This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Search
Skip to Search Results- 5Reinforcement Learning
- 2Reinforcement learning
- 1Computation complexity
- 1Data efficiency
- 1Dual representations
- 1Dynamic Programming
-
2008
Lizotte, Daniel, Wang, Tao, Bowling, Michael, Schuurmans, Dale
Technical report TR08-16. We propose a dual approach to dynamic programming and reinforcement learning based on maintaining an explicit representation of visit distributions as opposed to value functions. An advantage of working in the dual is that it allows one to exploit techniques for...
-
2006
Wang, Tao, Schuurmans, Dale, Bowling, Michael
Technical report TR06-26. We investigate the dual approach to dynamic programming and reinforcement learning, based on maintaining an explicit representation of stationary distributions as opposed to value functions. A significant advantage of the dual approach is that it allows one to exploit...
-
2011
Technical report TR11-04. World model is very important for model-based reinforcement learning. For example, a model is frequently used in Dyna: in learning steps to select actions and in planning steps to project sampled states or features. In this paper we propose least-squares Dyna (LS-Dyna)...
-
2007
Wang, Tao, Schuurmans, Dale, Bowling, Michael, Lizotte, Daniel
Technical report TR07-05. We investigate novel, dual algorithms for dynamic programming and reinforcement learning, based on maintaining explicit representations of stationary distributions instead of value functions. In particular, we investigate the convergence properties of standard dynamic...