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Abstract

The objective of this work is to study the problems that arise in state estimation for severely

nonlinear systems. In practice, many processes are nonlinear, accompanied by uncertain pa-

rameters. The complexity of the model causes the probability density function (PDF) of the

states to deviate from a Gaussian distribution. This presents a challenge for Kalman-based

state estimators such as the extended Kalman filter, since they model the state PDF as

Gaussian. In order to achieve more accurate estimation, the modeling of the state distribu-

tion needs to be improved. The first problem is to develop an estimator for the state PDF of

arbitrary distribution. In this work, we develop an estimator based on a Gaussian mixture

model (GMM) coupled with the ensemble Kalman filter (EnKF) specifically for estimation

with multimodal state distributions.

The second problem is that the conventional recursive state estimation procedures can-

not handle inequality constraints on the states. Therefore, they might result in physically

meaningless or non-convergent estimates, especially when the initial values are poor. The

incorporation of constraints can help improve the estimation significantly. In this work,

we develop a novel state estimation technique to incorporate inequality constraints for the

case of Gaussian filters. Furthermore, we consider the constrained estimation for the case

where the state PDF cannot be approximated with a Gaussian distribution. To this end,

we develop a framework to incorporate the inequality constraints for the GMM based EnKF

mentioned in the first problem.

The filtering provides the estimates by assimilating the history data. Such estimation
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can be further improved by using the smoothing technique which assimilate all the available

data. Therefore the third problem is to develop a smoothing framework for the systems

whose state PDF is non-Gaussian. In this work, we extend the existing ensemble Kalman

smoother (EnKS) to deal with non-Gaussian systems by combining it with the GMM model.

The thesis focuses on three aspects in data assimilation problem. The first is filtering

problem for non-Gaussian systems. The second is smoothing problem for non-Gaussian

systems. The third is the incorporation of inequality constraints into estimation. The

thesis provides the theoretical deduction of our proposed approaches as well as practical

applications.
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Chapter 1

Introduction

1.1 Background and motivation

The problem of state estimation arises when we try to understand the inside information of

a black-box system that is too costly or impossible to measure physically. The acquirement

of this hidden information, referred to as the states, is crucial for engineers to better control

and maintain the systems. The formulation of the Bayes’ theory is suitable for deriving

the states information based upon the measurements available from the system. Over the

years, the Bayes’ theory has been successfully applied to develop the stochastic online state

estimators. Among the Bayesian estimators, the Kalman filter is definitely the milestone

of state estimation area. It is the optimal filter for linear systems with Gaussian noises,

however, its performance can be severely compromised for the reasons including:

(1) Severe nonlinearity of the model equations;

(2) High dimensionality of the state space;

(3) Non-Gaussian shape of the state distribution.

The weakness of the Kalman filter leads to the development of the nonlinear Bayesian

estimation algorithms to provide the most appropriate estimator for systems with specific

requirements. If the nonlinearity is our primary concern, the extended Kalman filter which

1



is based on the first-order Taylor series expansion is the most straightforward resort. If the

nonlinearity is so severe that the first-order Taylor expansion is not a sufficient approxima-

tion, the unscented Kalman filter could be a better option. The ensemble Kalman filter can

deal with system that is not only nonlinear, but also high dimensional. All the three filters

mentioned are based on the assumption that the state distribution is assumed Gaussian. If

we relax the limit of the system even more to non-Gaussian state distribution, the particle

filter so far is the best option. Although the particle filter can give all the values of the

moments of the posterior distribution, it cannot provide an analytic expression for posterior

probability density function (PDF). One of the motivations of this thesis is to provide an

estimator developed under the Bayesian framework for nonlinear and non-Gaussian systems.

This estimator is expected to overcome some of the inherent shortcomings of the particle

filter, such as non-robust and degeneracy problem.

In state estimation problems, the lack of knowledge of the model parameters or the

operating conditions could result in estimation which might be physically meaningless, such

as negative flow rate etc. Besides many real processes might have bounds on some of the

states. The incorporation of the constraints on the states can help bring the estimation

closer to the true value and eliminate the unfeasible estimation. Two issues need to be taken

into consideration for constrained state estimation problem. One is the formulation of the

constraints. Most constraints can be formulated as an equality or inequality constraints,

which is the focus of the existing work. In some cases, the constraints are nonlinear. The

second is how to enforce the constraints, especially how to integrate it into the Bayesian

estimation framework. The most intuitive technique of implementing the constraints is

through the clipping method by simply getting rid of the part of the unconstrained solution

which violates the constraints. A more sophisticated approach is to use the optimization-

based method to include the linear or nonlinear constraints. The design of optimization

has to be carefully designed for different systems and estimators. Another motivation of

this thesis is to develop a constrained state estimation technique for the nonlinear and non-
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Gaussian systems.

1.2 Data assimilation

1.2.1 Recursive Bayesian estimation

The goal of data assimilation is to track the performance of a physical process using the its

measurable outputs. Two elements are vital in data assimilation: a model to describe the

dynamics of the process as well as observations. The state space model is the most commonly

used representation of the true physical process. The transition of the states x in the state

space model is described as follows:

dx

dt
= f(x, t) (1.1)

Eq.(1.1) describes the evolution of the states of a deterministic system modeled by with

function f(x, t). In reality, the process is influenced by so many factors that f(x, t) can

not include them all. Therefore a stochastic model is a better approximation to account for

the discrepancy between the true state evolution and the model prediction. Such stochastic

model is given by:

dx

dt
= f(x, t) + w(x, t) (1.2)

where w(x, t) is usually referred to as system noise or model error.

Besides the state transition function f(x, t), the state space model also includes a mea-

surement or observation model. We have its stochastic formulation given by:

y(t) = h(x, t) + v(x, t) (1.3)

This measurement model h(.) builds a relationship between the state space and the measure-

ment space, which enables the observations to correct the state in return when it diverges
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from the true trajectory.

The stochastic feature of the state space model leads to state estimation with uncertainty

which can only be described using the probabilistic formulation instead of a point value.

Definition 1.1(Probabilistic formulation of the state space model)

Assuming the states follow the Markov model, a stochastic state space model can be formu-

lated in the following way:

x0 ∼ p(x0)

xk ∼ p(xk|xk−1)

yk ∼ p(yk|xk)

The purpose of the state estimation is to obtain the full joint distribution p(x0:k|y1:k),

where x0:k = {x0, . . . , xk} and y1:k = {y1, . . . , yk}. With a straightforward Bayes’ rule, we

get:

p(x0:k|y1:k) =
p(y1:k|x0:k)p(x0:k|y1:k−1)

p(y1:k)
(1.4)

The biggest disadvantage of this joint distribution is the computation increases dramatically

with the time steps since the dimensionality increases with the time steps. Eventually it

will become computationally intractable. Therefore a recursive Bayes’ framework to only

compute the marginal distribution p(xk|y1:k) online. Apply the Bayes’ rule on p(xk|y1:k), we

get:

p(xk|y1:k) =
p(yk|x1:k, y1:k−1)p(xk|y1:k−1)

p(yk|y1:k−1)
(1.5)

∝ p(yk|xk)p(xk|y1:k−1) (1.6)

The denominator p(yk|y1:k−1) =
∫

p(yk|xk)p(xk|y1:k−1)dxk is a constant, denoted by Ck.

The following two properties have been applied to derive from Eq.(1.5) to Eq.(1.6).

Markov Property of the states:
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By assuming the state sequence follows the Markov property, it means that the state at

current time step xk only depends on the state at the previous time step and is independent

of the states and measurements before k − 1. Furthermore, xk is also independent of the

states and measurements beyond k + 1.

p(xk|x1:k−1, y1:k−1) = p(xk|xk−1)

p(xk|xk+1:T , yk+1:T ) = p(xk|xk+1)

Independence of measurements:

The other assumption is that the measurement at current time step yk is conditionally

independent of the states and measurements at all previous steps:

p(yk|x1:k, y1:k−1) = p(yk|xk) (1.7)

It has to be noted that Eq.(1.6) is called a Bayesian filter. The general state estimation

problem can be classified into the following three categories.

Definition 1.2:(Filter, smoother and predictor)

For a posterior distribution p(xk|y1:T ) obtained through Bayes’ rule:

• If k < T , the estimator is called a smoother, which uses the future measurements to

update the current states.

• If k = T , the estimator is called a filter, which uses all the measurements up to the

current time step to update the current states.

• If k > T , the estimator is called a predictor, which predicts the future states using all

the measurements up to the current time step.

Eq.(1.6) explains how the Bayesian inference is performed for a filter and also presents the

recursive structure of Bayesian filter. The term p(xk|y1:k−1) is called a predicted distribution
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of the state at time step k and p(yk|xk) is called a likelihood term to update the predicted

distribution given the measurements at time step k. In conclusion, we have the recursive

estimation algorithms performed in the following description.

Recursive Bayesian filter:

• Initialization: When k=0, the filter starts from a prior distribution p(x0).

• Prediction: The filter calculates the predicted distribution p(xk|y1:k−1) using the fol-

lowing Chapman-Kolmogorov equation [21]:

p(xk|y1:k−1) =

∫

p(xk|xk−1)p(xk−1|y1:k−1)dxx−1 (1.8)

• Update: The filter updates the predicted distribution by incorporating the latest mea-

surement using the likelihood distribution.

p(xk|y1:k) =
1

Ck

p(xk|y1:k−1)p(yk|xk) (1.9)

With p(xk|y1:k) obtained, the moments of the states can be calculated easily. Furthermore

this posterior distribution serves as the prior distribution for the loop of the time step k+1.

The smoother, as is explained in definition 1.2, performs the state estimation by incorpo-

rating the future observations. The smoother can either pursue a joint posterior distribution

p(x0:T |y1:T ) or a marginal posterior distribution p(xk|y1:T ), depending on the specific formu-

lation of the smoother. Whichever one a smoother goes for, it can be categorized as either

a fix-interval smoother or a fix-lag smoother or a fix-point smoother [88].

Definition 1.3: (Fixed-interval, fixed-lag and fixed-point smoothers)

• Fixed-interval smoother estimates the state, xa
k, at every time point of a given interval

[0 T ], given the measurements from 1 to T, yk, k = 1, . . . , T .

• Fixed-lag interval smoother estimates the state at time step T-L, xa
T−L, given the
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measurements from T-L to T, yk, T − L < k < T .

• Fixed-point smoother estimates the state at one specific time step k, xa
k, give the

measurements from 1 to T, yk, k = 1, . . . , T .

In the following, we introduce the general formulation for backward Bayesian smoother

which targets the marginal posterior distribution. The smoothing distribution of xk is cal-

culated by marginalizing the joint distribution of xk and xk+1.

p(xk|y1:T ) =

∫

p(xk|xk+1, y1:T )p(xk+1|y1:T )dxk+1 (1.10)

Using the Markov property:

p(xk|xk+1, y1:T ) = p(xk|xk+1, y1:k) (1.11)

=
p(xk, xk+1|y1:k)

p(xk+1|y1:k)
(1.12)

=
p(xk+1|xk)p(xk|y1:k)

p(xk+1|y1:k)
(1.13)

Substituting Eq.(1.13) into Eq.(1.10), we have:

p(xk|y1:T ) = p(xk|y1:k)

∫

p(xk+1|xk)p(xk+1|y1:T )

p(xk+1|y1:k)
dxk+1 (1.14)

1.2.2 Linear Bayesian filter and smoother

1.2.2.1 Kalman filter

The famous Kalman filter [47], named after its proposer Rudolph E. Kalman, is the optimal

Bayesian filter for linear systems. Its remarkably simple formulation for data formulation

lays the foundation of this work. Numerous studies have been published ever since its

introduction. For a systematic tutorial of Kalman filter, refer to [64][59].

Although Eq.(1.8) and Eq.(1.9) give the optimal solution for the recursive Bayesian es-

7



timation, the solution usually does not have a closed-form expression except when several

strict conditions are applied. The Kalman filter is essentially the closed-form solution when

the model satisfies the following conditions:

1. The model f(x, t) is linear. The discrete linear state space model is written as:

xk+1 = Axk +Buk + wk (1.15)

yk = Hxk + vk (1.16)

2. The process noise vk and measurement noise wk are both Gaussian stationary white

noise sequences which have the following properties:

E(wk) = 0 (1.17)

E(vk) = 0 (1.18)

E(wkw
T
j ) = Q when k = j E(wkw

T
j ) = 0 when k 6= j (1.19)

E(vkv
T
j ) = R when k = j E(vkv

T
j ) = 0 when k 6= j (1.20)

E(vkw
T
j ) = 0 (1.21)

Moreover, the states and process and measurement noises are uncorrelated:

E(xkv
T
k ) = 0 (1.22)

E(xkw
T
k ) = 0 (1.23)

With the assumptions above, Eq.(1.8) can be written as:

p(xk|y1:k−1) =

∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

=

∫

N(xk|Axk−1, Qk−1)N(xk−1|µk−1, Pk−1)dxk−1

= N(xk|Aµk−1, APk−1A
T +Qk−1) (1.24)
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where the notation N(.) represents a Gaussian distribution and µk−1 and Pk−1 represent the

mean and covariance of previous time step. Denote µf
k = Aµk−1 and P f

k = APk−1A
T +Qk−1,

where µf
k and P f

k are the predicted mean and covariance of time step k.

The joint distribution of xk and yk is given by:

p(xk, yk|y1:k−1) = p(yk|xk)p(xk|y1:k−1)

= N(







xk

yk






|µ1, P1) (1.25)

where

µ1 =







µf
k

Hµf
k






P1 =







P f
k P f

k H
T

HP f
k HP f

k H
T +Rk






(1.26)

Integrating the joint distribution over yk, we have the marginal distribution of the xk given

by:

p(xk|y1:k) = N(x|µa
k, P

a
k ) (1.27)

where

µa
k = µf

k + P f
k H

T (HP f
k H

T
k +Rk)

−1(yk −Hµf
k) (1.28)

P a
k = P f

k − P f
k H

T (HP f
k H

T
k +Rk)

−1HP f
k (1.29)

µa
k is the updated mean and the point estimate we aim to obtain. P a

k is the error covariance

of the estimate. The common term in Eq.(1.28) and Eq.(1.29), P f
k H

T (HP f
k H

T
k + Rk)

−1, is

defined to be the well-known Kalman gain:

K = P f
k H

T (HP f
k H

T
k +Rk)

−1 (1.30)
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The derivation above starts from the general recursive Bayesian estimation formulation

and arrives at the closed-from expression of the updated mean and covariance as well as

the Kalman gain from the Bayesian inference perspective. In the following, we show how to

achieve the same results from the optimization angle, which explains the optimality of the

Kalman filter.

Let the state estimation at the current time step k be the summation of two parts: a

prediction part xf
k given by the open loop prediction of the model and a update part which

linearly updates the prediction using the the latest observation yk:

xf
k = Axa

k−1 +Buk−1 (1.31)

xa
k = xf

k +K(yk −Hxf
k) (1.32)

The error covariance of the prediction step P f
k can be calculated by propagating the prior

covariance P a
k−1 through the model:

P f
k = AP a

k−1A
T +Qk−1 (1.33)

The estimation error at the prediction step and the update step are given by:

εfk = xk − xf
k (1.34)

εak = xk − xa
k (1.35)

where xk is the true state value.

The goal is to find the gain K such that xa
k produces the smallest estimation error co-

variance. The following optimization problem is formulated to achieve this purpose:

K = argmin
K

P a
k = argmin

K
E(εakε

aT
k ) (1.36)
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Since the predicted covariance is already known, we need to write εak in terms of εfk . With

a slight manipulation of Eq.(1.34) and Eq.(1.35), by substituting them into Eq.(1.32), we

have:

εak = εfk −K(Hεfk + wk) (1.37)

Then the updated error covariance can be written as:

P a
k = E(εakε

aT
k )

= E((εfk −K(Hεfk + wk))(ε
f
k −K(Hεfk + wk))

T )

= P f
k − P f

k H
TK +KRKT −KHP f

k +KHP f
k H

TKT (1.38)

Optimizing Eq.(1.38) over K, we have the Kalman gain given by:

K = P f
k H

T (HP f
k H

T +R)−1 (1.39)

Substituting Eq.(1.39) into Eq.(1.38), we have the updated covariance given by:

P a
k = P f

k − P f
k KH (1.40)

The estimated result given by Eq.(1.32) and Eq.(1.40) using the Kalman gain K given by

Eq.(1.39) is the minimal error variance state estimation, hence the name optimal filter. It is

consistent with the estimation result obtained from the Bayesian inference given by Eq.(1.28)

and Eq.(1.29), so is the formulation of the Kalman gain.

1.2.2.2 Rauch-Tung-Striebel smoother

Various linear optimal smoothers have been proposed for achieving different estimation goals,

such as the fixed-interval smoother as proposed in [2], the fixed-lag smoother smoother in
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[68], the fixed-point smoother in [9], the RauchTungStriebel (RTS) smoother in [78] and

two-filter smoother in [27]. However, they are all Kalman update based and are essentially

equivalent with each other as long as the system is linear and the Gaussian state distribution

assumption stands.

Out of the aforementioned smoothers, the RTS smoother is the most popular and widely

used one in the literature. It can be formulated as a fix-interval smoother and can be modified

to perform the fix-lag smoother as well. The RTS smoother consists of two runs, a forward

run completed by the Kalman filter to obtain the posterior distribution and a backward

run to further update the posterior distribution. If we assume the state distribution is

p(xk|y1:k) = N(xk|x
a
k, P

a
k ) for every time step of the forward filtering, the backward recursions

to calculate the smoothed mean xs
k and covariance P s

k are given as follows:

xs
k = xa

k +G(xs
k+1 − xf

k+1) (1.41)

P s
k = P a

k +G(P s
k+1 − P f

k+1)G
T (1.42)

where G is the smoothing gain and is given by:

G = P a
kA

T [P f
k+1]

−1 (1.43)

xf
k+1 and P f

k+1 are the predicted mean and covariance of k+1.

xf
k+1 = Axa

k (1.44)

P f
k+1 = AP a

kA
T +Q (1.45)

One appealing feature of the RTS smoother is that the backward recursions do not need any

more forward model runs if the predicted mean and covariance are stored during the forward

filtering step.
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1.2.3 Nonlinear Bayesian filter and smoother

Over the years, numerous work has been done on the state estimation for nonlinear systems.

Essentially, all of them attempt to deal with the nonlinearity by using different approximation

approaches, therefore they only can provide sub-optimal estimation. In this section, we

review some of the most widely used nonlinear filters and smoothers. The general form of a

discrete nonlinear system is given by:

xk+1 = f(xk, uk) + wk (1.46)

yk+1 = h(xk+1) + vk+1 (1.47)

1.2.3.1 Extended Kalman filter and smoother

The extended Kalman filter (EKF) [43][64] is the most straightforward extension of the

Kalman filter. The prediction step can be carried out without difficulty for nonlinear systems:

xf
k+1 = f(xa

k) + wk

However, the propagation of the covariance given in Eq.(1.33) does not stand any more

because of the nonlinearity of the system. Therefore the most intuitive approach is to

simply linearize the nonlinear dynamics so that the Kalman filter can be applied, which is

the method that EKF resorts in order to handle nonlinearity. The EKF linearizes the process

model by using the Taylor expansion, and Eq.(1.46) becomes:

xk+1 = f(xk) + wk

= f(xa
k) + Jf (x

a
k)(xk − xa

k) + · · ·+ wk (1.48)
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where Jf is the Jacobian matrix given by:

Jf =
∂f

∂x
|xa

k
,uk

(1.49)

Ignoring the higher order terms, Eq.(1.48) becomes:

xk+1 ≈ f(xa
k) + Jf (xk − xa

k) + wk

xk+1 − xf
k+1 ≈ Jf (xk − xa

k) + wk

efk+1 ≈ Jfe
a
k + wk (1.50)

Therefore the predicted covariance is given by:

P f
k+1 = JfP

a
k J

T
f +Qk (1.51)

For the measurement model, apply the Taylor approximation again, and linear operator

of h(.) is given by:

Jh =
∂h

∂x
|xf

k+1
(1.52)

yk ≈ h(xf
k+1) + Jh(x

f
k+1)(xk+1 − xf

k+1) + vk+1

yk − h(xf
k+1) = Jh(x

f
k+1)e

f
k+1 + vk+1 (1.53)

Repeating the optimization problem of Eq.(1.36) with the approximation given by Eq.(1.50)

and Eq.(1.53), we have the Kalman gain given by:

K = P f
k J

T
h (JhP

f
k J

T
h +R)−1 (1.54)
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The updated covariance is given by:

P a
k+1 = (I −KJh)P

f
k+1 (1.55)

From the composition of the Kalman gain, we can see that the EKF basically replaces

linear matrix A and H in the linear model with the approximated linear operators Jf and JH .

In this section, the principle of the EKF is reviewed. In chapter three, the EKF algorithm

is described again in a more concise fashion.

In the following, we apply the same linearization idea to the Kalman smoother described

in Eq.(1.41) and Eq.(1.42) to formulate the RTS Kalman extended smoother[74].

xs
k = xa

k +G(xs
k+1 − xf

k+1)

P s
k = P a

k +G(P s
k+1 − P f

k+1)G
T

where

xf
k+1 = f(xa

k) (1.56)

P f
k+1 = JfP

a
k J

T
f +Q (1.57)

The smoother gain G is given by:

G = P a
k J

T
f (JfP

a
k J

T
f +Q)−1 (1.58)

Jf is exactly the same as in the EKF, i.e.:

Jf =
∂f

∂x
|xa

k
,uk

(1.59)
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1.2.3.2 Unscented Kalman filter and smoother

The unscented Kalman filter (UKF) [101] is based on theory of the unscented transformation

(UT) which calculates the statistics of a random variable undergoing nonlinear transforma-

tion [45]. Specifically a fixed number of weighted deterministic points, which are called

the sigma points, are selected to represent the distribution of the original random variable.

Each sigma point can be considered as a realization of the random variable. Therefore the

stochastic information can be derived from the weighted sigma points. The sigma points are

selected using the following procedure.

Considering a random variable x ∈ Rn, x ∼ N(x, µ, P ),a matrix χ which consists of the

(2n+1) sigma points are given by:

χ0 = µ

χi = µ+
√

(n+ λ)P , i = 1, 2, . . . , n

χi = µ−
√

(n+ λ)P , i = n+ 1, n+ 2, . . . , 2n

where λ is a scaling parameter. The weights associated with each sigma points are given by:

W
(m)
0 =

λ

n+ λ

W
(c)
0 =

λ

n+ λ

W
(m)
i =

1

2(n+ λ)
, i = 1, 2, . . . , 2n

W
(c)
i =

1

2(n+ λ)
, i = 1, 2, . . . , 2n

Same as the Kalman filter, the UKF also attempts to estimate the mean and covari-

ance of the posterior distribution using the Kalman update. The key difference is that the

UKF calculates the mean and covariance using the UT instead of explicitly propagating and

updating them as in the Kalman filter. The UKF algorithm is described as follows:
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Prediction:

1. Propagate the sigma points through the model:

χi
k+1 = f(χi

k) + wi
k, i = 0, . . . , 2n (1.60)

2. Calculate the predicted mean and covariance from χi
k+1, i = 0, . . . , 2n using:

xf
k+1 =

2n
∑

i=0

W
(m)
i χi

k+1 (1.61)

P f
k+1 =

2n
∑

i=0

W
(c)
i (χi

k+1 − xf
k+1)(χ

i
k+1 − xf

k+1)
T +Q (1.62)

Update:

3. Calculate the predicted observations corresponding to each sigma point:

yik+1 = h(xi
k+1) + vik+1 (1.63)

4. Calculate the mean and the covariance of the observation space and the cross covariance

of the state and the observation:

yfk+1 =
2n
∑

i=0

W
(m)
i yik+1, i = 0, . . . , 2n (1.64)

P yy
k+1 =

2n
∑

i=0

W
(c)
i (yik+1 − yfk+1)(y

i
k+1 − yfk+1)

T +R (1.65)

P xy
k+1 =

2n
∑

i=0

W
(c)
i (χi

k+1 − xf
k+1)(y

i
k+1 − yfk+1)

T (1.66)
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5. Calculate the Kalman gain and the updated mean and covariance:

K = P xy
k+1[P

yy
k+1]

−1 (1.67)

xa
k+1 = xf

k+1 +K(yk+1 − yfk+1) (1.68)

P a
k+1 = P f

k+1 −KP yy
k+1K

T (1.69)

The UKS works very similar to the Kalman filter except that it calculates the covariance

matrices for computation of the Kalman gain using the weighted sigma points. Applying

this very same idea to the RTS Kalman smoother framework, we have backward smoothing

of the unscented RTS smoother given as follows [82].

1. Store the predicted sigma points χi
k+1 and the updated sigma points χi

k of every step

of the filtering.

2. Calculate the auto-covariance of time step k+1 and cross-covariance of both time steps

k and k+1.

Sk+1 =
2n
∑

i=0

W
(c)
i (χi

k+1 − xf
k+1)(χ

i
k+1 − xf

k+1)
T (1.70)

Ck+1 =
2n
∑

i=0

W
(c)
i (χi

k − xa
k)(χ

i
k+1 − xf

k+1)
T (1.71)

G = Ck+1[Sk+1]
−1 (1.72)

xs
k = xa

k +G(xs
k+1 − xf

k+1) (1.73)

P s
k = P a

k +G(P s
k+1 − P f

k+1)G
T (1.74)

1.2.3.3 Ensemble Kalman filter and smoother

The study of the ensemble Kalman filter (EnKF) and ensemble Kalman smoother (EnKS)

and their extensions will be the focus of this thesis. In the following chapters, mathemat-

ical details of these two algorithms will be described. In this section, we will discuss the

philosophy behind this Monte Carlo method based data assimilation approach.
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The EnKF deals with the nonlinearity using the same idea of the UKF-calculating the

statistical information of the state space through an ensemble of samples of the state space,

except that the generation of the samples are different between the two approaches. The

UKS uses the sigma points obtained through the UT to represent the state space, while the

EnKF resorts to the Monte Carlo sampling technique. Therefore the samples of the UKS

are deterministic, but stochastic for the EnKF. At the initial time step, the EnKF produces

an ensemble of particles {xi
0}i=1,...,N from the initial distribution p(x0) which usually comes

from prior knowledge. Then each particle of this ensemble is propagated through the model

and updated using the Kalman update formulation at every time step. The evolution of the

ensemble shapes the predicted and updated distribution. The predicted and updated mean

and covariance as well as the Kalman gain are all calculated using the ensemble, which is

the same as in the UKF. One prominent difference between the EnKF and the UKF is that

the ensemble members are equally weighted. Figure 1.1 describes the principle of the EnKF.

Another difference between the two filters is the number of the samples required by the

filtering. The number of the sigma points is fixed to be 2n+1, where n is the dimensionality

of the state space. Therefore this number grows linearly with the dimensionality of the state

space, which is not necessarily the same for the EnKF. Numerous studies have proven that

even with high-dimension systems, the EnKF can still deliver a fair estimation with small

number of sample points, which is the advantage of the EnKF over the UKF.

The RTS EnKS is formulated similarly to the UKS, except that the weight terms in Sk+1

and Ck+1 in Eq.(1.70) and Eq.(1.71) have to be removed since the ensemble members are

equally weighted. Note that the initial EnKS proposed by Evensen et al.[25] is a fix-lag

smoother. It does not employ the RTS smoother framework. We will introduce the details

of both smoothers in chapter 5.
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Figure 1.1: The working principle of the EnKF

1.2.3.4 Particle filter and smoother

The particle filter (PF) [16][3] has received great attention in recent years. Unlike the filters

introduced previously, the PF is not based on the Kalman update. That is to say it does

not use the linear correction to assimilate the observations. Moreover, it is not limited to

the assumption of Gaussian prior and posterior distribution because it estimates the full

posterior distribution instead of the first two moments.

The PF is a sequential Monte Carlo (SMC) method, which utilizes random samples,

referred to as particles, generated using the Monte Carlo method to represent the state

distribution. Assuming N particles are used for the prior distribution p(xk|yk) of time step

k+1, the Monte Carlo approximation of the p(xk|yk) can be written as:

p(xk|yk) =
1

N

N
∑

i=1

δ(x− xi
k) (1.75)

Since p(xk|yk) is arbitrary, it is difficult to sample directly from it, therefore the concept

of importance sampling is introduced to sample from an easier distribution q(xk|yk), referred

to as the importance density. Now the importance weights are defined as:

w(xk) =
p(xk|yk)

q(xk|yk)
(1.76)
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Then p(xk|yk) can be written as:

p(xk|yk) = w(xk)q(xk|yk)

=
N
∑

i=1

w(xi
k)δ(x− xi

k) (1.77)

Eq.(1.77) indicates that the prior distribution p(xk|yk) of any arbitrary shape can be

represented using a batch of random particles associated with weights. At the prediction

step of every time step, the particles of the prior distribution are propagated through the

nonlinear model. The predicted distribution p(xk+1|yk) is hence shaped by the predicted

particles xi,f
k+1. At the update step of every time step, the PF assimilates the observations

by sequentially updating the weights of the particles based on the observations:

w̃i
k+1 = w̃i

k

p(xi
k+1|xk)

q(xi
k+1|xk)

p(yk+1|x
i
k+1) (1.78)

In Eq.(1.78), if the importance density is selected to be the transition function, i.e.

p(xk+1|xk) = q(xk+1|xk), then we have w̃i
k+1 = w̃i

kp(yk+1|x
i
k+1). This is called a bootstrap

particle filter.

The weights are then normalized by:

wi
k+1 =

w̃i
k+1

∑N
i=1 w̃

i
k+1

(1.79)

The statistic moments can be calculated using wi
k and xi,f

k+1 and this completes the sequential

importance sampling (SIS) particle filtering algorithm. What the SIS algorithm essentially

does is to propagate the particles through the model and sequentially update the corre-

sponding weights. The SIS suffers from the degeneracy problem, which causes the weights

of most particles to reduce to zero except for a few. In the end, very few effective particles

[8] contribute to the estimation, hence the addition of the resampling step.

The resampling step aims to increase the diversity of the particles, reducing the degener-
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acy speed. Several resampling techniques have been proposed in literature [39][30][52]. They

all attempt to generate a new batch of samples made up with duplicates of the predicted

particles xi,f
k+1 which potentially would contribute to a more accurate estimate. Whether

or not the resampling step is carried out depends on the effective sample size, which is a

measure of the concentration of samples in the region of interest. It is given by:

N̂eff ≈
1

∑N
i=1(w

i
k)

2
(1.80)

If N̂eff falls below a threshold, then the samples have been spreaded too far and the resam-

pling step is required. The basic steps of an inverse transform method for the resampling

are described as follows:

(1) Generate a discrete cumulative distribution function(CDF) based on the weights of

the particles.

For j = 1 to N

Fj =

j
∑

i=1

wi
k (1.81)

With N particles, F has N fragments.

(2)Generate N random numbers from a uniform distribution [0 1], denoted as matrix

U.

(3) For each random number, find the index j, such that Fj−1 < U(i) < Fj. Select x
j
k|k

to be posterior particle.

With the resampling step, the sequential importance resampling (SIR) algorithm is com-

pleted. The bootstrap particle filter is implemented as follows:

1. Initialize the filter:

xi
0 = q(x0), i = 1, . . . , N

wi
0 =

1

N
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2. Propagate the particles:

xi
k+1|k = f(xi

k|k) + wi i = 1, . . . , N

3. Calculate the normalized weights:

w̃i
k+1 = w̃i

kp(yk+1|x
i
k+1)

4. Normalize the weights:

wi
k+1 =

w̃i
k+1

∑N
i=1 w̃

i
k+1

5. Calculate Neff as in Eq.(1.80)

6. If Neff is lower than the threshold, perform the resampling as is described previously.

7. Calculate the updated mean and covariance:

µk+1|k+1 =
1

N

N
∑

i=1

xi
k+1|k+1

Σk+1|k+1 =
1

N

N
∑

i=1

(xi
k+1|k+1 − µk+1|k+1)(x

i
k+1|k+1 − µk+1|k+1)

T

The particle smoother can be formulated using a forward-filtering-backward-smoothing

framework [18] or a two-filter framework [53]. The former is formulated the same as the

previous nonlinear RTS smoothers and the latter is formulated with two filters; one running

forward and one backward. Both of them attempt to obtain the SMC approximation for

f(xk|y1:k) given by:

p(xk|y1:T ) =
N
∑

i=1

wi
k|T δ(x− xi

k) (1.82)

Comparing Eq.(1.77) to Eq.(1.82), we can see that the smoothing reshapes the posterior

distribution p(xk|y1:k) by updating the weights of the particles using the future observations
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beyond k.

The RTS particle smoother updates the backward weights by:

wi
k|T =

N
∑

i=1

wi
k[

N
∑

j=1

wj
k+1|T

p(xj
k+1|x

i
k)

∑N
l=1 w

l
kp(x

j
k+1|x

l
k)
] (1.83)

With simple manipulation of Eq.(1.83), we can find out that Eq.(1.83) costs O(N2) opera-

tions to evaluate. The details of the derivation of Eq.(1.83) are given in chapter 6.

The two-filter smoother updates the backward weights by:

wi
k|T = w̃i

k

N
∑

j=1

wj
k−1

p(x̃i
k|x

j
k−1)

p̃(x̃j
k)

(1.84)

where w̃i
k, x̃

i
k are the weights and particles newly generated in the backward filtering. p̃(xk) is

an auxiliary probability density which enables us to form the analytic expression of Bayesian

inference using the SMC approach. It can be an arbitrary distribution as long as it does not

cause any zero divisions. Note that Eq.(1.84) also takes O(N2) operations to evaluate.

1.3 Contributions

The contribution of the thesis can be summarized in the following points:

• First, the thesis develops a novel nonlinear filter for non-Gaussian systems called the

Gaussian mixture model based ensemble Kalman filter. Although this filter is for-

mulated based on the existing work in the literature, modifications are made on the

original work. Besides in-depth analysis is performed on this filter to illustrate its

advantages over the existing solutions, such as the EnKF and the PF.

• Second, the thesis develops a novel constrained state estimation approach based on the

Kullback-Leibler divergence. The proposed method is integrated with the EKF and

the EnKF to form novel constrained EKF and constrained EnKF. The proposed con-
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strained filters are tested through case studies and the results show their advantages

over the existing constrained method, the recursive nonlinear dynamic data assimila-

tion.

• Third, the thesis modifies the proposed Gaussian mixture model based ensemble Kalman

filter into its constrained version using the Kullback-Leibler divergence. Prior to our

work, almost no existing work has been found for constrained non-Gaussian filters.

In order to develop this constrained filter, our work essentially solves an optimiza-

tion problem to minimize the Kullback-Leibler divergence of two Gaussian mixture

distributions.

• Fourth, the thesis further develops a novel Gaussian mixture model based ensemble

Kalman smoother. This proposed smoother solves the smoothing problem for non-

linear non-Gaussian systems. Again very few work has been done for non-Gaussian

smoothers. This smoother is developed under a RTS smoother framework and we also

borrow the idea of the particle smoother to update the particle weights to further

improve the proposed smoother.

1.4 Outline

The chapters in the dissertation are organized as follows:

Chapter 2 presents the proposed Gaussian mixture model based ensemble Kalman filter

and its application on a MMA polymerization model.

Chapter 3 presents the proposed constrained state estimation approach using Kullback-

Leibler divergence and its integration with the nonlinear Gaussian filters, EKF and EnKF.

The constrained EKF and EnKF along with their applications on two CSTR processes are

introduced in detail.

Chapter 4 presents the proposed constrained state estimation approach using Kullback-

Leibler divergence for non-Gaussian filter, specifically the Gaussian mixture model based
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ensemble Kalman filter in chapter 2. The proposed filter is applied on the data collected

from a real algae cultivation process.

Chapter 5 presents the proposed Gaussian mixture model based ensemble Kalman smoother.

The proposed smoother is also applied on the same algae cultivation process for its perfor-

mance test.
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Chapter 2

Gaussian mixture model-based

ensemble Kalman filter

2.1 Introduction

Over the years, the most popular estimator used in nonlinear chemical processes in general

and specifically for polymerization reactors, too, is the extended Kalman filter (EKF) (e.g.,

[104][73][44][56][65][66][92][29]). However, this estimator involves linearization of the original

model at each step, and can be inaccurate for highly nonlinear systems. Our focus in this

work is on particle-based estimators, which are derivative free estimators using different

sampling methods to generate an ensemble of particles to represent the distributions of the

dynamic states of the system.

The most commonly used estimators based on the use of an ensemble of particles are

the EnKF, the UKF and the PF. While the EnKF and the UKF provide only the mean

and variance of the posterior distribution of the states since they use a Gaussian assumption

for the distributions, the PF, which works on Bayesian principles, can provide estimates for

the full distribution of the states even in situations where the distribution is not Gaussian

(which occurs in nonlinear systems) by using a set of particles associated with different
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weights. In practice, the application of the PF to chemical processes is very recent. Chen et

al. [14] compared the performance of the auxiliary particle filter with an EKF for a batch

polymethyl methacrylate process to show that it outperformed the EKF in terms of the root

mean squared error for state and parameter estimation. Shenoy et al. [84] compared the

UKF, EKF and PF in a case study on a polyethylene reactor simulation to demonstrate

that the PF provided more accurate estimation results, but was less robust to plant-model

mismatch. Shao et al. [83] compared the performance of the PF, EKF, UKF and moving

horizon estimation for constrained state estimation and showed that the constrained PF

provided more accurate estimation results compared to other methods.

An important issue with the PF relates to its performance for high dimensional systems.

The EnKF, on the other hand, has the advantage of being scalable to high-dimensional

systems without a prohibitive increase in the size of the ensemble required; however, as is

stated earlier, the algorithm is based on the assumption that both the prior and posterior

distribution of the states can be approximated by the Gaussian distribution, and it may be

unreliable when this assumption is not valid.

In this chapter, we consider the application of the nonlinear filters on non-Gaussian sys-

tems. Specifically we focus on the polymerization process. The polymerization processes offer

unique challenges for process modeling, monitoring and control. The production of polymers

of different grades means that the process conditions are changed relatively frequent. Prod-

uct quality specifications (usually expressed in terms of constraints on the properties of the

molecular weight distribution) and dynamic operation lead to the need for on-line monitor-

ing and control, which need accurate process models and real-time estimation of states and

parameters of the system.

Polymerization processes can be of high dimension when they are described using popula-

tion balance models [15][51], and a multimodal distribution of properties such as the particle

size and molecular weight may be desirable [81][20][26]. This, especially in the presence of

model-plant mismatch, creates challenges for both the EnKF and the PF. Also, the nonlin-
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earity of the systems may lead to multimodality in the state distributions. In this chapter, we

propose a Gaussian mixture model based ensemble Kalman filter using the polymerization

process as an example. We present results on the application of this filter to a polymethyl

methacrylate (PMMA) process and compare its performance to that of the EnKF and the

PF.

2.2 Review of the existing mixture ensemble filters

An appropriate model for the prior distribution plays an importance role in achieving an

accurate estimate. The idea of using a Gaussian mixture model(GMM) for the prior distri-

bution has been considered long ago. For example, in [1], a Gaussian sum filter was proposed

to extend the standard Kalman update to the Gaussian mixture distributions. The crucial

problem is how to update the parameters of the Gaussian mixture model when assimilating

the observations. In [1], the mean and covariance of each Gaussian mode in the mixture

can be updated directly using the Kalman gain for linear systems. However, the problem is

trickier for nonlinear systems. In this section, we solve this problem by combining the idea

of GMM with Monte Carlo representation of the state PDF. Such filters are referred to as

mixture ensemble filter. In the following, we first review the some of the most prominent

developments on mixture ensemble filters for nonlinear systems in recent years.

Bengtsson et al.(2003)

The algorithm of the mixture ensemble filter proposed by Bengtsson et al.[7] is as follows.

First, a GMM is derived from the predicted ensemble {xf,i
k }i=1,...,N . M random members

{xf,l
k }l=1,...,M are selected from this ensemble as the centroids of each Gaussian mode. Then

for each centroid, select m members in the ensemble which have the closest distance to the

centroid point based on the Euclidean norm. The predicted mean and covariance can be

calculated through the M ensemble members in each cluster. Next, update every member in
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each cluster using as follows:

xa,i
k = xf,i

k +Kj(yk −Hxf,i
k ) i = 1, . . . , N ; j = 1, . . . ,M (2.1)

where Kj is the Kalman gain of each cluster j. H is the measurement operator.

One key parameter in mixture ensemble filter is the membership probability wij, which

describes the probability of each member belonging to each cluster. In this work, for each

cluster, wij = 1
M
. The updated mean µa,j

k and covariance P a,j
k are calculated through the

samples of each cluster. Finally, the posterior distribution is given by:

p(xa
k) =

M
∑

j=1

πa,j
k N(x;µa,j

k , P a,j
k ) (2.2)

The drawback of the method is that the clusters do not necessarily cover the whole

ensemble. There might be members left out in two clusters, which causes the assignment of

wij inaccurate. The fundamental cause is the crude clustering approach to build the GMM

based upon the nearest neighbors. In their work, the authors also discuss the difficulties

encountered in high-dimensional space and propose an approach to decompose the high-

dimensional system into lower-dimensional system which can be handled by the mixture

ensemble filter.

Smith(2007)

In [90], Smith proposed to describe the underlying structure of the predicted distribution

by using the expectation maximization (EM) algorithm. The EM algorithm provides more

accurate clustering results for the GMM than the heuristic clustering algorithm in Bengts-

son’s work. Before clustering, mixture complexity is first accessed using Akaike’s information

criterion(AIC). The predicted distribution from the EM clustering is given as:

p(xf
k) =

M
∑

j=1

πf,j
k N(x;µf,j

k , P f,j
k ) (2.3)
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where M is the number of the modes.

After obtaining the predicted GMM, Smith updates the parameters of it using the same

strategy as the previous approach - by updating individual particle xf,i
k and its membership

weight wij. However, the update is different from the described in Eq.(2.1). In Eq.(2.1) each

particle is updated once using its corresponding Kalman gain calculated from the neighbor-

hood samples, while in Smith’s work each particle is updated M times by each of the cluster.

This is because the EM clustering does not give the membership of each particle associated

with each cluster. In order for the EnKF update to be applied, the whole ensemble is as-

sumed to belong to one mode with a probability wij assigned to each particle. Each particle

is updated under this mode using:

xa,i
k,j = xf,i

k +K[j](yk −Hxf,i
k ) j = 1, . . . ,M (2.4)

After acquiring the M updated ensembles, Smith chooses to return to one ensemble of size N

which follow a Gaussian posterior distribution, i.e. he approximates the posterior distribution

with a Gaussian distribution. First the predicted ensemble associated with each mode xf,i
k,j

is projected to an ensemble of a standard normal distribution by using:

xsn,i
k,j = [Sa

k,j]
−1(xf,i

k,j − µa
k,j) (2.5)

where µa
k,j and P a

k,j are the updated mean and covariance of each mode,Sa
k,j =

√

P a
k,j. Then

M ensemble is combined into one using:

xsn,i
k =

M
∑

j=1

xsn,i
k,j (2.6)

Then the normalized particles are projected to become the samples taken from a Gaussian
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distribution with mean µa
k and covariance P a

k .

xa,i
k =

M
∑

j=1

πa
k,j(µ

a
k,j + Sa

k,jx
sn,i
k ) (2.7)

The multimodal ensemble Kalman filter proposed in this chapter is based on Smith’s

work. We borrow his idea of giving one mode the ownership of all particles. However, the

posterior distribution in our work remains to be a Gaussian mixture distribution, i.e. the

mixture feature is retained for the posterior distribution.

Dovera et al.(2010)

In [19], Dovera et al. proposed a mixture ensemble Kalman filter similar to Smith’s work.

In their work, the EM clustering is also performed on the predicted ensemble to obtain the

underlying mixture structure of the predicted distribution. However, they use a different

approach in the update step. Again the membership of each particle is crucial, Without

this information, the standard EnKF update cannot be performed. Instead of assuming all

particles to be owned by one mode, they solve the membership problem by directly assigning

each particle to a specific mode based on the posterior mixture weights πa,j
k .

The update on each of the predicted particle is performed as follows.

For each of the predicted particle xf,i
k :

• Set r as the known component of xf,i
k .

• Determine the index of the cluster it belongs to after the update by generating a random

number from l ∈ {1, . . . ,M} based on the posterior mixture weights {πa,1
k , . . . , πa,M

k }.

• Compute an auxiliary state vector xf,i
k

′

using:

xf,i
k

′

= µf,l
k + Sl(Sr)−1(xf,i

k − µf,r
k ) (2.8)

where Sl =
√

P f,l
k and Sr =

√

P f,r
k . What Eq.(2.8) essentially does is to move one

particle from one mode with mean and covariance µf,l
k , P f,l

k to another mode with mean
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and covariance µf,r
k , P f,r

k .

• Update the particles under the cluster it belongs.

xa,i
k = xf,i

k

′

+Kj(yk −Hxf,i
k

′

) (2.9)

where

Kj = P f,j
k HT (HP f,j

k HT +R)−1 (2.10)

2.3 Multimodal ensemble Kalman filter(GMM-EnKF)

As is introduced in the previous section, the generic mixture ensemble consists of two steps.

Firstly, a clustering analysis is performed to achieve a multimodal distribution for the state

space. Secondly, the parameters of this multimodal distribution are updated in some fashion

2.3.1 Expectation maximization for clustering of Gaussian mix-

ture model

The GMM-EnKF proposed in this work uses the EM algorithm for clustering. The PDF of

a d-dimensional random vector x following a Gaussian mixture distribution is given by:

px(x) =
Nc
∑

j=1

πj ×N(x;µj, Pj) (2.11)

where πj, µj and Pj represent the mixing weights, mean and covariance of each mode j.

Nc is the number of the modes. N(.) is a Gaussian with the PDF of:

N(x;µj, Pj) =
1

(2π)d/2|Pj|1/2
e−

1
2
(x−µj)

TP−1
j (x−µj)
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πj are subject to constraints that:

0 ≤ πj ≤ 1 and
Nc
∑

j=1

πj = 1

To fit a given set of data {xi}i=1,···,N to a Gaussian mixture model, the EM algorithm is

used to estimated the parameters of the GMM, θ = {π1, · · · , πNc
, µ1, · · · , µNc

, P1, · · · , PNc
}[17].

EM is a variant of the maximum likelihood estimation when there exists hidden variables or

missing data. In the case of GMM clustering, the mode identity of each data point is consid-

ered as the missing or hidden variable. Let {(ci)j} be a binary indicator vector representing

the identity of the component j that generates xi. Its value is given by:

(ci)j =











1 if data point is generated by component j

0 otherwise

In the EM algorithm, an E-step is performed first to compute the Q function, the expec-

tation of the log likelihood of the complete data set, by first computing the probability of

each data xi belonging to each component j even the current parameters θk estimated from

the previous iteration. The Q function is given by:

Q(θ|θk) = E[L(p(z|θ))|x, θk] (2.12)

where L takes the log likelihood of the subjective function. x is the observed data; z is

the complete data set consisting of both observed z and missing data (ci)j; θ
k is the estimate

of the last iteration. The Q function can further be written as:

Q(θ|θk) =
N
∑

i=1

Nc
∑

j=1

p[(ci)j|{x}, θ
k](logπjN(xi;µj, Pj)) (2.13)

p[(ci)j|{x}, θ
k] in Eq.(2.13) is the key step in calculating the Q function. It is called

the membership weight which calculates the probability of data xi belonging to the mode j
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given parameters θk. The E step of the EM algorithm calculates this membership weight as

follows.

wij = p[(ci)j|{x}, θ
k] =

πk
jN(xi;µ

k
j , P

k
j )

∑Nc

m=1 π
k
mN(xi;µk

m, P
k
m)

(2.14)

In the M step, the Q function in Eq.(2.13) is maximized with respect to θ, i.e. πj, µj and

Pj, to estimate the θk+1. The estimated θk+1 is given as follows.

πk+1
j =

Nk

N
(2.15)

µk+1
j =

1

Nk

N
∑

i=1

wijxi (2.16)

P k+1
j =

1

Nk

N
∑

i=1

wij(xi − µk+1
j )(xi − µk+1

j )T (2.17)

where Nk =
∑N

i=1 wij.

The E-step and the M-step are performed iteratively until the estimates converge. During

this process, the problem of singularity may arise when one of the components collapses

onto one data point. This usually happens due to over-fitting in the maximum likelihood

estimation(MLE). To avoid this problem, we use a modified update for the covariance given

by:

P k+1
j =

∑N
i=1 wij(xi − µk+1

j )(xi − µk+1
j )T + λId

Nk + 1
(2.18)

where Id is an n-dimensional unit matrix and λ is a regularization constant determined

by some validation data[95]. An alternate(ad hoc) method to deal with the problem of

singularity is to detect when the singularity occurs and reset the means of all components

randomly and the covariance to some larger value.

The pseudo-code for the EM algorithm is provided below.
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Algorithm 2.1: Expectation maximization algorithm. Inputs are data set {xi}. component
number Nc and initial values {θ0} of {πj}j=1,···,Nc

,{µj}j=1,···,Nc
, {Pj}j=1,···,Nc

, initially
θk = θ0

{θk+1} = EM [{x}, Nc, {θ
k}]

// E step
while ε ≤ 1e− 6
for i = 1 : N
for j = 1 : Nc

p[(ci)j|xi, θ
k] =

πk
j N(xi;µ

k
j ,P

k
j )

∑Nc
m=1 π

k
mN(xi;µk

m,Pk
m)

end for
end for

// M step
for j = 1 : Nc

πk+1
j =

∑N
i=1 P [(ci)j, θ

k]/N

µk+1
j =

∑N
i=1 P [(ci)j, θ

k]xi/
∑N

i=1 P [(ci)j, θ
k]

P k+1
j = (

∑N
i=1 P [(ci)j, θ

k](xi − µk+1
j )(xi − µk+1

j )T + λId)/(
∑N

i=1 P [(ci)j, θ
k] + 1)

end for
ε = µk+1 − µk

end while
return θk+1

2.3.2 GMM-EnKF filtering algorithm

In this section, a GMM-based EnKF (GMM-EnKF) filter is proposed to obtain estimates of

the full state distribution. As with the EnKF and PF, the GMM-EnKF also uses a set of

Monte Carlo samples to present the posterior PDF of the states which is approximated with

the GMM at every time step.

At each time step k, the GMM-EnKF has two steps-forecast and update. The forecast

step is identical to the EnKF. An ensemble of size N, {xi
k}i=1,···,N , is drawn from the prior

distribution of the states and forwarded through the model to obtain a predicted ensemble for

the next time step. Then, the EM algorithm is performed on the predicted ensemble to obtain

the estimates of the GMMwithNc components. Next, the Kalman update is performed based

on each component in the GMM to get an ensemble of size N ×Nc. Finally,these ensemble

members are combined based on their weights and reduced to a size of N. The details of the

algorithmic sequence are as follows:
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Forecast:

1. The first portion of the forecast step is to determine the number of components

Nc in the multimodal distribution. Nc can be determined using the Bayesian or other in-

formation criteria(BIC) [41], or using prior knowledge. For example, in reservoir models,

petrophysical properties such as porosity or permeability are typically related to geological

units (facies) and variables inside the facies are characterized by underlying multimodal dis-

tributions which are known beforehand [23]. In our work, this information can be considered

as prior knowledge if we know the distribution of the process noise.

2. With the knowledge of the process model and the number of components Nc, the prior

ensemble {xi
k}i=1,···,N is propagated through the model to get the values of the predicted

ensemble {xf,i
k }i=1,···,N . These particles can be considered as the realizations of the predicted

state space xf . Assume the predicted state distribution p(xf
k) is a GMM, it is given by:

p(xf
k) =

Nc
∑

j=1

πf
k,jpj(x

f
k) =

Nc
∑

j=1

πf
k,jN(xf

k ;µ
f
k,j, P

f
k,j) (2.19)

The EM algorithm is applied on {xf,i
k }i=1,···,N to give us the parameters of the predicted

distribution, πf
k,j, µ

f
k,jandP

f
k,j, of each component j.

Update:

3. For each component j of the distribution, the Kalman gain matrix for each Gaussian

component is computed by utilizing the membership probability matrix W.

P [j]fHT =
N
∑

i=1

wi,j(x
f,i
k − µk,j)(Hxf,i

k −Hµk,j)
T/nj (2.20)

HP [j]fHT =
N
∑

i=1

wi,j(Hxf,i
k −Hµk,j)(Hxf,i

k −Hµk,j)
T/nj (2.21)

K[j] = P [j]fHT (HP [j]fHT +R)−1 (2.22)

where wi,j =
τf
k,j

N(xf,i
k

;µf
k,j

,P f
k,j

)
∑Nc

m=1 τ
f
k,m

N(xf,i
k

;µf
k,m

,P f
k,m

)
, nj =

∑N
i=1 wi,j and H is the linearized measurement
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operator.

4. In the update step, assume that one Gaussian component j claims the ownership of

all the ensemble members, the Kalman update can be performed for each particle i under

each mode j. This gives us an ensemble size of N ×Nc.

xa,i
k,j = xf,i

k +K[j](d−Hxf,i
k − vi) (2.23)

where vi is the measurement noise.

5. The N × Nc ensemble members can be combined to form N members by using the

probability matrix W. This gives us the final posterior ensemble {xa,i
k }i=1,···,N .

xa,i
k =

Nc
∑

j=1

wi,jx
a,i
k,j (2.24)

6. The mean and covariance of the posterior distribution can be computed as

µa
k,j =

N
∑

j=1

wi,jx
a,i
k,j/nj (2.25)

P a
k,j =

N
∑

j=1

wi,j(x
a,i
k,j − µa

k,j)(x
a,i
k,j − µa

k,j)
T/nj (2.26)

7. The posterior weight of each component of the distribution can be computed based

on the observed data d, which contains the measurements y.

πa
k,j = p(µa

k,j, P
a
k,j, R|d) =

p(d|µa
k,j, P

a
k,j, R)nj

∑Nc

m=1 p(d|µ
a
k,j, P

a
k,j, R)nj

(2.27)

p(d|µa
k,j, P

a
k,j, R) =

exp[−1
2
(d−Hµa

k,j)
T (HP a

k,jH
T +R)−1(d−Hµa

k,j)]
√

(2π)m|HP a
k,jH

T +R|
(2.28)

8. With the estimates of the parameters of the GMM µa
k,j, P

a
k,j and πa

k,j, we have a full

distribution of the posterior state distribution. The point estimate at time k given by the
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posterior PDF is given by:

xa
k =

Nc
∑

j=1

πa
k,jµ

a
k,j (2.29)

The pseudo-code for the GMM-EnKF algorithm is provided below:

Algorithm 2.2: GMM-EnKF algorithm. Inputs include the initial distribution of x,
the total number of the particles N, the components Nc, and the time steps T.
Inputs and measurements of the system at each time step are uk and dk.

[{xa,i
k }, {π

a
k,j, µ

a
k,j, P

a
k,j}]=GMM-EnKF[{xi

k}, {uk}, {dk}]

for k = 1 : T
for i = 1 : N
Draw {xi

k}i=1,···,N ∼ f(xk)

Calculate xf,i
k = f(xi

k, uk, w
i
k)

Calculate yik = Hxi
k + vik.

end for

Apply the EM algorithm on {xf,i
k }i=1,···,N using the algorithm 1:

{πf
k,j, µ

f
k,j, P

f
k,j}j=1,···,Nc

= EM [{xf,i
k }, Nc, θ

k]

for j = 1 : Nc

Calculate the Kalman gain of each component K[j] using Eq.(2.22).
for i = 1 : N

Calculate the updated particle under each component xa,i
k,j using Eq.(2.23).

end for

Combine {xa,i
k,j}i=1,···,N to obtain the posterior particles {xa,i

k }i=1,···,N using Eq.(2.24).

Calculate the parameters of the posterior distribution πa
k,j, µ

a
k,j, P

a
k,j using Eq.(2.25)

to Eq.(2.27).
end for
Calculate the posterior point estimate xa

k using Eq.(2.29).
end for.

While the PF and the GMM-EnKF both can, in principle, account for multimodality,

the use of the Gaussian mixture model provides the GMM-EnKF with greater flexibility in

capturing a wide variety of distributions under varying levels of model-plant mismatch, as

will be shown in the following results.

39



2.4 Simulations and discussion

2.4.1 Mathematical model of the MMA polymerization process

Simulations of a free-radical MMA polymerization process are used to demonstrate the per-

formance of the estimation method proposed in this paper. The process is assumed to take

place in a continuous stirred tank reactor (CSTR) and uses AIBN as the initiator and toluene

as the solvent. The mathematical model of this process is described below in Eq.(2.30) to

Eq.(2.36), and further details can be found in [87][85]. The six states to be estimated include

the monomer concentration CM , the initiator concentration CI , the reactor temperature T,

the moments of the polymer distribution D0 and D1, and the jacket temperature Tj. Only

the temperatures are measured. The number average molecular weight (NAMW), which is

the primary quality variable for the process, is defined as the ratio D1/D0.

dCM

dt
= −(kp + kfm)CMP0 +

F (CMin − CM)

V
(2.30)

dCI

dt
= −kICI +

FICIin − FCI

V
(2.31)

dT

dt
=
−∆HkpCMP0

ρCρ

−
UA

ρCρV
(T − Tj) +

F (Tin − T )

V
(2.32)

dD0

dt
= (0.5ktc + ktd)P

2
0 + kfmCMP0 −

FD0

V
(2.33)

dD1

dt
= Mm(kp + kfm)CMP0 −

FD1

V
(2.34)

dTj

dt
=

Fcw(Tw0 − Tj)

V0

+
UA

ρwCpwV0

(T − Tj) (2.35)

P0 =

√

2f ∗ + CIkI
ktd + ktc

(2.36)

In all the simulations whose results are described in the following sections, the number

of particles used for each estimator, N, is 100. The number of components, Nc, is set to 2.

The parameters of the bi-modal noise in all simulations are µ = [0.1, 0.8], P = diag(0.1, 0..1)

for states CM ,CI and D0; µ = [8, 64], P = diag(8, 8) for state D1; and µ = [0.6, 4.8],

P = diag(0.6, 0.6) for states T and Tj.

40



Table 2.1: Operational parameters for the MMA polymerization reactor

F = 1.0m3/h Mm = 100.12kg/kgmol
FI = 0.0032m3/h F ∗ = 0.58
Fcw = 0.1588m3/h R = 8.314KJ/kgmol ·K
CMin = 6.4678kgmol/m3 −∆H = 57800KJ/kgmol
CIin = 8.0kgmol/m3 Ep = 1.8283× 104KJ/kgmol
Tin = 350K EI = 1.2877× 105KJ/kgmol
Tw0 = 293.2K Efm = 7.4478× 104KJ/kgmol
U = 720KJ/h ·K ·m2 Etc = 2.9442× 104KJ/kgmol
A = 2.0m2 Etd = 2.9442× 104KJ/kgmol
V = 0.1m3 Ap = 1.77× 109m3/kgmol · h
V0 = 0.02m3 AI = 3.792× 10181/h
ρ = 866kg/m3 Afm = 1.0067× 1015m3/kgmol · h
ρw = 1000kg/m3 Atc = 3.8223× 1010m3/kgmol · h
Cp = 2.0KJ/(kg ·K) Atd = 3.1457× 1011m3/kgmol · h
Cpw = 4.2KJ/(kg ·K)

The simulations we perform are introduced here: case study 1 provides a comparison of

the GMM-EnKF, the PF and the EnKF for a case with bi-modal distributions and insignif-

icant model-plant mismatch. Case study 2 provides a comparison of the three estimators

where the model-plant mismatch is significant. Case study 3 compares the estimators for

state estimation with uncertain parameters, but with the uncertain parameter not being

estimated. Case study 4 considers the same case as case study 3, but with combined state

and parameter estimation. In case study 5, we consider an alternate version of the PF and

use the simulation conditions of case study 2.

2.4.2 Comparison of state estimation with the GMM-EnKF, EnKF

and PF (case study 1 and case study 2)

In this section, we present the results of applying the GMM-EnKF, EnKF and PF algorithms

on the PMMA process. To illustrate the performance of the estimators in cases where the

states have multimodal distributions, bimodal process noise is applied to all the six states.

The measurement noise is assumed to be Gaussian. The prior distribution of the state is

also assumed to follow a GM distribution which contains two modes.
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In case study 1, the true initial values of the states are:

x0 = [5 kgmol/m3, 3 kgmol/m3, 320, 0.5 kgmol/m3, 0.5 kg/m3, 300K] (2.37)

The dynamics of the simulation describe how the system relaxes to a steady state from

this initial condition. For the estimators, the initial particles are drawn from the prior

distribution. The tuning parameters for the prior distribution are its mean and covariance.

In the first case, a prior distribution with a small amount of bi-modal process noise is tested

for the three algorithms. The means of the two Gaussian modes of the prior distribution

are:

µ1 = [4 kgmol/m3, 2 kgmol/m3, 310K, 0.49 kgmol/m3, 0.49 kg/m3, 295K];

µ2 = [6 kgmol/m3, 4 kgmol/m3, 330K, 0.51 kgmol/m3, 0.51 kg/m3, 305K]

The covariances of the modes of the prior distribution are:

P1 = diag(4, 4, 28, 0.8, 8× 10−4, 6);

P2 = diag(4, 4, 28, 0.8, 8× 10−4, 6)

The tuning parameters of the initial distribution indicate a state distribution with insignif-

icant bimodality. The purpose of this simulation is to demonstrate the estimation perfor-

mance of the three algorithms in the scenario where the state distribution shows insignificant

multimodality.

The comparison of estimation results using the EnKF-GMM, EnKF and PF is shown in

Figure 2.1, with time steps on the x-axis (each time step is 0.3 hr=18 min). Table 2.2 shows

the root mean squared error (RMSE) over the 25 time steps of the simulation for the six

states and the NAMW for the three algorithms. In this case, the estimation results from

figure 1 and table 1 show that the three algorithms have similar performance in estimation of
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the six states. However, the EnKF-GMM has the best performance in the estimation of the

NAMW. In addition, the converged variance of the estimates of the states, obtained from

the estimated covariance matrix with the GMM-EnKF, are [1×10−4, 1×10−4, 1.2×10−4, 1×

10−5, 2× 10−4, 4× 10−4], respectively, confirming the significance of the estimates. The PF

performs better than the EnKF only for some states. Increasing the number of particles

for each of the algorithms to 200 (results not shown) improves the performance of the PF

slightly, but the same conclusions hold.

Table 2.2: RMSE of the EnKF-GMM, EnKF and PF for the PMMA process with multimodal
process noise (case study 1).

Variable GMM-EnKF EnKF PF
CM , kgmol/m3 0.20 0.20 0.33
CI , kgmol/m3 0.24 0.20 0.33

T,K 4.3 4.4 3.1
D0, kgmol/m3 0.019 0.014 0.032
D1, kg/m

3 11.85 11.53 10.44
Tj, K 2.3 2.2 1.4

NAMW 209 338 357

In case study 2, the multimodal features of the prior distribution are made more significant

compared with the first case. The parameters of the prior distribution given below indicate

that both modes lie far away from the true value, which also means that the initial condition

mismatch is much larger. The true initial values of the states remain the same as the first

case, and the process noise and measurement noise applied to the plant remain unchanged

as well. The modified prior distribution is specified by:

µ1 = [1 kgmol/m3, 1 kgmol/m3, 290K, 0.49 kgmol/m3, 0.49 kg/m3, 270K];

µ2 = [10 kgmol/m3, 8 kgmol/m3, 350K, 0.51 kgmol/m3, 0.51 kg/m3, 330K];

P1 = diag(0.8, 0.8, 5.6, 8× 10−2, 8× 10−3, 5.6);

P2 = diag(0.8, 0.8, 5.6, 8× 10−2, 8× 10−3, 5.6));

In this case, the parameters of the prior distribution indicate that both of the modes lie
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near the tail of the likelihood function. The initial particles not only show significant multi-

modality, but also some degree of model-plant mismatch. The comparison of estimation using

the EnKF-GMM, EnKF and PF is shown in figure 2.2 and the RMSE is shown in table 2.3,

and it is clear that the EnKF- GMM outperforms the other two estimators. As is expected,

the performance of the EnKF has worsened in this case because its Gaussian assumption

on the prior and posterior distributions is violated in a significant manner. The PF does

not show good performance either, and it is outperformed by the EnKF in the estimation

of the NAMW. This is because the PF lacks robustness to plant-model mismatch[84],which

is present in this case. Increasing the number of particles for all the estimators does not

change these conclusions.

Table 2.3: RMSE of the GMM-EnKF, EnKF and PF for the PMMA process with more
significant multimodal process noise (case study 2).

Variable GMM-EnKF EnKF PF
CM , kgmol/m3 0.44 0.68 0.69
CI , kgmol/m3 0.37 0.14 0.17

T,K 5.8 11.8 14.4
D0, kgmol/m3 0.042 0.062 0.078
D1, kg/m

3 9.73 36.13 51.38
Tj, K 5.1 8.2 9.2

NAMW 559 1400 831

Figure 2.3 shows the evolution of the multimodal posterior distribution of the one of the

states (the monomer concentration) at time steps 1, 3, 4,9. Table 2.4 lists the corresponding

estimation errors of the three algorithms at those time steps with respect to the true value of

CM . Figure 2.4 shows the evolution of the posterior distribution of another state (the jacket

temperature) at time steps 2, 6, 9, 10 and table 2.5 shows the corresponding estimation

errors of the three algorithms. These distributions are bi-modal, which clearly shows that the

EnKF-GMM outperforms the other estimators in the presence of multimodal distributions.

45







2.4.3 Comparison of state and parameter estimation with the EnKF-

GMM, EnKF and PF (case studies 3 and 4)

We consider the effects of parametric uncertainty in this section. The uncertain parameter

chosen for these studies is Ep, which is the activation energy associated with the reaction rate

parameter kp. We choose Ep as the uncertain parameter because (based on dimensionless

sensitivity analysis) the NAMW is highly sensitive to the values of this parameter. We

consider state estimation and joint state and parameter estimation in this section.

2.4.3.1 State estimation with uncertain parameter (case study 3)

In this sub-section, while Ep is an uncertain parameter and noise is added to its value at

each time step in the simulation, the parameter is not estimated. The nominal value of Ep

is set to be Ep = 1.8283 × 104kJ/kgmol and bi-modal Gaussian noise with means of the

modes µ = [−100, 100] and covariances P = diag(50, 50) is added to it. In addition, process

and measurement noise with the same distributions as in the second case in the previous

section are included. Figure 2.5 shows the comparison of the estimation results using the

three algorithms over 40 time steps and Table 2.6 shows the corresponding RMSE. In this

case, the GMM-EnKF shows a small improvement in state estimation performance over the

other estimators, especially in the estimation of the NAMW.

Table 2.6: RMSE of the GMM-EnKF, EnKF and PF for state estimation in the case with
uncertain parameter Ep (case study 3).

Variable GMM-EnKF EnKF PF
CM , kgmol/m3 0.29 0.26 0.32
CI , kgmol/m3 0.12 0.10 0.27

T,K 7.2 8.9 10.3
D0, kgmol/m3 0.111 0.092 0.144
D1, kg/m

3 32.27 35.11 45.34
Tj, K 5.5 5.7 7.5

NAMW 487 869 653
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2.4.3.2 State and parameter estimation with uncertain parameter (case study

4)

Next, we compare the performance of the estimators for joint state and parameter estimation.

Once again, Ep is the uncertain parameter and its nominal value is kept the same as in case

study 3. The parameter Ep is treated as an augmented state for estimation. The prior

distribution for Ep has the following characteristics: means of µ = [1.9× 104, 2.5× 104] and

covariances of P = diag(500, 500) for its two modes. Bi-modal noise is added to the each

particle of the parameter, with means µ = [−100, 100] and covariances of P = diag(50, 50).

Except for the exclusion of process noise, the properties of the simulation are kept the same

as in case study 3. Figure 2.6 shows the performance of the estimators in state estimation

and Figure 2.7 their performance in estimating the parameter Ep. While the performance of

the EnKF in state estimation is comparable to that of the GMM-EnKF, the GMM-EnKF

is clearly superior in parameter estimation. The PF has the worst performance among the

estimators.

2.4.4 Alternate point estimates for the PF (case study 5)

In the PF, even though the full distribution is obtained, a point estimate for the states is

usually obtained by choosing the expectation (mean) of the posterior particles. This is the

method we have employed for the PF in the simulations described in the previous sections.

However, if the distribution is multimodal, the mean may not necessarily represent the

best point estimate, and the mode of the distribution (which is equivalent to the maximum

a posteriori estimate) can provide a better estimate [84][6]. We investigate whether this

approach can improve the performance of the PF, since we are considering cases where the

distributions are multimodal. We apply k-means clustering on the posterior distribution of

the particles to identify the modes and the maximum a posteriori estimate with the particle

filter, and compare the estimation performance of this PF, called the PF-mode, with the

other estimators. The parameters of the simulations are similar to the second case study.
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Figure 2.8 shows the performance of the estimators and the RMSE is described in table 2.7.

The PF-mode clearly outperforms the PF and the EnKF; however, the GMM-EnKF has

superior performance.

The idea of the PF-mode is very similar to that of the GMM-EnKF. Both of them use

clustering to extract modes from the posterior distribution and generate a point estimate

based on the information in the modes. However, the GMM-EnKF outperforms the PF-

mode because it is more robust to poor initial estimates and model-plant mismatch. Also,

if the number of modes in the state distributions varies with time, perhaps even becoming

unimodal at some times, using the mode as a point estimate is not necessarily superior to

the mean. The GMM-EnKF combines the modes of the distribution in proportion based on

the calculated weights to get a point estimate, and can adjust its estimation results in these

cases by adjusting the weights of the modes.

Table 2.7: RMSE of the EnKF-GMM, EnKF, PF and PF-mode for state estimation (case
study 5).

Variable GMM-EnKF EnKF PF PF-mode
CM , kgmol/m3 0.44 0.68 0.68 0.85
CI , kgmol/m3 0.37 0.14 0.17 0.55

T,K 5.8 11.8 14.4 8.31
D0, kgmol/m3 0.042 0.062 0.078 0.047
D1, kg/m

3 9.73 36.13 51.38 13.05
Tj, K 5.1 8.2 9.2 7.9

NAMW 559 1400 831 706

2.5 Conclusions

In this chapter, we have proposed an estimator based on a Gaussian mixture model coupled

with an ensemble Kalman filter (EnKF-GMM) that is capable of handling multimodal state

distributions and demonstrated its performance in simulations on a polymethyl methacrylate

process. The EnKF-GMM clearly outperforms the particle filter (PF) and the EnKF in both

state and parameter estimation with multimodal distributions. The EnKF is limited by the
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assumption of Gaussian distributions, and the particle filters performance is affected by its

lack of robustness with respect to model-plant mismatch. A different choice for obtaining

a point estimate with the particle filter, leading to a maximum a posteriori estimate, im-

proves the performance of the PF, but the EnKF-GMM is still superior, indicating that it

is the estimator of choice for systems with multimodal state distributions such as polymer

processes.
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Chapter 3

Constrained extended Kalman filter

and ensemble Kalman filter based on

Kullback-Leibler (KL) divergence

3.1 Introduction

State estimation plays an important role in achieving good control performance, reliable

optimization, and process monitoring. Over the years, various filtering algorithms have been

proposed for state estimation, among which the most celebrated Kalman filter (KF) is an

optimal filter for linear systems in the presence of Gaussian noise and without constraints.

For nonlinear systems, a straightforward extension of the KF is Extended Kalman Filter

(EKF), which is based on approximating the nonlinear dynamics of the model with its first-

order linearized version to obtain the state estimates [42]. On the other hand, there exist

several particle based nonlinear Bayesian filters such as the unscented Kalman filter (UKF),

the ensemble Kalman filter (EnKF) and particle filter (PF), which use more sophisticated

techniques to handle the nonlinearity of the systems instead of simple linearization. Of these

sample based filters, the EnKF has seen highly successful applications on high-dimensional
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complicated systems, including geophysical systems [102], oceanographical systems [50], land

surface models [79], etc. For the UKF, the number of the sigma points required is 2d + 1,

where d is the dimension of the state space. The PF, on the other hand, suffers from the

“curse of dimensionality”[91], which implies that the PF requires a large number of particles

to avoid the collapse of particles. The EnKF, however, can achieve accurate estimation based

on a small number of ensemble for high-dimensional systems. One of the possible reasons is

that the EnKF performs a linear update on each of the particles instead of re-weighting the

particles, which helps retain the variability of the particles. Regardless of whichever of the

above mentioned filters we use, the estimated states might result in physically meaningless

values of the states because the physical constraints such as non-negative values of pressure

and concentrations are not incorporated in the state estimation procedure [36]. In other

words, these recursive filters cannot handle constraints. Therefore, the focus of this work is

to develop a constrained state estimation procedure in the recursive framework. In particular,

we develop constrained EKF algorithm and constrained EnKF algorithm.

The most common strategy to handle constraints in state estimation is Moving Horizon

Estimation (MHE) filter [80]. MHE can naturally handle constraints on states by solving an

optimization problem over a finite horizon with constraints easily enforced. In this regard,

a moving horizon strategy is proposed in [76] to use a fixed set of measurements to limit

the size of the optimization problem being solved at each estimation step. Later, in [77] the

MHE procedure is presented for constrained state estimation of discrete-time system, and

the moving horizon window requires one to use the approximated arrival cost to account for

the past data that are not included in the estimation. However, the choice of the approx-

imation function must ensure that the estimator does not diverge. Despite this, the heavy

computation load of the optimization problem and non-recursive nature of the MHE poses

difficulties for online applications.

Several methods have been proposed to retain the recursive nature of the Bayesian filters

to incorporate constraints. In the EKF framework, [35] proposed two distinct methods to
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handle inequality constraints. The first method attempts to project the violated posterior

estimate back into the constrained space by solving a quadratic programming problem. The

second method focuses on restricting the Kalman gain, which produces an updated estimate

that lies within the constrained region. In [96], a maximum a posteriori (MAP) solution

is presented to deal with equality constraints in the constrained EKF framework. Also, an

iterative algorithm was proposed to handle inequality constraints.

For the constrained EnKF, in [69], two methods are introduced to incorporate equality

constraints on the EnKF. The first is to structure the output equation as a budget constraint.

The second is a two-filter approach which first performs a standard EnKF and then formulate

another Kalman filter to enforce the equality constraints by considering them as perfect

measurements. No state transition model is considered for this second filter. The second filter

can be replaced with an optimization problem which solves for the optimal state estimation

under constraints. The optimization problem can be structured based on ”least square”,

”maximum likelihood” etc.

Among the recursive methods that incorporate constraints, the most widely used is the

Recursive Nonlinear Dynamic Data Reconciliation (RNDDR) approach [99]. The RNDDR

attempts to solve an optimization problem by imposing constraints while obtaining the up-

dated state estimates. This is accomplished by embedding the optimization problem into the

EKF to form a predictor-corrector framework. However, this approach cannot handle the

nonlinearities while calculating the error covariance matrix. Recently, the RNDDR method

has been applied in particle based filters, including the EnKF. In [71] and [5], a constrained

EnKF framework which formulates the RNDDR on the individual particle was proposed.

The key aspect of their work is that the particles which lie outside the constraints are pro-

jected back into the constraints. To enhance the effect of the constraints, the initial ensemble

is sampled from a truncated distribution to guarantee that each particle satisfies the con-

straints. Another variant of constrained EnKF formulates the RNDDR optimization only on

the mean, and using this estimated mean, the particles in the ensemble have to be adjusted
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accordingly for next time step. [105] proposed to move the whole unconstrained ensemble by

the same distance as the shifting distance of the constrained mean to the unconstrained one,

which essentially says moving the ensemble in parallel without changing its original covari-

ance. They argue that the projection operated on individual particle causes the covariance

of the ensemble to change significantly from that of the unconstrained ensemble and hence

affects the convergence rate of the filter.

Furthermore, the RNDDR approach has been extended to solve constrained particle filter

[83], and constrained unscented Kalman Filter [98]. In [83], several variants of RNDDR have

been proposed to handle constraints in particle filter. The philosophy of constrained PF

is similar to the constrained EnKF. It is important to note that the RNDDR focuses on

constraining the mean or the individual particles in the case of sample-based filters, however,

the estimation error covariance of these filters is not guaranteed to lie inside the constrained

region. Therefore, the main objective of this work is to develop the state estimation strategy

that constrains both the mean and error covariance matrix to lie within the constrained

region for more accurate state estimates.

In this chapter, we propose a novel Kullback-Leibler (KL) divergence based method to

cope with inequality constraints. The KL divergence has been widely used in image retrieval

[70], target tracking [34], etc., to measure the difference between two distributions. Note that

the idea of Kalman based filters is to propagate and predict the Gaussian distribution at

each time step. In this work, we project the unconstrained state distribution obtained using

the conventional algorithms into the constrained region by minizing the KL divergence. In

other words, we formulate an optimization problem based on the KL divergence to shape a

new posterior distribution which satisfies the constraints to approximate the unconstrained

one. Compared to the RNDDR, the proposed approach incorporates the constraints by

directly finding a replacement distribution which satisfies the constraints instead of indirectly

manipulating the mean or the particle of the unconstrained estimation using the RNDDR.

We are able to show that the KL divergence based optimization approach can be reduced to
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the RNDDR under special circumstances. The proposed method is suitable for all Gaussian

filters, with minor difference when integrated into the EKF and the EnKF respectively. We

are able to show that the constrained EKF and EnKF based on the proposed KL divergence

approach outperforms their RNDDR counterparts.

3.2 Preliminaries

In this section, the details of the Extended Kalman Filter and Ensemble Kalman Filter

approach for nonlinear state estimation are briefly reviewed. Let xk ∈ Rd denote system

states and yk ∈ Rm denote measurements. Assuming wk and vk denote the process and

measurement noises with wk ∼ N(0, Q) and vk ∼ N(0, R), a nonlinear discrete time system

is given by

xk+1 = f(xk, uk) + wk (3.1)

yk = h(xk) + vk

where f(.) and h(.) are the process and measurement model of the system, respectively.

3.2.1 Extended Kalman filter

The idea of EKF is to linearize the nonlinear model f around x̂k|k to obtain the linear

operator Ak of the process model.

Ak =
∂f(xk, uk)

∂x

∣

∣

∣

x̂k|k,uk

However, this linearized model is used only in approximating the estimation error covariance

(Pk+1|k), whereas, the nonlinear model is used for predicting the states. Now, the predictor

- correction steps of the EKF filter are presented as follows:

Prediction:
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At the prediction step, the predicted mean and covariance are calculated as follows:

x̂k+1|k = f(x̂k|k, uk) (3.2)

Pk+1|k = AkPk|kA
T
k +Qk (3.3)

Update:

The linear measurement operator is calculated as:

Hk+1 =
∂h(xk)

∂x

∣

∣

∣

x̂k+1|k

The Kalman gain is calculated as:

K = Pk+1|kHk+1(Hk+1Pk+1|kH
T
k+1 +Rk)

−1 (3.4)

The final Kalman update of mean and covariance at time step k + 1 is given by:

x̂k+1|k+1 = x̂k+1|k +K(yk+1 − h(x̂k+1|k)) (3.5)

Pk+1|k+1 = (I −KHk+1)Pk+1|k (3.6)

It is important to note that the updated state estimation obtained using (3.5) - (3.6)

cannot handle constraints. Therefore, the resulting state estimation might yield physically

meaningless estimates. Further, [36] has shown that the EKF can fail when the multiple

states satisfy the steady state measurements and a poor initial guess of the state is used in

the estimator.
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3.2.2 The Ensemble Kalman Filter

In this section, we will briefly review the Ensemble Kalman Filter approach for nonlinear

state estimation problem [24, 4]. It is a Monte-Carlo based Gaussian filter. The basic idea

of EnKF is to approximate the state distribution with an ensemble of randomly sampled

particles {xi
k}i=1,2,···,N . All the statistical information of the state space can be extracted

through this ensemble. At every time instance, each particle is propagated through the

model to shape the predicted distribution. Then each particle is updated by assimilating the

arriving measurement and the updated statistical information, mean and covariance, can be

obtained from the ensemble.

Prediction step:

At time step k+1 of the prediction step, N particles xi
k|k, ı = 1, · · · , N are drawn from the

prior distribution p(xk|k). The particles {xi
k|k}, i = 1, · · · , N are then propagated through

the model to generate a predicted ensemble {xi
k+1|k}i=1,···,N .

xi
k+1|k = f(xi

k|k) + wi
k (3.7)

Also, an ensemble of predicted measurement samples are calculated using the measurement

model as follows:

yik+1|k = h(xi
k+1|k) + vik (3.8)

The predicted error cross covariance P e,ξ
k+1|k of state and output and the predicted innova-

tion covariance P ξ,ξ
k+1|k are not explicitly calculated in the EnKF. Instead they are computed

using the predicted ensembles {xi
k+1|k}, {y

i
k+1|k}i=1,···,N described as follows.

P e,ξ
k+1|k =

1

N − 1

N
∑

i=1

(eik+1|k)(ξ
i
k+1|k)

T (3.9)

P ξ,ξ
k+1|k =

1

N − 1

N
∑

i=1

(ξik+1|k)(ξ
i
k+1|k)

T (3.10)
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eik+1|k and ξik+1|k are error matrix defined as:

eik+1|k = xi
k+1|k − µx

k+1|k (3.11)

where µx
k+1|k =

1
N

∑N
i=1 x

i
k+1|k.

ξik+1|k = yik+1|k − µy
k+1|k (3.12)

where µy
k|k−1 =

1
N

∑N
i=1 y

i
k|k−1.

Update step:

The update step updates each of the particle in the predicted ensemble by incorporating the

measurement yobsk+1. First, the Kalman gain K is calculated using the two error matrices as

follow:

K = P e,ξ
k+1|k(P

ξ,ξ
k+1|k +R)−1 (3.13)

The EnKF then updates each particle in the ensemble as follows:

xi
k+1|k+1 = xi

k+1|k +K(yobsk+1 − yik+1|k) (3.14)

where yobsk+1 is measurement data of time step k+1.

The final point estimate provided for time step k + 1 is given by:

x̂k+1|k+1 =
1

N

N
∑

i=1

xi
k+1|k+1 (3.15)

The estimated error covariance is given by:

Pk+1|k+1 =
1

N − 1

N
∑

i=1

(xi
k+1|k+1 − x̂k+1|k+1)(x

i
k+1|k+1 − x̂k+1|k+1)

T (3.16)

For high dimension systems, the direct calculation of the covariance matrix in the tra-
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ditional Kalman filter can be computationally expensive. The EnKF avoids this problem

by operating on a relatively small ensemble instead of explicitly on the covariance itself.

This approximation is equivalent to dimension reduction, which enables the EnKF to handle

high-dimensional systems. In [106][57], it is found that if the ensemble size exceeds ten, little

additional improvement can be found to reduce the propagation error.

3.3 Recursive nonlinear dynamic data reconciliation

(RNDDR) approach

The state estimation procedures discussed in the previous section do not impose the con-

straints on states. Therefore, the state estimates obtained might be physically meaningless.

In this section, we briefly review the Recursive Nonlinear Dynamic Data Reconciliation

(RNDDR) approach used in constrained state estimation of nonlinear systems [99].

3.3.1 Constrained EKF based on RNDDR approach

The basic idea of RNDDR method is to replace the Kalman update step (Eq. (3.5)) of

the EKF algorithm by solving an optimization problem such that the posterior estimates,

x̂k+1|k+1, are within the constrained region. Given the state constraints of the form, xlb ≤

x ≤ xub, the constrained state update step requires one to solve the following optimization

problem:

x̂c
k+1|k+1 = argmin

x
(x− x̂k+1|k)

TP−1
k+1|k(x− x̂k+1|k) (3.17)

+(y − h(x))TR−1(y − h(x))

s.t. xlb ≤ x ≤ xub

where Pk+1|k is the predicted covariance at time step k + 1, obtained using (3.3).
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The above optimization problem provides a better constrained estimate as it penalizes

the deviation of both the state vector and the measurement vector. The resulting state

estimate will be inside the constrained region in this case. Without the state constraints,

the unconstrained optimization problem will reduce to the EKF solution. It is important

to note that states are the only decision variables in the optimization problem, and the

estimation error covariance matrix is obtained as in conventional EKF using Eqs. (3.4) -

(3.6). Therefore, the estimation error covariance might not lie inside the constrained region.

In other words, the RNDDR only updates the mean value and the constraint information is

not accounted while updating the covariance matrix. Thus, the unconstrained covariance is

propagated into subsequent iterations, leading to inaccurate estimation. Other variants of

RNNDR approach have been proposed using unscented transformation; interested readers

can refer to the works of [97, 98] and [63].

3.3.2 Constrained EnKF based on RNDDR approach

There exist many variants of RNDDR to obtain the constrained state estimation using EnKF.

In the first case, the predicted ensemble members, {xi
k+1|k}i=1,···,N , which are obtained using

(3.7), are projected into the constrained region. With constraints added to the states, the

RNDDR for constrained EnKF can be formulated as follows:

min
xi,c

k+1|k+1

[(y − h(xi,c
k+1|k+1))

TR−1(y − h(xi,c
k+1|k+1)) + (xi,c

k+1|k+1 − xi
k+1|k)

TP−1
k+1|k

(xi,c
k+1|k+1 − xi

k+1|k)] (3.18)

s.t. lb ≤ xi,c
k+1|k+1 ≤ ub

where xi,c
k+1|k+1 denotes the i

th member or particle of the constrained EnKF. Further, solving

these optimization problem serves as the update step for the states. On the other hand, the

RNDDR can be applied on the unconstrained update members of the ensemble, xi
k+1|k+1,
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and the resulting optimization problem is given by:

min
xi,c

k+1|k+1

[(y − h(xi,c
k+1|k+1))

TR−1(y − h(xi,c
k+1|k+1)) + (xi,c

k+1|k+1 − xi
k+1|k+1)

TP−1
k+1|k+1

(xi,c
k+1|k+1 − xi

k+1|k+1)] (3.19)

s.t. lb ≤ xi,c
k+1|k+1 ≤ ub

It is important to note that the (3.18) and (3.19) target constraining individual particles

of the ensemble. Therefore, N such optimization problems are solved at each time step to

enforce constraints in the state estimates. Hence, these two formulations are not computa-

tionally attractive. Alternately, the optimization problem can also be formulated in terms

of the unconstrained ensemble mean, x̂k+1|k+1, as:

min
x̂c
k+1|k+1

[(y−h(x̂c
k+1|k+1))

TR−1(y−h(x̂c
k+1|k+1))+(x̂c

k+1|k+1−x̂k+1|k+1)
TP−1

k+1|k+1(x̂
c
k+1|k+1−x̂k+1|k+1)]

(3.20)

s.t. lb ≤ x̂c
k+1|k+1 ≤ ub

All above three constrained formulations penalize both the deviation of the constrained

estimate from the unconstrained one and the measurement error. However, constraining only

the mean value is much more computationally efficient than constraining individual particle

since (3.20) solves only one optimization problem at every time step in contrast to solving N

problems in the individual member formulation. The basic idea of these approaches can be

illustrated as figure (a) and (b) in Figure 3.1. It is important to note that none of the above

formulation accounts for the constraints in the estimation of variance. In other words, the

update of constrained covariance P c
k+1|k+1 remains the same as Pk+1|k+1 in (3.16). As is shown

in the EKF case, unconstrained covariance would affect the convergence rate significantly. A

crucial step after the obtaining the constrained mean is to adjust the particles accordingly

since they are the ones that pass the constraints information to the next iteration. Yang et

65



(a)

(b)

(c)

Figure 3.1: Illustration of (a) RNDDR on unconstrained particles; (b) RNDDR on uncon-
strained mean; and (c) Proposed KL divergence based EnKF
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al. [105] proposes to shift all the particles the same distance as that of constrained mean.

To this end, we define the distance, δk+1, as:

δk+1 = |x̂
c
k+1|k+1 − x̂k+1|k+1| (3.21)

Correspondingly, all the particles are moved by the distance δ as is given as follows.

xi,c
k+1|k+1 = xi

k+1|k+1 + δk+1 (3.22)

This particle adjustment technique maintains the unchanged covariance of the ensemble,

which reduces the negative impact on the convergence rate of the original EnKF. However,

a large portion of the particles might fall out of the constrained region if the constrained

region is narrower than the covariance of the ensemble, which might result in inaccurate

state estimates as well. In other words, although (3.18) and (3.19) guarantee that every

particle lies within the constraints, the poor initial guess of the unconstrained ensemble

tends to have the particles sit close to the boundary to compensate for the cost (xi,c
k+1|k+1 −

xi
k+1|k+1)

TP−1
k+1|k+1(x

i,c
k+1|k+1 − xi

k+1|k+1) in the RNDDR framework. This happens especially

when the measurement noise R is large. Because in this case the correction of states is poor

due to unreliable measurement, the measurement term of the cost function can be ignored.

The accumulation of particles around the boundary might cause the variability of particles

in the ensemble to reduce significantly. Although the EnKF does not collapse as easily as

the PF for the loss of the variability, it is still a loss of information.
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3.4 Proposed KL divergence based constrained state

estimation

3.4.1 Motivation for using KL divergence

Owing to the assumption that the states xk follow Gaussian distribution at the predic-

tion step (i.e., x̂k+1|k ∼ N(µx
k+1|k, Pk+1|k)), and at the correction step (i.e., x̂k+1|k+1 ∼

N(µx
k+1|k+1, Pk+1|k+1)), we can project the unconstrained state estimation results, obtained

using the conventional procedure presented in Section 3.2, into the constrained region. To

this end, we propose to use the KL divergence measure. It measures the distance between

two arbitrary probability distributions f(x) and g(x), and it is defined as:

D(f ||g) =

∫

f(x)log
f(x)

g(x)
dx (3.23)

In general, filtering procedure introduced in the previous section gives the estimation of

posterior distribution p(xk|y1:k) at time step k. p(xk|y1:k) could be any arbitrary distribution

for nonlinear systems. Our goal is to approximate p(xk|y1:k) with another distribution q(xk),

such that the constraints are satisfied. This approximated distribution q(xk) is determined by

minimizing the KL divergence from p(xk|y1:k) to minimize the loss of information obtained

from the unconstrained filtering step. However, the KL divergence is not a true distance

measure because it has the following properties:

1. KLD can never be negative, D(f(x)||g(x)) ≥ 0. D(f(x)||g(x)) = 0 if and only if

f(x) = g(x) for every x of the support.

2. KLD is not symmetric, i.e. D(f ||g) 6= D(g||f) where D(f ||g) denotes forward KLD

and D(g||f) denotes reverse KLD.

3. KLD does not satisfy the triangle inequality of a true distance measure, i.e. D(f ||g)+

D(g||h) ≥ D(f ||h).
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Therefore, using the KLD in different directions results in different g(x). However, it has

been widely used to find an approximated distribution g(x) of the true distribution f(x) in

optimization framework. Further, if f(x) and g(x) are of both Gaussian distributions, the

KL divergence has a closed form which can be expressed as:

D(f ||g) =
1

2
[log
|Σg|

|Σf |
+ Tr(Σ−1

g Σf )− d

+(µf − µg)
TΣ−1

g (µf − µg)] (3.24)

where f(x) = N(x;µf ,Σf ), g(x) = N(x;µg,Σg) and d is the dimension of x.

Illustration 1:

The objective of this example is to demonstrate the approximation of a distribution

obtained by minimizing forward and reverse KL divergence. For this purpose, let us assume

f(x) ∼ N(x;µf , σ
2
f ), where µf = 10, σf = 3. An inequality constraint 8 < x < 15 is put

on f(x). The constrained distribution g(x) ∼ N(x;µg, σ
2
g) is obtained by minimizing the

forward or backward KLD. The optimization problem is formulated to guarantee g(x) lies in

the constrained region 8 < x < 15 with 99% confidence. Figure 3.2 shows the distribution of

g(x) using the forward KLD and reverse KLD respectively. In the figure, The region within

the two dotted lines is the constrained region. We can see that the g(x) of both methods are

very close to each other. When the constrained region is located close to the mean of f(x),

similar g(x) is generated with both methods.

min
µg ,σg

D(f ||g) or D(g||f)

s.t. 8 < µg < 15

8 < µg + 3σg < 15

8 < µg − 3σg < 15

Figure 3.3 shows the constrained g(x) using the forward KLD and reverse KLD respec-
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Figure 3.2: Results of g(x) using forward KLD(left) and reverse KLD(right) with constraint
8 < x < 15

tively when we change the inequality constraint to 11 < x < 20. Compared to the previous

case, the resulted g(x) of the two methods is noticeable different. Such difference occurs

because the constrained region [11 20] does not include the peak of f(x),in other words, it is

located to the tail of f(x). As is introduced earlier, the mode-seeking behavior of the reverse

KLD drives g(x) close to the mean of f(x) and meanwhile sets most part of g(x) to zero where

f(x) is close to zero, hence the sharp peak. The peaks will get even sharper if the constrained

region keeps moving to the tail of f(x). In conclusion, the forward KLD produces a g(x)

which stretches all over the constrained region wherever the constrained region is located,

while reverse KLD produces a g(x) which attempts to get as close to the mean of f(x) as

possible. If the primary concern is to achieve minimum modification of the unconstrained

point estimates, i.e. the mean value, the g(x) from the reverse KLD is a preferable option in

the presence of the constraints, although it might cause the covariance to shrink significantly.

In this work, the reverse KLD will be used as the cost function in the optimization problem

because it has less computation cost, and it yields an estimate closer to the unconstrained

estimate. Further, as we will show in subsequent section that the resulting optimization

problem can be cast as convex problem which can be solved to global optimality.
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Figure 3.3: Results of g(x) using forward KLD(left) and reverse KLD(right) with constraint
11 < x < 20

3.4.2 Optimization formulation for KL based constraining approach

The motivation of our proposed method is to embrace the constraints in updating both

the states and estimation error covariance matrix. Recall that the update equations of

unconstrained state estimates ((3.5) - (3.6) for the case of EKF, and (3.5) - (3.6) for the case

of EnKF), represent the ellipsoidal uncertain region around the state estimate (x̂k+1|k+1).

The main idea of our approach is to project the unconstrained solution into the constrained

region such that both the state and its estimation error lie within the constrained space.

Since Kullback-Leibler (KL) divergence is known to be a measure of similarity between two

distributions, we seek to determine the multivariate Gaussian distribution in the constrained

region that is close and similar to the unconstrained multivariate Gaussian distribution

obtained from state estimation procedures presented in Section 3.2.

Let us denote the unknown constrained distribution g(x) = N(x; x̂c
k+1|k+1, P

c
k+1|k+1) ob-

tained by projecting the unconstrained distribution f(x) = N(x; x̂k+1|k+1, Pk+1|k+1). Recall

that x̂k+1|k+1 and Pk+1|k+1 are the solution of the unconstrained Kalman update equations

(3.5) -(3.6). Since we are considering the complete distribution information of the uncon-

strained EKF solution to be projected into the constrained region, we seek the state covari-

ance to be completely inside the constrained region. It is important to notice that the state
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covariance Pk+1|k+1 obtained from the EKF signifies the ellipsoid representation around the

state estimates. Therefore, to constrain the state covariance, we utilize the following expres-

sion of ellipsoid:

E = {x̂k+1|k+1 + αSk+1z | ‖z‖2≤ 1} (3.25)

where x̂k+1|k+1 is the center of the ellipsoid, Sk+1 is the positive square root of Pk+1|k+1 and

α depends on the confidence limit (e.g., α = 2 signifies a confidence limit of 95%). In order

to bound the state covariances, we enforce the following constraints:

E = {(xlb ≤ x̂k+1|k+1 + αSk+1z ≤ xub) | ‖z‖2≤ 1} (3.26)

or equivalently, the above constraint can rewritten as:

x̃ := x̂k+1|k+1 + αSk+1z | ‖z‖2≤ 1 (3.27)

hT
i x̃+ ti ≤ 0; i = 1, . . . ,m (3.28)

where hi is the ith row of the matrix H = [I;−I] and ti is the ith element of vector t =

[xub;−xlb]. Now, the optimization formulation that can simultaneously determine the state

updates and state covariances of the constrained filtering problem can be formulated as

follows:

min
x̂c
k+1|k+1

,P c
k+1|k+1

D(g||f) (3.29)

s.t. xlb ≤ x̂c
k+1|k+1 ≤ xub (3.30)

Sk+1 = P c1/2
k+1|k+1 (3.31)

x̃ := x̂c
k+1|k+1 + αSk+1z | ‖z‖2≤ 1 (3.32)

hT
i x̃+ ti ≤ 0; i = 1, . . . ,m (3.33)
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The above optimization problem is a semi-infinite optimization problem and it is not compu-

tationally tractable owing to the nonlinear matrix constraint (3.31) and infinite dimensional

constraints (3.32). Further, the objective function is non-convex.

3.4.3 Convex reformulations

In this subsection, we present the convex optimization techniques to reformulate the above

infinite dimensional optimization problem such that it can be cast as a convex optimization

problem. To this end, first let us introduce some of the definitions that will enable us to

reformulate the problem. For more details on the definitions, readers are referred to [12].

Definition 3.1: The epigraph of a function f : Rn → R is defined as [12]:

epi f = {(x, t)|x ∈ domf, f(x) ≤ t}

The epigraph of a function is the region above the function. For a convex function f, the

minimization of f is equivalent to the finding the lowest point of the epigraph.

Definition 3.2: For any symmetric matrix M of the form:

M =







U V

V T W







the Schur complement of W is defined as U − VW−1V T . If W is invertible, then we have:

If W � 0, then M � 0 if U − VW−1V T � 0.

Theorem 3.1: The set of linear constraints hT
i z ≤ ti, z ∈ E can be expressed as a set of

second order cone constraints of the form hi
T zss + α‖Shi‖2≤ ti.

73



Proof[12]: Recall that z := zss+αSz̃, ||z̃||≤ 1. Consider the infinite dimensional constraint:

hT
i z ≤ ti ∀z ∈ E

⇐⇒ sup{hT
i z | z ∈ E} ≤ ti

⇐⇒ sup{hT
i (zss + αSz̃) | ‖z‖2≤ 1} ≤ ti

⇐⇒ hT
i zss + sup{hT

i αSz | ‖z‖2≤ 1} ≤ ti

⇐⇒ hT
i zss + α‖Shi‖2≤ ti

Now, let us consider the objective function of the proposed optimization problem (3.29)

which can be expressed using the closed form of the KLD for Gaussian distributions.

D(g||f) =
1

2
[log
|Pk+1|k+1|

|P c
k+1|k+1|

+ Tr(P−1
k+1|k+1P

c
k+1|k+1)− d

+(x̂c
k+1|k+1 − x̂k+1|k+1)

TP−1
k+1|k+1(x̂

c
k+1|k+1 − x̂k+1|k+1)] (3.34)

Substituting P c
k+1|k+1 with its matrix square root, P c

k+1|k+1 = Sk+1S
T
k+1, and using the

properties of determinant (det(AB) = det(A)det(B); det(A) = det(AT )), Equation (3.34)

can be written as:

D(g||f) =
1

2
[logdet(Pk+1|k+1)− 2logdet(Sk+1) + Tr(P−1

k+1|k+1Sk+1S
T
k+1)− d

+(x̂c
k+1|k+1 − x̂k+1|k+1)

TP−1
k+1|k+1(x̂

c
k+1|k+1 − x̂k+1|k+1)] (3.35)

Using the property that trace operator is invariant under cyclic permutations (i.e., Tr(UVW ) =

Tr(VWU) = Tr(WUV ) 6= Tr(V UW )), we can rewrite the trace term as:

Tr(P−1
k+1|k+1Sk+1S

T
k+1) = Tr(ST

k+1P
−1
k+1|k+1Sk+1) (3.36)
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Substituting Eq.(3.36) into Eq.(3.35), we have:

D(g||f) =
1

2
[logdet(Pk+1|k+1)− d− 2logdet(Sk+1) + Tr(ST

k+1P
−1
k+1|k+1Sk+1)

+(x̂c
k+1|k+1 − x̂k+1|k+1)

TP−1
k+1|k+1(x̂

c
k+1|k+1 − x̂k+1|k+1)] (3.37)

The first two terms in Eq.(3.37) are constant and it is well known that the negative log

determinant function of a positive definite matrix X, f(x) = logdet(X), is convex, hence

logdet(Sk+1) is convex. However, the trace term is non-convex because the decision variables

are expressed in quadratic form of unknown matrices. Introducing auxiliary variables Y and

q, we can use the definition of epigraph to express the trace term as:

min
Y,q

q (3.38)

s.t. T r(Y )− q ≤ 0

Y − ST
k+1P

−1
k+1|k+1Sk+1 � 0 (3.39)

Note that Eq.(3.39) should be Y = ST
k+1P

−1
k+1|k+1Sk+1. The matrix equality is strict with

nonlinear term and hence difficult to optimize. Using the definition of Schur complement,

the matrix inequality in Eq.(3.39) can be written in linear matrix inequality(LMI) form:







Y Sk+1

ST
k+1 Pk+1|k+1






� 0 (3.40)

These convex optimization tricks enable one to replace the trace term with a linear term,

q, in the objective function along with an upper bound for the trace term, and an LMI

constraint.

Now, let us consider reformulating the infinite dimensional constraints (3.32) - (3.33).

These constraints can be rewritten in terms of the following second order cone constraints
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[12]:

α||Sk+1hi||+hT
i x̂k+1|k+1 ≤ ti (3.41)

The resulting optimization problem for updating the state estimates and its covariance is

presented below:

min
x̂c
k+1|k+1

,Sk+1

1

2
[logdet(Pk+1|k+1)− d− 2logdet(Sk+1) + q

+ (x̂c
k+1|k+1 − x̂k+1|k+1)

TP−1
k+1|k+1(x̂

c
k+1|k+1 − x̂k+1|k+1)] (3.42)

s.t. xlb ≤ x̂c
k+1|k+1 ≤ xub (3.43)

Tr(Y ) ≤ q (3.44)






Y Sk+1

ST
k+1 Pk+1|k+1






� 0 (3.45)

α||Sk+1hi||+hT
i x̂k+1|k+1 ≤ ti (3.46)

In the above formulation, the decision variables are x̂c
k+1|k+1, Sk+1, q, and Y . The solution

to this optimization problem directly yields the state updates, x̂c
k+1|k+1, whereas the error

covariance of the states (P c
k+1|k+1) can be updated from Sk+1 as:

P c
k+1|k+1 = Sk+1S

T
k+1 (3.47)

After acquiring the constrained estimate x̂c
k+1|k+1 and P c

k+1|k+1, pass them to the next time

step as prior estimates. It should be noted that the proposed optimization problem is convex

and hence, it can be solved for global optimality using available convex optimization tool,

CVX, which is a MATLAB based software for solving convex optimization problems [31].

Further, the proposed constraining step is applicable to any Gaussian filter. In Table 3.1,

we present the constrained EKF algorithm that uses the proposed optimization problem to

constrain the state estimates. Also, this optimization formulation can be used in the EnKF
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Table 3.1: Constrained EKF algorithm based on KL divergence

1 Given the initial values for x0|0 and P0|0

2 At time step k, obtain the unconstrained EKF solution, x̂k+1|k+1 and Pk+1|k+1,
using (3.5) and (3.6), respectively

3 Solve the optimization problem [(3.42) to (3.46)] using CVX to obtain the
constrained EKF solution, x̂c

k+1|k+1 and P c
k+1|k+1.

4 Use the constrained EKF solution obtained in Step 3 to do prediction at time
step k + 1 using (3.2) - (3.3), and proceed to Step 2.

with suitable redistribution of particles.

3.4.4 Re-distribution or regeneration of particles for constrained

EnKF

At every time step, the constrained EKF ends with the obtained constrained mean x̂c
k+1|k+1

and constrained covariance P c
k+1|k+1 using the KLD based approach. This is because the

mean and covariance are the variables passed to the next step in the recursive framework of

the EKF. However, this is not the case for the EnKF for the reason that the EnKF relies

on the particles in the ensemble to pass the information to the next step. Therefore, at

every iteration, not only do we have to further adjust the updated mean and covariance

by solving KLD based optimization approach, we also have to adjust the updated particles

x̂i
k+1|k+1 according to the constrained mean and covariance, such that the information of

the constraints can be accounted for in the next iteration. Both the change of mean and

covariance compared to the unconstrained values caused by the constraining step should be

accounted for when re-distributing particles. The unconstrained state xk+1|k+1 is transformed

to the constrained state xc
k+1|k+1 as follows:

xc
k+1|k+1 = Wxk+1|k+1 + z (3.48)

where xk+1|k+1 is a d× 1 vector; W is a d× d diagonal matrix; z is a d× 1 vector.

Assuming the state variables are independent of each other, i.e. the state space is or-
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thogonal, the particles can be re-distributed separately on each dimension. The change of

the mean that is stored in vector z calculates the moving distance of each particle on each

dimension l of the state space. The change of the standard derivation in Eq.(3.49) stored

in matrix W quantifies how much the cluster shrinks or expands on each dimension. Since

the state space is independent, W is a diagonal matrix. Matrix W and z are calculated as

follows:

W 2(l, l) = P c
k+1|k+1(l, l)/Pk+1|k+1(l, l) l = 1, · · · , d (3.49)

z(l) = x̂c
k+1|k+1(l)−W (l, l)x̂k+1|k+1(l) l = 1, · · · , d (3.50)

where d is the dimension of the state x.

With matrix W and z, the constrained particle xi,c
k+1|k+1 can be calculated as follows:

xi,c
k+1|k+1(l) = W (l, l)xi

k+1|k+1(l) + z(l) l = 1, · · · , d (3.51)

If the correlation of the state variables cannot be ignored, the problem will be much more

complicated because the re-distribution of particles cannot be performed per dimension. In

this case, matrix W is not diagonal. The mean and covariance of the constrained variable

xc
k+1|k+1 can be written in terms of those of xk+1|k+1 as follows.

x̂c
k+1|k+1 = E[xc

k+1|k+1] = Wx̂k+1|k+1 + z (3.52)

P c
k+1|k+1 = Cov[xc

k+1|k+1] = WPk+1|k+1W
T (3.53)

We solve Eq.(3.52) and Eq.(3.53) for each element in matrixW and z. However, Eq.(3.53)

is a under-determined equation. This is because we are calculating the values of all the

elements of W , the degree of freedom of W is at least d(d+1)
2

, which is the number of elements

of W considering W is symmetric. The number of constraints given to solve these elements

78



Table 3.2: Constrained EnKF algorithm based on KL divergence

1 Generate initial particles {xi
0}, i = 1, . . . , N based on the initial guess x̂0 and P0.

2 At time step k+1, obtain the unconstrained ensemble xi
k+1|k using Eq.(3.14), and the

unconstrained solution x̂k+1|k+1 and Pk+1|k+1, using (3.15) and (3.16), respectively.
3 Solve the optimization problem [(3.42) to (3.46)] using CVX to obtain the con-

strained EnKF solution, x̂c
k+1|k+1 and P c

k+1|k+1.

4 Redistribute the constrained particle xc,i
k+1|k+1 using Eq.(3.51) or regenerate the con-

strained ensemble based on x̂c
k+1|k+1 and P c

k+1|k+1.

5 Go to step 2

is d, which is the dimension of the covariance P c
k+1|k+1 and Pk+1|k+1.

d(d+ 1)

2
− d =

d(d− 1)

2
≥ 0, when d ≥ 1 (3.54)

Eq.(3.54) indicates that there are fewer equations than the unknown variables when d > 1.

Therefore, Eq.(3.53) cannot yield a unique solution of matrix W .

Regenerate the particles

Therefore, in the case of severely correlated states, the alternative approach to turn to is

to regenerate the whole ensemble of particles from the constrained Gaussian distribution at

the end of every time step, i.e. xi,c
k+1|k+1 ∼ N(x; x̂k+1|k+1, P

c
k+1|k+1), i = 1, · · · , N . Note that

although the ensemble produced by the regeneration approach is similar to the one produced

by the previous re-distribution approach, it has the risk of losing information gained from

the filtering step or adding untrue information to the ensemble. This is because it only relies

on the two moments to generate the new ensemble, while the the previous re-distribution

approach makes adjustments based on individual particles. The proposed constrained EnKF

algorithm is presented in Table 3.2.
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3.5 Simulation

3.5.1 Case study: A two-state batch reaction system

To demonstrate our proposed approach, let us consider the batch reaction system studied

by: [71, 83] and [96]. Consider a gas phase reaction given by:

2A→ B k = 0.16 (3.55)

Let the states of the process be partial pressures of A and B, x = [PA, PB], and the total

pressure P = PA+PB is measured. Assuming the reaction occurs in a well-mixed isothermal

batch reactor, the state space model can be written as:

ẋ = f(x) =







−2

1






kP 2

A, y =

[

1 1

]

x (3.56)

The model is discretized at an interval of 0.1 s and simulated from an initial value of

x0 = [3, 1]. The process and measurement noises are both assumed to be Gaussian with

zero mean. Their respective covariances are Q = diag(0.0012, 0.0012) and R = 0.12. A poor

initial guess is given to the state estimator with x̄0 = [0.1, 4.5] and a large covariance matrix

P0 = diag(62, 62) is used.

The proposed constrained EKF and EnKF are applied to this case study respectively.

Constrained EKF:

First the EKF without any constraint is applied on the model to estimate the states

[PA, PB]. It can be seen from Figure 3.4 that the estimation results using the unconstrained

EKF diverge from the true values. This poor estimation performance is caused because of

the intentionally chosen large initial error. Then the constrained estimation with EKF is
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performed with the following inequality constraints imposed on state variables:







0

0






≤







PA

PB






≤







5

5







Figure 3.5 shows the comparison of constrained estimation results using the RNDDR

method and our proposed KL divergence based method. Both methods yield convergent

estimation results because of the incorporation of constraints, and they both perform well in

light of satisfying constraints. The reason for the superior performance of KL based method

is that RNDDR only enforces the mean value to be inside the constraints and does not

constrain the state error covariance matrix, whereas, the KL based method adjusts both the

mean and error covariance by incorporating constraints. The modified covariance is directly

propagated on to the calculation of Kalman gain in the next iteration, providing a faster

impact on the estimation from the constraints compared to the RNDDR solution.
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Figure 3.4: State estimates using unconstrained EKF approach

In Figure 3.6, we present the state estimate and its error covariance at first and second

time steps to show that the constrained error covariance is obtained using KL method.

The ellipses represent the two-dimensional projection of the state PDF on xy plane and

the rectangular region denotes the constrained space. It should be noted that, at first
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Figure 3.5: Comparison of state estimates obtained using the proposed KL approach with
the RNDDR approach

time step, the RNDDR does not deviate much from the unconstrained result because it

only projects the violated mean x̂ = [−0.16 4.23] to the boundary (i.e., the RNDDR

estimate is x̂ = [0.001 4.25]), whereas, the KL method shrinks the original distribution by

a large portion to fit inside the constrained region. At second time step, the estimation error

covariance obtained using the KL method shrinks even further into the constrained region,

whereas, the RNDDR still yields a large error covariance.

Figure 3.7 shows the evolution of variance of PA for first 20 time steps. PB also produces

a very similar results. The KL method provides a much smaller variance from the beginning,

while the RNDDR is stuck at a large error for several time steps. The smaller covariance

obtained from the KL method remedies the large error covariance exerted on the initial state

distribution since the prediction part of the Kalman update produces more reliable results

with smaller covariance. The KL based method has a faster convergence rate, and also

results in smaller estimation error. Table 3.3 presents the root mean square error (RMSE)

of estimated states, PA and PB, and computation time using the RNDDR method and our

proposed KL based method, respectively. The higher computational time of the KL method

can be attributed to solving conic optimization problems for updating the states, whereas,

the RNDDR solves a nonlinear optimization problem to update the states.
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Figure 3.6: State space showing the state estimates and error covariance obtained using
Unconstrained EKF, RNDDR, and KL methods (a) at first time step; (b) at second time
step. True value of the states is marked by a black circle. The markers shown in the center
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Figure 3.7: Evolution of error variances of PA and PB

Table 3.3: Performance comparison of RNDDR and KL methods

RNDDR KL
RMSE PA 0.7220 0.1417

PB 0.7422 0.1613
CPU(s) 15.5 197.3
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Constrained EnKF:

The EnKF with the ensemble size of 100 particles is used to estimate the two states

for 80 time steps. As we can see from Figure 3.8, same as the unconstrained EKF, the

unconstrained estimation using the EnKF cannot converge to the real state trajectory owing

to the large initial error. In the following, three methods are implemented to incorporate

the inequality constraints above on the states.

The first method is the KL divergence based approach. The constrained mean and

covariance are obtained using the algorithm describe in Table 3.2. As there is a strong

correlation between PA and PB, a whole new ensemble is regenerated after the constrained

mean and covariance are obtained using the KLD based approach. The second one is to

apply the RNDDR optimization on the each of the individual particles in the posterior

ensemble using Eq.(3.19). The third one is to apply the RNDDR optimization only on the

estimated unconstrained mean using Eq.(3.20) and shift the whole posterior ensemble in

parallel using Eq.(3.22). Figure 3.9 shows the constrained estimates at every step of these

three approaches in comparison with the true state trajectory. Table 3.4 shows the root

mean square error(RMSE) of the three methods as well as their computation time.

0 10 20 30 40 50 60 70 80
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time step

P
A

 

 

True value

Estimation using the EnKF

0 10 20 30 40 50 60 70 80
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Time step

P
B

 

 

True value

Estimation using the EnKF

Figure 3.8: Estimation with unconstrained EnKF

Figure 3.9 shows that all three constrained approaches are able to provide converged

estimation results. Together with Table 3.4, we can see that the RNDDR formulated on the
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Figure 3.9: Constrained estimation using:KLD based approach(blue), RNDDR applied on
individual particles(red) and RNDDR applied on mean(green).

Table 3.4: Comparison of three constraints implementation methods for EnKF and the KLD
based constrained EKF.

Performance Constrained EnKF

Proposed KL
based method

RNDDR on un-
constrained par-
ticles

RNDDR on
unconstrained
mean

RMSE(PA) 0.1150 0.3486 0.6226
RMSE(PB) 0.1373 0.3523 0.7356
CPU time(s) 283.48 583.55 7.68
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mean exhibits the worst performance. For this method, figure 3.10 shows the two-dimensional

distribution of particles before and after enforcing the constraints. The markers represent the

point estimates, i.e. the mean value. The rectangle represents the two-dimension inequality

constraints. As is explained before, for RNDDR applied on the mean, shifting the covariance

in parallel does not guarantee the particles to fall within the constrained region. In figure

3.10, it is obvious that a large portion of the constrained ensemble remains outside the

constraints, although the mean is pulled into the constraints. This means the constraining

step does not help much to push the particles to the true value, which probably produces an

estimate that is far from the true value, hence the large oscillations before convergence and

the slow convergence rate.
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Figure 3.10: 2D distribution of particles using the RNDDR applied on the mean before
and after the enforcing the constraints.(Diamond marker:unconstrained estimate; Square
marker:constrained estimate; Circle marker:true value of states)

Figure 3.11 shows the two-dimensional distribution of the ensemble after enforcing con-

straints at step one using the RNDDR applied on the particle(red dots) and the KL based

method(green dots). Note that this is the estimation result of time step one. The repre-
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Figure 3.11: At time step one, 2D distribution of particles after enforcing constraints using
the RNDDR applied on the particles and the KLD approach.(Diamond marker:unconstrained
estimate; Square marker:constrained estimate using the RNDDR on the particle; Plus
marker:constrained estimate using the KL; Circle marker:true value of states)

sentation of the markers is explained in the caption of the figure. Both methods force the

particles in the original ensemble to go back to the constrained region, which enables both

methods to produce a constrained estimate that is much closer to the true value than the pre-

vious RNDDR approach that is applied on the mean of the unconstrained estimate. The KL

method evenly distributes the constrained ensemble on the ellipse whose mean and covariance

are obtained from the constraining step. The RNDDR method, however, does not evenly

distribute the particles because many of them sit close to the boundary of the constrained

region. This is because the solution of the RNDDR is essentially a weighted summation

of the error caused by deviation from the unconstrained particle (x̂c − x̂)P−1(x)(x̂c − x̂)T

and by the deviation from the measurement (yobs − h(x̂))W−1(yobs − h(x̂))T . If the uncon-

strained particles are too far away from the boundary, they tend to compensate the error

caused by the first term by sitting on the boundary. Therefore the ensemble of produced

by the KLD constraining method gets a stronger push to true value than the one from the
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Figure 3.12: At time step two, 2D distribution of particles after enforcing constraints using
the RNDDR applied on the particles and the KLD approach. (Square marker:constrained
estimate using the RNDDR on the particle; Plus marker:constrained estimate using the KL;
Circle marker:true value of states)
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Figure 3.13: Contour of distribution of time step one and two after enforcing con-
straints using the RNDDR applied on the particles and the KLD approach. (Diamond
marker:unconstrained estimate; Square marker:constrained estimate using the RNDDR on
the particle; Plus marker:constrained estimate using the KL; Circle marker:true value of
states)
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RNDDR approach, especially at the first few steps when the initial ensemble is poor. This

is the reason why the RNDDR method has relatively large oscillations at initial few steps

compared to the KLD based method, hence larger estimation error. Figure 3.13 explains the

better performance of the KL based approach from another angle. Figure 3.13 shows the

contours of the constrained Gaussian distribution using the two aforementioned constrained

methods at time step one and two. The Gaussian produced by the KLD method is com-

pletely within the constraints, while the one produced by the RNDDR is partially outside

constraints. Therefore the KLD method converges to the true value faster.

Figure 3.12 shows the distribution of the constrained ensemble at time step two using

the KLD method and RNDDR on the particle method. Compared to step one, most of the

particles obtained by the RNDDR method(red dots) are pulled into the boundary, closer

to the true value. However, compared to the particles obtained by the KLD method(green

dots), they are still further away from the true value. The simulation results of time step

two further illustrate why the RNDDR method generates larger oscillations than the KL

method.

Another major disadvantage of the RNDDR applied on the particle method is the com-

putation time. Table 3.4 also presents the comparison of total operation time of the three

methods. We can see that the RNDDR applied on the particle consumes almost twice the

time as the KLD based method. This is because the latter method solves only one optimiza-

tion every time step, while the former has to solve 100 optimizations at every time step. The

RNDDR applied on the mean method is significantly faster than the other two, yet gives

worst estimation.

Remarks:

For this two-state batch reaction process, both the proposed constrained EKF and EnKF

are applied. For the constrained EnKF, we compared three different methods for constraints

implementation. We have the following conclusions based on the simulation results.

1. The KLD based constrained EKF obviously greatly outperforms the RNDDR based
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EKF. This is because the KL method attempts to take both of the decision parameters

of the Gaussian state distribution, namely mean and covariance, into consideration

when dealing with the constraints. It formulates a convex optimization problem to

penalize the deviation of whole distribution instead of just the mean in the RNDDR,

with both mean and the covariance as the decision variables. Thus, the KL method is

shown to have faster convergence rate.

2. The KLD based constrained EnKF outperforms the KLD based EKF in the sense of

smaller RMSE. This is because of the superiority of the EnKF itself to the EKF to

cope with nonlinearity.

3. The KLD based constrained EnKF outperforms the RNDDR based EnKF in either

of the two formulations. This is because the KLD pushes the particles of the EnKF

closer to the true value faster. Moreover, it also consumes less computation time.

3.5.2 Case study: Three-state continuous stirred tank reaction(CSTR)

We consider a CSTR gas reactor studied in [37],[94] and [54]. The reaction is given by:

A
k1,k2
←−→ B + C

2B
k3,k4
←−→ C

where [k1 k2 k3 k4] = [0.5 0.05 0.2 0.01], with a stoichiometric matrix:

v =







−1 1 1

0 −2 1






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and a reaction rate:

r =







k1CA − k2CBCc

k3C
2
B − k4Cc







The first-principle model for the isothermal CSTR is:

ẋ =
Qf

VR

Cf −
Q0

VR

x+ vT r (3.57)

where Qf = Q0 = 1, VR = 100 and Cf = [0.5 0.05 0].

The states of the process is x = [CA CB Cc], which are the concentration of A,B and

C. The measurement model is given by:

y = [RT RT RT ]x (3.58)

where R is the ideal gas constant and T is reactor temperature, RT=32.84.

The system is discretized with a sampling time of ∆t = 0.25 and simulated for 100

time steps. The initial value of the states is x0 = [0.5 0.05 0] and the estimation of

the three states starts with a poor initial guess x̂0 = [0 0 3.5], with a covariance matrix

P0 = diag(42, 42, 42). The process noise is w ∼ N([0 0 0], 10−6I3), where I3 is the identity

matrix, and measurement noise is v ∼ N(0, 0.252).

Figure 3.14 shows the true state trajectory of the three states over 100 steps and the

estimation using the unconstrained EnKF. Obviously, the estimation result of the uncon-

strained EnKF does not converge to the true value because of the poor initial guess. In order

to achieve estimation that can be converged to the true value, it is necessary to add con-
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straints to the state space. The following inequality constraint is put on the state variables:













0

0

0













≤













CA

CB

CC













≤













10

10

10













Figure 3.15 shows the constrained estimation results using the KLD based approach, the

RNDDR applied on the individual updated particle and RNDDR applied on the updated

mean respectively. Table 3.5 lists the RMSE and the computation time of the three methods.

Same as the previous case study, the RNDDR applied on the updated mean yields the poorest

performance in the sense of large oscillations and slow convergence rate. In fact, CB and

CC do not show a converged estimation within 100 time step. It does have the fastest

computation because it only solves one optimization problem every time step. The RNDDR

applied on the particle loses to the KLD based method on the RMSE mainly because it

produces larger oscillations and slower convergence rate than the KLD method at the initial

few steps. This case study proves again that:

1. The added constraints serve as extra knowledge to help pull the unconstrained particles

which take values far from the true value closer to the true value. That’s to say, the

constraints compensate for the lack of prior information of the states;

2. When enforcing the constraints, the KLD method pushes the posterior particles to the

true value faster than the other two, which explains its better performance.

Table 3.5: Comparison of three constraints implementation methods.

State
Proposed KL
based method

RNDDR on pos-
terior particles

RNDDR on pos-
terior mean

RMSE(CA) 0.0250 0.0295 0.1068
RMSE(CB) 0.0131 0.0323 0.1969
RMSE(CC) 0.0246 0.0503 0.1974
CPU time(s) 351.22 610.54 8.56
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Figure 3.14: True state trajectory and estimation results of concentrations of A,B and C
with unconstrained EnKF
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Figure 3.15: Constrained estimation results using the KLD based approach, the RNDDR
applied on the particle and RNDDR applied on the mean
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3.6 Conclusions

In this chapter, we proposed a constrained state estimation technique based on the KL

divergence measure. In principle, this approach can be applicable to all Gaussian filters.

Specifically, we formulated the constrained frameworks for two typical Gaussian filters, the

EKF and EnKF. For both of these two filters, the proposed constrained approach is able to

converge to the true values faster than the existing RNDDR approach . The single time step

simulations demonstrate that the superiority of our approach is achieved due to constraining

the error covariances inside the feasible region besides the mean value, which gives more

accurate prediction of the state estimates. For each individual optimization, our approach

indeed consumes more time since we solve conic optimization problem in contrast to the

nonlinear optimization of the RNDDR. However, we optimize for the complete distribution

in the KL formulation. On the other hand, the RNDDR either achieves partial information of

the constrained distribution in a single run, or we have to perform the optimization multiple

times to obtain the full distribution.
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Chapter 4

Constrained multimodal ensemble

Kalman filter based on

Kullback-Leibler(KL) divergence

4.1 Introduction

Over the years several Bayesian nonlinear filters have been proposed to extend the well-known

Kalman filter to nonlinear systems, such as the extended Kalman Filter (EKF), Unscented

Kalman Filter (UKF), and Ensemble Kalman Filter (EnKF). They all attempt to obtain

a suboptimal solution by approximating the posterior distribution as Gaussian. However,

due to the nonlinearity of the model and uncertainties such as process disturbances and

measurement errors, the probability density function (PDF) of the states is multimodal,

hence the Gaussian assumption of posterior PDF is not valid. Further, when the posterior

PDF is strongly multimodal or heavily skewed, the Gaussian filters mentioned above will

lead to inaccurate state estimates.

To deal with multimodality, particle Filter (PF) is the most widely used sample-based

nonlinear Bayesian filter for non-Gaussian state estimation [30]. The PF can characterize any
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arbitrary posterior PDF of states based on the Monte Carlo (MC) samples associated with

weights generated using the importance sampling (IS). The sequential importance sampling

(SIS) builds a recursive framework for the PF to propagate the particles and update the

weights sequentially. This Monte Carlo representation of the posterior PDF is ideal when the

number of the particles is sufficiently large and the weights are assigned properly. However,

the PF suffers from the degeneracy problem, which occurs when most of the particles have

negligible weights except for one after a few iterations. Further, Shenoy et al. [84] also noted

that the PF is more sensitive to model-plant mismatch than the Kalman based filters. The

model-plant mismatch causes almost all particles to lie at the tail of the likelihood density,

so that all weights collapse to zero after a certain time.

In recent years, approximating the state PDF using the Gaussian mixture model (GMM)

has drawn increasing attention as it can provide a parametric model for the state PDF,

compared to non-parametric representation using the sample based particle filters. In [1], a

Gaussian sum filter (GSF) is proposed which approximates the state PDF using the Gaussian

mixture model (GMM). The GSF performs multiple EKF in parallel to update the mean

and covariance of each component of the GMM but the mixture component weights are

unchanged before and after the update. Likewise, in [55] a Gaussian sum particle filter

(GSPF) is proposed by using Gaussian mixture approximation of the PDF. In this case, it

uses a bank of Gaussian particle filters, which removes the resampling step by assuming that

the prior and posterior state PDF to be Gaussian.

As the ensemble Kalman filter (EnKF) is especially promising for high-dimensional sys-

tems compared to other filters, there have been several studies to extend the traditional

EnKF to cope with multimodal systems. In [90], Smith proposed a clustering EnKF to

handle the multimodal state PDF approximated by GMM. The main idea is to obtain a

parametric GMM model at the prediction step using the expectation maximization (EM)

algorithm, and then update the parameters of the GMM by assimilating the measurements.

However, the posterior PDF after the update step is approximated as Gaussian distribution.
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In our recent work [60], we proposed a modified algorithm such that the multimodality of

the posterior distribution is maintained. In [19], the EnKF is also extended to multimodal

systems. An EM clustering is also performed to obtain a GMM model at the prediction.

Then it proposes to assign each particle of the prior and posterior ensemble to a certain

mode based on the mode weights, such that the particles assigned to each mode can be

updated using the EnKF. At the update step, the membership of each particle changes cor-

respondingly with the update of the mode weights. Same as our work, the posterior PDF is

retained to be the Gaussian mixture . These EnKF based GMM filters (henceforth called as

GMM-EnKF) can provide a better approximation of the nonlinear dynamics of the systems

over the EKF based GSF, and they do not have the collapsing problems as in the case of

GSPF.

It should be noted that in conventional recursive state estimation algorithms, the con-

straints on process variables are often ignored. However, in practical problems, it is imper-

ative to account for the constraints in state estimation procedure such that the estimate

is physically meaningful, and satisfies operational requirements. There has been extensive

work on constrained state estimation of Gaussian filters. In [99] a novel recursive nonlinear

dynamic data reconciliation (RNDDR) technique is proposed to incorporate constraints into

the recursive Bayesian filtering framework. The RNDDR approach essentially attempts to

project the unconstrained estimate into the constrained region by solving a quadratic or non-

linear programming problem. Later, in [98] a variant of RNDDR for the Unscented Kalman

filter is proposed, by suitably constraining the individual sigma points. On the other hand, in

[71] a constrained EnKF is proposed by constraining individual particle using the RNDDR.

To the best of our knowledge, there is limited work on the constrained state estimation for

non-Gaussian systems. The most studied constrained non-Gaussian filter is the constrained

particle filter. In [72] and [83], several optimization formulations are proposed to constrain

individual particles of the PF using RNDDR approach.

In this work, we attempt to achieve the constrained estimate by putting the inequality
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constraints on the parameters of the GMM. Most of the previous work in the literature

consider spacial constraints, especially in the study of image segmentation. They focus on

improving the unsupervised clustering of GMM by considering spatial constraints among the

neighboring pixels. In [10], a spatially variant finite mixture mode is proposed as a modifi-

cation of the finite Gaussian mixture model to assign random values to pixel labels using the

Gibbs function. In [32], each tissue of the brain is modeled with a mixture of many oriented

Gaussian and incorporates the global constraint, the intensity of a tissue, into the modeling

step. A modified expectation maximization algorithm(EM) is presented for this purpose.

Although the work in [86] does not relate to segmentation, it considers the constraints called

equivalence constraints which are incorporated specifically in the process of data clustering.

Equivalence constraints are defined as positive constraints if the data pairs arise from the

same cluster and negative if from the different clusters. There have been works which study

inequality constraints for GMM. Most of them attempt to implement the constraints in the

M step of the EM algorithm. However, direct optimization of the complete data likelihood

in the M step with parameters subject to constraints is usually intractable. To this end, an

expectation-conditional maximization algorithm(ECM) [67] was proposed that decomposes

the M step into many simpler conditional maximization steps which are computationally

tractable. However, computational cost of solving such optimization algorithms are usually

high, and hence not desirable for online filtering problems.

The constrained state estimation procedure is based on the GMM-EnKF developed in

chapter 2. The objective of this chapter is to incorporate constraints in this GMM-EnKF

framework. For this purpose, we project the unconstrained distribution into the constrained

region by minimizing the Kullback-Leibler divergence (KLD) between Gaussian mixture

distributions. The profound challenge in the constrained GMM-EnKF is on how one reshapes

the GMM according to the constraints. In other words, we develop an optimization algorithm

to impose inequality constraints on the posterior distribution of the GMM-EnKF introduced

previously, so that the targeted constrained posterior PDF stays within the constraints
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without losing the information gained from the unconstrained filtering step. The main

contributions in this chapter are as follows: (a) since there is no closed form expression for

KLD between two Gaussian mixture distributions, we present an approximation of the KLD

that is suitable for solving the constrained filtering problem, (b) formulate the constrained

GMM-EnKF algorithm using convex optimization tools, and (c) owing to the non-convexity

of the objective function, we propose a two step optimization procedure, where at each step

we solve a convex optimization problem that ensures global optimality.

The rest of this chapter is organized as follows: Section 4.2 reviews the GMM-EnKF filter

proposed in chapter 2. Section 4.3 defines the problem statement of the constrained state

estimation. Section 4.4 discusses the different distance measures between the unconstrained

and constrained posterior distribution, and highlights the significance of KL divergence.

In section 4.5, we propose a modification of Goldberger’s approximation of KLD between

two Gaussian mixture distributions, and formulate the constrained EnKF state estimation

problem. Further, a two step optimization approach is presented. Section 4.6 presents the

demonstration of the proposed methodology through two case studies.

4.2 Review of the multimodal ensemble Kalman filter

(GMM-EnKF)

At each time step k, the GMM-EnKF has two steps-forecast and update. The forecast

step is identical to the EnKF. An ensemble of size N, The forecast step is identical to the

EnKF. An ensemble of size N, {xi
k}i=1,···,N , is drawn from the prior distribution of the states

and forwarded through the model to obtain a predicted ensemble for the next time step.

Then, the EM algorithm is performed on the predicted ensemble to obtain the estimates

of the GMM with Nc components. Next, the Kalman update is performed based on each

component in the GMM to get an ensemble of size N×Nc. Finally, these ensemble members

are combined based on their weights and reduced to a size of N. The details of the algorithmic
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sequence are as follows:

Forecast:

1. The first portion of the forecast step is to determine the number of components Nc in

the multimodal distribution. Nc can be determined using the Bayesian or other information

criteria(BIC) [41], or using prior knowledge.

2. The prior ensemble xi
ki=1,···,N is propagated through the model to get the predicted

values of the ensemble xf
k , ii=1,···,N .The EM algorithm is applied on {xf,i

k }i=1,···,N to give us

the parameters of the prior distribution (τ fk,j, µ
f
k,jandP

f
k,j) of each component j.

p(xf
k) =

Nc
∑

j=1

τ fk,jpj(x
f
k) =

Nc
∑

j=1

τ fk,jN(xf
k ;µ

f
k,j, P

f
k,j) (4.1)

Update:

3. For each component j of the distribution, the Kalman gain matrix for each Gaussian

component is computed by utilizing the membership probability matrix W.

P [j]fHT =
N
∑

i=1

wi,j(x
f,i
k − µk,j)(Hxf,i

k −Hµk,j)
T/nj (4.2)

HP [j]fHT =
N
∑

i=1

wi,j(Hxf,i
k −Hµk,j)(Hxf,i

k −Hµk,j)
T/nj (4.3)

K[j] = P [j]fHT (HP [j]fHT +R)−1 (4.4)

where wi,j =
τf
k,j

N(xf,i
k

;µf
k,j

,P f
k,j

)
∑Nc

m=1 τ
f
k,m

N(xf,i
k

;µf
k,m

,P f
k,m

)
, nj =

∑N
i=1 wi,j and H is the linearized measurement

operator.

4. In the update step, assuming one Gaussian component j claims the ownership of all

the ensemble members, the Kalman update can be performed for each component member

under component j. This gives us an ensemble size of N ×Nc.

xa,i
k,j = xf,i

k +K[j](d−Hxf,i
k − vi) (4.5)
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where vi is the measurement noise.

5. The N × Nc ensemble members can be combined to form N members by using the

probability matrix W. W is the matrix of wi,j. This gives us the final posterior ensemble

{xa,i
k }i=1,···,N .

xa,i
k =

Nc
∑

j=1

wi,jx
a,i
k,j (4.6)

6. The mean and covariance of the posterior distribution can be computed as:

µa
k,j =

N
∑

j=1

wi,jx
a,i
k,j/nj (4.7)

P a
k,j =

N
∑

j=1

wi,j(x
a,i
k,j − µa

k,j)(x
a,i
k,j − µa

k,j)
T/nj (4.8)

7. The posterior weight of each component of the distribution can be computed based

on the observed data d, which contains the measurements y.

τak,j = p(µa
k,j, P

a
k,j, R|d) =

p(d|µa
k,j, P

a
k,j, R)nj

∑Nc

m=1 p(d|µ
a
k,j, P

a
k,j, R)nj

(4.9)

p(d|µa
k,j, P

a
k,j, R) =

exp[−1
2
(d−Hµa

k,j)
T (HP a

k,jH
T +R)−1(d−Hµa

k,j)]
√

(2π)m|HP a
k,jH

T +R|
(4.10)

8. With the estimates of the parameters of the GMM µa
k,j, P

a
k,jandτ

a
k,j, we have a full

distribution of the posterior state distribution. The point estimate at time k according to

the posterior PDF is given by:

xa
k =

Nc
∑

j=1

τak,jµ
a
k,j (4.11)

4.3 Problem statement

Let us denote the states, inputs and measurements of the system as xk, uk, and yk at kth

time step, respectively. Consider a stochastic state space model of the system, which is given
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by:

xk = f(xk−1, uk−1) + vk (4.12)

yk = h(xk) + wk (4.13)

where f(.) and h(.) denote the discrete time process model and measurement model. And,

vk and wk denote the process noise and measurement noise, characterized by Gaussian dis-

tribution with zero mean and covariance matrices Q, and R, respectively.

A general framework for non-linear state estimation can be presented in terms of the

recursive Bayesian filtering algorithm, which consists of the prediction and update step, and

they can be mathematically expressed as follows:

p(xk|y1:k−1) =

∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (4.14)

p(xk|y1:k) ∝ p(xk|y1:k−1)p(yk|xk) (4.15)

where p(xk|xk−1) denotes the state transition probability obtained from the nonlinear pro-

cess model defined in (4.12), p(yk|xk) denotes the likelihood function defined using (4.13),

p(xk|y1:k−1) denotes the prior distribution of the state variables obtained at the prediction

step, and p(xk|y1:k) denotes the posterior distribution of the state variables obtained at the

update step. In the conventional EnKF, the prior and posterior distribution of the ensemble

members of state variables are assumed to be Gaussian. However, due to the nonlinear

process model, the resulting state distributions in the prediction as well as at the update

step are multimodal. Therefore, the assumption of Gaussian distribution of the ensemble

members is not valid, and hence we propose to use mixture distribution to approximate

the priors and posteriors. Further, the conventional EnKF does not account for inequality

constraints in the state estimation procedure. Therefore, the focus of this work is to develop

a constrained state estimation algorithm for multimodal systems in the EnKF framework.
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The gist of our approach is to embrace the constraints in updating the posterior distribu-

tion of states. In other words, it is important to consider all the parameters of the distribution

model under consideration while incorporating inequality constraints. In this work, we use

the GMM as a parametric model for the approximation of both the predicted and poste-

rior state PDF. Recall that the update equations of unconstrained GMM - EnKF, (4.7) -

(4.11), represent the multimodal uncertain region around the state estimate (x̂k+1|k+1). This

signifies the multivariate mixture Gaussian distribution with j components where the indi-

vidual components of the distribution are parameterized in terms of mean vector x̂j,k+1|k+1,

and covariance matrix Pj,k+1|k+1 and the corresponding mixture weight is denoted by τj.

The main idea of our approach is to project the unconstrained solution into the constrained

region such that both the state and its estimation error lie within the constrained space.

The unconstrained posterior PDF, denoted as r(x), can be obtained from the EnKF GMM

algorithm presented in subsection 4.2, and is given by:

r(x) = p(xk|y1:k) =
Nc
∑

j=1

τak,jN(x;µa
k,j, P

a
k,j) (4.16)

As is discussed previously, in general, some portion or the complete distribution might lie

outside the constrained region. Therefore, in this work, we consider re-designing r(x) by

imposing inequality constraints of the form lb < x < ub. The resulting constrained state

PDF q(x) can be denoted by:

q(x) =
Nc
∑

j=1

τ ck,jN(x;µc
k,j, P

c
k,j) (4.17)

As the GMM-EnKF is a Monte Carlo sampling based filter, simply surrendering the

final point estimate xa
k to constraints is not enough since a large portion of the particles

may still lie outside the constrained region. This might happen even though the mean of

all the modes are within the constraints. r(x) in figure 4.1 presents an example of two-

dimensional GM distribution with two modes. It has a large portion outside the rectangular
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constraints although the mean of both modes are still within constraints. Therefore, we

consider achieving the q(x) such that the entire distribution is within the constraints, with a

user-defined confidence limit. q(x) of figure 4.1 demonstrates the target distribution that we

aim to achieve. In other words, the goal of the constraining step is to obtain the parameters

τ ck,j, µ
c
k,j and P c

k,j in q(x) such that a distance measure between the unconstrained posterior

distribution (r(x)) and the constrained posterior distribution is minimized. Mathematically,

the state estimation problem for multimodal systems can be expressed as:

min
τc
k,j

,µc
k,j

,P c
k,j

D(q||r) (4.18)

s.t. µc
k,j, P

c
k,j ∈ Θ; j = 1, . . . , Nc (4.19)

0 ≤ τ ck,j ≤ 1; j = 1, . . . , Nc (4.20)

Nc
∑

j=1

τ ck,j = 1 (4.21)

where D(q||r) denotes the distance measure between two distributions q(x) and r(x), and Θ

signifies the constraint set defined by the inequality constraints.
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Figure 4.1: Unconstrained and constrained distribution with pre-specified confidence level
and rectangular constraint region
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4.4 Statistical metrics between probability density func-

tions

As the filtering incorporates the information of the process, observation and prior knowledge

into the estimation results, it is inappropriate to simply change the estimated GMM in order

to satisfy constraints. We attempt to achieve a constrained distribution at the cost of the

minimum information loss. Therefore it is necessary to select a cost function to measure the

change of the overall distribution. In statistics, the probability distance metric is used to

measure the similarity of two probability distributions. Various probability distance metrics

have been developed for statistic distance calculation in different applications [13]. In the

following, we first introduce several most widely used metrics to calculate the distance be-

tween two distribution r(x) and q(x) and then explain why we choose the KL divergence for

our purpose.

1. Bhattacharyya distance

The Bhattacharyya distance is given by:

DB = − ln ρ (4.22)

where the the Bhattacharyya coefficient is given by:

ρ =

∫

√

r(x)q(x)dx (4.23)

The Bhattacharyya distance is often applied in signal processing in [46] to decrease the

transmitting error by maximizing the difference of the distribution of a signal ’0’ and a

signal ’1’.

2. Lp distance
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Lp distance can be defined as:

DLP
(q, r) = (

∫

|r(x)− q(x)|pdx)1/p (4.24)

where p normally takes the value 1 or 2.

3. Kolmogorov distance

Kolmogorov distance arises from the Kolmogorov-Smirnov test which determines whether

two data sets differ significantly. Its definition is given by:

Dk =

∫

|r(x)− q(x)|dx (4.25)

4. Integral square difference

Integral square difference (ISD) can be expressed as:

Ds =

∫

(r(x)− q(x))2dx (4.26)

Compared to the Kolmogorov distance, the ISD puts more weights on the points where r(x)

and q(x) have larger difference than the ones with smaller difference. Therefore the minimiza-

tion of the ISD prioritizes on minimizing the largest difference created by the approximation

distribution [103].

5. KL divergence

The KL divergence (KLD) is known as the relative entropy between two distributions.

The forward KLD definition is given by:

DKL =

∫

r(x) log
r(x)

q(x)
dx (4.27)

The most common application of the probability distance metric is to find an approxi-

mation distribution q(x) for the original distribution r(x), which is also the purpose in our

107



work. Although all of the five metrics have found successful applications to achieve this goal

in different areas, we select KL divergence to be our cost function in the constraining prob-

lem for the reason that the other four metrics calculate the similarity based on the degree of

overlapping of the two distributions. In other words, they cannot serve as a metric if the two

distributions do not overlap at all. When the two distributions do not overlap, the Bhat-

tacharyya distance is equal to the constant ’0’ simply because either r(x) = 0 or q(x) = 0.

The Lp distance and the Kolmogorov distance are equal to the constant ’1’ because they

will be simplified as DLP = Dk =
∫

|r(x)|dx = 1 or DLP = Dk =
∫

|q(x)|dx = 1. The ISD

has the same problem. If the two distributions do not overlap, Ds is simplified to
∫

r(x)2dx

or
∫

q(x)2dx. If we recall that the product of two Gaussian distributions is still Gaussian,

r(x)2 and q(x)2 are still Gaussian distribution, i.e. Ds will reduce to 1 if no common support

exists between the two distributions. However, KL divergence can still reflect the difference

between r(x) and q(x) when they do not overlap. The further they lie apart, the larger KL

divergence will be. The overlapping issue is important to the constraining step because the

constrained region could have very little or even no overlap with the unconstrained estimated

distribution. The KL divergence can still serve well as the metric of probability distance in

this case while the other four cannot.

The KL divergence itself is not a strict distance measure for the most prominent reason

that it is not symmetric, i.e. DKL(r(x), q(x)) 6= DKL(q(x), r(x)). By extending KL diver-

gence to DKL(r(x), q(x))+DKL(q(x), r(x)), it satisfies the symmetric requirement. However,

the asymmetric form is still widely used especially when the symmetric form has a compli-

cated analytical form. As discussed in the previous chapter, the KL divergence has an

analytical form if both r(x) and q(x) are Gaussian. Unfortunately, there is no availability

of closed form expression for KL divergence between two Gaussian mixture distributions.

Therefore, the focus of next subsection is to deal with the approximations of KL divergence

between two mixture Gaussian distributions.
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4.5 Design of the constrained GMM-EnKF

4.5.1 Approximations of KL divergence between Gaussian mix-

ture distributions

In this subsection, we briefly discuss the different approximations for KL divergence be-

tween two Gaussian mixture distributions that are available in literature, and present the

approximation that is suitable for our constrained state estimation problem.

Monte Carlo approximation

The Monte Carlo simulation is the most straightforward solution for calculating KL di-

vergence between two mixture distributions. Rewriting the definition of KL in terms of

expectations as:

DKL =

∫

r(x) log
r(x)

q(x)
dx

=

∫

r(x) log r(x)−

∫

r(x) log q(x)

= Er(x)[log r]− Eq(x)[log q] (4.28)

Using random samples {xi}i=1,...,N from f(x), DKL based on Monte Carlo approach can be

calculated by:

DKL =
1

N

N
∑

i=1

log
r(xi)

q(xi)
(4.29)

However, the Monte Carlo method causes heavy computation complexity, and further it is

not suitable for defining the objective function in the constrained state estimation problem

as it can calculate the measure when two mixture densities are given.

In [38], several other approximation approaches have been described. An unscented

transformation approach uses sigma points to approximate the expectation term Er(x)[log r].

A Gaussian approximation method simply replaces r(x) and q(x) with Gaussian distributions

and reduces the KLD between two Gaussian mixtures to two Gaussians, which is proved to
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be a crude and inaccurate method. Another matching modes based approximation first

establishes a mapping mechanism between components in r(x) and q(x) and calculate the

KLD of the two Gaussian mixtures based on the mapping pairs. Another category uses the

Jensen’s inequality to achieve a variational upper or lower bound of the original KLD.

Two criteria should be taken into consideration when searching for an appropriate ap-

proximation to the KLD in our constraining problem. The first is the accuracy of the

approximation. As is pointed out in [38], out of the approximation approaches introduced

above, the Monte Carlo approximation is shown to be the most accurate, followed by the

unscented transform method. The variational method and matching modes based method

have similar performance, with the variational method slightly better. The second factor is

the complexity for the use in optimization as a cost function, which solves for the parameters

of the approximated GMM, weights, means and covariance, under constraints. The complex-

ity and computation burden of the optimization problem is especially important when it is

incorporated into an online filtering framework. The Monte Carlo and unscented transform

approximation are not appropriate to be used as cost function because it is difficult to solve

such an optimization problem. In this work, we use an analytic upper bound provided by

the Goldberger’s matching modes based approximation as the objective function. In the

following, we show that a convex optimization problem can be formulated based on this

upper bound.

Goldberger’s matching based approximation

Since there exists a closed form solution for the KLD between two Gaussians, the basic idea

in approximating the KL divergence between two mixture of Gaussians is by finding the

matching between the Gaussian components of the two mixture of Gaussian distributions.

Assume r(x) and q(x) are both Gaussian mixture distributions and let r(x) =
∑Nc

j=1 τ
a
j rj(x)

and q(x) =
∑Nm

l=1 τ
c
l ql(x). The reverse KLD of these two Gaussian mixtures can be written
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as:

DKL(q||r) =

∫

q(x) log
q(x)

r(x)
dx (4.30)

=

∫ Nm
∑

l=1

τ cl ql(x) log
Nm
∑

l=1

τ cl ql(x)dx−

∫ Nm
∑

l=1

τ cl ql(x) log
Nc
∑

j=1

τaj rj(x)dx (4.31)

=
Nm
∑

l=1

τ cl (

∫

ql(x) log τ
c
l ql(x)dx−

∫

ql(x) log
Nc
∑

j=1

τaj rj(x)dx) (4.32)

Assuming one term rj in the sum
∑

j τ
a
j rj which is proximal to ql dominates the integral

∫

ql log r, the KLD of the mixture can be approximated as follows:

≈

Nm
∑

l=1

τ cl (

∫

ql(x) log τ
c
l ql(x)dx−max

j

∫

ql(x) log τ
a
j rj(x)dx) (4.33)

=
Nm
∑

l=1

τ cl min
j
(KL(ql||rj) + log

τ cl
τaj

) (4.34)

It should be noted that in order to obtain the approximation, we need to find a j that

establishes a matching mechanism, denoted as π(.), to match each mode in q(x) with each

mode in r(x).

ql(x)→ rπ(l)(x) (4.35)

where rπ(l) represents the mode in r(x) that ql(x) will be matched [28]. The matching between

the individual modes in q(x) and those in r(x), i.e. {l = 1, . . . , Nm} → {j = 1, · · · , Nc} is

achived by solving the following optimization problem:

π(l) = min
π(l)

((DKL(ql||rπ(l)) + log
τ cj
τaπ(l)

))

= min
π(l)

(DKL(ql||gπ(l))− log τ cπ(l)) (4.36)

It is important to note that in the above approximation both q(x) and r(x) are known

distributions and the aim is to compute the KL divergence. However, we can further simplify
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the expression by assuming that the number of mixture components in the unconstrained

distribution is equal to the number of components in the constrained distribution in our

state estimation problem. Furthermore, in our state estimation problem, q(x) is unknown,

therefore, it is reasonable to assume that the jth term of the sum
∑

l τ
c
l ql which is proximal

to rj dominates the integral
∫

rj log q. In other words, the jth component of r(x) is a

matching mode of the jth component of q(x), rj → qj. As a result, the determination of the

matching function is not required for our purpose. Therefore, the approximation of KL for

two mixture Gaussian density can be expressed as:

DKL(q||r) =
Nc
∑

j=1

τ cj (DKL(qj||rj) + log
τ cj
τaj

) (4.37)

The advantage of this approximation is that it is expressed in terms of KL divergence between

Gaussian distributions for which the analytical expression is readily available.

4.5.2 Proposed KL divergence based approach

In this subsection, we present the KLD based approach to handle inequality constraints in the

state estimation procedure in the EnKF framework. The motivation of our proposed method

is to embrace the constraints in updating both the point estimate(mean) and estimation error

covariance matrix. The main idea of our approach is to project the individual components of

the unconstrained Gaussian mixture solution onto the constrained region such that both the

states and estimation errors lie within the constrained space. Since Kullback-Leibler (KL)

divergence is known to be a measure of similarity between two distribution functions, we

seek to determine the multivariate Gaussian distribution that is the projection of a particular

component of the unconstrained mixture distribution in the constrained region that is close

and similar to the unconstrained distribution obtained from the EnKF approach.

Let us denote the unconstrained and constrained posterior distribution of the GMM-

EnKF filter at the kth time step as r(x) =
∑Nc

j=1 τ
a
k,jrj(x) =

∑Nc

j=1 τ
a
k,jN(x;µa

k,j, P
a
k,j) and
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q(x) =
∑Nc

j=1 τ
c
k,jqj(x) =

∑Nc

i=1 τ
c
k,jN(x;µc

k,j, P
c
k,j), respectively. If qj(x) and rj(x) are the jth

components of the mixture Gaussian distribution, then the KL divergence of the individual

components has a closed form expression which is given by:

DKL(qj||rj) =
1

2
[log
|P a

k,j|

|P c
k,j|

+ Tr(P a
k,j

−1P c
k,j)− d

+(µc
k,j − µa

k,j)
TP a

k,j
−1(µc

k,j − µa
k,j)] (4.38)

where the symbol |M | denotes the determinant of the covariance matrix M , and d is the

dimension of state vector.

Now, let us consider constraining the individual components of the mixture distribution to

handle inequality constraints. Recall that µa
k,j and P a

k,j are the mean and error covariance of

the jth component of the unconstrained GMM-EnKF algorithm (4.7) -(4.8). It is important

to note that the state covariance P a
k,j obtained from the GMM-EnKF algorithm signifies the

ellipsoid representation around the mean µa
k,j. Therefore, to constrain the state covariance,

we utilize the following expression of ellipsoid:

E = {µc
k,j + αSk,jz | ‖z‖2≤ 1} (4.39)

where Sk,j is the positive square root of P c
k,j and α depends on the confidence limit and it

is prescribed by the user (e.g., α = 2 signifies a confidence limit of 95%). In order to bound

the state covariances, we enforce the following constraints:

E = {(xlb ≤ µc
k,j + αSk,jz ≤ xub) | ‖z‖2≤ 1} (4.40)

or equivalently, the above constraint can rewritten as:

µ̃j := µc
k,j + αSk,jz | ‖z‖2≤ 1 (4.41)
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hT
s µ̃j + ts ≤ 0; s = 1, . . . ,m (4.42)

where hs is the sth row of the matrix H = [I;−I] and ts is the sth element of vector

t = [xub;−xlb]. Now, the optimization formulation to determine the jth component of state

updates and state covariances of the constrained filtering problem can be formulated as

follows:

min
µc
k,j

,P c
k,j

DKL(qk,j||rk,j) (4.43)

s.t. Sk,j = P c1/2
k,j (4.44)

µ̃j := µc
k,j + αSk,jz | ‖z‖2≤ 1 (4.45)

hT
s µ̃j + ts ≤ 0; s = 1, . . . ,m (4.46)

Now, the constrained state estimation problem based on the KL of the mixture can be

formulated as:

min
τc
k,j

,µc
k,j

,P c
k,j

DKL(q||r) =
Nc
∑

j=1

τ ck,j

(

DKL(qk,j||rk,j) + log
τ ck,j
τak,j

)

(4.47)

s.t. Sk,j = P c1/2
k,j ; j = 1, . . . , Nc (4.48)

µ̃j := µc
k,j + αSk,jz | ‖z‖2≤ 1; j = 1, . . . , Nc (4.49)

hT
s µ̃j + ts ≤ 0; s = 1, . . . ,m; j = 1, . . . , Nc (4.50)

0 ≤ τ ck,j ≤ 1; j = 1, . . . , Nc (4.51)

Nc
∑

j=1

τ ck,j = 1 (4.52)

The above formulation is a semi-infinite optimization problem, and it is not computa-

tionally tractable owing to the nonlinear matrix constraint (4.44) and infinite dimensional

constraints (4.45).
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4.5.3 Problem reformulation

In this subsection, we present the convex optimization techniques to reformulate the above

infinite dimensional optimization problem such that it can be cast as a convex optimization

problem. To this end, first let us introduce some of the definitions that will enable us to

reformulate the problem. For more details on the definitions, the reader is referred to [12].

Definition 4.1: The epigraph of a function f : Rn → R is defined as [12]:

epi f = {(x, t)|x ∈ domf, f(x) ≤ t}

The epigraph of a function is the region above the function. For a convex function f, the

minimization of f is equivalent to finding the lowest point of the epigraph.

Definition 4.2: For any symmetric matrix M of the form:

M =







U V

V T W







The Schur complement of W is defined as U − VW−1V T . If W is invertible, then we have:

If W � 0, then M � 0 if U − VW−1V T � 0.

Theorem 4.1: The set of linear constraints hT
i z ≤ ti, z ∈ E can be expressed as a set of

second order cone constraints of the form hi
T zss + α‖Shi‖2≤ ti.

Proof[12]: Recall that z := zss+αSz̃, ||z̃||≤ 1. Consider the infinite dimensional constraint:

hT
i z ≤ ti ∀z ∈ E

⇐⇒ sup{hT
i z | z ∈ E} ≤ ti

⇐⇒ sup{hT
i (zss + αSz̃) | ‖z‖2≤ 1} ≤ ti

⇐⇒ hT
i zss + sup{hT

i αSz | ‖z‖2≤ 1} ≤ ti

⇐⇒ hT
i zss + α‖Shi‖2≤ ti
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Theorem 4.2: The optimization problem (4.43) - (4.46) can be reformulated as the following

conic optimization problem:

min
µc
k,j

,Sk,j ,γj ,Yk,j

1

2
[logdet(P a

k,j)− d− 2logdet(Sk,j) + γj

+ (µc
k,j − µa

k,j)
TP a

k,j
−1(µc

k,j − µa
k,j)] (4.53)

s.t. Tr(Yk,j) ≤ γj (4.54)






Yk,j Sk,j

Sk,j
T P a

k,j






� 0 (4.55)

α||Sk,jhs||+hT
s µ

c
k,j ≤ ts; s = 1, . . . ,m (4.56)

Proof:

Recall the definition of KLD between two Gaussian distributions from (4.38):

DKL(qj||rj) =
1

2
[logdet(P a

k,j)− d− logdet(P c
k,j) + Tr(P a

k,j
−1P c

k,j)

+(µc
k,j − µa

k,j)
TP a

k,j
−1(µc

k,j − µa
k,j)] (4.57)

It is important to note that µa
k,j and P a

k,j are the solution obtained from the unconstrained

EnKF algorithm. Therefore, the first two terms are fixed values while solving the op-

timization problem, and the last term is convex with respect to the decision variable,

µc
k,j. Though the term −logdet(P c

k,j) is convex, we let P c
k,j = Sk,jS

T
k,j, to make the

overall optimization problem convex. To this end, we use the properties of determinant

(det(AB) = det(A)det(B); det(A) = det(AT )), and the third term can be rewritten as

−2logdet(Sk,j).

Now, consider the trace term, Tr(P a
k,j

−1P c
k,j). Using the property that trace opera-

tor is invariant under cyclic permutations (i.e., Tr(UVW ) = Tr(VWU) = Tr(WUV ) 6=
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Tr(V UW )), we can rewrite the trace term as:

Tr(P a
k,j

−1P c
k,j) = Tr(ST

k,jP
a
k,j

−1Sk,j) (4.58)

Introducing auxiliary variables Yk,j and γj, we can use the definition of epigraph to express

the trace term as:

min
Yk,j ,γj

γj (4.59)

s.t. T r(Yk,j)− γj ≤ 0

Yk,j − ST
k,jP

a
k,j

−1Sk,j � 0 (4.60)

Note that from Eq.(4.60) should be Y = ST
k+1P

−1
k+1|k+1Sk+1, the matrix equality is strict with

nonlinear term and hence difficult to optimize. Using the definition of Schur complement,

the matrix inequality in Eq.(4.60) can be expressed as linear matrix inequality (LMI) as:







Yk,j Sk,j

ST
k,j P a

k,j






� 0 (4.61)

These convex optimization tricks enable one to replace the trace term with a linear term,

γj, in the objective function along with an upper bound for the trace term, and an LMI

constraint.

Applying Theorem 4.1, the infinite dimensional constraints, (4.45) - (4.46), can be rewrit-

ten in terms of the following second order cone constraints [12]:

α||Sk,jhs||+hT
s µ

c
k,j ≤ ts; s = 1, . . . ,m (4.62)

Now, the resulting optimization problem can be expressed using (4.53) - (4.56).

From Theorem 4.2, the constrained state estimation problem based on the KLD of the
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mixture Gaussian can be recast as:

min
τc
k,j

,µc
k,j

,Sk,j ,γj
DKL(q||r) =

Nc
∑

j=1

τ ck,j

(1

2
[logdet(P a

k,j)− d− 2logdet(Sk,j) + γj

+ (µc
k,j − µa

k,j)
TP a

k,j
−1(µc

k,j − µa
k,j)] + log

τ ck,j
τak,j

)

(4.63)

s.t. Tr(Yk,j) ≤ γj; j = 1, . . . , Nc (4.64)






Yk,j Sk,j

Sk,j
T P a

k,j






� 0; j = 1, . . . , Nc (4.65)

α||Sk,jhs||+hT
s µ

c
k,j ≤ ts; s = 1, . . . ,m; j = 1, . . . , Nc (4.66)

0 ≤ τ ck,j ≤ 1; j = 1, . . . , Nc (4.67)

Nc
∑

j=1

τ ck,j = 1 (4.68)

All the constraints are convex in terms of decision variables in the proposed optimization

problem. However, the objective function is non-convex due to the product of τ ck,j with

the terms in DKL(qj||rj). As a consequence, the overall optimization problem is jointly

non-convex with respect to decision variables. Nevertheless, the problem is individually

convex with respect to τ ck,j and jointly convex with respect to {µc
k,j, Sk,j, γj}. Also, the

constraints are independently separable in terms of τ ck,j and other decision variables. In other

words, the minimization of KLmix of the overall GMM in terms of the constrained mean

and covariances is equivalent to minimizing the KL divergence between a pair of Gaussian

modes. Hence, we propose a two step algorithm, where, at each step, we solve a convex

optimization problem that can be solved for global optimality. In the first step, we solve

for the individual components of the Gaussian mixture by minimizing the KLD of Gaussian

distribution. The corresponding optimization problem is given by (4.53) - (4.56). Therefore,

Nc conic optimization problems have to be solved in this step. Let us denote the objective

function values of the optimization problems in the first step as DKL(qj||rj) = Dj
KL. In the
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second step, we solve for τ ck,j by formulating the following optimization problem:

min
τc
k,j

DKL(q||r) =
Nc
∑

j=1

τ ck,j

(

Dj
KL + log

τ ck,j
τak,j

)

(4.69)

s.t. 0 ≤ τ ck,j ≤ 1; j = 1, . . . , Nc (4.70)

Nc
∑

j=1

τ ck,j = 1 (4.71)

where the second term in the objective function signifies the relative entropy of component

weights, and it is convex. Therefore, this optimization problem is convex and hence can be

solved for globally optimality.

Illustration

Let r(x) be a two-dimensional bi-modal Gaussian mixture distribution. Its parameters

are given as µk,1 = [10; 30];µk,2 = [20; 31];Pk,1 = Pk,2 = [4, 2; 2, 4]. The aim of this example is

to illustrate that minimizing the KLD of the mixture distribution is equivalent to minimizing

the KLD of the individual components. Furthermore, we demonstrate that the optimal values

of the parameters {µc
k,1, µ

c
k,2, P

c
k,1, P

c
k,2} are independent of the choice of τ ck,j.

Now, let us set τ ck,j = [0.7; 0.3] and solves for {µc
k,1, µ

c
k,2, P

c
k,1, P

c
k,2} by minimizing the

KLD between the r1, q1 and r2, q2. Figure 4.2 shows the variation of KLD of the mixture

and KLD of the first component of the mixture with respect to µk. It can be seen that the

optimal value of µk obtained by minimizing the KLD of the mixture is same as the optimal

value obtained by minimizing the individual components of the KL of the mixture. Similar

observation can be made for τ ck,j = [0.4; 0.6]. Also, it can be inferred that the choice of

τ ck,j does not alter the optimal values of µk. Therefore, optimizing the KLD of the mixture

distribution is equivalent to optimizing the KLD of the individual components. Figure 4.4

shows the KL divergence with varying values of τ ck,1.

Theorem 4.3: The mixture component weights of the constrained posterior distribution

are equal to the corresponding mixture component weights of the unconstrained distribution
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Figure 4.2: KLD between (r1, q1) and (r, q) versus µc
k,1 when τ ck,j takes value of [0.7; 0.3].
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Figure 4.3: KLD between (r1, q1) and (r, q) versus µc
k,1 when τ ck,j takes value of [0.4; 0.6].
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(τ ck,j = τak,j), if the KL divergence between each pair of individual components is equal (i.e.,

DKL(q1||r1) = DKL(q2||r2) = · · · = DKL(qNc
||rNc

)).

Proof: After solving Eq.(4.63) for µc
k,j, P

c
k,j,j = 1, · · · , Nc, the KL divergences between

individual modes are known, which are denoted as Dj
KL. The equation for optimization in

terms of τ ck,j described in Eq.(4.69) can be written as:

∂DKL

∂τ ck,j
= Di

KL + log τ ck,j − log τak,j + 1 = 0 (4.72)

log τ ck,j = log τak,j − 1−Dj
KL j = 1, · · · , Nc (4.73)

Given that
∑Nc

j=1 τ
c
k,j = 1 and

∑Nc

j=1 τ
a
k,j = 1, we can replace a certain τ ck,d with 1 −

∑

j 6=d τ
c
k,j, and τak,j with 1−

∑

j 6=d τ
a
k,j. We have:

log(1−
∑

j 6=d

τ ck,j) = log(1−
∑

j 6=d

τak,j)−Dd
KL − 1 (4.74)

Subtracting the jth (j = 1, . . . , Nc, j 6= d) equation of Eq.(4.73) with Eq.(4.74), we have:

log
τ ck,j

1−
∑

j 6=d τ
c
k,j

= log
τak,j

1−
∑

i 6=d τ
a
k,j

− (Dd
KL −Dj

KL) j = 1, . . . , Nc, j 6= d (4.75)

If D1
KL = · · · = Dj

KL(j = 1, . . . , Nc, j 6= d), Eq.(4.75) becomes:

log
τ ck,j

1−
∑

j 6=d τ
c
k,j

= log
τak,j

1−
∑

i 6=d τ
a
k,j

(4.76)

τ ck,i(1−
∑

i 6=d

τak,j) = τak,j(1−
∑

j 6=d

τ ck,j) j = 1, . . . , Nc, j 6= d
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Adding the above (Nc-1) equations yields:

∑

j 6=d

τ ck,j(1−
∑

j 6=d

τak,j)) =
∑

i 6=d

τak,j(1−
∑

j 6=d

τ ck,j) (4.77)

∑

j 6=d

τ ck,j =
∑

j 6=d

τak,j (4.78)

From Eq.(4.78), we have:

τ ck,d = τak,d (4.79)

Repeating this process for each qj, j = 1, · · · , Nc, we have τ ck,j = τak,j, j = 1, · · · , Nc.

4.6 Case study: Lorenz model

The Lorenz model was first developed by a meteorologist Edward Lorenz when he attempted

to build a simplified model for convection of the earth’s atmosphere. It is a classical example

of highly nonlinear, non-periodic system and paradigmatic low-dimensional chaotic system.

Therefore it is ideal to serve as a benchmark to test our GMM-EnKF algorithm as it will

provide a good source for multimodality of the state distribution. The Lorenz model is

described by the following three nonlinear ODE [62]:

dx

dt
= γ(y − x),

dy

dt
= ρz − y − xz,

dz

dt
= xy − βz

where the commonly used values for the coefficients are γ = 10, ρ = 28, β = 8/3.

Behavior of the Lorenz model

Figure 4.5 depicts the trajectory of the projection of the Lorenz attractor onto the xz

plane with the initial state values as (x0, y0, z0) = (1.508870,−1.531271, 25.46071) within

a simulation period of [0, 10]. The initial ensemble of 1000 particles are generated from
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a Gaussian distribution with mean (x0, y0, z0) and covariance as diag(1, 1, 1). Figure 4.6

shows the evolution of these 1000 particles at time 0.2, 0.3 and 0.4 projected onto the xz

plane. In the figure, the blue cluster shows the shape of the distribution of the particles. The

distribution of the state deviates further and further from the shape of an ellipse. Both figure

4.5 and figure 4.6 show the strong nonlinearity of Lorenz model . Therefore it is severely

inaccurate to use just Gaussian distribution to approximate the state PDF.
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Figure 4.5: The Lorenz attractor along the xz plane.
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Figure 4.6: Distribution of particles at time initial time(red dots) and time step 0.2, 0.3 and
0.4(blue dots) along the xz plane.

Unconstrained data assimilation

To perform data assimilation for the Lorenz model, the measurement model is assumed

to be:

y = [x, y, z] (4.80)
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Assume no noise for the state transition model and the measurement noise is Gaussian

distribution with zero mean and covariance of v = diag(40, 40, 40). In the following, we

perform a one-step data assimilation using the GMM-EnKF described in the previous chapter

for the Lorenz model at time steps t1 = 0.2, t2 = 0.3, t3 = 0.4 respectively. Accordingly the

measurements at these three time instances are y1 = [0, 0, 15], y2 = [−2.2,−3.9, 11.9], y3 =

[−5.5,−10, 11.5].
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Figure 4.7: Distribution of particles using Monte Carlo method and posterior distribution
using GMM-EnKF at time 0.2, 0.3 and 0.4(from the first figure to the third) along xz plane.

The red shape in figure 4.7 shows a 99% confidence region of the estimated bi-modal

posterior distribution using the GMM-EnKF at time 0.2, 0.3 and 0.4. On the other hand, a

Monte Carlo simulation is performed to get a closest estimation of the true distribution with

5000 particles. The blue clusters in figure 4.7 show the distribution of the particles using

the Monte Carlo method at time instance 0.2, 0.3 and 0.4. The contour of the cluster can

be used as the reference of the true distribution. At time 0.2 and 0.3(the top two figures

124



in figure 4.7), the confidence region of the GMM-EnKF shown in red color can basically

enclose all the particles, which means the estimated distribution is accurate at this stage.

At time 0.3, the posterior distribution provided by the GMM-EnKF can well capture the

multimodality of the true distribution. However, the estimation at time 0.4(bottom figure

in 4.7) is not that as good as earlier, which is a result of the increasing nonlinearity of the

Lorenz model. One cause is the number of the modes in GMM is fixed to be two in the

estimation. Increasing this number can achieve better performance. Moreover, GMM itself

is not ideal for clustering for data set with non-convex shape.

Constrained data assimilation

In this section, we consider imposing the following three-dimensional equality constraint

on the states [x, y, z] :

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The inequality constraints are incorporated using the KL divergence based method at

every time instance. In the following, we present the one-step estimation of the constrained

estimation results when the simulation interval is 0.2, 0.3 and 0.4.
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Figure 4.8: Unconstrained and constrained (using KLD approach) posterior distribution
and particles at time 0.2 along (1)xz plane and (2)yz plane. The markers ’+’,’×’,’square’
represent the true state value, unconstrained estimate and constrained estimate.
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Figure 4.9: Unconstrained and constrained (using KLD approach) posterior distribution
and particles at time 0.3 along (1)xz plane and (2)yz plane. The markers ’+’,’×’,’square’
represent the true state value, unconstrained estimate and constrained estimate.
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Figure 4.10: Unconstrained and constrained (using KLD approach) posterior distribution
and particles at time 0.4 along (1)xz plane and (2)yz plane. The markers ’+’,’×’,’square’
represent the true state value, unconstrained estimate and constrained estimate.
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Figure 4.8 to figure 4.10 show the 99% contour of the unconstrained posterior distribu-

tion f(xk|k) and unconstrained particles {xa,i
k }i=1,···,N obtained with GMM-EnKF and 99%

contour of the constrained posterior distribution g(x) and constrained particles {xc,i
k }i=1,···,N

on xz and yz plane at time 0.2, 0.3 and 0.4. As we can see from these three figures, the

proposed constraining approach produces a new GMM, denoted as the red shape, which

lies within the constrained region with a user defined confidence. As the parameters of the

red shape have been calculated in the constraining step, this constrained distribution with

analytic expression is used for further processing. The clipping approach described before

usually produces a PDF with piece-wise analytic description. The RNDDR, on the hand,

only produces a bunch of scattered particles.

Table 4.1 show the point estimate error of the unconstrained and constrained estimation

at time 0.2, 0.3 and 0.4 in comparison with the true state value. We can see that the

unconstrained estimate, in this case, is good. No constraints are required for the when we

apply the GMM-EnKF on the Lorenz model. The inequality constraints described above

are manually chosen only to test the effectiveness of our proposed constraining method.

However, with the constraint information added, most particles are pulled back into the

constraint, hence the estimates get even better.

Since the GMM-EnKF is also a particle based approach, the RNDDR approach can

also be applied to achieve a constrained solution. Specifically, the quadratic optimization

described in Eq.(4.81) is formulated on each of the particle in the ensemble. As we introduced

in the previous chapter, the RNDDR projects the particles into the constrained region based

on a weighted combination errors of states and measurements. Figure 4.11 to figure 4.13

show the distribution of constrained particles using the RNDDR approach in comparison

with the unconstrained ones from the GMM-EnKF.

min
xc,i
k

(y − h(xc,i
k ))TR−1(y − h(xc,i

k )) + (xc,i
k − xa,i

k )TP−1
k (xc,i

k − xa,i
k ) (4.81)
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s.t. lb ≤ xc,i
k ≤ ub

In this particular case, the measurement error covariance R is much larger than the state

covariance Pk, therefore the first term in Eq. (4.81) is much smaller than the second term,

Without the correction of the measurements, many constrained particles end up lying on the

boundary of the constrained region. This creates large estimation error if a large number

of the constrained particles lie on the boundary, because these particles do not improve the

estimation as they all take the boundary value. Reducing the measurement error covariance

R for RNDDR will improve the estimation error. The KLD based method, on the other

hand, is able to re-distribute the particles evenly on the newly calculated constrained GMM,

so that the variability of the particles will not be compromised in the most possible way.

Table 4.1 lists the point estimate error using the KLD approach and the RNDDR approach.

We can see that the estimation error of RNDDR at time 0.1 and 0.3 is relatively larger than

the KLD approach, because at these two steps a number of the unconstrained particles lie

outside the constraints and the they are projected on the boundary in the RNDDR. The

KLD, on the other hand, can push the particles more inside, closer to the true value. At

time step 0.2, most unconstrained particles are already within the constraints. Therefore

fewer particles are on the boundary. However, in a special case where the true value is very

close to the boundary, there is no definitive conclusion on which of KLD or RNDDR renders

better constrained estimation results.

From computation efficiency point of view, another advantage of KLD method is that

it takes less than half of the computation time of the RNDDR approach, shown in Table

4.2. This is because it only performs one optimization at every time step instead of N

optimization for each of particle.
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Figure 4.11: Constrained particles using the KLD and RNDDR projection at time 0.2 along
xz plane. The markers ’×’,’∗’ and ’square’ represent the true state value, constrained esti-
mate using RNDDR and constrained estimate using KL.
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Figure 4.12: Constrained particles using the KLD and RNDDR projection at time 0.3 along
xz plane. The markers ’×’,’∗’ and ’square’ represent the true state value, constrained esti-
mate using RNDDR and constrained estimate using KL.
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Figure 4.13: Constrained particles using the KLD and RNDDR projection at time 0.4 along
xz plane. The markers ’×’,’∗’ and ’square’ represent the true state value, constrained esti-
mate using RNDDR and constrained estimate using KLD.

Table 4.1: Unconstrained estimates and constrained estimates using the KLD divergence
and RNDDR

Time instance t=0.2 t=0.3 t=0.4
Error of uncon-
strained estimate

0.15 0.77 3.04

Error of constrained
estimate using KLD

0.03 0.18 2.85

Error of constrained
estimate using
RNDDR

0.19 0.25 4.19

Table 4.2: Computational Time using the KLD divergence and RNDDR

KL approach RNDDR approach
Average CPU Time(s) 33.2 72.6
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4.7 Case study: Microalgae cultivation process

Nowadays global warming and climate change caused by increased carbon-dioxide (CO2)

emission has drawn more attention. Various carbon capture or storage technologies have

been developed to reduce the CO2 emission. Among them, the use of microalgae to biologi-

cally fixate CO2 can be a very promising solution. Specifically, the microalgae is cultivated in

a medium with all necessary nutrients, under suitable environmental conditions for microal-

gae to grow. It consumes CO2 through the photosynthesis process. The complete process

is environmental friendly, considering the basic cultivation medium is wastewater and no

requirement of agricultural land to achieve high biomass production.

Like any other process, to achieve good performance and high efficiency of the microalgal

cultivation, a mathematical model is needed to describe the complex biochemical reactions

and it should also be suitable for control and optimization. Various kinetic models for mi-

croalgal cultivation process has been developed. In this work, we use a nonlinear dynamic

model developed in [49] and [48]. This model is developed specifically to describe the re-

lationship between algal growth and the CO2, phosphate, nitrate and ammonium uptake

rates of Chlorella kessleri that is indigenous to oil sand process water (OSPW). In order to

generate data to establish the model, fed-batch experiments are conducted in a closed race-

way photo-bioreactor with the OSPW as the cultivation medium. In the photo-bioreactor,

the Chlorella kessleri is cultivated in various flasks with different initial CO2 concentration,

phosphate concentration and light intensity. The bioreactor monitors the algal biomass, con-

centrations of all compositions in the medium, including phosphate, ammonium, dissolved

CO2, PH and alkalinity, as well as gas content and light intensity of all flasks over 432 hours.

After acquiring the data, the parameters of the model are then estimated by minimizing the

weighted sum of squared error (WSSE) of the model predicted value of the states and the

experimental data. In the following, we directly introduce the differential equations that

describe the overall algae model. Then the estimated values of the parameters of interest

are listed in Table 4.3. The mathematical model of the microalgae cultivation process can
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be given by the following set of equations:

dX

dt
= µX − kdX −DX (4.82)

d[CO2]

dt
= −ρdCO2X +

J

RT

h

V
(
P In
CO2

h
− [dCO2]){1− exp[−(

kLaBRT

h
τ)]} (4.83)

+kl
SH

V
(
POut
CO2

h
− [dCO2]) + l[HCO−

3 ][H
+]− k[dCO2] +

QIn
1

V
[dCO2]

In −D[dCO2]

d[PO−3
4 ]

dt
= ρPO−3

4
X +

QIn
1

V
[PO−3

4 ]In1 +
QIn

2

V
[PO−3

4 ]In2 −D[PO−3
4 ] (4.84)

d[NH+
4 ]

dt
= ρNH+

4
X +

QIn
1

V
[NH+

4 ]
In
1 −D[NH+

4 ] (4.85)

where the four states X, [CO2], [PO−3
4 ] and [NH+

4 ] are the concentrations of biomass, CO2,

phosphate and ammonium. A multi-rate sampling is performed for the process: the biomass,

phosphate and ammonium are sampled every 4 h, and the CO2 is sampled every 5 min. We

get a fully observed model every 4h and only one observation every 5 min. The observability

matrix of the model at the 5 min interval shows that it is unobservable, therefore, we focus

on the model at the 4 h interval in this work. We measure all the four states of the process

and hence the measurement model is given by:

y =
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In [49], a detailed model of the algae growth rate µ, CO2 uptake rate ρdCO2 , phosphate

uptake rate ρPO−3
4
, and ammonium uptake rate ρNH+

4
are further introduced as additional
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Table 4.3: The estimated parameters of the algae model

Parameter
Estimated
Value

Unit Parameter
Estimated
Value

Unit

µm 3.89×10−2 1/h kd 1.13×10−3 1/h
KSdCO2 2.69 mgdCO2/L KIdCO2 3.27× 103 mgdCO2/L
KSPO−3

4
101 mgPO−3

4
/L KIPO−3

4
2.2× 104 mgPO−3

4

KSl 29.1 µmol photonsm−2s−1 kr 7.28 µmol photonsm−2s−1

KSdO2 4.57× 10−2 mgdO2/L
ρmdCO2 1.73× 10−3 mgdCO2/(mgh) KρCO2 0.939 mgdCO2/L
ρmPO−3

4
2.2× 10−5 mgPO−3

4
/(mgh) KρPO−3

4
831 mgPO−3

4
/L

ρmNH+
4

0.342 mgNH+
4
/(mgh) K+

4
3.58× 103 mgNH+

4
/L

kL 0.263 m/h aBτ 0.836 h/m
k 0.356 1/h l 2.38× 103 L/(molh)

states along with its associated parameters. Of these parameters, we are interested in the

algal specific growth rate µ, which can be defined as:

µ(t) = µm × µCO2 × µPO−3
4
× µl

where µCO2 , µPO−3
4

and µl are the factors influenced by CO2, phosphate concentration and

light intensity. µm is the maximum growth rate of the algae, which is an inherent property

of the algae to describe the rate of one algae strain dividing into daughter strains. So far

most of the algal models assume all algae strains have the same or similar growth rate. To

estimate the growth rate using Bayesian filters, the Gaussian distribution is sufficient to

describe the growth rate in this case. However, it is well known that the the algae strains

can divide into variable number of daughter strains, especially under different environmental

conditions, such as day light. In such case, the value of the growth rate might vary and

hence the distribution of the growth rate might be multimodal.

To seek evidence for this conjecture, a joint state and parameter estimation is performed

on the four states and the maximum growth rate µm using the GMM-EnKF and the standard

EnKF. The µm is treated as an augmented state and estimated together with the four states.

Both filters start with the same initial condition and run with process noise with zero mean
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and covariance as diag(1, 1, 1, 1) and measurement noise with zero mean and covariance

diag(4, 4, 4, 4). An ensemble of equal number of particles is used by both filters. Therefore

the only variable in the estimation of the two filters is the number of modes in the augmented

state distribution of every time step. The EnKF apparently has only one mode for the state

PDF and the GMM-EnKF is assumed to have two. In the end, by comparing the sum of

squared error (SSE) of the point estimates at all time steps yielded by each filter, we can

determine if the assumption of bi-modality for the augmented state distribution stands.

Case 1: The initial distribution for both EnKF and GMM-EnKF is a Gaussian distri-

bution with mean as [60, 50, 350, 25] and covariance as diag(25, 25, 25, 25) for the four states.

We treat the values of parameters in table 4.3 as their true values except µm since it is

assumed unknown and to be estimated. Nonetheless the value of µm = 3.89 × 10−21/h =

64.8× 10−51/min in table 4.3 can still be a good reference for the true value of µm. We are

only concerned about the coefficient part in the µm and add the exponent part 10−5 after

we obtain the estimation. In the following, all the values associated with µm state only the

coefficient part. The actual value has to be multiplied by 10−5. The initial distribution of

µm is also assumed to be Gaussian for both filters, with mean 80 and variance 100. Figure

4.14 compares the estimated values of the four states over 432h using the GMM-EnKF and

the EnKF respectively. Note that because the sampling time is 4h, there are 109 time steps

in total. Figure 4.15 compares estimated values of the µm over the whole time using the two

filters respectively. The black line in the figure shows the reference value of µm from table

4.3.

Case 2: Since the unconstrained estimations of the four concentrations do not produce

nonphysical estimation results over all time steps and also track the trajectory of the ex-

perimental data well, there is no need to put constraints on the four states. However, the

estimation of the µm in figure 4.15 yields non-physical results, for the reason that µm can-

not be negative. In this case, an inequality constraint is imposed just on the parameter µm,

specifically 30 < µm < 100(without the exponent part). The incorporation of the constraints
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Figure 4.14: Experimental data and estimation results of the four states using the EnKF
and GMM-EnKF over 432h.
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Figure 4.15: Comparison of estimated µm over 432h using:the EnKF and GMM-EnKF
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on µm is achieved by using the proposed KLD based method. Figure 4.16 shows the com-

parison of estimation results of the four states using the GMM-EnKF and the constrained

GMM-EnKF. The two filters have similar performance because unconstrained results in most

time steps fall within the constraints, hence the constraints are not active in many time steps

for the constrained estimation. Nevertheless improvement is still visible, especially in the

biomass estimation in figure 4.16. Figure 4.17 shows the constrained estimation of µm in

comparison with the unconstrained version and the EnKF.
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Figure 4.16: Experimental data and estimation results of the four states using the GMM-
EnKF and constrained GMM-EnKF over 432h.

Analysis:

Table 4.4 lists the sum of square of the error (SSE) of the four states generated by the EnKF,

GMM-EnKF and constrained GMM-EnKF respectively. The converged value of µm and the

136



0 20 40 60 80 100 120
−8

−6

−4

−2

0

2

4

6

8

10
x 10

−4

Time Step

µ
m

 

 

EnKF estimates

GMM−EnKF estimates

Constrained GMM−EnKF estimates

Figure 4.17: Comparison of estimated µm using the EnKF, the GMM-EnKF and constrained
GMM-EnKF over 432h.
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Figure 4.18: The estimated distribution of the µm before and after enforcing the constraint
using KL method at one time step(area between the two dotted lines is the constrained area).
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time steps it takes to converge under each scenario are also listed in table 4.4. From the

figures and Table 4.4, we have the following findings:

(1) The fact that the GMM-EnKF outperforms the EnKF indicates that there is a strong

possibility that the distribution of µm is multi-modal, i.e. it can take different values in the

whole cultivation process. Again the GMM-EnKF proves a better option than the EnKF in

the presence of multi-modal PDF.

(2) It is expected that the constrained GMM-EnKF outperforms all the unconstrained

filters simply because extra information added to the estimation, which also helps the GMM-

EnKF converge faster than the unconstrained filters. For the parameter estimation, the

constrained GMM-EnKF is to get rid of the non-physical estimations. However, we see small

oscillations even after the estimation converges. This is because of the mode-seeking behavior

of the reverse KLD introduced in chapter 3. That’s to say the reverse KLD tends to have

the peaks of the constrained distribution trace the peaks of the unconstrained distribution.

As is shown in figure 4.18, obviously one of the unconstrained modes has most part outside

the constraints. The constrained result keeps the one that is inside the constraint, and

disregards the other one by putting very little weight on it. By doing this, the constrained

result is shifted drastically from the unconstrained result, so are the particles. This large

shifting of the particles at every time step is the major reason of the oscillation of constrained

GMM-EnKF.

(3) In the constraining step, the quadratic term (y−h(x))R−1(y−h(x))T , where x is the

to-be-determined constrained estimate, is used to employ the measurement to help correct

the constrained estimate. However, the measurement model h(.) cannot reflect estimated

parameter to the measurement. In other words, the measurement at the current time step

cannot be used to correct the constrained estimate. Only in the next step can the mea-

surements be used to correct the constrained update of the parameter. The measurement

information is able to be incorporated in the update of the constrained state estimation

because h(.) can pass the state information to the measurements at the current time step.
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This is another reason why there are small oscillations for the constrained results.

Table 4.4: The estimated parameters of the algae model

EnKF GMM-EnKF(Case 1) Constrained GMM-EnKF
X(SSE) 4.359× 104 3.604× 104 3.09× 104

CO2(SSE) 0.207× 104 0.205× 104 0.203× 104

PO4(SSE) 1.38× 104 1.307× 104 0.967× 104

NH4(SSE) 0.181× 104 0.199× 104 0.191× 104

Converged µm value(×10−5) 63.68 68.70 69.45
Converged time(steps) 60 60 45

4.8 Conclusions

In this chapter, we propose a novel approach to incorporate inequality constraints into a

non-Gaussian filter that characterizes the posterior using a Gaussian mixture model in the

EnKF filtering framework. The idea behind our approach is to project the unconstrained

posterior GMM distribution into the constrained region such that the resulting GMM lies

within the constraints. The parameters of the constrained GMM is obtained by minimizing

the KL divergence between the two GMMs. As there is no close-form expression for the KL

divergence between two GMMs, we proposed a modification of Goldberger’s approximation

as the objective function of the proposed optimization problem at the update step. Since

the resulting approximation is non-convex, we proposed a two step optimization procedure

that can determine the posterior distribution of the constrained filter. Each step requires

one to solve convex optimization problems that can be solved for global optimality. This

enables one to generate ensemble members to be inside the constraints and hence provide

better state estimates. Furthermore, we compare the performance of our proposed KLD

based approach with the existing RNDDR approach, and we show superior performance of

the proposed approach over the RNDDR when the measurement error is large. In this case,

the particles generated by RNDDR tend to lie on the boundary of constraints, which might

create great error unless the true value happens to be very close to the boundary. On the
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other hand, in our approach, we can always keep the particles inside the constraints, closer to

the true value. In addition, compared to the RNDDR, we are able to provide a parametric

model for the constrained posterior distribution. Finally, our method is computationally

more efficient than the RNDDR.
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Chapter 5

Gaussian Mixture Model-Based

Ensemble Kalman Smoother

5.1 Introduction

As Monte Carlo based filtering techniques such as the EnKF provide a convenient and

efficient way to handle processes with nonlinearity and high-dimensionality, it is natural to

extend their application to smoothing. Ensemble smoothing(ES) [100] performs one global

update of each particle in the ensemble by simultaneously assimilating all data available.

Although the ES saves computation time significantly compared to the EnKF, the EnKF

outperforms the ES when the model is strongly nonlinear, because the recursive framework of

the EnKF keeps the estimation at every time step on track [22] for nonlinear dynamics. The

ensemble Kalman smoother(EnKS)[25] is able to improve the performance of ES by adapting

it into a recursive update structure. The EnKS allows us to update the past estimate with

future observations in the same fashion as the EnKF. Therefore, the EnKS inherits the

EnKF’s ability to handle nonlinearity and high-dimensionality. In [25], the EnKF, the ES

and the EnKS are applied on the Lorenz model which is well-known for its nonlinear and

chaotic dynamics. The EnKS shows clearly significant improvement of the estimation error
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compared to the EnKF and the ES. Even the EnKF is shown to be superior to the ES in

this example, which demonstrates the weakness of the ES with nonlinear models, especially

those with chaotic dynamics. However, [33] shows that the ES and the EnKS have close

performance on a weakly nonlinear model - a fish stock assessment model. The ES also gives

better estimation results in diffusive systems compared to chaotic systems, such as reservoir

models [89].

The most widely used formulation of EnKS is a fix-lagged smoother proposed by Evensen

et al. [25]. In this formulation, the observation acquired at time step k is used not only

to conduct filtering for time step k, but also to perform smoothing on a previous time step

k − L, where L is a fixed integer. As the extension of the EnKF, the EnKS operates based

upon the EnKF filtering results. First, the EnKF runs from k − L to k and the ensemble

at the prediction step as well as the update step are both collected and stored at every time

step. Second, for every upcoming measurement yk(k > L), the EnKS updates xk−L again

using the smoothing formulation. As this window of length of L moves forward, the updated

time steps keep moving outside the window to make space for the next time step. This

lagged smoother is able to save CPU memory space since the storage for the ensemble of

those time steps which move outside the window can be released.

The ES, the EnKF and the EnKS are all based on the assumption that the statistics of

the state space can be approximated by Gaussian distributions. As is introduced in chap-

ter 2, this assumption does not hold when the smoother is applied on strongly nonlinear

models, which is frequently encountered in ocean or meteorologic applications. The mo-

tivation of our work is to obtain the full distribution of the non-Gaussian state space for

the smoother at every time step, instead of just the first two moments. The variational

data assimilation technique[61][58] has been widely used by the weather forecast commu-

nity for high-dimensional models with non-Gaussian state statistics. However, methods in

this category usually involve complicated optimization of a cost function. We intend to

deal with the non-Gaussian problem in the sequential data assimilation framework. To the
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best of our knowledge, very few publications have focused on the topic of sequential non-

Gaussian smoother. [11] proposed an iterative ensemble Kalman smoother(IEnKS), which

is a hybrid method to combine the EnKF with the four-dimensional ensemble variational

method(4DVAR). Another approach to handle non-Gaussian PDF is sequential Monte Carlo

smoothing, i.e. the particle smoother[18]. The SMC smoothing algorithms can be performed

in two different formulations. The first is the RTS smoother formulation, i.e. forward filter-

ing and backward smoothing algorithm. The second is to run two individual filters in two

opposite directions: one assimilates data forward and the other backward. In the end, the

filtering results of the two filters are combined to generate the smoothing results. In [40], the

two smoothers are applied on a linear system. The estimation shows the two have similar

performance, with the two-filter smoother operating faster.

In the previous chapter, a GMM-EnKF has been introduced and tested for its capability

to handle the non-Gaussian state probability density function(PDF). We intend to extend its

formulation to a smoother, so that this smoother would share its ability to handle the non-

Gaussian PDF. As this smoother also approximates the state PDF with GMM, we name

it GMM-EnKS in the following content. In our work, the proposed GMM-EnKS adopts

the RTS smoother formulation, in which the forward filtering is performed by the GMM-

EnKF. We also proposed a novel method to update the probability matrix in the backward

smoothing, by adapting the idea of the particle smoother to the GMM-EnKS.

5.2 The Ensemble Kalman Smoother (EnKS)

In this section, two variants of the ensemble Kalman smoothers are introduced in details.

The first one is the EnKS introduced by Evensen et al. [25] which can be formulated as

a fixed-lag or fixed-interval smoother. It intends to provide the smoothed estimates at a

certain time step k over an interval [1 T ] or [T −L T ] by calculating the joint PDF of the

states given observations from time step 1 to T, i.e. p(x0:T |y1:T ) (fixed-interval smoother) or
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p(xT−L:T |y1:T )(fixed-lag smoother). The integer L is the lag. The second one is the ensemble

formulation of the Rauch-Tung-Striebel(RTS) smoother(EnRTS) [93], which is used less

commonly than the EnKS. The EnRTS intends to find the marginal PDF of the states

at a certain time step k over an time interval [1 T ], given observations from 1 to T, i.e.

p(xk|y1:T ). In [75], the EnKS and the EnRTS are proven to be equivalent, even in the

nonlinear, non-Gaussian scenario.

5.2.1 The EnKS

Consider the following discrete model:

xk+1 = f(xk) + vk (5.1)

yk = Hxk + wk (5.2)

where the the process noise vk and measurement noise wk are both Gaussian and given by

vk ∼ N(0, Q), wk ∼ N(0, R). As is introduced in the previous chapter, the EnKF updates

each individual particle xi
k of the ensemble as follows.

xa,i
k|k = xf,i

k|k−1 +K(Y obs
k −Hxf,i

k|k−1 + wk) (5.3)

where xf,i
k|k−1 = f(xi

k−1|k−1) + vk. The Kalman gain K is given by:

K = Cxy(Cyy +R)−1 (5.4)

Cxy =
1

N − 1
X

′

k|k−1Y
′T
k|k−1 (5.5)

Cyy =
1

N − 1
Y

′

k|k−1Y
′T
k|k−1 (5.6)

where the superscript prime indicates that the matrix has its mean removed from each

column.
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When the observation Y obs
T at time step T is available, the EnKS updates all the previous

states in the time interval [T − L T ], where 1 ≤ L ≤ T . In the following, we focus on the

fixed-interval smoother. When k = 1, the EnKS is initialized with the EnKF analysis results,

xs
1|1 = xa

1|1. At time step k, the analysis of the smoother to assimilate the future observation

of time step T, T ≥ k + 1, is performed as follows:

xs,i
k|T = xs,i

k|T−1 +B(Y obs
T −Hxf,i

T |T−1 + wk) (5.7)

where B is the smoothing gain and is given by:

B = Cxy(Cyy +R)−1 (5.8)

Cxy =
1

N − 1
X

′

k|T−1Y
′T
T |T−1 (5.9)

Cyy =
1

N − 1
Y

′

T |t−1Y
′T
T |t−1 (5.10)

where X
′

k|T−1 is calculated based on the ensemble {xi
k|T−1}i=1,...,N and Y

′

T is calculated based

on the ensemble {yiT |T−1}i=1,...,N , which are the corresponding measurements of the predicted

ensemble {xi
T |T−1}i=1,...,N obtained from the filtering at time step T.

If the smoothing process starts at time step 1, when Y obs
2 is available, the ensemble at

time step 1 is updated using Eq.(5.7) as follows:

xs,i
1|2 = xs,i

1|1 +B(Y obs
2 −Hxf,i

2|1 + w2) (5.11)

where xs,i
1|1 is the assigned with the filtering values. Note that in the following content, the

variable with the superscript s indicates it is the smoothed estimate.
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Cxy and Cyy are calculated based on {xi
1|1}i=1,...,N and {yi2|1}i=1,...,N as follows:

Cxy =
1

N − 1
X

′

1|1Y
′T
2|1 (5.12)

Cyy =
1

N − 1
Y

′T
2|1Y

′T
2|1 (5.13)

When Y obs
3 arrives, the smoothing can be performed on x1|3 and x2|3. The calculation of

x2|3 is similar to Eq.(5.11) and x1|3 is calculated as:

xs,i
1|3 = xs,i

1|2 +B(Y obs
3 −Hxf,i

3|2 + w3) (5.14)

where Cxy and Cyy are calculated based on ensemble {xs,i
1|2}i=1,...,N , which comes from the

smoothing of last time step and {yi3|2}, which come from the filtering step. The same

procedure is is repeated for future observations and we have all the smoothing estimates

from 1 to T.

By comparing Eq.(5.7) with Eq.(5.3), the most prominent difference of the EnKS from

the EnKF is that the calculation of the cross-covariance matrix Cxy involves the ensembles

from two different time steps, time step k at which the smoothing is performed and time step

T at which the observation arrives. The error covariance of measurement Cyy is calculated

the same way as in the filtering step. Moreover, the smoothing does not require any more

computation than the EnKF, since there are no extra forward model runs required in the

EnKS. The ensemble information required can be either obtained from the filtering step or

the previous smoothing steps.

5.2.2 The RTS EnKS

The EnKS introduced in the last section is a filter-smoother approach, i.e. after it performs

the filtering, the smoothing is conducted retrospectively within the fixed interval or lag

determined beforehand. Compared to the EnKS, the EnRTS is structured in a forward
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filtering and backward smoothing formulation, which is the same as the the linear RTS

Gaussian smoother introduced in chapter 1. For a time interval, it first performs the filtering

in the forward direction and the smoothing in the backward direction. The EnRTS is carried

out in the following manner.

1. The forward filtering pass

The forward pass is performed by the EnKF, which calculates the posterior estimate xk|k

at every time step k of the interval [0 T ] using the formulation described in Eq.(5.3). The

predicted ensemble {xf,i
k|k−1}i=1,...,N and the updated ensemble {xa,i

k|k}i=1,...,N in the forward

pass are stored for use in the backward smoothing pass.

2. The backward smoothing pass

The backward pass starts at time step T, at which time the initial smoothing ensemble

is assigned to be equal to the updated ensemble, {xs,i
T |T} = {x

a,i
T |T}. Then the smoothing is

performed retrospectively from k = T to k = 1, during which the ensemble at time step k is

updated as follows:

xs,i
k|T = xa,i

k|k +B(xs,i
k+1|T − xf,i

k+1|k) (5.15)

where {xa,i
k|k} are the updated ensemble of filtering at time step k and {xf,i

k+1|k} are the

predicted ensemble of the filtering at k + 1. {xs,i
k+1|T} is the smoothed ensemble of k + 1,

which is the smoothed ensemble of the last smoothing time step since the smoothing is

performed retrospectively. B is the smoothing gain which is given by:

B = Cxx[Pxx]
−1 (5.16)

Cxx =
1

N − 1
X

′

k|kX
′T
k+1|k (5.17)

Pxx =
1

N − 1
X

′

k+1|kX
′

k+1|k (5.18)

Again the prime matrix indicates the mean has been removed from each column. Eq.(5.17)

and Eq.(5.18) indicate that Cxx = cov({xa,i
k|k}, {x

f,i
k+1|k}) and Pxx = cov({xf,i

k+1|k}, {x
f,i
k+1|k}),

where cov represents the covariance.
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As is seen from Eq.(5.16) to Eq.(5.18), same as the EnKS, the EnRTS does not require

any forward model runs either because the ensemble information required either comes from

the filtering or the previous smoothing. However, the EnRTS consumes much more CPU

storage than the EnKS because it needs to store the predicted and updated ensemble of

every time step of the filtering in the whole interval [0 T ] before the backward smoothing

starts. For such reason, it is usually regarded as an off-line smoother. The EnKS can be

implemented online by limiting the length of the interval. As the smoothing does not need

to be waited before the filtering is completely done for the interval, the storage required for

smoothing based on previous observations can be released when the new observation arrives.

Just like the EnKF, both the EnKS and the EnRTS are subject to the assumptions that

the prior and posterior distributions are Gaussian. Violation of this assumption will lead to

less accurate estimation results.

5.3 The Gaussian mixture model ensemble Kalman smoother

(GMM-EnKS)

5.3.1 Problem statement

In this work, for a nonlinear system we attempt to estimate the marginal state PDF at time

step k given all observations available in the interval [0 T ], which is:

p(xk|y1:T )

The forward-backward RTS smoothing framework is adopted here for estimation. In the

RTS approach, using the Bayesian inference and Markov properties, the smoothed PDF can

be written as:

p(xk|y1:T ) = p(xk|y1:k)

∫

p(xk+1|xk)

p(xk+1|y1:k)
p(xk+1|y1:T )dxk+1 (5.19)
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where p(xk|y1:k) is the posterior PDF of the filtering and p(xk+1|y1:T ) is the last-step posterior

PDF of the smoothing.

Since we consider estimating the posterior PDF of the filtering p(xk|y1:k) to be non-

Gaussian, p(xk|y1:T ) is also non-Gaussian. We approximate this posterior PDF of the smooth-

ing with GMM, which is given by:

p(xk|y1:T ) =
Nc
∑

i=1

τ skN(xk;µ
s
k, P

s
k ) (5.20)

The goal of smoothing is to estimate the parameters τ sk , µ
s
k and P s

k by assimilating all the

available observations. Because of the non-Gaussianity, Eq.(5.19) is not tractable. Therefore,

a semi-parametric smoother is proposed in this chapter to extend the EnKS to estimate the

non-Gaussian state PDF, referred to as the GMM-EnKS in the following content. In this

proposed smoother, the GMM-EnKF introduced in chapter 2 plays the role in the forward

filtering step.

5.3.2 Revisit of the GMM-EnKF algorithm

The details of the GMM-EnKF algorithm have been introduced in chapter 2. For the purpose

of clarification of the notation, a brief summary of the GMM-EnKF is introduced here. The

GMM-EnKF also works based on an ensemble of particles {xi
k}, i = 1, . . . , N , where k is

the time step. The core idea of this algorithm to handle multimodality is to attach the

membership weights wk
ij to all the particles in the ensemble so that the ensemble can be

updated under each individual mode j(j = 1, . . . ,M) of the GMM using the standard

EnKF. Finally, the M updated ensembles xa,i
k,j are combined to one ensemble xa,i

k using the

membership weights wk
ij.

The GMM-EnKF consists of the prediction step and update step.

Prediction:

In the prediction step, the EM clustering is performed on the predicted ensemble {xf,i
k }i=1,···,N
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to structure the predicted distribution p(xf
k).

p(xf
k) =

M
∑

j=1

τ fj N(xf
k ;µ

f
j , P

f
j ) (5.21)

where M is the number of modes in the Gaussian mixture, which is pre-determined infor-

mation.

Along with the parameters of p(xf
k), the membership matrix W, which indicates the

probability of each particle belonging to each mode, is also calculated. W is a N × M

matrix and its each element is given as follows:

wij =
τ tjN(xi;µ

t
j, P

t
j )

∑M
m=1 τ

t
mN(xi;µt

m, P
t
m)

(5.22)

where τ tj , µ
t
j and P t

j are the estimated parameters at t step of the EM algorithm.

Update:

For each component j, the error covariance is computed with the integration of the

probability matrix W.

Cxy[j] =
N
∑

i=1

wk
ij(x

f,i
k − µj,k)(Hxf,i

k −Hµj,k)
T/nj,k (5.23)

Cyy[j] =
N
∑

i=1

wk
ij(Hxf,i

k −Hµj,k)(Hxf,i
k −Hµj,k)

T/nj,k (5.24)

where nj,k =
∑N

i=1 w
k
ij. The Kalman gain associated with mode j is calculated as follows:

K[j] = Cxy[j](Cyy[j] +R)−1 (5.25)

Assuming the Gaussian component j claims ownership of all the ensemble members, the

Kalman update is conducted under each component j as follows. The step gives N ×M
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particles in the end, which are given by:

xa,i
j,k = xf,i

k +K[j](dk −Hxf,i
k ) (5.26)

The posterior particles are generated by combining the N × M particles to form N × 1

particles by using the probability matrix W as follows.

xa,i
k =

M
∑

j=1

wk
ijx

a,i
j,k (5.27)

The updated weight, mean and covariance of each component are calculated as follows:

µa
j,k =

N
∑

i=1

wk
ijx

a,i
j,k/nj,k (5.28)

P a
j,k =

N
∑

i=1

wk
ij(x

a,i
j,k − µa

j,k)(x
a,i
j,k − µa

j,k)
T/nj,k (5.29)

τaj,k = p(µa
j,k, P

a
j,k, R|d) =

p(d|µa
j,k, P

a
j,k, R)nj

∑M
m=1 p(d|µ

a
j,k, P

a
j,k, R)nj

(5.30)

In the forward filtering, the following variables should be stored at every time step for

the backward smoothing:

(1) The updated ensemble under each mode {xa,i
j,k} and the final updated ensemble {xa,i

k }.

(2) The predicted mean µf
j,k and updated mean µa

j,k of each mode.

(3) Membership matrix W which contains the membership weights wk
ij of each particle.

5.3.3 The GMM-EnKS algorithm

After the GMM-EnKF completes the forward filtering step, the GMM-EnKS starts to con-

duct the backward smoothing. The idea of the proposed GMM-EnKS is to extend the

exiting RTS EnKS to the multimodal PDF by utilizing an ensemble with weighted particles.
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Specifically, same as the GMM-EnKF, each particle is assigned with a weight given by the

membership matrix W. The GMM-EnKS attempts to accomplish two primary goals:

(1) Calculate the smoothing ensemble {xs,i
k }i=1,...,N ;

(2) Calculate the updated membership matrix W s.

Similar to the GMM-EnKF, at every time step k of the smoothing, one mode of the mix-

ture claims ownership of the whole filtered ensemble xa,i
k , such that the ensemble can be pro-

cessed using the EnKS for this mode. Therefore, a temporary ensemble {xs,i
j,k}i=1,...,N,j=1,...,M

for each mode j similar to Eq.(5.27) has be to calculated. Under the RTS smoothing frame-

work, it is calculated as follows:

xs,i
j,k = xa,i

k +B[j](xs
k+1 − xf,i

k+1) (5.31)

where xs
k+1 is the smoothing estimate of last time and B[j] is the smoothing gain for mode

j.

The smoothing gain associated with mode j is given by:

B[j] = Cs
k,k+1[j][C

s
k+1,k+1[j]]

−1 (5.32)

where Cs
k,k+1 is the cross-covariance calculated using the ensembles at time step k and k+1

of the filtering; Cs
k+1,k+1 is the auto-covariance calculated using the ensemble at time step

k+1 of the filtering.

The calculation of the smoothing gain, specifically the cross covariance Cs
k,k+1, involves

the ensembles xa,i
k and xf,i

k+1 of two different time steps. Since the state PDf is multimodal,

even though mode j of p(xa
k) at time step k is assumed to own all particles, it is unclear which

mode of p(xf
k+1) has the ownership correspondingly at time step k+1. In other words, which

of the µf
j,k+1 to be used for the calculation of Ck,k+1 is unknown.

The mapping of the modes between the two time steps is straightforward because there

is only a single mode, as is the case in the EnKS. However, the issue arises if there are
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multiple modes in a distribution. If we were to process each mode of time step k individually

using the EnKS, it is crucial to determine the modes in p(xf
k+1) to which each mode in p(xa

k)

corresponds. In other words, we need to find the mapping relationship between the modes

of two GMMs.

µa
j,k → µf

q,k+1, j = 1, . . . ,M, q = 1, . . . ,M (5.33)

The filtering does not directly give this mapping information j → q because the predicted

distribution p(xf
k+1) is obtained with the EM clustering algorithm, owing to the nonlinearity

of the system. In order to obtain this mapping, we propose to first calculate a prediction of

the forward propagation for each mode in the mixture p(xa
k) and then use this prediction as

the reference to match each mode in the mixture p(xf
k+1). As the parameters of a Gaussian

distribution propagating through a nonlinear model cannot be determined directly, the Monte

Carlo method is used to calculate this reference mode. As are shown in Eq.(5.28) and

Eq.(5.29), each mode in p(xa
k) can be represented by its temporary ensemble xa,i

j,k associated

with weights wij. Using the weighted particles, the reference mode pj(x
a
k) can be calculated.

With the reference mode obtained, we select the mapping mode to be the closest mode in

pj(x
f
k+1) to the reference mode, i.e. whichever of µ̂q,k+1, q = 1, . . . ,M has the closest distance

to µf
j,k+1 is deemed to be the mapping mode for mode j of time step k. The following equation

concludes the mapping procedures described above:

pj(x
a
k)

pj(x
f
k+1)

′

⇒ pq(x
f
k+1) (5.34)

where pj(x
a
k) is the jth mode in p(xa

k) and pq(x
f
k+1) is its mapped mode. pj(x

f
k+1)

′
is the

intermediate reference mode.

In the following, the detailed procedure of the GMM-EnKS is described.

(1) The smoothing starts in the opposite direction of the filtering. When k=1, smoothing

assigns the initial estimate to be equal to the filtering estimate of time step, i.e. xs
1 = xa

T .

(2) At time step k, for each mode j, propagate its temporary ensemble xa,i
j,k|k through the
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model.

xf,i
j,k+1 = f(xa,i

j,k) + vk+1 (5.35)

(3) The mean of the reference Gaussian mode is the weighted summation of the ensemble

above.

µ
′

j,k+1 =
N
∑

i=1

wk
ijx

f,i
j,k+1/ni,k (5.36)

where ni,k is the normalization term, ni,k =
∑N

i=1 wij.

(4) For each mode pj(x
a
k), calculate the Euclidean distances of the mean of its reference

mode pj(x
f
k+1)

′
and the mean of each predicted mode pq(x

f
k+1).

djq =‖ µ
f
q,k+1 − µ

′

j,k+1 ‖ j = 1, . . . ,M, q = 1, . . . ,M (5.37)

(5)For each mode pj(x
a
k), find q such that djq is minimum.

c(j) = min
q

djq (5.38)

where c(.) is the matching relationship between j(j = 1, . . . ,M) and q(q = 1, . . . ,M).

From what is described above, µ
′

j,k+1 bridges µ
a
j,k and µf

j,k+1. By finding the closest mode

to this reference mode in the predicted Gaussian mixture p(xf
k+1), we can match the mode

j of time step k and mode q of time step k + 1. After the mapping of the modes between

the two GMMs has been established, the GMM-EnKS algorithm can be performed using the

EnKS.

(6) At time step k, assume the ensemble xa,i
k only belongs to one mode j. The cross-

covariance of the ensemble at time step k and k+1 and auto-covariance of the ensemble at

time step k+1 are calculated as follows:

Cs
k,k+1[j] =

N
∑

i=1

wk
ij(x

a,i
k − µa

j,k)(x
f,i
k+1 − µf

c(j),k+1)
T/nj,k (5.39)
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Cs
k+1,k+1[j] =

N
∑

i=1

wk+1
ij (xf,i

k+1 − µf
c(j),k+1)(x

f,i
k+1 − µf

c(j),k+1)
T/nj,k+1 (5.40)

where µf
c(j),k+1) is the matching mode of µa

j,k. nj,k =
∑N

i=1 w
k
ij. The wk

ij and wk+1
ij represent

the membership matrix of time step k and k+1 at the filtering step.

(7) The smoothing gain associated with mode j is calculated as follows:

B[j] = Cs
k,k+1[j][C

s
k+1,k+1[j]]

−1 (5.41)

(8) The update of each particle under each component in the smoothing step is given by:

xs,i
j,k = xa,i

k +B[j](xs
k+1 − xf,i

k+1) (5.42)

where xs
k+1 is the estimate of the state at last time step of smoothing.

(9) Combine theN×M particles in Eq.(5.42) intoN×1 particle to get the final smoothing

ensemble.

xs,i
k =

M
∑

j=1

wk
ijx

s,i
j,k (5.43)

(10) The weight, mean and covariance of each component at time step k are updated as

follows.

µs
j,k =

N
∑

i=1

wk
ijx

s,i
j,k/nj,k (5.44)

P s
j,k =

N
∑

i=1

wk
ij(x

s,i
j,k − µs

j,k)(x
s,i
j,k − µs

j,k)
T/nj,k (5.45)

τ sk,j =
p(d|µs

j,k, P
s
j,k, R)nj

∑M
m=1 p(d|µ

s
j,k, P

s
j,k, R)nj,k

(5.46)
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(11) The final smoothing estimate is given by:

xs
k =

M
∑

j=1

τ sk,jµ
s
j,k (5.47)

The GMM-EnKS algorithm works similar to the GMM-EnKF algorithm except that the

covariance Cs
k,k+1[j] and Cs

k+1,k+1[j] involve two Gaussian mixture distributions from two

time steps, which introduces the difficulty of finding out the matching relationship between

them. The pseudo-code of GMM-EnKS is provided as follows.

Algorithm 5.1: GMM-EnKS algorithm.

Inputs are the updated ensemble {xa,i
k } and mean of each mode µa

j,k, the

temporary updated ensemble {xa,i
j,k}, the predicted ensemble {xf,i

j,k+1}

and mean of each mode µf
j,k, the probability matrix W of every time step;

total filtering steps T
for k = 1 : (T − 1)
for i = 1 : N

Calculate xf,i
j,k+1 = f(xa,i

j,k) + vk+1

Calculate µ′
j,k+1 =

∑N
i=1 w

k
ijx

f,i
j,k+1/

∑N
i=1(w

k
ij)

for i = 1 : M
for j = 1 : M

Calculate dij =‖ µ
f
i,k+1 − µ

′

j,k+1 ‖

end for
end for
for i = 1 : M
c(j) = min

i
dij

end for
Calculate the cross-covariance Cs

k,k+1[j] and auto-covariance Cs
k+1,k+1[j] using

Eq.(5.39) and Eq.(5.40)
Calculate the smoothing gain using Eq.(5.41)

Calculate the temporary updated xs,i
j,k using Eq.(5.42)

Calculate the final updated µs
j,k using Eq.(5.43)

end for
for j = 1 : M
Calculate the weight, mean and covariance of each mode µs

j,k using
Eq.(5.44) to Eq.(5.46)

end for
end for
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5.4 Update of Probability Matrix W in the GMM-

EnKS

In the GMM-EnKS framework introduced in the previous section, the probability matrix W

at every time step is assumed to take the same values as the one calculated in the filtering

step. However, W should also be updated by assimilating the observations.

5.4.1 Revisit of importance sampling

Assume that a random variable x follows a distribution p(x). Importance sampling intends

to generate a set of samples {x(i)}i=1,2,···,N from p(x), with each sample associated with a

weight wi, such that p(x) can be approximated by the following discrete representation:

p(x) ≈
1

N

N
∑

i=1

δ(x− x(i))

=
N
∑

i=1

wiδ(x− x(i)) (5.48)

With this discrete approximation of p(x), the integrals described in Eq.(5.49) can be evalu-

ated.

f̂(x) =

∫

f(x)p(x)dx (5.49)

f̂(x) ≈

∫

f(x)
N
∑

i=1

wiδ(x− x(i))dx

=
N
∑

i=1

wif(x
(i)) (5.50)

where f̂(x) can indicate the value of any moment of x. In particular, the first two moments

of x can be obtained from:

x̄ =
N
∑

i=1

w(i)x(i) (5.51)
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Px =
N
∑

i=1

w(i)(x(i) − x̄)(x(i) − x̄)T (5.52)

In importance sampling, the samples x(i) are taken from an easier-to-sample distribution

q(x) referred to as the importance density. The corresponding weights w(i) are defined as:

w(i) =
p(x(i))

q(x(i))
(5.53)

It has to be pointed out that the method used to generate samples x(i) along with their

associated weights w(i) is not exclusive to the one introduced above. As long as this yet-to-

be-determined method can yield a batch of random weighted samples to approximate p(x)

with the discrete form of Eq(5.48), it is feasible to use.

5.4.2 Sequential update of importance weights in smoothing

Recall that in the prediction step of the GMM-EnKF, the parameters of the GMM are

calculated in the M step of the EM algorithm as follows:

τ k+1
j =

Nk

N
(5.54)

µk+1
j =

1

Nk

N
∑

i=1

wijxi (5.55)

P k+1
j =

1

Nk

N
∑

i=1

wij(xi − µk+1
j )(xi − µk+1

j )T (5.56)

where wij are the membership weights and Nk =
∑N

i=1 wij.

The moments are calculated the same way as are described in Eq.(5.51) and Eq.(5.52),

which indicates that the data samples {xi}i=1,...,N can be considered as a batch of weighted

samples, with the membership probability wij calculated in the E-step as their weights. How-

ever, this weighted samples {xi}i=1,...,N can only be considered as taken from one individual

component j instead of the whole Gaussian mixture distribution. That’s to say for each
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individual component j, xi is associated with a set of different weights wij, i = 1, · · · , N, j =

1, . . . ,M . Moreover, Eq.(5.44) and Eq.(5.45) also indicate that each mode in the posterior

distribution can be represented with weighted samples xs,i
j,k. The idea introduced here is to

consider that the ensemble at every time step, prior or posterior, can be considered as Monte

Carlo samples with different sets of weights for each component.

pj(xk) =
N
∑

i=1

wk
ijpj(x

(i)
k ) (5.57)

p(xk) =
M
∑

j=1

pj(xk) (5.58)

where p(xk) is the individual mode of the GMM p(xk), which is the state distribution at

time step k.

With the ensemble considered as weighted Monte Carlo particles, in the smoothing, the

weights can therefore be updated using the sequential importance sampling(SIS) framework.

In the forward filtering, the application of the SIS is not required as the EM algorithm is

performed at every time step to update the membership matrix W . We consider applying

SIS to update W only in the backward smoothing. This is similar to the RTS particle

smoother since its primary goal is to update the weights associated with each particle. A

brief introduction of the RTS particle smoother can be found in chapter 1. In the following

we introduce the mathematical details of how the update is done.

The smoothed density p(xk|y1:T ) can be factorized as:

p(xk|y1:T ) =

∫

p(xk|xk+1, y1:k)p(xk+1|y1:T )dxk+1

=
p(xk, xk+1|y1:k)

p(xk+1|y1:k)
p(xk+1|y1:T )dxk+1

= p(xk|y1:k)

∫

p(xk+1|xk)p(xk+1|y1:T )dxk+1
∫

p(xk+1|xk)p(xk|y1:k)dxk

dxk+1 (5.59)

From Eq.5.59, the smoothed density at time step k can be formulated in terms of the
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p(xk|y1:k) from the filtering step, the state transition density p(xk+1|xk) and the smoothed

density at time step (k+1), p(xk+1|y1:T ). The posterior density of filtering p(xk|y1:k) can be

approximated with a set of weighted particles as:

p(xk|y1:k) =
N
∑

i=1

wi
kδx(i)

k

(xk) (5.60)

Similarly we attempt to approximate the posterior density of smoothing p(xk+1|y1:T ) as:

p(xk|y1:T ) =
N
∑

i=1

wi
k|T δx(i)

k|T

(xk) (5.61)

Substituting Eq.(5.60) and Eq.(5.61) into Eq.(5.59), we have:

p(xk|y1:T ) =
N
∑

i=1

W i
k[

N
∑

j=1

W j
k+1|T

f(xj
k+1|x

i
k)

[
∑N

l=1 W
l
nf(x

j
k+1|x

l
k)]

]δxi
k
(xk) (5.62)

=
N
∑

i=1

W i
k|T δxi

k
(xk)

Eq.(5.62) gives the final formulation of the posterior density using SIS framework for smoothers.

From Eq.(5.62), we can easily obtain the smoothing weights at time step k as follows:

W i
k|T =

N
∑

i=1

W i
k[

N
∑

j=1

W j
k+1|T

f(xj
k+1|x

i
k)

[
∑N

l=1 W
l
nf(x

j
k+1|x

l
k)]

] (5.63)

With Eq.(5.63), W i
k|T can be sequentially updated in the smoothing step using the weights

from the filtering step at time same step W i
k as well as the smoothing weights of the last

time step (k + 1), W j
k+1|T .

In the GMM-EnKS algorithm, the weight matrix is first updated using Eq.(5.63) for each

component that claims ownership of all particles and then is applied in the calculation of
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the smoothing gain. The error covariance now can be updated as follows:

Cs
k,k+1[j] =

N
∑

i=1

wij
k|T (x

a,i
k − µa

j,k)(x
f,i
k+1 − µf

c(j),k+1)
T/nj,k (5.64)

Cs
k+1,k+1[j] =

N
∑

i=1

wij
k+1|T (x

f,i
k+1 − µf

c(j),k+1)(x
f,i
k+1 − µf

c(j),k+1)
T/nj,k+1 (5.65)

where {wij
k+1|T}i=1,...,N is the jth column in Wk|T .

The initial value of Wk|T is set to be equal to the filtered W at time step T.

5.5 Case Study: A nonlinear time series model

This nonlinear time series model described in Eq.(5.66) is used extensively for testing nu-

merical filtering techniques. In this work, the original square linear measurement operator

is replaced with a linear measurement operator in Eq.(5.67). The transition model is known

to show strong nonlinearity and evident multimodality, which is ideal for the demonstration

of the GMM-EnKS.

xk = xk−1 + 25
xk−1

1 + x2
k−1

+ 8cos(1.2k) + vk (5.66)

yk =
xk

20
+ wk (5.67)

where vk ∼ N(0, 2) and wk ∼ N(0, 0.5) . The initial distribution x0 ∼ N(0.1, 0.5). The

number of the components in the GMM is set to two.

The forward filtering is performed using the GMM-EnkF with 200 particles over 30 time

steps, and then the backward smoothing is carried out using the proposed GMM-EnKS. The

smoothing results using and without using the proposed importance weights update method

are shown for comparison.

In the first scenario, the estimation results of the state xk from GMM-EnKF filtering and
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GMM-EnKS smoothing are shown in figure 5.1 in comparison with the true state trajectory.

We can see from figure 5.1 the smoothing slightly improves the filtering results, but the two
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Figure 5.1: Comparison of the GMM-EnKF filtering, GMM-EnKS smoothing results and
true values

are close to each other.

In the second scenario, we perform the update on the membership weights at every time

step of the smoothing using the method proposed in the previous section. Figure 5.2 shows

the comparison of the smoothing results with and without using the proposed membership

weights W update method. Note that by assuming no update on W, it means that W in the

smoothing takes the correspondingW of the filtering step. Table 5.1 presents the summation

of square error(SSE) of the GMM-EnKF, the proposed GMM-EnKS without update on W

and the proposed GMM-EnKS with update on W. Table 5.1 indicates that the proposed

GMM-EnKS with update on membership matrix W performs the best.

Table 5.1: Comparison of the SSE of the GMM-EnKF, GMM-EnKS and GMM-EnKS with
update on W

Method GMM-EnKF
GMM-EnKS
without pro-
posed update

GMM-EnKS
with proposed
update

SSE 505.3 486.2 461.7
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Figure 5.2: Comparison of GMM-EnKS smoothing with and without updated membership
matrix respectively and true values

In the following, we use the standard EnKS with the same initial conditions and operating

parameters as are used in the GMM-EnKS to test if the proposed GMM-EnKS indeed is

better in dealing with non-Gaussian conditions. Figure 5.3 shows the estimation results

using the EnKF and the EnKS in comparison with the true trajectory. Table 5.2 lists the

SSE of the EnKF and the EnKS. Although the EnKS does improve significantly compared

with the EnKF, it obviously cannot handle the strongly non-Gaussian systems as well as the

GMM-EnKS. This might be true for the overall SSE of the algorithm, however not as true

for each individual time step, since it improves significantly for some time steps and worsens

a few at others, as is shown in figure 5.2.

Table 5.1 indicates that the GMM-EnKS improves 8.6% based on the GMM-EnKF.However,

comparing Table 5.1 with Table 5.2, the proposed GMM-EnKS improves 30.9% relatively

to the standard EnKS and the GMM-EnKF also improves significantly compared with the

EnKF, which indicates the obvious advantage of the proposed estimators, GMM-EnKS and

GMM-EnKF, when dealing with non-Gaussian systems.
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Figure 5.3: Comparison of the EnKF filtering, EnKS smoothing results and true values

Table 5.2: Comparison of the SSE of EnKF anf EnKS

Method EnKF EnKS
SSE 950.6 668.4

5.6 Case study: The algae cultivation process

In this case study, we apply the proposed GMM-EnKS on the algae model that has been

used in chapter 4. The details of the experiment to cultivate the algae have already been

introduced as well as the mathematical model for estimation application. The only difference

in this case study is that only the state estimation is carried out instead of the joint state

and parameter estimation as in the case study in chapter 4. The parameter maximum

growth rate is assumed to be known and equal to the experimental value, which is 6.48 ×

10−4. The four states to be estimated are concentrations of the biomass X, CO2, PO−3
4 and

NH+
4 . The initial state distribution is Gaussian, with mean [60, 50, 350, 25] and covariance

as diag(25, 25, 25, 25) and the process noise and measurement noise are also both Gaussian,

with zero mean and covariance of diag(1, 1, 1, 1) and diag(4, 4, 4, 4). The process goes on for

432 hours, with CO2 sampled every 5 minutes and the other three sampled every 4 hours.

The smoothing is performed every 4h when all four states are available to measure.
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Figure 5.4 shows the estimation results of the forward-filtering using the GMM-EnKF

and the backward smoothing using the GMM-EnKS(without the update of the membership

matrix) in comparison with the true vales of the four states respectively. Table 5.3 presents

the sum of square error(SSE) of each of the four states using the GMM-EnKF and GMM-

EnKS as well as the EnKF and the EnKS. Both the figure and the table show that the

GMM-EnKS manages to improve further more based on the GMM-EnKF results. More-

over, the proposed GMM based estimators improve in the performance compared to their

corresponding Gaussian counterparts when dealing with non-Gaussian state PDF.
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Figure 5.4: Comparison of the GMM-EnKF filtering, GMM-EnKS smoothing results and
true values of the four states of the algae process

One key step in our proposed GMM-EnKS is to use the prediction forecast modes to

determine the matching forecast mode for the updated mode of last step. In the following,
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Table 5.3: The SEE of the four states using GMM-EnKF, GMM-EnKS, EnKF and EnKS

GMM-EnKF GMM-EnKS EnKF EnKS
X(SSE) 2.9852× 104 2.8656× 104 4.4242× 104 4.1893× 104

CO2(SSE) 0.2158× 104 0.1876× 104 1.2738× 104 0.1897× 104

PO4(SSE) 0.8740× 104 0.8649× 104 1.2738× 104 0.8612× 104

NH4(SSE) 0.1894× 104 0.1817× 104 0.1973× 104 0.1862× 104

we show the estimation results with and without performing this step. For clarification,

the modes of both the forecast and updated step are given order numbers. As there are

two modes in this case study, they are numbered as I = [1, 2], where I is the order matrix.

By not performing the matching step, it means that the order matrix is always I = [1, 2].

Table 5.4 records the smoothing results with and without modifying the order matrix with

the proposed algorithm from Eq.(5.37) to Eq.(5.38). Table 5.4 presents the estimation error

of using GMM-EnKS with and without the the order matrix I over the first seven steps of

smoothing. Note that the estimation error is simply the absolute value of the difference of

smoothing result and the true value of each state at every time step. From the table, we can

see that the estimation errors for both methods are almost the same because the I matrix

is [1, 2], which is the default value of the other case. From the 3rd step, the I matrix is

modified, therefore the estimation error is different between the two methods. Although the

errors are close to each other, the GMM-EnKS with the I matrix slightly outperforms the

other estimator.

5.7 Conclusions

In this chapter, we propose a novel smoother for non-Gaussian and nonlinear systems. The

proposed GMM-EnKS extended the EnKS to multimodal PDF by utilizing the same frame-

work as the GMM-EnKF. However, the smoothing involves ensembles of two time steps,

which imposes difficulties for the calculation of the cross-covariance in the presence of mul-

timodal PDF. We solve this problem by matching the modes of the GMMs of two steps
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Table 5.4: The estimation error with and without order matrix I.

Time step

State estima-
tion error of
[X,CO2, PO4, NH4]
without order matrix
I

State estima-
tion error of
[X,CO2, PO4, NH4]
with order matrix I

I

1 [6.5, 11, 0.3, 0.5] [6.5, 11, 0.3, 0.5] [1, 2]
2 [5.7, 1, 0.7, 0.4] [5.5, 1, 0.3, 0.4] [1, 2]
3 [5.1, 1.1, 0.3, 0.3] [5.1, 1.1, 0.5, 0.3] [2, 1]
4 [22.3, 1.1, 4, 0.6] [22.1, 1.1, 5, 0.6] [2, 1]
5 [1.3, 1, 0.1, 0.7] [0.5, 1, 0.6, 0.7] [2, 1]
6 [4.9, 11, 0.6, 0.9] [4.9, 10, 0.5, 0.9] [2, 1]
7 [14.7, 10, 8.4, 0.8] [14.2, 10, 5.9, 0.8] [2, 1]

with each other and then calculate the covariance matrices. On top of that, we propose to

update the probability matrix calculated in the filtering by utilizing the SMC approach. The

probability is treated as the weight of each ensemble member, such that the SMC approach

can be applied to update it.
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Chapter 6

Conclusions and Future Work

6.1 Summary and discussion

The studies described in this dissertation attempt to solve three problems regarding data

assimilation techniques for nonlinear and non-Gaussian systems.

• First, a GMM-EnKF filtering approach is developed in attempt to solve the issues aris-

ing from the non-Gaussianity of the state PDF. The proposed method retains the phi-

losophy of the EnKF, yet extends the EnKF to scenarios where the prior and posterior

distributions are multimodal instead of unimodal by adding an expectation maximiza-

tion (EM) clustering step before the prediction step. The clustering not only reveals

the multimodal structure of the state space, it also provides an analytical expression

to describe the GMM used to approximate this multimodality. Most other previous

nonlinear filters, except the particle filter, cannot deal with strong non-Gaussianity

well. Even the particle filter cannot provide an analytical expression to describe the

state PDF. One can only extract the statistical moments for the posterior PDF from

its updated particles. The novelty of our version of GMM-EnKF lies in retaining the

multimodality of the state PDF throughout the filtering. In addition, another con-

tribution is that we compare it with the EnKF and the PF under multiple scenarios
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including multimodal and unimodal prior and uncertain parameters and prove that

the proposed filter shows more robustness than the PF under plant-model mismatch.

• Second, the GMM-EnKF is extended to the case of smoothing. The proposed smoother,

GMM-EnKS, combines our work in the GMM-EnKF with the EnKS framework. Fur-

ther, we point out the connection between the membership probability in the GMM-

EnKS and the weights in the particle smoother and further modify the GMM-EnKS by

integrating the weight update in the particle smoother. The GMM-EnKS has shown

better performance than the GMM-EnKF. GMM-EnKS with membership weight up-

date shows significant improvement at some time steps, however, it also worsens the

filtering results at some other time steps. Moreover, the GMM-EnKS shows significant

improvement over the EnKS for multimodal systems.

• Third, another major contribution of the thesis is in state estimation with linear con-

straints, which includes two aspects-unimodal case and multimodal case. For the

unimodal case, novel constrained EKF and EnKF are developed. The constraints are

incorporated by designing a convex optimization problem using the Kullback-Leibler

(KL) divergence as its objective function, as opposed to the quadratic programming in

the recursive nonlinear dynamic data reconciliation (RNDDR) approach. In our simu-

lation, the KL divergence based approach is able to achieve faster convergence rate to

the true value with inequality constraints applied. This is because it constrains both

the mean and the covariance, which pushes the particles further into the constrained

region, closer to the true value. The RNDDR approach, however, tends to retain the

particles on the boundary of the constraints in the first few steps of estimation, espe-

cially if the measurement noise is large. For the multimodal case, a more complicated

optimization problem is designed to solve the constrained state estimation using the

previously proposed GMM-EnKF. As there is no analytical expression of the KL diver-

gence between two Gaussian mixtures, we choose to the Goldberger’s approximation.
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Although Goldberger’s approximation is not the most accurate approximation of the

KLD of two GMs, we show that it can be formulated into a convex optimization prob-

lem which can be implemented online. The constrained GMM-EnKF is able to retain

the mixture structure of the distribution and provides an analytical expression for the

constrained mixture. In the existing literature, the constrained particle filter is the

most feasible solution for non-Gaussian systems, however, it cannot provide an analyt-

ical expression of the multimodality as in the constrained GMM-EnKF. Moreover, we

show that the performance of the constrained GMM-EnKF is less compromised than

the constrained PF when the measurements are unreliable, i.e. the correction of the

measurements is weak.

6.2 Future work

• First, in chapter 3 we argue that the reverse KL divergence is more appropriate to

serve as the objective function because the constrained mean would lie closer to the

unconstrained one than the forward KL divergence. A comparative work using the

forward KLD as the objective function needs to be done to further collaborate this

theory. One major problem regarding this work is using the forward KLD as the

objective function results in a non-convex optimization problem, which might be tricky

to solve, especially for the Gaussian mixture case.

• Second, a better approximation than the Goldberger’s approximation might be needed

for the KL divergence between two Gaussian mixtures. The Goldberger’s approxima-

tion is based on an assumption that the individual modes of the mixture cannot be

overlapping too much. The new approximation approach is expected to relax this limit.

• Third, in the GMM-EnKS, although the update of the membership weights improve

the overall performance of the smoothing, it worsens the filtering results in some steps.

In our work, the reason behind it is not clarified. In future work, an in-depth analysis
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is expected to perform to explain the reason.

• Fourth, in the case study of the algae cultivation process, we draw the conclusion that

the distribution of the maximum growth rate is multimodal, which means the growth

rate might take different values in different growth stages. Further experiments need

to be conducted to prove our hypothesis.
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Linköping University, Linköping Studies in Science and Technology. Doctoral disser-

tation, 579:11, 1999.

[9] K. K. Biswas and A. K. Mahalanabis. An approach to fixed-point smoothing problems.

IEEE Transactions on Aerospace and Electronic Systems, (5):676–682, 1972.

[10] K. Blekas, A. Likas, N. P. Galatsanos, and I. E. Lagaris. A spatially constrained mix-

ture model for image segmentation. IEEE transactions on Neural Networks, 16(2):494–

498, 2005.

[11] M. Bocquet and P. Sakov. An iterative ensemble Kalman smoother. Quarterly Journal

of the Royal Meteorological Society, 140(682):1521–1535, 2014.

[12] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,

New York, NY, USA, 2004.

[13] S. H. Cha. Comprehensive survey on distance/similarity measures between probability

density functions. City, 1(2):1, 2007.

[14] T. Chen, J. Morris, and E. Martin. Particle filters for state and parameter estimation

in batch processes. Journal of Process Control, 15(6):665–673, 2005.

[15] T. J. Crowley, E. S. Meadows, E. Kostoulas, and F. J. Doyle Iii. Control of parti-

cle size distribution described by a population balance model of semibatch emulsion

polymerization. Journal of Process Control, 10(5):419–432, 2000.

[16] N. De Freitas, C. Andrieu, P. Højen-Sørensen, M. Niranjan, and A. Gee. Sequential

Monte Carlo methods for neural networks. In Sequential Monte Carlo Methods in

Practice, pages 359–379. Springer, 2001.

173



[17] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-

plete data via the EM algorithm. Journal of the royal statistical society. Series B

(methodological), pages 1–38, 1977.

[18] A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing: Fifteen

years later. Handbook of Nonlinear Filtering, 12(656-704):3, 2009.

[19] L. Dovera and E. Della Rossa. Multimodal ensemble Kalman filtering using Gaussian

mixture models. Computational Geosciences, 15(2):307–323, 2011.

[20] F. Doyle, M. Soroush, and C. Cordeiro. Control of product quality in polymerization

processes. In AIChE Symposium Series, pages 290–306. New York; American Institute

of Chemical Engineers; 1998, 2002.

[21] E. B. Dynkin. Markov processes. In Markov Processes, pages 77–104. Springer, 1965.

[22] A. A. Emerick and A. C. Reynolds. Ensemble smoother with multiple data assimilation.

Computers & Geosciences, 55:3–15, 2013.

[23] G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model us-

ing Monte Carlo methods to forecast error statistics. Journal of Geophysical Research:

Oceans, 99(C5):10143–10162, 1994.

[24] G. Evensen. The ensemble Kalman filter: Theoretical formulation and practical im-

plementation. Ocean dynamics, 53(4):343–367, 2003.

[25] G. Evensen and P. J. Van Leeuwen. An ensemble Kalman smoother for nonlinear

dynamics. Monthly Weather Review, 128(6):1852–1867, 2000.

[26] J. Flores-Cerrillo and J. F. MacGregor. Control of particle size distributions in emulsion

semibatch polymerization using mid-course correction policies. Industrial & Engineer-

ing Chemistry Research, 41(7):1805–1814, 2002.

174



[27] D. Fraser and J. Potter. The optimum linear smoother as a combination of two opti-

mum linear filters. IEEE Transactions on Automatic Control, 14(4):387–390, 1969.

[28] J. Goldberger, S. Gordon, and H. Greenspan. An efficient image similarity measure

based on approximations of KL divergence between two gaussian mixtures. In null,

page 487. IEEE, 2003.

[29] A. Gopalakrishnan, N. S. Kaisare, and S. Narasimhan. Incorporating delayed and

infrequent measurements in extended Kalman filter based nonlinear state estimation.

Journal of Process Control, 21(1):119–129, 2011.

[30] N. J. Gordon, D. J. Salmond, and A. F. Smith. Novel approach to nonlinear/non-

Gaussian Bayesian state estimation. In IEE Proceedings F (Radar and Signal Process-

ing), volume 140, pages 107–113. IET, 1993.

[31] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming,

version 2.1. http://cvxr.com/cvx, Mar. 2014.

[32] H. Greenspan, A. Ruf, and J. Goldberger. Constrained Gaussian mixture model frame-

work for automatic segmentation of mr brain images. IEEE transactions on medical

imaging, 25(9):1233–1245, 2006.

[33] R. Grønnevik and G. Evensen. Application of ensemble-based techniques in fish stock

assessment. Sarsia, 86(6):517–526, 2001.

[34] P. Guan, M. Raginsky, and R. M. Willett. Online Markov decision processes with

Kullback-Leibler control cost. IEEE Transactions on Automatic Control, 59(6):1423–

1438, 2014.

[35] N. Gupta and R. Hauser. Kalman filtering with equality and inequality state con-

straints. arXiv preprint arXiv:0709.2791, 2007.

175



[36] E. L. Haseltine and J. B. Rawlings. Critical evaluation of extended Kalman filtering and

moving-horizon estimation. Industrial & Engineering Chemistry Research, 44(8):2451–

2460, 2005.

[37] E. L. Haseltine and J. B. Rawlings. Critical evaluation of extended Kalman filtering and

moving-horizon estimation. Industrial and engineering chemistry research, 44(8):2451–

2460, 2005.

[38] J. R. Hershey and P. A. Olsen. Approximating the Kullback-Leibler divergence between

Gaussian mixture models. In Acoustics, Speech and Signal Processing, 2007. ICASSP

2007. IEEE International Conference on, volume 4, pages IV–317. IEEE, 2007.

[39] J. D. Hol, T. B. Schon, and F. Gustafsson. On resampling algorithms for particle

filters. In Nonlinear Statistical Signal Processing Workshop, 2006 IEEE, pages 79–82.

IEEE, 2006.

[40] R. Hostettler. A two filter particle smoother for wiener state-space systems. In Control

Applications (CCA), 2015 IEEE Conference on, pages 412–417. IEEE, 2015.

[41] X. Hu and L. Xu. Investigation on several model selection criteria for determining

the number of clusters. Neural Information Processing-Letters and Reviews, 4(1):1–10,

2004.

[42] A. Jazwinski. Stochastic Processes and Filtering Theory. Academic, New York, 1972.

[43] A. H. Jazwinski. Stochastic processes and filtering theory. Courier Corporation, 2007.

[44] J. H. Jo and S. Bankoff. Digital monitorina and estimation of polymerization reactors.

AIChE Journal, 22(2):361–369, 1976.

[45] S. J. Julier. The scaled unscented transformation. In American Control Conference,

2002. Proceedings of the 2002, volume 6, pages 4555–4559. IEEE, 2002.

176



[46] T. Kailath. The divergence and Bhattacharyya distance measures in signal selection.

IEEE transactions on communication technology, 15(1):52–60, 1967.

[47] R. E. Kalman et al. A new approach to linear filtering and prediction problems. Journal

of basic Engineering, 82(1):35–45, 1960.

[48] S. Kasiri, A. Ulrich, and V. Prasad. Kinetic modeling and optimization of carbon

dioxide fixation using microalgae cultivated in oil-sands process water. Chemical En-

gineering Science, 137:697–711, 2015.

[49] S. Kasiri, A. Ulrich, and V. Prasad. Optimization of CO2 fixation by Chlorella kessleri

cultivated in a closed raceway photo-bioreactor. Bioresource technology, 194:144–155,

2015.

[50] C. Keppenne, M. Rienecker, N. Kurkowski, and D. Adamec. Ensemble Kalman filter

assimilation of temperature and altimeter data with bias correction and application to

seasonal prediction. Nonlinear Processes in Geophysics, 12(4):491–503, 2005.

[51] C. Kiparissides. Challenges in particulate polymerization reactor modeling and opti-

mization: A population balance perspective. Journal of Process Control, 16(3):205–

224, 2006.

[52] G. Kitagawa. Monte Carlo filter and smoother for non-Gaussian nonlinear state space

models. Journal of computational and graphical statistics, 5(1):1–25, 1996.

[53] M. Klaas, M. Briers, N. De Freitas, A. Doucet, S. Maskell, and D. Lang. Fast par-

ticle smoothing: If i had a million particles. In Proceedings of the 23rd International

conference on Machine learning, pages 481–488. ACM, 2006.

[54] S. Kol̊as, B. A. Foss, and T. Schei. Constrained nonlinear state estimation based on

the UKF approach. Computers & Chemical Engineering, 33(8):1386–1401, 2009.

177



[55] J. H. Kotecha and P. M. Djuric. Gaussian sum particle filtering. IEEE Transactions

on signal processing, 51(10):2602–2612, 2003.

[56] D. J. Kozub and J. F. MacGregor. State estimation for semi-batch polymerization

reactors. Chemical Engineering Science, 47(5):1047–1062, 1992.

[57] S. V. Kumar, R. H. Reichle, C. D. Peters-Lidard, R. D. Koster, X. Zhan, W. T. Crow,

J. B. Eylander, and P. R. Houser. A land surface data assimilation framework using the

land information system: Description and applications. Advances in Water Resources,

31(11):1419–1432, 2008.

[58] F.-X. Le Dimet and O. Talagrand. Variational algorithms for analysis and assimilation

of meteorological observations: theoretical aspects. Tellus A: Dynamic Meteorology

and Oceanography, 38(2):97–110, 1986.

[59] F. L. Lewis and F. Lewis. Optimal estimation: with an introduction to stochastic

control theory. Wiley New York et al., 1986.

[60] R. Li, V. Prasad, and B. Huang. Gaussian mixture model-based ensemble Kalman

filtering for state and parameter estimation for a PMMA process. Processes, 4(2):9,

2016.

[61] A. C. Lorenc. Analysis methods for numerical weather prediction. Quarterly Journal

of the Royal Meteorological Society, 112(474):1177–1194, 1986.

[62] E. N. Lorenz. Deterministic nonperiodic flow. Journal of the atmospheric sciences,

20(2):130–141, 1963.

[63] R. Mandela, V. Kuppuraj, R. Rengaswamy, and S. Narasimhan. Constrained un-

scented recursive estimator for nonlinear dynamic systems. Journal of Process Control,

22(4):718 – 728, 2012.

178



[64] P. S. Maybeck. Stochastic models, estimation, and control, volume 3. Academic press,

1982.

[65] K. McAuley and J. MacGregor. On-line inference of polymer properties in an industrial

polyethylene reactor. AIChE Journal, 37(6):825–835, 1991.

[66] K. McAuley and J. MacGregor. Nonlinear product property control in industrial gas-

phase polyethylene reactors. AIChE Journal, 39(5):855–866, 1993.

[67] X. Meng and D. B. Rubin. Maximum likelihood estimation via the ECM algorithm:

A general framework. Biometrika, 80(2):267–278, 1993.

[68] J. B. Moore. Discrete-time fixed-lag smoothing algorithms. Automatica, 9(2):163–173,

1973.

[69] M. Pan and E. F. Wood. Data assimilation for estimating the terrestrial water budget

using a constrained ensemble Kalman filter. Journal of Hydrometeorology, 7(3):534–

547, 2006.

[70] P. Piro, S. Anthoine, E. Debreuve, and M. Barlaud. Image retrieval via Kullback-

Leibler divergence of patches of multiscale coefficients in the knn framework. In

Content-Based Multimedia Indexing, 2008. CBMI 2008. International Workshop on,

pages 230–235. IEEE, 2008.

[71] J. Prakash, S. C. Patwardhan, and S. L. Shah. Constrained nonlinear state estima-

tion using ensemble Kalman filters. Industrial & Engineering Chemistry Research,

49(5):2242–2253, 2010.

[72] J. Prakash, S. C. Patwardhan, and S. L. Shah. On the choice of importance distribu-

tions for unconstrained and constrained state estimation using particle filter. Journal

of Process Control, 21(1):3–16, 2011.

179



[73] V. Prasad, M. Schley, L. P. Russo, and B. W. Bequette. Product property and produc-

tion rate control of styrene polymerization. Journal of Process Control, 12(3):353–372,

2002.

[74] M. L. Psiaki. Backward-smoothing extended Kalman filter. Journal of guidance control

and dynamics, 28(5):885–894, 2005.

[75] P. N. Raanes. On the ensemble Rauch-Tung-Striebel smoother and its equivalence to

the ensemble Kalman smoother. Quarterly Journal of the Royal Meteorological Society,

142(696):1259–1264, 2016.

[76] C. V. Rao, J. B. Rawlings, and J. H. Lee. Constrained linear state estimation: a

moving horizon approach. Automatica, 37(10):1619 – 1628, 2001.

[77] C. V. Rao, J. B. Rawlings, and D. Q. Mayne. Constrained state estimation for nonlinear

discrete-time systems: stability and moving horizon approximations. IEEE Transac-

tions on Automatic Control, 48(2):246–258, 2003.

[78] H. E. Rauch, F. Tung, C. T. Striebel, et al. Maximum likelihood estimates of linear

dynamic systems. AIAA journal, 3(8):1445–1450, 1965.

[79] R. H. Reichle, D. B. McLaughlin, and D. Entekhabi. Hydrologic data assimilation with

the ensemble Kalman filter. Monthly Weather Review, 130(1):103–114, 2002.

[80] D. G. Robertson, J. H. Lee, and J. B. Rawlings. A moving horizon-based approach for

least-squares estimation. AIChE Journal, 42(8):2209–2224, 1996.

[81] S. Sajjadi and B. Brooks. Unseeded semibatch emulsion polymerization of butyl acry-

late: bimodal particle size distribution. Journal of Polymer Science Part A: Polymer

Chemistry, 38(3):528–545, 2000.
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