This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Search
Skip to Search Results- 2Ensemble Kalman filter
- 2Inequality constraints
- 1Constrained estimation
- 1Ensemble Kalman smoother
- 1Gaussian mixture model
- 1Moving horizon estimation
-
Fall 2018
The objective of this work is to study the problems that arise in state estimation for severely nonlinear systems. In practice, many processes are nonlinear, accompanied by uncertain parameters. The complexity of the model causes the probability density function (PDF) of the states to deviate...
-
Spring 2013
Parameter estimation of a dynamic system is an important task in process systems engineering. The utilization of an augmented system offers the approach of estimating process states and parameters simultaneously. In practice, the parameters often satisfy certain constraints which should be...