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Abstract

A common scientific challenge for putting a reinforcement learning agent into

practice is how to improve sample efficiency as much as possible with limited

computational or memory resources. Such available physical resources may

vary in different applications. My thesis introduces some approaches to flexi-

bly balance sample efficiency and physical resource for prediction and control

problems in an online reinforcement learning setting. Our methods can sig-

nificantly improve sample efficiency with reasonable computational power and

storage demand.

We draw on two key optimization strategies that are known to improve con-

vergence rates: second-order optimizations and prioritized sampling of what

data to update with. In this thesis, we mainly focus on the policy evalu-

ation problem, though we also introduce effective sampling distribution for

control tasks. Particularly, in policy evaluation problems, we develop an ap-

proximate second-order method to minimize Mean Squared Projected Bellman

Error (MSPBE). Our method scales sub-quadratically with feature dimen-

sion in terms of computational and memory cost. We propose two techniques

to efficiently and incrementally approximate the preconditioning matrix in

the second-order updating rule: truncated singular value decomposition and

sketching via random projection. We further introduce a simple regularization

method to theoretically guarantee the unbiased convergence of our algorithm,

under certain assumptions.

In control problems, we focus on studying effective sampling distribu-
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tions to sample imagined experiences in model-based reinforcement learning

(MBRL). Specifically, in a classic MBRL architecture called Dyna, we design

novel search-control strategies, which refer to the mechanisms of generating

states from which we query an environment model to acquire imagined ex-

periences to improve the policy during the planning phase. We provide both

theoretical and empirical evidence to verify that our methods improve sample

efficiency.
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Chapter 1

Introduction

Reducing the number of training samples needed for Artificial Intelligence

(AI) agents to interact with the real environment is one of the key challenges

of putting reinforcement learning algorithms into practice. Such interactions

can be extremely expensive in terms of time or even financial cost. The time

cost can be extremely high: unlike using computer simulation to generate data,

we have to wait for an agent to physically interact with the real environment

to collect data samples. In some cases, the financial cost may also be non-

trivial. For example, physical robotic control tasks may induce maintenance

or expensive operating costs. An AI financial market trader may cause a lot

of loss before starting to be profitable. As a result, given certain performance

measure, we would like to design AI agents which can learn to achieve as good

performance as possible by using as few real-world data samples as possible.

That is, we want to improve the sample efficiency of an AI agent.

High sample efficiency should not be the only criterion for designing an ideal

AI agent; computation or memory cost also matters. A high-performing agent

may not be preferred in real-world applications, if it costs enormous amounts

of physical resources, such as computational power or memory. Ideally, we

would like to have an agent which can achieve optimal performance but uses

little physical resources. Notwithstanding, such an ideal agent may not exist

in practice. As a result, typically, some trade-off between sample efficiency

and physical resource consumption needs to be made. This motivates the

research topic of this thesis:

1



How can we improve the sample efficiency of a reinforcement learning al-

gorithm with limited computational and memory resources?

We introduce some approaches from the mathematical optimization per-

spective, which can flexibly balance an agent’s sample efficiency and the cost

of physical resources in prediction and control problems in an online reinforce-

ment learning setting. We put a slightly heavier emphasis on the prediction

problem in this thesis. Prediction problem corresponds to policy evaluation,

which concerns predicting state values under some policy, while the goal of

control problems is to find a good policy for decision making. We consider

prediction problems in a linear function approximation setting. We bring into

policy evaluation algorithms quasi-second order optimization techniques, re-

sulting in a new family of algorithms called Accelerated Gradient Temporal

Difference (ATD) learning, which scale sub-quadratically to feature dimension

in terms of computational and storage cost.

As for the control problem, we focus on a relatively under-studied area—

designing effective sampling distribution in a model-based reinforcement learn-

ing (MBRL) setting, particularly in Dyna architecture (Sutton, 1991). Specif-

ically, we discuss how to generate imagined experiences from an environment

model. We use the term imagined experiences to make a distinction with real

experiences: the former refers to those that do not correspond to the agent’s

physical interactions with the real environment. In contrast, the latter refers

to those generated by physically interacting with the real environment. The

phrase imagined experience is conceptually similar to what humans do when

they think about future possibilities: they imagine how future scenarios would

look like and make decisions. In some literature, the terms hypothetical expe-

rience or simulated experience are also used.

1.1 Motivation

In this section, we motivate the proposed approaches in the thesis. We focus

on the following questions:

1. Why do we care about policy evaluation problems?
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2. Why do we develop Accelerated gradient Temporal Difference (ATD)

learning algorithms?

3. Why do we study sampling distributions in MBRL? Particularly, why

do we study it within the Dyna formalism?

Motivation of Policy Evaluation Problems. Policy evaluation problems

can be commonly seen in practical scenarios. It is sensible to evaluate a policy

before deploying it—we would want to deploy a policy only when it is suf-

ficiently high value. Studying policy evaluation algorithms is also naturally

important for control problems. First, a policy evaluation algorithm may be

easily adapted to be a control algorithm. For example, an agent may take

actions greedily w.r.t. action values learned by a policy evaluation algorithm.

Second, many well-known policy gradient methods involve learning a critic,

which can be considered a policy evaluation process. Hence, improvement in

policy evaluation algorithms potentially benefits algorithms for solving control

problems.

Motivation of ATD Algorithms. Our motivation for developing ATD

algorithms is to provide a more flexible balance between sample and compu-

tational efficiencies than the existing TD algorithms. These TD algorithms

include computationally-frugal, linear, stochastic approximation methods to

data efficient but quadratic Least Squares TD (LSTD) methods, with little

in between. Stochastic approximation methods, such as TD learning (Sutton,

1988) and gradient TD methods, (Maei, 2011) require linear (in the number

of features) computation per time step and linear memory. These linear TD-

based algorithms are well suited to problems with high dimensional feature

vectors—compared to available resources—and domains where agent interac-

tion occurs at a high rate (Szepesvari, 2010). However, when sample efficiency

is of primary concern, LSTD methods, which incur quadratic time and storage

complexity, may be preferred. As a result, we would like to develop methods

interpolating between linear TD methods and LSTD. We want algorithms

that have similar sample efficiency with LSTD but incur less computational
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and storage cost than LSTD while still converging to the same solution as

LSTD does.

It is worth mentioning that some previous efforts attempt to reduce the

computation and storage costs of LSTD methods to span the gap between TD

and LSTD. However, there is still large room to make further improvements.

For example, the iLSTD method (Geramifard & Bowling, 2006) achieves sub-

quadratic computation per time step, but still requires memory that is quadratic

in the size of the features. The tLSTD method (Gehring et al., 2016) uses

an incremental singular value decomposition (SVD) to achieve sub-quadratic

computation and storage. Though in practice, tLSTD achieves running time

much closer to TD compared to iLSTD (Gehring et al., 2016), it finds a biased

solution. Hence, there is a need to improve the sample efficiency of linear TD

methods, while avoiding quadratic computation and storage and asymptotic

bias. Our ATD algorithms are proposed to achieve this purpose.

Motivation of Studying Sampling Distribution in Model-based Rein-

forcement Learning. We separately discuss: 1) why we study the sampling

distribution; 2) why we consider the MBRL setting; and 3) why we study Dyna.

The key reason for us to study the sampling distribution is simple: the

sampling distribution—which, in a conventional supervised learning setting, is

known to significantly affect the sample efficiency—is relatively under-explored

in RL. Hence, designing the sampling distribution is a promising direction to

improve the sample efficiency of RL algorithms.

The reason for concerning MBRL setting is that leveraging an environ-

ment model is a natural way to save physical interactions with the real world,

because the agent can interact with the environment model to collect data,

rather than interact with the real world. In MRBL research, most existing re-

search focuses on learning an environment model. The problem of what kind

of imagined experiences should be generated for improving the policy during

the planning stage is relatively understudied, especially in relatively large, con-

tinuous state domains. There is some previous work indicating that different

sampling mechanisms make a significant difference in sample efficiency (Moore
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& Atkeson, 1993; Sutton et al., 2008; Gu et al., 2016; Pan et al., 2018).Much

more insights and algorithms are needed for this important problem.

The reasons for us to study Dyna are twofold. First, Dyna provides a nat-

ural way to separate the model learning and model usage. The latter offers

great flexibility in generating and using imagined experiences, as we detail

in Chapter 6. Second, Dyna is directly linked with our ultimate objective—

learning a good policy/value function. Dyna architecture (Sutton, 1991) is a

planning paradigm that naturally interleaves learning and planning by simu-

lating one-step experience to update the action-value function (i.e., how to use

a model).

I have the belief that designing algorithms directly learning towards the

ultimate goal is a promising and possibly superior research direction. In fact,

methods along this routine have been being researched for a long time (Bengio,

1997; Tulabandhula & Rudin, 2013; Farahmand, 2018). Some other planning

approaches that indirectly improve the policy through the imagined experi-

ences should finally need some sort of compression for the policy, in the form

of either a policy function or a value function. For example, the classic Monte

Carlo Tree Search (MCTS) planning does not directly use the estimated re-

turn to improve the value/policy function; rather, it simply uses the estimated

return of each action to make a decision. Hence, one would ultimately learn

a policy/value function as it is too expensive to always do a tree search at

each decision time. In contrast, Dyna directly improves the policy or value

function—which is the ultimate purpose—by using a model, and only the pol-

icy/value function needs to be queried to make a decision.

1.2 Contributions

In this section, we briefly summarize the works which have been done in this

thesis. Our contributions can be summarized as follows.

1. In policy evaluation problems, we introduce the approximate second-

order method (i.e., Quasi-Newton method) to TD learning. It has a

reduced computation and storage cost than least square TD algorithms
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and improved sample efficiency than linear TD methods, balancing the

two extremes. Newton’s method was originally proposed in numeri-

cal analysis for root-finding problems. Hence it is naturally applied in

optimization problems to find stationary points where the gradient is

zero (Boyd & Vandenberghe, 2004). Newton’s optimization is known to

converge quadratically fast (Nocedal & Wright, 2006) but is expensive in

terms of computation and storage costs as it requires inverting the full

Hessian matrix at each iteration. The Quasi-Newton method (Broyden,

1972) reduces the computational cost and avoids directly computing and

inverting the Hessian matrix.

To keep the sample efficiency of the second-order optimization method

but lower its computation and memory cost, we propose to use an in-

cremental matrix approximation method in the second-order TD algo-

rithms. We derive the general form of the second-order TD updating

rule, which we call Accelerated Gradient TD (ATD) learning (Pan et al.,

2017b).

2. We propose two instances of the ATD algorithm by introducing two

methods to incrementally approximate the matrix efficiently in terms of

both computation and storage complexity (Pan et al., 2017b,a). Specifi-

cally, we bring in the incremental truncated Singular Value Decomposi-

tion (SVD) method and develop an incremental matrix sketching method

by random projection.

3. We show that our algorithm’s expected updating rule has theoretically

guaranteed asymptotically unbiased convergent behavior under certain

assumptions.

4. Experiments are conducted to show the properties and verify the im-

proved sample efficiency of our algorithms. The experiments show that

ATD algorithms: 1) achieve higher sample efficiency than linear TD

algorithms and have lower computational cost than LSTD algorithms;

2) have reduced hyper-parameter sensitivity; 3) converge to the same
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solution LSTD does.

5. In the classic MBRL Dyna architecture, we introduce the Stochastic

Gradient Langevin Dynamics (SGLD) sampling (Welling & Teh, 2011) to

design a new category of search-control methods, which we call gradient-

based search-control. The search-control mechanism essentially decides

the sampling distribution of experiences to improve the policy during the

planning stage; hence we expect that a smart search-control mechanism

should significantly improve the sample efficiency of the planning process.

6. Motivated by empirical observations or theoretical insights, we propose

three sampling distributions, resulting in three search-control strategies.

The first method is to climb on the value function to acquire high-value

states for search-control. In the second method, we propose to get more

samples from regions where the value function is more difficult to ap-

proximate. The approximation difficulty can be roughly measured by

the gradient magnitude of the learned value function w.r.t. these states.

Our third method overcomes the limitations of a TD error-based sam-

pling in RL—prioritized experience replay method (Schaul et al., 2016).

We leverage theoretical insights from error-based sampling in a conven-

tional supervised learning setting and identify the limitations of apply-

ing such sampling method in RL algorithms: outdated priorities and

insufficient sample space coverage issues. We then introduce the SGLD

sampling method, which does not have such limitations. We empirically

verify the efficacy of our proposed algorithms.

1.3 Thesis Organization

In addition to this introductory chapter, the thesis is structured first to provide

some background of RL in a policy evaluation setting, followed by presenting

our idea of developing the Accelerated gradient TD (ATD) learning algorithms.

We then provide two concrete instances of our algorithm. After describing our

development in the policy evaluation setting, we switch to the control setting
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and present our gradient-based search-control mechanisms. We conclude the

thesis by discussing the limitations of our method and potential future direc-

tions.

Chapter 2 Background in Reinforcement Learning

This chapter presents essential background in the Markov decision pro-

cesses, temporal difference learning algorithms for policy evaluation problems

in both the tabular case and linear function approximation setting, and rel-

evant theoretical properties of these algorithms. Knowing these basic algo-

rithms helps readers understand the motivation of our ATD algorithm. Their

theoretical properties help readers understand the policy evaluation optimiza-

tion objective introduced in the next chapter.

Chapter 3 Accelerated Gradient Temporal Difference Learning

This chapter presents our optimization objective function, based on which

we derive the second-order updating rule of temporal difference learning. It

presents empirical verification of this second-order optimization idea, followed

by discussing the exposed challenges when using an approximate second-order

updating rule, which involves a preconditioning matrix approximation. Then

the generic form of our algorithm is introduced, based on which we develop

concrete instances in the following two chapters that are able to tackle the

challenges.

Chapter 4 Approximation by Incremental Truncated SVD

This chapter introduces the first instance of our ATD algorithm. It starts

by describing using an incremental truncated SVD technique as a matrix ap-

proximation strategy. It then provides a theoretical and empirical analysis of

applying such a strategy in the LSTD method, an essential baseline of our

algorithm. It then points out the baseline’s limitation and motivates our ATD

algorithm with the SVD technique to approximate the preconditioning tech-

nique incrementally, which overcome the limitation. Both empirical evidence

and convergence analysis are provided to show the efficacy of our algorithm.

Chapter 5 Approximation by Random Projection

This chapter introduces the second instance of our ATD algorithm. Its

starts by describing using random projection as a matrix approximation strat-
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egy. It includes an overview of the application of random projection in RL

and discusses various ways of using such a technique in solving a linear system

and its weaknesses. Then it presents our specific approach of using random

projection in ATD, followed by showing the algorithm’s theoretical properties.

Empirical results are presented to show the algorithm’s high performance and

investigate the impact of feature properties on random projection in a linear

value function approximation setting.

Chapter 6 Gradient-based Search-control in Dyna

This chapter switches to the control problem and presents the idea of us-

ing the Stochastic Gradient Langevin Dynamics (SGLD) method to flexibly

design sampling distributions, which are implemented as the search-control

mechanism in a classic MBRL framework called Dyna. The chapter starts

with reviewing background in control problems and Dyna architecture and its

search-control mechanism. Then it introduces three specific state sampling

distributions to generate imagined experiences based on the SGLD sampling

method, along with empirical or theoretical motivations or both. The three

sampling distributions lead to three Dyna variants. This chapter concludes

by showing empirical results to compare the sample efficiencies of those Dyna

variants and model-free baselines on various benchmark domains.

Chapter 7 Discussion

This chapter summarizes the work that has been presented in this thesis.

Additionally, it discusses the limitations of our methods and briefly introduces

other efforts we have made but not detailed to address this thesis’s topic

question. It concludes by describing some future research directions.
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Chapter 2

Background in Reinforcement
Learning

This chapter introduces background in Reinforcement Learning (RL). It is

mainly based on several classic publications in this area (Szepesvari, 2010;

Sutton & Barto, 2018; Tsitsiklis & Van Roy, 1997). We first introduce back-

ground in the Markov decision process (MDP), which is the main theoretical

framework for RL. We then sequentially introduce the following topics: the

tabular Temporal Difference (TD) learning algorithm, TD under linear func-

tion approximation, and discussions about its convergent behaviors.

The reason for such organization of this chapter is as follows. Arguably,

the most distinguished feature of RL algorithms lies in the class of TD learn-

ing methods, which leverages the temporal relation structure within a data

stream. Unlike many other machine learning algorithms, the initial TD algo-

rithms (Sutton, 1988) are not derived by directly optimizing some objective

function. Instead, the theoretical understanding of TD’s optimization objec-

tive in the linear function approximation setting comes later than the algorithm

was proposed.

This chapter is organized based on this understanding. Hence, we start

by introducing basic concepts in an MDP. Then we review the most basic TD

algorithms and discuss their convergent behavior, which leads to the policy

evaluation objective we will be using in the next chapter.
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2.1 Markov Decision Processes

We model the interaction between an RL agent and its environment as a

Markov decision process (S ,A,P, r, γ) (Szepesvari, 2010), where S denotes the

set of states, A denotes the set of actions, and P : S ×A× S → [0,∞) is the

transition function which encodes the one-step state transition dynamics. On

each discrete time step t = 1, 2, 3, ..., the agent selects an action according to

its behavior policy, At ∼ µ(St, ·), with µ : S×A → [0,∞) and the environment

responds by transitioning into a new state St+1 according to P, that is St+1 ∼

P(·|St = st, At = at), and emits a scalar reward Rt+1
def
= r(St, At, St+1). The

discount factor γ : S×A×S → (0, 1] is used to compute the discounted return

as follows. The return, denoted by Gt ∈ R is the discounted sum of future

rewards given actions are selected according to π:

Gt
def
= Rt+1 + γt+1Rt+2 + γt+1γt+2Rt+3 + ... (2.1)

= Rt+1 + γt+1Gt+1

where we denote γ(St, At, St+1)
def
= γt+1 as a shorthand. Such generalization to

transition-based discounting enables the unification of episodic and continuing

tasks (White, 2017) and so we adopt it here for generality. In the standard

continuing case, γt = γ for some constant γ < 1 and for a standard episodic

setting, γt = 1 until the end of an episode, at which point γt+1 = 0, ending

the infinite sum in the return. In practice, however, this may be a tunable

parameter for optimizing algorithm performances. Readers can consider it as

a constant in the rest of this thesis. In general, there are two types of problems

in RL: the policy evaluation (also called prediction) problem and the control

problem.

The objective under policy evaluation is to estimate the value function,

vπ : S → R, as the expected return from each state under some target policy

π : S ×A → [0,∞):

vπ(s)
def
= E[Gt|St = s, π],

so the expectation is defined over the future states encountered while selecting

actions according to π.
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The objective for control problems is to find an optimal policy. A policy

π∗ is an optimal policy if vπ
∗
(s) ≥ vπ(s), ∀s ∈ S for all π. Under the function

approximation setting, one may define the objective as the weighted sum of

states’ values. The weighting scheme may (Degris et al., 2012b; Imani et al.,

2018; Zhang et al., 2019) or may not depend on a policy (Sutton et al., 1999;

Silver et al., 2014).

We focus on the policy evaluation problem for now and defer the back-

ground review of control problems to Chapter 6. Readers can see that it is

not difficult to turn a policy evaluation algorithm into a control algorithm.

In the most common on-policy evaluation setting π = µ, otherwise π 6= µ

and policy evaluation problem is said to be off-policy. In the rest of this

chapter, we assume an on-policy policy evaluation setting by default.

2.2 Tabular Temporal Difference Learning

This section introduces Temporal Difference (TD) algorithms in tabular case

followed by an extension to linear function approximation setting in the next

section. For mathematical conciseness, unless otherwise specified, we assume

the on-policy case. For notation consistency, we consider the feature vector of

a state St ∈ S in the tabular case as a standard basis vector x(St) (i.e., an

one-hot vector where only one entry is set to one to denote a particular state)

and we write xt for short. As a result, in tabular case, a state value can be

defined as: vπ(s)
def
= x(s)>w. In the continuous state space case, with linear

function approximation, we consider x : S 7→ Rd as some feature mapping,

and a state value can still be defined the same as above.

2.2.1 TD(0) algorithm

For a fixed policy π, the value function vπ(s) satisfy the Bellman equations

∀s ∈ S, vπ(s) = rπ(s) + γ
∑
s′

Pπ(s′|s)vπ(s′),

where

Pπ(s′|s) def
=
∑
a

π(a|s)P(s′|s, a), rπ(s)
def
=
∑
a

∑
s′

π(a|s)P (s′|s, a)r(s, a, s′)
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is the expected one-step reward from state s. The Bellman equation can be

proved from the definition of value function vπ(s)
def
= E[Gt|St = s, π] (Sutton

& Barto, 2018).

Under policy π, for any value function v ∈ R|S|, one can define the Bellman

operator as:

∀s ∈ S, T [v](s)
def
= rπ(s) + γ

∑
s′

Pπ(s′|s)vπ(s′). (2.2)

The Bellman equation serves as the basis for TD learning. Consider that we

initialize a value function v̂π(·), i.e., a table with |S| states recording the value

of every state. Given a state value estimate v̂π(s), while we do not have a target

directly available from the data set as we do in a supervised learning setting,

we can push our value estimate towards the target rπ(s)+γ
∑

s′ P
π(s′|s)v̂π(s′),

which is known as the Temporal Difference (TD) target. This target can

be stochastically sampled given a fixed policy once we have a sample in the

form of state, next state, and reward s, s′, r, resulting in the following updating

rule known as TD learning (Sutton, 1988):

v̂π(s)← v̂π(s) + α(yTD − v̂π(s))

where α is some learning rate and yTD is estimated as r + γv̂π(s′).

In a matrix format, one can write the Bellman operator as Tv = rπ+γP πv,

where r,v are vectors in R|S| so each index can retrieve the quantity of cor-

responding state. From this definition, it is easy to prove the operator is

a maximum norm contraction when γ ∈ (0, 1). By using the Bellman op-

erator, the Bellman equation can be rewritten as Tv = v. It is easy to

see that given two value functions v1,v2, the operator T is γ-contraction:

||Tv1 − Tv2|| = ||γP π(v1 − v2)|| ≤ γ||v1 − v2||. This contraction property

holds in both maximum norm (i.e., || · ||∞, see Szepesvari (2010, Page 79)) and

stationary distribution weighted norm (see White (2017, Lemma 2.)) (i.e.,

||v||2Dπ
def
= v>Dπv and Dπ is a diagonal matrix where the diagonal elements

denote the stationary distribution induced by policy π). The contraction prop-

erty of T can guarantee the sequence {vi} generated by the Bellman operator

is convergent to the unique fixed point of T (see Szepesvari (2010, Page 77,
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Theorem 1) for technical details). The contraction property of the Bellman

operator is the theoretical foundation for showing the convergence of TD al-

gorithms.

2.2.2 TD(λ) algorithm

Implementing the above algorithm uses only one-step sampling to compute

the TD target of a state value, which may introduce a large bias as the one-

step sampling heavily relies on the estimate of next state’s value. On the other

extreme, one might think of using a Monte Carlo return, which is unbiased but

potentially introduces large variance. As a result, it is reasonable to consider

that using a weighted sum of different steps of reward samples may provide a

better target by flexibly balancing bias-variance trade-off. This motivates the

λ-weighted return:

Gλ
t

def
= (1− λ)

∞∑
n=1

λn−1Gt:t+n

and by considering post-termination terms separately, we have

Gλ
t

def
= (1− λ)

T−t−1∑
n=1

λn−1Gt:t+n + λT−t−1Gt, (2.3)

where

Gt:t+n
def
= Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnvπ(St+n), 0 ≤ t ≤ T − n

is called n-step return. The λ parameter, which is typically called bootstrap

parameter, assigns different weights to returns calculated by different steps.

This λ-weighted return induces another λ-weighted Bellman operator. One

can define T λ operator as following (assume every notation is under some fixed

policy). First define an operator

T (n)[v](s)
def
= E[

n∑
t=0

γtRt+1 + γn+1v(Sn+1)|S0 = s].
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Then the operator T (λ) is defined as:

T (λ)[v](s)
def
= (1− λ)

∞∑
n=0

λnT (n)[v](s)

= (1− λ)
∞∑
n=0

λnE[
n∑
t=0

γtRt+1 + γn+1v(Sn+1)|S0 = s]

= (1− λ)
∞∑
n=0

λn(
n∑
t=0

γtE[Rt+1|S0 = s] + γn+1E[v(Sn+1)|S0 = s]).

The switch between summation and integration is done by the Tonelli–Fubini

theorem (Tsitsiklis & Van Roy, 1997). By rewriting the above operator in

matrix format, we have

T (λ)v = (1− λ)
∞∑
n=0

λn(
n∑
t=0

(γP π)trπ + (γP π)n+1v). (2.4)

Again, this T (λ) operator is still a contraction mapping because

||T (λ)v1 − T (λ)v2|| = ||(1− λ)
∞∑
n=0

λn(γP π)n+1(v1 − v2)||

≤ (1− λ)
∞∑
n=0

λnγn+1||v1 − v2||

=
γ(1− λ)

1− γλ
||v1 − v2||.

As a result, it has a unique fixed point by Szepesvari (2010, Theorem 1,

Page 77).

It is not difficult to see that, in practice, one has to wait for some time

steps to acquire an estimate of the λ-return. Fortunately, a forward view can

be derived to enable online update of value estimate in TD(λ) algorithm.

In order to introduce the vanilla TD(λ) algorithm, we slightly abuse the

definition of λ return by the following:

Gλ
t

def
= Rt+1 + γ((1− λ)vπ(St+1) + λGλ

t+1). (2.5)

This definition (Sutton et al., 2009; Maei, 2011) allows us to derive the back-

ward view to estimate λ return in an online manner. By (2.5), we have

δλt
def
= Gλ

t − vπ(St) = δt + γλδλt+1,
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where

δt
def
= δ(St, At, St+1, Rt+1, γ)

def
= Rt+1 + γvπw(St+1)− vπw(St).

If we are able to estimate the δλt , then we can use the term δλt xt to update the

weight vector. We take the expectation of δλt xt to get the backward view:

E[δλt xt] = E[δtxt] + γλE[δλt+1xt] (2.6)

= E[δtxt] + γλE[δλt xt−1] (2.7)

= E[δtxt] + γλ(E[δtxt−1] + γλE[δλt+1xt−1]) (2.8)

= E[δtet], et
def
= xt + γλet−1, (2.9)

where the last equality can be acquired by index switching an infinite number

of times. et is called accumulating eligibility-trace vector, which reflects how

much each state value should be adjusted once a new sample is acquired.

This expectation allows us to get an estimate of E[δλt xt] in an online manner

(i.e. at each time step). Due to the consideration of practical robustness

and convergence performance, replacing trace is often used by bounding the

magnitude of entries of the trace vector no larger than one. That is, at current

time step t, we down-weight all other states’ trace value by γλ and set the trace

value of the state St to one.

Note that though we still consider tabular case and xt ∈ R|S| is a standard

basis vector, the value of a state can be written the same as we do in a linear

function approximation setting. Hence this the above theoretical result can

be extended to the linear function approximation setting in Section 2.3.

We would like to to provide a few more discussions about the trace vector,

as it significantly affects the sample efficiency and this is an area being actively

studied. The work by van Seijen & Sutton (2014) shows that the exact equiv-

alence between the estimates of E[δλt xt] and E[δtet] cannot be achieved when

running the above TD algorithm unless there is no bootstrap (i.e. λ = 0).

Matching the estimated weighted return with the Monte Carlo return trun-

cated at the current time step motivates the True-online TD(λ) algorithm.

The idea of true-online trace is to give up using the return estimated by infi-

nite horizon; instead, we estimate all visited states’ values by using a truncated
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return up to the current time step t. Denote the weight vector wt
k as the one

calculated by using data up to time t for the kth (i.e. k ≤ t) sample. At each

time step t, we need to perform updating t times: wt
1,w

t
2, ...,w

t
t by using the

samples x1,x2, ...,xt. True-online TD (van Seijen & Sutton, 2014) derives a

backward view to allow a single update at each time step and the resulting

estimated bootstrap return matches with the one from forward view. We refer

readers to van Seijen et al. (2016) for a more detailed discussion about the true-

online trace and to van Hasselt et al. (2021) for the most recent development

in eligibility traces.

2.3 Linear Temporal Difference Learning

In this section, we discuss the TD learning algorithm with linear function

approximation and its theoretical properties. The terminologies are closely

following the work by Tsitsiklis & Van Roy (1997).

In order to handle large state space, some feature mapping can be used to

convert the raw state variables to some feature space: x : S 7→ Rd to enable

generalization. We present the updating rules of TD(λ) in linear function

approximation setting as following:

wt+1 = wt + αtδtet, (2.10)

et+1 = γλet + xt. (2.11)

We now focus on analyzing the convergent behavior of the algorithm, which

leads to the discovery of the Mean Squared Projected Bellman Error (MSPBE)

introduced in the next chapter. We first introduce some basic setup for anal-

ysis and then present the algorithm’s deterministic version from the dynamic

system perspective. Last, we discuss the convergent behavior of the stochastic

version of the algorithm.

Basic Setup. Let X ⊂ R|S|×d be the feature matrix by applying x on each

of the state in S. Define the norm || · ||Dπ
def
=
√
〈·, ·〉Dπ and the space of finite

value functions as L2
def
= {v ∈ R|S||||v||Dπ < ∞}. Note that we assume that
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the true value function under policy π is in this space: vπ ∈ L2. We introduce

the following basic setup.

1. Assume that the value function by linear approximation lies in L2, i.e.

col(X)
def
= {Xw|w ∈ Rd} ⊂ L2 and X has full column rank, i.e., the

features are linearly independent.

2. ∀v ∈ L2 the set argminv′∈col(X) ||v′ − v||Dπ has a unique element. We

call this the projection of v on col(X) w.r.t. the norm || · ||Dπ as detailed

later.

3. The second-order moment of reward is finite. This ensures that the true

value function under the target policy π lies in L2 and our space L2 is

well defined.

4. The MDP is irreducible and aperiodic. This is a common assumption

needed to characterize the limiting behavior of a policy and establish

convergence results.

Deterministic Version of TD(λ). We provide simple theoretical analysis

for linear TD algorithms by considering its deterministic version (i.e., expected

updating rule). This analysis should equip readers with basic knowledge of

TD algorithms’ convergence mechanisms and a well-known policy evaluation

objective—the mean squared projected Bellman error.

Denote the updating rule of the deterministic (i.e., expected) version as:

w̄t+1 = w̄t + αtEπ[δtet]. Given the weight vector w̄, we can further write the

expectation Eπ[δtet] in a matrix format:

Eπ[δt(w̄)et] = Eπ[(Gλ
t − x>t w̄)xt] (2.12)

= Eπ[(T (λ)[vπ](St)− vπ(St))xt] (2.13)

=
∑
s

dπ(s)(T (λ)[vπ](s)− vπ(s))x(s) (2.14)

= X>Dπ(T (λ)[Xw̄]−Xw̄). (2.15)

The last equality is done by observing that the vector
∑

s d
π(s)(T (λ)[vπ](s)−

vπ(s))x(s) is generated by weighted sum of the feature vectors of all states
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and the weight for state s is dπ(s)(T (λ)[vπ](s)− vπ(s)). Hence we can take the

transpose of the feature matrix and multiply it by a vector Dπ(T (λ)[Xw̄]−Xw̄)

where each element is the weight corresponding to a state. We can alternatively

write this expectation term as b−Aw̄ by the following reasoning:

Eπ[δt(w̄)et] = Eπ[(Rt+1 + γx>t+1w̄ − x>t w̄)et] (2.16)

= Eπ[Rt+1et] + Eπ[(γx>t+1 − x>t )w̄et] (2.17)

= Eπ[Rt+1et]− Eπ[et(xt − γxt+1)>]w̄ (2.18)

= b−Aw̄, (2.19)

where

b
def
= Eπ[Rt+1et], (2.20)

A
def
= Eπ[et(xt − γxt+1)>]. (2.21)

Notice that, the two ways of expressing the expectation term can help prove

that Eπ[δt(w
∗)et] = 0 as we demonstrate later for the optimal weight vector

w∗ (i.e., the fixed point of the deterministic updating rule). As a result, we

first characterize the optimal weight vector (i.e., find what w∗ is). We show

that this optimal weight vector is indeed the stationary point of the expected

updating rule.

Projection operator. We need to introduce a projection operator before

deriving the optimal weight vector. Fix an arbitrary vector v ∈ L2. We

want to project it onto {Xw|w ∈ Rd} def
= col(X). Let the projection operator

be Π and Xp be the projection where p ∈ Rd. Then ∀w ∈ Rd, we have

Xw ∈ col(X) and 〈Xp− v,Xw〉Dπ = 0. The latter is by the definition of the

projection: argminv′∈col(X) ||v′− v||Dπ since the Dπ-orthogonal projection can

minimize this norm. That is ∀w ∈ Rd,

〈Xp− v,Xw〉Dπ = (Xp− v)>DπXw = 0.

This indicates that the vector X>Dπ(Xp− v) = 0. Then

X>DπXp = X>Dπv,

p = (X>DπX)−1X>Dπv.
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As a result, the projection is Xp = X(X>DπX)−1X>Dπv. We call the matrix

X(X>DπX)−1X>Dπ the projection matrix as it projects the vector v onto

col(X). We use the symbol Π to denote it:

Π
def
= X(X>DπX)−1X>Dπ.

Finding the fixed point to the deterministic version of TD updating

rule. It is easy to show that the projection operator Π is non-expansive. Fix

arbitrary v1,v2 ∈ L2, by Babylonian-Pythagorean theorem, we have

||Πv1 − Πv2||2Dπ + ||Πv1 − v1||2Dπ = ||v1 − v2||2Dπ ,

hence,

||Πv1 − Πv2||2Dπ ≤ ||v1 − v2||2Dπ .

This can be combined with the contraction property of T (λ) to show that the

composite operator ΠT (λ) is a contraction, hence a unique fixed point of this

operator can be guaranteed. By the assumption that X has full column rank,

there exists unique w∗, s.t.ΠT (λ)Xw∗ = Xw∗. This is also the rationality

behind minimizing the Mean squared projected Bellman error introduced in

the next chapter, i.e., minw ||ΠT (λ)Xw∗ −Xw∗||2Dπ .

Notice that, this unique fixed point result, together with the two ways of

expressing the expectation term as shown in (2.12) and (2.16) can help prove

that b −Aw∗ = 0 by the following simple reasoning. Multiplying both sides

of ΠT (λ)Xw∗ = Xw∗ by X>Dπ gives us X>DπT (λ)Xw∗ = X>DπXw∗. Hence

Eπ[δt(w
∗)et] = 0 and hence Aw∗ = b. One can further prove the matrix A is

positive definite by checking certain properties of it (Sutton et al., 2016; Yu,

2015).

The concrete matrices format of A and b can be derived as follows. For

A
def
= Eπ[et(xt − γxt+1)>] = Eπ[etx

>
t ]− Eπ[γetx

>
t+1], we can separately analyze

the two expectation terms. For Eπ[etx
>
t ], observing that the expectation is
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constant for any time step t, we can write it as1

Eπ[etx
>
t ] = Eπ[e0x

>
0 ]

= Eπ[
0∑

τ=−∞

(γλ)−τxτx
>
0 ]

=
0∑

τ=−∞

(γλ)−τEπ[xτx
>
0 ].

Fix arbitrary time indexes t, τ such that t ≥ τ , we have

Eπ[xτx
>
t ] =

∑
s

dπ(s)Eπ[x(Sτ )x(St)
>|Sτ = s]

=
∑
s

dπ(s)x(s)Eπ[x(St)
>|Sτ = s]

= X>Dπ(Pπ)t−τX.

As a result,

Eπ[etx
>
t ] =

0∑
τ=−∞

(γλ)−τEπ[xτx
>
0 ]

=
0∑

τ=−∞

(γλ)−τX>Dπ(Pπ)−τX

=
∞∑
τ=0

(γλ)τX>Dπ(Pπ)τX.

For the other term, following similar reasoning, we get

Eπ[γetx
>
t+1] = γ

∞∑
τ=0

(γλ)τX>Dπ(Pπ)τ+1X.

1In the Emphatic TD paper (Sutton et al., 2016), the matrix format of the A can be
derived by considering Eπ[etx

>
t ] =

∑
s d

π(s)Eπ[et|St = s]E[xt|St = s]> because the two
random variables are conditionally independent. That derivation gives the same result as
the one presented here.
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Then the matrix expression of A can be found as follows.

A
def
= Eπ[et(xt − γxt+1)>]

= Eπ[etx
>
t ]− Eπ[γetx

>
t+1]

=
∞∑
τ=0

(γλ)τX>Dπ(Pπ)τX− γ
∞∑
τ=0

(γλ)τX>Dπ(Pπ)τ+1X

= X>Dπ
( ∞∑
τ=0

(γλ)τ (Pπ)τ − γ(γλ)τ (Pπ)τ+1
)
X

= X>Dπ
( ∞∑
τ=0

(γλ)τ (Pπ)τ (I− γPπ)
)
X

= X>Dπ(I− γλPπ)−1(I− γPπ)X.

As for the b
def
= Eπ[Rt+1et], we have:

b =
0∑

τ=−∞

(γλ)−τEπ[xτR1],

by following the same reasoning as above,

b = X>Dπ(I− γλPπ)−1rπ.

In practice, the closed-form expressions of those matrices are rarely used,

we typically directly estimate their expectation forms by samples: Eπ[et(xt −

γxt+1)>] and Eπ[Rt+1et]. However, they are quite convenient when theoreti-

cally characterizing the convergence properties of TD algorithms.

Proof idea of TD(λ)’s convergence with linear function approxima-

tion. The proof is done by some theoretical results from stochastic approx-

imation literature (Borkar & Mitter, 1999; Kushner & Yin, 2003). Typically

the result states that an iterative stochastic updating rule in the form of

wt+1 = wt + α(A(Xt)wt + b(Xt)), Xt
def
= (St, St+1, Rt+1, γt+1)

converges to the solution of Eπ[A(Xt)]w = Eπ[b(Xt)] under some techni-

cal conditions. Those conditions typically include: 1) stepsize condition; 2)

bounded noise, i.e., the difference between sampled term and the expected

term; 3) positive definiteness of the matrix A. For the purpose of satisfying
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some conditions, basic property on the underlying MDP is required, such as

ergodicity or irreducibility.

Error bound in terms of the difference between d(vπw, v
∗) and d(Πv∗, v∗)

(i.e., distance defined in terms of || · ||Dπ) can be established easily as an

interesting supplementary result as follows.

||Xw∗ − vπ||Dπ ≤ ||Xw∗ − Πvπ||Dπ + ||Πvπ − vπ||Dπ

= ||ΠT (λ)Xw∗ − Πvπ||Dπ + ||Πvπ − vπ||Dπ

≤ ||T (λ)Xw∗ − vπ||Dπ + ||Πvπ − vπ||Dπ

≤ γ(1− λ)

1− γλ
||Xw∗ − vπ||Dπ + ||Πvπ − vπ||Dπ ,

where the second equality is done by the fixed point property, the third and

the last inequalities are done by the non-expansive property of the projection

operator and the contraction property of the T (λ) operator, respectively, as

proved in the previous discussions. Thus, rearranging the terms in the above

inequality can lead to the result:

||Xw∗ − vπ||Dπ ≤
(1− λγ)

1− γ
||Πvπ − vπ||Dπ .

It characterizes the quality of the solution (i.e., w∗) by bounding its difference

with the theoretically best solution in the space col(X). We refer readers to

the nice work by Tsitsiklis & Van Roy (1997) for detailed convergence analysis

of linear TD algorithms.
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Chapter 3

Accelerated Gradient Temporal
Difference Learning

Second-order Newton methods are known to speed up gradient descent al-

gorithms significantly (Boyd & Vandenberghe, 2004); in fact, it is not sur-

prising to empirically observe that it can almost shoot the solution within

a few iterations. However, it typically involves an expensive computation of

some matrix (usually the inverse of a matrix), limiting its practical utility.

The Quasi-Newton method leverages the idea of efficiently approximating the

preconditioning matrix and has been extensively studied in optimization lit-

erature (Broyden, 1972; Nocedal & Wright, 2006). However, we did not see

any work deriving an approximate second-order method by directly minimiz-

ing mean squared projected Bellman error (MSPBE) before our work. In this

sense, our work is the first attempt to fill this gap. The resulting category of

algorithm opens a new research line along the preconditioning TD algorithms.

In this chapter, we mainly introduce the idea of bringing in the second-order

method to minimize MSPBE (Pan et al., 2017b) and present the generic form

of our Accelerated Gradient Temporal Difference Learning (ATD) algorithm.

It is known that the linear TD algorithm has a relatively low computational

and storage cost comparing with the LSTD method. However, at the same

time, it also has a much lower sample efficiency than the LSTD method. Our

ATD algorithms interpolate between the two extremes, providing a flexible

balance between sample and computation complexity.

This chapter is organized as follows. We firstly introduce the learning ob-
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jective we attempt to optimize in Section 3.1. In Section 3.2, we introduce

the key idea of adapting the second-order optimization method to TD algo-

rithms to minimize MSPBE and present empirical results to validate this basic

idea on benchmark domains. We also discuss using an approximate second-

order method to improve computational and storage complexity, followed by a

discussion about relevant challenges, motivating our ATD algorithms. In Sec-

tion 3.3, we formally describe the general form of our ATD algorithms, which

will be instantiated and discussed in detail in the next two chapters.

3.1 Mean Squared Projected Bellman Error

As we reviewed in the last chapter, in the case of linear function approximation,

the state is represented by fixed length feature vectors x : S → Rd, where

xt
def
= x(St) and the approximation to the value function is formed as a linear

combination of a learned weight vector, w ∈ Rd, and x(St): vπ(St) ≈ w>xt.

The goal of on-policy policy evaluation is to approximate state values under

target policy π by learning w from samples generated by following behaviour

policy µ = π.

Recall that the linear TD(λ) algorithm for on-policy policy evaluation con-

verges to the unique fixed point of ΠT (λ)Xw = Xw under some mild condi-

tions. This observation inspires the below objective called the Mean Squared

Projected Bellman Error (MSPBE):

min
w
||ΠT (λ)Xw −Xw||2Dπ ,

which is strongly convex under some mild conditions. To allow readers to

conveniently compare this objective and the below one introduced for off-policy

policy evaluation, we rewrite it into expectation form and matrices form by

plugging in the expectation expressions and matrix expressions respectively as

introduced in the previous chapter:

||ΠT (λ)Xw −Xw||2Dπ = Eπ[δtet]
>Eπ[xtx

>
t ]−1Eπ[δtet] (3.1)

=(b−Aw)> Eπ[xtx
>
t ]−1 (b−Aw) , (3.2)
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where the last equation is because of (2.20). Note that we use δt as a shorthand

for the TD error δt(w) = Rt+1+γt+1x
>
t+1w−x>t w. In implementation, the mid-

dle matrix Eπ[xtx
>
t ] may be replaced by any positive definite matrix, because

the unique optimum w∗ of this objective function satisfies b−Aw∗ = 0.

For formulation generality, we now introduce the MSPBE objective for

off-policy policy evaluation problems, where the behavior policy µ is different

from the target policy π. Similar to how we get the MSPBE objective, we

can start from the linear TD method again. Recall the expected updating

rule of linear TD method: wt+1 = wt + αEπ[δtet]. Since we now only have

access to samples of Eµ[δtet], we use importance ratio to estimate the former

expectation term:

Eπ[δtet] = Eµ[ρtδtet], ρt
def
= ρ(st, at)

def
=
π(at|st)
µ(at|st)

.

We typically make a coverage assumption, which states that whenever the

target policy has probability support (i.e., nonzero probability) on a state-

action pair, the bebaviour policy should also have support on it. Hence, the

denominator cannot be zero under such an assumption.

However, it turns out that such an algorithm does not guarantee con-

vergence, mainly because the corresponding A matrix incurred by such an

algorithm is no longer positive definite (Tsitsiklis & Van Roy, 1997; Sutton

et al., 2016). And so TD(λ) can diverge when π 6= µ (off-policy). We refer

readers to Sutton et al. (2016, Page 6, 8, 9) for a detailed discussion about the

divergence (also called “instability”) issue of off-policy linear TD.

To achieve stability (i.e., convergence), the emphatic TD (ETD) algo-

rithm (Sutton et al., 2016) introduces emphatic weighting Mt. This weighting

includes long-term information about π by further introducing a memory scalar

called followon trace Ft (see [Pg. 16] (Sutton et al., 2016)). And the update

rule of the two quantities works as follows.

Mt = λ+ (1− λ), Ft . Ft = γρt−1Ft−1 + 1.

Now the eligibility trace vector em,t is updated by:

em,t
def
= ρt(γλem,t−1 +Mtxt).
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An intuitive interpretation of this updating rule is that a state with larger

emphatic weighting would affect more on weight vector update upon observing

future states. Those weight units corresponding to a state’s feature vector with

large emphatic weighting would remain affected for a long time even after the

time step observing that state feature. Note that we slightly abuse the notation

by putting the importance ratio ρt inside the trace vector updating rule for

conciseness. The ETD algorithm’s updating rules are as follows.

wt+1 = wt + αδtem,t, (3.3)

Ft = γρt−1Ft−1 + 1, (3.4)

Mt = λ+ (1− λ)Ft, (3.5)

em,t = ρt(γλem,t−1 +Mtxt). (3.6)

By Yu (2015), under some mild technical conditions, this ETD algorithm con-

verges to the minimizer of

Eµ[δtem,t]
>Eµ[xtx

>
t ]−1Eµ[δtem,t].

Again, for the convenience of algorithm derivation, this objective can be further

written in matrix format, leading to the following off-policy policy evaluation

objective:

MSPBE(w)=(bm −Amw)>C−1 (bm −Amw) , (3.7)

where the subscript m is used to differentiate those matrix notations from the

ones in on-policy policy evaluation objective, and

Am
def
= Eµ[em,t(xt − γt+1xt+1)>],

bm
def
= Eµ[Rt+1em,t],

C
def
= Eµ[xtx

>
t ],

with bm−Amw = Eµ[δt(w)em,t]. One can see that the key differences between

this off-policy policy evaluation objective and the previous objective (3.1) ex-

ists in the trace vector and the expectation terms defined w.r.t. the behavior

policy µ.
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It should be noted that, in ETD updating rules 3.3, if we simply set Mt = 1

irrespective of the followon trace term Ft, then the algorithm reduces to off-

policy TD(λ) and the convergence can no longer be guaranteed. As a result,

the weighting scheme ((3.4),(3.5),(3.6)) defined by the followon trace term is

the key to guarantee the stability of off-policy ETD algorithm (see Yu (2015,

page 6,7) for details). If we further assume µ = π, ρt = 1 for all t, the ETD

algorithm reduces to the previously introduced on-policy temporal difference

learning algorithm TD(λ).

Two common strategies to obtain the minimum w of this objective are

stochastic temporal difference techniques, such as TD(λ) (Sutton, 1988), or

directly approximating the linear system and solving for the weights, such

as in LSTD(λ) (Boyan, 1999). The first class constitutes linear-complexity

methods, both in computation and storage, including the family of gradient

TD methods (Maei, 2011), True online TD methods (van Seijen & Sutton,

2014; van Hasselt et al., 2014) and several others (see Dann et al. (2014);

White & White (2016) for a more complete summary).

On the other extreme, with quadratic computation and storage, one can

approximate Am and bm incrementally and solve the system Amw = bm.

Given samples up to time step t: {(Si, Ai, Si+1, Ri+1)}ti=1, one can estimate

Am,t
def
=

1

t

t∑
i=1

em,i(xi − γxi+1)>,

bm,t
def
=

1

t

t∑
i=1

em,iRi+1,

and then compute solution w such that Am,tw = bm,t. Such least-squares TD

(LSTD) methods are typically implemented incrementally using the Sherman-

Morrison formula, requiring O(d2) storage and computation per step. How-

ever, it is usually much more sample efficient than linear TD methods. Further,

it is sound (convergent) even in the off-policy setting.

Our goal is to develop algorithms that interpolate between these two ex-

tremes. We want to have some algorithm with sample efficiency close to LSTD

but has time and space complexity close to linear TD.
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3.2 Second-order Optimization for MSPBE

Recall that our goal is to develop an algorithm interpolating between linear

TD and LSTD. A natural idea to achieve this is to bring in second-order opti-

mization method because 1) it has fast convergence rate—empirically it may

converge within a few iterations and is close to solving a linear system directly;

2) many well-studied preconditioning matrix approximation techniques can be

borrowed from math or conventional machine learning literature to improve

computational and storage complexity. To our best knowledge, our work is

the first second-order method derived by minimizing Mean Squared Projected

Bellman Error (MSPBE).

Algorithm derivation. To derive the new algorithm, we first take the gra-

dient of the MSPBE (in 3.7) to get

− 1

2
∇wMSPBE(w) = A>mC−1Eµ[δt(w)em,t]. (3.8)

Consider a second order update by computing the Hessian: H = A>mC−1A>m.

For simplicity of notation, starting from now on, let A = Am and b = bm.

For invertible A, the second-order update is

wt+1 = wt − αt
2

H−1∇wMSPBE(w)

= wt + αt(A
>C−1A)−1A>C−1Eµ[δt(w)em,t]

= wt + αtA
−1CA−>A>C−1Eµ[δt(w)em,t]

= wt + αtA
−1Eµ[δt(w)em,t].

In fact, for our quadratic loss, the optimal descent direction is

A−1Eµ[δt(w)em,t]

with αt = 1, in the sense that

argmin
∆w

loss(wt + ∆w) = A−1Eµ[δt(w)em,t].

It should be noted that, though we follow the conventional way of deriving

the second-order updating rule (i.e., the Hessian inverse times the gradient
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vector), the resulting updating rule neither has the Hessian inverse as the

preconditioning matrix, nor has the gradient. Because in the above updating

rule, A is not Hessian of MSPBE and Eµ[δt(w)em,t] is not the gradient of

MSPBE. For rigorousness, we would consistently call the matrix multiplied by

Eµ[δt(w)em,t] preconditioning matrix, rather than the Hessian inverse.

Computing and maintaining the matrix inversion and updating w requires

quadratic computation and storage. Hence such methods do not provide ad-

ditional advantages over LSTD method without using any efficient matrix

approximations. We propose to bring in the Quasi-Newton approaches that

are typically used in approximating the Hessian in the optimization literature.

There have been recent insights that using approximate Hessians for stochas-

tic gradient descent can in fact speed convergence (Schraudolph et al., 2007;

Bordes et al., 2009; Mokhtari & Ribeiro, 2014).

Nonetheless, before we dive into the details of our ATD algorithm, as a

sanity check, we first validate the idea of bringing in a second-order optimiza-

tion method by empirically examining this second-order temporal difference

learning updating rule. This further motivates our ATD algorithms formally

introduced in the next Section 3.3.

Empirical Result of Second-order Temporal Difference Learning.

We empirically examine the most basic form of the second-order TD learning

rule without using bootstrapping parameter, emphasis term, and any low-rank

matrix approximation technique.

In order to estimate the term A−1Eπ[δt(w)em,t], we incrementally main-

taining the full A by Sherman-Morrison formulae, which says upon adding

the outer product of two column vectors v,u to the A matrix, the inverse can

be updated by

(A + uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u
.

Typically the matrix A is initialized by some diagonal matrix (i.e., usually

an identity matrix multiplied by some constant) to ensure invertibility at the

beginning. Then we stochastic sampling the expectation term Eµ[δt(w)em,t].

That is, at time step t, given the training sample xt,xt+1, rt+1, we run the
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following updates:

dt = xt − γxt+1,

At = (
t− 1

t
At−1 +

1

t
xtd

>
t )−1,

δt = rt+1 + γx>t+1wt − x>t wt,

wt+1 = wt + αtA
−1

t δtxt.

Our purpose of running this algorithm is to verify that 1) the second-order

method does provide a significant improvement upon the linear TD method in

terms of sample efficiency and 2) achieves performance very close to the LSTD

method. We expect the latter because the second-order method mostly finds

the solution within a few iterations in the supervised learning setting. We

expect similar performance in the reinforcement learning setting where LSTD

can be considered the closed-form solution at the current time step.

Figure 3.1 shows the learning curves in the form of Percentage Abso-

lute Mean Error (PAME) as a function of time steps on the classic Boyan

chain (Boyan & Moore, 1995b; Boyan, 1999) and Mountain Car domain (Sut-

ton & Barto, 2018). Given n testing examples, the PAME is defined as

1

n

n∑
i=1

|yi − ŷi
yi
|,

where the yi, ŷi denote the true value and predicted value at the ith testing

example respectively.

On the Boyan chain domain, where the state space is finite and small and

the environment dynamics is completely known (i.e., transition probability,

reward, etc.), we show the result of ATD-TrueA—ATD with true precondi-

tioning matrix (i.e. compute the true A as defined without estimation and

invert it). It is a “cheating” version in that it assumes complete environment

knowledge and helps us understand how the algorithm performs if the sec-

ond order preconditioning knowledge is known. On the mountain car domain,

we show ATD-FullA, where the A is computed by Sherman-Morrison update

without using low-rank approximation. This is a realistic ATD version when

computational and storage power are sufficient. Note that we use decaying
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learning rate as 1/t for both algorithms to match the design of the two ATD

variants introduced in the next two chapters. In fact, ATD-FullA can be much

closer to LSTD if we use constant learning rate and optimize this parameter.

We show such results in Figure 7.1, Chapter 7 when we discuss the limitations

of ATD algorithms.

It is obvious that 1) ATD with second-order optimization learns much

faster than linear TD algorithm, and 2) ATD with a full/true precondition-

ing matrix can find a similar solution to LSTD within the time horizon (i.e.,

the number samples processed) we tested on both domains. The two observa-

tions are aligned with our expectations and show that bringing a second-order

method could be a promising direction to improve the sample efficiency of TD

algorithms.

To this end, we validated the basic idea of applying second-order optimiza-

tion method to minimize MSPBE. However, one can see that the implemented

two ATD variants ATD-TrueA and ATD-FullA are not always feasible: ATD-

TrueA can be done only when we have access to the full environment knowledge

and the state space is small, while ATD-FullA is feasible only when the feature

dimension (and hence the A) dimension is low. In the next section, we present

the general form of our ATD algorithm, which achieves better practical utility.

3.3 General Form of ATD Algorithms

We now introduce our approach called Accelerated gradient TD (ATD), which

approximates second-order gradient descent of the MSPBE as introduced in

the previous section.

Recall from Section 3.2 that we already showed the below expected second-

order updating rule:

wt+1 = wt − αt
2

H−1∇wMSPBE(w) (3.9)

= wt + αtA
−1Eµ[δt(w)em,t]. (3.10)

By observing the term A−1Eµ[δt(w)em,t], we identify two challenges.
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Figure 3.1: Learning curves plotted as Percentage Absolute Mean Error
(PAME) v.s. training steps on (a) Boyan chain and (b) Mountain Car, re-
spectively. On the Boyan chain, a true A can be calculated, and we found
ATD-FullA performs extremely similarly to LSTD and ATD-TrueA. Hence we
only show ATD-TrueA in (a). All results are averaged over 50 runs, and the
standard errors are small and are ignored.

1. First, we need an incremental and efficient way to approximate the pre-

conditioning matrix A−1 that provides useful curvature information and

that is also sub-quadratic in storage and computation.

2. Second, we need to ensure that after using the approximation, we do not

find a biased solution.

To address the first challenge, we propose to approximate only A−1 and

sample Eµ[δt(w)em,t] = b − Aw using δt(wt)et as an unbiased sample. The

approximation technique should have theoretical guarantee for approximation

quality and allows to compute the inverse of the approximated A in sub-

quadratic computation and storage complexity under rank one update. As for

the second challenge, we propose to use a regularization term ηδtet. Intuitively,

this regularization turns the potentially low-rank preconditioning matrix into

full rank again. In Section 4.4, we theoretically show that the regularization

helps ensure unbiased convergence.
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General form of ATD. Finally, the general form of our proposed acceler-

ated temporal difference learning update—which we call ATD(λ)—is

wt+1 = wt + (αtÂ
†
t + ηI)δtet

with expected update

wt+1 = wt + (αtÂ
† + ηI)Eµ[δt(w)em,t] (3.11)

with regularization η > 0. We summarize the complete pseudo-code of the

general form in Algorithm 1.

Algorithm 1 General form of Accelerated Temporal Difference Learning

. e0 = 0, initialized w0 = 0

x0 : the feature vector of the initial state
η : the regularization weight/a small final stepsize value, e.g., η = 0.00001
αt learning rate, e.g. αt = 1/t
for t = 1, 2, ... do

In xt select action ∼ µ, observe xt+1, reward rt+1, discount γt+1 (could
be zero if terminal state)

δt = rt+1 + γt+1w
>
t xt+1 −w>t xt

et = trace update(et−1,xt, γt, λt) . e.g., accumulative trace,
replacing trace, emphatic trace, etc.

Â†t = matrix update(Ât−1,xt,xt+1, γt, et, ...) . The matrix may
be maintained by using multiple matrices, such as SVD, etc. The input of
this update function depends on the concrete approximation method. This
part will be carefully studied in the next two chapters.

wt+1 = wt + (αtÂ
†
t + ηI)δtet

If Â is a poor approximation of A or discards key information—as we will

do with a low-rank approximation—then updating using only b − Âw will

result in a biased solution, as is the case for tLSTD (see Section 4.1) as shown

in Theorem 1. Instead, sampling b − Aw = Eµ[δt(w)em,t], as we show in

Theorem 2, yields an unbiased solution, even with a poor approximation Â.

Given the general form of ATD(λ), the next question is how to approx-

imate A. In the next two chapters, we theoretically and empirically study

two ways to perform efficient preconditioning matrix approximations: incre-

mentally truncated singular value decomposition (Chapter 4) and left-sided
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matrix sketching via random projection (Chapter 5). We demonstrate the per-

formance of ATD with the two variants versus many linear and subquadratic

methods, indicating that ATD (1) can match the data efficiency of LSTD,

with significantly less computation and storage; (2) is unbiased, unlike many

of the alternative subquadratic methods; (3) significantly reduces parameter

sensitivity for the stepsize, versus linear TD methods and (4) is significantly

less sensitive to the choice of rank parameter than directly solving the lin-

ear system (i.e., tLSTD as detailed in the next chapter), enabling a smaller

rank to be chosen and so providing a more efficient incremental algorithm.

Overall, our results suggest that ATD may be the first practical subquadratic

complexity TD method suitable for fully incremental policy evaluation.

In general, many other approximations to A could be used. We leave

studying their theoretical and empirical properties as an important future

direction for ATD.
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Chapter 4

Approximation by Incremental
Truncated SVD

When it comes to matrix approximation, a natural idea is to use a low-rank

approximation. For a low-rank approximation Â with d-by-d dimensions, of

rank k, represented with truncated singular value decomposition (SVD) Â =

UkΣkV
>
k , the storage requirement is O(dk) and the required matrix-vector

multiplications are only O(dk) because for any vector v, Âv = UkΣk(V
>
k v),

is a sequence of O(dk) matrix-vector multiplications.

This chapter is mainly from Gehring et al. (2016); Pan et al. (2017b). It dis-

cusses an instance of the ATD algorithm by using incremental truncated SVD

to approximate the preconditioning matrix in the updating rule. We choose

this approximation because it is proved effective for incremental estimation in

reinforcement learning, as reviewed in this chapter. The total computational

complexity of the algorithm is O(dk + k3) for the fully incremental update to

Â and O(dk) for mini-batch updates of k samples. Notice that when k = 0,

the algorithm reduces exactly to TD(λ). On the other extreme, where k = d,

ATD is equivalent to an iterative form of LSTD(λ). Hence, choosing some

k value between the extremes enables ATD to interpolate between linear TD

and LSTD algorithms, which satisfies our original goal of developing ATD

algorithms.

This chapter is organized as follows. We first present the algorithm of us-

ing incremental truncated SVD to approximate the matrix in the classic LSTD

algorithm and study its limitations and relevant theoretical properties in Sec-
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tion 4.1. Then we present algorithmic details and empirical results of compar-

ing our ATD using such SVD approximation with existing well-known policy

evaluation algorithms in Section 4.2. In Section 4.3, we conduct a further

empirical study to compare our algorithm against several popular first-order

stochastic optimization algorithms developed in recent years. We conclude this

chapter by theoretically showing the unbiased convergence of ATD’s expected

updating rule in Section 4.4.

4.1 Incremental Truncated LSTD Learning

As we introduced, the TD updating rule can be written as w← w +α(rt+1 +

γx>t+1w − x>t w)zt. The original LSTD algorithm (Bradtke & Barto, 1996)

incrementally maintains A−1

t using the Sherman-Morrison update so that on

each step the new solution w = A−1

t bt can be compute.

We iteratively update and solve this system by maintaining a low-rank

approximation to At directly. Any matrix A ∈ Rd×d has a singular value

decomposition (SVD) A = UΣV>, where Σ ∈ Rd×d is a diagonal matrix of

the singular values of A and U,V ∈ Rd×d are orthonormal matrices: U>U =

I = V>V and UU> = I = VV>. With this decomposition, for full rank

A, the inverse of A is simply computed by inverting the singular values, to

get w = A−1b = VΣ−1U>b. In many cases, however, the rank of A may be

smaller than d, giving d− rank(A) singular values that are zero. Further, we

can approximate A by dropping (i.e., zeroing) some number of the smallest

singular values, to obtain a rank k approximation. Correspondingly, rows of U

and V are zeroed, reducing the size of these matrices to d×k. The further we

reduce the dimension, the more practical we can update the matrix efficiently;

however there is clearly a trade-off in terms of accuracy of the solution. We

first investigate the theoretical properties of using a low-rank approximation

to At and then present the incremental t-LSTD algorithm.
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4.1.1 Characterizing the Low-rank Approximation

Low-rank approximations provide an efficient approach to obtaining stable

solutions for linear systems. The approach is particularly well motivated for

our resource constrained setting, because of the classical Eckart-Young-Mirsky

theorem (Eckart & Young, 1936; Mirsky, 1960), which states that the optimal

rank k approximation to a matrix under any unitarily invariant norm (e.g.,

Frobenius norm, spectral norm, nuclear norm) is the truncated singular value

decomposition. In addition to this nice property, which facilitates development

of an efficient approximate LSTD algorithm, the truncated SVD can be viewed

as a form of regularization (Hansen, 1986), improving the stability of the

solution.

To see why truncated SVD regularizes the solution, consider the solution

to the linear system

w = A†b = VΣ†U>b =

rank(A)∑
i=1

viu
>
i

σi
b

for ordered singular values σ1 ≥ σ2 ≥ . . . ≥ σrank(A) > σrank(A)+1 = 0, . . . , σd =

0. A† is the pseudo-inverse of A, with Σ† = diag(σ−1

1 , ..., σ
−1

rank(A), 0, ...,0) com-

posed of the inverses of the non-zero singular values. For very small, but still

non-zero σi, the outer product viu
>
i will be scaled by a large number; this will

often correspond to highly overfitting the observed samples and a high variance

estimate. A common practice is to regularize w with η‖w‖2 for regularization

weight η>0, modifying the multiplier from σ−1

i to σi/(σ
2
i + η) because

w = (A>A + ηI)−1A>b = V(Σ2 + ηI)−1ΣU>b.

The regularization reduces variance but introduces bias controlled by η; for

η = 0, we obtain the unbiased solution. Similarly, by thresholding the smallest

singular values to retain only the top k singular values, we get

w=A†kb=Vdiag(σ−1

1 , ..., σ
−1

k , 0, ...,0)U>b=
k∑
i=1

viu
>
i

σi
b, (4.1)

and as a result, we introduce bias, but reduce variance; because the size of σ−1

k

can be controlled by the choice of k < rank(A).
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To characterize the bias-variance tradeoff, we bound the difference between

the true solution, w∗, and the approximate rank k solution at time t, wt,k. We

use a similar analysis to the one used for regularized LSTD (Proposition 6.3.4,

(Bertsekas, 2007)). This previous bound does not easily extend, because in

regularized LSTD, the singular values are scaled up, maintaining the informa-

tion in the singular vectors (i.e., no columns are dropped from U or V). We

bound the loss incurred by dropping singular vectors.

The following is a simple but realistic assumption for ill-posed systems

to achieve such a bound (Hansen, 1990). The assumption states that u>i b

shrinks faster than σpi , where p specifies the smoothness of the solution w

and is related to the smoothness parameter for the Hilbert space setting (Cor.

1.2.7, (Groetsch, 1984)).

Assumption 1: The linear system defined by A = UΣV> and b satisfy

the discrete Picard condition: for some p > 1,

|u>i b| ≤ σpi for i = 1, . . . , rank(A)

|u>i b| ≤ σprank(A) for i = rank(A) + 1, . . . , d.

We write the SVD of A = UΣV> and At = ÛΣ̂V̂>, where to avoid

cluttered notation, we do not explicitly subscript with t. Further, though the

singular values are unique, there is a space of equivalent singular vectors, up to

sign changes and multiplication by rotation matrices. We assume that among

the space of equivalent SVDs of At, the most similar singular vectors for each

singular value are chosen between A and At. This avoids uniqueness issues

without losing generality, because we only conceptually compare the SVDs of

A and At; the proof does not rely on practically obtaining this matching SVD.

Theorem 1 (Bias-variance trade-off of rank-k approximation (Gehring et al.

(2016, Theorem 1))). Let At,k = ÛΣ̂kV̂
> be the approximated A after t sam-

ples, truncated to rank k, i.e., with the last k+ 1, . . . , d singular values zeroed.

Let w∗ = A†b and wt,k = A†t,kbt. Under Assumption 1 and 2, the relative

error of the rank-k weights to the true weights w∗ is bounded as follows:
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‖wt,k −w∗‖2 ≤
1

σ̂k
‖bt −Atw

∗‖2 + (d− k)ε(t)

+ (d− k)σp−1
k︸ ︷︷ ︸

bias

for function ε : N→ [0,∞), where ε(t)→ 0 as t→∞:

ε(t) = min
(
rank(A)σp−1

1 ,

rank(A)∑
j=1

∥∥∥vjσp−1
j − v̂j σ̂

p−1
j

∥∥∥
2

+ σ̂p−1
k − σp−1

k

)
.

The key step is to split up the error into two terms: approximation error

due to a finite number of samples t and bias due the choice of k < d. Then the

second part is bounded using the discrete Picard condition to ensure that the

magnitude of u>j b does not dominate the error, and by adding and subtracting

terms to express the error in terms of differences between A and At. Because

At converges to A (Tsitsiklis & Van Roy, 1997), we can see that ε(t) converges

to zero because the differences vjσ
p−1
j − v̂jσ̂

p−1
j and σ̂p−1

k − σp−1
k converge to

zero.

Remark 1. Notice that for no truncation, the bias term disappears and the

first term could be very large because σ̂k = σ̂d could be very small. In fact,

previous work on finite sample analysis of LSTD uses an unbiased estimate

and the bound suffers from an inverse relationship to the smallest eigenvalue

of X>X (Lazaric et al. (2010, Lemma 3), Ghavamzadeh et al. (2010); Tagorti

& Scherrer (2015)). Here, we avoid such a potentially large constant in the

bound at the expense of an additional bias term determined by the choice of k.

Lasso-TD (Ghavamzadeh & Lazaric, 2011) similarly avoids such a dependence,

using `1 regularization; to the best of our knowledge, however, there does not

yet exist an efficient incremental Lasso-TD algorithm. A future goal is to use

the above bound, to obtain a finite sample bound for t-LSTD(λ), using the most

up-to-date analysis by Tagorti & Scherrer (2015) and more general techniques

for linear system introduced by Avila Pires & Szepesvari (2012).
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4.1.2 Incremental Low-rank LSTD Algorithm

We have theoretically characterized the bias-variance trade-off by using a low-

rank approximation to At for computing the solution to LSTD from t samples.

However, the computational complexity of explicitly computing At from sam-

ples and then performing a SVD is O(d3), which is not feasible for most set-

tings. In this section, we propose an algorithm that incrementally computes a

low-rank singular value decomposition of At, from samples, with significantly

improved storage O(dk) and computational complexity O(dk + k3), which we

can further be reduced to O(dk) using mini-batches of size k.

To maintain a low-rank approximation to At incrementally, we need to

update the SVD with new samples. With each new xt, we add the rank-one

matrix et(xt − γxt+1)> to At. Consequently, we can take advantage of recent

advances for fast low-rank SVD updates (Brand, 2006), with some specialized

computational improvements for our setting. Algorithm 4 summarizes the

generic incremental update for t-LSTD, which can use mini-batches or update

on each step, depending on the choice of the mini-batch size. We show the

detailed incremental SVD per-time-step updating algorithm (i.e. mini-batch

size is one) update in Algorithm 2 and the concrete way of computing the

weight vector in Algorithm 3. The basics of the SVD update follow from

previous work (Brand, 2006) but our implementation offers some optimizations

specific for LSTD.

By maintaining the SVD incrementally, we do not need to explicitly main-

tain At; therefore, storage is reduced to the size of the truncated singular vec-

tor matrices, which is O(dk). To maintain O(dk) computational complexity,

matrix and vector multiplications need to be carefully ordered. For example,

to compute w, first b̃ = U>b is computed in O(dk), then Σkb̃ is computed

in O(k), and finally that is multiplied by V in O(dk). For k = 1 (update on

each step), the O(k3) computation arises from a re-diagonalization and the

multiplication of the resulting orthonormal matrices. For mini-batches of size

k, we can get further computational improvements by amortizing costs across

k steps, to obtain a total amortized complexity O(dk), getting rid of the k3
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Algorithm 2 update-svd(U,Σ,V,L,R, e,d, k) with one sample for incre-
mental t-LSTD

1: m = L>U>e // O(dk) time, as v = U>e is O(dk) and L>v is
O(k2)

2: p = e−ULm // O(dk) time
3: n = R>V>d // O(dk) time
4: q = d−VRn // O(dk) time

5: K←
[

Σ 0
0 0

]
+

[
m
‖p‖

] [
n
‖q‖

]>
6: [L̃,Σ, R̃]← SVD(K)

7: L←
[

L 0
0 1

]
L̃ // O(k3) time

8: R←
[

R 0
0 1

]
R̃ // O(k3) time

9: if ‖p‖ ≤ ε then // ε = 0.00001
10: ‖p‖ ← 0
11: else p← p/‖p‖ // normalize, update to U

12: if ‖q‖ ≤ ε then // ε = 0.00001
13: ‖q‖ ← 0
14: else q← q/‖q‖ // normalize, update to V

15: U← [U p] // Only allowed to grow to 2k columns
16: V← [V q] // Only allowed to grow to 2k columns
17: // If reached size 2k, reduce back to k by dropping smallest k singular

values; O(dk) amortized complexity
18: if size(L) ≥ 2k then
19: Σ← Σ(1 : k, 1 : k)
20: U← UL // O(dk2) time
21: U← U(:, 1 : k) // Concatenate back to k columns
22: V← VR // O(dk2) time
23: V← V(:, 1 : k) // Concatenate back to k columns
24: L = I, R = I // Reintialize

25: return U,Σ,V,L,R
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Algorithm 3 compute-weights(U,Σ,V,L,R,b), O(dk)

1: // Solve A−1b where A = ULΣR>V> and so A−1 = VRΣ−1L>U>

2: // Does not invert any singular values that are below 0.01 ∗ σ̂1

3: b̃ = L>U>b // O(dk) time, implicit left singular vector is UL
4: σ̂1 ← Σ(1, 1)
5: Σ† ← 0 // initialize as zero matrix
6: for i ∈ {1, . . . , k} do
7: if Σ(i, i) > 0.01σ̂1 then
8: Σ†(i, i)← Σ(i, i)−1

9: else
10: break
11: w = VRΣ−1b̃ // O(dk) time

term.

As an additional benefit, unlike previous incremental LSTD algorithms, we

maintain normalized At and bt, by incorporating the term β. On each step,

we use

At+1 = 1
t+1

(tAt + etd
>
t ) = (1− βt)At + βtetd

>
t

for βt = 1
t+1

. The multiplication of At by 1−βt requires onlyO(k) computation

because (1− βt)UkΣkV
>
k = Uk(1− βt)ΣkV

>
k . Multiplying the full A matrix

by 1 − βt, on the other hand, would require O(d2) computation, which is

prohibitive. Further, βt can be selected to obtain a running average, as in

Algorithm 4, or more generally can be set to any βt ∈ (0, 1). For example, to

improve tracking, β can be chosen as a constant to weight more recent samples

more highly in the value function estimate.

4.2 ATD with Incremental Truncated SVD

To get the ATD with incremental truncated SVD algorithm, we simply put

the incremental SVD Algorithm 2 as the matrix update function in Algo-

rithm 1. For convenience, we summarize this algorithm in Algorithm 5. As we

explained, the parameter β can be flexible to satisfy the demand of a special

type of average when necessary. We opt to fix it as 1/t across all experiments,

showing the generality of such stepsize choice.
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Algorithm 4 t-LSTD(λ) using incremental SVD

// Input rank k, and mini-batch size k
// with differing update-svd for k = 1 and k > 1
U← [],V← [],Σ← 0,b← 0, z← 0, i← 0, t← 1
x← the initial observation
repeat

Take action according to π, observe x′, reward r
β ← 1/(t+ k)
z← γλz + x
d← β(x− γx′)
Z:,i ← z
D:,i ← d
b← (1− β)b + βzr
i← i+ 1
if i ≥ k then

// Returns U,V ∈ Rd×k, diagonal Σ ∈ Rk×k

U,Σ,V←
update-svd(U, (1− β)Σ,V,

√
βZ,
√
βD, k)

Z← 0d×k,D← 0d×k, i← 0, t← t+ k

w← VΣ†U>b // O(dk) time
until agent done interaction with environment

4.2.1 Empirical Results

All the following experiments investigate the on-policy setting, and thus we

make use of the standard version of ATD for simplicity. The purpose of our

experiments is to answer the following questions: 1) does our method really

interpolate between LSTD and TD across domains? 2) does our method, as

a second-order method, have a lower sensitivity to its hyper-parameter than

other baselines? 3) can our singular value truncation method effectively get

rid of useless features? The results presented in this section were generated

over 756 thousand individual experiments run on three different domains.

Detailed descriptions of each domain, error calculation, and all other parameter

settings are discussed in detail in the appendix. We included a wide variety of

baselines in our experiments, additional related baselines excluded from our

study are also discussed in the Appendix A.1.4.

Our first batch of experiments were conducted on Boyan’s chain—a

domain known to elicit the strong advantages of LSTD(λ) over TD(λ). In
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Algorithm 5 Accelerated Temporal Difference Learning

. where U0 = [],V0 = [],Σ0 = [],b0 = 0, e0 = 0, initialized w0 arbitrarily

function ATD(k, η, ε, λ)
x0 = first observation
η = a small final stepsize value, e.g., η = 10e− 4
for t = 1, 2, ... do

At state xt, select action ∼ π, observe xt+1, reward rt+1, discount
γt+1 (could be zero if terminal state)

β = 1/t
δt = rt+1 + γt+1w

>xt+1 −w>xt
et = trace update(et−1,xt, γt, λt) . or call

empahtic trace update to use emphatic weighting
bt = (1− β)bt−1 + βetrt+1

. UtΣtV
>
t = (1− β)Ut−1Σt−1V

>
t−1 + βet(xt − γt+1xt+1)>

[Ut,Σt,Vt] = svd-update(Ut−1, (1 − β)Σt−1,Vt−1, βet, (xt −
γt+1xt+1), k)

. Ordering of matrix operations important, first multiply U>t (εbt +
δte) in O(dk) time

. to get a new vector, then by Σ†t and Vt to maintain only matrix-
vector multiplications

wt+1 = wt + (1
t
VtΣ

†
tU
>
t + ηI)(εbt + δtet) . where

Σ†t = diag(σ̂−1

1 , . . . , σ̂−1

k ,0)

Boyan’s chain the agent’s objective is to estimate the value function based

on a low-dimensional, dense representation of the underlying state (perfect

representation of the value function is possible). The ambition of this experi-

ment was to investigate the performance of ATD in a domain where the pre-

conditioner matrix is full rank; no rank truncation is applied. We compared

five linear-complexity methods (TD(0), TD(λ), true online TD(λ), ETD(λ),

true online ETD(λ)), against LSTD(λ) and ATD, reporting the percentage

error relative to the true value function over the first 1000 steps, averaged

over 200 independent runs. We swept a large range of stepsize parameters,

trace decay rates, and regularization parameters, and tested both fixed and

decaying stepsize schedules. Figure 4.1 summarizes the results.

Both LSTD(λ) and ATD achieve lower error compared to all the linear

baselines—even thought each linear method was tuned using 864 combinations

of stepsizes and λ. In terms of sensitivity, the choice of stepsize for TD(0) and
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Figure 4.1: Parameter sensitivity in Boyan’s chain with constant stepsize
(LHS) and decayed stepsizes (RHS). In the plots above, each point summa-
rizes the mean performance (over 1000 time steps) of an algorithm for one
setting of α for linear methods, or initialization parameter η for LSTD, and
α/100 regularizer for ATD, using percentage error compared to the true value
function. In the decayed stepsize case, where αt = α0

n0+1
n0+episode#

, 18 values of
α0 and two values of n0 were tested—corresponding to the two sides of the
RHS graph. The LSTD algorithm (in yellow) has no parameters to decay. Our
ATD algorithm (in black) achieves the lowest error in this domain, and ex-
hibits little sensitivity to it’s regularization parameter (with stepsize as αt = 1

t

across all experiments).

ETD exhibit large effect on performance (indicated by sharp valleys), whereas

true-online TD(λ) is the least sensitive to learning rate. LSTD(λ) using the

Sherman-Morrison update (used in many prior empirical studies) is sensitive

to the regularization parameter; the parameter free nature of LSTD may be

slightly overstated in the literature.1

Our second batch of experiments investigated characteristics of ATD

in a classic benchmark domain with a sparse high-dimensional feature repre-

sentation where perfect approximation of the value function is not possible—

Mountain car with tile coding. The policy to be evaluated stochastically takes

the action in the direction of the sign of the velocity, with performance mea-

sured by computing a truncated Monte Carlo estimate of the return from

states sampled from the stationary distribution (detailed in the appendix).

1We are not the first to observe this. Sutton & Barto (2018) note that η plays a role
similar to the stepsize for LSTD.
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Figure 4.2: The learning curves (LHS) are percentage absolute mean error
(i.e., we write it as percentage error in the figure label) versus time steps aver-
aged over 100 runs of ATD with rank 50, LSTD and several baselines described
in text. The sensitivity plot (RHS) is with respect to the learning rate of the
linear methods, and regularization parameter of the matrix methods. The tL-
STD algorithm has no parameter besides rank, while ATD has little sensitivity
to it’s regularization parameter.

We used a fine grain tile coding of the the 2D state, resulting in a 1024 dimen-

sional feature representation with exactly 10 units active on every time step.

We tested TD(0), true online TD(λ), true online ETD(λ), and sub-quadratic

methods, including iLSTD (Geramifard et al., 2007), tLSTD (Gehring et al.,

2016), random projection LSTD (Ghavamzadeh et al., 2010), and fast LSTD

(Prashanth et al., 2013). As before a wide range of parameters (α, λ, η) were

swept over a large set. Performance was averaged over 100 independent runs.

A fixed stepsize schedule was used for the linear TD baselines, because that

achieved the best performance. The results are summarized in figure 4.2.

LSTD and ATD exhibit faster initial learning compared to all other meth-

ods. This is particularly impressive since k is less than 5% of the size of A.

Both fast LSTD and projected LSTD perform considerably worse than the

linear TD-methods, while iLSTD exhibits high parameter sensitivity. tLSTD

has no tunable parameter besides k, but performs poorly due to the high

stochasticity in the policy—additional experiments with randomness in action

selection of 0% and 10% yielded better performance for tLSTD, but never

equal to ATD. The true online linear methods perform very well compared to
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ATD, but this required sweeping hundreds of combinations of α and λ, whereas

ATD exhibited little sensitivity to its regularization parameter (see Figure 4.2

RHS); ATD achieved excellent performance with the same parameter setting

as we used in Boyan’s chain.2
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Figure 4.3: Learning curves on Mountain Car with noisy features (LHS) and
on Energy allocation (RHS), and the latter’s y-axis is in log scale. We show
percentage absolute mean error v.s. number of training time steps.

We ran an additional experiment in Mountain Car to more clearly exhibit

the benefit of ATD over existing methods. We used the same setting as above,

except that 100 additional features were added to each feature vector, with 50

of them randomly set to one and the rest zero. This noisy feature vector is

meant to emulate a situation such as a robot that has a sensor that becomes

unreliable, generating noisy data, but the remaining sensors are still useful

for the task at hand. The results are summarized in Figure 4.3. Naturally

all methods are adversely effected by this change, however ATD’s low rank

approximation enables the agent to ignore the unreliable feature information

and learn efficiently. tLSTD, as suggested by our previous experiments, does

not seem to cope well with the increase in stochasticity.

Our final experiment compares the performance of several sub-quadratic

complexity policy evaluation methods in an industrial energy allocation sim-

ulator (Salas & Powell, 2013; Jiang et al., 2014) with much larger feature

2For the remaining experiments in the paper, we excluded the TD methods without
true online traces because they perform worse than their true online counterparts in all our
experiments. This result matches the results in van Seijen et al. (2016).
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dimension (see Figure 4.3). The problem was originally modeled as a finite

horizon undiscounted task (Salas & Powell, 2013), with four state variables

at each time step: the amount of energy in the storage device Rt, the net

amount of wind energy Et, time aggregate demand Dt, and price of electricity

Pt in the spot market. The reward function encodes the revenue earned by the

agent’s energy allocation strategy as a real value number. The original goal

of the control problem is to maximize revenue by regulating the energy flow

among the following four components: 1) the wind farms, which generate en-

ergy; 2) the storage device, which stores energy; 3) the grid, which transports

energy; 4) and the market end, which consumes energy. We concern about

the policy evaluation problem, and the policy to be evaluated was produced

by an approximate dynamic programming algorithm from the literature(Salas

& Powell, 2013). The simulation program is from Energy storage datasets

II from http://castlelab.princeton.edu. We refer to Appendix A.1.4 for any

missing details.

Again, we used tile coding to convert the state variable into high-dimensional

binary feature vectors, similar to how the Acrobot domain was encoded (Sut-

ton, 1996). We tile coded all 3-wise combinations, all pair-wise combinations,

and each of the five state variables independently (sometimes called stripped

tilings). More specifically we used:

• all five one-wise tilings of 5 state variables, with gridsize = 4, numtilings

= 32 (memory = 5× 4× 32)

• all ten two-wise tilings of 5 state variables, with gridsize = 4, numtilings

= 32 (memory = 10× 42 × 32)

• all ten three-wise tilings of 5 state variables, with gridsize = 2, numtilings

= 32 (memory = 10× 23 × 32)

This resulted in a binary feature vector of length 8320, which we hashed down

to 8192 = 213. Training data and evaluation were conducted in the exact

same manner as the Mountain car experiment. We refer to Appendix A.1.4

for hyper-parameter details.
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As before, we report PAME and the true targets are computed from Monte

Carlo rollouts, averaging performance over 50 independent runs and selecting

and testing parameters from an extensive set (detailed in the Appendix A.1.4).

The policy was optimized ahead of time and fixed, and the feature vectors

were produced via tile coding, resulting in an 8192 dimensional feature vector

with 800 units active on each step. Although the feature dimension here is

still relatively small, a quadratic method like LSTD nonetheless would require

over 67 million operations per time step, and thus methods that can exploit

low rank approximations are of particular interest. The results indicate that

both ATD and tLSTD achieve the fastest learning, as expected. The intrinsic

rank in this domain appears to be small compared to the feature dimension—

which is exploited by ATD and tLSTD with k = 40—while the performance of

tLSTD indicates that the domain exhibits little stochasticity. The appendix

contains additional results for this domain—in the small rank setting ATD

significantly outperforms tLSTD.

4.3 Comparison of ATD with Popular First-

order Stochastic Optimization Methods

There have been many developments in first-order stochastic gradient descent

(SGD) optimization methods to accelerate learning. These methods are typi-

cally used in a conventional machine learning setting where a gradient vector

can be calculated. We apply those methods to linear TD algorithms by consid-

ering the TD’s updating direction δtet as the gradient, though it is theoretically

not a gradient of any function (see Maei (2011, Page 19)). Hence it is theo-

retically unclear where these TD variants would converge and what objective

function they are optimizing.

We compare our method to several well-known and widely-used first-order

stochastic gradient methods, including AdaGrad by Duchi et al. (2011), RM-

SProp by Tieleman & Hinton (2012), Adam optimization method by Kingma

& Ba (2014), and AMSGrad by Reddi et al. (2018). We review those algo-

rithms and their underlying ideas. We then introduce how one can adapt
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them to TD learning and present empirical study to compare these methods

and our ATD method. We conclude this section by discussing the similarities

and differences between these TD variants and ATD methods.

Notations. We introduce a few general notations for the convenience of

describing the algorithms below. We denote the gradient descent direction of

the loss function being minimized as −g(w), where w is the parameter vector

we attempt to learn. Vector notations with subscript t indicates the variable at

the tth iteration. diag(·) operation extracts the diagonal elements of the input

matrix. α is the learning rate. Whenever mathematical operations operate on

a vector, the computation is element-wise. The initialization of vectors is zero

vectors unless otherwise specified. Other notations will be introduced inline

whenever necessary.

Adagrad. Define

vt = vt−1 + g2
t ,

Adagrad uses the update

wt+1 = wt + α
1

√
vt + εs

gt,

where εs > 0 is some small smoothing parameter added to the denominator

to avoid zero values. The element-wise vector inverse takes linear time in

terms of weight dimension. Adagrad is an extension of SGD, which improves

the convergence rate. The intuitive understanding of this updating rule is to

scale down the effect of those highly active weight units (i.e., those with large

derivative magnitude) to not overly dominate the learning process.

RMSProp. RMSProp replaces the updating rule for vt by using an ex-

ponential moving average: vt = (1 − β)vt−1 + βg2
t , resulting in one more

hyper-parameter β. This modification avoids the problem of extremely small

learning rate when the magnitude of vt grows too large.
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Adam. Adam is probably the most popular optimization algorithm at the

time the thesis is written. Comparing with RMSProp, it has two main modi-

fications: 1) introducing the first moment estimation and 2) introducing bias

correction for the first and the second moment estimation. The updating rules

are as follows.

mt = (1− β1)mt−1 + β1gt,

vt = (1− β2)vt−1 + β2g
2
t ,

m̂t = mt/(1− βt1),

v̂t = vt/(1− βt2),

wt+1 = wt + α
m̂t√

v̂t + εs
,

where β1, β2 are hyper-parameters deciding the averaging rate of the first and

second moment estimation.

AMSGrad. AMSGrad is proposed to resolve an issue in the convergence

proof of Adam optimization method. The only modification comparing with

Adam is v̂t = max(v̂t−1,vt).

Adapting to linear TD. There is no straightforward way to apply the

above methods developed in a conventional machine learning setting to the lin-

ear TD algorithm in RL. It is because the linear TD method is not derived by

taking the gradient of any objective function, and the term δtxt is not a gradi-

ent of any function. This can be proved by checking the symmetric property of

the second-order derivative.3 As a result, the gradient vector g is not available

in linear TD. However, an intuitive implementation is to still treat −δtxt as

the gradient vector gt and then apply the above updating rules. The resulting

TD variants are named as TD-[Adam/AdaGrad/AMSGrad/RMSProp].

Though they lack theoretical support, they are empirically effective, as shown

below.

3TD is sometimes called semi/pseudo-gradient method (Sutton & Barto, 2018).
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Empirical results. This experiment aims to investigate if there is still an

advantage when comparing our ATD(-SVD) with the above TD variants on a

policy evaluation task. Hence, we still evaluate algorithms by examining how

close the learned states’ values are to true values. It should be noted that

ATD is convergent to the minimizer of the MSPBE objective; however, the

convergent behavior of those TD variants is unknown.

We consider the Mountain Car domain with the same setting as described

in the previous section. For bootstrap parameter λ, we sweep over the range

λ ∈ {0.7, 0.9, 0.93, 0.95, 0.97, 0.99, 1.0}.

For first and second moment estimates forgetting rates β1, β2, we sweep over

{0.01, 0.1, 0.4, 0.9, 0.99, 0.999}

whenever applicable. For learning rate α, we sweep over

{2i−10|i ∈ {0, 1, ..., 13, 14}},

and the regularization weight for ATD is swept over the same range as learning

rate but scaled by 0.01 (i.e., 0.01 × α). Note that this range of regularization

weights includes much larger values than we used in the previous section, which

uses {0.001× 2i−7|i ∈ {0, 1, ..., 12}}. Such details are in Appendix A.1.4.

Figure 4.4(a) shows the learning curves. It can be seen that our algorithm

still performs better than those TD variants during the early learning stage.

Among these TD variants, TD-Adam and TD-AMSGrad seem to be better

than other variants. Figure 4.4(b) shows the sensitivity curves, which strongly

support our claimed benefit of ATD—insensitivity to the hyper-parameter η.

Note that ATD becomes worse only when choosing an extraordinarily large

regularization weight. All first-order TD variants are much more sensitive to

α in that only a small range of it leads to low error. An additional interesting

observation is that AMSGrad is less sensitive to the learning rate than Adam.

This seems the first time to show AMSGrad’s advantage in sensitivity. We

believe this result makes intuitive sense: AMSGrad was proposed to fix an

issue in the convergence of Adam, whose direct consequence avoids an abrupt
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change in learning rate due to the moment estimations. As a result, we expect

AMSGrad to be more robust to different learning rates than Adam.
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4.4 Convergence of ATD with SVD

We now present the convergence result of our ATD’s expected updating rule.

As with previous convergence results for TD learning algorithms, the first key

step is to prove that the expected update converges to the TD fixed point.

Unlike previous proofs of convergence in expectation, we do not require the

true A to be full rank. This generalization is important, because as shown

previously, A is often low-rank, even if features are linearly independent (Bert-

sekas, 2007; Gehring et al., 2016). Further, ATD should be more effective if

A is low-rank, and so requiring a full-rank A would limit the typical use-cases

for ATD.

To get across the main idea, we first prove convergence of ATD with weight-

ings that give positive semi-definite A, which holds under mild technical con-

ditions according to Yu (2015, Proposition C.1). Note that in this section,

we do not use the emphatic weighting subscript m for the matrix notations
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A,b for conciseness. A more general proof for other weightings is in the Ap-

pendix A.1.1.

Assumption 1. A is diagonalizable, that is, there exists invertible Q ∈ Rd×d

with normalized columns (eigenvectors) and diagonal Λ ∈ Rd×d, where the

diagonal elements are the real eigenvalues: Λ = diag(λ1, . . . , λd), such that

A = QΛQ−1. Assume the ordering λ1 ≥ . . . ≥ λd.

Assumption 2. α ∈ (0, 2) and 0 < η ≤ λ−1

1 max(2− α, α).

Finally, we introduce an assumption that is only used to characterize the

convergence rate. This condition has been previously used (Hansen, 1990;

Gehring et al., 2016) to enforce a level of smoothness on the system.

Assumption 3. The linear system defined by A = QΛQ−1 and b satisfy

the discrete Picard condition: for some p > 1, |(Q−1b)j| ≤ λpj for all j =

1, . . . , rank(A).

Theorem 2. Under Assumptions 1 and 2, for any k ≥ 0, let Â be the rank-k

approximation Â = QΛkQ
−1 of A, where Λk ∈ Rd×d with Λk(j, j) = λj for

j = 1, . . . , k and zero otherwise. The expected updating rule in (3.11):

wt+1 = wt + (αtÂ
† + ηI)Eµ[δt(w)em,t]

converges to the fixed-point w? = A†b.

Further, if Assumption 3 is satisfied and w is initialized as a zero vector (i.e.,

w0 = 0), the convergence rate of wt 7→ w?is

‖wt −w?‖ ≤ max
(

max
j∈{1,...,k}

|1− α− ηλj|tλp−1
j ,

max
j∈{k+1,...,rank(A)}

|1− ηλj|tλp−1
j

)
Proof. We use a general result about stationary iterative methods which is

applicable to the case where A is not full column rank. Shi et al. (2011,

Theorem 1.1) states that given a singular and consistent linear system Aw =

b4 where b is in the range of A, the stationary iteration with w0 ∈ Rd for

4If a system has at least one solution, it is said to be consistent.
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t = 1, 2, . . .

wt = (I−BA)wt−1 + Bb (4.2)

converges to the solution w = A†b if and only if the following three conditions

are satisfied.

Condition I: the matrix I − BA has absolute eigenvalues equal to 1 or

strictly less than 1.

Condition II: rank(BA) = rank[(BA)2].

Condition III: nullspace(BA) = nullspace(A).

We verify these conditions to prove the result. First, by (Yu, 2015), there

exists at least one w s.t. w = A†b.

To rewrite our updating rule (3.11) to be expressible in terms of (4.2), let

B = αÂ† + ηI, giving

BA = αÂ†A + ηA = αQΛ†kQ
−1QΛQ−1 + ηQΛQ−1

= αQIkQ
−1 + ηQΛQ−1

= Q(αIk + ηΛ)Q−1 (4.3)

where Ik is a diagonal matrix with the indices 1, . . . , k set to 1, and the rest

zero.

Proof for condition I. Using (4.3), I − BA = Q(I − αIk − ηΛ)Q−1. To

bound the maximum absolute value in the diagonal matrix I − αIk − ηΛ,

we consider eigenvalue λj in Λ, and address two cases. Because Am is pos-

itive semi-definite for the assumed m (Sutton et al., 2016), λj ≥ 0 for all

j = 1, . . . , d.

Case 1: j ≤ k.

|1− α− ηλj| . for 0 < η < max

(
2− α
λ1

,
α

λ1

)
< max(|1− α|, |1− α− (2− α)|, |1− α− α|)

= max(|1− α|, 1, 1) < 1 . because α ∈ (0, 2).

56



Case 2: j > k. |1 − ηλj| < 1 if 0 < η < 2/λj which is true for

η = λ−1

1 max(2− α, α) for any α ∈ (0, 2).

Proof for condition II. (BA)2 does not change the number of positive eigen-

values, so the rank is unchanged.

Proof for condition III. To show the nullspaces of BA and A are equal,

it is sufficient to prove BAw = 0 if and only if Aw = 0 for w 6= 0. It is

easy to see that the matrix B = Q(αΛk + ηI)Q−1, is invertible because 0 is

not one of its eigenvalues, since η > 0. This reasoning is supported by the

invertible matrix theorem (Stover, 2006). For any w ∈ nullspace(A), we get

BAw = B0 = 0, and so w ∈ nullspace(BA). For any w ∈ nullspace(BA),

BAw = 0 =⇒ Aw = B−10 = 0, and so w ∈ nullspace(A).

Convergence rate. On each step, we update with wt+1 = (I−BA)wt+Bb.

After inductively computation, we can acquire

wt =
t−1∑
i=0

(I−BA)iBb + (I−BA)tw0 =
t−1∑
i=0

(I−BA)iBb

For Λ̄ = I− αIk − ηΛ, because (I−BA)i = QΛ̄iQ−1,

wt = Q

(
t−1∑
i=0

Λ̄i

)
Q−1Q(αΛ†k + ηI)Q−1b

= Q

(
t−1∑
i=0

Λ̄i

)
(αΛ†k + ηI)Q−1b

and because wt → w?,

‖wt −w?‖ = ‖Q

(
∞∑
i=0

Λ̄i −
t−1∑
i=0

Λ̄i

)
(αΛ†k + ηI)Q−1b‖

≤ ‖QΛ̄t(αΛ†k + ηI)Q−1b‖ . Λ̄t(j, j)
def
=

λ̄tj
1− λ̄j

≤ ‖Q‖‖Λ̄t(αΛ†k + ηI)Q−1b‖

≤ ‖Λ̄t(αΛ†k + ηI)‖‖Q−1b‖.

The last inequality holds because Q has normalized columns and ‖Q‖ ≤ 1.

For j = 1, . . . , k, we have that the magnitude of the values in Λ̄t(αΛ†k+ηI)
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are

|(1− α− ηλj)
t

α + ηλj
(αλ−1

j + η)| = |(1− α− ηλj)
t

λj
| ≤ |1− α− ηλj|

t

λj
.

For j = k, . . . , rank(A), we get the magnitude as | (1−ηλj)
t

λj
| ≤ |1−ηλj |t

λj
.

Under the discrete Picard condition |(Q−1b)j| ≤ λpj , the denominator λj

cancels, giving the desired result.

Remark 2. By simple algebraic computation, using a customized initialization

of the weight vector (i.e., w0) would add an additional term |1 − α − ηλj|t ·

‖Q−1w0‖ to the two terms corresponding to j ≤ k and j > k. Since using

nonzero weight vector potentially indicates special exploration strategy, which

complicates the interpretation of this bound, we focus on the simple case when

the weight is initialized as a zero vector in this thesis. It could be an interesting

future direction to study how to initialize the weight vector to make the constant

term ‖Q−1w0‖ small, improving the convergence rate.

Theorem 2 gives insight into the utility of ATD for speeding up conver-

gence, as well as the effect of k. Consider TD(λ), which has positive definite

A in on-policy learning (Sutton (1988, Theorem 2)). The theorem guarantees

that ATD convergences to the TD fixed-point, for any k. For k = 0, the ex-

pected ATD update is exactly the expected TD update. Now, we can compare

the convergence rate of TD and ATD, using the above convergence rate.

Take for instance the setting α = 1 for ATD, which is common for second-

order methods and let p = 2. The rate of convergence reduces to the maximum

of maxj∈{1,...,k} η
tλt+1
j and maxj∈{k+1,...,rank(A)} |1 − ηλj|tλj. In early learning,

the convergence rate for TD is dominated by |1− ηλ1|tλ1, because λj is larger

relative to |1 − ηλj|t for small t. ATD, on the other hand, for a larger k,

can pick a smaller η and so has a much smaller value for j = 1, i.e., ηtλt+1
1 ,

and |1 − ηλj|tλj is small because λj is small for j > k. As k gets smaller,

|1− ηλk+1|tλk+1 becomes larger, slowing convergence. For low-rank domains,

however, k could be quite small and the preconditioner could still improve the

convergence rate in early learning.
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Hence, ATD, when combined with a low-rank approximation, converges in

expectation to the TD fixed-point, with convergence rate dependent on the

choice of rank. Unlike previous subquadratic methods, consistency is guar-

anteed for ATD even when the rank is chosen to be one. The regularization

η > 0 is key to ensure this consistency, by providing a full rank preconditioner

αtÂ
†
t + ηI.

ATD is a quasi-second order method, meaning sensitivity to parameters

should be reduced and thus it should be simpler to set the parameters. The

convergence rate provides intuition that, for reasonably chosen k, the regular-

izer η should be small—smaller than a typical stepsize for TD. Additionally,

because ATD is a stochastic update, not the expected update, we make use

of typical conventions from stochastic gradient descent to set our parameters.

We set αt = α0

t
, as in previous stochastic second-order methods (Schraudolph

et al., 2007), where we choose α0 = 1 and set η to a small fixed value. Our

choice for η represents a small final stepsize, as well as matching the conver-

gence rate intuition.

On the bias of subquadratic methods. The ATD(λ) update was derived

to ensure convergence to the minimum of the MSPBE, either for the on-policy

or off-policy setting. Our algorithm summarizes past information, in Â, to

improve the convergence rate, without requiring quadratic computation and

storage. Prior work aspired to the same goal, however, the resultant algorithms

are biased. The iLSTD algorithm can be shown to converge for a specific class

of feature selection mechanisms (Geramifard et al. (2007, Theorem 2)); this

class, however, does not include the greedy mechanism that is used in iLSTD

algorithm to select a descent direction. The random projections variant of

LSTD (Ghavamzadeh et al., 2010) can significantly reduce the computational

complexity compared with conventional LSTD, with projections down to size

k, but the reduction comes at a cost of an increase in the approximation

error (Ghavamzadeh et al., 2010). Fast LSTD (Prashanth et al., 2013) does

randomized TD updates on a batch of data, which could be run incrementally

with O(dk) by using mini-batches of size k. Though it has a nice theoretical
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characterization, this algorithm is restricted to λ = 0. Finally, the most related

algorithm is tLSTD as we discussed in Section 4.1, which also uses a low-rank

approximation to A.

In ATD, Ât is used very differently from how Ât is used in tLSTD. The

tLSTD algorithm uses a similar approximation Ât as ATD, but tLSTD uses it

to compute a closed form solution wt = Â†tbt, and thus is biased (Theorem 1).

In fact, the bias grows with decreasing k, proportionally to the magnitude of

the kth largest singular value of A. In ATD, the choice of k is decoupled from

the fixed point, and so can be set to balance learning speed and computation

with no fear of asymptotic bias.
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Chapter 5

Approximation by Random
Projection

Random projection (Johnson & Lindenstrauss, 1984) is a popular matrix

sketching technique, which has been broadly applied in various practical ma-

chine learning settings due to its low computational cost and simplicity (Bing-

ham & Mannila, 2001; Achlioptas, 2003; Freund et al., 2008). Particularly,

matrix sketching usually needs to be pass-efficient. That is, a data point is

read at most a constant time or even one time. Such demand makes random

projection an attractive option in many practical applications whenever we

expect an algorithm to utilize a data point immediately by efficient computa-

tion once it becomes available and then discard it. A fully incremental, online

reinforcement learning is a natural example of such a setting.

In RL, however, before our work (Pan et al., 2017a), algorithms with ma-

trix sketching via random projection were mainly studied theoretically, and

the biased solution issue induced by such a method is not yet well resolved.

Furthermore, they lack empirical investigations. This chapter focuses on a

detailed study of ATD with the matrix sketching technique. For conciseness,

in this thesis, whenever we say sketching, we mean sketching by random pro-

jection.

This chapter is mainly based on Pan et al. (2017a). We introduce the

variant of ATD using matrix sketching to incrementally approximate the A

matrix, which further reduces the computational and storage complexity com-

paring with the incremental truncated SVD approach presented in the previous
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chapter.

The chapter is organized as follows. In Section 5.1, we briefly review rel-

evant literature and discuss issues about sketching in RL. Based on these

issues, Section 5.2 motivates to sketch the linear system for policy evaluation

problems rather than the features. Then we introduce our main approach:

ATD with left-sided sketching of A in Section 5.3. We then present empirical

results to verify the efficacy of our ATD instance and to investigate the rela-

tionship between feature properties and learning performance in Section 5.4.

The convergence property is studied in Section 5.5. We conclude this chapter

by discussing the difference between the usage of random projection in ATD

and that in a standard supervised learning setting in Section 5.6.

5.1 A Review of Sketching in RL

Sketching has been extensively used for efficient communication and solving

large linear systems, with a solid theoretical foundation and a variety of dif-

ferent sketches (Woodruff, 2014). We investigate the utility of sketching for

improving policy evaluation within reinforcement learning. Sketching has been

previously used in RL, specifically to reduce the dimension of the features.

Bellemare et al. (2012) replaced the standard biased hashing function used for

tile coding (Sutton, 1996), instead using count-sketch.1 Ghavamzadeh et al.

(2010) investigated sketching features to reduce the dimensionality and make

it feasible to run least-squares TD learning (LSTD) for policy evaluation. In

LSTD, the value function is estimated by incrementally computing a d × d

matrix A, where d is the same as feature dimension, and an d-dimensional

vector b, where the parameters are estimated as the solution to this linear

system.

One approach to make LSTD more feasible is to project—sketch—the fea-

tures. Sketching involves sampling a random matrix S : Rk×d from a family

of matrices S, to project a given d-dimensional vector x to a (much smaller)

1They called the sketch the tug-of-war sketch, but it is more standard to call it count-
sketch.
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k-dimensional vector Sx. The goal in defining this class of sketching matrices

is to maintain certain properties of the original vector. The following is a

standard definition for such a family.

Definition 1 (Sketching). Let d and k be positive integers, δ ∈ (0, 1), and ε ∈

R+. Then, S ⊂ Rk×d is called a family of sketching matrices with parameters

(ε, δ), if for a random matrix, S, chosen uniformly at random from this family,

we have that ∀x ∈ Rd

P
[
(1− ε)‖x‖2

2 ≤ ‖Sx‖2
2 ≤ (1 + ε)‖x‖2

2

]
≥ 1− δ,

where the probability is w.r.t. to the distribution over S.

We will explore the utility of sketching the features with several common

sketches. These sketches all require k = Ω(ε−2 ln(1/δ) ln d).

Gaussian random projections, also known as the JL-Transform (John-

son & Lindenstrauss, 1984), has each entry in S i.i.d. sampled from a Gaussian,

N (0, 1
k
).

Count sketch selects exactly one uniformly picked non-zero entry in each

column, and sets that entry to either 1 or −1 with equal probability (Charikar

et al., 2002; Gilbert & Indyk, 2010). The Tug-of-War sketch (Alon et al., 1996)

performs very similarly to Count sketch in our experiments, so we omit it.

Combined sketch is the product of a count sketch matrix and a Gaussian

projection matrix (Wang, 2015; Boutsidis & Woodruff, 2015).

Hadamard sketch—the Subsampled Randomized Hadamard Transform—

is computed as S = 1√
kd

DHdP, where D ∈ Rd×d is a diagonal matrix with each

diagonal element uniformly sampled from {1,−1}, Hd ∈ Rd×d is a Hadamard

matrix and P ∈ Rd×k is a column sampling matrix (Ailon & Chazelle, 2006).

With sketching, the norm distance between the recovery S>Sx and the

original x is low, with high probability. For the above families, the entries in

S are zero-mean i.i.d., giving E[S>S] = I over all possible S. Consequently, in

expectation, the recovery S>Sx is equal to x. For a stronger result, a Chernoff

bound can be used to bound the deviation of S>S from this expected value:
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for the parameters (ε, δ) of the matrix family, we get that P
[
(1− ε)I ≺ S>S ≺

(1 + ε)I
]
≥ 1− δ.

These properties suggest that using sketching for the feature vectors should

provide effective approximations. Bellemare et al. (2012) showed that they

could use these projections for tile coding, rather than the biased hashing

function that is typically used, to improve learning performance for the control

setting. The efficacy, however, of sketching given features versus using the

unsketched features is not well-understood.

We investigate the properties of sketching the features, shown in Figure 5.1

with a variety of sketches in two benchmark domains for RBF and tile-coding

representations for an overview of these representations. For both domains, the

observations space is 2-dimensional, with expansion to d = 1024 and k = 50.

The results are averaged over 50 runs, with ξ, λ swept over 13 values, with

ranges listed in Appendix A.2.3. We see that sketching the features can incur

significant bias, particularly for tile coding, even with a reasonably large k = 50

to give O(dk) runtimes. This bias reduces with k but remains quite high and

is likely too unreliable for practical use. As a result, a natural question is if we

can benefit from sketching, with minimal bias or without incurring any bias

at all.

5.2 Sketching the LSTD Linear System

All of the work on sketching within reinforcement learning has investigated

sketching the features; however, we can instead consider sketching the linear

system, Aw = b. For such a setting, we can sketch the left and right sub-

spaces of A with different sketching matrices, SL ∈ RkL×d and SR ∈ RkR×d.

Depending on the choices of kL and kR, we can then solve the smaller system

SLAS>RSRw = SLb efficiently.

One natural improvement should be in one-sided sketching. By only sketch-

ing from the left, for example, and setting SR = I, we do not project w.

Rather, we only project the constraints to the linear system Aw = b. Im-

portantly, this does not introduce bias: the original solution w to Aw = b
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Figure 5.1: Efficacy of different sketches for sketching the features for LSTD,
with k = 50. The RMSE is w.r.t. the optimal value function, computed
using rollouts. LSTD(λ) is included as the baseline, with w = A−1b, with
the other curves corresponding to different sketches of the features, to give
w = (SAS>)−1Sb as used for the random projections LSTD algorithm. The
RBF width in Mountain Car is σ = 0.12 times the range of the state space
and in Puddle World is σ =

√
0.0072. The 1024 centers for RBFs are chosen

to uniformly cover the 2-d space in a grid. For tile coding, we discretize each
dimension by 10, giving 10× 10 grids, use 10 tilings, and set the memory size
as 1024. The bias is high for tile coding features and much better for the RBF
features, though still quite large. The different sketches perform similarly.
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is also a solution to SAw = Sb for any sketching matrix S. The projection,

however, removes uniqueness in terms of the solutions w, since the system is

under-constrained. Conversely, by only sketching from the right, and setting

SL = I, we constrain the space of solutions to a unique set, and do not remove

any constraints. For this setting, however, it is unlikely that w with Aw = b

satisfies AS>w = b.

The conclusion from many initial experiments is that the key benefit from

asymmetric sketching is when only sketching from the left. We experimented

with all pairwise combinations of Gaussian random projections, Count sketch,

Tug-of-War sketch, and Hadamard sketch for SL and SR. We additionally

experimented with only sketching from the right, setting SL = I. In all of

these experiments, we found asymmetric sketching provided little to no benefit

over using SL = SR and that sketching only from the right also performed

similarly to using SL = SR. We further investigated column and row selection

sketches (see Wang (2015) for a thorough overview), but also found these to

be ineffective. We, therefore, proceed with an investigation into effectively

using left-side sketching. In the next section, we provide an efficient O(dk)

algorithm to compute (SLA)†, to enable computation of w = (SLA)†SLb and

for use within an unbiased quasi-Newton algorithm.

We conclude this section with an interesting connection to a data-dependent

projection method that has been used for policy evaluation that further moti-

vates the utility of sketching only from the left.

This algorithm—called truncated LSTD (tLSTD)—was described in the

last Chapter. It incrementally maintains a rank k approximation of A matrix,

using an incremental SVD. We show below that this approach is projecting

A from the left with the top k left singular vectors. This is called a data-

dependent projection because the projection depends on the observed data, as

opposed to the data-independent projection—the sketching matrices—which

is randomly sampled independently of the data.

Proposition 1. Let A = UΣV> be singular value decomposition of the true

A. Assume the singular values are in decreasing order and let Σk be the top
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k singular values, with corresponding k left singular vectors Uk and k right

singular vectors Vk. Then the solution w = VkΣ
†
kU
>
k b (used for tLSTD)

corresponds to LSTD using asymmetric sketching with SL = U>k and SR = I.

Proof. We know U = [u1, . . . ,ud] for singular vectors ui ∈ Rd with u>i ui = 1

and u>i uj = 0 for i 6= j. Since Uk = [u1, . . . ,uk], we get that U>k U =

[Ik 0d−k] ∈ Rk×d for k-dimensional identity matrix Ik and zero matrix 0d−k ∈

Rk×(d−k). Then we get that SLb = U>k b and SLA = [Ik 0d−k]ΣV> = ΣkV
> =

ΣkV
>
k . Therefore, w = (SLA)†SLb = VkΣ

†
kU
>
k b.

5.3 Our Approach: Left-sided Projection

In this section, we develop an efficient approach to use the smaller, sketched

matrix SA for incremental policy evaluation. We propose to sketch the linear

system in LSTD instead. The key idea is only to sketch the constraints of

the system (the left-side of A) rather than the variables (the right-side of A).

Sketching features, on the other hand, by design, sketches both constraints,

and variables. We show that even with a straightforward linear system solu-

tion, the left-sided sketch can significantly reduce bias. We further show how

to use this left-sided sketch within a quasi-Newton algorithm, providing an

unbiased policy evaluation algorithm that can still benefit from the computa-

tional improvements of sketching.

The key novelty is designing such system-sketching algorithms when also

incrementally computing the linear system solution. There is a wealth of liter-

ature on sketching linear systems to reduce computation. In general, however,

many sketching approaches cannot be applied to the incremental policy evalu-

ation problem because the approaches are designed for a static linear system.

For example, Gower & Richtárik (2015) provide a host of possible solutions

for solving large linear systems. However, they assume access to A upfront,

so in memory and computation, the algorithm design is not suitable for the

incremental setting. Some popular sketching approaches, such as Frequent

Directions (Ghashami et al., 2014), has been successfully used for the online

setting, for quasi-Newton algorithms (Luo et al., 2016); however, they sketch
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symmetric matrices that are growing with the number of samples.

The most straightforward way to use SA is to incrementally compute SA,

and periodically solve w = (SA)†Sb. This costs O(dk) per step, and O(d2k)

every time the solution is recomputed. To maintain O(dk) computation per-

step, this full solution could only be computed every d steps, which is too

infrequent to provide a practical incremental policy evaluation approach. Fur-

ther, because it is an underconstrained system, there are likely to be infinitely

many solutions to SAw = Sb; amongst those solutions, we would like to

sub-select amongst the unbiased solutions to Aw = b.

We first discuss how to efficiently maintain (SA)†, and then describe how

to use that matrix to obtain an unbiased algorithm. Let Ã
def
= SA ∈ Rk×d. For

this underconstrained system with b̃
def
= Sb, the minimum norm solution to

Ãw = b̃ is w = Ã>(ÃÃ>)−1b̃ and Ã† = Ã>(ÃÃ>)−1 ∈ Rd×k. To maintain

Ã†t incrementally, therefore, we simply need to maintain Ãt incrementally and

the k × k-matrix (ÃtÃ
>
t )−1 incrementally.

Let ẽt
def
= Set, dt

def
= dt and ht

def
= Ãtdt. We can update the sketched system

in O(dk) time and space

Ãi+1 = Ãi + 1
i+1

(
ẽid

>
i − Ãi

)
b̃i+1 = b̃i + 1

i+1

(
ẽiRi+1 − b̃i

)
To maintain (ÃtÃ

>
t )−1 incrementally, notice that the unnormalized update is

Ãt+1Ã
>
t+1 = (Ãt + ẽtd

>
t )(Ãt + ẽtd

>
t )

= ÃtÃ
>
t + ẽth

>
t + htẽ

>
t + ||dt||22‖ẽtẽ>t .

Hence, (Ãt+1Ã
>
t+1)−1 can be updated from (ÃtÃ

>
t )−1 by applying the Sherman-

Morrison update three times. For a normalized update, based on samples, the

update is

Ãt+1Ã
>
t+1 =

(
t
t+1

)2
ÃtÃ

>
t + t

(t+1)2

(
ẽth

>
t + htẽ

>
t

)
+ 1

(t+1)2
||dt||22‖ẽtẽ>t

We can then compute wt = Ãt(ÃtÃ
>
t )†b̃t on each step.
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This solution, however, provides the minimum norm solution rather than

the unbiased solution, even though the unbiased solution is feasible for the un-

derconstrained system. To achieve this unbiased solution, we use our stochastic

approximation algorithm—ATD. This method is a quasi-second order method,

that relies on a low-rank approximation Ât to At; using this approximation,

the update is wt+1 = wt + (αtÂ
†
t + ηI)δtet. Instead of being used to explicitly

solve for w, the approximation matrix is used to provide curvature informa-

tion. The inclusion of η constitutes a small regularization component, that

pushes the solution towards the unbiased solution.

5.4 Empirical Results

This section focuses on studying three problems: 1) how does ATD with sketch-

ing work as we increase rank, and how sensitive is hyper-parameters? 2) does

ATD with sketching worth on high-dimensional domain in terms of compu-

tational cost? 3) how do feature properties affect the efficacy of sketching

techniques?

5.4.1 Overall Performance of ATD with Sketching

We now conduct experiments to address the first two questions. We set k = 50,

unless otherwise specified, to average all results over 50 runs and sweep the

same number of hyper-parameters for each algorithm whenever applicable. De-

tailed experimental settings, such as parameter ranges, are in Appendix A.2.3.

To distinguish projections, we add -P for the two-sided projection (e.g., ATD-

P, LSTD-P) and -L for the left-sided projection (e.g., ATD-L, LSTD-L) to

the algorithm name. Note that since we already show that sketching seems

to be more effective with RBF features, we mainly focus on investigating the

performance with RBF features in this section. Additional results with tile

coding features are presented in the Appendix A.2.4.

Performance and parameter sensitivity for RBFs. We first compare

the algorithms in Puddle World, in Figures 5.2 and 5.3. We provide additional
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results in Mountain Car in Figure A.2 in the Appendix A.2.4.

We summarize our important observations as follows: 1) ATD-L’s perfor-

mance sits between TD and LSTD method: it achieves closer sample effi-

ciency to LSTD than TD, but it incurs lower computational cost than LSTD;

2) ATD with sketching decreases bias relative to its LSTD variant; 3) ATD

with left-sided sketching typically performs as well as ATD-SVD, but is sig-

nificantly faster; 4) two-sided projection—projecting the features—generally

does much worse than only projecting the left-side of A; 5) the LSTD al-

gorithms with random projection are less sensitive to initialization than the

vanilla LSTD. We hypothesize that the reason for the insensitivity is that with

matrix sketching, LSTD only has to initialize a smaller k × k symmetric ma-

trix, (SA(SA)>)−1 = ηI, and so is much more robust to this initialization. In

fact, across settings, we found initializing to I was effective. Similarly, ATD-L

benefits from this robustness since it needs to initialize the same matrix and

then further overcomes bias using the approximation to A only for curvature

information.

Experiments on high dimensional domains. We apply our sketching

techniques on a higher dimensional domain—Acrobot with more than 10k

basis functions—to illustrate practical usability. The Acrobot domain (Sutton

& Barto, 2018) is a four-dimensional episodic task, where the goal is to raise an

arm to a certain height, and an episode ends when the height level is reached.

We used 14, 400 uniformly-spaced centers within the state space, resulting

in 14, 400 dimensional features. We summarize the results in the caption of

Figure 5.4, with the overall conclusion that ATD-L provides an attractive way

to reduce parameter sensitivity of TD and benefit from random projection to

reduce computation.

5.4.2 The Impact of Feature Properties

To investigate the properties of these sketching approaches, we need to under-

stand when we expect sketching to have the most benefit. Despite the wealth

of literature on sketching and solid theoretical results, there seem to be fewer
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(c) RBF, k = 75

Figure 5.2: Change in performance when increasing k, from 25 to 75 on Pud-
dle World. Two-sided projection (i.e., projecting the features) significantly
improves with larger k but is strictly dominated by left-side projection. At
k = 50, the left-side projection methods are outperforming TD and are less
variant. ATD-SVD seems to gain less with increasing k, though we generally
found ATD-SVD to perform more poorly than ATD-P, particularly for RBF
representations.

empirical investigations into when sketching brings in benefit. This section

elucidates some hypotheses about when sketching should be most effective,

which we then explore in our experiments.

Recall Figure 5.1 in Section 5.1; it was clear that sketching the RBF fea-

tures was much more effective than sketching the tile coding features. There-

fore, a natural investigation is into the properties of representations that are

more amenable to sketching (as we show in the next section). The key dif-

ferences between these two representations are in smoothness, density, and

overlap. The tile coding representation has non-smooth 0, 1 features, which
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Figure 5.3: Sensitivity figure on Puddle World domain using projected dimen-
sion k = 50. This corresponds to the learning curve from Figure 5.2(b). Note
that we sweep initialization for LSTD-P but keep the initialization parameter
fixed across all other settings. The one-side projection is almost insensitive
to initialization, and the corresponding ATD version is insensitive to regu-
larization. Though ATD-SVD also shows insensitivity, the performance of
ATD-SVD is much worse than sketching methods for the RBF representation.
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Figure 5.4: Results in domains with high-dimensional features, using k = 50
and with results averaged over 30 runs. For Acrobot, the (left-side) sketching
methods perform well and are much less sensitive to parameters than TD. We
show RMSE versus time for runtime comparison, allowing the algorithms to
process up to 25 samples per second to simulate a real-time setting learning;
slow algorithms cannot process all 25 within a second. With computation
taken into account, ATD-L has a significant win over ATD-SVD, and does not
lose relative to TD. Total runtime in seconds for one run for each algorithm
is labeled in the plot. ATD-SVD is much slower because of the incremental
SVD.
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do not overlap in each grid. Instead, the overlap for tile coding results from

overlapping tilings. This differs from RBF overlap, where centers are arranged

in a grid, and only edges of the RBF features overlap. Theoretical work in

sketching for regression (Maillard & Munos, 2012), however, does not require

features to be smooth.

Some theoretical results suggest sketching could be more amenable for more

distinct features—less overlap or potentially fewer tilings. Balcan et al. (2006)

shows a worst-case setting where data-independent sketching results in poor

performance. They propose a two-stage projection to maintain separability in

classification. The first stage uses a data-dependent projection to ensure fea-

tures are not highly correlated. The second uses a data-independent projection

(a sketch) to further reduce the dimension after the orthogonal projection. The

implied conclusion from this result is that if the features are not highly cor-

related, then the first step can be avoided, and the data-independent sketch

should similarly maintain classification accuracy. This result suggests that

sketching for feature expansions with less redundancy should perform better.

We might also expect sketching to be more robust to the condition number

of the matrix. For sketching in regression, Fard et al. (2012) found a bias-

variance trade-off when increasing k, where for large k, estimation error from

a larger number of parameters became a factor. The smallest eigenvalue of

the sketched matrix should be larger than that of the original matrix; this

improvement in condition number compensates for the loss in information.

Similarly, we might expect that maintaining an incremental singular value

decomposition for ATD could be less robust than ATD with left-side sketching.

We explore how the feature properties—smoothness, density, overlap and

redundancy—can change the performance of sketching in linear value func-

tion approximation, as shown in Figure 5.5. There are following important

observations and conclusions.

First, the smooth feature seems more suitable for sketching as the algo-

rithms with RBF feature are better in most settings than tile coding and

spline features, which are not smooth. Second, increasing density—which can

be done by increasing overlap or tilings (i.e., redundancy)—should also benefit
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sketching methods. This can be seen by observing: 1) tile coding with increas-

ing tilings (i.e., nonzero entries) tends to perform better; 2) RBF with more

tilings tends to perform better; 3) spline features with more overlap tends to

perform better. Note that Figure 5.5 (a)(d) does not weaken this conclusion,

though the RMSE corresponding to several rightmost points seems to go up.

It is likely due to more inferior feature quality because those algorithms with-

out using random projection also perform worse. Third, random projection

seems to be less sensitive to feature quality. Since LSTD can be thought of

as a closed-form solution, its performance can be an indicator of the feature

quality. One can see that random projection methods are less negatively im-

pacted than TD and ATD-SVD methods when the feature quality becomes

worse across figures.

5.5 Convergence of ATD with Sketching

We now show that for our alternative approximation, we still obtain unbiased

solutions. We use results for iterative methods for singular linear systems

(Shi et al., 2011; Wang & Bertsekas, 2013), since A may be singular. A

has been shown to be positive semi-definite under standard assumptions on

the MDP (Yu, 2015). Note that, again, we assume A is positive semi-definite,

instead of providing these MDP assumptions. This holds under mild conditions

according to Yu (2015)

Assumption 4. For S ∈ Rk×d and B = α(SA)†S + ηI with B ∈ Rd×d, the

matrix BA is diagonalizable.

Assumption 5. A is positive semi-definite.

Assumption 6. α ∈ (0, 1
2
) and 0 < η ≤ 1

2λmax(A)
where λmax(A) is the maxi-

mum eigenvalue of A.

Theorem 3. Under Assumptions 4-6, the expected updating rule wt+1 = wt+

Eπ[Bδtet] converges to a fixed-point w? = A†b.
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Figure 5.5: The effect of varying the representation properties in Puddle World
with d = 1024. In (a) and (b), we examine the impact of varying the overlap,
for both smooth features (RBFs) and 0-1 features (Spline). For spline, the
feature is 1 if ||x − ci|| < σ and otherwise 0. The spline feature represents
a bin, like for tile coding, but here we adjust the widths of the bins so that
they can overlap and do not use tilings. The x-axis has four width values to
give a corresponding feature vector norm of about 20, 40, 80, 120. In (c) and
(d), we vary the redundancy, where the number of tilings is increased, and
the total number of features is kept constant. We generate tilings for RBFs
like tile coding, but each grid cell uses an RBF similarity rather than a spline
similarity. We used 4× 16× 16, 16× 8× 8 and 64× 4× 4.
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Proof. The expected updating rule is Eπ[Bδtet] = B(b − Awt). As in the

proof of convergence for Theorem 2 in with SVD (Section 4.4), we similarly

verify the conditions from Theorem 1.1 in Shi et al. (2011).

Notice first that BA = α(SA)†SA + ηA.

For singular value decomposition, SA = UΣV>, we have that (SA)†SA =

VΣ†U>UΣV> = V[Ik̃ 0d−k]V
>, where k̃ ≤ k is the rank of SA. The maxi-

mum eigenvalue of (SA)†SA is therefore 1.

Because (SA)†SA and A are both positive semidefinite, BA is positive

semi-definite. By Weyl’s inequalities,

λmax(BA) ≤ αλmax((SA)†SA) + ηλmax(A).

Therefore, the eigenvalues of I−BA have absolute value strictly less than 1,

because η ≤ (2λmax(A))−1 and α < 1/2 = (2λmax((SA)†SA))−1 by assump-

tion.

For the second condition, since BA is PSD and diagonalizable, we can write

BA = QΛQ−1 for some matrices Q and diagonal matrix Λ with eigenvalues

greater than or equal to zero. Then (BA)2 = QΛQ−1QΛQ−1 = QΛ2Q−1 has

the same rank.

For the third condition, because BA is the sum of two positive semi-definite

matrices, the nullspace of BA is a subset of the nullspace of each of those

matrices individually:

nullspace(BA)=nullspace(α(SA)†SA + ηA)⊆nullspace(ηA)=nullspace(A).

In the other direction, for all w such that Aw = 0, its clear that BAw = 0,

and so

nullspace(A) ⊆ nullspace(BA).

Hence, nullspace(A) = nullspace(BA).

5.6 Discussions about Sketching

Sketching has been used for quasi-Newton updates in online learning; a natu-

ral question is if those methods are applicable for policy evaluation. Luo et al.
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(2016) consider sketching approaches for an online Newton-update, for general

functions rather than just the linear function approximation case we consider

here. They similarly have to consider updates amenable to incrementally ap-

proximating a matrix (a Hessian in their case). In general, however, porting

these quasi-Newton updates to policy evaluation for reinforcement learning is

problematic for two reasons. First, the objective function for temporal differ-

ence learning is the MSPBE, which is the product of three expectations. It

is not straightforward to obtain an unbiased sample of this gradient. Con-

sequently, it is not straightforward to apply quasi-Newton online algorithms

that assume access to unbiased gradients. Second, the Hessian can be nicely

approximated in terms of gradients, and is symmetric; both are exploited when

deriving the sketched online Newton-update (Luo et al., 2016). We, on the

other hand, have an asymmetric matrix A.

In the other direction, we could consider if our approach could be beneficial

for the online regression setting. For linear regression, with γ = 0, the matrix

A actually corresponds to the Hessian. In contrast to previous approaches

that sketched the features (Maillard & Munos, 2012; Fard et al., 2012; Luo

et al., 2016), therefore, one could instead sketch the system and maintain

(SA)†. Since the second-order update is A−1gt for gradient gt on iteration t,

an approximate second-order update could be computed as ((SA)†S + ηI)gt.

In our experiments, we found sketching both sides of A to be less effec-

tive and found little benefit from modifying the chosen sketch; however, these

empirical conclusions warrant further investigation. With more understand-

ing into the properties of A, it could be possible to benefit from this variety.

For example, sketching the left-side of A could be seen as sketching the eligi-

bility trace, and the right-side as sketching the difference between successive

features. For some settings, there could be properties of either of these vec-

tors that are particularly suited to a certain sketch. As another example, the

key benefit of many of the sketches over Gaussian random projections is in en-

abling the dimension k to be larger, by using (sparse) sketching matrices where

dot product are efficient. We could not easily benefit from these properties,

because SA could be dense and computing matrix-vector products and incre-
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mental inverses would be expensive for larger k. For sparse A, or when SA

has specialized properties, it could be more possible to benefit from different

sketches.

Finally, the idea of sketching fits well into a larger theme of random rep-

resentations within reinforcement learning. A seminal paper on random rep-

resentations (Sutton & Whitehead, 1993) demonstrates the utility of random

threshold units, as opposed to more carefully learned units. Though end-to-

end training has become more popular in recent years, there is evidence that

random representations can be quite powerful (Aubry & Jaffard, 2002; Rahimi

& Recht, 2007, 2008; Maillard & Munos, 2012), or even combined with descent

strategies (Mahmood & Sutton, 2013). For reinforcement learning, this learn-

ing paradigm is particularly suitable, because data cannot be observed up-

front. Data-independent representations, such as random representations and

sketching approaches, are therefore particularly appealing and warrant further

investigation for the incremental and online reinforcement learning setting.
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Chapter 6

Gradient-based Search-control
in Dyna

Stochastic gradient optimization algorithms typically sample a mini-batch of

training examples to approximate the expected gradient. Sampling distribu-

tion of the training examples significantly impacts the sample efficiency of

these stochastic optimization algorithms and this problem has been actively

explored in a conventional machine learning setting (Needell et al., 2014; Zhao

& Zhang, 2015; Wang et al., 2017). We study what type of sampling distri-

bution one should use to accelerate reinforcement learning algorithms in this

chapter. We consider the corresponding concept of sampling distribution in

an RL context as search-control—the mechanism deciding what kind of imag-

ined experiences to use by generating state or state-action pairs from which

we query a model to get the next state and reward. It is a crucial component

in Dyna (Sutton, 1991), which is a classic model-based reinforcement learning

(MBRL) architecture.

Our key idea for sampling distribution design is to bring in the Stochas-

tic Gradient Langevin Dynamics (SGLD) method, which has been broadly

used in the conventional machine learning, such as large-scale Bayesian learn-

ing (Welling & Teh, 2011; Sato & Nakagawa, 2014), global convergence analysis

in optimization (Xu et al., 2018), generative modeling (Song & Ermon, 2019,

2020) or energy-based models (Du & Mordatch, 2019), etc. Note that, for

a multivariate random variable (i.e., a state s ∈ S), specifying a probabil-

ity distribution and sampling from that specified distribution may be quite
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challenging tasks. SGLD enables to do both easily. SGLD sampling then

simplifies the sampling distribution design problem to the problem of find-

ing some score/energy function that measures the importance of states. The

name of our method, gradient-based search-control, comes from the fact that

SGLD sampling relies on a modified gradient updating rule, as we detail in

this chapter.

We organize this chapter as follows. We firstly review basic background

in search-control within the Dyna MBRL architecture in Section 6.1, followed

by a detailed discussion about problem formulation, SGLD method, and how

it is used in Dyna in Section 6.2. Then we present three search-control meth-

ods originating from RL and regular supervised learning perspectives in Sec-

tion 6.3, 6.4, and 6.5. Specifically, we propose to search states 1) that have

high values (Pan et al., 2019); 2) whose values are considered as difficult to

estimate (Pan et al., 2020b); or 3) whose absolute TD errors are large (Mei

et al., 2020). By leveraging the generalization power of the learned value

function, we search those states of interest via gradient ascent. We provide

theoretical insight and empirical evidence to show the efficacy of our proposed

search-control mechanisms. Note that this chapter’s contents are mainly from

the papers by Pan et al. (2019, 2020b) and Mei et al. (2020).

6.1 Background in Dyna and Search-control

This section briefly introduces control problems in RL and then we focus on

reviewing the key concepts about Dyna and search-control.

Control problems. Recall that Chapter 2 discusses the basic building frame-

work of RL: Markov decision processes and then describes the policy evaluation

problem, which does not directly concern searching a high-performing policy;

rather, it focuses on evaluating a policy. Another category of research prob-

lems is called control, where we aim at finding a policy that can maximize

certain performance measure. A commonly used measure is the expected re-

turn starting from some state (Sutton & Barto, 2018). That is, we would like
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to solve the optimization problem maxπ v
π(s0) for s0 ∈ S. This objective can

be easily extended to maximizing the sum of weighted returns over a set of

states (Degris et al., 2012b; Imani et al., 2018; Maei, 2018; Zhang et al., 2019).

The policy is either directly parameterized and learned, as in policy gradi-

ent methods (Williams, 1992; Sutton & Barto, 2018), or the action-values are

learned and the policy inferred by acting greedily with respect to the action-

values, as in Q-learning (Watkins & Dayan, 1992). Methods interpolating

between value-based and policy-based methods—typically those actor-critic

algorithms (Degris et al., 2012a; Lillicrap et al., 2016; Schulman et al., 2015,

2017; Haarnoja et al., 2018)—are quite popular due to their superior empirical

performances.

In either setting, it is common to parameterize the policy/value function

by a neural network (NN). For example, Deep Q Networks (DQN) (Riedmiller,

2005; Mnih et al., 2015) parameterize the action-value function Qθ : S×A 7→ R

by a NN. The bootstrap target for updating a state-action value is computed

by using a separate target NN: Qθ− : S × A 7→ R parameterized by θ−:

yt = rt+1 + γmaxa′ Qθ−(st+1, a
′). The target NN parameter θ− is updated

by copying from θ every certain number of time steps. Online RL control

problems with nonlinear function approximation can be highly unstable (Dai

et al., 2018; Liu et al., 2019), and the target network technique can be used to

mitigate this issue. It effectively stabilizes deep RL algorithms according to

various empirical (Mnih et al., 2015; Lillicrap et al., 2016; Liu et al., 2019) and

theoretical evidence (Fan et al., 2020; Zhang et al., 2021). In this thesis, we

focus on a generic MBRL framework rather than designing a specific control

algorithm. Hence we do not provide additional discussions about different con-

trol algorithms. We mainly use DQN as the basic algorithm in our framework

for empirical demonstrations.

In fact, the control problems have been studied a long time ago outside

of the context of modern computational RL. Attempts have been made to

unify control algorithms for sequential decision problems studied within dif-

ferent contexts. We refer readers to the work by Powell (2021, Chapter 1,2)

and Powell (2007) for alternative formulation for control problems and specific
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categorization of control algorithms.

Model-based Reinforcement Learning (MBRL) and Dyna. MBRL

for control are critical to obtain sample efficient learning (Sutton, 1991; Daw,

2012; Sutton & Barto, 2018). They have been successfully applied to many

benchmark domains (Gu et al., 2016; Ha, David and Schmidhuber, Jürgen,

2018; Kaiser et al., 2020), and some well-known challenging games such as

Atari, Go, chess and shogi (Schrittwieser et al., 2020). The Dyna architecture,

introduced by Sutton (1991), is one of the classical MBRL architectures, which

integrates model-free and model-based policy updates in an online RL setting

(Algorithm 6). At each time step, a Dyna agent uses the real experience

to learn a model and to perform model-free policy update, and during the

planning stage, simulated experiences are acquired from the model to further

improve the policy. We would like to clarify that, the term planning refers

to any computational process that takes a model as input and produces or

improves a policy for interacting with the modeled environment, as described

in Chapter 8 in the book by Sutton & Barto (2018).

A closely related method to Dyna in model-free learning setting is experi-

ence replay (ER) (Lin, 1992; Adam et al., 2012), which utilizes a buffer to store

experiences. An agent using the ER buffer randomly samples the recorded ex-

periences at each time step to update the policy. Though ER can be thought

of as a simplified form of MBRL (van Seijen & Sutton, 2015), a model provides

more flexibility in acquiring simulated experiences.

Search-control. A crucial aspect of Dyna is the search-control mecha-

nism. It is the mechanism for selecting states or state-action pairs to query

the model in order to generate simulated experiences (Sutton & Barto (2018,

Section 8.2)). We call the corresponding data structure for storing those states

or state-action pairs the search-control queue. Search-control is of vital impor-

tance in Dyna, as it can significantly affect the model-based agent’s sample

efficiency. The search-control strategy in the vanilla Dyna Algorithm 6 is to

sample visited states or state-action pairs, i.e., use the initial state-action pairs
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Algorithm 6 Generic Dyna Architecture: Tabular Setting

Initialize Q(s, a) and model M(s, a), ∀(s, a) ∈ S ×A
while true do

observe s, take action a by ε-greedy w.r.t action values
execute a, observe reward R and next state s′

Q-learning update for Q(s, a)
update model M(s, a) (i.e. by counting)
store (s, a) into search-control queue
for i=1:d do

sample (s̃, ã) from search-control queue
(s̃′, R̃)←M(s̃, ã) // simulated transition
Q-learning update for Q(s̃, ã) // planning update

stored in the ER buffer as the search-control queue. This approach, however,

does not lead to an agent that outperforms a model-free agent that uses ER.

To see this, consider a deterministic environment, and assume that we have the

exact model. If we simply sample visited state-action pairs for search-control,

the next-state and reward would be the same as those in the ER buffer. In

practice, we have model errors too, which causes some performance deteriora-

tion (Talvitie, 2014, 2017). Without an elegant search-control mechanism, we

are not likely to benefit from the flexibility given by a model.

Several search-control mechanisms have already been explored. Prioritized

sweeping (Moore & Atkeson, 1993) is one such method that is designed to speed

up the value iteration process: the simulated transitions are updated based

on the absolute temporal difference error. It has been adopted to continuous

domains with function approximation too (Sutton et al., 2008; Pan et al.,

2018; Corneil et al., 2018; Wan et al., 2019). Gu et al. (2016) utilizes local

linear models to generate optimal trajectories/experiences through iLQR (Li

& Todorov, 2004) and use those experiences for Dyna-style planning.

Observing that Dyna’s search-control mechanisms are not widely explored

on continuous state domains, in this chapter, we would like to pursue a prob-

abilistic perspective for search-control mechanism design in continuous state

domains. We attempt to answer the question:

what type of state sampling distribution for search-control can help improve

sample efficiency during the planning stage?
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Given this topic question, we would like to emphasize that this chapter

focuses on improving sample efficiency (by designing sampling distributions)

rather than saving computation or memory costs.

Note that, even if we have a heuristic to assign importance to different

states, it is typically challenging to specify the corresponding probability dis-

tribution and sample from it. In the next section, one will see that the SGLD

sampling only requires to specify some score function h(·) to do both.

6.2 Stochastic Gradient Langevin Dynamics

for Search-control

This section firstly reviews relevant knowledge background in the Langevin

dynamics, followed by introducing the SGLD sampling method. With the

SGLD sampling method, designing a sampling distribution is reduced to the

design of the score function h(·). We then describe using the SGLD sampling

method to sample states to fill the search-control queue in Dyna and present

the corresponding Hill-climbing(HC) Dyna architecture.

Langevin dynamics background. Langevin dynamics is used as a tool

to analyze optimization algorithms (Xu et al., 2018) or to acquire an esti-

mate of the expected parameter values w.r.t. some posterior distribution

in Bayesian learning (Welling & Teh, 2011; Sato & Nakagawa, 2014). The

overdamped Langevin dynamics can be described by a stochastic differential

equation (SDE)

dW (t) = ∇U(Wt)dt+
√

2dBt,

where Bt ∈ Rd is a d-dimensional Brownian motion and U is a continuous dif-

ferentiable function. Under some conditions, it turns out that the Langevin dif-

fusion (Wt)t≥0 converges to a unique invariant distribution p(x) ∝ exp (U(x))

(Chiang et al., 1987).

By applying the Euler-Maruyama discretization scheme to the SDE, we

acquire the discretized version

Yk+1 = Yk + αk+1∇U(Yk) +
√

2αk+1Zk+1,
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where (Zk)k≥1 is an i.i.d. sequence of standard d-dimensional Gaussian random

vectors and (αk)k≥1 is a sequence of step sizes. This discretization scheme

was used to acquire samples from the original invariant distribution p(x) ∝

exp (U(x)) through the Markov chain (Yk)k≥1 when it converges to the chain’s

stationary distribution (Roberts, 1996). The distance between the limiting

distribution of (Yk)k≥1 and the invariant distribution of the underlying SDE

(i.e., the convergence mode) has been characterized through various bounds

depending on different technical conditions (Roberts, 1996; Teh et al., 2016;

Durmus & Moulines, 2017).

Therefore, one can flexibly design sampling distribution by choosing the

function U in the SDE above. We now use the notations from RL setting to

clarify how the sampling can be done.

SGLD sampling method. Let h(·) : S 7→ R be some differentiable function

w.r.t. the input s ∈ S. Given some initial state s0 ∈ S, let the state sequence

{si} be the one generated by updating rule

si+1 ← si + αh∇sh(si) +
√

2αh/ξXi,

where αh is a sufficiently small stepsize, ξ is the temperature parameter and

Xi ∼ N (0, I) is a Gaussian random variable. Then the sequence {si} asymp-

totically converges to the distribution p(s) ∝ exp(ξh(s)) as i → ∞. In im-

plementation, one may treat the Gaussian variance as a hyper-parameter and

ignore the temperature ξ, as the latter can be adjusted by adjusting the vari-

ance according to practical performance.

With this sampling method, designing a state sampling distribution and

sampling from the designed distribution is simplified to design the score func-

tion h(·). This chapter will present several instances of h(·) motivated by

either theoretical or empirical evidence.

Dyna with Gradient-based Search-control. We now describe how the

SGLD sampling method is applied in the Dyna architecture. We introduce

our generic Dyna architecture with SGLD sampling Algorithm 7, which we

call Hill Climbing (HC)-Dyna.
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Algorithm 7 HC-Dyna: Generic framework

Input: Hill Climbing (HC) criterion function h : S 7→ R; Initialize empty
search-control queue Bs; empty ER buffer Ber; initialize policy; HC stepsize
αh and gradient noise standard deviation σ; mini-batch size b; environment
P ; mixing rate ρ decides the proportion of imagined experiences in a mini-
batch.
for t = 1, 2, . . . do

Add (st, at, st+1, rt+1) to Ber

while within some budget time steps do
s← s+ αh∇sh(s) + X, X ∼ N (0, σI) // HC for search-control
Add s into Bs

// n planning updates/steps
for n times do

B ← ∅ // initialize an empty mini-batch B
for bρ times do

Sample s ∼ Bs, on-policy action a
Sample s′, r ∼ P(s, a)
B ← (s, a, s′, r)

Sample b(1− ρ) experiences from Ber, add to B
Update policy/value on mixed mini-batch B

We consider a one-step model which maps a state-action pair to its possible

next state and reward: P : S × A 7→ S × R. Our HC-Dyna is building

upon the tabular Dyna formalism 6 for MBRL. HC-Dyna provides a special

approach to Search-Control (SC), which generates states by Hill Climbing (HC,

i.e., the updating rule in SGLD) on some criterion/importance function h(·).

According to SGLD sampling, such generative method ensures the sampled

states follow certain desired sampling distribution as we introduce in the last

section.

The algorithmic framework maintains two buffers: the conventional ER

buffer storing experiences (an experience has the form of (st, at, st+1, rt+1))

and a search-control queue storing the states acquired by search-control mech-

anisms. At each time step t, a real experience1 (st, at, st+1, rt+1) is collected

and stored into ER buffer. Then the HC search-control process starts to collect

states and store them into the search-control queue. A imagined experience is

obtained by first selecting a state s from the search-control queue, then select-

1Sometimes an experience is also called a transition.
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ing an action a according to the current policy, and then querying the model

to get the next state s′ and reward r to form an experience (s, a, s′, r). These

imagined transitions are combined with real experiences into a single mini-

batch to update the training parameters. The n updates, performed before

taking the next action, are called planning updates (Sutton & Barto, 2018), as

they improve the action-value estimates—and so the policy—using a model.

The choice of pairing states with on-policy actions to form imagined experi-

ences has been reported to be beneficial (Gu et al., 2016; Pan et al., 2018;

Janner et al., 2019).

We want to mention that our SGLD sampling method for search-control

has connections to exploration methods. Exploration methods typically add

bonuses to action values when taking an action (Lattimore & Szepesvari, 2020)

or to the reward function when learning the action values (Stadie et al., 2015;

Bellemare et al., 2016; Pathak et al., 2017; Linke et al., 2019). Similar to

SGLD, those exploration methods encourage visiting unseen states and po-

tentially introduce state distribution bias. However, the main difference is

that exploration encourages an agent to visit those unseen states physically.

In contrast, our SGLD methods acquire unseen states by gradient ascent on

some learned function h(·). Hence, some states generated by our mechanism

may never be physically visited by the agent in the real environment.

By borrowing insights from both the reinforcement learning and the con-

ventional supervised learning perspectives, the rest of this chapter will moti-

vate and study three instances for h(·): 1) the value function v(s) from Pan

et al. (2019); 2) the gradient magnitude ||∇sv(s)|| from Pan et al. (2020b) and

3) the TD error magnitude from Mei et al. (2020).

6.3 Hill Climbing on Value Estimates

In this section, we motivate and present our search-control strategy based on

hill climbing on value function estimate. We refer readers to Appendix B.1.1

for any missing experimental details.
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6.3.1 A Motivating Example

We provide an example of how the value function surface changes during learn-

ing on a simple continuous-state GridWorld domain, which is a variant of the

one introduced by (Peng & Williams, 1993). This provides an intuition on

why it is useful to populate the search-control queue with states obtained by

hill climbing on the estimated value function, as proposed in the next section.

Consider the GridWorld in Figure 6.1(a). In each episode, the agent starts

from a uniformly sampled point from the area [0, 0.05]2 and terminates when

it reaches the goal area [0.95, 1.0]2. There are four actions {up, down, left,

right}; each leads to a 0.05 unit move towards the corresponding direction.

As a cost-to-goal problem, the reward is −1 per step. In Figure 6.1, we plot

the value function surface after 0, 14k, and 20k mini-batch updates to DQN.

We visualize the gradient ascent trajectories with 100 gradient steps starting

from five states (0.1, 0.1), (0.9, 0.9), (0.1, 0.9), (0.9, 0.1), and (0.3, 0.4). The

gradient of the value function used in the gradient ascent is

∇sV (s) = ∇s max
a
Qθ(s, a). (6.1)

At the beginning, with a randomly initialized NN, the gradient with respect

to state is almost zero, as seen in Figure 6.1(b). As the DQN agent updates

its parameters, the gradient ascent generates trajectories directed towards the

goal, though after only 14k steps, these are not yet contiguous, as seen Fig-

ure 6.1(c). After 20k steps, as in Figure 6.1(d), even though the value function

is still inaccurate, the gradient ascent trajectories take all initial states to the

goal area. This suggests that as long as the estimated value function roughly

reflects the shape of the optimal value function, the trajectories provide a

demonstration of how to reach the goal—or high-value regions—and speed up

learning by focusing updates on these relevant regions.

More generally, by focusing planning on regions the agent thinks are high-

value, it can quickly correct value function estimates before visiting those

regions, and so avoid unnecessary interaction. We demonstrate this in Fig-

ure 6.1(e), where the agent obtains gains in performance by updating from

high-value states, even when its value estimates have the wrong shape. After
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20k learning steps, the values are flipped by negating the sign of the param-

eters in the output layer of the NN. Dyna-Value, introduced in Section 6.3.2,

quickly recovers compared to DQN and on-policy updates from the ER buffer.

Because the gradient ascent process can quickly generate states around the

incorrectly high value regions, and then the planning steps help pushing down

these erroneously high-values, and the agent can recover much more quickly.

6.3.2 Value-based Search-control

In this section, we present the algorithmic details of our Dyna variant, called

Dyna-Value.2 Note that the algorithm closely follows our generic Algorithm 7.

We refer readers to the Appendix B.1.1 for any missing details.

The key component of our algorithm is to use the hill climbing procedure

developed in the previous section, to generate states for SC. To generate states

for search control, we need an algorithm that can climb on the estimated

value function surface. For NNs, this can be difficult. The value function

surface can be very flat or very rugged, causing the gradient ascent to get stuck

in local optima and hence interrupt the gradient traveling process. Further,

the state variables may have very different numerical scales. When using

a regular gradient ascent method, it is likely for the state variables with a

smaller numerical scale to immediately go out of the state space.

SGLD naturally address the first issue, of flat or rugged function surfaces by

adding Gaussian noise on each gradient ascent step. Intuitively, this provides

robustness to flat regions and avoids getting stuck in local maxima on the

function surface, by diffusing across the surface to high-value regions.

To address the second issue of vastly different numerical scales among state

variables, we use a standard strategy to be invariant to scale: natural gradient

ascent. A popular choice of natural gradient is derived by defining the metric

tensor as the Fisher information matrix (Amari & Douglas, 1998; Amari, 1998;

Thomas et al., 2016). We introduce a simple and computationally efficient

metric tensor: the inverse of covariance matrix of the states Σ−1
s . This choice

2Note that HC-Dyna is the name of our generic Dyna framework with SGLD search-
control, while Dyna-Value is the name of a concrete instance of HC-Dyna.

89



S

G

(a) GridWorld domain

0.0 0.4
1.0 0.0

0.4
1.0
-0.1

0.0

0.1

(b) Before update

0.0 0.4
1.0 0.0

0.4
1.0

-14.2

-13.8

-13.5

(c) Update 14k times

0.0 0.4
1.0 0.0

0.4
1.0
 -19.5

-18.6

-17.5

(d) Update 20k times

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time steps 1e5

2000
1750

250
0

Episodic
return

(30runs)

Negate the weight of the output
layer in NN

DQN
OnPolicy-Dyna
Dyna-Value

(e) Negation of NN

Figure 6.1: (b-d) The value function on the GridWorld domain with gradient
ascent trajectories. (e) shows learning curves (sum of rewards per episode v.s.
time steps) where each algorithm needs to recover from a bad NN initialization
(i.e. the value function looks like the reverse of (d)).

90



1.00 0.75  0.50  0.25  0.00 0.25 0.50position

0.06

0.04

0.02

0.00

0.02

0.04

0.06

ve
lo

cit
y

Figure 6.2: The search-control queue filled by using + or not using o natural
gradient on MountainCar-v0.

is simple, because the covariance matrix can easily be estimated online. We

can define the following inner product:

〈s, s′〉 = s>Σ−1
s s′, ∀s, s′ ∈ S,

which induces a vector space—the Riemannian manifold—where we can com-

pute the distance of two points s and s + ∆ that are close to each other by

d(s, s + ∆)
def
= ∆>Σ−1

s ∆. The steepest ascent updating rule based on this dis-

tance metric becomes s ← s + αΣsg, where g is the gradient of the value

function.

We demonstrate the utility of using the natural gradient scaling. Figure 6.2

shows the states from the search-control queue filled by hill climbing in early

stages of learning (after 8000 steps) on Mountain Car. The domain has two

state variables with very different numerical scale: position ∈ [−1.2, 0.6] and

velocity ∈ [−0.07, 0.07]. Using a regular gradient update, the queue shows a

state distribution with many states concentrated near the top since it is very

easy for the velocity variable to go out of boundary. In contrast, the one with

natural gradient, shows clear trajectories with an obvious tendency to the right

top area (position ≥ 0.5), which is the goal area.

In addition to using this new method for search-control, we also found it

beneficial to include updates on the experiences generated in the real world.

The mini-batch sampled for training has ρ proportion of transitions generated

by states from the SC queue, and 1− ρ from the ER buffer. For example, for
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ρ = 0.75 with a mini-batch size of 32, the updates consists of 24(= 32× 0.75)

transitions generated from states in the SC queue and 6 transitions from the

ER buffer. Previous work using Dyna for learning NN value functions also

used such mixed mini-batches (Holland et al., 2018).

One potential reason this mixing design is beneficial is that it alleviates

issues with heavily skewing the sampling distribution to be off-policy. Tabular

Q-learning is an off-policy learning algorithm, which has strong convergence

guarantees under mild assumptions (Tsitsiklis, 1994). When moving to func-

tion approximation, empirically, previous prioritized ER work pointed out that

skewing the sampling distribution from the ER buffer can lead to a biased so-

lution (Schaul et al., 2016). Though the ER buffer is not on-policy, because

the policy is continually changing, the distribution of states is closer to the

states that would be sampled by the current policy than those in SC. Using

mixed states from the ER buffer, and those generated by Hill Climbing, could

alleviate some of the issues with this skewness. Another possible reason that

such mixed sampling could be necessary is due to model error. The use of real

experience could mitigate issues with such error.

We provide a small experiment in the continuous state GridWorld, depicted

in Figure 6.1. The continuous-state setting uses NNs—as described more fully

in Appendix B.1.1—with a mini-batch size of 32. Figure 6.3 shows the per-

formance of Dyna-Value as the mixing proportion increases from 0 (ER only)

to 1.0 (SC only). A mixing rate around ρ = 0.5 provides the best results.

Generally, using too few search-control samples do not improve performance;

focusing too many updates on search-control samples seems to slightly speed

up early learning, but then later learning suffers.

To gain an intuition for why our algorithm with an appropriate mixing rate

achieves superior performance than DQN, we visualize the states in the search-

control queue for Dyna-Value with mixing rate 0.5 in the GridWorld domain

(Figure 6.4). We also show the states in the ER buffer at the same time step for

both Dyna-Value and DQN to contrast. There are two interesting outcomes

from this visualization. First, the modification to search-control significantly

changes where the agent explores, as evidenced by the ER buffer distribution.
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Figure 6.3: The effect of mixing rate on learning performance on (Continu-
ous state) GridWorld. The numerical label means Dyna-Value with a certain
mixing rate. The results are averaged over 30 runs (i.e., random seeds). The
standard errors are small and sufficient to distinguish the learning curves using
mixing rates 0.25, 0.5 from the rest.

Second, Dyna-Value has many states in the SC queue that are near the goal

region even when its ER buffer samples concentrate on the left part on the

square. The agent can still update around the goal region even when it is

physically in the left part of the domain.

GSC queue 

ER buffer

(a) DQN

10

1

(b) Dyna-Value

Figure 6.4: Figure (a)(b) show buffer(red ·)/queue(black +) distribution on
GridWorld (s ∈ [0, 1]2) by uniformly sampling 2k states. (a) is showing ER
buffer when running DQN; hence there is no “+” in it. (b) shows 0.2% of
the ER samples fall in the green shadow (i.e., high-value region), while 27.8%
samples from the SC queue are there.
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6.4 Hill Climbing on Local Frequency

This section introduces another variant of gradient-based search-control strat-

egy: we can get more samples from the regions of state space where the value

function is more difficult to estimate. We firstly review some concepts in signal

processing and conduct experiments in the supervised learning setting to show

that a high frequency function is more difficult to approximate (Section 6.4.1).

In order to quantify the difficulty of estimation, we borrow a crucial idea from

the signal processing literature: a signal with higher frequency terms requires

more samples for accurate reconstruction. We then propose a method to lo-

cally measure the frequency of a point in a function’s domain and provide a

theoretical justification for our method (Theorem 4 in Section 6.4.2). We use

the hill climbing approach as discussed above to adapt our method to design

a search-control mechanism for the Dyna architecture (Section 6.4.3).

6.4.1 Understanding the Difficulty of Function Approx-
imation

In a regular regression setting, we illustrate that high frequency regions of a

function is difficult to approximate. We show that by assigning more training

data to those regions, the learning performance considerably improves. To

make this insight practically useful, we employ the sum of gradient and Hessian

norms of a function as a measure of the local frequency of a function. We

establish a theoretical connection between our proposed criterion and the local

frequency of a function. This would be the foundation of our frequency-based

search-control method in Section 6.4.3.

Consider the standard regression problem with the mean square loss. Given

a training set D = {(xi, yi)}i=1:n, our goal is to learn an unknown target

function f ∗(x) = E[Y |X = x] by empirical risk minimization. Formally, we

aim to solve

f = argmin
f∈H

1

n

n∑
i=1

(f(xi)− yi)2,

where H is some hypothesis space. Suppose that we can choose the distri-

butions of samples {xi}. How should we select them in order to improve the
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quality of the learned function? One intuitive heuristic is that if we know the

regions in the domain of f ∗ that are more difficult to approximate, we can

assign more training data there in order to help the learning process. The im-

portant question is how to quantify the difficulty of approximating a function.

We borrow an idea from the field of signal processing to suggest a method.

The Nyquist-Shannon sampling theorem in signal processing states that

given a band-limited function (or signal) f : R 7→ R with the highest frequency

(in the Fourier domain) of ωbandwidth, we can perfectly reconstruct it based

on regular samples (in the time domain) obtained at the sampling rate of

2ωbandwidth (Zayed, 1993).3 Therefore, if the Fourier transform of a function has

high frequency terms, more samples are required to reconstruct it accurately.

We note that the sampling theory has been applied in the sample complexity

analysis of machine learning algorithms (Smale & Zhou, 2004, 2005; Jiang,

2019). Although the problem setting in machine learning is somewhat different

from this result in signal processing, it still provides a high-level intuition for

us: regions with higher frequency signal require more learning data.

To make this high-level intuition concrete, we consider the following func-

tion:

fsin(x) =

{
sin(8πx) x ∈ [−2, 0),

sin(πx) x ∈ [0, 2].
(6.2)

It is easy to check that the regions [−2, 0) and [0, 2] contain signals with

frequency ratio 8 : 1. Based on the intuition from the sampling theorem, the

[−2, 0) interval requires more training data than the [0, 2] interval. Given the

same amount of training data, and the same learning algorithm, we would

expect that assigning more fraction of the training data on [−2, 0) to perform

better than distributing them uniformly or assigning more samples to the [0, 2]

interval.

An illustrative experiment. To empirically verify the intuition, we con-

duct a simple regression task, with fsin as the target function. The training set

3Sampling rate refers to number of samples per second used to reconstruct continuous
signals.
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T = {(xi, yi)}i=1:n is generated by sampling x ∈ [−2, 2], and adding Gaussian

noise N (0, σ2) on Eq. (6.2), where the standard deviation is set to be σ = 0.1.

We present the `2 regression learning curves of training datasets with different

biased sampling ratios pb ∈ {60%, 70%, 80%}, as shown in Figure 6.5 (a)-(c).

We observe that biased training data sampling ratios towards high frequency

region clearly speeds up learning. This is consistent with the intuitive insight

and suggests that our heuristic to assign more data to high frequency regions

leads to faster learning (Pan et al., 2020a).
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(a) pb = 60%
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(b) pb = 70%
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Figure 6.5: Testing root mean squared error as a function of number of mini-
batch updates. The naming rule of the learning curves is intuitive. For ex-
ample, pb = 60% means 60% of the training data are from the high frequency
region [−2, 0) and is labeled as Biased-high. We include unbiased training
dataset as a reference (Unbiased). The total numbers of training data are
the same across all experiments. The testing set is unbiased and the results
are averaged over 50 random seeds with the shade showing standard error.
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6.4.2 Identifying High Frequency Regions of a Function

Identifying the high-frequency region of fsin in the previous toy problem was

easy, as each region contained a signal with a constant known frequency. In

practice, we face two main difficulties in identifying the high-frequency regions

of a function. The first is that we do not have access to the underlying target

function but only to an approximate function estimated using data, e.g., a

trained neural network. The second is that frequency is a global property

rather than a local one.

To make the high-frequency heuristic practically useful, we need a sim-

ple criterion that (a) uses function approximation, (b) characterizes local fre-

quency information, and (c) can be efficiently calculated. Inspired by the func-

tion fsin in Eq. (6.2), a natural idea is to calculate the first order f ′(x)
def
= df(x)

dx

or second order derivative f ′′(x)
def
= d2f(x)

dx2
because they both satisfy (a) and

(c). To understand property (b), consider the following examples.

Example 1. For fsin defined in Eq. (6.2), calculate the integrals of squared

first order derivative f ′sin on high frequency region [−2, 0) and low frequency

region [0, 2], respectively:∫ 0

−2

|f ′sin(x)|2 dx = 64π2,

∫ 2

0

|f ′sin(x)|2 dx = π2.

Example 2. Let f : [−π, π]→ R be a band-limited real valued function defined

as

f(x) =
a0

2
+

N∑
n=1

an cos (nx) + bn sin (nx),

where a0, an, bn ∈ R, n = 1, 2, . . . , N are Fourier coefficients of frequency n
2π

.

Then,∫ π

−π
|f ′(x)|2 dx = π ·

N∑
n=1

n2
(
a2
n + b2

n

)
,

∫ π

−π
|f ′′(x)|2 dx = π ·

N∑
n=1

n4
(
a2
n + b2

n

)
.

Example 1 shows that the integral of squared first-order derivative ratio is

64 : 1 (the frequency ratio is 8 : 1), and the region with large derivative magni-

tude is indeed the high-frequency region. Moreover, Example 2 indicates that

for one-dimensional real-valued functions over a bounded domain, the integral
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of a derivative magnitude is closely related to the frequency information. For

the squared derivative, the integral is the same as weighting the frequency

terms an and bn proportional to n2. For the squared second-order derivative,

the integral is the same as weighting the frequency terms proportional to n4.

The weighting schemes n2 or n4 emphasize the higher frequency terms.

Given a function f(·) and a point x in its domain, we propose to mea-

sure the frequency of f around a small neighborhood of x (we call this local

frequency) using the following function:

g(x)
def
= ‖∇xf(x)‖2 + ‖Hf (x)‖2

F , (6.3)

where ‖∇xf(x)‖ is the `2-norm of the gradient at x, and Hf (x)F is the Frobe-

nius norm of the Hessian matrix of f at x. We claim that the local frequency

of f around x is proportional to g(x). We theoretically justify this claim.

For real-valued functions in the Euclidean space, our theory connects local

gradient and Hessian norms to local function energy 4, and local frequency

distribution. The proof of our theorem is in Appendix B.2.1.

Theorem 4. Given any function f : Rn → R, for any frequency vector k ∈ Rn,

define its local Fourier transform as

f̂(k)
def
=

∫
y∈B(x,1)

f(y) exp
{
−2πi · y>k

}
dy,

for local function f(y) defined around x, i.e., y ∈ B(x, 1)
def
= {y : ‖y − x‖ < 1}.

Assume the local function “energy” is finite,∫
y∈B(x,1)

[f(y)]2 dy =

∫
Rn
‖f̂(k)‖2dk <∞, ∀x ∈ Rn. (6.4)

Define “local frequency distribution” of f(x) as:

πf̂ (k)
def
=

‖f̂(k)‖2∫
Rn ‖f̂(k̃)‖2dk̃

, ∀k ∈ Rn. (6.5)

4We consider the notion of energy in signal processing terminology: the energy of a
continuous-time signal x(t) is defined as

∫
x(t)2dt. In our theory, the function f is the

signal.
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Then, for any x ∈ Rn, we have:

1) The first order connection:∫
y∈B(x,1)

‖∇f(y)‖2 dy = 4π2 ·
[∫

y∈B(x,1)

[f(y)]2 dy

]
·
[∫

Rn
πf̂ (k) · ‖k‖2 dk

]
,

(6.6)

2) The second order connection:∫
y∈B(x,1)

||Hf (y)||2Fdy = 16π4

[∫
y∈B(x,1)

[f(y)]2 dy

]
·
[∫

Rn
πf̂ (k) · ‖k‖4 dk

]
.

(6.7)

Remark 3. Note that πf̂ defined in Eq. (6.5) is a probability distribution over

Rn as: ∫
k∈Rn

πf̂ (k)dk = 1, and πf̂ (k) ≥ 0, ∀k ∈ Rn.

We use such a distribution to characterize local frequency because it is more

natural to use a distribution to describe the frequency of a function/signal since

a signal usually has a range of frequencies. Introducing a distribution helps to

turn the range of frequencies into an expectation, which is a scalar.

6.4.3 Frequency-based Search-control

In this section, we explain the Dyna architecture with the frequency-based

search-control (Dyna-Frequency), which, again, closely follow the generic Al-

gorithm 7. To find states in high-frequency regions, we combine sampling

from high-frequency regions and high-value regions of the state space. We

refer readers to Algorithm 11 in the appendix for implementation details.

Our goal is to query the model more often from the states in high-frequency

regions of the value function. The intuition behind this search-control mech-

anism is that those regions correspond to where learning the (value) function

is more difficult. Hence more states from the region might be helpful. To

populate the search-control queue with states from those regions, we can do

hill climbing on g(s) = ‖∇sV (s)‖2 + ‖Hv(s)‖2
F . Theorem 4, however, suggests

that states with large gradient norm can either have large absolute value, or

high local frequency, or both. We want to avoid many samples from regions
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with large negative value states, as those states may be rarely visited under the

optimal policy. A sensible strategy to get around this problem is to combine

the proposed hill climbing method with the previous strategy of hill climbing

on the value function, as the latter tends to generate high-value states.

We propose the following method for combining those approaches. At each

environment time step, with a certain probability p, we perform hill climbing

by either

s← s+ α

{
∇sg(s) with probability of p (6.8a)

∇sV (s) with probability of 1− p (6.8b)

and store states along the gradient trajectory in the search-control queue.

Note that in this case, the criterion function h(·) introduced in the generic

framework 7 is stochastically sampled.

When hill climbing on the value function (6.8b), we sample the initial state

from the ER buffer. This populates the search-control queue with states from

the high-value regions of the state space. When hill climbing on g(s) (6.8a),

however, we sample the initial state from the search-control queue itself (in-

stead of the ER buffer). This way ensures that the initial state for searching

high-frequency region has a relatively high value. Hill climbing on g(s) from

an initial state with a high value populates the search-control queue with high-

frequency samples around high-value regions of the state space.

Similar to hill climbing on the value function, we obtain the state-value

function in both (6.8a) and (6.8b) by taking the maximum of the estimated

action-value, i.e. V (s) = maxaQ(s, a) ≈ maxaQθ(s, a) where θ is the param-

eter of the Q-network.

As one can see, there are several limitations of hill climbing on value func-

tion or local frequency. First, they do not provide any theoretical justification

about why using the stochastic gradient ascent trajectories for search-control

can improve sample efficiency. Second, HC on gradient norm and Hessian norm

of the learned value function suffer from significant computation cost and zero

or explosive gradient due to the high order differentiation (i.e., ∇s||∇sv(s)||) as

suggested by the authors. When using ReLu as activation functions, such high

order differentiation almost results in zero gradients. We empirically observed
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this phenomenon. This drawback can also be reasoned by intuition from the

work by Goodfellow et al. (2015), which suggests that ReLU neural networks

are locally almost linear. Then it is not surprising to have zero higher order

derivatives. Third, the two methods are prone to find sub-optimal policies.

Consider that the value function is relatively well-learned and fixed. Then

value/frequency-based search-control would still find those high-value states

even though they might already have low TD error. In the next section, we

propose a method with a solid theoretical intuition and does not have the

limitations of the two previously discussed methods.

6.5 Hill Climbing on TD Error Magnitude

In this section, we propose a new search-control strategy motivated by over-

coming the limitation of prioritized sampling distribution that has been de-

ployed in the prioritized ER method (Schaul et al., 2016). We firstly provide

a theoretical insight into the prioritized ER’s advantage and point out its two

drawbacks: outdated priorities and insufficient sample space coverage, which

may significantly weaken its efficacy. To mitigate the two issues, we apply the

SGLD sampling method to acquire states and leverage an environment model

to acquire imagined experiences by simulating priorities. We demonstrate that

the samples generated by our method are distributed closer to the ideal TD

error-based sampling distribution (i.e., the one does not suffer from the two

drawbacks).

6.5.1 Theoretical Insight into Prioritized Sampling

In the l2 regression, we minimize the mean squared error minθ
1

2n

∑n
i=1(fθ(xi)−

yi)
2, for training set T = {(xi, yi)}ni=1 and function approximator fθ, such as

a neural network. In error-based prioritized sampling, we define the priority

of a sample (x, y) ∈ T as |fθ(x) − y|; the probability of drawing a sample

(x, y) ∈ T is typically q(x, y; θ) ∝ |fθ(x) − y|. For a point (x, y) ∈ T , we

employ the following form to compute the probabilities:

q(x, y; θ)
def
=

|fθ(x)− y|∑n
i=1 |fθ(xi)− yi|

(6.9)
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We can show an equivalence between the gradients of the squared objective

with this prioritization and the cubic power objective 1
3n

∑n
i=1 |fθ(xi)− yi|3 in

the Theorem 5 below. The empirical demonstration of this equivalence is in

Appendix B.3.3.

Theorem 5. For a constant c determined by θ and T , we have

cE(x,y)∼q(x,y;θ)[∇θ
1

2
(fθ(x)− y)2]

= E(x,y)∼uniform(T )[∇θ
1

3
|fθ(x)− y|3].

Proof. The R.H.S. is:

E(x,y)∼uniform(T )[∇θ
1

3
|fθ(x)− y|3] = E(x,y)∼uniform(T )[

1

3
∇θ(|fθ(x)− y|2)

3
2 ]

=
1

3n

n∑
i=1

∇θ(|fθ(xi)− yi|2)
3
2 ]

=
1

2n

n∑
i=1

|fθ(xi)− yi|∇θ(fθ(xi)− yi)2

And the L.H.S. is

E(x,y)∼q(x,y;θ)[∇θ
1

2
(fθ(x)− y)2] =

n∑
i=1

1

2
q(xi, yi; θ)∇θ(fθ(xi)− yi)2

=
1

2
∑n

j=1 |fθ(xj)− yj|

n∑
i=1

|fθ(xi)− yi|∇θ(fθ(xi)− yi)2

=
n∑n

i=1 |fθ(xi)− yi|
E(x,y)∼uniform(T )[∇θ

1

3
|fθ(x)− y|3]

Setting c =
∑n
i=1 |fθ(xi)−yi|

n
completes the proof.

This simple theorem provides an intuitive reason for why prioritized sam-

pling can help improve sample efficiency: the gradient direction of the cubic

function is sharper than that of the square function when the error is relatively

large (Figure B.5). We refer readers to the work by Fujimoto et al. (2020) re-

garding more discussions about the equivalence between prioritized sampling

and uniform sampling.

Below, theorem 6 further characterizes the difference between the conver-

gence rates by using gradient descent to optimize the mean squared error and
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the cubic power objective, providing a solid motivation for using error-based

prioritized sampling. Please see Appendix B.3.1 for the proof and its corre-

sponding hitting time simulations.

Theorem 6 (Fast early learning). Consider the following two objectives:

`2(x, y)
def
=

1

2
(x− y)2 , `3(x, y)

def
=

1

3
|x− y|3 .

Define the functional gradient flow updates on these two objectives:

dxt
dt

= −η
d{1

2
(xt − y)2}
dxt

,
dx̃t
dt

= −η
d{1

3
|x̃t − y|3}
dx̃t

.

Define δt
def
= |xt − y| , δ̃t

def
= |x̃t − y|. Given error threshold ε ≥ 0, define the

hitting time tε
def
= mint{t : δt ≤ ε} and t̃ε

def
= mint{t : δ̃t ≤ ε}. For any initial

function value x0 s.t. δ0 > 1, ∃ε0 ∈ (0, 1) such that ∀ε > ε0, tε ≥ t̃ε.

This theorem says that it is faster to get to a certain low loss point with

the cubic objective when the initial loss is relatively large. Though it is not

our focus here to investigate the practical utility of the high power objectives,

we include some empirical results and discuss the reasons why such objectives

should not be preferred in general problems in Appendix B.3.2.

6.5.2 Limitations of the Prioritized ER

Inspired by the above theorems, we now discuss two drawbacks of prioritized

sampling: outdated priorities and insufficient sample space coverage.

We empirically examine their importance and effects in Appendix B.3.3.

The above two theorems show that prioritized sampling benefits from the

faster convergence rate of the cubic power objective. The equivalence in The-

orem 5 requires to update the priorities of all training samples by using the

updated training parameters θ at each time step. In an online RL setting,

however, at the current time step t, the original prioritized ER method only

updates the priorities of those experiences from the sampled mini-batch, leav-

ing the priorities of the rest of experiences unchanged (Schaul et al., 2016).

We call this limitation of prioritized ER outdated priorities. It is typically

not feasible to update the priorities of all visited experiences at each time step.
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In fact, in an online RL setting, “all training samples” in RL are restricted

to those visited experiences in the ER buffer, which may only contain a small

subset of the whole state space, making the estimate of the prioritized sampling

distribution inaccurate. There can be many reasons for the small coverage:

the exploration is difficult, the state space is too large, or the memory resource

of the buffer is quite limited. We call this issue insufficient sample space

coverage, which is also noted by Fedus et al. (2020).

Note that the issue of insufficient sample space coverage should not be

considered equivalent to the off-policy distribution issue in ER methods. The

latter refers to some old experiences in the ER buffer that may be unlikely to

appear under the current policy (Novati & Koumoutsakos, 2019; Zha et al.,

2019; Sun et al., 2020; Oh et al., 2021). In contrast, the issue of insufficient

sample space coverage can rise naturally. For example, the state space is large,

and an agent can only visit a small subset of the state space during the early

learning stage. Then those states in the buffer have a small coverage of the

state space. We visualize the state space coverage issue on an RL domain in

Section 6.5.3.

6.5.3 TD Error-based Search-control

We now introduce our TD-error-based prioritized sampling for search-control,

which enables us to acquire states 1) whose absolute TD errors are estimated

by using current parameter θt and 2) that are not restricted to those visited

ones. As a result, we overcome the limitations discussed in the above section.

Let vπ(·; θt) : S 7→ R be a differentiable value function under policy π pa-

rameterized by θt. For s ∈ S, define y(s)
def
= Er,s′∼Pπ(s′,r|s)[r + γvπ(s′; θt)], and

denote the TD error as δ(s, y; θt)
def
= y(s)−v(s; θt). Then we simply set the cri-

terion function based on which we do SGLD as h(si)
def
= log |δ(si, y(si); θt)|.

This would give us the state samples whose distribution is approximately

p(s) ∝ |δ(s, y(s), θt)|, according to the SGLD sampling theory reviewed in

Section 6.2. We can simply plug this SGLD updating rule into Algorithm 7

to get states for search-control. We call this algorithm Dyna-TD.
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Implementation. In practice, we can compute the state value estimate by

v(s) = maxaQ(s, a; θt) as suggested before. In the case that a true environ-

ment model is not available, we compute an estimate ŷ(s) of y(s) by a learned

model. Then at each time step t, states approximately following the distribu-

tion p(s) ∝ |δ(s, y(s))| can be generated by

s← s+ αh∇s log |ŷ(s)−max
a
Q(s, a; θt)|+X, (6.10)

where X is a Gaussian random variable with zero-mean and some small vari-

ance. In the implementation, observing that αh is small, we consider ŷ(s) as

a constant given a state s without backpropagating of θ through it.

Empirical verification of the SGLD sampling method. We visualize

the distribution of the sampled states by our sampling method and those from

the buffer of the prioritized ER, verifying that our sampled states have more

extensive coverage of the state space. We then empirically verify that our sam-

pling distribution is closer to a brute-force calculated (as detailed soon) priori-

tized sampling distribution—which does not suffer from the two limitations—

than the prioritized ER method does. Finally, we discuss concerns regarding

computational cost. Please see Appendix B.3.4 for any missing details.

Large sample space coverage. During early learning (at the 16kth en-

vironment time step), we visualize 2k states sampled from 1) DQN’s buffer

trained by prioritized ER and 2) our algorithm Dyna-TD’s Search-Control

(SC) queue on GridWorld (Figure 6.6(a)). Figure 6.6 (b) shows that DQN’s

ER buffer does not cover sufficiently the top-left part and the right half part.

In contrast, Figure 6.6 (c) shows that states from our SC queue are distributed

almost everywhere on the square. These visualizations verify that our sampled

states cover broader sample space than the prioritized ER does.

Sampling distribution is close to the ideal one. We denote our sampling

distribution as p1(·), the one acquired by conventional prioritized ER as p2(·),

and the one computed by thorough priority updating of enumerating all states
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Figure 6.6: (a) shows the GridWorld. The state space is S = [0, 1]2, and
the agent starts from the left bottom and should learn to take action from
A = {up, down, right, left} to reach the right top within as few steps as
possible. (b) shows the states sampled from the ER buffer of prioritized ER.
(c) shows the SC queue state distribution of our Dyna-TD.

in the state space as p∗(·) (this one should be unrealistic in practice and we

call it the ideal distribution as it does not suffer from the two limitations

we discussed). We visualize how well p1(·) and p2(·) can approximate p∗(·)

on the GridWorld domain, where the state distributions can be conveniently

estimated by discretizing the continuous state GridWorld to a 50 × 50 one.

We compute the distances of p1, p2 to p∗ by two sensible weighting schemes:

1) on-policy weighting:
∑2500

j=1 d
π(sj)|pi(sj) − p∗(sj)|, i ∈ {1, 2}, where dπ is

approximated by uniformly sample 3k states from a recency buffer; 2) uniform

weighting: 1
2500

∑2500
j=1 |pi(sj)− p∗(sj)|, i ∈ {1, 2}.

We plot the distances change when we train our algorithm and the priori-

tized ER in Figure 6.7(a)(b). They show that the Hill Climbing (HC) proce-

dure in our algorithm Dyna-TD, either with a true or an online learned model,

produces a state distribution with significantly closer distance to the desired

sampling distribution p∗ than PrioritizedER under both weighting schemes.

In contrast, the state distribution acquired from PrioritizedER, which suffers

from the two limitations, is far away from p∗. It should also be noted that

we include Dyna-TD-Long, which runs a large number of HC steps. Its corre-

sponding sampling distribution should be closer to the stationary distribution.

However, there is only a tiny difference between the regular Dyna-TD and
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Figure 6.7: (a)(b) show the distance change as a function of environment
time steps for Dyna-TD (black), PrioritizedER (forest green), and
Dyna-TD-Long (orange), with different weighting schemes. The dashed
line corresponds to our algorithm with an online learned model. The cor-
responding evaluation learning curve is in the Figure 6.8(c). (d) shows the
policy evaluation performance as a function of running time (in seconds) with
ER(magenta). All results are averaged over 20 random seeds. The shade
indicates standard error.

Dyna-TD-Long, implying that one can save computational cost by running

fewer HC steps.

Computational cost. It is known that the Langevin dynamics sampling

method requires considerable computation power. Note that our HC rule 6.10

is doing gradient w.r.t. a single state, rather than a mini-batch, hence its com-

putational cost is reasonable. Let the mini-batch size be b, and the number

of HC steps be kHC . If we assume one mini-batch update takes O(c), then

the time cost of our sampling is O(ckHC/b). On the GridWorld, Figure 6.7(c)

shows that given the same time budget, our algorithm achieves better perfor-

mance, even though DQN and PrioritizedER can process many more samples

per second. Hence the additional time spent on search-control is worth it.

6.6 Experiments

In this section, we design experiments to answer the following questions. (1)

Can Dyna variants outperform those ER-based model free baselines? (2) By

mitigating the limitations of the conventional prioritized ER method, can

Dyna-TD outperform the prioritized ER under various planning budgets in
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different environments? (3) Can Dyna-TD outperforms the previous Dyna

variants (i.e., Dyna-TD, Dyna-Frequency)? (4) What could be the practical

implications of using Dyna-TD in a real-world application?

Baselines. ER is DQN with a regular ER buffer without prioritized sam-

pling. PrioritizedER is the one by Schaul et al. (2016), which has the draw-

backs as discussed in Section 6.5.2. Dyna-Value is the Dyna variant that

performs HC on the learned value function to acquire states to populate the

SC queue (see Section 6.3). Dyna-Frequency is the Dyna variant that per-

forms HC on the norm of the gradient of the value function to acquire states

to populate the SC queue (see Section 6.4). For a fair comparison, we stochas-

tically sample the same number of mini-batches at each environment time step

to train those model-free baselines as the number of planning updates in Dyna

variants. We are able to fix the same HC hyper-parameter setting across all

environments. Please see Appendix B.3.4 for any missing details.

Since the main focus of this chapter is to study search-control, we isolate

the model error effect by assuming an accurate environment model is available

in our experiments. For curiosity, we test using a learned model for the Dyna-

TD method, which consistently performs the best in our experience. Whenever

using an online learned model, the model is learned by uniformly sampling a

mini-batch of experiences from the ER buffer at each environment time step.

It is reasonable to believe that some special model learning techniques may

benefit a particular search-control strategy. We leave such techniques as a

future direction.

Overall Performance. Figure 6.8 shows the performances of different algo-

rithms on MountainCar, Acrobot, GridWorld (Figure 6.6(a)), and CartPole.

First, our Dyna variants consistently outperform model-free baselines, includ-

ing ER and PrioritizedER across domains and planning update settings. Par-

ticularly, as occurred in the supervised learning experiment, the PrioritizedER

may not even outperform regular ER due to the limitations we discussed.

Second, Dyna-TD’s performance significantly improves and even outper-
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forms other Dyna variants when increasing the planning budget (i.e., planning

updates n) from 10 to 30. This superiority validates the utility of those ad-

ditional imagined experiences acquired by our sampling method. In contrast,

both ER and PrioritizedER show limited gain when increasing the number of

mini-batch updates, implying the drawback of only using those visited expe-

riences.

Third, Dyna-Value/Frequency frequently converges to a sub-optimal pol-

icy when using a large number of planning updates, while Dyna-TD always

finds a better one. It may be that the two Dyna variants frequently gener-

ate high-value/frequency states whose TD errors are low, which wastes sam-

ples. Furthermore, the severe sampling distribution bias can hurt the per-

formance (Schaul et al., 2016). Dyna-Frequency also suffers from explosive

or zero gradients and is sensitive to hyper-parameters, which may explain its

inconsistent performance.
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Figure 6.8: Episodic return v.s. environment time steps. We show evalua-
tion learning curves of Dyna-TD (black), Dyna-Frequency (red), Dyna-
Value (blue), PrioritizedER (forest green), and ER(magenta) with
planning updates n = 10, 30 on Mountain Car (MCar), Acrobot, Grid-
World(GWorld) and CartPole domains. The dashed line denotes Dyna-TD
with an online learned model. All results are averaged over 20 random seeds
after smoothing over a window of size 30. The shade indicates standard error.

109



Autonomous driving application. We study the practical utility of our

method in a relatively large autonomous driving application (Leurent, 2018)

with an online learned model. We use the roundabout-v0 domain (Figure 6.9

(a)) whose state space is S ⊂ R90. The agent should learn to go through

a roundabout by lane change and longitude control. The reward is designed

such that the car should go through the roundabout as fast as possible without

collision.

We observe that all algorithms perform similarly when evaluating algo-

rithms by episodic return (i.e. sum of rewards per episode). However, there

is a significantly lower number of car crashes with the policy learned by our

algorithm, as shown in Figure 6.9(b). Figure 6.9 (c) suggests that ER and

PrioritizedER gain reward mainly due to fast speed, which potentially incurs

many car crashes. Though car crashes incur high TD error, the conventional

prioritized ER method still incurs many crashes, which may indicate its pri-

oritized sampling distribution does not provide enough crash experiences to

learn. By actively searching for such experiences, our agent gets sufficient

training during the planning stage and can reduce crashes.

(a) roundabout
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Figure 6.9: (a) shows the roundabout domain. (b) shows crashes v.s. total
driving time steps during policy evaluation. (c) shows the average speed per
evaluation episode v.s. environment time steps. We show Dyna-TD (black)
with an online learned model, PrioritizedER (forest green), and ER (ma-
genta). Results are averaged over 50 random seeds after smoothing over a
window of size 30. The shade indicates standard error.
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Chapter 7

Discussion

This thesis attempted to answer the question:

how can we improve the sample efficiency of a reinforcement learning al-

gorithm with limited computational and memory resources?

We provided some answers for this question in both prediction and con-

trol settings. In prediction, we propose a new category of gradient temporal

different learning algorithms, called Accelerated Temporal Difference (ATD)

learning. We derive an approximate second-order optimization method by

bringing in efficient, incremental matrix approximation techniques: SVD and

random projection. We prove that the expected update of ATD is convergent

to the unbiased solution under certain assumptions. We empirically demon-

strate its improved sample efficiency and parameter insensitivity, even with

significant approximations in the preconditioning matrix. The family of ATD

algorithms provides a promising avenue for using stochastic gradient descent

results to improve sample complexity with feasible computational complexity.

In the control setting, we investigate designing efficient sampling distribu-

tion by stochastic gradient Langevin dynamics for search-control mechanism

in Dyna architecture. We propose such mechanisms based on ideas originating

from both reinforcement learning and regular supervised learning settings. Our

mechanisms leverage the generalization power of some learned function approx-

imator (e.g., value function) to perform hill-climbing to find states that have

high value, are in the high-frequency region, or have high TD error magnitude.

We present a new Dyna algorithm, called HC-Dyna, which generates states for
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search-control by SGLD methods. We demonstrate that our algorithms can

significantly improve sample efficiency in several benchmark domains.

This discussion chapter is organized as follows. We discuss some limitations

of our approach, which seem not to have an immediate or straightforward

solution. We then conclude this chapter by discussing some potential future

works.

7.1 Limitations

This section discusses limitations of our ATD algorithms and then limitations

of our gradient-based search-control methods.

7.1.1 ATD Algorithms

First, in practice, our ATD algorithms require a decaying learning rate to

show high sample efficiency, which puts an obstacle in a continual learning

setting.1 We illustrate this limitation by empirically comparing ATD with

the full preconditioning matrix and the incrementally approximate one on the

mountain car domain. We set the bootstrap parameter λ = 0. Other settings

are the same as previous experiments whenever applicable.

We conduct two sets of experiments for our ATD with SVD approximation

(labeled as ATD-SVD) and with random projection approximation (labeled

as ATD-L) by using a constant step size. The first set is in Figure 7.1(a).

It shows ATD algorithms with a fixed, very small regularizer η as we did

in the earlier experiments in this thesis. We only sweep over the constant

learning rate in this set of experiments. The purpose is to directly contrast

with our previous results of ATD with decaying learning rate. The second

set of experiments is sweeping over both learning rate and regularizer for ATD

algorithms. The purpose is to verify that even with thorough hyper-parameter

optimization, ATD algorithms with constant learning rates can still not work

well. As we expected, they choose a small learning rate but a relatively large

1Though it is quite common to require a decaying learning rate in theory to guarantee
convergence, linear TD methods are usually able to work reasonably well with a constant
learning rate in implementation.
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regularization parameter, resulting in a similar performance to the linear TD

algorithm.

In summary, Figure 7.1 shows that: 1) with the full A matrix (without the

truncation effect), ATD learns faster with a constant learning rate and can

even find a better solution than LSTD within 5k time steps. 2) in contrast,

ATD-SVD and ATD-L learn much slower with a constant learning rate as

it has to choose a small learning rate to avoid divergence. The two crucial

observations illuminate the negative effect of the matrix approximation when

incrementally maintaining the preconditioning matrix.

It should be noted that the unknown truncation effect of the SVD should

not be the reason for the decaying learning rate, as the random projection

method does not have such an effect, but it still needs a decaying learning

rate. An intuitive explanation is that the incremental approximation of the

preconditioning matrix can augment the error between the actual updating

rule and the expected updating rule. Hence one must reduce the precon-

ditioning part to offset the error. We leave it as future work to rigorously

understand the reason behind the demand of using a decaying learning rate.
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Figure 7.1: Learning curves in terms of Percentage absolute mean error by
using (a) a fixed regularization parameter and (b) an optimized regularization
parameter for ATD variants. The labels are the same in both figures. The
results are averaged over 50 random seeds.

Second, it remains to understand the convergence property of our ATD’s

stochastic updating rule. It should be noted that we only showed the conver-
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gence of the expected updating rule in Section 4.4. One difficulty exists in the

truncation error effect, which is still an open problem. The significance of solv-

ing such a problem may lead to a general theoretical framework to study the

convergence of a broader class of preconditioning temporal difference learning

algorithms.

Third, ATD with matrix sketching via random projection seems to be

sensitive to feature type. One can observe this from the results in Section 5.4.

It is unclear if there is a rule-of-thumb or some theory to help decide if our

matrix sketching technique should be adopted given a particular feature type.

7.1.2 Gradient-based Search-control

First, we do not directly establish a connection between the convergence rate of

RL algorithms and sampling distribution. Our methods currently only borrow

theoretical insights from simplified supervised learning.

Second, we do not rigorously address biased sampling distribution issue;

instead, we only propose a mixed mini-batch technique to mitigate such an

issue. The consequence is that it would lead to a biased solution if we keep

using the imagined experiences.

Third, the gradient-based search-control can provide some unrealistic states,

which possibly negatively affect the performance when most of such states are

unrealistic. Though some projections may be used to project those states back

into the state space, it could be unrealistic to know how this projection should

be implemented.

Last, the stochastic gradient Langevin dynamics method has high compu-

tational complexity as a classic Monte Carlo sampling method. However, this

limitation could be advantageous in the long term as we usually observe that

increasing computational power enables better performance when using such

a sampling method.
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7.2 Future Research Directions

Among the many possible future directions, we prioritize pursuing the follow-

ing directions.

First, it is natural to investigate the utility of ATD in an off-policy pol-

icy evaluation setting. Our empirical study only focuses on on-policy policy

evaluation settings without using the emphatic trace, although we provide a

generic off-policy policy evaluation objective and notations in Section 3.2. One

particular challenge of the off-policy policy evaluation problem is the variance

of the importance ratio (Precup et al., 2000; Liu et al., 2018). Hence, a poten-

tially interesting motivation is to study if ATD with low-rank approximation

can help reduce variance resulting from the importance ratio, which would be

needed to estimate the preconditioning matrix.

Second, applying the ATD algorithm in a deep learning setting may be

of great interest as linear function is unlikely to be sufficiently expressive for

complex problems. A tentative way to do so is to bring in reservoir computing

approaches (Tanaka et al., 2019). We can consider that the feature vector

comes from a computing reservoir (e.g. echo state network), and then the

corresponding state value is linear in this feature. Then the existed empirical

insights and theoretical development naturally apply.

Third, there is significance to bridge the online and offline (i.e., batch mode)

learning algorithms. The latter is one type of the most actively studied and

applied policy evaluation algorithms (Thomas et al., 2015b,a; Jiang & Li, 2016;

Thomas & Brunskill, 2016; Dai et al., 2020). These methods learn from a batch

of data rather than a single data point at each time step. They hence can learn

knowledge from large amounts of data, resulting in more stable performance.

Furthermore, due to the availability of a batch of data, these algorithms may

further benefit from better-designed reweighting schemes (Jiang & Li, 2016;

Thomas & Brunskill, 2016; Zhang et al., 2020; Wen et al., 2020; Hanna et al.,

2019) or even learning objectives (Thomas et al., 2015a; Liu et al., 2018). On

the other hand, fully online algorithms are capable of learning from a data

point immediately whenever it becomes available and then discard it, which
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seems to do things that a really “intelligent” agent can do. However, a bad

single online update may impede the performance. Bridging the two types of

algorithms should aim at 1) stabilizing the learning algorithm’s performance

by reducing estimation variance; 2) reducing the amount of data needed to be

stored; 3) improving performance immediately whenever a data point becomes

available.

Last, it is interesting to develop and test ATD’s control version. It is

intuitive to extend a policy evaluation algorithm to a control one: we can

simply evaluate/learn the action-value instead of the state value and then take

the action greedily w.r.t. to the action values. The challenging part should

exist in the theoretical analysis of the convergence property. A recent work

by (Devraj & Meyn, 2017) may provide nice suggestions regarding theory.

Along the research line of our gradient-based search-control strategy, there

are several promising future directions. First, a natural follow-up question is

how a model should be learned to benefit our sampling method. This work

mostly focuses on sampling imagined experiences rather than model learning

algorithms. Existing results show that learning a model while taking into

account how to use it should make the learning performance robust to model

errors (Farahmand et al., 2017; Farahmand, 2018). Second, one may apply our

approach with a model in some latent space (Hamilton et al., 2014; Wahlström

et al., 2015; Ha, David and Schmidhuber, Jürgen, 2018; Hafner et al., 2019;

Schrittwieser et al., 2020), which enables our method to scale to large domains.

Third, since there are existing works examining how ER is affected by boot-

strap return (Daley & Amato, 2019), by buffer or mini-batch size (Zhang &

Sutton, 2017; Liu & Zou, 2017), and by number of environment steps taken

per gradient step (Fu et al., 2019; van Hasselt et al., 2018; Fedus et al., 2020).

It is worth studying the theoretical implications of those design choices and

their effects on prioritized ER’s efficacy, which may inspire improved sampling

distributions.

Last, future efforts should also be made to theoretically interpret other

sampling distributions induced by prioritizing samples, as our cubic objective

explains only one version of the error-based prioritization. There are other
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prioritization strategies, such as distribution location-based or reward-based

prioritization (Lambert et al., 2020). It is interesting to explore whether these

alternatives can also be formulated as surrogate objectives. Furthermore, the

recent work by Fujimoto et al. (2020) establishes an equivalence between var-

ious prioritized sampling distributions and uniform sampling for different loss

functions, which bears similarities to our Theorem 5. It is interesting to study

if those general loss functions enjoy a similar benefit in terms of convergence

rate as shown in our Theorem 6.

117



Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., and et al. Ten-

sorFlow: Large-scale machine learning on heterogeneous systems. Software

available from tensorflow.org, 2015.

Achlioptas, D. Database-friendly random projections: Johnson-lindenstrauss

with binary coins. Journal of Computer and System Sciences, pp. 671–687,

2003.

Adam, S., Busoniu, L., and Babuska, R. Experience replay for real-time re-

inforcement learning control. IEEE Transactions on Systems, Man, and

Cybernetics, pp. 201–212, 2012.

Ailon, N. and Chazelle, B. Approximate nearest neighbors and the fast

Johnson-Lindenstrauss transform. ACM Symposium on Theory of Com-

puting, 2006.

Alon, N., Matias, Y., and Szegedy, M. The space complexity of approximating

the frequency moments. ACM Symposium on Theory of Computing, 1996.

Amari, S.-I. Natural gradient works efficiently in learning. Neural Computa-

tion, 10(2):251–276, 1998.

Amari, S.-I. and Douglas, S. C. Why natural gradient? IEEE International

Conference on Acoustics, Speech and Signal Processing, pp. 1213–1216, 1998.

Anschel, O., Baram, N., and Shimkin, N. Averaged-dqn: Variance reduction

and stabilization for deep reinforcement learning. International Conference

on Machine Learning, pp. 176–185, 2017.

118



Aubry, J.-M. and Jaffard, S. Random Wavelet Series. Communications in

Mathematical Physics, 2002.

Avila Pires, B. and Szepesvari, C. Statistical linear estimation with penalized

estimators: an application to reinforcement learning. International Confer-

ence on Machine Learning, 2012.

Balcan, M.-F., Blum, A., and Vempala, S. Kernels as features: On kernels,

margins, and low-dimensional mappings. Machine Learning, 2006.

Bellemare, M., Veness, J., and Bowling, M. Sketch-Based Linear Value Func-

tion Approximation. Advances in Neural Information Processing Systems,

2012.

Bellemare, M. G., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D.,

and Munos, R. Unifying count-based exploration and intrinsic motivation.

International Conference on Neural Information Processing Systems, pp.

1479–1487, 2016.

Bengio, Y. Using a financial training criterion rather than a prediction crite-

rion. International Journal of Neural Systems, pp. 433–443, 1997.

Bertsekas, D. Dynamic Programming and Optimal Control. Athena Scientific

Press, 2007.

Bingham, E. and Mannila, H. Random projection in dimensionality reduc-

tion: Applications to image and text data. International Conference on

Knowledge Discovery and Data Mining, pp. 245–250, 2001.

Bordes, A., Bottou, L., and Gallinari, P. SGD-QN: Careful quasi-Newton

stochastic gradient descent. Journal of Machine Learning Research, 2009.

Borkar, V. S. and Mitter, S. K. A strong approximation theorem for stochas-

tic recursive algorithms. Journal of Optimization Theory and Applications,

1999.

119



Boutsidis, C. and Woodruff, D. P. Communication-optimal distributed prin-

cipal component analysis in the column-partition model. arXiv:1504.06729,

2015.

Boyan, J. and Moore, A. W. Generalization in Reinforcement Learning: Safely

Approximating the Value Function. Advances in Neural Information Pro-

cessing Systems, 1995a.

Boyan, J. A. Least-squares temporal difference learning. International Con-

ference on Machine Learning, 1999.

Boyan, J. A. and Moore, A. W. Generalization in reinforcement learning:

Safely approximating the value function. Advances in Neural Information

Processing Systems, 1995b.

Boyd, S. and Vandenberghe, L. Convex Optimization. Cambridge University

Press, 2004.

Bradtke, S. J. and Barto, A. G. Linear least-squares algorithms for temporal

difference learning. Machine Learning, 1996.

Brand, M. Fast low-rank modifications of the thin singular value decomposi-

tion. Linear Algebra and its Applications, 2006.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang,

J., and Zaremba, W. OpenAI Gym. arXiv:1606.01540, 2016.

Broyden, C. G. Quasi-Newton Methods. Numerical Methods for Unconstrained

Optimization. Academic Press, London, 1972.

Chandak, Y., Theocharous, G., Kostas, J., Jordan, S., and Thomas, P. Learn-

ing action representations for reinforcement learning. International Confer-

ence on Machine Learning, pp. 941–950, 2019.

Charikar, M., Chen, K., and Farach-Colton, M. Finding frequent items in data

streams. Theoretical Computer Science, 2002.

120



Chiang, T.-S., Hwang, C.-R., and Sheu, S. J. Diffusion for global optimization

in Rn. SIAM Journal on Control and Optimization, pp. 737–753, 1987.

Corneil, D. S., Gerstner, W., and Brea, J. Efficient model-based deep reinforce-

ment learning with variational state tabulation. International Conference

on Machine Learning, pp. 1049–1058, 2018.

Dabney, W. and Thomas, P. S. Natural Temporal Difference Learning. AAAI

Conference on Artificial Intelligence, 2014.

Dai, B., Shaw, A., Li, L., Xiao, L., He, N., Liu, Z., Chen, J., and Song, L.

SBEED: Convergent reinforcement learning with nonlinear function approx-

imation. International Conference on Machine Learning, pp. 1125–1134,

2018.

Dai, B., Nachum, O., Chow, Y., Li, L., Szepesvari, C., and Schuurmans, D.

Coindice: Off-policy confidence interval estimation. Advances in Neural

Information Processing Systems, pp. 9398–9411, 2020.

Daley, B. and Amato, C. Reconciling lambda-returns with experience replay.

Advances in Neural Information Processing Systems, pp. 1133–1142, 2019.

Dann, C., Neumann, G., and Peters, J. Policy evaluation with temporal dif-

ferences: a survey and comparison. Journal of Machine Learning Research,

2014.

Daw, N. D. Model-based reinforcement learning as cognitive search: Neu-

rocomputational theories. Cognitive search: Evolution, algorithms and the

brain, 2012.

Degris, T., Pilarski, P. M., and Sutton, R. S. Model-free reinforcement learning

with continuous action in practice. American Control Conference, 2012a.

Degris, T., White, M., and Sutton, R. S. Off-policy actor-critic. International

Conference on Machine Learning, pp. 179–186, 2012b.

121



Devraj, A. M. and Meyn, S. Zap q-learning. Advances in Neural Information

Processing Systems, 2017.

Du, Y. and Mordatch, I. Implicit generation and modeling with energy based

models. Advances in Neural Information Processing Systems, 2019.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient methods for on-

line learning and stochastic optimization. Journal of Machine Learning

Research, pp. 2121–2159, 2011.

Durmus, A. and Moulines, E. Nonasymptotic convergence analysis for the

unadjusted Langevin algorithm. The Annals of Applied Probability, pp.

1551–1587, 2017.

Eckart, C. and Young, G. The approximation of one matrix by another of

lower rank. Psychometrika, 1936.

Fan, J., Wang, Z., Xie, Y., and Yang, Z. A theoretical analysis of deep q-

learning. Conference on Learning for Dynamics and Control, pp. 486–489,

2020.

Farahmand, A.-m. Iterative value-aware model learning. Advances in Neural

Information Processing Systems, pp. 9072–9083, 2018.

Farahmand, A.-M., Barreto, A., and Nikovski, D. Value-aware loss function for

model-based reinforcement learning. International Conference on Artificial

Intelligence and Statistics, pp. 1486–1494, 2017.

Fard, M. M., Grinberg, Y., Pineau, J., and Precup, D. Compressed least-

squares regression on sparse spaces. AAAI Conference on Artificial Intelli-

gence, 2012.

Fedus, W., Ramachandran, P., Agarwal, R., Bengio, Y., Larochelle, H., Row-

land, M., and Dabney, W. Revisiting fundamentals of experience replay.

International Conference on Machine Learning, pp. 3061–3071, 2020.

122



French, R. M. Catastrophic forgetting in connectionist networks. Trends in

Cognitive Sciences, pp. 128–135, 1999.

Freund, Y., Dasgupta, S., Kabra, M., and Verma, N. Learning the structure

of manifolds using random projections. Advances in Neural Information

Processing Systems, 2008.

Fu, J., Kumar, A., Soh, M., and Levine, S. Diagnosing bottlenecks in deep

q-learning algorithms. International Conference on Machine Learning, pp.

2021–2030, 2019.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing function approxima-

tion error in actor-critic methods. International Conference on Machine

Learning, 2018.

Fujimoto, S., Meger, D., and Precup, D. An equivalence between loss func-

tions and non-uniform sampling in experience replay. Advances in Neural

Information Processing Systems, 2020.

Gehring, C., Pan, Y., and White, M. Incremental Truncated LSTD. Interna-

tional Joint Conference on Artificial Intelligence, 2016.

Geramifard, A. and Bowling, M. Incremental least-squares temporal difference

learning. AAAI Conference on Artificial Intelligence, 2006.

Geramifard, A., Bowling, M., and Zinkevich, M. iLSTD: Eligibility traces and

convergence analysis. Advances in Neural Information Processing Systems,

2007.

Ghashami, M., Desai, A., and Phillips, J. M. Improved practical matrix sketch-

ing with guarantees. European Symposium on Algorithms, 2014.

Ghavamzadeh, M. and Lazaric, A. Finite-sample analysis of Lasso-TD. Inter-

national Conference on Machine Learning, 2011.

Ghavamzadeh, M., Lazaric, A., Maillard, O. A., and Munos, R. LSTD with

random projections. Advances in Neural Information Processing Systems,

2010.

123



Gilbert, A. and Indyk, P. Sparse recovery using sparse matrices. Proceedings

of the IEEE, 2010.

Givchi, A. and Palhang, M. Quasi newton temporal difference learning. Asian

Conference on Machine Learning, 2014.

Glorot, X. and Bengio, Y. Understanding the difficulty of training deep feed-

forward neural networks. International Conference on Artificial Intelligence

and Statistics, 2010.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harnessing ad-

versarial examples. International Conference on Learning Representations,

2015.
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Appendix A

ATD Algorithms

A.1 ATD with SVD

This section includes relevant content for the ATD algorithm with incremen-

tal truncated singular value decomposition. First, we include a general con-

vergence proof in Section A.1.1. Second, we present algorithmic details for

implementing our algorithm in Section A.1.2. Third, in Section A.1.3, we dis-

cuss additional ways to interpolate between the linear TD updating rule and

quadratic LSTD updating rule. Finally, we summarize all implementation

details, including testing domains, parameter sweeps, algorithm evaluation

methods, and present additional experimental results in Section A.1.4.

A.1.1 Convergence Proof

For the more general setting, where m can also equal Dµ, we redefine the

rank-k approximation. We say the rank-k approximation Â to A is composed

of eigenvalues {λi1 , . . . , λik} ⊆ {λ1, . . . , λd} if Â = QΛkQ
−1 for diagonal Λk ∈

Rd×d, Λ(ij, ij) = λij for j = 1, . . . , k, and zero otherwise.

Theorem 7. Under Assumptions 1 and 2, let Â be the rank-k approxima-

tion composed of eigenvalues {λi1 , . . . , λik} ⊆ {λ1, . . . , λd}. If λd ≥ 0 or

{λi1 , . . . , λik} contains all the negative eigenvalues in {λ1, . . . , λd}, then the

expected updating rule in (3.11) converges to the fixed-point w? = A†b.

Proof. We use a general result about stationary iterative methods (Shi et al.,

2011), which applies to the case where A is not full rank. Shi et al. (2011,
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Theorem 1.1) states that given a singular and consistent linear system Aw = b

where b is in the range of A, the stationary iteration with w0 ∈ Rd for

t = 1, 2, . . .

wi = (I−BA)wt−1 + Bb (4.2)

converges to the solution w = A†b if and only if the following three conditions

are satisfied.

Condition I: the eigenvalues of I−BA are equal to 1 or have absolute value

strictly less than 1.

Condition II: rank(BA) = rank[(BA)2].

Condition III: the null space N (BA) = N (A).

We verify these conditions to prove the result. First, because we are using the

projected Bellman error, we know that b is in the range of A and the system

is consistent: there exists w s.t. Aw = b.

To rewrite our updating rule (3.11) to be expressible in terms of (4.2), let

B = αÂ† + ηI, giving

BA = αÂ†A + ηA

= αQΛ†kQ
−1QΛQ−1 + ηQΛQ−1

= αQIkQ
−1 + ηQΛQ−1

= Q(αIk + ηΛ)Q−1 (4.3)

where Ik is a diagonal matrix with the indices i1, . . . , ik set to 1, and the rest

zero.

Proof for condition I. Using (4.3), I − BA = Q(I − αIk − ηΛ)Q−1. To

bound the maximum absolute value in the diagonal matrix I− αIk − ηΛ, we

consider eigenvalue λj in Λ, and address three cases.
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Case 1: j ∈ {i1, . . . , ik}, λj ≥ 0:

|1− α− ηλj| . for 0 < η < max

(
2− α
λ1

,
α

λ1

)
< max(|1− α|, |1− α− (2− α)|, |1− α− α|)

= max(|1− α|, 1, 1) < 1 . because α ∈ (0, 2).

Case 2: j ∈ {i1, . . . , ik}, λj < 0: |1 − α − ηλi| = |1 − α + η|λi|| < 1 if

0 ≤ 1− α + η|λi| < 1 =⇒ η < α/|λi|.

Case 3: j /∈ {i1, . . . , ik}. For this case, λj ≥ 0, by assumption, as

{i1, . . . , ik} contains the indices for all negative eigenvalues of A. So |1−ηλi| <

1 if 0 < η < 2/λi.

All three cases are satisfied by the assumed α ∈ (0, 2) and η ≤ λ−1

max max(2−

α, α). Therefore, the absolute value of the eigenvalues of I − BA are all less

than 1, so the first condition holds.

Proof for condition II. (BA)2 does not change the number of positive

eigenvalues, so the rank is unchanged.

BA = Q(αIk + ηΛ)Q−1,

(BA)2 = Q(αIk + ηΛ)Q−1Q(αIk + ηΛ)Q−1,

= Q(αIk + ηΛ)2Q−1.

Proof for condition III. To show that the nullspaces of BA and A are

equal, it is sufficient to prove BAw = 0 if and only if Aw = 0. Because

B = Q(αΛk + ηI)Q−1, we know that B is invertible as long as α 6= −ηλj.

Because η > 0, this is clearly true for λj ≥ 0 and also true for λj < 0

because η is strictly less than α/|λj|. For any w ∈ nullspace(A), we get

BAw = B0 = 0, and so w ∈ nullspace(BA). For any w ∈ nullspace(BA), we

get BAw = 0 =⇒ Aw = B−10 = 0, and so w ∈ nullspace(A), completing

the proof.

With k = d, the update is a gradient descent update on the MSPBE, and

so will converge even under off-policy sampling. As k � d, the gradient is
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only approximate, and theoretical results about (stochastic) gradient descent

no longer apply. For this reason, we use the iterative update analysis above to

understand convergence properties. Iterative updates for the full expected up-

date, with preconditioners, have been studied in reinforcement learning (c.f.

(Wang & Bertsekas, 2013)); however, they typically analyzed different pre-

conditioners, as they had no requirements for reducing computation below

quadratic computation. For example, they consider a regularized precondi-

tioner B = (A + ηI)−1, which is not compatible with an incremental singular

value decomposition and to the best of our knowledge, current iterative eigen-

value decompositions require symmetric matrices.

The theorem is agnostic to what components of A are approximated by

the rank-k matrix Â. In general, a natural choice, particularly in on-policy

learning or more generally with a positive definite A, is to select the largest

magnitude eigenvalues of A, which contain the most significant information

about the system and so are likely to give the most useful curvature infor-

mation. However, Â could also potentially be chosen to obtain convergence

for off-policy learning with m = dµ, where A is not necessarily positive semi-

definite. This theorem indicates that if the rank k approximation Â contains

the negative eigenvalues of A, even if it does not contain the remaining infor-

mation in A. Then we obtain convergence under off-policy sampling. We can,

of course, use the emphatic weighting more easily for off-policy learning, but

if the weighting m = dµ is desired rather than mETD, then carefully selecting

Â for ATD enables that choice.

A.1.2 Algorithmic Details

In this section, we outline the full ATD(λ) algorithm. The algorithm here

contains a slight generalization, with a specified ε. Using ε provides further

improvement in sample complexity, without incurring any significant com-

putational overhead. Instead of fulling stochastically sampling δt(wt)et =

rt+1et+(γt+1x
>
t+1wt−x>t wt)et, we could maintain an estimate of the expected

value bt = E[rt+1et] and stochastically sample (γt+1x
>
t+1wt−x>t wt)et. We can-

not maintain a sample average of the second component efficiently (because
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then we would have to store At), but we can maintain the sample average bt

efficiently. In an effort to focus exploration on the basic ATD approach, we

tested ε = 0 in this work. Nevertheless, we include the more general algorithm

to give more insight into the interpolation between TD and LSTD, discussed

in the next section.

Putting it all together, we arrive at our proposed update scheme. Let Â

be a rank k approximation to the true A, with Â† the Moore-Penrose pseudo-

inverse of Â. Let η > 0 be a regularization parameter and ε > 0 be an

averaging parameter. Then the update is

wt+1 = wt+

(αtÂ
† + ηI)(εbt + ((1− ε)rt+1 + w>xt+1 −w>xt)et)

with expected update

wt+1 = wt + (αtÂ
† + ηI)(b−Awt) (3.11)

for all 0 ≤ ε ≤ 1.

Algorithm 8 Conventional trace update for ATD

function trace update(et−1,xt, γt, λt)
return γtλtet−1 + xt

Algorithm 9 Emphatic trace update for ATD

. where F0 ← 0, M0 ← 0 is initialized globally, before executing the for
loop in ATD(λ)

function Emphatic trace update(et−1,xt, γt, λt)

ρt ← π(st,at)
µ(st,at)

. Where ρt = 1 in the on-policy case
Ft ← ρt−1γtFt−1 + it . For uniform interest, it = 1
Mt ← λtit + (1− λt)Ft

return ρt(γtλtet−1 +Mtxt)

A.1.3 Smoothly Interpolating between TD and LSTD

The choice of k allows ATD(λ) to smoothly vary between TD(λ) and an iter-

ative form of LSTD(λ). One side of this equivalence is straightforward. When
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k = 0, and ε = 0, ATD(λ) reduces to the conventional TD(λ) algorithm be-

cause Â† = 0 and so w ← w + ηδe, where η = α because λ1 = 0. On the

other end of the spectrum, the equivalence of ATD(λ) and LSTD(λ) is more in-

volved. Consider an iterative version of the LSTD(λ) that uses a exponentially

weighted moving average to update w towards A†tb on each step:

wt+1 = (1− αt)wt + αtA
†
tb. (A.1)

Now, when k = d, ε = 1, and η = 0, ATD(λ) can be shown to perform

approximately the same updates as exponentially-weighted LSTD(λ). For k <

d, however, this averaging would introduce bias because Â 6= At. For αt = 1.0,

this results in the standard LSTD(λ) update, where selecting αt < 1.0 results

in wt changing more smoothly. For k = d, ε = 1, η = 0, the ATD(λ) update

becomes

wt+1 = wt + (αtÂ
†
t + ηI)(εbt + δεet)

= wt + αtA
†
tbt − αtA

†
tet(xt − γt+1xt+1)>w

= (I− α̃t)wt + αtA
†
tbt,

where α̃t = αtA
†
tet(xt − γt+1xt+1)>. For t = 1,

α̃1 = α1A
†
1e1(x1 − γ2x2)> = α1I

and so (I − α̃1)w1 = (1 − α1)w1, giving the same update as exponentially-

weighted LSTD(λ). The next step introduces some approximation, because

α̃2 = α2A
†
2e2(x2 − γ3x3)> is close to α2, but no longer exact. Despite the

modification in the exponential averaging from the stochastic sampling, the

same information is available in Ât and bt and ATD(λ) with these parameter

settings is likely to behave similarly to exponentially-weighted LSTD(λ).

A.1.4 Detailed Experimental Specification

In both mountain car and energy storage domains, we do not have access

to the parameters of the underlying MDPs (as we do in Boyan’s chain) and

thus must turn to Monte Carlo rollouts to estimate vπ in order to evaluate
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our value function approximation methods. In both domains, we followed the

same strategy. Our two ATD instances and all compared baselines can be

found at https://github.com/yannickycpan/atd_tlstd.

To generate training data, we generated 100 trajectories of rewards and

observations under the target policy, starting randomly from a small area near

a start state. Each trajectory is composed of a fixed number of steps, either

5000 or 10000, and may contain many episodes in the case of episodic tasks

like mountain car. The start states for each trajectory were sampled uniformly

from (1) near the bottom of the hill with zero velocity for mountain car, (2) a

small set of valid start states specified by the energy storage domains (Salas &

Powell, 2013). Each trajectory represents one independent run of the domain.

The testing data was sampled according to the on-policy distribution in-

duced by the target policy. For both domains we generated a single long

trajectory selecting actions according to π. Then we randomly sampled 2000

states from this one trajectory. In mountain car domain, we ran 500 Monte

Carlo rollouts to compute undiscounted sum of future rewards until termina-

tion, and take the average as an estimate true value. In the energy allocation

domain, we ran 300 Monte Carlo rollouts for each evaluation state, each with

length 1000 steps1, averaging over 300 trajectories from each of the evaluation

states. We evaluated the algorithms’ performances by comparing the agent’s

prediction value with the estimated value of the 2000 evaluation states, at

every 50 steps during training. We measured the percentage absolution mean

error:

error(w) =
1

2000

2000∑
i=1

|wTx(si)− v̂π(si)|
|v̂π(si)|

,

where v̂π(si) ∈ R denotes the Monte Carlo estimate of the value of evaluation

state si.

Algorithms. The algorithms included in the experiments constitute a wide

range of stochastic approximation algorithms and matrix-based (subquadratic)

1After 1000 steps the reward (sup reward = 1850) can be scaled by γ1000, which is smaller
than 10−5 given our γ = 0.99.
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algorithms. However, there are a few related algorithms that we chose not to

include; for completeness, we explain our decision-making here.

There have been some accelerations proposed to gradient TD algorithms

(Mahadevan et al., 2014; Meyer et al., 2014; Dabney & Thomas, 2014). How-

ever, they have either been shown to perform poorly in practice (White &

White, 2016), or were based on applying accelerations outside their intended

use (Meyer et al., 2014; Dabney & Thomas, 2014). Dabney & Thomas (2014)

explored a similar update to ATD, but for the control setting and with an

incremental update to the Fisher information matrix rather than A used here.

As they acknowledge, this approach for TD methods is somewhat ad-hoc, as

the typical update is not a gradient. Rather, their method is better suited

for the policy gradient algorithms explored in that paper. Meyer et al. (2014)

applied an accelerated Nesterov technique, called SAGE, to the two timescale

gradient algorithms. Their approach does not take advantage of the simpler

quadratic form of the MSPBE and only uses an approximate Lipschitz constant

to improve the stepsize selection. Diagonal approximations to A constitute a

strictly more informative stepsize approach, and we found these to be inferior

to our low-rank strategy. The results by Meyer et al. (2014) using SAGE for

GTD similarly indicated little to no gain. Finally, Givchi & Palhang (2014)

investigated using diagonal approximations to A for TD, using ideas from the

stochastic gradient descent literature. However, that paper does not justify

their strategy. Throughout, the TD update is called the gradient and A the

Hessian, the secant update for the diagonal of A−1 does not guarantee positive

stepsizes, and so an ad-hoc rule is introduced, and the convergence result is

incomplete in that the cited theorem does not permit a vector of stepsizes.

On the other hand, the true-online methods have consistently been demon-

strated to have surprisingly strong performance (White & White, 2016), and

so we opt instead for these practical competitors. Iterate or Polyak averaging

can be applied to all the methods tested in our experiments. We achieve sim-

ilar variance reduction benefits via averaging over many independent runs of

all algorithms; we excluded this enhancement from our comparisons.
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Boyan’s Chain. This domain was implemented exactly as describe in Boyan’s

paper (Boyan, 1999). The task is episodic and the true value function is known,

and thus we did not need to compute rollouts. Otherwise evaluation was per-

formed exactly as described above. We tested the following parameter settings:

• α0 ∈ {0.1× 2.0j|j = −12,−11,−10, ..., 4, 5}, 18 values in total

• n0 ∈ {102, 106}

• λ ∈ {0.0, 0.1, ..., 0.9, 0.91, 0.93, 0.95, 0.97, 0.99, 1.0}, 16 values in total

• η ∈ {10j|j = −4,−3.5,−3, ..., 3.5, 4, 4.5}, 18 values in total

The linear methods, (e.g., TD(0) true online ETD(λ)), made use of α0, n0, and

λ, whereas the LSTD made use of η to initialize the incremental approximation

of A inverse and λ. For the linear methods we also tested decaying step size

schedule as originally investigated by Boyan

αt = α0
n0 + 1

n0 + #terminations
.

We also tested constant step-sizes where αt = α0. The ATD algorithm, as

proposed, was tested with one fixed parameter setting.

Mountain Car. Our second batch of experiments was conducted on the

classic RL benchmark domain Mountain Car. We used the specification from

Sutton & Barto (2018) of the domain, where the agent’s objective is to select

one of three discrete actions (reverse, coast, forward), based on the continuous

position and velocity of an underpowered car to drive it out of a valley, at

which time the episode terminates. This is an undiscounted task. Each episode

begins at the standard initial location–randomly near the hill’s bottom– with

zero velocity. Actions were selected according to a stochastic Bang-bang policy,

where the reverse is selected if the velocity is negative and forward is selected

if the velocity is positive and occasionally a random action is selected—we

tested randomness in action selection of 0%, 10%, and 20%.

We used tile coding to convert the continuous state variable into high-

dimensional binary feature vectors. The position and velocity we tile coded
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jointly with ten tilings, each forming a two-dimensional uniform grid parti-

tioned by 10 tiles in each dimension. This resulted in a binary feature vector

of length 1000, with exactly ten components equal to one and the remaining

equal to zero. We requested a 1024 memory size to guarantee the performance

of the tile coder, which finally resulted in 1024 features. We used a standard

freely available implementation of tile coding 2, which is described in detail in

Sutton & Barto (2018).

We tested the following parameter settings for Mountain Car:

• α0 ∈ {0.1 × 2.0j|j = −7,−6, ..., 4, 5} divided by number of tilings, 13

values in total

• λ ∈ {0.0, 0.1, ..., 0.9, 0.93, 0.95, 0.97, 0.99, 1.0}, 15 values in total

• η ∈ {10j|j = −4,−3.25,−2.5, ..., 3.5, 4.25, 5.0}, 13 values in total

The linear methods (e.g., TD(0)), iLSTD, and fast LSTD made use of α0 as

stepsize, ATD uses α0/100 as a regularizer, whereas the LSTD and random

projection LSTD made use of the η as regularization for Sherman-Morrison

matrix initialization. All methods except fast LSTD and TD(0) made use of

the λ parameter. iLSTD used decaying step-sizes with n0 = 102. In addition

we fixed the number of descent dimensions for iLSTD to one (recommended

by previous studies (Geramifard & Bowling, 2006; Geramifard et al., 2007)).

We found that the linear methods, on the other hand, performed worse in this

domain with decayed stepsizes, so we only reported the performance for the

constant step size setting. In this domain, we tested several settings for the

regularization parameter for ATD. However, as the results demonstrate, ATD

is insensitive to this parameter. Therefore we present results with the same

fixed parameter setting for ATD as used in Boyan’s chain. The low-rank matrix

methods—including ATD—were tested with rank equal to 20, 30, 40, 50, and

100. With rank 20, 30, 40, we observed that ATD can still do reasonably well

but converges slower. However, the rank = 100 setting does not show obvious

2https://webdocs.cs.ualberta.ca/ sutton/tiles2.html
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strength, likely due to the fact that the threshold for inverting A remains

unchanged.

Energy Allocation. The general description is in Section 4.2.1. There are

originally four state variables on this domain: the amount of energy in the

storage device Rt, the net amount of wind energy Et, time aggregate demand

Dt, and price of electricity Pt in the spot market. We made several minor

modifications to the simulator to allow generating training or testing data for

policy evaluation. First, we modified the original policy by setting the input

time index as (#timeindex mod 24) so that we can remove the restriction that

the time index must be no greater than 24, though the policy should be no

longer optimal. Second, the original demand variable Dt is a function of time.

We were able to remove this dependency by setting one more variable Dt−1

at time step t. As a result, the state is encoded as five variables. Third, we

considered the problem a continuous task by setting a discount rate (γ = 0.99)

when estimating the values of states.

Here we describe the environment dynamics by showing how the state

variables change at each time step. We first introduce a few notations. The

stochastic processes associated with Pt, Et are the jump process and uniform

process, respectively. The demand process is deterministic. The ranges of

Rt, Et, Pt, Dt are: [0, 30], [1, 7], [30, 70], [0, 7]. When generating the training tra-

jectories, we randomly choose the initial values of state variables Rt, Et, Pt, Dt

from the ranges: [0, 10], [1, 5], [30, 50], [0, 7], respectively.

Define the vector φ
def
= [0, 0,−1, 1, 1,−1], T = 25, and let a be an in-

put action (i.e., a 6 dimensional vector). Let PN (µ, σ, a, b,∆) be a discrete

pseudonormal distribution with five parameters µ, σ, a, b,∆. The distribution

can be used to sample discrete values range from a to b with discretization

level ∆. We refer to Salas & Powell (2013, Page 16) for concrete description

of such a distribution. Let

εPt ∼ PN (0, 2.5, 30, 70, 1),
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and

εJt ∼ PN (0, 50, 30, 70, 1).

Let ut ∼Uniform(0, 1), εEt ∼Uniform(−1, 1). Then the above variables evolve

according to:

Rt = Rt−1 + a>φ,

Dt =

⌊
max{0, 3− 4sin(

2πt

T
)}
⌋
,

Pt = min{max{Pt−1 + εPt + I(ut ≤ p)εJt , Pmin}, Pmax}, p = 0.031,

Et = min{max{Et−1 + εEt , Emin}, Emax},

where Pmin = 30, Pmax = 70, Emin = 1, Emax = 7 correspond to the ranges for

the two variables Pt, Et we described above. I(·) is an indicator function. It

outputs 1 if the input is true; otherwise, 0.

To optimize the algorithms, we tested a similar set of parameters as before:

• α0 ∈ {0.1 × 2.0j|j = −7,−6, ..., 4, 5} divided by number of tilings, 13

values in total

• λ ∈ {0.0, 0.1, ..., 0.9, 1.0}, 10 values in total

• η ∈ {10j|j = −4,−3.25,−2.5, ..., 3.5, 4.25, 5.0}, 13 values in total.
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Figure A.1: Learning curves on energy allocation domain with rank equal to
10. Here we see the clear difference in the effect of rank on these two methods.
ATD is only using the curvature information in Â to speed learning, whereas
tLSTD uses Â in a closed-form solution.

151



Due to the size of the feature vector, we excluded LSTD from the results.

The iLSTD was also excluded due to its slow runtime and poor performance

in Mountain Car. Note that though the iLSTD avoids O(d2) computation per

step for sparse features, it still needs to store and update an O(d2) matrix,

and so does not scale as well as the other sub-quadratic methods.

A.2 ATD with Random Projection

This section includes relevant content for the ATD algorithm with random

projection. First, we discuss low-rank properties of left-side sketching in Sec-

tion A.2.1. Second, we introduce several other intuitive sketch-based iterative

ATD updating rules in Section A.2.2. Last, in Section A.2.3, we include all ex-

perimental details and additional empirical results related to our ATD-sketch

algorithm.

A.2.1 Row-rank Properties of SA

To ensure the right pseudo-inverse is well-defined, we show that the projected

matrix SA is full row-rank with high probability, if A has a sufficiently high

rank. We know that the probability measure of row-rank deficient matrices for

S has zero mass. However, in the following, we prove a stronger and practically

more useful claim that SA is far from being row-rank deficient. Formally, we

define a matrix to be δ-full row-rank if there is no row that can be replaced by

another row with distance at most δ to make that matrix row-rank deficient.

Proposition 2. Let S ∈ Rk×d be any Gaussian matrix with 0 mean and unit

variance. For rA = rank(A) and for any δ > 0, SA is δ-full row-rank with

probability at least 1− exp(−2 (rA(1−0.8δ)−k)2

rA
).

Proof. Let A = UΣV> be the SVD for A. Since U is an orthonormal matrix,

S′ = SU has the same distribution as S and the rank of SA is the same as

S′Σ. Moreover notice that the last d − rA columns of S′ get multiplied by

all-zero rows of Σ. Therefore, in what follows, we assume we draw a random

matrix S′ ∈ Rk×rA(similar to how S is drawn), and that Σ ∈ RrA×rA is a full

rank diagonal matrix. We study the rank of S′Σ.
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Consider iterating over the rows of S′, the probability that any new row is

δ-far from being a linear combination of the previous ones is at least 1− 0.8δ.

To see why, assume that you currently have i rows and sample another vector

v with entries sampled i.i.d. from a standard Gaussian as the candidate for

the next row in S′. The length corresponding to the projection of any row S′j:

onto v, i.e., S′j:v ∈ R, is a Gaussian random variable. Thus, the probability

of the S′j:v being within δ is at most 0.8δ. This follows from the fact that

the area under probability density function of a standard Gaussian random

variable over [0, x] is at most 0.4x, for any x > 0.

This stochastic process is a Bernoulli trial with a success probability of at

least 1− 0.8δ. The trial stops when there are k successes or when the number

of iterations reaches rA. The Hoeffding inequality bounds the probability of

failure by exp(−2 (rA(1−0.8δ)−k)2

rA
).

A.2.2 Alternative Iterative Updates

In addition to the proposed iterative algorithm using a left-sided sketch of A,

we experimented with a variety of alternative updates that proved ineffective.

We list them here for completeness.

We experimented with a variety of iterative updates. For a linear system,

Aw = b, one can iteratively update using wt+1 = wt + α(b −Awt) and wt

will converge to a solution of the system (under some conditions). We tested

the following ways to use sketched linear systems.

First, for the two-sided sketched A, we want to solve for SLAS>Rw = SLb.

If Ãt = SLAtS
>
R is square, we can use the iterative update

Ãt+1 = Ãt +
1

t+ 1

(
SLet(SRdt)

> − Ãt

)
,

b̃t+1 = b̃t +
1

t+ 1

(
rt+1SLet − b̃t

)
,

wt+1 = wt + αt(b̃t+1 − Ãt+1wt),

= wt + αt(SLbt+1 − SLAt+1S
>
Rwt)

and use w for prediction on the sketched features. Another option is to main-
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tain the inverse incrementally, using Sherman-Morrison

ad = d>t S>RÃ−1

t ,

au = Ã−1

t SLet,

Ã−1

t = Ã−1

t −
auad

1 + d>t au
,

b̃t = b̃t +
rt+1SLet − b̃t

t
,

w = Ã−1

t b̃t.

If SLAS>R is not square (e.g., SR = I), we instead solve for

S>LSLAS>RSRw = S>LSLb,

where applying S>L provides the recovery from the left and SR the recovery

from the right.

Second, with the same sketching, we also experimented with S†L, instead

of S>L for the recovery, and similarly for SR, but this provided no improvement.

For this square system, the iterative update is

wt+1 = wt + αtS
†
L(b̃t+1 − Ãt+1SRwt)

= wt+1 + αtS
†
L(SLbt+1 − SLAt+1S

>
RSRwt)

for the same b̃t and Ãt which can be efficiently kept incrementally, while the

pseudoinverse of SL only needs to be computed once at the beginning.

Third, we tried to solve the system S>LSLAw = b, using the updating

rule wt+1 = wt + αt(bt+1 − S>LSLAt+1wt), where the matrix SLAt+1 can be

incrementally maintained at each step by using a simple rank-one update.

Fourth, we tried to explicitly regularize these iterative updates by adding

a small step in the direction of δtet.

In general, none of these iterative methods performed well. We hypothesize

this may be due to difficulties in choosing stepsize parameters. Ultimately, we

found the sketched updated within ATD to be the most effective.

A.2.3 Experimental Details

Mountain Car. The setting is the same as introduced in Section A.1.4.

We estimate the true value—the expected return—by computing the average
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over 1000 returns, generated by rollouts. The policy for Mountain Car is the

energy pumping policy with 20% randomness starting from slightly random

initial states. The discount rate is 1.0, and is 0 at the end of the episode, and

the reward is always −1.

Puddle world. Puddle World (Boyan & Moore, 1995a) is an episodic task,

where the goal is for a robot in a continuous gridworld to reach a goal state

within as fewest steps as possible. The state is 2-dimensional, consisting of

(x, y) positions. We use the same setting as described in Sutton & Barto

(2018), with a discount of 1.0 and -1 per step, except when going through a

puddle that gives a higher magnitude negative reward. We compute the true

values from 2000 states in the same way as Mountain Car. A simple heuristic

policy choosing the action leading to the shortest Euclidean distance with 10%

randomness is used.

Acrobot. Acrobot is a four-dimensional episodic task, where the goal is to

raise an arm to a certain level. The reward is −1 for non-terminal states and

0 for goal state, again with the discount rate set to 1.0. We use the same tile

coding as described in (Sutton & Barto, 2018), except that we use memory

size 215 = 32, 768. To get a reasonable policy, we used true-online Sarsa(λ) to

go through 15000 episodes with stepsize α = 0.1/48 and bootstrap parameter

λ = 0.9. Each episode starts with slight randomness. The policy is ε−greedy

with respect to state value and ε = 0.05. The way we compute true values

and generate training trajectories are the same as we described for the above

two domains.

Energy allocation. Energy allocation (Salas & Powell, 2013) is a continuing

task with a five-dimensional state, where we use the same settings as detailed

before. The matrix A was shown to have a low-rank structure and hence

matrix approximation methods are expected to perform well.
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RBF features. For radial basis functions, we used format

k(x, c) = exp(−||x− c||22
2σ2

),

where σ is called RBF width and c is a feature. On Mountain Car, because the

position and velocity have different ranges, we set the bandwidth separately

for each feature using

k(x, c) = exp(−((
x1 − c1

0.12r1

)2 + (
x2 − c2

0.12r2

)2)),

where r1 is the range of the first state variable and r2 is the range of second

state variable.

In Figure 5.5, we used a relatively rarely used representation which we call

spline feature. For sample x, the ith spline feature is set to 1 if ||x− ci|| < δ

and otherwise set as 0. The centers are selected in exactly the same way as

for the RBFs.

Parameter optimization. We swept the following ranges for stepsize (α),

bootstrap parameter (λ), regularization parameter (η), and initialization pa-

rameter ξ for all domains:

1. α ∈ {0.1× 2.0j|j = −7,−6, ..., 4, 5} divided by l1 norm of feature repre-

sentation, 13 values in total.

2. λ ∈ {0.0, 0.1, ..., 0.9, 0.93, 0.95, 0.97, 0.99, 1.0}, 15 values in total.

3. η ∈ {0.01 × 2.0j|j = −7,−6, ..., 4, 5} divided by l1 norm of feature rep-

resentation, 13 values in total.

4. ξ ∈ {10j|j = −5,−4.25,−3.5, ..., 2.5, 3.25, 4.0}, 13 values in total.

To choose the best parameter setting for each algorithm, we used the sum of

RMSE across all steps for all the domains Energy allocation. For this domain,

optimizing based on the whole range causes TD to pick an aggressive stepsize

to improve early learning at the expense of later learning. Therefore, for

Energy allocation, we instead select the best parameters based on the sum of

the RMSE for the second half of the steps.

For the ATD algorithms, as described previously, we set αt = 1
t

and only

swept the regularization parameter η, which is set to 0.1 times the range of α

for other TD baselines.
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A.2.4 Additional Experimental Results

We include additional results to validate the utility of our algorithm further.

First, we show the learning curves and parameter sensitivity in Mountain Car

in Figure A.4, for RBFs and tile coding. Similarly, we only showed Acrobot

with RBFs in the main text and have results with tile coding here.
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(a) Tile coding, k = 25
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Figure A.2: Change in performance when increasing k, from 25 to 75 on Moun-
tain Car domain. We can draw similar conclusions to the same experiments
in Puddle World in the main text. Here, the unbiased of ATD-L is even more
evident; even with as low a dimension as 25, it performs similarly to LSTD.
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Figure A.3: Additional experiments in Acrobot, for tile coding with k = 50
and for RBFs with k = 75.
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Figure A.4: (a) and (b) are learning curves on Mountain Car with k = 50,
and (c) and (d) are their corresponding parameter-sensitivity plots. The
sensitivity plots report average RMSE over the entire learning curve for the
best λ for each parameter. The stepsize α is reported for TD, the initialization
parameter ξ for the LSTD methods and the regularization parameter η for the
ATD methods. The initialization for the matrices in the ATD methods is
fixed to the identity. The range for the regularization term η is 0.1 times the
range for α. As before, the sketching approaches with RBFs perform better
than with tile coding. The sensitivity of the left-side projection methods is
significantly lower than the TD methods. ATD-L also seems to be less sensitive
than ATD-SVD, and incurs less bias than LSTD-L.
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Appendix B

Search-control Methods

B.1 Value-based Search-control

B.1.1 Experimental Details

Algorithmic details. We summarize our algorithm in Algorithm 10. The

algorithm closely follows our generic Algorithm 7, but it includes implemen-

tation details. To ensure some separation between states in the SC queue,

we use a threshold εa to decide whether or not to add a state into the queue.

We use a simple heuristic to set this threshold on each step, as the following

sample average: εa ≈ ε
(T )
a =

∑T
t=1

||st+1−st||2/
√
d

T
. We divide by

√
d to make the

threshold less sensitive to state dimensions. The start state for the gradient

ascent is randomly sampled from the ER buffer.

Implementation details of common settings. The continuous Grid-

World domain is written by ourselves. Deep learning implementation is based

on TensorFlow with version 1.1.0 (Abadi et al., 2015). For DQN, we use Adam

optimizer (Kingma & Ba, 2014), Xavier initializer (Glorot & Bengio, 2010),

set mini-batch size b = 32, buffer size 100k. All activation functions are ReLU

except the output layer of the Q-value is linear. The output layer parameters

were initialized from a uniform distribution [−0.003, 0.003].

Experimental details of TabularGridWorld domain. Our TabularGrid-

World is similar to the continuous state domain introduced in 6.1(a) except

that we do not have a wall, and we introduce stochasticity to make it more
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Algorithm 10 Dyna-Value

Input: budget k for the number of gradient ascent steps (e.g., k = 100),
n the number planning steps/updates, stochasticity η for gradient ascent
(e.g., η = 0.1), ρ percentage of updates from SC queue (e.g., ρ = 0.5), d the
number of state variables, i.e. S ⊂ Rd.
Initialize empty SC queue Sc and ER buffer Ber

Σ̂s ← I (empirical covariance matrix)
µss ← 0 ∈ Rd×d, µs ← 0 ∈ Rd (auxiliary variables for computing empirical
covariance matrix, sample average will be maintained for µss, µs)
εa ← 0 (threshold for accepting a state)
for t = 1, 2, . . . do

Observe (s, a, s′, r) and add it to Ber

µss ← (t−1)µss+ss>

t
, µs ← (t−1)µs+s

t

Σ̂s ← µss − µsµ>s
εa ← (1− β)εa + β||s′ − s||2/

√
d for β = 0.001

Sample s0 from Ber, s̃←∞
for i = 0, . . . , k do

gsi ← ∇sV (si) = ∇s maxaQθ(si, a)
si+1← si + 0.1

||Σ̂sgsi ||
Σ̂sgsi +Xi, Xi∼ N (0, ηΣ̂s)

if distance(s̃, si+1) ≥ εa then
Add si+1 into Bs, s̃← si+1

for n times do
Sample a mixed mini-batch b, with proportion ρ from Bs and 1 − ρ

from Ber

Update parameters θ (i.e. DQN update) with b

representative. Four actions are available and can take the agent to the next

{up, down, left, right} grid, respectively. An action can be executed success-

fully with a probability of 0.8; otherwise, random action is taken.The Tabu-

larGridWorld size is 20× 20 and each episode start from left-bottom grid and

would terminate if reached the right-top grid or 1k time steps. The return

will not be truncated unless the right-top grid is reached. The discount rate

is γ = 1.0. For all algorithms, we fixed the exploration noise as ε = 0.2 and

sweep over learning rate {20, 2−0.25, 2−0.5, 2−0.75, 2−1, 2−1.5, 2−2.0, 2−2.5}.We fix

using exploration noise ε = 0.2.

Experimental details of continuous GridWorld. All continuous state

domain, we set discount rate γ = 0.99. We set the episode length limit as
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2000 for GridWorld, while keeping other domains as the default setting. We

use warmup steps 5000 for all algorithms to fill the ER buffer before learning

begins.

For all Q networks, we consistently use a neural network with two 32 units

hidden ReLU layers. We use target network moving frequency τ = 1000 and

sweep learning rate {0.001, 0.0001, 0.00001} for vanilla DQN with ER with

planning step 5. For our particular parameters, we fixed the same setting

across all domains: εa is sample average, the number of gradient steps k = 100

with gradient ascent step size 0.1 and queue size 1e6. We incrementally update

the empirical covariance matrix. When evaluating each algorithm, we keep a

small noise ε = 0.05 when taking action and evaluate one episode every 1000

environment time steps for each run.

B.2 Frequency-based Search-control

In Section B.2.1, we provide calculations for Example 1, Example 2 and the-

oretical proof of Theorem 4. Additional experiments regarding separate cri-

terion of hill climbing, and on continuous control problems are shown in Sec-

tion B.2.2. Experimental details for reproducing our empirical results are in

Section B.2.3.

B.2.1 Theoretical Proofs

This section includes calculations for Example 1, Example 2, and theoretical

proof of Theorem 4.

Calculations for Example 1 and Example 2

Example 1. For fsin defined in Eq. (6.2), calculate the integrals of squared

first order derivative f ′sin on high frequency region [−2, 0) and low frequency

region [0, 2], respectively:∫ 0

−2

[f ′sin(x)]
2
dx = 64π2,

∫ 2

0

[f ′sin(x)]
2
dx = π2.

161



Proof. Taking derivative and integral,∫ 0

−2

[f ′(x)]
2
dx = 64π2

∫ 0

−2

[cos (8πx)]2 dx = 64π2,∫ 2

0

[f ′(x)]
2
dx = π2

∫ 2

0

[cos (πx)]2 dx = π2.

Example 2. Let f : [−π, π] → R be a band-limited real valued function

defined as

f(x) =
a0

2
+

N∑
n=1

an cos (nx) + bn sin (nx),

where a0, an, bn ∈ R, n = 1, 2, . . . , N are Fourier coefficients of frequency n
2π

.

Then,∫ π

−π
|f ′(x)|2 dx = π ·

N∑
n=1

n2
(
a2
n + b2

n

)
,

∫ π

−π
|f ′′(x)|2 dx = π ·

N∑
n=1

n4
(
a2
n + b2

n

)
.

Proof. Taking derivative of f ,

f ′(x) =
N∑
n=1

[−nan sin (nx)] +
N∑
n=1

[nbn cos (nx)].

Taking square of f ′,

[f ′(x)]
2

=
N∑
n=1

N∑
m=1

[nmanam sin (nx) sin (mx)]

−
N∑
n=1

N∑
m=1

[nmanbm sin (nx) cos (mx)]

−
N∑
n=1

N∑
m=1

[mnambn sin (mx) cos (nx)]

+
N∑
n=1

N∑
m=1

[nmbnbm cos (nx) cos (mx)].
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Taking integral,∫ π

−π
[f ′(x)]

2
dx =

∫ π

−π

N∑
n=1

N∑
m=1

[nmanam sin (nx) sin (mx)]dx

−
∫ π

−π

N∑
n=1

N∑
m=1

[nmanbm sin (nx) cos (mx)]dx

−
∫ π

−π

N∑
n=1

N∑
m=1

[mnambn sin (mx) cos (nx)]dx

+

∫ π

−π

N∑
n=1

N∑
m=1

[nmbnbm cos (nx) cos (mx)]dx

=
N∑
n=1

N∑
m=1

[nmanamπδn,m − 0− 0 + nmbnbmπδn,m]

= π ·
N∑
n=1

n2
(
a2
n + b2

n

)
,

where

δn,m
def
=

{
1, if n = m,

0, otherwise.

Using similar arguments, taking derivative of f ′(x),

f ′′(x) =
N∑
n=1

[
−n2an cos (nx)

]
+

N∑
n=1

[
−n2bn sin (nx)

]
.

Taking integral, ∫ π

−π
[f ′′(x)]

2
dx = π ·

N∑
n=1

n4
(
a2
n + b2

n

)
.

Proof for Theorem 4

Notations. For any vector norm || · ||, we mean l2 norm and we ignore the

subscript unless clarification is needed. We use Frobenius norm || · ||F for

matrix. We use subscript yl to denote the lth element in vector y. Let Hf (y)

be the Hessian matrix of f(y). We write H for short unless clarification is

needed. Let Hl,: be the lth row of the Hessian matrix.
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Proof description. We establish the connection between local gradient

norm, Hessian norm and local frequency. To build such connection, we intro-

duce a definition of πf̂ as shown below and we call it “local frequency distri-

bution” of f(x). πf̂ is a probability distribution over Rn, i.e.,
∫
k∈Rn πf̂ (k)dk =

1, and πf̂ (k) ≥ 0, ∀k ∈ Rn. Within an open subset of domain (an unit ball),

this distribution characterizes the proportion of a particular frequency compo-

nent occupies. The proof can be described by three key steps:1) We use a local

Fourier transform to express a function locally (i.e. within an unit ball). 2) we

calculate the gradient/Hessian norm based on this local Fourier transform; 3)

we take integration over the unit ball of the gradient/Hessian norm to build

the connection with the local frequency distribution πf̂ and function energy.

Theorem 4. Given any function f : Rn → R, for any frequency vector

k ∈ Rn, define its local Fourier transform as

f̂(k)
def
=

∫
y∈B(x,1)

f(y) exp
{
−2πi · y>k

}
dy,

for local function f(y) defined around x, i.e., y ∈ B(x, 1)
def
= {y : ‖y − x‖ < 1}.

Assume the local function “energy” is finite,∫
y∈B(x,1)

[f(y)]2 dy =

∫
Rn
‖f̂(k)‖2dk <∞, ∀x ∈ Rn.

Define “local frequency distribution” of f(x) as:

πf̂ (k)
def
=

‖f̂(k)‖2∫
Rn ‖f̂(k̃)‖2dk̃

, ∀k ∈ Rn.

Then, ∀x ∈ Rn, we have:

1) the first order connection:∫
y∈B(x,1)

‖∇f(y)‖2 dy = 4π2 ·
[∫

y∈B(x,1)

[f(y)]2 dy

]
·
[∫

Rn
πf̂ (k) · ‖k‖2 dk

]
,

2) the second order connection:∫
y∈B(x,1)

||H(y)||2Fdy = 16π4

[∫
y∈B(x,1)

[f(y)]2 dy

]
·
[∫

Rn
πf̂ (k) · ‖k‖4 dk

]
Proof. 1) We first prove the first order connection.

Consider the following function defined locally around x,

fx(y)
def
=

{
f(y), if y ∈ B(x, 1),

0, otherwise.
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By definition, the Fourier transform of fx is

f̂(k) =

∫
y∈B(x,1)

f(y) exp
{
−2πi · y>k

}
dy

=

∫
Rn
fx(y) exp

{
−2πi · y>k

}
dy.

And the inverse Fourier transform of fx(y), ∀y ∈ B(x, 1) is,

fx(y) =

∫
Rn
f̂(k) exp

{
2πi · y>k

}
dk,

and then the gradient ∀y ∈ B(x, 1) is

∇f(y) = ∇fx(y) =

∫
Rn
f̂(k) exp

{
2πi · y>k

}
(2πi · k) dk. (B.1)

To calculate gradient norm, we use complex conjugate,

∇f ∗(y) =

∫
Rn
f̂ ∗(k′) exp

{
−2πi · y>k′

}
(−2πi · k′) dk′,

where

f̂ ∗(k′) =

∫
Rn
fx(y

′) exp
{

2πi · y′>k′
}
dy′

is the complex conjugate of f̂(k). Therefore,

‖∇f(y)‖2 = 〈∇f(y),∇f ∗(y)〉

=

∫
Rn

∫
Rn
f̂(k)f̂ ∗(k′) exp

{
2πi · y> (k − k′)

} (
4π2k>k′

)
dkdk′.

(B.2)

Taking integral of ‖∇f(y)‖2 within the unit ball centered at x,

∫
y∈B(x,1)

‖∇f(y)‖2 dy =

∫
Rn
‖∇fx(y)‖2 dy, by function definition (B.3a)

=

∫
Rn

∫
Rn
f̂(k)f̂ ∗(k′)

[∫
Rn

exp
{

2πi · y> (k − k′)
}
dy

] (
4π2k>k′

)
dkdk′

(B.3b)

=

∫
Rn

∫
Rn
f̂(k)f̂ ∗(k′)δk−k′,0

(
4π2k>k′

)
dkdk′ (B.3c)

= 4π2

∫
Rn
‖f̂(k)‖2 · ‖k‖2 dk. (B.3d)
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Recall the definition of local function “energy” around x,∫
Rn
‖f̂(k)‖2dk =

∫
Rn

〈
f̂(k), f̂ ∗(k)

〉
dk

=

∫
y∈Rn

∫
y∈Rn

fx(y)fx(y
′)

[∫
Rn

exp
{

2πik> (y′ − y)
}
dk

]
dydy′

=

∫
y∈Rn

∫
y∈Rn

fx(y)fx(y
′)δy′−y,0dydy

′

=

∫
y∈Rn

f 2
x(y)dy

=

∫
y∈B(x,1)

f 2(y)dy <∞.

The last line is done by definition of fx(y) and finite energy assumption. For

y ∈ B(x, 1), the local gradient information is related to local energy and

frequency distribution,∫
y∈B(x,1)

‖∇f(y)‖2 dy = 4π2

∫
Rn
‖f̂(k)‖2 · ‖k‖2

∫
Rn ‖f̂(k̃)‖2dk̃∫
Rn ‖f̂(k̃)‖2dk̃

dk

= 4π2

∫
Rn
πf̂ (k) ‖k‖2

∫
Rn
‖f̂(k̃)‖2dk̃dk

= 4π2 ·
[∫

y∈B(x,1)

f 2(y)dy

]
·
[∫

Rn
πf̂ (k) · ‖k‖2 dk

]
,

where the last equality follows by
∫
Rn ‖f̂(k̃)‖2dk̃ =

∫
y∈B(x,1)

f 2(y)dy which is

established in the derivation (B.4).

2) Now we prove the second order connection.

To show the second order connection, we start from Eq. (B.1). Then the lth

row of the Hessian matrix Hl,: can be written as:

Hl,: =
∂∇f(y)

∂yl

>

where we use the notation ∂∇f(y)
∂yl

to denote the vector formed by taking partial

derivative of each element in the gradient vector ∇f(y) w.r.t. yl. Then,

∂∇f(y)

∂yl
=

∫
Rn
f̂(k) exp

{
2πi · y>k

} (
4π2i2(e>l k)k

)
dk,

where el is standard basis vector where the lth element is one. To calculate

the norm of the vector Hl,: = ∂∇f(y)
∂yl

>
, we use complex conjugate again and
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follow the similar derivation as done in Eq. (B.2):

||Hl,:||22 = 〈Hl,:, Hl,:〉

=

∫
Rn

∫
Rn
f̂(k)f̂ ∗(k′) exp

{
2πi · y>(k − k′)

} (
16π4i4(e>l k)(e>l k

′)k>k′
)
dkdk′

Note that the square of Frobenius norm of the Hessian matrix can be

written as ||H||2F =
∑

i,j H
2
i,j =

∑n
l=1 ||Hl,:||22. Then,

||H||2F =
n∑
l=1

||Hl,:||22

=

∫
Rn

∫
Rn
f̂(k)f̂ ∗(k′) exp

{
2πiy>(k − k′)

}(
16π4i4

n∑
l=1

(e>l k)(e>l k
′)k>k′

)
dkdk′

= 16π4

∫
Rn

∫
Rn
f̂(k)f̂ ∗(k′) exp

{
2πiy>(k − k′)

}
(k>k′)2dkdk′

Taking the integration of ||H||2F over y variable within a ball with center x

and unit radius, we acquire:∫
y∈B(x,1)

||H(y)||2Fdy = 16π4

∫
Rn
||f̂(k)||2||k||4dk

= 16π4

[∫
y∈B(x,1)

[f(y)]2 dy

]
·
[∫

Rn
πf̂ (k) · ‖k‖4 dk

]
where the derivation process for the first equation is a simple modification from

the derivation (B.3) and the second equation follows the same derivation (B.5).

B.2.2 Additional Experiments

In this section, we briefly study the effect of doing hill climbing on only gradient

norm or Hessian norm. Then we demonstrate that our search-control strategy

can be also used for continuous control algorithms.

Hill climbing on only gradient norm or Hessian norm. We use the

form of g(s) = ‖∇sV (s)‖2 + ‖Hv(s)‖2
F to search states from high (local) fre-

quency region of the value function. Besides the theoretical reason, there is a

practical demand of such design. On value function surface, regions which have

low (or even zero) gradient magnitude may have high Hessian magnitude, and
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Figure B.1: Evaluation curves (sum of episodic reward v.s. environment time
steps) of hill climbing on gradient norm (Dyna-GradNorm) and Hessian norm
(Dyna-HessNorm) on MountainCar and GridWorld with 10 planning updates.
All results are averaged over 30 random seeds.

vice versa. Hence, it can help move along the gradient trajectory in case that

one of the term vanished at some point. Such cases can be a result of function

approximation (smoothness/differentiability), or of the nature of the task, or

both. In Fig. B.1, we show the results of using only either gradient norm or

Hessian norm. The reason we choose MountainCar and GridWorld is that, the

former has a value function surface with lots of variations; while the latter’s

value function increases smoothly from the initial state to the goal state, which

indicates a small magnitude second-order derivative. Indeed, we empirically

observe that the term ∇s‖Hv(s)‖2
F frequently gives a zero vector on Grid-

World. This explains the bad performance of Dyna-HessNorm in Fig. B.1(b).

In contrast, Fig. B.1(a) shows slightly better performance of Dyna-HessNorm

and Dyna-GradNorm. Notice that, an intuitive and more general form of g(x)

can be

g(s) = η1‖∇sV (s)‖2 + η2‖Hv(s)‖2
F ,

at the cost that additional meta-parameters are introduced.

In fact, there are many different ways to combine hill climbing strate-

gies. Here are some unsuccessful trials. For example, climbing on direct

combinations of V (s) (value function) and g(s) (frequency criterion), such

as V (s) + g(s), or V (s)g(s), did not work well. The reasons are as follow-
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ing. First, such combination can lead to unpredictable gradient behaviour.

It can alter the trajectory solely based on either g(s) or V (s), and the effect

is unclear. It may lead to states with neither high value or high frequency.

Last, and probably the most important, hill climbing on V (s) and on g(s)

have fundamentally different insights. The former is based on the intuition

that the value information should be propagated from the high value region

to low value region; as a result, it requires to store states along the whole

trajectory, including those in low value region. However, the latter is based on

the insight that the function value in high frequency region is more difficult

to approximate and needs more samples, while there is no obvious reason to

propagate those information back to low frequency region. As a result, this

approach does not emphasize on recording states throughout the whole hill

climbing trajectory.

Empirical demonstration of sampling based on Hessian norm or gra-

dient norm in a supervised learning setting. Our calculation in the

examples 1, 2 implies that regions with large gradient and Hessian norm cor-

respond to high frequency regions. We empirically verify this insight. Our

expectation is that biasing training dataset towards high gradient norm and

Hessian norm would achieve better learning results. In Fig. B.2(a), Biased-

GradientNorm corresponds to uniformly sampling x ∈ [−2, 2] for 60% of

training data and sampling proportional to gradient norm (i.e., p(x) ∝ |f ′sin(x)|)

for the remaining 40%; while Biased-HessianNorm corresponds to sampling

proportional to Hessian norm (i.e., p(x) ∝ |f ′′sin(x)|) for the remaining 40% of

training data. In Fig. B.2(b)(c), we visualize the two types of biased training

points. Sampling according to the gradient norm or the Hessian norm leads

to denser point distribution in the high frequency region [−2, 0): there are

65.35%, 68.97% of training points fall in [−2, 0] in Fig. B.2(b), (c) respectively.

An important difference between Fig. B.2(b) and (c) is that, sampling accord-

ing to Hessian norm leads to denser points around spikes: there are 18.17%

points fall in the yellow area in (b) and 27.45% such points in (c). Those areas

around spikes should be more difficult to approximate as the underlying func-
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tion changes sharply, which explains the superior performance on the data set

biased by Hessian norm. Fig. B.2(a) shows that such biased training datasets

provide fast learning, similar to the high frequency biased training datasets in

Fig. 6.5.
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(a) RMSE vs. number of iterations
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Figure B.2: We show the learning curve of the l2 regression on three training
datasets in Figure (a) and show 1k points uniformly sampled from the two
biased training data sets in (b)(c), respectively. The total number of training
data points is the same across all experiments. The yellow area includes all
the spikes and is defined by restricting ||y| − 1.0| < 0.1. The testing set is
unbiased, and the results are averaged over 50 random seeds with the shade
indicating the standard error.

Continuous Control. We show a simple demonstration where our method

is adapted to two continuous control tasks: Hopper-v2 and Walker2d-v2 from

Mujoco (Todorov et al., 2012) by using a continuous Q learning algorithm

called NAF (Normalized Advantage Function) (Gu et al., 2016). The algorithm
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parameterizes the action value function as

Q(s, a) = V (s)− (a− µ(s))TP (a− µ(s)),

where P is a positive semi-definite matrix and hence the action with maximum

value can be easily found: argmaxaQ(s, a) = µ(s). Our search-control strategy

naturally applies here by utilizing the value function V (s). From Fig. B.3, one

can see that our algorithm (DynaNAF-Frequency) finds a better policy

comparing with the model-free NAF. We leave the empirical study of applying

our strategy to other continuous control algorithms (Lillicrap et al., 2016;

Schulman et al., 2017; Fujimoto et al., 2018; Haarnoja et al., 2018; Lim et al.,

2018) as a future work.
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Figure B.3: The learning curves showing sum of rewards per episode as a func-
tion of environment time steps. We use 5 planning steps for both algorithm.
The results are averaged over 10 random seeds.

B.2.3 Experimental Details

All of our implementations are based on tensorflow with version 1.13.0 (Abadi

et al., 2015). For the supervised learning experiment shown in Section 6.4.1, we

use mini-batch size b = 128, 16× 16 tanh units neural network, with learning

rate 0.001 for all algorithms. The learning curve is plotted by computing

the testing error every 20 iterations. When generating Fig. B.2, in order to

sample points according to p(x) ∝ |f ′(x)| or p(x) ∝ |f ′′(x)|, we use 10, 000

even spaced points on the domain [−2, 2] and the probabilities are computed

by normalization across the 10k points.
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We provide the pseudo-code in Algorithm 11 with sufficient details to recre-

ate our experimental results. Define

vs
def
= ∇s max

a
Q(s, a),

then

gs
def
= ∇sg(s) = ∇s(||∇s max

a
Q(s, a)||22 + ||Hv(s)||2F ) = ∇s(||vs||22 + ||∇svs||2F ).

Note that we use a squared norm to ensure numerical stability when taking

gradient. Then for value-based search-control, we use

s← s+
α

||Σ̂svs||
Σ̂svs +Xi, Xi∼ N(0, ηΣ̂s) (B.6)

and for frequency-based search-control, we use

s← s+
α

||Σ̂sgs||
Σ̂sgs +Xi, Xi∼ N(0, ηΣ̂s) (B.7)

where Σ̂s is empirical covariance matrix estimated from visited states, and we

set η = 0.01, α = 0.01 across all experiments. Notice that comparing with the

previous work, we omitted the projection step as we found it is unnecessary

in our experiments.

B.3 TD Error-based Search-control

The appendix includes the following contents:

1. Section B.3.1 provides the full proof of Theorem 6 and its simulations.

2. Section B.3.2: a discussion and some empirical study of high power ob-

jectives.

3. Section B.3.3: supplementary experimental results: training error results

to check the negative effects of the limitations of prioritized sampling;

results to verify the equivalence between prioritized sampling and cubic

power; results on MazeGridWorld from (Pan et al., 2020b).

4. Section B.3.4: details for reproducible research.
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Algorithm 11 Dyna architecture with Frequency-based search-control with
additional details

Bs: search-control queue, B: the experience replay buffer
M : S ×A → S × R, the environment model
m: number of search-control samples to fetch at each step
p: probability of choosing value-based hill climbing rule (we set p = 0.5 for
all experiments)
β ∈ [0, 1]: mixing factor in a mini-batch, i.e. βb samples in a mini-batch are
simulated from model
n: number of state variables, i.e. S ⊂ Rn

εa: empirically learned threshold as sample average of ||st+1 − st||2/
√
n

d: number of planning steps
Q,Q′: current and target Q networks, respectively
b: the mini-batch size
τ : update target network Q′ every τ updates to Q
t← 0 is the time step
nτ ← 0 is the number of parameter updates
// Gradient ascent hill climbing
With probability p, 1− p, choose hill climbing Eq. (B.6) o Eq. (B.7) respec-
tively;
sample s from Bs if choose rule Eq. (B.6), or from B otherwise; set c ←
0, s̃← s
while c < m do

update s by executing the chosen hill climbing rule
if s is out of state space then: // resample the initial state and hill

climbing rule
With probability p, 1 − p, choose hill climbing rule Eq. (B.6) or

Eq. (B.7) respectively;
sample s from Bs if choose Eq. (6.8), or from B otherwise; set c ←

0, s̃← s
continue

if ||s− s̃||2/
√
n > εa then:

add s to Bs, s̃← s, c← c+ 1

// d planning updates: sample d mini-batches
for d times do // d planning updates

sample βb states from Bs and pair them with on-policy actions, and
query M to get next states and rewards

sample b(1 − β) transitions from B an stack these with the simulated
transitions

use the mixed mini-batch for parameter (i.e. DQN) update
nτ ← nτ + 1
if mod(nτ , τ) == 0 then:

Q′ ← Q

t← t+ 1
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B.3.1 Theoretical Proofs

Proofs for Theorem 6

Theorem 6. Consider the following two objectives:

`2(x, y)
def
=

1

2
(x− y)2 , `3(x, y)

def
=

1

3
|x− y|3 .

Define the functional gradient flow updates on these two objectives:

dxt
dt

= −η
d{1

2
(xt − y)2}
dxt

,
dx̃t
dt

= −η
d{1

3
|x̃t − y|3}
dx̃t

.

Define δt
def
= |xt − y| , δ̃t

def
= |x̃t − y|. Given error threshold ε ≥ 0, define the

hitting time tε
def
= mint{t : δt ≤ ε} and t̃ε

def
= mint{t : δ̃t ≤ ε}. For any initial

function value x0 s.t. δ0 > 1, ∃ε0 ∈ (0, 1) such that ∀ε > ε0, tε ≥ t̃ε.

Proof. Basic idea: given the same ε and the same initial value of x, first we

derive tε = 1
η
· ln
{
δ0
ε

}
, t̃ε = 1

η
·
(

1
ε
− 1

δ0

)
. Then we analyze the condition on ε

to see when tε ≥ t̃ε, i.e. minimizing the square error is slower than minimizing

the cubic error. The concrete proof is as follows.

For the gradient flow update on the `2 objective, we have,

d`2(xt, y)

dt
=
d`2(xt, y)

dδt
· dδt
dxt
· dxt
dt

= δt · sign (xt − y) · [−η · (xt − y)]

= δt · sign (xt − y) · [−η · sign (xt − y) · δt]

= −η · δ2
t = −2 · η · `2(xt, y).

which implies,

d{ln `2(xt, y)}
dt

=
1

`2(xt, y)
· d`2(xt, y)

dt
= −2 · η.

Taking integral, we have,

ln `2(xt, y)− ln `2(x0, y) = −2 · η · t,

which is equivalent to (letting δt = ε),

tε
def
=

1

2η
· ln
{
`2(x0, y)

`2(xt, y)

}
=

1

η
· ln
{
δ0

δt

}
=

1

η
· ln
{
δ0

ε

}
.
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On the other hand, for the gradient flow update on the `3 objective, we have,

d`3(x̃t, y)

dt
=
d`3(x̃t, y)

dδ̃t
· dδ̃t
dx̃t
· dx̃t
dt

= δ̃2
t · sign (x̃t − y) ·

[
−η · δ̃2

t · sign (x̃t − y)
]

= −η · δ̃4
t = −3

4
3 · η · (`3(x̃t, y))

4
3 ,

which implies,

d{(`3(x̃t, y))−
1
3}

dt
= −1

3
· (`3(x̃t, y))−

4
3 · d`3(x̃t, y)

dt
= 3

1
3 · η.

Taking integral, we have,

(`3(x̃t, y))−
1
3 − (`3(x̃0, y))−

1
3 = 3

1
3 · η · t,

which is equivalent to (letting δ̃t = ε),

t̃ε
def
=

1

3
1
3 · η

·
[
(`3(x̃t, y))−

1
3 − (`3(x̃0, y))−

1
3

]
=

1

η
·
(

1

δ̃t
− 1

δ0

)
=

1

η
·
(

1

ε
− 1

δ0

)
.

Then we have,

tε − t̃ε =
1

η
· ln
{
δ0

ε

}
− 1

η
·
(

1

ε
− 1

δ0

)
=

1

η
·
[(

ln
1

ε
− 1

ε

)
−
(

ln
1

δ0

− 1

δ0

)]
.

Define the function f(x) = ln 1
x
− 1

x
, x > 0 is continuous and maxx>0 f(x) =

f(1) = −1. We have limx→0 f(x) = limx→∞ f(x) = −∞, and f(·) is monoton-

ically increasing for x ∈ (0, 1] and monotonically decreasing for x ∈ (1,∞).

Given δ0 > 1, we have f(δ0) < f(1) = −1. Using the intermediate value

theorem for f(·) on (0, 1], we have ∃ε0 < 1, such that f(ε0) = f(δ0). Since f(·)

is monotonically increasing on (0, 1] and monotonically decreasing on (1,∞),

for any ε ∈ [ε0, δ0], we have f(ε) ≥ f(δ0).1 Hence we have,

tε − t̃ε =
1

η
· [f(ε)− f(δ0)] ≥ 0.

1Note that ε < δ0 by the design of using gradient descent updating rule. If the two are
equal, tε = t̃ε = 0 holds trivially.
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Remark 4. Figure B.4 shows the function f(x) = ln 1
x
− 1
x
, x > 0. Fix arbitrary

x′ > 1, there will be another root ε0 < 1 s.t. f(ε0) = f(x′). However, there is

no real-valued solution for ε0. The solution in C is ε0 = − 1
W (log 1/δ0−1/δ0−πi) ,

where W (·) is a Wright Omega function. Hence, finding the exact value of

ε0 would require a definition of ordering on complex plane. Our current theo-

rem statement is sufficient for the purpose of characterizing convergence rate.

The theorem states that there always exists some desired low error level < 1,

minimizing the square loss converges slower than the cubic loss.

0 1 2 3 4 55

4

3

2

1

0

f(x) = ln1
x

1
x

Figure B.4: The function f(x) = ln 1
x
− 1

x
, x > 0. The function reaches

maximum at x = 1.

Simulations. The theorem says that if we want to minimize our loss

function to certain small nonzero error level, the cubic loss function offers faster

convergence rate. Intuitively, cubic loss provides sharper gradient information

when the loss is large as shown in Figure B.5(a)(b). Here we provides a

simulation. Consider the following minimization problems: minx≥0 x
2 and

minx≥0 x
3. We use the hitting time formulae tε = 1

η
· ln
{
δ0
ε

}
, t̃ε = 1

η
·
(

1
ε
− 1

δ0

)
derived in the proof, to compute the hitting time ratio tε

t̃ε
under different initial

values x0 and final error value ε. In Figure B.5(c)(d), we can see that it usually

takes a significantly shorter time for the cubic loss to reach a certain xt with

various initial x0 values.

B.3.2 High Power Loss Functions

We would like to point out that directly using a high power objective in general

problems is unlikely to have an advantage.
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Figure B.5: (a) show cubic v.s. square function. (b) shows their absolute deriva-
tives. (c) shows the hitting time ratio v.s. initial value x0 under different target
value xt. (d) shows the ratio v.s. the target xt to reach under different x0. Note
that a ratio larger than 1 indicates a longer time to reach the given xt for the square
loss.

First, notice that our convergence rate is characterized w.r.t. to the ex-

pected updating rule, not stochastic gradient updating rule. When using a

stochastic sample to estimate the gradient, high power objectives are sensitive

to the outliers as they augment the effect of noise. Robustness to outliers is

also the motivation behind the Huber loss (Huber, 1964) which, in fact, uses

low power error in most places so it can be less sensitive to outliers.

We conduct experiments to examine the effect of noise on using high power

objectives. We use the same dataset as described in Section B.3.3. We use

a training set with 4k training examples. The naming rules are as follows.

Cubic is minimizing the cubic objective (i.e. minθ
1
n

∑n
i=1 |fθ(xi) − yi|3) by

uniformly sampling, and Power4 is minθ
1
n

∑n
i=1(fθ(xi) − yi)

4 by uniformly

sampling.

Figure B.6 (a)(b) shows the learning curves of uniformly sampling for Cubic

and for Power4 trained by adding noises with standard deviation σ = 0.1, 0.5

respectively to the training targets. It is not surprising that all algorithms

learn slower when we increase the noise variance added to the target variables.

However, one can see that high power objectives is more sensitive to noise

variance added to the targets than the regular L2 : when σ = 0.1, the higher

power objectives perform better than the regular L2; after increasing σ to 0.5,

Cubic becomes almost the same as L2, while Power4 becomes worse than L2.

Second, it should be noted that in our theorem, we do not characterize the

convergence rate to the minimum; instead, we show the convergence rate to

a certain low error solution, corresponding to early learning performance. In
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Figure B.6: Figure(a)(b) show the testing RMSE as a function of number of
mini-batch updates with increasing noise standard deviation σ added to the
training targets. We compare the performances of Power4(magenta), L2
(black), Cubic (forest green). The results are averaged over 50 random
seeds. The shade indicates standard error. Note that the testing set is not
noise-contaminated.

optimization literature, it is known that cubic power would converge slower

to the minimizer as it has a relatively flat bottom. However, it may be an

interesting future direction to study how to combine objectives with different

powers so that optimizing the hybrid objective leads to a faster convergence

rate to the optimum and is robust to outliers.

B.3.3 Additional Experiments

In this section, we include the following additional experimental results:

1. Experiments showing the effect of limitations of outdated priorities and

insufficient sample space coverage.

2. Supplementary to Figure B.7: the learning performance measured by

training errors to show the negative effects of the two limitations.

3. Empirical verification of Theorem 5 (prioritized sampling and uniform

sampling on cubic power equivalence).

Negative Effects of the Limitations

We now empirically show that the outdated priorities and insufficient sample

space coverage significantly weaken the advantage of the prioritized sampling
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method.

Experiment setup. We conduct experiments on a supervised learning task.

We generate a training set T by uniformly sampling x ∈ [−2, 2] and adding

zero-mean Gaussian noise with standard deviation σ = 0.5 to the target fsin(x)

values to ensure the learning is reasonably difficult. Define fsin(x)
def
= sin(8πx)

if x ∈ [−2, 0) and fsin(x) = sin(πx) if x ∈ [0, 2]. The testing set contains 1k

samples where the targets are not noise-contaminated. The high frequency

region [−2, 0] should have relatively large prediction error and usually takes

long time to learn. Hence we expect prioritized sampling to make a clear dif-

ference in terms of sample efficiency on this dataset. We use 32 × 32 tanh

layers neural network for all algorithms. We will design experiments to exam-

ine the performances of the algorithms with and without the two limitations

respectively.

Naming of algorithms. L2: the l2 regression with uniformly sampling from

T . Full-PrioritizedL2: the l2 regression with prioritized sampling according

to the distribution defined in (6.9), the priorities of all samples in the training

set are updated after each mini-batch update. PrioritizedL2: the only dif-

ference with Full-PrioritizedL2 is that only the priorities of those training

examples sampled in the mini-batch are updated at each iteration, the rest of

the training samples use the original priorities. This resembles the approach

taken by the prioritized ER in RL (Schaul et al., 2016). We show the learning

curves in Figure B.7.

Outdated priorities. Figure B.7 (a) shows that PrioritizedL2 without up-

dating all priorities can be significantly worse than Full-PrioritizedL2. Corre-

spondingly, we further verify this phenomenon on the classical Mountain Car

domain (Brockman et al., 2016). Figure B.7(c) shows the evaluation learning

curves of different variants of DQN corresponding to the supervised learning

algorithms. We use a small 16× 16 ReLu NN as the Q-function, highlighting

the issue of priority updating: every mini-batch update potentially perturbs
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the values of many other states. Hence many experiences in the ER buffer have

the wrong priorities. We do find Full-PrioritizedER performs significantly bet-

ter.
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Figure B.7: Learning curves showing testing RMSE v.s. number of mini-
batch updates. We compare L2 (black), PrioritizedL2 (red), and Full-
PrioritizedL2 (blue). (a)(b) show the learning performances trained on a
large and small training set respectively. (c) shows the result of a correspond-
ing RL experiment on mountain car domain. We compare episodic return v.s.
environment time steps for ER (black), PrioritizedER (red), and Full-
PrioritizedER (blue). Results are averaged over 50 random seeds on (a),
(b) and 30 on (c). The shade indicates standard error.

Sample space coverage. To check the effect of insufficient sample space

coverage, we examine how the relative performances of L2 and Full-PrioritizedL2

change when we train them on a smaller training dataset with only 400 exam-

ples as shown in Figure B.7(b). The small training set has a small coverage

of the sample space. Unsurprisingly, using a small training set makes all algo-

rithms perform worse than they do on the larger one; however,it significantly

narrows the gap between Full-PrioritizedL2 and L2. Such narrowed gap in-

dicates that prioritized sampling needs sufficient samples across the sample

space to estimate the prioritized sampling distribution.

Training Error Corresponding to Figure B.7

Note that our Theorem 5 and 6 characterize the expected gradient calculated

on the training set; hence it is sufficient to examine the learning performances

measured by training errors. However, the testing error is usually the primary

concern, so we put the testing error in the main body. As a sanity check, we
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Figure B.8: Figure (a)(b) show the training RMSE as a function of number
of mini-batch updates with a training set containing 4k examples and another
containing 400 examples respectively. We compare the performances of Full-
PrioritizedL2 (blue), L2 (black), and PrioritizedL2 (red). The results
are averaged over 50 random seeds. The shade indicates standard error.

also investigate the learning performances measured by training error and find

that those algorithms behave similarly as shown in Figure B.8 where the al-

gorithms are trained by using training sets with decreasing training examples

from (a) to (b). As we reduce the training set size, Full-PrioritizedL2 is closer

to L2. Furthermore, PrioritizedL2 is always worse than Full-PrioritizedL2.

These observations show the negative effects resulting from the issues of out-

dated priorities and insufficient sample space coverage.

Empirical verification of Theorem 5

Theorem 5 states that the expected gradient of doing prioritized sampling on

mean squared error is equal to the gradient of doing uniformly sampling on

cubic power loss. As a result, we expect that the learning performance on

the training set (note that we calculate gradient by using training examples)

should be similar when we use a large mini-batch update as the estimate of

the expectation terms become close.

We use the same dataset as described in Section B.3.3 and keep using

training size 4k. Figure B.9(a)(b) shows that when we increase the mini-batch

size, the two algorithms Full-PrioritizedL2 and Cubic are becoming very close

to each other, verifying our theorem.

Note that our theorem characterizes the expected gradient calculated on
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Figure B.9: Figure(a)(b) show the training RMSE as a function of number of
mini-batch updates with increasing mini-batch size b. Figure (c)(d) show the
testing RMSE. We compare the performances of Full-PrioritizedL2 (blue),
Cubic (forest green). As we increase the mini-batch size, the two performs
more similar to each other. The results are averaged over 50 random seeds.
The shade indicates standard error.

the training set; hence it is sufficient to examine the learning performances

measured by training errors. However, usually, the testing error is the primary

concern. For completeness, we also investigate the learning performances mea-

sured by testing error and find that the tested algorithms behave similarly as

shown in Figure B.9(c)(d).

B.3.4 Reproducible Research

Our implementations are based on tensorflow with version 1.13.0 (Abadi et al.,

2015). We use Adam optimizer (Kingma & Ba, 2014) for all experiments.

Reproduce experiments in Section 6.5

Supervised learning experiment. For the supervised learning experiment

shown in Section 6.5.1, we use 32×32 tanh units neural network, with learning

rate swept from {0.01, 0.001, 0.0001, 0.00001} for all algorithms. We compute

the constant c as specified in the Theorem 5 at each time step for Cubic loss.

We compute the testing error every 500 iterations/mini-batch updates and

our evaluation learning curves are plotted by averaging 50 random seeds. For

each random seed, we randomly split the dataset to testing set and training

set and the testing set has 1k data points. Note that the testing set is not

noise-contaminated.
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Reinforcement Learning experiments in Section 6.5.1. We use a par-

ticularly small neural network 16 × 16 to highlight the issue of incomplete

priority updating. Intuitively, a large neural network may be able to memo-

rize each state’s value and thus updating one state’s value is less likely to affect

others. We choose a small neural network, in which case a complete priority

updating for all states should be very important. We set the maximum ER

buffer size as 10k and mini-batch size as 32. The learning rate is 0.001 and

the target network is updated every 1k steps.

Distribution distance computation in Section 6.5.3. We now introduce

the implementation details for Figure 6.7. The distance is estimated by the

following steps. First, in order to compute the desired sampling distribution,

we discretize the domain into 50 × 50 grids and calculate the absolute TD

error of each grid (represented by the left bottom vertex coordinates) by using

the true environment model and the current learned Q function. We then

normalize these priorities to get probability distribution p∗. Note that this

distribution is considered as the desired one since we have access to all states

across the state space with priorities computed by current Q-function at each

time step.

Second, we estimate our sampling distribution by randomly sampling 3k

states from search-control queue and count the number of states falling into

each discretized grid and normalize these counts to get p1.

Third, for comparison, we estimate the sampling distribution of the con-

ventional prioritized ER (Schaul et al., 2016) by sampling 3k states from

the prioritized ER buffer and count the states falling into each grid and

compute its corresponding distribution p2 by normalizing the counts. Then

we compute the distances of p1, p2 to p∗ by two weighting schemes: 1) on-

policy weighting:
∑2500

j=1 d
π(sj)|pi(sj) − p∗(sj)|, i ∈ {1, 2}, where dπ is approx-

imated by uniformly sample 3k states from a recency buffer and normalizing

their visitation counts on the discretized GridWorld; 2) uniform weighting:

1
2500

∑2500
j=1 |pi(sj)− p∗(sj)|, i ∈ {1, 2}. We examine the two weighting schemes

because of two considerations: for the on-policy weighting, we concern about
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the asymptotic convergent behavior and want to down-weight those states with

relatively high TD error but get rarely visited as the policy gets close to opti-

mal; uniform weighting makes more sense during early learning stage, where

we consider all states are equally important and want the agents to sufficiently

explore the whole state space.

Computational cost v.s. performance in Section 6.5.3. The setting is

the same as we used for Section 6.6. We use plan step/updates=10 to generate

that learning curve.

Reproduce experiments in Section 6.6

Common settings. For all discrete control domains other than roundabout-

v0, we use 32 × 32 neural network with ReLu hidden units except the Dyna-

Frequency which uses tanh units. This is one of its disadvantages: the search-

control of Dyna-Frequency requires the computation of Hessian-gradient prod-

uct and it is empirically observed that the Hessian is frequently zero when

using ReLu as hidden units. Except the output layer parameters which were

initialized from a uniform distribution [−0.003, 0.003], all other parameters

are initialized using Xavier initialization (Glorot & Bengio, 2010). We use

mini-batch size b = 32 and maximum ER buffer size 50k. All algorithms

use target network moving frequency 1000 and we sweep learning rate from

{0.001, 0.0001}. We use warm up steps 5k (i.e. random action is taken in the

first 5k time steps) to populate the ER buffer before learning starts. We keep

exploration noise as 0.1 without decaying.

Termination condition on OpenAI environments. On OpenAI, each

environment has a time limit and the termination flag will be true if either

the time limit reached or the actual termination condition is satisfied. How-

ever, theoretically, we should truncate the return if and only if the actual

termination condition is satisfied. All of our experiments are conducted by

setting discount rate γ = 0.0 if and only if the actual termination condition is

satisfied. For example, on the mountain car, done = true if and only if the
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position≥ 0.5.

Hyper-parameter settings. Across RL experiments including both dis-

crete and continuous control tasks, we are able to fix the same parameters for

our hill climbing updating rule 6.10: s← s+αh∇s log |ŷ(s)−maxaQ(s, a; θt)|+

X, where we fix αh = 0.1, X ∼ N(0, 0.01).

For our algorithm Dyna-TD, we are able to keep the same parameter setting

across all discrete domains: c = 20 and learning rate 0.001. For all Dyna

variants, we fetch the same number of states (m = 20) from hill climbing (i.e.

search-control process) as Dyna-TD does, and use εaccept = 0.1 and set the

maximum number of gradient step as k = 100 unless otherwise specified.

Our Prioritized ER is implemented as the proportional version with sum

tree data structure. To ensure fair comparison, since all model-based methods

are using mixed mini-batch of samples, we use prioritized ER without impor-

tance ratio but half of mini-batch samples are uniformly sampled from the ER

buffer as a strategy for bias correction. For Dyna-Value and Dyna-Frequency,

we use the setting as described by the previous sections.

For the purpose of learning an environment model on those discrete control

domains, we use a 64 × 64 ReLu units neural network to predict s′ − s and

reward given a state-action pair s, a; and we use mini-batch size 128 and

learning rate 0.0001 to minimize the mean squared error objective for training

the environment model.

Environment-specific settings. All of the environments are from Ope-

nAI (Brockman et al., 2016) except that the GridWorld is designed by our-

selves. For all OpenAI environments, we use the default setting except on

Mountain Car where we set the episodic length limit to 2k. The GridWorld

has state space S = [0, 1]2 and each episode starts from the left bottom and

the goal area is at the top right [0.95, 1.0]2. There is a wall in the middle with

a hole to allow the agent to pass.

On roundabout-v0 domain, we use 64×64 ReLu units for all algorithms and

set mini-batch size as 64. The environment model is learned by using a 200×
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200 ReLu neural network trained by the same way mentioned above. For Dyna-

TD, we start using the model after 5k steps and set m = 100, k = 500 and we

do search-control every 50 environment time steps to reduce computational

cost. To alleviate the effect of model error, we use only 16 out of 64 samples

from the search-control queue in a mini-batch.

On Mujoco domains Hopper and Walker2d, we use 200 × 100 ReLu units

for all algorithms and set mini-batch size as 64. The environment model is

learned by using a 200 × 200 ReLu neural network trained by the same way

mentioned above. For Dyna-TD, we start using the model after 10k steps and

set m = 100, k = 500 and we do search-control every 50 environment time

steps to reduce computational cost. To alleviate the effect of model error, we

use only 16 out of 64 samples from the search-control queue in a mini-batch.
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Appendix C

Other Efforts to Improve
Sample Efficiency

This section introduces other efforts that have been made but are not detailed

in this thesis to improve sample efficiency. Improving sample efficiency has

been one of the central research topics in machine learning. This thesis only

explores a small corner in this big research thrust. Below includes some dis-

cussions about our efforts towards improving sample efficiency from several

other perspectives: 1) reducing representation interference (also called catas-

trophic forgetting); 2) bias/variance control; 3) semi-parametric method for

model learning; 4) regularization.

First, representation learning in online learning systems can strongly im-

pact learning efficiency, both positively due to generalization but also nega-

tively due to interference (Liang et al., 2016; Le et al., 2017; Liu et al., 2019;

Chandak et al., 2019). Neural networks particularly suffer from interference—

where updates for some inputs degrade accuracy for others—when training on

temporally correlated data (McCloskey & Cohen, 1989; French, 1999; Kemker

et al., 2018). To mitigate the catastrophic forgetting, we propose a novel sparse

representation learning technique (Pan et al., 2021). Recent work has shown

that sparse representations-where only a small percentage of active units- can

significantly reduce interference. Those works, however, relied on relatively

complex regularization or meta-learning approaches that have only been used

offline in a pre-training phase. We pursue a direction that achieves sparsity by

design rather than by learning. Specifically, we design an activation function

187



that produces sparse representations deterministically by construction and so

is more amenable to online training. The idea relies on the simple binning

approach. However, it overcomes the two key limitations of binning: zero

gradients for the flat regions almost everywhere and lost precision—reduced

discrimination—due to coarse aggregation. We introduce a Fuzzy Tiling Ac-

tivation that provides non-negligible gradients and produces overlap between

bins that improves discrimination.

Second, we propose a novel Maxmin Q-learning to resolve the overesti-

mation issue of value-based control algorithm (i.e., Q-learning) (Lan et al.,

2020), which is known to impede the quality of the learned policy (Thrun

& Schwartz, 1993; Szita & Lőrincz, 2008; Strehl et al., 2009; Hasselt, 2010;

Kumar et al., 2020). Although algorithms have been proposed to reduce over-

estimation bias (Hasselt, 2010; Lee et al., 2013; Anschel et al., 2017; Zhang

et al., 2017; Fujimoto et al., 2018), we lack an understanding of how bias in-

teracts with performance and the extent to which existing algorithms mitigate

bias. We 1) highlight that the effect of overestimation bias on learning effi-

ciency is environment-dependent; 2) propose a generalization of Q-learning,

called Maxmin Q-learning, which provides a parameter to control bias flex-

ibly; 3) show theoretically that there exists a parameter choice for Maxmin

Q-learning that leads to unbiased estimation with a lower approximation vari-

ance than Q-learning; and 4) prove the convergence of our algorithm in the

tabular case, as well as the convergence of several previous Q-learning variants,

using a novel Generalized Q-learning framework. We empirically verify that

our algorithm better controls estimation bias in toy environments and achieves

superior performance on several benchmark problems.

Third, in the MBRL setting, we develop a more efficient model learning

technique by semi-parametric method (Pan et al., 2018; Schlegel et al., 2017),

called Reweighted Experience Models (REMs), that makes it simple to sam-

ple next states or predecessors. We demonstrate that Dyna with such a model

exhibits advantages over replay-based methods in learning in continuous state

problems. The performance gap grows when moving to larger stochastic do-

mains of increasing size.
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Last, we attempt to obtain sample efficient learning by explicitly captur-

ing regularities in the action space for a special class of partial differential

equation control problems, where there can be arbitrarily high-dimensional

continuous action space (Pan et al., 2018). In particular, we propose the con-

cept of action descriptors, which encode regularities among spatially extended

action dimensions and enable the agent to control high-dimensional action

PDEs. We provide theoretical evidence suggesting that this approach can be

more sample efficient than a conventional approach that treats each action

dimension separately and does not explicitly exploit the spatial regularity of

the action space. The action descriptor approach is then used within the deep

deterministic policy gradient algorithm. Experiments on two PDE control

problems, with up to 256-dimensional continuous actions, show the advantage

of the proposed approach over the conventional one.
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