξ′

))> φ(S′, a)
ξ(2) ← d independent standard normal RVs
ξ(3) ← d independent standard normal RVs
δ ← R + γmaxa

(
(w + (u � ξ(2)))>φ(S′, a)

)
−((

w +
(
u � ξ(3)

))>
φ(S, A)

)
w ← w + αδφ(S, A)
ξ(4) ← d independent standard normal RVs
u← u + αδ

(
φ(S, A) � ξ(4)

)
S ← S′, A← A′

Exit if training budget exhausted
end
ξ(5) ← d independent standard normal RVs

w ← w + α
[
R −

(
w +

(
u � ξ(5)

))>
φ(S, A)

]
φ(S, A)

ξ(6) ← d independent standard normal RVs

u← u + α
[
R −

(
w +

(
u � ξ(6)

))>
φ(S, A)

]
φ(S, A)

end

53

sen to sweep over a similar number of values as the other methods. Pseu-

docode for Epsilon-greedy can be found in Algorithm 9.

NoisyNets learns a value function with parameters for the mean estimate

as well as a noise variable for each action and feature. Action-values are cal-

culated according to Q(s, a) = w + (u � ξ))>φ(S, A), where ξ is drawn from

a standard normal distribution, including when updating the value function

and when selecting actions. Here � is used to denote element-wise multipli-

cation. NoisyNets does not use any additional hyperparameters. We present

pseudocode for NoisyNets in Algorithm 10.

5.2.5 Baselines

Algorithm 11: Softmax Actor-Critic for estimating π ≈ π∗

Input: arbitrary value function weights w ∈ Rm

Input: arbitrary policy weights u ∈ Rn

Input: discount factor γ ∈ [0, 1]
Parameters: value function learning rate α > 0, policy learning rate

β > 0, value function feature map φ : S → Rm, policy
feature map ψ : S × A→ Rn

Output: policy π(S, A) = softmax(u>ψ(S, A)) = eu
>ψ(S, A)/

∑
a e

u>ψ(S,a)

until training budget exhausted do
S ← initial state of the episode
A ∼ softmax(u>ψ(S, ·))
until episode terminates do

Take action A, observe R, S′

A′ ∼ softmax(u>ψ(S′, ·))
δ ← R + γmaxaw>φ(S′, a) −w>φ(S, A)
w ← w + αδφ(S, A)
u← u + βδ∇u ln softmax(u>ψ(S, A))
S ← S′, A← A′

Exit if training budget exhausted
end
δ ← R −w>φ(S, A)
w ← w + αδφ(S, A)
u← u + βδ∇u ln softmax(u>ψ(S, A))

end

We include two baselines, a random agent and a Softmax Actor-critic

54

(SoftmaxAC) agent. The random agent always takes random actions.

The SoftmaxAC (Sutton and Barto 2018) agent learns the optimal pol-

icy by stochastic gradient descent. Unlike other policy-gradient algorithms,

actor-critic algorithms use a value function estimate, called the critic, to re-

duce the variance of their gradient estimates. SoftmaxAC’s policy is parame-

terized by a softmax function over learned preference values. The preference

values and the critic’s state-values are both learned using the same features,

but we sweep over their learning rates separately, using the same values as

the learning rates for other agents. Pseudocode is shown in Algorithm 11.

5.3 Summary

In this chapter we described our empirical evaluation scheme, which includes

six environments, twelve exploration methods, and two baselines. The ex-

ploration methods modify a base Q-learning agent that uses linear function

approximation to represent its action-value estimates. We sweep over three

different tile-coding schemes for each environment depending on the dimen-

sionality of the state-space. Each tile-coding scheme generates roughly the

same number of features as other schemes for the same environment. The

environments are based on the difficult exploration properties we proposed

in Chapter 3, while the agents are selected from the categories we presented

in Chapter 4.

55

Chapter 6

Results

In this chapter we discuss the results from the experiments in the previous

chapter. These experiments are meant to provide a sanity check for explo-

ration methods. If a method cannot avoid the traps laid in these toy environ-

ments, it is unlikely that they will be able to avoid the same traps in much

more complicated environments. So success in these environments is a re-

quirement for any general exploration method, while failure in any one is a

cause for concern. We roughly swept each method’s hyperparameters to get

a general sense for their potential performance. We did not finely tune the

parameters because that requires much computation and many samples from

the environment. The costs associated with such fine-tuning often overcome

the sample-efficiency from exploration.

The results are organized into a main analysis, where we present the per-

formance of each exploration method on each of the environments. We then

provide a supplementary analysis where we discuss the robustness of each

method to their hyperparameter choices and present a statistical analysis of

the overall results. We close with a discussion of the most important observa-

tions that result from these experiments and their implications for the future

of exploration research in RL.

56

6.1 Main analysis

We present the results of our experiments on each environment in this section.

We begin by highlighting some interesting overall patterns, then cover each

environment’s results in more detail.

6.1.1 Highlights

Overall, L-UCLS (OFU) performed very well in all environments except Vari-

anceWorld, where its performance was mixed. This refutes our earlier hy-

pothesis that learning with Sarsa might disadvantage L-UCLS in the pure

exploration setting. Two others, L-UCLS (TS) and SoftmaxAC, learned near-

optimal policies in all the environments except AlpineSki. The other methods

had mixed performance, typically performing well in some environments and

poorly in others.

NoisyNets and Epsilon-greedy exploration add noise to agent’s behaviour

quite differently. As a result, their learned behaviour is not as similar as the

methods in other groups. Similarly, OptInit differs from the other learning

progress methods in that it only changes the value estimates at one point

in time. Other learning progress methods augment the reward with an ex-

ploration bonus that changes over time. The following results suggest that

exploratory behaviour is usually more strongly influenced by the presence of

a decaying positive reward bonus than by the decay rate of the reward bonus.

Among OFU methods, IEQL+ and SA-counts had almost the same distri-

butions over test performance. There is only one major difference between

these methods, which is that IEQL+ initializes its value function estimate so

that the values represent an approximate upper confidence bound from the

first time-step. The similar learned behaviour of IEQL+ and SA-counts sug-

gests that this initial optimism does not impact learning performance when

used in conjunction with an optimistic reward bonus.

57

RND-S

RND-SA

S count

Noisy Net

SA count

IEQL+

BootstrapQ

ε-greedy

L-UCLS (TS)

Opt Init

L-UCLS (OFU)

Actor Critic

0 104 11204

Cumulative reward

Empirical density of cumulative reward

VarianceWorld

Figure 6.1: This plot shows a distribution over the reward accumulated by
each agent over the 100000 time-step test phase. Agents are colored accord-
ing to their underlying heuristics, and sorted by their median performance.
The two non-zero vertical lines correspond to the rewards accumulated by the
policy that always goes left and by the optimal policy that always goes right,
respectively. Only runs from the best hyperparameter settings are shown. We
calculate the plotted densities using the ggridges package (Wilke 2018) for
R (R Core Team 2019), and data from 72 independent runs.

58

6.1.2 High-variance reward: VarianceWorld

VarianceWorld is a short corridor with a large, high-variance reward at the

right end, and a small, low variance reward on the left. Agents must be able to

sample the high-variance reward sufficiently many times to correctly estimate

the return from high-value states. None of the tested methods were able to

consistently find a near-optimal policy. In fact, for a substantial proportion of

runs, all methods except L-UCLS (TS) and SoftmaxAC learned a policy that

got stuck in a region of state-space and failed to terminate a single episode.

We plot the results of our experiments on VarianceWorld in figure 6.1.

Only fourmethods hadmedian performance better than random: SoftmaxAC,

OptInit, and both L-UCLS variants. Epsilon-greedy learned policies with highly

varying performance, which could be because the value functions are not nec-

essarily consistent with the values of the greedy policy. Such value functions

could get stuck temporarily in a region of state space, but might be able to

escape due to the stochastic effect of actions.

The performance of the OFU methods is quite spread out. IEQL+, and

SA-counts all have tri-modal distributions with peaks at 0, 104, and 11204,

while S-counts is bimodal around the lower two peaks. L-UCLS (OFU) has a

peak around 0, but the majority of its cumulative rewards are between 104

and 11204. The RND methods got stuck for 0 reward in most of their runs,

but were able reach the lower reward in other runs. OptInit also had mixed

performance, with peaks at 0 and between 104 and 11204.

The results in VarianceWorld are more mixed than in any of the other

environments. It is possible that by choosing a different distribution for the

high-variance reward, the agents could have learned more consistently sepa-

rated policies.

6.1.3 Misleading reward: Antishaping

Figure 6.2 shows the results of our experiments in the Antishaping environ-

ment. Antishaping is a longer corridor with a small reward on the non-

59

BootstrapQ

Noisy Net

ε-greedy

Actor Critic

RND-S

S count

SA count

RND-SA

Opt Init

IEQL+

L-UCLS (TS)

L-UCLS (OFU)

0 5 3714

Cumulative reward

Empirical density of cumulative reward

Antishaping

Figure 6.2: This plot shows a distribution over the reward accumulated by
each agent over the 100000 time-step test phase. Agents are colored accord-
ing to their underlying heuristics, and sorted by their median performance.
The two non-zero vertical lines correspond to the rewards accumulated by
the policy that stays at the left edge and by the optimal policy that always
goes right, respectively. Only runs from the best hyperparameter settings are
shown. We calculate the plotted densities using the ggridges package for R,
and data from 72 independent runs.

60

terminating leftmost state that decreases towards the right end of the cor-

ridor. Agents must be able to ignore the decreasing behaviour in the reward

and travel all the way to the right-end of the corridor where the episode will

terminate with a large reward. Both L-UCLS methods, OptInit, and IEQL+

consistently solved this environment. IEQL+ and SA-counts have different

performance in this environment because the exploratory effect of optimistic

initialization dominates the misleading effect of the small environmental re-

wards. As a result, SA-counts performs similarly to the most of the other

OFU and Learning Progress reward-bonus methods, which usually learn a

near-optimal policy, but sometimes learn to stay at the left-side of the envi-

ronment.

The rest of the methods had lower median performance than the random

agent. The noise-based exploration methods both consistently learn to stay

on the left side of the environment. Interestingly, BootstrapQ appears to learn

policies that either stay near the left or get stuck somewhere in the middle of

the environment.

Our experiments in the Antishaping environment suggest that Noisy meth-

ods may not sufficiently explore when there is a misleading reward signal.

6.1.4 Sparse reward: Sparse MountainCar

Figure 6.3 shows the results of our experiments in the Sparse MountainCar

environment. In Sparse MountainCar, an agent must learn to follow a spiral

path radiating outwards from the start state to the goal. The only environ-

mental reward signal is found when the agent reaches the goal state and

terminates the episode. Epsilon-greedy, OptInit, both L-UCLS variants, Boot-

strapQ, and SoftmaxAC all learned strong policies in this domain, sometimes

even learning a policy that is better than our baseline near-optimal policy. The

other methods learn policies that appear to reach the goal similarly frequently

to the random agent.

These results support our earlier observation that the presence of a decay-

ing positive reward bonus is more important than the rate at which the bonus

61

S count

RND-S

RND-SA

SA count

IEQL+

L-UCLS (TS)

BootstrapQ

L-UCLS (OFU)

Opt Init

Actor Critic

ε-greedy

0 2912

Cumulative reward

Empirical density of cumulative reward

Sparse MountainCar

Figure 6.3: This plot shows a distribution over the reward accumulated by
each agent over the 100000 time-step test phase. Agents are colored accord-
ing to their underlying heuristics, and sorted by their median performance.
The vertical line at 2912 corresponds to the reward accumulated by a near-
optimal policy. Only runs from the best hyperparameter settings are shown.
We calculate the plotted densities using the ggridges package for R, and data
from 72 independent runs.

62

Noisy Net

Random

RND-S

S count

RND-SA

BootstrapQ

SA count

IEQL+

Opt Init

ε-greedy

L-UCLS (TS)

L-UCLS (OFU)

Actor Critic

0 37 6009

Cumulative reward

Empirical density of cumulative reward

WindyJump

Figure 6.4: This plot shows a distribution over the reward accumulated by
each agent over the 100000 time-step test phase. Agents are colored accord-
ing to their underlying heuristics, and sorted by their median performance.
The two non-zero vertical lines correspond to the rewards accumulated by
the policy that always goes left and by the near-optimal policy that always
goes right, respectively. For ease of visualization, the few negative accumu-
lated values are clipped to −0.01. Only runs from the best hyperparameter
settings are shown. We calculate the plotted densities using the ggridges
package for R, and data from 72 independent runs.

decays. In contrast to the results in the Antishaping environment, IEQL+ per-

forms similarly to SA-counts despite the strong performance of OptInit, sug-

gesting that reward bonuses may interact poorly with Q-learning in sparse

reward environments.

6.1.5 High-variance transitions: WindyJump

Figure 6.4 shows the results of our experiments in the Antishaping environ-

ment. We note that clipping the values does not affect the visualization except

by hiding long tails created by a small handful of points.

Success inWindyJump depends on the agent learning to explore an area of

the environment that has highly varying transitions. All methods other than

NoisyNets were able to identify the positive reward on the right side of the

environment, achieving near-optimal reward in some runs and outperform-

63

ing the random agent. Surprisingly, the top-performing methods SoftmaxAC,

Epsilon-greedy, OptInit, and both L-UCLS variants frequently performed bet-

ter than the reference policy that always moves to the right, suggesting that

they often learn a more sophisticated policy than the reference. The rest of

the methods are separated by how often they got stuck and received 0 reward,

and how often they learned to go towards the large reward. Unlike in most

of the other environments, very few of the exploration methods learn policies

that go towards the small reward. Instead, possibly due to the stochasticity

in the environment, BootstrapQ, S-counts, and both RND methods learned

policies whose is spread out between the two reference policies.

In contrast with the high-variance reward domain VarianceWorld, all ex-

ploration methods learned a near-optimal policy in at least a few runs. We

interpret these results as evidence that high-variance rewards poses a much

more difficult exploration problem than high-variance transitions in domains

with small state-action spaces.

6.1.6 Antagonistic transitions: AlpineSki

Figure 6.5 shows the results of our experiments in the AlpineSki environment.

The difficult part of AlpineSki is that the agent must traverse for many time-

steps before it can ski down and receive reward. Agents that learn stochastic

behaviour policies, or agents that explore by adding noise in some fashion, are

unlikely to be able to solve this problem. Indeed, we find that Epsilon-greedy,

SoftmaxAC, and L-UCLS (TS) learn to ski down immediately to receive the

small reward.

Despite incorporating randomness into their value estimates, BootstrapQ

learned near-optimal policies in some runs, andNoisyNets learned near-optimal

policies in almost all of the runs.

As in WindyJump and MountainCar, L-UCLS (OFU) and OptInit consis-

tently learn the optimal policy. The remaining reward bonus methods learn

a split between near-optimal policies and the policy that skis down immedi-

ately. Of these, IEQL+ has the strongest median performance, which maybe

64

Actor Critic

BootstrapQ

L-UCLS (TS)

Noisy Net

ε-greedy

L-UCLS (OFU)

Opt Init

SA count

S count

RND-SA

RND-S

IEQL+

0 1000 5958

Cumulative reward

Empirical density of cumulative reward

AlpineSki

Figure 6.5: This plot shows a distribution over the reward accumulated by
each agent over the 100000 time-step test phase. Agents are colored accord-
ing to their underlying heuristics, and sorted by their median performance.
The two non-zero vertical lines correspond to the rewards accumulated by
the policy that skis down immediately and by the optimal policy, respectively.
Only runs from the best hyperparameter settings are shown. We calculate
the plotted densities using the ggridges package for R, and data from 72
independent runs.

65

RND-SA

SA count

IEQL+

RND-S

Opt Init

BootstrapQ

S count

L-UCLS (OFU)

L-UCLS (TS)

ε-greedy

Actor Critic

0 8.098 899.63 4252.049

Cumulative reward

Empirical density of cumulative reward

Hypercube

Figure 6.6: This plot shows a distribution over the reward accumulated by
each agent over the 100000 time-step test phase. Agents are colored accord-
ing to their underlying heuristics, and sorted by their median performance.
The vertical lines correspond to the rewards accumulated by policies that di-
rectly move towards a corner that touches 0, 1, 2, or 3 walls. Only runs from
the best hyperparameter settings are shown. We calculate the plotted densi-
ties using the ggridges package for R, and data from 72 independent runs.

attributable to its initially inflated value estimates.

The AlpineSki environment represents the strongest argument against

learning policies that are necessarily stochastic. Policy gradient methods,

Noisy methods, and Thompson Sampling all fall into this category. How-

ever, as NoisyNets demonstrates, in some cases the agent can learn that the

stochasticity should be reduced to a point where the policy is effectively de-

terministic.

6.1.7 Large state-action space: Hypercube

Figure 6.6 shows the results of our experiments in the Hypercube environ-

ment. Hypercube is relatively large, symmetrical along each dimension, and

possesses a shaping reward to help guide the agents along the optimal policy.

As in most of the environments, SoftmaxAC and both variants of L-UCLS per-

form quite well. Somewhat surprisingly, Epsilon-greedy also performs well.

66

The results here and in Sparse MountainCar suggest that Epsilon-greedy is

effective at exploring large state-action spaces that do not have tricky reward

or transition dynamics. NoisyNets regularly learns a policy that stays near the

intersection of two walls.

The remaining methods, including the random agent, learn policies that

tend to stay near a single wall for the duration of the testing phase. Some

methods, especially S-counts, are able to consistently reach a corner between

two walls, but do not learn to terminate the episode and receive a larger re-

ward. Even OptInit, which typically sweeps over the entire state-action space

during learning, was not able to identify the optimal policy in this domain.

When using incremental, model-free methods like Q-learning, the state-

action space must be swept several times to propagate the rewards, which

are experienced at the end of episodes, through the value function to the

region of state space where the agent begins an episode. Since we freeze

the exploration mechanisms during the testing phase, we suspect that the

non-performant agents are failing to explore sufficiently during the training

phase, rather than struggling to balance exploration and exploitation during

testing.

6.2 Supplementary analyses

Here we present two additional perspectives on the experimental data. First,

we discuss the impact of hyperparameter choices on the performance of each

exploration method. We then perform a statistical analysis on the data to

determine whether any one method consistently outperformed the others.

6.2.1 Parameter Study

We present plots for the parameter sweeps in Appendix B. Many parameter

settings for most methods learned policies that do not achieve any reward.

There are two exceptions. SoftmaxAC achieved strictly non-zero reward on

Antishaping, AlpineSki, and Hypercube, which constitute half of the environ-

67

ments we tested. Epsilon-greedy also achieved non-zero reward in AlpineSki.

The majority of the hyperparameter settings tend to result in agents learn-

ing a policy that gets stuck in a region of the state space. This indicates that

our swept hyperparameter values successfully covered the space of effective

settings.

Unfortunately most of the hyperparameter settings failed to learn a near-

optimal policy in any environment. In practical settings, the desire for effi-

cient exploration is balanced by the aversion to sweeping over hyperparam-

eters — if an agent has to be run hundreds of times to identify successful

hyperparameters it limits the benefits offered by efficient exploration. This

parameter study highlights the need for algorithms that are robust to hy-

perparameter selection while being able to explore efficiently. In a practical

sense, hyperparameter tuning may be just as undesirable as inefficient explo-

ration.

6.2.2 Statistical Analysis

Our data is a collection of multiple independent samples from the best hy-

perparameter settings for each agent-environment pair. In statistical terms,

we call the exploration methods treatments and the environments blocks. Due

to the simple environment design, performance is multimodally distributed,

even when conditioned on the exploration method and environment. We

therefore model our data using quantile regression on the median perfor-

mance with the following form:

yi jk = αi + β j + (αβ)i j + ε i jk,

where i, j, and k index the exploration methods, environments, and exper-

imental runs respectively. The variable y represents accumulated reward. The

right-hand variables αi, β j, and (αβ)i j are coefficients describing the relation-

ship between the median accumulated reward during the testing phase and

the exploration method, environment, and interactions respectively. Finally,

ε is a noise term. We verify our inclusion of interaction terms numerically

68

by comparing our chosen model with the same model without interaction

terms using a rank-test statistic described in Gutenbrunner et al. (1993) and

implemented in the R package quantreg (Koenker 2019).

We perform a series of T-tests (see Appendix C) to determine the signif-

icance of our model fit, using a kernel method implemented in quantreg to

estimate the standard errors of the coefficients. Almost all of the coefficients

are highly significant, with p-values equal to zero (due to rounding) in the

output produced by quantreg. The few remaining coefficients only have p-

values not near zero (ie, not p � 0.05) because the coefficients themselves are

very close to 0. These results confirm that no exploration method dominates

all others, with each method under-performing relative to other methods in

at least one of the tested environments. The results also suggest that each

environment poses distinct exploration challenges.

6.3 Discussion

We conducted a series of experiments to study the empirical behaviour of sev-

eral exploration methods in various distinctly challenging environments. We

examined the sensitivity of each method to its hyperparameter settings, and

conducted a statistical test to see if any one method outperformed the others.

Overall, SoftmaxAC, L-UCLS (OFU), Epsilon-greedy, and OptInit performed

well in many environments.

We found that the performance of OFU and Learning Progress methods

was typically not divided by the categories laid out in Chapter 4. Instead,

methods that used inflated values to select actions, such as L-UCLS (OFU) and

OptInit, tended to perform better than methods that used a reward bonus,

such as RND. These results suggest that algorithm-level decisions impact em-

pirical performance more strongly than theoretical considerations like the de-

cay rate of exploration.

We can study the combined effect of inflated values and reward bonuses

by examining the performance of IEQL+. IEQL+’s typically poor perfor-

69

mance suggests that reward bonuses are not as effective at inducing explo-

ration as using already-inflated values to explore. This is probably because

reward bonuses have to be propagated through the value function to encour-

age exploration — the agent is only rewarded after the desired exploratory

behaviour occurs. In contrast, inflated values anticipate additional reward

where the agent ought to explore, causing it to explore automatically simply

by acting greedily.

IEQL+ performs similarly to reward bonus methods in VarianceWorld,

WindyJump, AlpineSki, and MountainCar, despite being initialized with in-

flated values. There is no clear split in Hypercube, but in Antishaping IEQL+

instead performs similarly to the inflated value methods. This pattern of re-

sults suggests that reward bonuses distract inflated value agents from explor-

ing in most methods, and additionally that the distracting effect is not present

when there is a misleading reward signal in the environment. Despite this in-

triguing observation, on the whole our results suggest avoiding using positive,

decaying reward bonuses to encourage exploration.

The Noisy and Thompson Sampling methods all have randomized be-

haviour, and performed similarly in WindyJump, Mountain Car, and Hyper-

cube. Epsilon-greedy and L-UCLS (TS) performed better than NoisyNets and

BootstrapQ respectively. Since the pairs from both categories used similar

heuristic strategies, we believe that Epsilon-greedy and L-UCLS (TS) were

more successful simply because of their algorithmic implementation.

SoftmaxAC is incredibly successful in all of the environments we tested

other than AlpineSki. We note that the broader class of policy gradient meth-

ods, including SoftmaxAC, find a near-optimal policy using gradient descent.

Their objective functions depend on the environment and function approx-

imation scheme, and are usually non-convex, so policy gradient methods

might find an arbitrarily bad policy in general. Identifying the settings in

which policy gradient methods find a near-optimal policy is an ongoing area

of research, for example see Bhandari et al. (2019).

Despite the occasional success of randomized behaviour methods, espe-

70

cially SoftmaxAC, they uniformly fail to explore in AlpineSki. AlpineSki re-

quires the agent to take a very specific series of mutually consistent actions

to reach a reward. When an agent explores by randomizing its behaviour, it

is very unlikely that it will sample the correct sequence of actions.

One method, BootstrapQ, attempts to randomize behaviour while explor-

ing consistently. By behaving greedily according to a plausible value function

that it randomly selects at the beginning of each episode, BootstrapQ was

able to identify a near-optimal policy in 13.2% of runs in AlpineSki. Despite

being designed to explore consistently, our results indicate that a statistical

bootstrap is an effective way of incorporating randomness into Q-learning.

We expected the high-variance reward environment VarianceWorld to be

relatively straightforward for agents to solve since many of the exploration

strategies used by the methods we tested have their roots in algorithms for

multi-armed bandits, where the exploration problem is largely based on the

variance in rewards. Even though VarianceWorld resembles a two-armed ban-

dit in the sense that there are two sources of reward that are easy to expe-

rience at a delay of only 10 time-steps, our tested methods were not able to

find consistently good policies. Our results suggest that the difficulty posed by

high-variance rewards may be meaningfully different in bandits and MDPs,

even when the MDPs in question can be traversed in few time-steps.

6.4 Summary

This chapter discussed the results of our empirical study. We compared the

performance of several exploration methods on six toy environments that

each posed a separate challenge to exploring agents. All the methods were

more effective in some environments than in others. Our statistical analysis

found that L-UCLS (OFU) learned the highest-performing policies across all

six toy environments.

Our conceptual categorization of exploration environments was not mir-

rored in the experimental results. Rather, methods performed similarly if

71

they used a reward bonus, chose actions according to inflated values, or ran-

domized their learned policies. This grouping suggests that at this time, algo-

rithmic design choices have a greater effect on agent learning and behaviour

than the underlying heuristic used to drive exploration.

In our parameter study, we found that the performance was quite poor

for the vast majority of hyperparameter settings and environments. We in-

terpret this poor performance as a reminder that efficient exploration is only

useful in practice if the practitioner does not have to manually explore a large

hyperparameter space.

To the best of our knowledge this is the first empirical study that uses

contrasting environments to investigate the properties of explorationmethods

and environments that affect the performance of learned policies.

72

Chapter 7

Conclusion & Future Work

In this thesis we studied the relationship between exploration heuristics and

environmental properties in incremental, online, model-free reinforcement

learning. We first identified six properties of environments that contribute

to the difficulty of exploration. We propose that environments with high-

variance, misleading, or sparse rewards are more difficult to explore, as well

as environments with high-variance transitions, antagonistic transitions, or

large state-action spaces. Exploration methods cannot be useful across a

broad set of environments unless they appropriately address these proper-

ties. We hope that these properties will help guide researchers to develop

general exploration methods for reinforcement learning.

We also propose a categorization of exploration methods according to

their underlying exploration strategies. We group methods that behave opti-

mistically with respect to a plausible value function into two groups: meth-

ods that select actions according to upper bounds are Optimistic in the Face

of Uncertainty, and methods that use Thompson Sampling. Exploration in

optimistic methods typically decays according to 1√
n
in the number of sam-

ples observed. We propose a category of Learning Progress methods, which

explore based on the learning progress of an auxiliary function or an initially

inflated value function. Exploration in these methods typically decays by the

exponent of the learning rate of the auxiliary function raised to the number

of samples observed. We also identify a group of Noisy methods, which add

a fixed or learned amount of noise to the value function or action-selection

73

mechanism. These categories add structure to the large body of work describ-

ing new exploration methods, and offers insight into the potential refinement

of these methods in the future.

Finally, we conduct an empirical study examining how well the policies

learned by each exploration method perform in environments based on each

of the six exploration properties we identified previously. We find that none of

the exploration methods perform very well on all the environments, and that

they tend to learn better policies in some environments than others. Overall,

L-UCLS (OFU) had the best performance across all environments. Interest-

ingly, performance was usually grouped according to methods that used a

reward bonus, took actions according to inflated values, or used randomness

to explore. Since algorithmic mechanisms seemed to impact behaviour more

than the exploration heuristics used, we suggest that assessing and designing

different mechanisms to implement a single exploration heuristic may be a

more appropriate direction for future work than designing new exploration

heuristics for the RL setting.

7.1 Future Work

There are several interesting directions for future work. This thesis focused on

Q-learning as the base RL algorithm, but algorithms that do planning updates,

such as DynaQ or DQN, could also be studied in conjunction with exploration

methods. We expect planning updates and other algorithmic features to in-

teract differently with the exploration methods than Q-learning did in our

experiments.

Future work could also focus on how exploration heuristics interact with

fixed or learned function approximation schemes, which for example might

drastically change the meaning of a state visitation count over time. Explo-

ration methods built on top of deep RL methods like DQN are already affected

by this interaction, which may have further implications for learning beyond

exploration.

74

The experiments in this thesis could be further extended to understand

how exploration methods balance performance and exploration during the

training phase, as RL algorithms typically learn forever to continually adapt

to small changes in applied environments. We plan to explore this direction

in future work.

The statistical tests used in this work is typically absent from other em-

pirical studies demonstrating the performance of exploration methods in RL.

In fact, statistical tests are absent from almost all empirical work in RL. Ex-

periment design in RL is frequently a complete random block design with

replicates, which not very common in the statistical literature due to the rel-

ative expense of conducting so many experiments, there are two statistical

directions that could extend this work.

The first is to designmore efficient testing procedures for identifyingwhich

algorithms perform better than others in a set. While identifying high-performing

algorithms is sometimes important, we do not consider it to be the purpose

of algorithmic research in RL.

The second direction is to change the way RL experiments are conducted

to make more efficient use of each trial. This efficiency may help with the

evaluation of deep RL algorithms, which can be quite expensive to run. Deep

RL experiments are sometimes reported with only a single trial per algo-

rithm, which reduces the reliability of the results. Improved statistical testing

methodology may help researchers carefully evaluate such computationally

expensive algorithms.

Part of the difficulty with applying RL algorithms is that their hyperpa-

rameters must be tuned to ensure good performance. We saw in our exper-

iments that the parameter sensitivity of most exploration methods is quite

poor, somewhat shifting the computational burden from exploration during

operation to hyperparameter tuning before operation. While this shift is ben-

eficial in some applications, developing exploration methods that are robust

to hyperparameter settings remains a critical area of research.

Finally, the experiments presented in this thesis only consider environ-

75

ments that are based on a single challenging exploration property. As there

are 63 (26 − 1) combinations of these six properties, we leave the empirical

investigation of their interactions to future work. Since the exploration prop-

erties were designed to be as orthogonal as possible, we expect that combin-

ing these properties will produce interesting and difficult testbeds for future

exploration research.

76

Bibliography

Asadi, Kavosh and Michael L Littman (2017). “An alternative softmax oper-
ator for reinforcement learning.” In: Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, pp. 243–252. 26

Azar, Mohammad Gheshlaghi, Vicenç Gómez, and Hilbert J Kappen (2012).
“Dynamic policy programming.” In: Journal of Machine Learning Research
13.Nov, pp. 3207–3245. 26

Bellemare, Marc, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Sax-
ton, and Remi Munos (2016). “Unifying count-based exploration and in-
trinsic motivation.” In: Advances in Neural Information Processing Systems,
pp. 1471–1479. 28, 29

Bhandari, Jalaj and Daniel Russo (2019). “Global Optimality Guarantees For
Policy Gradient Methods.” In: arXiv preprint 1906.01786. 70

Burda, Yuri, Harrison Edwards, Amos Storkey, and Oleg Klimov (2018). “Ex-
ploration by random network distillation.” In: arXiv preprint 1810.12894.

33

Choshen, Leshem, Lior Fox, and Yonatan Loewenstein (2018). “Dora the ex-
plorer: Directed outreaching reinforcement action-selection.” In: arXiv preprint
1804.04012. 30

Dayan, Peter (1993). “Improving generalization for temporal difference learn-
ing: The successor representation.” In: Neural Computation 5.4, pp. 613–
624. 30

De Asis, Kristopher, J Fernando Hernandez-Garcia, G Zacharias Holland, and
Richard S Sutton (2018). “Multi-step reinforcement learning: A unifying
algorithm.” In: Thirty-Second AAAI Conference on Artificial Intelligence. 11

Degris, Thomas, Martha White, and Richard S Sutton (2012). “Linear off-
policy actor-critic.” In: In International Conference on Machine Learning.
Citeseer. 26

Du, Simon S and Sham M Kakade (2019). “Is a Good Representation Suffi-
cient for Sample Efficient Reinforcement Learning?” en. In: p. 17. 20, 24, 43

Duncan, Luce R (1959). Individual choice behavior: A theoretical analysis. 26

Facebook (2020). ReAgent: Applied Reinforcement Learning Platform.url: https:
//reagent.ai (visited on 01/08/2020). 1

Fortunato, Meire, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian
Osband, Alex Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier

77

https://reagent.ai
https://reagent.ai

Pietquin, Charles Blundell, and Shane Legg (2018). “Noisy networks for
exploration.” In: International Conference on Learning Representations. 35

Gal, Yarin and Zoubin Ghahramani (2016). “Dropout as a bayesian approx-
imation: Representing model uncertainty in deep learning.” In: interna-
tional conference on machine learning, pp. 1050–1059. 31

Gutenbrunner, Christoph, JKRS Jurečková, Roger Koenker, and Stephen Port-
noy (1993). “Tests of linear hypotheses based on regression rank scores.”
In: Journal of Nonparametric Statistics 2.4, pp. 307–331. 69

Haarnoja, Tuomas, Haoran Tang, Pieter Abbeel, and Sergey Levine (2017).
“Reinforcement learning with deep energy-based policies.” In: Proceed-
ings of the 34th International Conference on Machine Learning-Volume 70.
JMLR. org, pp. 1352–1361. 26

Hernandez-Garcia, J Fernando and Richard S Sutton (2019). “Understanding
Multi-Step Deep Reinforcement Learning: A Systematic Study of the DQN
Target.” In: arXiv preprint 1901.07510. 11

Koenker, Roger (2019). quantreg: Quantile Regression. R package version 5.54.
url: https://CRAN.R-project.org/package=quantreg. 69

Kozuno, Tadashi, Eiji Uchibe, and Kenji Doya (2019). “Theoretical Analysis of
Efficiency and Robustness of Softmax and Gap-Increasing Operators in Re-
inforcement Learning.” In: The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 2995–3003. 26

Kumaraswamy, Raksha, Matthew Schlegel, Adam White, and Martha White
(2018). “Context-dependent upper-confidence bounds for directed explo-
ration.” In: Advances in Neural Information Processing Systems, pp. 4779–
4789. 4, 30, 35

Lagoudakis, Michail G and Ronald Parr (2003). “Least-squares policy itera-
tion.” In: Journal of machine learning research 4.Dec, pp. 1107–1149. 11

Lai, Tze Leung and Herbert Robbins (1985). “Asymptotically efficient adap-
tive allocation rules.” In: Advances in applied mathematics 6.1, pp. 4–22.

29

Langford, John (2018). RL Acid. Retrieved from https : / / github . com /
JohnLangford/RL_acid. 3, 15, 20, 39, 41

Lattimore, Tor and Csaba Szepesvari (2019). “Learning with Good Feature
Representations in Bandits and in RL with a Generative Model.” In: arXiv
preprint arXiv:1911.07676. 24, 25, 43

Machado, Marlos C, Marc G Bellemare, and Michael Bowling (2018). “Count-
based exploration with the successor representation.” In: arXiv preprint
1807.11622. 30

Machado,Marlos C, Sriram Srinivasan, andMichael Bowling (2015). “Domain-
independent optimistic initialization for reinforcement learning.” In:Work-
shops at the Twenty-Ninth AAAI Conference on Artificial Intelligence. 35

Martin, Jarryd, Suraj Narayanan Sasikumar, Tom Everitt, and Marcus Hut-
ter (2017). “Count-based exploration in feature space for reinforcement
learning.” In: arXiv preprint 1706.08090. 30, 43

78

https://CRAN.R-project.org/package=quantreg
https://github.com/JohnLangford/RL_acid
https://github.com/JohnLangford/RL_acid

Melo, Francisco S (2001). Convergence of Q-learning: A simple proof. url:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
413.2350&rep=rep1&type=pdf (visited on 01/12/2020). 35

Melo, Francisco S, Sean P Meyn, and M Isabel Ribeiro (2008). “An analysis
of reinforcement learning with function approximation.” In: Proceedings
of the 25th international conference on Machine learning. ACM. 10

MEULEAU, NICOLAS (1999). “Exploration of Multi-State Environments: Lo-
cal Measures and Back-Propagation of Uncertainty.” en. In: p. 38. 29

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. (2015). “Human-level control through deep
reinforcement learning.” In: Nature 518.7540, p. 529. 11, 29, 42

Moore, Andrew William (1990). “Efficient memory-based learning for robot
control.” en. In: p. 248. 16, 40

Nachum, Ofir, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans (2017).
“Bridging the gap between value and policy based reinforcement learn-
ing.” In: Advances in Neural Information Processing Systems, pp. 2775–
2785. 26

Osband, Ian, John Aslanides, and Albin Cassirer (2018). “Randomized prior
functions for deep reinforcement learning.” In: Advances in Neural Infor-
mation Processing Systems, pp. 8617–8629. 31

Osband, Ian, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy (2016).
“Deep exploration via bootstrapped DQN.” In: Advances in neural informa-
tion processing systems, pp. 4026–4034. 31

Osband, Ian, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, An-
dre Saraiva, Katrina McKinney, Tor Lattimore, Csaba Szepezvari, Satinder
Singh, Benjamin Van Roy, Richard Sutton, David Silver, and Hado van
Hasselt (2019). “Behaviour suite for reinforcement learning.” In: arXiv
preprint 1908.03568. 3

Osband, Ian, Benjamin Van Roy, Daniel J. Russo, and Zheng Wen (2019).
“Deep Exploration via Randomized Value Functions.” In: Journal of Ma-
chine Learning Research 20.124, pp. 1–62. 20, 35

Pathak, Deepak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell (2017).
“Curiosity-driven exploration by self-supervised prediction.” In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 16–17. 32

Peters, Jan, Katharina Mulling, and Yasemin Altun (2010). “Relative entropy
policy search.” In: Twenty-Fourth AAAI Conference on Artificial Intelligence. 26

Plappert, Matthias, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard
Y Chen, Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz
(2018). “Parameter space noise for exploration.” In: International Confer-
ence on Learning Representations. 36

R Core Team (2019). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing. Vienna, Austria. url: https:
//www.R-project.org/. 58

79

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.413.2350&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.413.2350&rep=rep1&type=pdf
https://www.R-project.org/
https://www.R-project.org/

Russo, Daniel (2019). Algorithmic Foundations of Learning and Control. url:
https://www.youtube.com/watch?v=qqTMnQ-NLU (visited on 12/18/2019).

41

Russo, Daniel J., Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng
Wen (2018). “A Tutorial on Thompson Sampling.” In: Foundations and
Trends® in Machine Learning 11.1, pp. 1–96. 27

Services, AmazonWeb (2020). Use Reinforcement Learning with Amazon Sage-
Maker. url: https://docs.aws.amazon.com/sagemaker/latest/dg/
reinforcement-learning.html (visited on 01/08/2020). 1

Silver, David, ThomasHubert, Julian Schrittwieser, Ioannis Antonoglou,Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, et al. (2017). “Mastering chess and shogi by self-play with a gen-
eral reinforcement learning algorithm.” In: arXiv:1712.01815. 1

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov (2014). “Dropout: a simple way to prevent neural net-
works from overfitting.” In: The journal of machine learning research 15.1,
pp. 1929–1958. 31

Stadie, Bradly C, Sergey Levine, and Pieter Abbeel (2015). “Incentivizing
exploration in reinforcement learning with deep predictive models.” In:
arXiv preprint 1507.00814. 32

Still, Susanne (2009). “Information-theoretic approach to interactive learn-
ing.” In: EPL (Europhysics Letters) 85.2, p. 28005. 26

Strehl, Alexander L. and Michael L. Littman (2008). “An analysis of model-
based Interval Estimation for Markov Decision Processes.” In: Journal of
Computer and System Sciences 74.8, pp. 1309–1331. 23, 29

Sutton, Richard S (1991). “Dyna, an integrated architecture for learning,
planning, and reacting.” In: ACM Sigart Bulletin. 11

Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning: An
introduction. MIT press. 9, 17, 21, 40, 55

Tang, Haoran, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen,
Yan Duan, John Schulman, Filip DeTurck, and Pieter Abbeel (2017). “#
Exploration: A study of count-based exploration for deep reinforcement
learning.” In: Advances in neural information processing systems, pp. 2753–
2762. 30

Tange, Ole (2018). GNU Parallel 2018. Ole Tange. isbn: 9781387509881.
doi: 10.5281/zenodo.1146014. url: https://doi.org/10.5281/
zenodo.1146014.

Thompson, William R (1933). “On the likelihood that one unknown probabil-
ity exceeds another in view of the evidence of two samples.” In: Biometrika
25.3/4, pp. 285–294. 27

Thrun, Sebastian B (1992). “The role of exploration in learning control.” In:
Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches,
pp. 1–27. 35

Tsitsiklis, John N (1994). “Asynchronous stochastic approximation and Q-
learning.” In: Machine learning 16.3, pp. 185–202. 35

80

https://www.youtube.com/watch?v=qqTMnQ-NLU
https://docs.aws.amazon.com/sagemaker/latest/dg/reinforcement-learning.html
https://docs.aws.amazon.com/sagemaker/latest/dg/reinforcement-learning.html
http://dx.doi.org/10.5281/zenodo.1146014
https://doi.org/10.5281/zenodo.1146014
https://doi.org/10.5281/zenodo.1146014

Van Roy, Benjamin and Shi Dong (2019). “Comments on the Du-Kakade-
Wang-Yang Lower Bounds.” In: arXiv preprint arXiv:1911.07910. 24, 25, 43

van Seijen, Harm and Rich Sutton (2015). “A deeper look at planning as
learning from replay.” In: International conference on machine learning,
pp. 2314–2322. 11

Watkins, Christopher John Cornish Hellaby (1989). “Learning from delayed
rewards.” PhD thesis. King’s College, Cambridge. 9

White, Martha and AdamWhite (2010). “Interval Estimation for Reinforcement-
Learning Algorithms in Continuous-State Domains.” In: Advances in Neu-
ral Information Processing Systems 23, pp. 2433–2441. 14, 39

Wilke, Claus O. (2018). ggridges: Ridgeline Plots in ’ggplot2’. R package version
0.5.1. url: https://CRAN.R-project.org/package=ggridges. 58

Zou, Shaofeng, Tengyu Xu, and Yingbin Liang (2019). “Finite-sample analy-
sis for sarsa with linear function approximation.” In: Advances in Neural
Information Processing Systems. 10

81

https://CRAN.R-project.org/package=ggridges

Appendix A

Hyperparameter settings

Back to Chapter 6

Back to Table of Contents

Here we report the best hyperparameter settings in each of the environ-

ments from Chapter 3. They were identified by running each exploration

method 72 times and selecting the settings with the highest median accu-

mulated reward in the testing phase. If two agents were tied for the highest

median, we selected the settings that produced the highest mean accumu-

lated reward in the testing phase. We include the median performance of

each method for reference.

Method α α2 β θ σmax ε wbonus Tiles Tilings Median

S-counts 2−4 0.005 9 10 0.00
SA-counts 2−5 0.100 2 32 96.33
BootstrapQ 2−3 2 32 104.53
ε-greedy 2−3 2−1 48 2 380.75
IEQL+ 2−5 0.99 0.010 2 32 104.49
NoisyNets 2−4 48 2 0.00
OptInit 2−5 50 2 32 5502.30
RND-S 2−3 0.005 2 32 0.00
RND-SA 2−3 0.005 2 32 0.00
SoftmaxAC 2−5 0.031 9 10 9926.50
L-UCLS (OFU) 2−5 0.500 0.01 48 2 5803.25
L-UCLS (TS) 2−5 0.050 Inf 48 2 2568.56

Table A.1: Best hyperparameter settings in VarianceWorld

82

Method α α2 β θ σmax ε wbonus Tiles Tilings Median

S-counts 2−5 0.005 9 10 611.50
SA-counts 2−3 0.050 2 32 2253.50
BootstrapQ 2−5 9 10 1749.50
ε-greedy 2−5 2−6 9 10 3394.75
IEQL+ 2−2 0.90 0.015 2 32 2665.25
NoisyNets 2−4 9 10 0.00
OptInit 2−5 1 2 32 3143.00
RND-S 2−5 0.010 9 10 555.50
RND-SA 2−5 0.005 9 10 617.00
SoftmaxAC 2−4 0.250 48 2 3834.00
L-UCLS (OFU) 2−5 0.005 0.04 9 10 3518.25
L-UCLS (TS) 2−5 0.005 -1.33 9 10 3461.50

Table A.2: Best hyperparameter settings in WindyJump

Method α α2 β θ σmax ε wbonus Tiles Tilings Median

S-counts 2−4 0.100 2 32 3712.11
SA-counts 2−2 0.100 9 10 3712.11
BootstrapQ 2−4 9 10 5.49
ε-greedy 2−2 2−1 48 2 5.49
IEQL+ 2−3 0.75 0.005 9 10 3712.11
NoisyNets 2−5 48 2 5.46
OptInit 2−3 1 48 2 3712.11
RND-S 2−5 0.100 2 32 3712.11
RND-SA 2−3 0.010 9 10 3712.11
SoftmaxAC 1 0.062 2 32 3704.66
L-UCLS (OFU) 1 0.100 -1.33 48 2 3712.11
L-UCLS (TS) 2−1 0.500 -1.00 48 2 3712.11

Table A.3: Best hyperparameter settings in Antishaping

83

Method α α2 β θ σmax ε wbonus Tiles Tilings Median

S-counts 2−3 0.010 9 10 5923.66
SA-counts 2−3 0.005 9 10 5921.82
BootstrapQ 1 2 32 1000.00
ε-greedy 1 2−4 9 10 1000.00
IEQL+ 2−3 0.99 0.015 2 32 5937.11
NoisyNets 2−5 9 10 5356.81
OptInit 2−3 50 48 2 5908.99
RND-S 2−4 0.050 2 32 5934.66
RND-SA 2−5 0.010 2 32 5934.05
SoftmaxAC 2−5 1.000 48 2 997.00
L-UCLS (OFU) 2−4 0.100 -1.00 48 2 5908.99
L-UCLS (TS) 2−1 0.500 0.01 2 32 1000.00

Table A.4: Best hyperparameter settings in AlpineSki

Method α α2 β θ σmax ε wbonus Tiles Tilings Median

S-counts 2−2 0.005 16 2 0.00
SA-counts 2−2 0.005 16 2 43.42
BootstrapQ 2−4 8 7 2608.54
ε-greedy 2−4 2−4 8 7 2960.91
IEQL+ 2−2 0.50 0.010 16 2 101.87
NoisyNets 2−5 16 2 733.13
OptInit 2−1 1 8 7 2852.36
RND-S 1 0.010 8 7 13.36
RND-SA 2−3 0.010 16 2 41.75
SoftmaxAC 1 0.500 2 64 2895.78
L-UCLS (OFU) 2−3 0.100 -1.00 8 7 2748.82
L-UCLS (TS) 2−2 0.005 -1.00 8 7 2578.48

Table A.5: Best hyperparameter settings in Sparse MountainCar

84

Method α α2 β θ σmax ε wbonus Tiles Tilings Median

S-counts 2−4 0.010 2 54 899.67
SA-counts 2−4 0.005 4 12 8.10
BootstrapQ 2−2 8 2 8.23
ε-greedy 2−2 2−1 8 2 4003.97
IEQL+ 2−3 0.99 0.015 4 12 8.10
NoisyNets 2−4 2 54 899.72
OptInit 1 1 8 2 8.23
RND-S 2−3 0.005 4 12 8.10
RND-SA 2−2 0.005 4 12 8.10
SoftmaxAC 1 1.000 2 54 4054.36
L-UCLS (OFU) 2−2 0.010 0.01 8 2 2242.48
L-UCLS (TS) 2−4 0.050 -1.00 2 54 3777.05

Table A.6: Best hyperparameter settings in Hypercube

85

Appendix B

Results for all Hyperparameter
Settings

Back to Parameter Study

Back to Table of Contents

Here we present the density plots of the performance of each exploration

method, across all hyperparameter settings.

86

BootstrapQ

IEQL+

L-UCLS (OFU)

NoisyNets

OptInit

RND-S

RND-SA

S-counts

SA-counts

ε-greedy

L-UCLS (TS)

SoftmaxAC

Random

0 104.474 11203.7

Cumulative reward

Empirical density of cumulative reward

VarianceWorld

Figure B.1: This plot shows a distribution over the reward accumulated by
each agent over the 100000 time-step test phase, for all hyperparameter set-
tings. Agents are colored according to their underlying heuristics, and sorted
by their median performance. We calculate the plotted densities using the
ggridges package for R, and data from 72 independent runs for each hyper-
parameter setting.

NoisyNets

SoftmaxAC

BootstrapQ

IEQL+

L-UCLS (OFU)

L-UCLS (TS)

OptInit

RND-S

RND-SA

S-counts

SA-counts

ε-greedy

Random

0 5.492 3713.604

Cumulative reward

Empirical density of cumulative reward

Antishaping

Figure B.2: This plot shows a distribution over the reward accumulated by
each agent over the 100000 time-step test phase, for all hyperparameter set-
tings. Agents are colored according to their underlying heuristics, and sorted
by their median performance. We calculate the plotted densities using the
ggridges package for R, and data from 72 independent runs for each hyper-
parameter setting.

87

L-UCLS (OFU)

NoisyNets

OptInit

RND-S

RND-SA

S-counts

SA-counts

BootstrapQ

L-UCLS (TS)

Random

IEQL+

ε-greedy

SoftmaxAC

0 2912

Cumulative reward

Empirical density of cumulative reward

Sparse MountainCar

Figure B.3: This plot shows a distribution over the reward accumulated by
each agent over the 100000 time-step test phase, for all hyperparameter set-
tings. Agents are colored according to their underlying heuristics, and sorted
by their median performance. We calculate the plotted densities using the
ggridges package for R, and data from 72 independent runs for each hyper-
parameter setting.

BootstrapQ

NoisyNets

RND-S

RND-SA

S-counts

L-UCLS (OFU)

IEQL+

SA-counts

ε-greedy

Random

L-UCLS (TS)

OptInit

SoftmaxAC

0 36.552

Cumulative reward

Empirical density of cumulative reward

WindyJump

Figure B.4: This plot shows a distribution over the reward accumulated by
each agent over the 100000 time-step test phase, for all hyperparameter set-
tings. Agents are colored according to their underlying heuristics, and sorted
by their median performance. We calculate the plotted densities using the
ggridges package for R, and data from 72 independent runs for each hyper-
parameter setting.

88

Random

SoftmaxAC

NoisyNets

L-UCLS (TS)

BootstrapQ

IEQL+

L-UCLS (OFU)

OptInit

RND-S

RND-SA

S-counts

SA-counts

ε-greedy

0 1000 5957.891

Cumulative reward

Empirical density of cumulative reward

AlpineSki

Figure B.5: This plot shows a distribution over the reward accumulated by
each agent over the 100000 time-step test phase, for all hyperparameter set-
tings. Agents are colored according to their underlying heuristics, and sorted
by their median performance. We calculate the plotted densities using the
ggridges package for R, and data from 72 independent runs for each hyper-
parameter setting.

OptInit

S-counts

SA-counts

IEQL+

RND-S

RND-SA

BootstrapQ

L-UCLS (OFU)

NoisyNets

Random

L-UCLS (TS)

ε-greedy

SoftmaxAC

0 8.098 899.63 4252.049

Cumulative reward

Empirical density of cumulative reward

Hypercube

Figure B.6: This plot shows a distribution over the reward accumulated by
each agent over the 100000 time-step test phase, for all hyperparameter set-
tings. Agents are colored according to their underlying heuristics, and sorted
by their median performance. We calculate the plotted densities using the
ggridges package for R, and data from 72 independent runs for each hyper-
parameter setting.

89

Appendix C

Quantile Regression Table

Back to Statistical Analysis

Back to Table of Contents

Here we present the summary tables detailing the results of Student T-

tests on the significance of terms in our median regression model.

Table C.1: Output of the call summary(rq(value agent
env, tau=0.5), se=’ker’), using the quantreg pack-
age in R.

Variable Value Std. Error t value Pr(>|t|)

Intercept 5908.99 1.30 4542.49 0.00
agentbellemare_agent_Q 14.67 2.05 7.15 0.00
agentbellemare_state_action_Q 12.23 2.44 5.00 0.00
agentbootstrap_Q -4908.99 1.53 -3208.99 0.00
agentepsilon_greedy_Q -4908.99 1.57 -3128.44 0.00
agentIEQL+_Q 28.12 2.11 13.32 0.00
agentnoisy_net_Q -560.37 18.10 -30.96 0.00
agentoptimistic_init_Q 0.00 1.76 0.00 1.00
agentrandom -5409.08 1.45 -3725.37 0.00
agentRND_state 25.68 2.96 8.66 0.00
agentRND_state_action 24.45 3.24 7.56 0.00
agentsoftmax_AC -4911.99 1.57 -3129.21 0.00
agentUCLS_TS -4908.99 1.57 -3128.43 0.00
envSparseMC -3156.83 13.04 -242.09 0.00
envVarianceWorld -128.99 63.20 -2.04 0.04
envHypercube -2922.27 63.20 -46.24 0.00
envAntishaping -2196.87 1.67 -1318.24 0.00
envWindyJump -2392.99 27.49 -87.06 0.00
agentbellemare_agent_Q:envSparseMC -2766.83 13.22 -209.30 0.00

90

agentbellemare_state_action_Q:envSparseMC -2720.97 19.34 -140.72 0.00
agentbootstrap_Q:envSparseMC 4752.01 28.14 168.86 0.00
agentepsilon_greedy_Q:envSparseMC 5109.39 33.86 150.89 0.00
agentIEQL+_Q:envSparseMC -2676.74 21.47 -124.68 0.00
agentnoisy_net_Q:envSparseMC -1450.31 31.57 -45.95 0.00
agentoptimistic_init_Q:envSparseMC 100.20 17.84 5.62 0.00
agentrandom:envSparseMC 2663.60 13.08 203.62 0.00
agentRND_state:envSparseMC -2764.48 13.72 -201.44 0.00
agentRND_state_action:envSparseMC -2733.19 17.72 -154.25 0.00
agentsoftmax_AC:envSparseMC 5055.61 15.26 331.20 0.00
agentUCLS_TS:envSparseMC 4731.97 36.40 129.99 0.00
agentbellemare_agent_Q:envVarianceWorld -5794.67 63.22 -91.65 0.00
agentbellemare_state_action_Q:envVarianceWorld -5695.94 63.34 -89.92 0.00
agentbootstrap_Q:envVarianceWorld -766.48 63.22 -12.12 0.00
agentepsilon_greedy_Q:envVarianceWorld -506.01 89.37 -5.66 0.00
agentIEQL+_Q:envVarianceWorld -5703.63 63.24 -90.18 0.00
agentnoisy_net_Q:envVarianceWorld -5219.63 65.73 -79.41 0.00
agentoptimistic_init_Q:envVarianceWorld -286.27 88.69 -3.23 0.00
agentrandom:envVarianceWorld 160.08 63.68 2.51 0.01
agentRND_state:envVarianceWorld -5805.68 63.27 -91.77 0.00
agentRND_state_action:envVarianceWorld -5804.45 63.28 -91.73 0.00
agentsoftmax_AC:envVarianceWorld 9050.99 87.61 103.30 0.00
agentUCLS_TS:envVarianceWorld 1671.41 71.11 23.50 0.00
agentbellemare_agent_Q:envHypercube -2101.74 63.24 -33.24 0.00
agentbellemare_state_action_Q:envHypercube -2990.84 63.24 -47.30 0.00
agentbootstrap_Q:envHypercube 1930.50 63.21 30.54 0.00
agentepsilon_greedy_Q:envHypercube 5909.40 66.97 88.24 0.00
agentIEQL+_Q:envHypercube -3006.74 63.22 -47.56 0.00
agentnoisy_net_Q:envHypercube -1526.63 65.73 -23.23 0.00
agentoptimistic_init_Q:envHypercube -2978.47 63.22 -47.11 0.00
agentrandom:envHypercube 2449.10 63.20 38.75 0.00
agentRND_state:envHypercube -3004.29 63.26 -47.49 0.00
agentRND_state_action:envHypercube -3003.07 63.28 -47.46 0.00
agentsoftmax_AC:envHypercube 5981.67 63.75 93.83 0.00
agentUCLS_TS:envHypercube 5696.86 64.63 88.14 0.00
agentbellemare_agent_Q:envAntishaping -14.67 2.92 -5.02 0.00
agentbellemare_state_action_Q:envAntishaping -12.23 2.96 -4.13 0.00
agentbootstrap_Q:envAntishaping 1202.36 2.14 560.57 0.00
agentepsilon_greedy_Q:envAntishaping 1202.36 2.08 578.66 0.00
agentIEQL+_Q:envAntishaping -28.12 2.54 -11.05 0.00
agentnoisy_net_Q:envAntishaping -3146.28 18.14 -173.48 0.00
agentoptimistic_init_Q:envAntishaping -0.00 2.29 -0.00 1.00
agentrandom:envAntishaping 1714.36 2.12 810.45 0.00
agentRND_state:envAntishaping -25.68 3.54 -7.25 0.00
agentRND_state_action:envAntishaping -24.45 3.62 -6.75 0.00

91

agentsoftmax_AC:envAntishaping 4904.53 2.55 1920.40 0.00
agentUCLS_TS:envAntishaping 4908.99 2.14 2298.47 0.00
agentbellemare_agent_Q:envWindyJump -2930.17 55.21 -53.07 0.00
agentbellemare_state_action_Q:envWindyJump -1370.23 68.93 -19.88 0.00
agentbootstrap_Q:envWindyJump 3077.99 66.11 46.56 0.00
agentepsilon_greedy_Q:envWindyJump 4771.49 42.27 112.89 0.00
agentIEQL+_Q:envWindyJump -908.12 68.92 -13.18 0.00
agentnoisy_net_Q:envWindyJump -2955.63 32.90 -89.84 0.00
agentoptimistic_init_Q:envWindyJump -369.00 36.25 -10.18 0.00
agentrandom:envWindyJump 1976.10 28.09 70.35 0.00
agentRND_state:envWindyJump -2979.68 64.15 -46.45 0.00
agentRND_state_action:envWindyJump -2937.95 68.97 -42.60 0.00
agentsoftmax_AC:envWindyJump 5229.49 31.10 168.17 0.00
agentUCLS_TS:envWindyJump 4849.99 41.66 116.42 0.00

92

	Introduction
	Background & Notation
	Problem setting
	Solution methods
	Algorithms
	Algorithmic considerations

	Summary

	Categorizing Environments
	Exploration properties concerning reward
	High variance rewards
	Misleading rewards
	Reward sparsity

	Exploration properties concerning transition dynamics
	High variance transitions
	Antagonistic transitions
	Number of states and actions

	Combining difficult rewards and transition dynamics
	Impact of the state representation
	Summary

	Exploration methods
	Optimistic methods
	Optimism in the Face of Uncertainty
	Thompson Sampling

	Learning progress methods
	Optimistic Initialization

	Noisy methods
	Summary

	Experimental setup
	Environments
	High-variance reward: VarianceWorld
	Misleading reward: Antishaping
	Sparse reward: Sparse MountainCar
	High-variance transitions: WindyJump
	Antagonistic transitions: AlpineSki
	Large state-action space: Hypercube

	Exploration methods included in the study
	Optimism in the face of uncertainty
	Thompson sampling
	Learning progress methods
	Noisy methods
	Baselines

	Summary

	Results
	Main analysis
	Highlights
	High-variance reward: VarianceWorld
	Misleading reward: Antishaping
	Sparse reward: Sparse MountainCar
	High-variance transitions: WindyJump
	Antagonistic transitions: AlpineSki
	Large state-action space: Hypercube

	Supplementary analyses
	Parameter Study
	Statistical Analysis

	Discussion
	Summary

	Conclusion & Future Work
	Future Work

	Bibliography
	Appendix Hyperparameter settings
	Appendix Results for all Hyperparameter Settings
	Appendix Quantile Regression Table

