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Abstract

We investigate novel, dual algorithms for dy-
namic programming and reinforcement learn-
ing, based on maintaining explicit represen-
tations of stationary distributions instead of
value functions. In particular, we investigate
the convergence properties of standard dy-
namic programming and reinforcement learn-
ing algorithms when they are converted to
their natural dual form. Here we uncover
advantages for the dual approach: dual up-
date algorithms, since they are based on es-
timating normalized probability distributions
rather than unbounded value functions, avoid
divergence even in the presence of function
approximation and off-policy updates. More-
over, dual update algorithms remain stable in
situations where standard value function es-
timation diverges.

1. Introduction

Algorithms for dynamic programming (DP) and re-
inforcement learning (RL) are usually formulated in
terms of value functions: representations of the long
run expected value of a state or state-action pair (Sut-
ton & Barto, 1998). The concept of value is so perva-
sive in DP and RL, in fact, that it is hard to imagine
that a value function representation is not a neces-
sary component of any solution approach. Yet, linear
programming (LP) methods clearly demonstrate that
the value function is not a necessary concept for solv-
ing DP/RL problems. In LP methods, value functions
only correspond to the primal formulation of the prob-
lem, and do not appear at all in the dual. Rather, in
the dual, value functions are replaced by the notion of
state (or state-action) visit distributions (Puterman,
1994; Bertsekas, 1995; Bertsekas & Tsitsiklis, 1996).
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It is entirely possible to solve DP and RL problems in
the dual representation, which offers an equivalent but
different approach to solving DP/RL problems with-
out any reference to value functions. Just such an
approach has been recently proposed in (Wang et al.,
2007), although no analysis of convergence properties
nor implementation of the ideas were investigated.

In this paper, we investigate the convergence proper-
ties of these newly proposed dual solution techniques
that are based on representing state visit and state-
action visit distributions instead of value functions.
Here we find that the standard convergence results
for value function based approaches also apply to the
dual case, even in the presence of function approxi-
mation and off-policy updating. The dual approach
appears to hold a significant advantage over the stan-
dard primal view of DP/RL in one major sense: since
the fundamental objects being represented are normal-
ized probability distributions (i.e. belong to a bounded
simplex), dual updates cannot diverge. In particu-
lar, we find that dual updates in fact converge (i.e.
avoid oscillation) in the very circumstance where pri-
mal updates can and often do diverge: gradient-based
off-policy updates with linear function approximation
(Baird, 1995; Sutton & Barto, 1998).

2. Preliminaries

We are concerned with the problem of optimal se-
quential decision making, and in particular, the prob-
lem of computing an optimal behavior strategy in a
Markov decision process (MDP). An MDP is defined
as a set of actions A, a set of states S, a |S||A|
by |S| transition matrix P , a reward vector r and
a discount factor γ. We address the discounted re-
ward MDP formulation where the optimality criterion
is maximizing the infinite horizon discounted reward
r0 +γr1 +γ2r2 + · · · =

∑∞

t=0 γtrt. It is known that an
optimal behavior strategy can always be expressed by
a stationary policy, which we represent as an |S||A|×1
vector π, whose entries π(sa) specify the probability
of taking action a in state s.
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The main problem is to compute an optimal policy
given either (1) a complete specification of the envi-
ronmental variables P and r (the “planning problem”),
or (2) limited access to the environment through ob-
served states and rewards and the ability to select ac-
tions to cause further state transitions (the “learning
problem”). The first problem is normally tackled by
LP or DP methods, and the second by RL methods.

3. Linear Programming

To establish the dual form of representation, we begin
by briefly reviewing the LP approach for solving MDPs
in the discounted reward case. Here we assume we are
given the environmental variables P and r, the dis-
count factor γ, and the initial distribution over states,
expressed by an |S| × 1 vector µ.

A standard LP for solving the planning problem can
be expressed as

min
v

(1 − γ)µ>v subject to

Ξ>v ≥ r + γPv (1)

Here, Ξ is the |S|×|S||A| marginalization matrix; it is a
sparse matrix built by placing |S| row blocks of length
|A| in a block diagonal fashion, where each row block
consists of all 1s. It is known that the optimal solu-
tion v∗ to this LP corresponds to the value function
for the optimal policy (Bertsekas, 1995; Bertsekas &
Tsitsiklis, 1996). In particular, given v∗, the optimal
policy can be recovered by (5).

The dual LP can be derived by using Lagrange multi-
pliers d, a |S||A|×1 vector

max
d

d>r subject to

d ≥ 0, Ξd = (1 − γ)µ + γP>d (2)

Interestingly, we proved that any feasible vector in (2)
is guaranteed to be normalized (Wang et al., 2007),
and therefore the solution d∗ is always a joint proba-
bility distribution over state-action pairs.

By strong duality, we know that the optimal objective
value of this dual LP equals the optimal objective value
of the primal LP. Furthermore, given a solution to the
dual d∗, the optimal policy can be directly recovered
by π

∗

(sa) = d∗

(sa)/
∑

a d∗

(sa) (Ross, 1997).

4. Dual Representations

Dynamic programming methods for solving MDP eval-
uation and planning problems are typically expressed
in terms of the primal value function. We demon-

strated that all of these classical algorithms have nat-
ural duals expressed in terms of state and state-action
probability distributions (Wang et al., 2007). Here we
will only highlight key observations for the analysis of
convergence in the following sections.

Policy Evaluation First consider the problem of
policy evaluation. Here we assume we are given a fixed
policy π, and wish to compute either its value function
or its distribution of discounted state visits. Below we
will find it convenient to re-express a policy π by an
equivalent representation as an |S|×|S||A| matrix Π
where

Π(s,s′a) =

{

π(sa) if s′ = s
0 if s′ 6= s

One can quickly verify that the matrix product ΠP
gives the state to state transition probabilities induced
by the policy π in the environment P , and that PΠ
gives the state-action to state-action transition prob-
abilities induced by policy π in P .

When we consider RL algorithms below we will gen-
erally need to maintain joint state-action based eval-
uations. In the primal representation, the policy
state-action value function can be specified by an
|S||A|×1 vector q =

∑∞

i=0 γi(PΠ)ir which satisfies
q = r + γPΠq.

To develop a dual form of state-action policy evalua-
tion, consider the linear system

d> = (1 − γ)ν> + γd>PΠ (3)

where ν is the initial distribution over state-action
pairs. Not only is d a proper probability distribu-
tion over state-action pairs, it also allows one to easily
compute the expected discounted return of the policy
π. However, recovering the state-action distribution
d is inadequate for policy improvement, We therefore
consider the following |S||A|×|S||A| matrix

H = (1 − γ)I + γHPΠ (4)

The matrix H that satisfies this linear relation is simi-
lar to d>, in that each row is a probability distribution
and the entries H(sa,s′a′) correspond to the probability
of discounted state-action visits to (s′a′) for a policy π

starting in state-action pair (sa). Unlike d> however,
H drops the dependence on µ, giving (1 − γ)q = Hr.
That is, given H we can easily recover the state-action
values of π.

Policy Improvement The next step is to consider
mechanisms for policy improvement, which, combined
with policy evaluation, form policy iteration algo-
rithms capable of solving MDP planning problems.
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Given a current policy π, whose state-action value
function q have already been determined, one can de-
rive an improved policy π

′ via the update

a∗(s) = arg max
a

q(sa) (5)

π
′

(sa) =

{

1 if a = a∗(s)
0 if a 6= a∗(s)

(6)

One can verify that this update leads to an improved
policy (Wang et al., 2007).

This development can be parallelled in the dual by first
defining and analogous policy update. Given a policy
π, the dual form of the policy update can be expressed
in terms of the state-action matrix H for π

a∗(s) = arg max
a

H(sa,:)r (7)

π
′

(sa) =

{

1 if a = a∗(s)
0 if a 6= a∗(s)

(8)

In fact, since (1 − γ)q = Hr, the two policy updates
given in (5) and (7) respectively, must lead to the same
resulting policy π

′. Further details are given in (Wang
et al., 2007).

5. DP algorithms and convergence

We first investigate whether dynamic programming
operators with the dual representations exhibit the
same (or better) convergence properties to their pri-
mal counterparts. These questions will be answered
in the affirmative, largely showing equivalence to the
standard primal cases. The real advantage of the dual
approach will arise below when we consider function
approximation. To keep the presentation efficient, we
will concentrate only on state-action based represen-
tations, q and H , respectively.

In the tabular case, dynamic programming algorithms
can be expressed by operators that are successively ap-
plied to current approximations (vectors in the primal
case, matrices in the dual), to bring them closer to a
target solution; namely, the fixed point of a desired
Bellman equation. We will focus on two standard op-
erators, the on-policy update and the max-policy up-
date.

For a given policy Π, the on-policy operator O is

Oq = r + γPΠq

OH = (1 − γ)I + γPΠH

for the primal and dual cases respectively. The goal
of the on-policy update is to bring current represen-
tations closer to satisfying the policy-specific Bellman
equations, q = r + γPΠq and H = (1− γ)I + γPΠH .

The max-policy operator M is different in that it is
neither linear nor defined by any reference policy, but
instead applies a greedy max update to the current
approximations

Mq = r + γPΠ∗[q]

MH = (1 − γ)I + γPΠ∗
r [H ], where

Π∗[q](s) = max
a

q(sa)

Π∗
r [H ](s) = max

a
[Hr](sa) = max

a

∑

s′a′

H(sa,s′a′)r(s′a′)

The goal of this greedy update is to bring the repre-
sentations closer to satisfying the optimal-policy Bell-
man equations q = r + γPΠ∗[q] and H = (1 − γ)I +
γPΠ∗

r [H ].

5.1. On-policy convergence

For the on-policy operator O, convergence to the Bell-
man fixed point is easily proved in the primal case, by
establishing a contraction property of O with respect
to a specific norm on q vectors. Although these results
are already well known, we repeat some brief details
that will be helpful later.

First, to establish contraction, one defines a weighted
2-norm with weights given by the stationary distribu-
tion determined by the policy Π with respect to the
transition model P . Let z ≥ 0 be a vector such that
z>PΠ = z>; that is, z is the stationary state-action
visit distribution for PΠ. (Note that z is not the same
as the initial distribution ν nor the discounted station-
ary distribution d.) Let Z = diag(z). Then define the
norm

‖q‖z
2 = q>Zq =

∑

(sa) z(sa)q
2
(sa)

Crucially, for this norm, a state-action transition is not
an expansion.

Lemma 1 ‖PΠq‖z ≤ ‖q‖z (Tsitsiklis & Van Roy,
1997)

Proof: The result follows from Jensen’s inequality

‖PΠq‖z
2

=
∑

(sa)

z(sa)





∑

(s′a′)

[PΠ](sa,s′a′)q(s′a′)





2

≤
∑

(sa)

z(sa)

∑

(s′a′)

[PΠ](sa,s′a′)q
2
(s′a′)

=
∑

(s′a′)

q2
(s′a′)

∑

(sa)

[PΠ](sa,s′a′)z(sa)

=
∑

(s′a′)

q2
(s′a′)z(s′a′) = ‖q‖z

2
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This allows one to easily recover the fact that O is in
fact a contraction with respect to ‖·‖z in the primal
case.

Lemma 2 ‖Oq1 −Oq2‖z ≤ γ‖q1 − q2‖z (Tsitsiklis
& Van Roy, 1997)

Proof:
‖Oq1 −Oq2‖z = ‖r + γPΠq1 − r − γPΠq2‖z

= γ‖PΠ(q1 − q2)‖z ≤ γ‖q1 − q2‖z

by Lemma 1.

By the contraction map fixed point theorem (Bert-
sekas, 1995) there exists a unique fixed point of O in
the space of vectors q. Therefore, repeated applica-
tions of the on-policy operator converge to a vector
qΠ such that qΠ = OqΠ; that is, qΠ satisfied the pol-
icy based Bellman equation.

For the dual representation H , we can establish con-
vergence of the on-policy operator in a similar fashion,
by first defining an approximate weighted norm over
matrices and then verifying that O is a contraction
with respect to this norm. Define

‖H‖z,r
2

= ‖Hr‖z
2

It is easily verified that this definition satisfies the
property of a pseudo-norm, and in particular, satis-
fies the triangle inequality. This weighted 2-norm is
defined with respect to the stationary distribution z,
but also the reward vector r. Thus, the magnitude of
a row normalized matrix is determined by the magni-
tude of the weighted reward expectations it induces.

Interestingly, this definition allows us to establish the
same non-expansion and contraction results as the pri-
mal case. For example, state-action transitions remain
a non-expansion.

Lemma 3 ‖PΠH‖z,r ≤ ‖H‖z,r

Proof: ‖PΠH‖z,r = ‖PΠ(Hr)‖z

≤ ‖Hr‖z = ‖H‖z,r

by Lemma 1.

Moreover, the on-policy operator is a contraction with
respect to ‖·‖z,r.

Lemma 4 ‖OH1 −OH2‖z,r ≤ γ‖H1 − H2‖z,r

Proof: ‖OH1 −OH2‖z,r = γ‖PΠ(H1 − H2)‖z,r

≤ γ‖H1 − H2‖z,r

by Lemma 3.

Thus, once again by the contraction map fixed point
theorem there exists a fixed point of O among row
normalized matrices H , and repeated applications of
O converge to a matrix HΠ such that OHΠ = HΠ; that
is, HΠ satisfies the policy based Bellman equation for
dual representations.

This argument shows that on-policy dynamic pro-
gramming converges in the dual representation, with-
out making direct reference to the primal case. We
will use these results below. A simpler argument would
have been to reduce the dual to the primal case, which
we do now for the max operator.

5.2. Max-policy convergence

The strategy for establishing convergence for the non-
linear max operator is similar to the on-policy case,
but involves working with a different norm. Instead
of considering a 2-norm weighted by the visit proba-
bilities induced by a fixed policy, one simply uses the
max-norm in this case: ‖q‖∞ = max(sa) q(sa). The
contraction property of the M operator with respect
to this norm can then be easily established in the pri-
mal case.

Lemma 5 ‖Mq1 −Mq2‖∞ ≤ γ‖q1 − q2‖∞ (Bert-
sekas, 1995)

The proof of this result is straightforward, but omit-
ted for space. (Bertsekas, 1995). As in the on-policy
case, contraction suffices to establish the existence of a
unique fixed point of M among vectors q, and that re-
peated application of M converges to this fixed point
q∗ such that Mq∗ = q∗.

To establish convergence of the max operator in the
dual representation, we will simply reduce the dual to
the primal case. Recall that there is a many to one
relationship between the dual and primal representa-
tions, given by Hr = (1 − γ)q. To prove convergence
of MH , we simply appeal to this relationship.

Lemma 6 If (1−γ)q = Hr, then (1−γ)Mq = MHr.

Proof: (1−γ)Mq = (1−γ)(r+γPΠ∗[q])

= (1 − γ)r + γPΠ∗[Hr] = MHr

where the second equality holds since (1 − γ)q(sa) =
[Hr](sa) for all (sa) by assumption.

Thus, given convergence of Mq to a fixed point
Mq∗ = q∗, the same must also hold for MH . How-
ever, one subtlety here is that the dual fixed point is
not unique. This is not a contradiction because the
norm on dual representations ‖·‖z,r is in fact just a
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pseudo-norm, not a proper norm. That is, the rela-
tionship between H and q is many to one, and sev-
eral matrices can correspond to the same q. These
matrices form a convex subspace (in fact, a simplex),
since if H1r = (1 − γ)q and H2r = (1 − γ)q then
(αH1 + (1 − α)H2)r = (1 − γ)q for any α, where
furthermore α must be restricted to 0 ≤ α ≤ 1 to
maintain nonnegativity. The simplex of fixed points
{H∗ : MH∗ = H∗} is given by matrices H∗ that sat-
isfy H∗r = (1 − γ)q∗.

6. DP with function approximation

Primal and dual updates exhibit strong equivalence in
the tabular case, as they should. However, when we
begin to consider approximation, differences emerge.
We next consider the convergence properties of the
dynamic programming operators in the context of lin-
ear basis approximation. We focus on the on-policy
case here, because, famously, the max operator does
not always have a fixed point when combined with ap-
proximation in the primal case (de Farias & Van Roy,
2000), and consequently suffers the risk of divergence
(Baird, 1995; Sutton & Barto, 1998).

Note that the max operator cannot diverge in the dual
case, even with basis approximation, by boundedness
alone; although the question of whether max updates
always converge in this case remains open. Here we
establish that a similar bound on approximation error
in the primal case can be proved for the dual approach
with respect to the on-policy operator.

In the primal case, linear basis approximation proceeds
by fixing a small set of bases, forming a |S||A|×k ma-
trix Φ, where k is the number of basis features. One
then maintains the constraint that q ∈ col span(Φ);
i.e. that q can be expressed by a linear combination of
bases in Φ. Unfortunately, there is no reason to expect
Oq or Mq to stay in the column span of Φ, so a best
approximation is required. The subtlety resolved by
(Tsitsiklis & Van Roy, 1997) is to identify a particular
form of best approximation—weighted least squares—
that ensures convergence is still achieved when com-
bined with the on-policy operator O.

We summarize a few details that will be useful be-
low. First, the best least squares approximation is
computed with respect to the distribution z. The map
from a general q vector onto its best approximation in
col span(Φ) is defined by another operator, P , which
projects q into the column span of Φ

Pq = argmin
q′∈col span(Φ)

‖q− q′‖2

= Qq for Q = Φ(Φ>ZΦ)−1Φ>Z

The important property of this weighted projection is
that it is a non-expansion in ‖·‖z.

Lemma 7 ‖q‖z
2 = ‖Pq‖z

2 + ‖q − Pq‖z
2 (Tsitsiklis

& Van Roy, 1997)

Immediately from this generalized Phythagorean the-
orem, which is reasonably easy to show, one obtains
the non-expansion property ‖Pq‖z ≤ ‖q‖z.

Approximate dynamic programming then proceeds by
composing the two operators—the on-policy update O
with the subspace projection P—essentially comput-
ing the best representable approximation of the one
step update. This combined operator is guaranteed to
converge, since composing a non-expansion with a con-
traction is still a contraction. In fact, Lemma 2 can
be re-established for the composition PO. Thus, by
the contraction map fixed point theorem (Bertsekas,
1995) a fixed point must exist and is unique. Let
q+ = POq+ be the fixed point of the combined oper-
ator. Unfortunately, the fixed point q+ is not guaran-
teed to be the best representable approximation of O’s
fixed point qΠ. Nevertheless, a bound can be proved
on how close the altered fixed point q+ is to the best
representable approximation PqΠ of O’s fixed point.

Lemma 8 ‖q+ − qΠ‖z ≤ 1
1−γ

‖qΠ − PqΠ‖z (Tsitsik-

lis & Van Roy, 1997)

Proof: First note that ‖q+−qΠ‖z =
‖q+−PqΠ+PqΠ−qΠ‖z ≤ ‖q+−PqΠ‖z +
‖PqΠ−qΠ‖z. Next notice that ‖q+−PqΠ‖z =
‖POq+−PqΠ‖z ≤ ‖Oq+−qΠ‖z = ‖Oq+−OqΠ‖z ≤
γ‖q+−qΠ‖z by Lemma 2. Thus (1−γ)‖q+−qΠ‖z ≤
‖PqΠ−qΠ‖z .

Linear function approximation in the dual case is a
bit more complicated because here we are represent-
ing matrices, not vectors, and moreover the matrices
need to satisfy row normalization and nonnegativity
constraints. Nevertheless, a very similar approach to
the primal case can be successfully applied.

To begin, we assume the dual matrix H can be repre-
sented as a linear combination of basis matrices Υ and
Γ, such that H = ΥWΓ, where Υ is a fixed |S||A| × k
matrix of row normalized basis distributions, Γ is a
fixed k × |S||A| matrix of row normalized basis distri-
butions, and W is a k × k, row normalized matrix of
adjustable weights. It is easy to verify that the con-
straints Υ, W, Γ ≥ 0 and Υ1 = 1, W1 = 1, Γ1 = 1

implies H ≥ 0 and H1 = 1. Thus the space of repre-
sentable matrices is a k2 dimensional simplex spanned
by the two sets of basis distributions Υ and Γ.

As in the primal case, there is no reason to expect
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that an update like OH should keep the matrix in the
simplex. Therefore, we need to construct a projection
operator that determines the best representable ap-
proximation to OH . One needs to be careful to define
this projection with respect to the right norm how-
ever, to ensure convergence. Here the pseudo-norm
‖·‖z,r defined in Section 5.1 suits this purpose. Define
the weighted projection operator P over matrices

PH = argmin
H′∈simplex(Υ,Γ)

‖H − H ′‖z,r

Owing to the constraints, this projection has to be
computed by a quadratic program, rather than just
simply solving a linear system

Ŵ = argminW ≥ 0, W1 = 1‖(H − ΥWΓ)r‖z
2

and then forming the projected matrix Ĥ = ΥŴΓ.
A key result is that this projection operator is a non-
expansion with respect to the pseudo-norm ‖·‖z,r.

Theorem 1 ‖PH‖z,r ≤ ‖H‖z,r

Proof: The easiest way to prove the theorem is to ob-
serve that the projection operator P is really a compo-
sition of three orthogonal projections: first, onto the
linear subspace span(Υ, Γ), then onto the subspace of
row normalized matrices span(Υ, Γ) ∩ {H : H1 = 1},
and finally onto the space of nonnegative matrices
span(Υ, Γ) ∩ {H : H1 = 1} ∩ {H : H ≥ 0}. Note
that the last projection into the nonnegative halfspace
is equivalent to a projection into a linear subspace for
some hyperplane tangent to the simplex.

Each one of these projections is a non-expansion in
‖·‖z,r in the same way: a generalized Pythagorean the-
orem holds. Consider just one of these linear projec-
tions P1.

‖H‖z,r
2 = ‖P1H + H − P1H‖z,r

2

= ‖P1Hr + Hr− P1Hr‖z
2

= ‖P1Hr‖z
2

+ ‖Hr− P1Hr‖z
2

= ‖P1H‖z,r
2
+ ‖H − P1‖z,r

2

where the third equality follows from Lemma 7. Since
the overall projection is just a composition of non-
expansions, it too must be a non-expansion.

As in the primal, we can implement approximate dy-
namic programming by composing the on-policy up-
date O with the projection operator P . Since O is a
contraction and P a non-expansion, PO must also be
a contraction, and it then follows that it has a fixed
point. Note that, as in the tabular case, this fixed

point is only unique up to Hr-equivalence, since the
pseudo-norm ‖·‖z,r does not distinguish H1 and H2

such that H1r = H2r. Here too, the fixed point is ac-
tually a simplex of equivalent solutions. For simplicity,
we denote the simplex of fixed points for PO by some
representative H+ = POH+.

Finally, we can recover an approximation bound that
is analogous to the primal bound, which bounds the
approximation error between H+ and the best rep-
resentable approximation to the on-policy fixed point
HΠ = OHΠ.

Theorem 2 ‖H+ − HΠ‖z,r ≤
1

1−γ
‖H+ − PHΠ‖z,r

Proof: In fact, the proof follows identical steps to the
proof of Lemma 8, using the pertinent pseudo-norm
and projection operators defined for the dual.

To compare the primal and dual results, note that
despite the similarity of the bounds, the projection
operators do not preserve the tight relationship be-
tween primal and dual updates. That is, even if
(1 − γ)q = Hr and (1 − γ)(Oq) = (OH)r, it is not
true in general that (1 − γ)(POq) = (POH)r. The
most obvious difference comes from the fact that in
the dual, the space of H matrices has bounded diam-
eter, whereas in the primal, the space of q vectors has
unbounded diameter in the natural norms. Automat-
ically, then, the dual updates cannot diverge, even us-
ing compositions with the max operator PM; yet this
update potentially diverges in the primal. For conver-
gent compositions, like PO, even though the bound is
not stronger, below we tend to see smaller approxima-
tion errors in the dual.

7. Gradient operators

In large scale problems one does not normally have
the luxury of computing full dynamic programming
updates that evaluate complete expectations over the
entire domain. Moreover, full least squares projections
are usually not practical to compute either. The main
intermediate step toward practical algorithms is to for-
mulate gradient step operators that only approximate
complete projections. Conveniently, gradient update
and projection operators are independent of the on-
policy and max operators and can be applied in either
case. However, as we will see below, the gradient up-
date operator causes significant instability in the max-
policy update, to the degree that divergence is a com-
mon phenomenon (much more so than with full projec-
tions). Composing approximation with max operators
in the primal case is very dangerous! All other opera-
tor combinations are much better behaved in practice,
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and even those that are not known to converge usually
behave reasonably. Unfortunately, composing the gra-
dient step with max updates is one of the most com-
mon algorithms attempted in reinforcement learning
(Q-learning with function approximation), while also
being the most unstable.

Gradient step updates are easily derived from a given
projection operator. In this case, one always works
directly with weight vectors w and weight matrices
W , rather than complete q vectors or H matrices.
For the primal case, the projection operator is equiv-
alent to solving for a vector w of basis combina-
tion weights that minimizes the least square objective
1
2‖Φw − qtarg‖z

2
The gradient of the objective is

∇w = Φ>(Φw − qtarg) = Φ>(q − qtarg)

The gradient operator can be defined with respect to
a fixed step size α by

Gq = Φ(w − α∇w) = q − αΦΦ>(q − qtarg)

The target vector qtarg is determined by the underly-
ing dynamic programming update, so for example

GOq = q− αΦΦ>(q −Oq)

GMq = q− αΦΦ>(q −Mq)

In our experiments below, the former always con-
verges, whereas the latter diverges in at least half of
our experiments.

In a real reinforcement learning scenario, these gra-
dient update operators are applied pointwise with a
single sampled transition, in place of a full expecta-
tion with respect to PΠ, yielding the more familiar
looking update

∇w = Φ>

(sa,:)(q(sa) − qtarg (sa))

Gq(sa) = Φ(sa,:)(w − α∇w)

In the dual representation, one can derive a gradient
update operator in a similar way, except that it is im-
portant to maintain the constraints on the weight pa-
rameters W . As in the primal case, we start by con-
sidering the projection objective

1

2
‖ΥWΓ − Htarg‖z,r

2 s.t. W ≥ 0, W1 = 1

The unconstrained gradient can be derived to be

∇W = Υ>ZΥWΓrr>Γ> − Υ>ZHtargrr
>Γ>

= Υ>Z(H − Htarg)rr>Γ>

However, this gradient step cannot be followed directly
because we need to maintain the constraints. The con-
ttraint W1 = 1 can be maintained by first projecting
the gradient onto it, obtaining

∆W = ∇W − 1
k
∇W11>

which satisfies ∆W1 = 0. The gradient operator can
then be defined by

GH = Υ(W − α∗∆W )Γ

where the step size α∗ is possibly reduced to α∗ ≤ α
to maintain W − α∗∆W ≥ 0. The pointwise sample
version of this update, suitable for RL problems, can
be derived from the gradient update, but we do not
have space to explore the resulting algorithm.

8. Experimental results

To investigate the effectiveness of the dual representa-
tions, we conducted experiments on randomly synthe-
sized MDPs, on the star problem, and on the moun-
tain car problem. The star problem is perhaps the
most-cited example of a problem where Q-learning
with function approximation (Baird, 1995) diverges,
and the mountain car domain has been prone to diver-
gence with some primal representations as well (Boyan
& Moore, 1995). We too have observed the divergence
of state-action value functions when using gradient-
based updates with the max operator.

For the synthesized MDPs, we generated the dynam-
ics and reward function of the MDPs randomly. We
also choose random basis functions and basis distribu-
tions for projection since our goal is to investigate the
convergence of the algorithms without carefully craft-
ing features. We observed consistent convergence us-
ing dual representations with various random problems
with different states, actions and bases. Here we only
reported the plots of random MDPs with 100 states, 5
actions, and 10 bases, averaging over 500 repeats.

The star problem has 7 states and 2 actions. Baird
stated that Q-learning with linear function approxi-
mation can diverge on this problem even when train-
ing on a fixed stochastic policy. We observed diver-
gence in the primal case when using gradient updates,
but all dual representation methods converged. The
mountain car domain has continuous state and action
spaces, which we discretize with a simple grid, result-
ing in an MDP with 222 states. In the primal repre-
sentations with function approximation, we randomly
generated basis functions. In the dual representations,
we randomly picked the basis distributions.

For each problem domain, we set a finite horizon T .
For on-policy algorithms, we measure the difference
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Figure 1. Behavior of the various update operators on different problems. For the O operator, plots show the distance
from q or H to the fixed point determined by the policy. For the M operator, plots show the distance from the current
state-action value q (either explicitly represented or implied by H) to the optimal function q∗.

between the values generated by the algorithms and
those generated by the fixed-point distribution. For
max-policy algorithms, we measure the difference be-
tween the values generated by the resulting policy and
the values of the optimal policy. The step size for gra-
dient updates was 0.1 for primal representations and
10000 for dual representations. The initial values of
state-action value functions (q) and state-action visit
distributions (H) are chosen randomly. The discount
factor was set to γ = 0.9. In all cases, algorithms using
dual representations converged.

9. Conclusion

We investigated new dual representations for LP, DP
and RL algorithms based on maintaining probability
distributions, and explored connections to their primal
counterparts based on maintaining value functions. In
particular, we derived the original dual form represen-
tations from basic LP duality, extended these repre-
sentations to derive new forms of DP algorithms. and
demonstrated how this approach can be scaled up via
normalized linear approximations. Although many of
the results demonstrate equivalence between the pri-
mal and dual approaches, some advantages seem ap-
parent for the dual approach, including an intrinsic ro-
bustness against divergence, and the contribution of a
novel perspective that yields new forms of prior knowl-
edge that can be exploited in large domains.
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