
Dual Representations for Dynamic Programming
and Reinforcement Learning

Tao Wang Michael Bowling Dale Schuurmans
Department of Computing Science

University of Alberta
Edmonton, Canada

Email: {trysi,bowling,dale}@cs.ualberta.ca

Abstract— We investigate the dual approach to dynamic pro-
gramming and reinforcement learning, based on maintaining an
explicit representation of stationary distributions as opposed to
value functions. A significant advantage of the dual approach
is that it allows one to exploit well developed techniques for
representing, approximating and estimating probability distribu-
tions, without running the risks associated with divergent value
function estimation. A second advantage is that some distinct
algorithms for the average reward and discounted reward case
in the primal become unified under the dual. In this paper,
we present a modified dual of the standard linear program
that guarantees a globally normalized state visit distribution is
obtained. With this reformulation, we then derive novel dual
forms of dynamic programming, including policy evaluation,
policy iteration and value iteration. Moreover, we derive dual
formulations of temporal difference learning to obtain new forms
of Sarsa and Q-learning. Finally, we scale these techniques up to
large domains by introducing approximation, and develop new
approximate off-policy learning algorithms that avoid the diver-
gence problems associated with the primal approach. We show
that the dual view yields a viable alternative to standard value
function based techniques and opens new avenues for solving
dynamic programming and reinforcement learning problems.

I. INTRODUCTION

Algorithms for dynamic programming (DP) and reinforce-
ment learning (RL) are usually formulated in terms of value
functions—representations of the long run expected value of
a state or state-action pair [1]. The concept of value is so
pervasive in DP and RL, in fact, that it is hard to imagine that a
value function representation is not a necessary component of
any solution approach. Yet, linear programming (LP) methods
clearly demonstrate that the value function is not a necessary
concept for solving DP/RL problems. In LP methods, value
functions only correspond to the primal formulation of the
problem, and do not appear at all in the dual. Rather, in the
dual, value functions are replaced by the notion of state (or
state-action) visit distributions [2], [3], [4]. It is entirely pos-
sible to solve DP and RL problems in the dual representation,
which offers an equivalent but different approach to solving
DP/RL problems without any reference to value functions.

Despite the well known LP duality, dual representations
have not been widely explored in DP and RL. In fact, they
have only been anecdotally and partially treated in the RL
literature [5], [6], and not in a manner that acknowledges any
connection to LP duality. Nevertheless, as we will show, there
exists a dual form for every standard DP and RL algorithm,

including policy evaluation, policy iteration, Bellman iteration,
temporal difference (TD) estimation, Sarsa learning, and Q-
learning, and for variants of these algorithms that use linear
approximation.

In this paper, we offer a systematic investigation of dual
solution techniques based on representing state visit and state-
action visit distributions instead of value functions. Although
many of our results show that the dual approach yields
equivalent results to the primal approach—as one would
expect—we also uncover some potential advantages for the
dual approach, including the ability to use well developed
methods for estimating probability distributions, automatically
avoiding the risk of divergence associated with linear ap-
proximators, and unifying some distinct algorithms for the
average reward and discounted reward cases. The dual view
offers a coherent and comprehensive perspective on optimal
sequential decision making problems, just as the primal view,
but offers new algorithmic insight and new opportunities for
developing algorithms that exploit alternative forms of prior
knowledge and constraints. In fact, there is the opportunity
to develop a joint primal-dual view of RL and DP, where
combined algorithms might be able to exploit the benefits of
both approaches in theoretically justified ways.

II. PRELIMINARIES

We are concerned with the problem of optimal sequential
decision making, and in particular, the problem of computing
an optimal behavior strategy in a Markov decision process
(MDP). An MDP is defined by:
• a set of actions A;
• a set of states S;
• a transition model, which we will represent by an
|S||A|×|S| matrix P , whose entries P(sa,s′) specify the
conditional probability of transitioning to state s′ starting
from state s and taking action a (hence P is nonnegative
and row normalized);
• a reward model, which we will represent by an |S||A|×1
vector r, whose entries r(sa) specify the reward obtained
when taking action a in state s.
A behavior strategy is a rule for selecting actions based

on observed states. In an MDP there is an obvious tradeoff
between obtaining immediate rewards and guiding the process
toward future states that yield potentially greater rewards.

Generally, the goal is to determine a behavior strategy that
maximizes the rewards obtained over the long run. However,
there are different ways to define long run reward in an MDP
and these can affect the identity of the optimal behavior
strategy. In this paper we will focus on the two standard
criteria: (1) maximizing the infinite horizon discounted reward
r0 + γr1 + γ2r2 + · · · = ∑∞

t=0 γtrt obtained over an infinite
run of the system, given a discount factor 0 < γ < 1; or (2)
maximizing the infinite horizon asymptotic rate of return per
time step, limT→∞ 1

T

∑T−1
t=0 rt. Most attention will be paid to

discounted rewards in this paper.
In either case, it is known that an optimal behavior strategy

can always be expressed by a stationary policy. In this paper,
we will represent a stationary policy by an |S||A|×1 vector
π, whose entries π(sa) specify the probability of taking action
a in state s; that is

∑
a π(sa) = 1 for all s. Stationarity

refers to the fact that the action selection probabilities do
not change over time. In addition to stationarity, it is known
that furthermore there always exists a deterministic policy that
gives the optimal action in each state (i.e., simply a policy with
probabilities of 0 or 1) [3].

The main problem is to compute an optimal policy given
either (1) a complete specification of the environmental vari-
ables P and r (the “planning problem”), or (2) limited access
to the environment through observed states and rewards and
the ability to select actions to cause further state transitions
(the “learning problem”). The first version of the problem is
normally tackled by LP or DP methods, and the latter by RL
methods (although RL techniques can also be applied when
the environment is known).

III. LINEAR PROGRAMMING

To establish the dual form of representation, we begin by
briefly reviewing the LP approach for solving MDPs in the
discounted reward case. Here we assume we are given the
environmental variables P and r, the discount factor γ, and
the initial distribution over states, expressed by an |S| × 1
vector µ.

A standard LP for solving the planning problem can be
expressed as

min
v

(1− γ)µ�v subject to

v(s) ≥ r(sa) + γP(sa,:)v ∀s, a (1)

It is known that the optimal solution v∗ to this LP corresponds
to the value function for the optimal policy [3], [4]. In
particular, given v∗, the optimal policy can be recovered by

a∗(s) = arg max
a

r(sa) + γP(sa,:)v
∗

π∗
(sa) =

{
1 if a = a∗(s)
0 if a �= a∗(s) (2)

Note that µ and (1 − γ) behave as an arbitrary positive
vector and positive constant in the LP above and do not affect
the solution, provided µ > 0 and γ < 1 [7]. However, both
play an important and non-arbitrary role in the dual LP below

(as we will see) and we have chosen the objective in (1) in a
specific way to obtain the result below.

To derive the particular form of the dual LP we will exploit
below, first introduce a |S||A|×1 vector of Lagrange multipliers
d, and then form the Lagrangian of (1)

L(v,d) = (1− γ)µ�v + d�(r + γPv− Ξ�v), d ≥ 0

Here, Ξ is the |S|× |S||A| marginalization matrix. That is,
Ξ is constructed to simply ensure that the constraint Ξ�v ≥
r + γPv corresponds to the system of inequalities given in
the primal LP (1). In particular, Ξ is a sparse matrix built
by placing |S| row blocks of length |A| in a block diagonal
fashion, where each row block consists of all 1s.

Next, taking the gradient of the Lagrangian with respect to
v and setting the resulting vector to equal zero yields

Ξd = (1− γ)µ + γP�d

Substituting this constraint back into the Lagrangian eliminates
the v variable and results in the dual LP

max
d

d�r subject to

d ≥ 0, Ξd = (1− γ)µ + γP�d (3)

Interestingly, the following lemma establishes that any feasible
vector in (3) is guaranteed to be normalized, and therefore
the solution d∗ is always a joint probability distribution over
state-action pairs.

Lemma 1: If d satisfies the constraint in (3) then 1�d = 1.
Proof: First note that 1�d = 1�Ξd, where the first 1 is

|S||A|×1 and the second is |S|×1. Then one can determine
that 1�Ξd = (1 − γ)1�µ + γ1�P�d = (1− γ)1 + γ1 = 1.

By strong duality, we know that the optimal objective value
of this dual LP equals the optimal objective value of the
primal LP. Furthermore, given a solution to the dual d∗, the
optimal policy can be directly recovered by the much simpler
transformation [8]

π∗
(sa) =

d∗
(sa)∑

a d∗
(sa)

(4)

A careful examination of (3) shows that the joint distribution
d∗ does not actually correspond to the stationary state-action
visit distribution induced by π∗ (unless γ = 1), but it does
correspond to a distribution of discounted state-action visits
beginning in the initial state distribution µ.

What this dual LP formulation establishes is that the optimal
policy π∗ for an MDP can be recovered without any direct
reference whatsoever to the value function. Instead, one can
work in the dual, and bypass value functions entirely, while
working instead with normalized probability distributions over
state-action pairs. Although this observation seems limited
to the LP approach to solving the MDP planning problem,
in fact, we find that explicit representations of probability
distributions over state and state-action pairs can be used as a
dual alternative to classical DP methods, classical RL methods,
and even classical approximation methods.

IV. DYNAMIC PROGRAMMING

Dynamic programming methods for solving MDP evalua-
tion and planning problems are typically expressed in terms
of the primal value function. Here we demonstrate that all
of these classical algorithms have natural duals expressed in
terms of state and state-action probability distributions.

A. Policy Evaluation

First consider the problem of policy evaluation. Here we
assume we are given a fixed policy π, and wish to compute
either its value function or its distribution of discounted state
visits. Below we will find it convenient to re-express a policy
π by an equivalent representation as an |S|×|S||A| matrix Π
where

Π(s,s′a) =
{

π(sa) if s′ = s
0 if s′ �= s

That is, Π is a sparse matrix built by placing |S| row blocks
of length |A| in a block diagonal fashion, where each row
block gives the conditional distribution over actions specified
by π in a particular state s. Although this representation of Π
might appear unnatural, it is in fact extremely convenient: from
this definition, one can quickly verify that the |S|×|S| matrix
product ΠP gives the state to state transition probabilities
induced by the policy π in the environment P , and the |S||A|×
|S||A| matrix product PΠ gives the state-action to state-action
transition probabilities induced by policy π in P . We will
make repeated use of these two matrix products below.

In the primal view, the role of policy evaluation is to recover
the value function, which is defined to be the expected sum
of future discounted rewards

v =
∞∑

i=0

γi(ΠP)iΠr (5)

As is well known and easy to verify, this infinite series satisfies
a recursive relationship that allows one to recover v by solving
a linear system of |S| equations on |S| unknowns.

Lemma 2: v = Π(r + γPv), hence (I − γΠP)v = Πr
Proof: v = Πr + γΠPv

= Πr + γΠP (Πr + γΠPv)
= Πr + γΠPΠr + γ2(ΠP)2v
...

=
∑∞

i=0 γi(ΠP)iΠr

In the dual form of policy evaluation, one needs to recover
a probability distribution over states that has a meaningful
correspondence to the long run discounted reward achieved
by the policy. Such a correspondence can be achieved by
recovering the following probability distribution over states
implicitly defined by a linear system of |S| equations on |S|
unknowns.

c� = (1 − γ)µ� + γc�ΠP (6)

It can be easily verified that this defines a probability distri-
bution.

Lemma 3: If c satisfies (6) then c�1 = 1
Proof: Unrolling the recursion as in Lemma 2 yields

c� = (1 − γ)µ�
∞∑

i=0

γi(ΠP)i (7)

The result then follows from noting that (ΠP)i1 = 1 since
ΠP is row normalized.

Not only is c a proper probability distribution over states,
however, it also allows one to easily compute the expected
discounted return of the policy π.

Lemma 4: (1− γ)µ�v = c�Πr
Proof: Immediate by plugging in the series expressions

for v and c given in (5) and (7) respectively.
Thus, a dual form of policy evaluation can be conducted

by recovering c from (6). The expected discounted reward
obtained by policy π starting in the initial state distribution
µ can then be computed by c�Πr/(1 − γ) (Lemma 4). In
principle, this gives a valid form of policy evaluation in a
dual representation. However, below we will find that merely
recovering the state distribution c is inadequate for policy
improvement, since there is no apparent way to improve π
given access to c. Thus, we are compelled to extend the dual
representation to a richer representation that avoids an implicit
dependence on the initial distribution µ.

Consider the following definition for an |S|×|S| matrix

M = (1− γ)I + γMΠP (8)

The matrix M that satisfies this linear relation is similar to
c�, in that each row is a probability distribution (Lemma 5
below) and the entries M(s,s′) correspond to the probability
of discounted state visits to s′ for a policy π starting in state
s. Unlike c� however, M drops the dependence on µ and
obtains a close relationship with v (Theorem 1 below).

Lemma 5: M1 = 1 and c� = µ�M
Proof: Unrolling the recursion in (8) yields

M = (1 − γ)
∞∑

i=0

γi(ΠP)i (9)

The first result then follows from the fact that (ΠP)i1 = 1.
The second result is immediate from (6) and (8).

Interestingly, Lemma 5 shows that M is a variant of Dayan’s
“successor representation” proposed in [5], but here extended
to the infinite horizon discounted case. Moreover, not only is
M a matrix of probability distributions over states, it allows
one to easily recover the state values of the policy π.

Theorem 1: (1− γ)v = MΠr
Proof: The result follows easily from (5) and (9).

(1 − γ)v = (1− γ)
∞∑

i=0

γi(ΠP)iΠr

=

[
(1− γ)

∞∑
i=0

γi(ΠP)i

]
Πr

= MΠr

As with c above, a dual form of policy evaluation can be
conducted by recovering M from (8). Then at any time, an
equivalent representation to v can be recovered by MΠr/(1−
γ), as shown in Theorem 1.

B. State-Action Policy Evaluation

Although state based policy evaluation methods like those
outlined above are adequate for assessing a given policy, and
eventually for formulating DP algorithms, when we consider
RL algorithms below we will generally need to maintain joint
state-action based evaluations.

In the primal representation, the policy state-action value
function can be specified by an |S||A|×1 vector

q =
∞∑

i=0

γi(PΠ)ir (10)

This state-action value function satisfies a similar recursive
relation and is closely related to the previous state value
function.

Lemma 6: q = r + γPΠq
Proof: Unroll the recursion, as in Lemma 2.

Lemma 7: v = Πq
Proof:

Πq = Π
∞∑

i=0

γi(PΠ)ir

=
∞∑

i=0

γi(ΠP)iΠr = v

To develop a dual form of state-action policy evaluation,
we first introduce a probability distribution over state-action
pairs that has a useful correspondence to the long run expected
discounted rewards achieved by the policy. Consider the linear
system of |S||A| constraints on |S||A| unknowns

d� = (1− γ)µ�Π + γd�PΠ (11)

It can be verified that this defines a probability distribution.
Lemma 8: If d satisfies (11) then d�1 = 1

Proof: Unrolling the recursion as in Lemma 2 yields

d� = (1− γ)µ�Π
∞∑

i=0

γi(PΠ)i (12)

The result then follows from noting that (PΠ)i1 = 1 since
PΠ is row normalized, and also Π1 = 1.

Not only is d a proper probability distribution over state-
action pairs, it also allows one to easily compute the expected
discounted return of the policy π.

Lemma 9: (1− γ)µ�Πq = d�r
Proof: Immediate by plugging in the series expressions

for q and d given in (10) and (12) respectively.
Thus, a dual form of state-action policy evaluation can

be conducted by recovering d from (11) and computing the
expected discounted reward obtained by policy π starting in
the initial state distribution µ by d�r/(1 − γ) (Lemma 9).
However, once again we will find that merely recovering the

state-action distribution d is inadequate for policy improve-
ment, since there is no apparent way to improve π given access
to d. Thus, again, we have to extend the dual representation
to a richer representation that avoids an implicit dependence
on the initial distribution µ.

Consider the following definition for an |S||A| × |S||A|
matrix

H = (1− γ)I + γHPΠ (13)

The matrix H that satisfies this linear relation is similar to
d�, in that each row is a probability distribution (Lemma 10
below) and the entries H(sa,s′a′) correspond to the probability
of discounted state-action visits to (s′a′) for a policy π starting
in state-action pair (sa). Unlike d� however, H drops the
dependence on µ and obtains a close relationship with q
(Theorem 2 below).

Lemma 10: H1 = 1 and d� = µ�ΠH
Proof: Unrolling the recursion in (13) yields

H = (1 − γ)
∞∑

i=0

γi(PΠ)i (14)

The first result then follows from the fact that (PΠ)i1 = 1.
The second result is immediate from (11) and (13).

Not only is H a matrix of probability distributions over
state-action pairs, it allows one to easily recover the state-
action values of the policy π.

Theorem 2: (1− γ)q = Hr
Proof: The result follows easily from (10) and (14).

(1− γ)q = (1 − γ)
∞∑

i=0

γi(PΠ)ir

=

[
(1− γ)

∞∑
i=0

γi(PΠ)i

]
r = Hr

As with d above, a dual form of state-action policy evalu-
ation can be conducted by recovering H from (13). Then at
any time, an equivalent representation to q can be recovered
by Hr/(1− γ), as shown in Theorem 2.

Finally, one can relate the state and state-action matrices
defined above to each other.

Lemma 11: MΠ = ΠH
Proof:

MΠ = (1− γ)
∞∑

i=0

γi(ΠP)iΠ

= (1− γ)
∞∑

i=0

γiΠ(ΠP)i

= Π(1− γ)
∞∑

i=0

γi(ΠP)i = ΠH

Thus, to this point, we have developed new dual repre-
sentations that can form the basis for state based and state-
action based policy evaluation, respectively. These are defined
in terms of state distributions and state-action distributions,
and do not require value functions to be computed.

C. Policy Improvement

The next step is to consider mechanisms for policy improve-
ment, which combined with policy evaluation form policy iter-
ation algorithms capable of solving MDP planning problems.

The standard primal policy improvement update is well
known. Given a current policy π, whose state value function v
or state-action value function q have already been determined,
one can derive an improved policy π′ via the update

a∗(s) = arg max
a

q(sa)

= arg max
a

r(sa) + γP(sa,:)v (15)

π′
(sa) =

{
1 if a = a∗(s)
0 if a �= a∗(s) (16)

The subsequent “policy improvement theorem” verifies that
this update leads to an improved policy.

Theorem 3: Πq ≤ Π′q implies v ≤ v′

Proof: v = Π(r + γPv)
≤ Π′(r + γPv)
= Π′r + γΠ′Pv
= Π′r + γΠ′PΠ(r + γPv)
≤ Π′r + γΠ′PΠ′(r + γPv)
= Π′r + γΠ′PΠ′r + γ2(Π′P)2v
...

=
∞∑

i=0

γi(Π′P)iΠ′r = v′

This development can be parallelled in the dual by first
defining and analogous policy update and proving an analo-
gous policy improvement theorem. Given a current policy π,
the dual form of the policy update can be expressed in terms
of the state-action matrix H for π

a∗(s) = arg max
a

H(sa,:)r

= arg max
a

(1− γ)r(sa) + γP(sa,:)MΠr (17)

π′
(sa) =

{
1 if a = a∗(s)
0 if a �= a∗(s) (18)

In fact, by Theorem 2, the two policy updates given in (15)
and (17) respectively, must lead to the same resulting policy
π′. Therefore, not surprisingly, we have an analogous policy
improvement theorem in this case.

Theorem 4: ΠHr ≤ Π′Hr implies MΠr ≤M ′Π′r
Proof:

MΠr (19)

= ΠHr

≤ Π′Hr
= Π′ [(1− γ)I + γPMΠ] r
= (1− γ)Π′r + γΠ′PMΠr
= (1− γ)Π′r + γΠ′PΠHr

≤ (1− γ)Π′r + γΠ′PΠ′Hr

= (1− γ)Π′r + γΠ′PΠ′ [(1− γ)I + γPMΠ] r

= (1− γ)Π′r + (1 − γ)γΠ′PΠ′r + γ2(Π′P)2MΠr

= (1− γ)Π′r + (1 − γ)γΠ′PΠ′r + γ2(Π′P)2ΠHr

≤ (1− γ)Π′r + (1 − γ)γΠ′PΠ′r + γ2(Π′P)2Π′Hr
...

= (1− γ)
∞∑

i=0

γi(Π′P)iΠ′r = M ′Π′r

Thus, a dual policy iteration algorithm can be completely
expressed in terms of the dual representation M , incorporating
both dual policy evaluation (8) and dual policy improvement
(17) (see Algorithm 2) leading to an equivalent result to the
standard primal policy iteration algorithm based on (Lemma
2) and primal policy improvement (15)—see Algorithm 1.

D. Bellman Iteration

Finally, direct Bellman iteration algorithms can be devel-
oped based on the dual representations introduced above.
These iterations bypass the explicit representation of a policy
π, and instead attempt to update the evaluation of the optimal
policy implicitly.

In the primal case, Bellman iteration corresponds to the well
known state value iteration update

v′
(s) = max

a
q(sa)

= max
a

r(sa) + γP(sa,:)v (20)

In the dual representation, an analogous Bellman update can
be derived with respect to the state distribution matrix

M ′
(s,:) = (1− γ)1�

s + γP(sa∗,:)M (21)

where a∗ = argmaxa P(sa,:)MΠr and 1s is the vector of all
zeros except for a 1 in the sth position. Thus a dual form of
Bellman update need not refer to the primal value functions
at all. Nevertheless, these two updates (20) and (21) behave
equivalently by Theorem 1.

V. TEMPORAL DIFFERENCE LEARNING

Beyond demonstrating novel dual representations for DP,
we can also show how these representations can be used to
derive novel forms of RL algorithms as well. In this section
we don not assume the environmental variables P and r are
known, but instead assume that our access to the environment
is limited to the selection of actions and observation of state
transitions and rewards.

A. TD Evaluation

First, we address TD prediction methods for policy eval-
uation. In the primal case, the value of a given policy can
be estimated by the standard TD evaluation algorithm (see
Algorithm 3), with the update step given by

v(s) ← (1 − α)v(s) + α
[
r + γv(s′)

]
(22)

In the dual representation, an analogous TD evaluation
algorithm (see Algorithm 4) can be derived with respect to
the state distribution matrix. In this case, the update step is

M(s,:) ← (1− α)M(s,:) + α
[
(1− γ)1�

s + γM(s′,:)
]
(23)

B. Sarsa: On-policy TD Control

Extending these methods, one can then consider the on-
policy control problem. In the primal case, the Sarsa algo-
rithm (see Algorithm 5) approximates the action-value func-
tion of the policy being followed, and interleaves this with
policy improvement. The action-value update step is

q(sa) ← (1 − α)q(sa) + α
[
r + γq(s′a′)

]
In the dual representation, an analogous Sarsa algorithm

(see Algorithm 6) can be derived with respect to the state-
action distribution matrix. In this case, the distribution update
can be given by

H(sa,:) ← (1− α)H(sa,:) + α
[
(1− γ)1�

sa + γH(s′a′,:)
]

where 1sa is the vector of all zeros except for a 1 in the sath

position.

C. Q-Learning: Off-policy TD Control

Finally, we consider the off-policy control problem. In
the primal case, the Q-learning algorithm (see Algorithm 7)
directly approximates q∗, the optimal action-value function.
Here the state-action value update is

q(sa) ← (1− α)q(sa) + α
[
r + γ max

a′
q(s′a′)

]
In the dual representation, an analogous Q-Learning al-

gorithm (see Algorithm 8) can be derived with respect to
the state-action distribution matrix, by using the distribution
update

H(sa,:) ← (1− α)H(sa,:) + α
[
(1 − γ)1�

sa + γH(s′a′∗,:)

]
where a′∗ = argmaxa′ H(s′a′,:)r.

VI. SCALING UP VIA LINEAR APPROXIMATION

Scaling up LP, DP and RL algorithms to large sequential
decision making problem domains has received a great deal
of attention in recent years. The general goal is to generalize
across state or state-action space by exploiting the structure of
the problem with function approximation.

In the standard primal approach, usually referred to as
“value function approximation”, one approximates the desired
value function as a simple parameterized function of a set of
features (or basis functions). A common choice is to represent
the value function as a linear function of k basis functions

v̂ = Φw (24)

where Φ is a |S|×k matrix, and w is a k×1 vector of adjustable
weights.

Linear value function approximation has been applied to
derive approximate forms of LP, DP and RL algorithms. For

1. Initialization
v← arbitrary value
Π← arbitrary policy π

2. Policy Evaluation
Solve for v in v = Π(r + γPv)

3. Policy Improvement
policy-stable ← true
For each s ∈ S

best-action ← a s.t. π(sa) = 1
a∗(s) = arg maxa r(sa) + γP(sa,:)v

π(sa) =

{
1 if a = a∗(s)
0 if a �= a∗(s)

If best-action �= a∗(s), then policy-stable ← false
If policy-stable, then stop; else go to 2

Algorithm 1: The policy iteration algorithm

1. Initialization
M ← a matrix with rows that are probability distributions
Π← arbitrary policy π

2. Policy Evaluation
Solve for M in M = (1− γ)I + γMΠP

3. Policy Improvement
policy-stable ← true
For each s ∈ S

best-action ← a s.t. π(sa) = 1
a∗(s) = arg maxa(1− γ)r(sa) + γP(sa,:)MΠr

π(sa) =

{
1 if a = a∗(s)
0 if a �= a∗(s)

If best-action �= a∗(s), then policy-stable ← false
If policy-stable, then stop; else go to 2

Algorithm 2: The dual policy iteration algorithm

Initialize v arbitrarily and π to the policy to be evaluated

Repeat (for each episode):
Initialize s arbitrarily
Repeat (for each step of episode):

a← action given by π for s
Take action a and observe the reward r and next state s′

v(s) ← (1− α)v(s) + α
[
r + γv(s′)

]
s← s′

until s is terminal

Algorithm 3: The TD(0) algorithm

Initialize M arbitrarily and π to the policy to be evaluated

Repeat (for each episode):
Initialize s arbitrarily
Repeat (for each step of episode):

a← action given by π for s
Take action a and observe the reward r and next state s′

M(s,:) ← (1− α)M(s,:) + α
[
(1− γ)1�

s + γM(s′,:)
]

s← s′

until s is terminal

Algorithm 4: The dual TD(0) algorithm

Initialize q arbitrarily

Repeat (for each episode):
Initialize s arbitrarily
Choose a from s using policy derived from q(sa)

(e.g. ε-greedy)
Repeat (for each step of episode):

Take action a and observe the reward r and next state s′

Choose a′ from s′ using policy derived from q(s′a′)
(e.g. ε-greedy)
q(sa) ← (1− α)q(sa) + α

[
r + γq(s′a′)

]
s← s′ a← a′

until s is terminal

Algorithm 5: The Sarsa algorithm

Initialize H with rows that are probability distributions

Repeat (for each episode):
Initialize s arbitrarily
Choose a from s using policy derived from H(sa,:)

(e.g. ε-greedy where agreedy = arg maxa H(sa,:)r)
Repeat (for each step of episode):

Take action a and observe the reward r and next state s′

Choose a′ from s′ using policy derived from H(s′a′,:)
(e.g. ε-greedy)
H(sa,:) ← (1− α)H(sa,:) + α

[
(1− γ)1�

sa + γH(s′a′,:)
]

s← s′ a← a′

until s is terminal

Algorithm 6: The dual Sarsa algorithm

Initialize q arbitrarily

Repeat (for each episode):
Initialize s arbitrarily
Repeat (for each step of episode):

Choose a from s using policy derived from q(sa)

(e.g. ε-greedy)
Take action a and observe the reward r and next state s′

q(sa) ← (1− α)q(sa) + α
[
r + γ maxa′ q(s′a′)

]
s← s′

until s is terminal

Algorithm 7: The Q-learning algorithm

Initialize H with rows that are probability distributions

Repeat (for each episode):
Initialize s arbitrarily
Repeat (for each step of episode):

Choose a from s using policy derived from H(sa,:)

(e.g. ε-greedy where agreedy = arg maxa H(sa,:)r)
Take action a and observe the reward r and next state s′

H(sa,:) ← (1− α)H(sa,:) + α
[
(1− γ)1�

sa + γH(s′a′∗,:)

]
where a′∗ = arg maxa′ H(s′a′,:)r
s← s′

until s is terminal

Algorithm 8: The dual Q-learning algorithm

the LP approach, one can obtain an approximate primal LP
by plugging (24) into the exact primal LP (1):

min
w

(1 − γ)µ�Φw subject to

(Φw)(s) ≥ r(sa) + γP(sa,:)Φw ∀s, a (25)

Solving this LP yields set of combination weights w∗. The
approximate optimal solution v∗ can be extracted from Φw∗.

Linear value function approximation can also be applied to
the various TD algorithms for RL. For example, for the TD
estimate at the core of a significant class of RL algorithms
(22), one can compute a gradient based update to the linear
approximation

w ← w + α (r(s) + γv̂(s′) − v̂(s)) Φ�
(s,:) (26)

where α is a step size parameter.
Similarly, we could apply the idea of function approxi-

mation in the dual representation. Here we combine k basis
distributions instead of basis functions, and simply add the
constraint that the combination weights ω be a normalized
probability distribution, which ensures that the convex com-
bination of basis distributions yields a valid distribution. For
example, a joint probability distribution over state-action pairs
can be approximated as a convex combination of the basis
distributions via

d̂ = Ψω subject to ω ≥ 0, ω�1 = 1 (27)

where Ψ is a |S||A|×k nonnegative row normalized matrix,
and ω is a k×1 vector of nonnegative, normalized, adjustable
weights.

Just as in the primal case, linear distribution approximation
can be applied to derive approximate forms of dual LP, DP
and RL algorithms. For the dual LP approach, one can easily
obtain an approximate dual LP by plugging (27) into the dual
LP (3):

max
ω

ω�Ψ�r subject to ω ≥ 0, ω�1 = 1

ΞΨω ≤ (1 − γ)µ + γP�Ψω (28)

Similarly, the idea of exploiting the structure of the problem
with function approximation could be applied to both the
primal and dual forms of the temporal difference RL algo-
rithms TD evaluation, Sarsa, and Q-learning. In these cases,
the primal approximation parameters are normally adjusted
using gradient principles. In the dual, one proceeds similarly
by maintaining linear combinations of basis distributions, but
under the additional constraint of maintaining normalization.
Thus, the updates in the dual case are generally gradient-
projection updates, where one first determines the desired
gradient, but then projects this back to the subspace of normal-
ized vectors before taking a convex-combination update step.
Furthermore, as we saw for the dual TD algorithms above,
we need to approximate a matrix of (row-wise) probability
distributions, rather than just a single probability distribution
in a vector, as in (27). A matrix approximation that maintains
nonnegativity and row normalization can be achieved by

introducing two fixed matrices of basis distributions, Υ and
Γ, and one square combination matrix of adjustable weights,
W , combined in a product

M̂ = ΥWΓ subject to W ≥ 0, W1 = 1 (29)

where Υ is |S|×k, W is k×k, Γ is k×|S|, and all matrices are
nonnegative and row normalized, which is sufficient to ensure
that M̂ remains a nonnegative, row normalized approximation
to M .

Given this linear approximation architecture for the dual
representation M , a gradient based update for the dual TD
estimate (23) can be derived as

W ← W + αδ ∆ (30)

where α is a step size parameter; δ = 1 − γ + γM̂(s′,s′′) −
M̂(s,s′) and the k×k update matrix ∆ is the projection of the
gradient matrix onto the space of row normalized matrices,
obtained by solving the small auxiliary quadratic program
(QP)

min
∆

∑
ij

(
∆(i,j) −D(i,j)

)2
subject to

∆1 = 0, D = Υ�
(s,:)Γ

�
(:,s′) (31)

Note that the k× k matrix D gives the gradient update
direction for W , but since D is not necessarily row normalized,
we require the auxiliary QP to compute the nearest update ma-
trix ∆ that preserves row normalization. The update equation
(30) is guaranteed to maintain the row normalization of W
(although the step size α may need to be adjusted to maintain
nonnegativity), and this in turn is sufficient to guarantee that
the matrix approximation M̂ remains a valid matrix of row-
wise probability distributions.

Fortunately, the small quadratic program (31) has a closed
form solution. In fact, the solution to (31) can be written

∆ = D − 1
k

D(11�) (32)

where D = Υ�
(s,:)Γ

�
(:,s′). Note that ∆ minimizes the objective

in QP (31), because each row in is the projection of D onto
the constraint.

Lemma 12: ∆1 = 0
Proof: ∆1 = D1− 1

k
D(11�)1

= D1− 1
k

D1k

= D1−D1

= 0 (33)

Although the approximate dual TD update (30) is com-
putationally more expensive than the primal counterpart (26)
because of the projection, it has the advantage of keeping a
bounded representation, which automatically avoids the risks
of divergence that exist for primal approximation algorithms
[1], [9], [10].

VII. CONCLUSION

We investigated new dual representations for LP, DP and
RL algorithms based on maintaining probability distributions,
and explored connections to their primal counterparts based
on maintaining value functions. In particular, we derived the
original dual form representations from basic LP duality,
extended these representations to derive new forms of DP
algorithms and new forms of RL algorithms (TD evaluation,
Sarsa, and Q-learning), and furthermore demonstrated how
these dual representations can be scaled up to large domains by
introducing normalized linear approximations. Although many
of the results demonstrate equivalence between the primal
and dual approaches, some advantages seem apparent for
the dual approach, including an intrinsic robustness against
divergence, and the contribution of a novel perspective that
yields new forms of prior knowledge that can be exploited in
large domains.

REFERENCES

[1] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT
Press, 1998.

[2] M. Puterman, Markov Decision Processes: Discrete Dynamic Program-
ming. Wiley, 1994.

[3] D. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific, 1995, vol. 2.

[4] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming. Athena
Scientific, 1996.

[5] P. Dayan, “Improving generalisation for temporal difference learning:
The successor representation,” Neural Computation, vol. 5, pp. 613–
624, 1993.

[6] A. Ng, R. Parr, and D. Koller, “Policy search via density estimation,”
in Proceedings NIPS, 1999.

[7] D. de Farias and B. Van Roy, “The linear programming approach to
approximate dynamic programming,” 2001.

[8] S. Ross, Introduction to Probability Models, 6th ed. Academic Press,
1997.

[9] J. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference
learning with function approximation,” IEEE Transactions on Automatic
Control, vol. 42, no. 5, pp. 674–690, 1997.

[10] L. Baird, “Residual algorithms: Reinforcement learning with function
approximation,” in Proceedings ICML, 1995.

