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Abstract

Parameter estimation of a dynamic system is an important task in process systems

engineering. The utilization of an augmented system offers the approach of estimat-

ing process states and parameters simultaneously. In practice, the parameters often

satisfy certain constraints which should be incorporated to improve the estimation

performance. This thesis focuses on the inequality constrained parameter estimation

problem. We introduce a method of constructing inequality constraints on parame-

ters from routine steady-state operation data. A constraint implementation method

with the unscented Kalman filter (UKF) is proposed that yields faster recovery of

parameter estimates than the conventional projection method. The appropriate use

of projection method with the ensemble Kalman filter (EnKF) is introduced. Also,

a constrained estimation method with the EnKF is proposed which results in im-

proved performance compared to the projection method. For the moving horizon

estimation (MHE), we propose an alternative approach for constrained parameter

estimation, which provides better performance than the directly constrained MHE.

The efficacies of the proposed approaches in this thesis are evaluated using several

simulated process examples.
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Chapter 1

Introduction

1.1 Motivation and objective

In today’s process industry, there is a high demand for improvement of operating
performance. A significant amount of money has been invested in modern processing
equipment and control systems, with the expectation of improved productivity and
profitability. Most advanced process control strategies rely on the assumption that
the states of the system are explicitly available. However, some real-time process
states are not always available due to various reasons, such as unavailability of some
measurements, device failure, and considerable level of noise. Even when these vari-
ables are available through lab analysis, such measurements often have significant
time delays and/or irregular sampling intervals. In such cases, a state estimator, or
a soft sensor, is required to obtain process states from available measurements. This
will not only provide improved control performance, but will also assist in process
monitoring and diagnosis.

A simple PID controller, which is used to control the water level in the tank,
is shown in Fig.1.1. The level control performance depends a lot on the feedback
signal, in which there will be some level of noise introduced by the measurement
device. State estimation can be applied on this system to reduce the noise in the level
measurements. As a result, one can expect improvement of control performance.
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Figure 1.1: A simple level control system

In practical estimation problems, often the model structure is known but some of
its parameters are unknown. Hence, we need to estimate the states and parameters
at the same time with available measurements. The use of measurements to estimate
parameters in a dynamic model is also an important component in the development
of a predictive model for a physical process. A typical control system is shown in
Fig.1.2. There is noise both in the measurement sensor and in the process model.
Meanwhile, some of the parameters in the process model are unknown. The objective
is to use input data u and output data y to estimate the states and parameters
simultaneously. This is also called the dual estimation problem.

Figure 1.2: A typical control system

Most physical dynamic systems are continuous processes, while discrete measure-
ments are taken using a measurement device with sampling time Ts. Conventionally,
unmeasured disturbances have been modeled as Gaussian white noises, which are
additive in both the state dynamics and measurements. Therefore, the system and
measurement models are given in the following continuous-discrete stochastic form:
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ẋ = f(x, u, θ) + w (1.1a)

yk = h(xk) + vk (1.1b)

where x, xk ∈ R
n denote the vector of states, u ∈ R

q denotes the vector of ma-
nipulated variables and yk ∈ R

m denotes the vector of available measurements.
f : Rn → R

n is the deterministic state transition function with parameter θ ∈ R
p

and h : Rn → R
m is the measurement transition function. f and h are not neces-

sarily linear functions. w ∈ R
n and vk ∈ R

m are process and measurement noise
respectively, with zero-mean independent Gaussian distributions

w ∼ N (0, Q) (1.2)

vk ∼ N (0, R) (1.3)

where Q and R are covariance matrices.
In the common approach for dual estimation problem, the state vector x and

parameter vector θ are combined into an augmented state xa ∈ R
n+p, and standard

state estimation is carried out on the augmented system.

xa =

[
x
θ

]
(1.4)

Sequential parameter estimation requires a dynamic model to describe the un-
certainty of the parameter θ. The standard practice is to use the dynamic parameter
equation

θ̇ = 0 + wp (1.5)

which is a random walk model for the parameter θ. wp is chosen as a zero mean
Gaussian noise with covariance matrix Qp. The random walk model (Eq. 1.5) is the
driving force for parameter estimation in recursive estimation algorithms. Therefore,
the augmented model is

ẋ = f(x, u, θ) + w (1.6a)

θ̇ = 0 + wp (1.6b)

yk = h(xk) + vk (1.6c)

Rewriting the model with augmented state xa gives

ẋa = f(xa, u) + wa (1.7a)

yk = h(xak) + vk (1.7b)

where we redefine f : Rn+p → R
n+p as the deterministic nonlinear state transition

function and h : Rn+p → R
m as the measurement transition function. wa =

[
w
wp

]
denotes the augmented state noise, which has the following distribution:

wa ∼ N (0, Qa) Qa =

[
Q 0
0 Qp

]
(1.8)
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This model is a nonlinear model for augmented state xa, because of the nonlinear
combination between states and parameters. Therefore, the parameter estimation
problem for either a linear process or a nonlinear process becomes a nonlinear esti-
mation problem when augmenting the states.

Besides the available input and output data, we might have additional informa-
tion about a system. For instance, some information comes from physical limitations
of the process, e.g., estimated concentrations should remain positive. Also, we could
have other additional information about the process of interest, such as steady-state
operating data. Such additional information could be transformed into equality or
inequality constraints on parameters.

An equality constraint on parameters can be written as

c(θ1, θ2, . . . , θp) = d (1.9)

where p indicates the number of parameters, i.e., θ ∈ R
p. c(·) is a function de-

scribing the parameter relationship. In the following content, c(θ1, θ2, . . . , θp) is
written as c(θ) for notation simplicity. Normally, we cannot obtain accurate equal-
ity constraints for the parameters. Zhu and Huang [1] suggested that the equality
constraints should be released in the filtering algorithm after a certain number of
iterations, in order to avoid the problem introduced by inaccuracy of constraints.
However, when to release the constraints remains difficult to determine.

We use inequality constraints in this work. Inequality constraints on parameters
can be written as

dL ≤ c(θ) ≤ dU (1.10)

where dL and dU indicate lower and upper bounds of the inequality constraints.
Inequality constraints are the most common and widely available relationships in
practical applications. Once the inequality parameter constraints are specified, it
is natural to incorporate them into filtering algorithms in order to achieve better
estimation performance.

The main objective of this thesis is to develop efficient methods for constrained
estimation with inequality parameter constraints. The methods are developed un-
der the assumption that we have a deterministic model with Gaussian noise. The
preliminary objective is to use different existing algorithms to estimate states and
parameters simultaneously. Then, we need to develop an approach to obtain in-
equality parameter constraints from routine operation data. The ultimate goal of
this thesis is to develop constrained estimation methods to obtain improved estima-
tion performance. The efficacies of the proposed approaches will be demonstrated
using various simulated process examples.

1.2 A brief literature review

The literature on estimation theory and its applications have received consider-
able attention over the last half century. It began from two major techniques, the
Luenberger observer [2] and the celebrated Kalman filter [3]. For a deterministic
model with no random noise, the Luenberger observer and its extensions can be
used for time-invariant systems with known parameters. The equation for the Lu-
enberger observer contains a term that corrects the current state estimate using a
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proportional gain to the prediction error. This correction term ensures the stability
and convergence of the observer even when the system being observed is unstable.
The Kalman filter provides the optimal estimation for a linear system corrupted
with Gaussian noise. In the Kalman filter, there is also a correction gain called the
Kalman gain to ensure stability and convergence. The theory behind the Kalman fil-
ter is well established and its applications have grown significantly in both academia
and industry [4].

The most widely used approach in nonlinear state estimation is the extended
Kalman filter (EKF). The EKF employs a first-order Taylor approximation to lin-
earize the nonlinear model around the current state estimate. The EKF provides
a suboptimal estimate of a nonlinear model with Gaussian noise. However, for a
highly nonlinear system, a significant amount of linearization error will arise due to
the covariance propagation and update which are carried out through the linearized
model [5]. Therefore, it is necessary to investigate new nonlinear state estimation
algorithms.

The unscented Kalman filter (UKF), which is developed by Julier et al. [6], is a
better alternative compared to the EKF in handling nonlinear systems. The UKF
is based on a deterministic sampling technique called the unscented transformation
(UT), where a set of points representing the state distribution are chosen and prop-
agated through the nonlinear model. The mean and covariance of the estimate are
recovered from these points. The employment of the UT in the UKF results in more
accurate capture of the mean and covariance in nonlinear propagation. The posteri-
or mean and covariance estimated from the sample points are accurate to the second
order for any nonlinearity [7]. If the priori random variable is Gaussian, the posterior
mean and covariance are accurate to the third order for any nonlinearity [8].

The ensemble Kalman filter (EnKF), originally proposed by Evenson [9], is an-
other approach for nonlinear estimation. Instead of the deterministic sampling s-
trategy used in the UKF, the EnKF employs the Monte Carlo sampling method to
generate a large number of random samples for carrying nonlinear prediction and
update. Since the EnKF approximates the covariance terms by averaging over a
large number of samples, it is expected to give better results as the ensemble size
increases. This has been demonstrated in Gillijns et al. [10], where simulation re-
sults show a steady decrease in estimation errors as the ensemble size grows. The
Kalman filter, the extended Kalman filter, the unscented Kalman filter, and the
ensemble Kalman filter mentioned above are among the well established techniques
that can be used for dynamic state estimation. All these filters have a Kalman filter
structure, which follows a prediction-update procedure.

Besides the Kalman filter and its variants, there is another approach for state
estimation called moving horizon estimation (MHE). MHE is based on the Bayesian
maximum a posteriori approach and is an optimization based method for state esti-
mation. The concept of MHE was originally proposed to overcome the limitations of
the Kalman filter in handling of constraint and nonlinearity. In the MHE, the esti-
mates are obtained by minimizing an objective function in which there are penalties
for measurement error, state error and the arrival cost. The arrival cost is employed
in the MHE to summarize the information before the moving window in order to
reduce the computational load. Therefore, the MHE can explicitly use a set of
measurements measured over a horizon with a certain length. This measurement
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horizon or measurement window is moving forward in time. Specifically, Hasel-
tine and Rawlings [11] critically compared the performance of MHE to an extended
Kalman filter (EKF) and concluded that MHE consistently provides improved s-
tate estimation and greater robustness to both poor guesses of the initial state and
tuning parameters.

As mentioned earlier, we often have certain constraints (obtained from physical
knowledge or analysis of operating data) that the estimated states and parameters
need to satisfy. The only approach that naturally incorporates such constraints is
the MHE. However, MHE has major drawbacks related to on-line implementation
since it relies on solving a nonlinear programming problem at each sampling time.
Also, the approximation of the arrival cost in constraint handling in MHE remains
a difficult problem. A common approach to implement constraints in Kalman filters
is known as clipping [11], where the estimate is projected onto the boundaries of
the constrained space if it lies outside. Some strict equality constraint can lead
to reduction in degrees of freedom (model reduction) in estimation problems [12].
Vachhani et al. [13] developed the recursive nonlinear dynamic data reconciliation
(RNDDR) method, which combines the computational advantages of recursive es-
timation with constraint handling. Recently, López-Negrete et al. [14] have shown
that constrained recursive particle filters can be used for estimating the arrival cost
in MHE.

1.3 Thesis outline

The rest of the thesis is organized as follows.
In Chapter 2, the extended Kalman filter (EKF) and the unscented Kalman

filter (UKF) are presented and compared. The comparison shows that the UKF is
superior to the EKF in parameter estimation. An approach to constructing inequal-
ity parameter constraints from steady-state routine operating data is introduced. A
constrained parameter estimation scheme with the UKF and a constraint implemen-
tation method with inequality parameter constraints are introduced. The efficacy
of the proposed method is demonstrated on a CSTR process as well as a PMMA
polymerization reactor.

In Chapter 3, the ensemble Kalman filter (EnKF), which is based on the Monte
Carlo sampling method, is presented. Its performance is assessed with different
ensemble sizes, and is also compared to the UKF. The appropriate use of the pro-
jection method in constraining the particles in the EnKF is introduced. A new
constrained parameter estimation method with the EnKF, which results in better
performance than the projection method, is proposed. A CSTR process is employed
in this chapter to demonstrate the performance of the proposed method.

In Chapter 4, we consider the moving horizon estimation (MHE) for constrained
estimation. The unconstrained MHE algorithm is presented along with common
approaches of arrival cost approximation. The problem with the MHE when incor-
porating constraints directly is addressed in this chapter. An alternative method for
constrained parameter estimation with the MHE that provides better performance
than directly constrained MHE is proposed. The efficacy of the proposed method is
demonstrated on a CSTR process.

Chapter 5 gives conclusions and recommendations for future work.

6



Chapter 2

Inequality Constrained Parameter
Estimation with Unscented
Kalman Filter

Parameter estimation of a dynamic system is an important task in process systems
engineering. The utilization of an augmented system offers the approach of estimat-
ing process states and parameters simultaneously. In practice, the true parameters
often satisfy certain constraints which need to be incorporated into the estimation
procedure. In this chapter, we consider the inequality constrained parameter esti-
mation problem with the unscented Kalman filter (UKF). We first show that the
UKF is superior to the extended Kalman filter (EKF) for parameter estimation
problem. We then introduce a method of constructing inequality constraints for
parameters from routine operating data; this offers a way to use steady-state data
and its associated model to obtain constraints on parameters. We also propose a
method of constraint implementation with the UKF that yields faster convergence
than the conventional methods of projection or clipping. The application of the pro-
posed constrained estimation method provides fast recovery of state and parameter
estimates from inaccurate initial guesses; this is demonstrated on two continuous
chemical processes with discrete measurements.

2.1 Introduction

Process control requires an accurate model characterizing the process in order to
achieve good process monitoring, online optimization and control performance. A
mathematical model usually includes a number of algebraic and differential equa-
tions which represent the process dynamics. In fact, most process models and mea-
surements are corrupted by noise and errors, which results in inaccuracy of the
sampled data. Estimation of unknown parameters from a set of available measure-
ments is often a major goal in setting up a model. Moreover, the estimation of states
is also essential for process control. Hence, the dual estimation problem naturally
arises. Generally, an augmented system, where unknown parameters are augmented
as states, is employed to deal with this problem. It offers an approach to estimate
unknown parameters and states simultaneously. With the parameters as augmented
states, the dual estimation problem becomes a nonlinear filtering problem. Various
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estimation algorithms exist to sequentially estimate a nonlinear system with online
measurements.

Sequential filtering algorithms such as the extended Kalman filter (EKF), the
unscented Kalman filter (UKF) [15] and moving horizon estimation (MHE) [16] are
powerful tools for nonlinear state estimation. The most widely used algorithm for
nonlinear systems is the EKF, which employs the Jacobians (first order approxima-
tions) to locally linearize the model so that the conventional Kalman filter (KF)
algorithm can be applied. In the EKF, the nonlinear model can be used to com-
pute the predicted state as well as the predicted output. However, the covariance
cannot be updated directly through a nonlinear model; instead, a linearized model
has to be used. Difficulties arise from its use of linearization [5]. The estimation
performance with the EKF may not be desirable for highly nonlinear models due to
its linearization error. Also, the calculation of Jacobian matrices can be difficult for
high-dimensional systems. To overcome the difficulties encountered with EKF, Juli-
er et al. [6] proposed the UKF. It uses the unscented transformation (UT), which
employs a set of weighted points (called sigma points) to represent the estimate
mean and covariance, to propagate the system nonlinearity. It has computational
efficiency owing to its Kalman filtering structure, as well as a better approxima-
tion than the EKF for nonlinear systems. Furthermore, it eliminates the need for
Jacobian calculation. The superior performance of the UKF when compared with
the EFK is demonstrated by Wan and van der Merwe [17] and Romanenko and
Castro [18]. MHE, which is an optimization based algorithm, can provide good es-
timation of nonlinear systems by solving a nonlinear programming (NLP) problem
over a finite horizon. However, the computational efficiency remains an issue for a
long horizon or a large number of decision variables [14].

For practical processes of interest, model parameters typically satisfy some con-
straints, either linear or nonlinear, equality or inequality constraints. For example,
the surface area of a reactor should be positive (and fall within a reasonable range).
In most cases, we can obtain inequality constraints that give bounds of the param-
eter to be estimated [1]. In this chapter, we introduce an approach to constructing
inequality parameter constraints from noisy steady-state measurement data. Since
we have the inequality constraints on parameters, a proper implementation method
should be applied to incorporate the constraints into the filtering algorithm. Inequal-
ity constraints are naturally handled by moving horizon estimation (MHE) due to
its optimization based algorithm. However, MHE requires a heavy on-line compu-
tational load and the exact arrival cost is hard to determine for the constrained
estimation. Vachhani et al. [19] proposed the recursive nonlinear dynamic data rec-
onciliation (RNDDR) method, in which the constraints are taken into consideration
and the nonlinear state and covariance propagation are based on the EKF algorithm.
Vachhani et al. [20] later proposed the unscented recursive nonlinear dynamic data
reconciliation (URNDDR) method through a combination of the UKF and RND-
DR, which gives more accurate and efficient estimation performance for nonlinear
constrained estimation. Recently, Prakash et al. [21] proposed constrained ensemble
Kalman filter (C-EnKF) [21] and constrained particle filter (C-PF) [22] with the use
of constrained Monte Carlo samples and probability density function (PDF) trunca-
tion for nonlinear estimation. In this paper, we propose a new constraint handling
method with the UKF for inequality constrained parameter estimation.
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The rest of this chapter is organized as follows. In Section 2.2, we review and
compare the EKF and the UKF filtering algorithms and show that the UKF is supe-
rior to the EKF in nonlinear estimation. In Section 2.3, an approach to constructing
inequality parameter constraints from routine operating data is introduced. In Sec-
tion 2.4, we propose a constrained parameter estimation scheme with inequality
constraints, as well as a constraint implementation method which provides bet-
ter performance than the conventional projection method. Finally, the proposed
method is demonstrated on a CSTR process and a PMMA polymerization reactor
system to show the improvement both on the estimation performance and on the
control performance.

2.2 Extended Kalman filter and unscented Kalman

filter

The Kalman filter is limited to linear systems; however, it is the basis for many
estimators for nonlinear systems, including the extended Kalman filter (EKF), the
unscented Kalman filter (UKF) and the ensemble Kalman filter (EnKF). In this
section, we investigate the performance of the EKF and the UKF for parameter
estimation.

2.2.1 Extended Kalman filter

The extended Kalman filter is the most common approach for nonlinear state es-
timation. It is a linearized version of the Kalman filter and provides suboptimal
estimation. The following continuous-discrete nonlinear model is considered,

ẋ = f(x, u) + w (2.1a)

yk = h(xk) + vk (2.1b)

In the EKF, the nonlinearities of the systems are approximated by first-order
Taylor expansions. Consider the linearization of the nonlinear state transition func-
tion f in Eq. 2.1a around the nominal state xn:

f(x, u) ≈ f(xn, u) +
∂f

∂x

∣∣∣∣
xn

(x− xn) (2.2)

Also, the measurement transition function h in Eq. 2.1b can be linearized as

h(x) ≈ h(xn) +
∂h

∂x

∣∣∣∣
xn

(x− xn) (2.3)

In the EKF algorithm, the most recent estimate is used as the nominal state.
For the stochastic nonlinear model described in Eq. 2.1, the EKF algorithm, which
can be divided into two groups, prediction and update, is summarized below [4].

• Prediction
˙̂x(t)− = f(x̂(t), u(t)) (2.4)

Ṗ (t)− = F (x̂(t))P (t) + P (t)F T (x̂(t)) +Q (2.5)
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• Update
Kk = P−

k H(x̂−
k )

T (H(x̂−
k )P

−
k HT (x̂−

k ) +R)−1 (2.6)

x̂k = x̂−
k +Kk(yk − h(x̂−

k )) (2.7)

Pk = (I −KkH(x̂−
k ))P

−
k (2.8)

F (x̂(t)) ≡ ∂f

∂x

∣∣∣∣
x̂(t)

, H(x̂−
k ) ≡

∂h

∂x

∣∣∣∣
x̂−
k

where x̂− denotes the prior state estimate, and P and P− denote the posterior
estimate covariance and prior estimate covariance respectively. In the prediction
step, the propagation of the state estimate and covariance to the next time step via
the process model in Eq. 2.1a gives the prior state estimate and covariance. In the
update step, a posterior state estimate and covariance is obtained using a correction
based on the current available observation yk. K is called the Kalman gain that
updates the prior estimate to the posterior estimate using the error innovation term
(yk −Hx̂−

k ) at each time instant k. The EKF makes use of the noisy available data
y on a linearized system with Gaussian noise to continuously update the current
state estimate of the system.

It is important to state that the extended Kalman filter is in general not an
optimal filter. The EKF typically works well only when the first-order Taylor lin-
earization adequately approximates the nonlinear function [4]. For a highly nonlin-
ear state function f and transition function h, the estimation performance may not
be adequate due to the linearization error. Another concern for application of the
EKF is in the initialization; when the initial guess may be far from the true value,
the filter may diverge quickly [11].

2.2.2 Unscented Kalman filter

In nonlinear state estimation with the EKF, the covariance is propagated through
the linearization of the nonlinear model. Therefore, the estimated covariance matrix
tends to represent the true covariance poorly, and estimation becomes inconsistent
in the statistical sense. The idea of the unscented Kalman filter (UKF) proposed by
Julier et al. [15, 6] comes from trying to capture the state estimate and covariance
more accurately in the nonlinear sequential estimation problem.

The main technique involved in the UKF is known as the unscented transforma-
tion (UT), which is a method for the nonlinear transformation of the mean and the
covariance in filters and estimators [17]. In the UT, a deterministic set of carefully
chosen points, called sigma points X , are used to capture the true mean and co-
variance of a state estimate x̂. When sigma points are propagated through the true
nonlinear functions (f and h), the posterior mean and covariance are adequately
captured. The unscented transformation is illustrated in Fig.2.1.
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Figure 2.1: Schematic of the unscented transformation (UT) for mean and covariance
propagation, and comparison with the linearized approach of the EKF

The top figure in Fig.2.1 shows the actual mean and covariance propagation, the
middle figure shows the EKF approach, and the bottom figure shows the unscented
transformation (UT) approach. It is clear that the UT is superior to the EKF in
nonlinear approximation [17].

The unscented Kalman filter is a recursive nonlinear estimation algorithm based
on the UT. A summary of the UKF algorithm is given below [4].

• Selection of Sigma Points

x̂a
k =

⎡⎣x̂k

0
0

⎤⎦ , P a
k =

⎡⎣Pk 0 0
0 Q 0
0 0 R

⎤⎦
X =

[
x̂a
k x̂a

k + γ
√

P a
k x̂a

k − γ
√

P a
k

]
(2.9)

• Prediction
X− = f(X , u) (2.10)

Y = h(X ) (2.11)

x̂−
k =

2L∑
i=0

Wm
i X− (2.12)

ŷk =

2L∑
i=0

Wm
i Y (2.13)

P−
k =

2L∑
i=0

W c
i

[X− − x̂−
k

] [X− − x̂−
k

]T
(2.14)
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• Update

P yy =
2L∑
i=0

W c
i

[Y − ŷk
] [Y − ŷk

]T
(2.15)

P xy =

2L∑
i=0

W c
i

[X− − x̂−
k

] [Y − ŷk
]T

(2.16)

Kk = P xyP yy−1 (2.17)

x̂k = x̂−
k +Kk(yk − ŷk) (2.18)

Pk = P−
k −KkP

yyKT
k (2.19)

where L is the dimension of state xa
k, λ = α2(L + κ) − L and γ =

√
(L+ λ). Wm

and W c are weights for calculating the mean and covariance of the 2L + 1 vectors
in X− and Y , which are generated by Eq. 2.10 and Eq. 2.11 respectively. Weights
are given by

Wm
0 =

λ

L+ λ
(2.20)

W c
0 =

λ

L+ λ
+ (1− α2 + β) (2.21)

Wm
i = W c

i =
1

2(L+ λ)
i = 1, · · · , 2L (2.22)

where α, β, κ are parameters involved in the UKF (see [23] for details).
In the unscented Kalman filter, the nonlinearities are approximated by nonlinear

transformation of sigma points, which returns much better estimation performance
than the first-order Taylor expansion (Jacobian) of the nonlinear model in the EKF.
In addition, the UKF removes the requirement of calculating the Jacobian matrices
F and H and is more computationally efficient.

Comparison between the EKF and the UKF for parameter estimation

It is stated above that the UKF is superior to the EKF and is easier to use for
nonlinear estimation problems. In this section, a fast electrical circuit system is
employed to assess the parameter estimation performance with the EKF and the
UKF.

The continuous-discrete circuit system is shown in Eq. 2.23 [1]. u is the system
input, and θ1 and θ2 are system parameters with true values of 1.2 and 0.0015,
respectively. Both state and measurement equations involve Gaussian noise, and
available measurements y are recorded discretely with sampling time Ts = 0.0002s.

ẋ =
−x

θ1 × θ2
+

u

θ2
+ w (2.23a)

yk = xk + vk (2.23b)
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θ1 and θ2 are of interest and assumed unknown in the above system. In order
to estimate the state x and the parameters θ1 and θ2 simultaneously, we have the
augmented nonlinear model formulated as

ẋ1 =
−x1

0.0015× x2
+

u

0.0015
+ w1 (2.24a)

ẋ2 = 0 + w2 (2.24b)

ẋ3 = 0 + w3 (2.24c)

yk = x1,k + vk (2.24d)

Parameter θ1 and θ2 are augmented as states x2 and x3 respectively, and are modeled
as random walk processes shown in Eq. 2.24b and Eq. 2.24c. The initial guesses of
parameters θ1 and θ2 are 1 and 0.1 respectively. Covariance matrices for the process
and measurement zero-mean Gaussian noise are set as

Q =

⎡⎣1× 10−5 0 0
0 1× 10−5 0
0 0 1× 10−5

⎤⎦ , R = 1× 10−4 (2.25)

A comparison of the estimation performance for parameter θ1 between the EKF
and the UKF is shown in Fig.2.2. The result shows the superior performance of the
UKF, which has faster convergence for estimation of parameter than EKF; this is
in agreement with the theoretical background of their algorithms.
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Figure 2.2: Comparison of the performance between the EKF and the UKF for the
estimation of parameter θ1 of the continuous-discrete electrical circuit system

2.3 Construction of inequality parameter constraints

The inequality parameter constraints dL ≤ c(θ) ≤ dU will be considered in this
thesis. In this section, a method of constructing inequality constraints on parameters
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from routine operation data is introduced. The constraints given in Eq.1.10 can
be obtained from some steady-state measurements, say {y1, y2, . . . , yN}, from the
process of interest. In order to do that, we need to relate the measurements and
parameters together using the form given below

y = c(θ) + e, e ∼ N (0, σe) (2.26)

where e is assumed as Gaussian noise with standard deviation σe. Therefore, given
a equation like Eq. 2.26, a confidence interval (inequality constraints) of c(θ) can be
calculated by conventional statistical methods. Hence, the inequality constraint on
the parameter, with approximately 99.99% confidence, can be obtained as

[ĉ(θ)− 4σ(ĉ(θ)), ĉ(θ) + 4σ(ĉ(θ))]

where ĉ(θ) and σ(ĉ(θ) are estimates of the parameter relationship c(θ) and its stan-
dard deviation, respectively.

The following two sections show the procedure of obtaining inequality parame-
ter constraints from available steady-state measurements {y1, y2, . . . , yN} for linear
systems and nonlinear systems respectively.

2.3.1 Linear system

The linear continuous-discrete system is given as

ẋ(t) = Ax(t) +Bu(t) + w (2.27)

yk = Hxk + vk (2.28)

For this linear system at steady-state operating condition, meaning ẋ equals 0.
It gives

ẋ = Ax+Bu+ w = 0 (2.29)

Rewrite Eq.2.29 gives
x = −A−1Bu− A−1w (2.30)

Substituting Eq. 2.30 into Eq. 2.28 gives (the subscript k has been omitted for
ease of notation)

y = −HA−1Bu−HA−1w + v (2.31)

In Eq. 2.31, y is the set of steady-state measurements of the linear system and u is
a known input of the system. Therefore, we can treat −HA−1Bu as the parameter
relationship c(θ). Since w and v are Gaussian, −HA−1w+ v is written as Gaussian
noise e. Thus, Eq. 2.31 can be written in the form of Eq. 2.26

y = −HA−1Bu︸ ︷︷ ︸ −HA−1w + v︸ ︷︷ ︸
y = c(θ) + e

(2.32)

As long as we have N steady-state measurements {y1, y2, . . . , yN}, we can obtain
the inequality constraints on parameters, dL ≤ c(θ) ≤ dU , by conventional statistical
method. The calculation procedure is shown as follows:

14



• Calculate ĉ(θ)

ĉ(θ) =
y1 + y2 + . . .+ yN

N
(2.33)

• Calculate V ar(ĉ(θ))

V ar(ĉ(θ)) = V ar(
y1 + y2 + . . .+ yN

N
) =

σe
2

N
(2.34)

σe
2 can be approximated by the sample variance of y, Sy

2. i.e.,

σe
2 ≈ Sy

2 =
1

N − 1

N∑
i=1

(yi − ȳ)2 (2.35)

where ȳ denotes the sample mean: ȳ = 1
N

∑N
i=1 yi.

Thus, we have

V ar(ĉ(θ)) ≈ Sy
2

N
(2.36)

• Calculate σ(ĉ(θ))

σ(ĉ(θ)) =
√

V ar(ĉ(θ)) ≈ Sy√
N

(2.37)

• Finally, we have the 99.99% confidence interval for c(θ) as

[ĉ(θ)− 4σ(ĉ(θ)), ĉ(θ) + 4σ(ĉ(θ))]

The above procedure is easy to use for inequality constraints calculation from
sampled steady-state data.

2.3.2 Nonlinear system

Most systems encountered in the real world are nonlinear, and nonlinear models are
required to achieve adequate modeling accuracy in many industrial processes. The
problem considered in this section is the calculation of the inequality constraints of
c(θ) for a nonlinear stochastic system based on available noisy steady-state mea-
surements. Consider the following nonlinear stochastic model

ẋ = f(x, u, θ) + w (2.38a)

yk = h(xk) + vk (2.38b)

where w and vk are zero-mean Gaussian noises.
At steady-state, we have ẋ = 0, that is

ẋ = f(x, u, θ) + w = 0 (2.39)

The goal of our work, again, is the construction of the relationship between
measurements y and parameters θ, without having state x involved (because x is
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unknown). We linearize nonlinear equations Eq. 2.38b and Eq. 2.39 to eliminate the
variable x. The linearization of Eq. 2.38b and Eq. 2.39 gives

y = h(xss) +H(xss)(x− xss) + v (2.40)

f(xss, u, θ) + F (xss)(x− xss) + w = 0 (2.41)

F (xss) ≡ ∂f

∂x

∣∣∣∣
xss

, H(xss) ≡ ∂h

∂x

∣∣∣∣
xss

where xss denotes the steady-state point around which the nonlinear functions are
linearized. Because x is a common term in Eq. 2.40 and Eq. 2.41, it can be eliminated
by combining these two equations. Eq. 2.41 can be further written as

x = −F (xss)
−1f(xss, u, θ)− F (xss)

−1w + xss (2.42)

Substituting Eq. 2.42 into Eq. 2.40 gives

y = h(xss)−H(xss)F (xss)
−1f(xss, u, θ)−H(xss)F (xss)

−1w + v (2.43)

In Eq. 2.43, y is the steady-state measurement, and h(xss)−H(xss)F (xss)
−1f(xss, θ)

is the parameter relationship c(θ). −H(xss)F (xss)
−1w+v is Gaussian noise denoted

by e. Thus, Eq. 2.43 can be written in form of Eq. 2.26 as well.

y = h(xss)−H(xss)F (xss)
−1f(xss, u, θ)︸ ︷︷ ︸ −H(xss)F (xss)

−1w + v︸ ︷︷ ︸
y = c(θ) + e

(2.44)

Then, the inequality constraint for c(θ) can be calculated using the same statis-
tical method as introduced above in Section 2.3.1.

2.3.3 Illustrative example

In this section, we apply the developed method to a linear system to demonstrate the
construction of the inequality constraint on parameters from available steady-state
data. Let us again consider the linear electrical circuit system shown in Eq. 2.23.

ẋ =
−x

θ1 × θ2
+

u

θ2
+ w (2.23a)

yk = xk + vk (2.23b)

For an input, say u = 0.9, applied to the electrical circuit system, we can col-
lect a number of steady-state measurements, say 50, {y1, y2, . . . , y50}. The noisy
measurements are shown in Fig.2.3.
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Figure 2.3: Plot of steady state measurements of the continuous-discrete electrical
circuit system

Once we have these steady-state measurements, the method proposed in Section
2.3.1 is applied to develop the inequality parameter constraint. For this linear
electrical circuit system, the parameter relationship c(θ) can be obtained through
Eq. 2.32 as follows

c(θ) = −HA−1Bu = θ1u = 0.9θ1 (2.46)

Therefore, we have the equation between measurements y and parameter rela-
tionship c(θ) shown as

y = 0.9θ1 + e, e ∼ N (0, σe) (2.47)

The inequality constraint for c(θ), which is 0.9θ1, is calculated as follows:

• Calculate ĉ(θ)

ĉ(θ) =
y1 + y2 + . . .+ y50

50
= 1.08105 (2.48)

• Calculate σ(ĉ(θ))

σ(ĉ(θ)) =
√

V ar(ĉ(θ)) ≈ 1√
50

·
√√√√ 1

50− 1

50∑
i=1

(yi − ȳ)2 = 0.00145 (2.49)

where ȳ denotes sample mean: ȳ = 1
50

∑50
i=1 yi = 1.08105.

• Then, the 99.99% confidence interval of c(θ) is obtained as

[ĉ(θ)− 4σ(ĉ(θ)), ĉ(θ) + 4σ(ĉ(θ))] = [1.0752, 1.0869] (2.50)

Thus, we have 99.99% confidence that the inequality parameter constraint is

1.0752 ≤ 0.9θ1 ≤ 1.0869 (2.51)
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2.4 Inequality constrained parameter estimation

with the UKF

Constrained estimation incorporates more information than merely using available
measurements in the recursive filtering algorithm. In Section 2.2, we have shown
that the UKF is superior to the EKF in parameter estimation. In Section 2.3, we
show that it is appropriate and useful to use inequality constraints in estimation.
In this section, we first introduce the overall scheme of constrained estimation using
the UKF and inequality parameter constraints. This recursive constrained esti-
mation scheme provides improved estimation compared to the estimation without
considering constraints. Secondly, we propose a method of inequality constraints
implementation.

2.4.1 Constrained estimation framework

The proposed constrained estimation scheme is shown in Fig.2.4.

Figure 2.4: Framework of the proposed constrained estimation scheme

As shown in Fig.2.4, we use both the knowledge of available measurements and
inequality constraints to achieve constrained parameter estimation. With available
measurements, the unconstrained estimate will be obtained using the UKF. After
that, the unconstrained estimate will be further processed with the knowledge of
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inequality constraints to obtain a constrained estimate. The constrained estimation
scheme retains the recursive nature of the estimator.

2.4.2 Implementation of constraints

Recall that in the parameter estimation problem, the state vector x and parameter
vector θ are combined into an augmented state xa (Eq. 1.4):

xa =

[
x
θ

]
(5)

With the inequality constraints shown in Eq. 1.10, the constraints are on the pa-
rameters θ rather than on the state x. In the following content, x̃ and θ̃ denote the
constrained state and parameter estimates respectively.

In order to transform the unconstrained estimate to a constrained one, differ-
ent implementation approaches have been developed and presented in the litera-
ture [19, 20, 21, 22, 24]. In the following discussion, we will review two common
implementation methods, then propose a new method.

Existing implementation methods

1. Projection method

The projection method is a basic and intuitive approach of implementing con-
straints. It projects the violating estimates on to the constraint boundaries. The
constrained estimate x̃a can be obtained by solving the following optimization prob-
lem

x̃a = argminxa(xa − x̂a)
TW (xa − x̂a) (2.52)

subject to
dL ≤ c(θ) ≤ dU

where x̂a is the unconstrained estimate. Various approaches can be employed to solve
this constrained quadratic programming problem. In this work, we use fmincon in
MATLAB to obtain the constrained estimate.

In the projection method, since deviations from the unconstrained estimates x̂a

are penalized, the constrained estimate will tend to lie on the constraint boundary.
Moreover, the estimate will only be changed in the parameter θ because of the
inequality parameter constraints. This method can be illustrated as

x̂a =

[
x̂

θ̂

]
−→ x̃a =

[
x̂

θ̃

]
2. Recursive nonlinear dynamic data reconciliation method (RNDDR)

The recursive nonlinear dynamic data reconciliation (RNDDR) method devel-
oped by Vachhani et al. [13] also enables the incorporation of constraints into recur-
sive estimation. This method not only constrains the estimates, but also provides
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the additional advantage of minimizing the measurement error. The constrained
estimate x̃a is calculated by solving

x̃a = argminxa(y − h(xa))
TR−1(y − h(xa)) + (xa − x̂a)

TP−1(xa − x̂a) (2.53)

such that
dL ≤ c(θ) ≤ dU

In solving the above objective function, the estimate could be changed both in
the state x and the parameter θ:

x̂a =

[
x̂

θ̂

]
−→ x̃a =

[
x̃

θ̃

]
When used with the unconstrained UKF, this method is called the URND-

DR [20]. This method fails mainly because the first term in the objective function
is not even needed, because of the fact that y is only a function of x as shown in
Eq.2.1b. Thus it will result in the inconsistency within the constrained state esti-
mate x̃ and constrained parameter estimate θ̃. An example where this strategy fails
will be presented later in Section 2.5.1.

Proposed method

As mentioned earlier, the projection method can be used to obtain the constrained
parameter estimate without changing the state estimate. The nonlinear data rec-
onciliation method, which has a plausible perspective of trying to minimize the
measurement error, may not work properly mainly because that the first term in
the objective function of Eq.2.53 does not depends on parameter θ. In order to
constrain the parameter estimate as well as to minimize the measurement error, we
propose a new method to implement the inequality parameter constraints, in which
the constrained estimate is obtained by solving the following objective function

x̃ak = argminxak
(yk − ŷk)

TR−1(yk − ŷk) + (xak − x̂ak)
TP−1(xak − x̂ak) (2.54)

subject to
dL ≤ c(θ) ≤ dU

where ŷk is the estimated output propagated from

[
x̂k−1

θ

]
through the nonlinear

function f and h. Therefore, Eq. 2.54 can be further written as

x̃ak = argminxak
(yk−h(f(

[
x̂k−1

θ

]
)))TR−1(yk−h(f(

[
x̂k−1

θ

]
)))+(xak−x̂ak)

TP−1(xak−x̂ak)

(2.55)
The main difference between RNDDR method and proposed method is that

parameters θ is the only decision variable in the latter. By solving the optimization
problem, an optimal parameter θ that falls into the constraints can be obtained.
The progression of the estimate is illustrated by

x̂a =

[
x̂

θ̂

]
−→ x̃a =

[
x̂

θ̃

]
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The essence of this method is to utilize the parameter constraints to update
the parameter estimate, in other words, the process model will be more precisely
recovered; hence, we can expect a better estimate in turn in the filtering step.

As mentioned above, the state estimate at time k − 1 is employed to predict
ŷk in this method. In all recursive filtering algorithms such as the Kalman filter,
the EKF or the UKF, the state estimate at time k − 1 is obtained using available
measurements up to time k − 1, i.e., x̂k−1|k−1. As long as we have measurements at
time k on hand, it is more appropriate to use a smoothed state estimate, which uses
information up to time k, i.e., x̂k−1|k, to predict ŷk. In the following content, we use
x̂sk−1 to denote the smoothed estimate x̂k−1|k.

The Kalman smoother, which is a backward recursive filtering algorithm, pro-
vides the optimal state estimate at time k−1 using information up to time k+N . The
smoothed estimate x̂sk−1 can be calculated using the following Kalman smoother
equation

x̂sk−1 = x̂k−1 + L(x̂k − x̂−
k ) (2.56)

where L is the Kalman smoother gain. For a linear model, L is calculated as follows

L = Pk−1A
T (P−

k )−1 (2.57)

For a nonlinear model, A could be the Jacobian matrix of the nonlinear state e-
quation f for approximation. For more accurate smoothing of nonlinear models, a
smoother based on the unscented transformation (UT) called the unscented Rauch-
Tung-Striebel smoother (URTSS) may be employed [25]. In URTSS, L is calculated
using

L = D(P−
k )−1 (2.58)

where
D =

∑
W c

i

[Xk−1 − x̂k−1

] [X−
k − x̂−

k

]T
X and W c

i have the same meaning as in the UKF (see Section 2.2).

2.5 Simulation examples

2.5.1 Example 1: CSTR process

In this section, we apply the proposed algorithm to a dynamic chemical process for
demonstrating the performance of the proposed inequality constrained parameter
estimation algorithm. The example is a continuous stirred tank reactor (CSTR)
where a first-order, irreversible (A→B), exothermic (ΔH < 0) reaction between A
and B takes place [26]. The model equations are as follows

ĊA =
q

V
(CAf − CA)− k0e

− E
RT CA (2.59a)

Ṫ =
q

V
(Tf − T ) +

(−ΔH)

ρCp
k0e

− E
RT CA +

UAr

V ρCp
(Tc − T ) (2.59b)

where CA, q and T are the concentration, flow rate and temperature inside the
reactor respectively. (·)f denotes the feeding. V is the reactor volume, k0 is the
pre-exponential factor, E is the activation energy, R is the universal gas constant, ρ
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is the liquid density in CSTR, Cp is the heat capacity, ΔH is the enthalpy change of
the reaction, U and Ar are the heat transfer coefficient and area between the CSTR
and the jacket respectively, and Tc is the temperature of the cooling jacket.

The nonlinear model given by Eq. 3.17 has two states, concentration CA (state
x1) and temperature T (state x2) and one manipulated variable Tc (input u). In
this case study, we assume ρ and E

R
are the parameters to be estimated, while their

true values are 1000 and 8750 respectively. The values of all the parameters in the
CSTR process are specified in Table 2.1 [26].

Table 2.1: Parameters in the CSTR model

Variable Value Variable Notation

CAf 1 mol/L CA x1

q 100 L/min T x2

Tf 350 K Tc u
V 100 L ρ θ1
k0 7.2×1010 min−1 E

R
θ2

Cp 0.239 J/g·K
ΔH -5×104 J/mol
UAr 5×104 J/min·K

With the parameter values specified in Table 2.1, we have the following model:

ẋ1 = 1− x1 − 7.2× 1010e
− θ2

x2 x1 + w1 (2.60)

ẋ2 = 350− x2 + 150.6276× 1014e
− θ2

x2
x1

θ1
+ 2092.05

(u− x2)

θ1
+ w2 (2.61)

y1,k = x1,k + v1,k (2.62)

y2,k = x2,k + v2,k (2.63)

Applying an input, say u = 290 K, to the system, we can collect a number of
measurements {y1,1, y1,2, . . . , y1,N} and {y2,1, y2,2, . . . , y2,N} after the system reaches
steady-state. For example, we have 50 steady-state measurements of y1 and y2
respectively, which are plotted in Fig.2.5.
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(a) Plot of steady-state measurements y1 of the CSTR model.
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(b) Plot of steady-state measurements y2 of the CSTR model.

Figure 2.5: Plot of steady-state measurements of the CSTR model.

For the nonlinear CSTR model, the method proposed in Section 2.3.2 can be ap-
plied to construct the inequality parameter constraints with these available steady-
state measurements.

Eq. 2.60 and Eq. 2.61 can be expressed in form of a general nonlinear equation
as

ẋ = f(x, u, θ) + w (2.64)
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Eq. 2.62 and Eq. 2.63 can be rewritten in the same way as

y = h(x) + v (2.65)

It is shown in Eq. 2.44 that the parameter relationship for nonlinear system is
constructed as

c(θ) = h(xss)−H(xss)F (xss)
−1f(xss, u, θ) (2.66)

where F (xss) and H(xss) are Jacobian matrices defined as

F (xss) ≡ ∂f

∂x

∣∣∣∣
xss

, H(xss) ≡ ∂h

∂x

∣∣∣∣
xss

xss is the steady-state point around which the nonlinear functions are linearized,
and we can use the mean value of measurements y as the steady-state point in this
case.

xss = mean of y =

[
0.9510
312.66

]
(2.67)

Once xss is obtained, we can derive the following expression as

f(xss, u, θ) =

[
0.049− 6.8472× 1010e−

θ2
312.6621

37.3379 + 1.4325×1016

θ1
e−

θ2
312.6621 − 4.741×104

θ1

]

F (xss) =

[
−1− 7.2× 1010e−

θ2
312.6621 −7.0043× 105e−

θ2
312.6621 θ2

1.5063×1016

θ1
e−

θ2
312.6621 −1 + 1.4653× 1011e−

θ2
312.6621

θ2
θ1

− 2092.05
θ1

]

h(xss) =

[
0.9510
312.66

]
H(xss) =

[
1 0
0 1

]
The parameter relationship c(θ) can be calculated using Eq. 2.66 as follows

c(θ) =

[
c1(θ)
c2(θ)

]
= h(xss)−H(xss)F (xss)

−1f(xss, u, θ) (2.68)

Therefore, we have the equations built between measurement y and parameter
relationship c(θ) as

y1 = c1(θ) + e1, e1 ∼ N (0, σe1) (2.69)

y2 = c2(θ) + e2, e2 ∼ N (0, σe2) (2.70)

From the 50 steady-state measurements y1 and y2 shown in Fig.2.5, the 99.99%
confidence intervals of c(θ) can be obtained using the method introduced in Section
2.3.1, and are shown below as

[ĉ1(θ)− 4σ(ĉ1(θ)), ĉ1(θ) + 4σ(ĉ1(θ))] = [0.9451, 0.9570]

[ĉ2(θ)− 4σ(ĉ2(θ)), ĉ2(θ) + 4σ(ĉ2(θ))] = [312.6003, 312.7239]
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Thus, we have 99.99% confidence that the inequality parameter constraints are[
0.9451
312.6003

]
≤

[
c1(θ)
c2(θ)

]
≤

[
0.9570
312.7239

]
(2.71)

where the expressions for c1(θ) and c1(θ) are obtained through Eq. 2.68.
Since we have the above inequality parameter constraints, constrained estimation

can be performed based on the scheme shown in Fig.2.4. In the nonlinear filtering
part, the UKF is employed to obtain the optimal unconstrained estimate. The
unknown parameters θ1 and θ2 are treated as states x3 and x4, which are modeled
as random walk processes shown in Eq. 2.72c and Eq. 2.72d. With the available
discrete noisy measurements of concentration x1 and temperature x2, we have the
overall continuous-discrete nonlinear system formulated as

ẋ1 = 1− x1 − 7.2× 1010e
−x4

x2 x1 + w1 (2.72a)

ẋ2 = 350− x2 + 150.6276× 1014e
−x4

x2
x1

x3
+ 2092.05

(u− x2)

x3
+ w2 (2.72b)

ẋ3 = 0 + w3 (2.72c)

ẋ4 = 0 + w4 (2.72d)

y1,k = x1,k + v1,k (2.72e)

y2,k = x2,k + v2,k (2.72f)

The initial guesses for θ1 and θ2 are 1025 and 8755 respectively. The process and
measurement Gaussian noise covariance for the system are set as

Q =

⎡⎢⎢⎣
1× 10−5 0 0 0

0 1× 10−3 0 0
0 0 1× 10−5 0
0 0 0 1× 10−5

⎤⎥⎥⎦ , R =

[
1× 10−4 0

0 1× 10−2

]

After we obtain the unconstrained estimate from the UKF, the inequality pa-
rameter constraints in Eq. 2.71 are employed to obtain the constrained estimate
with different implementation algorithms. The constrained estimation scheme, as
shown in Fig.2.4, runs recursively to estimate the states and parameters.

Fig.2.6 shows the comparison between the projection method and the RNDDR
method of parameter ρ in the CSTR model. In Fig.2.6, both estimators have the
same initial condition (ρ = 1025), while the true value is 1000. The simulation
result shows that the projection method gives the correct estimation result while
the RNDDR method leads to a failure in estimating the true value of the parameter.
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Figure 2.6: Simulation results showing the failure of RNDDR in the estimation of
parameter ρ of the CSTR model.

The proposed method is then applied. As discussed in Section 2.4.2, the s-
moothed estimate x̂sk−1 should provide better performance than x̂k−1 in the appli-
cation of proposed method. The comparison is again illustrated on the estimation
of parameter ρ in the CSTR model. Fig.2.7 shows the estimation error of parameter
ρ by using different state estimate at time k − 1, with both estimators having the
same initial condition. The simulation result shows a significant improvement in
parameter estimation by employing the smoothed estimate x̂sk−1.
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Figure 2.7: Simulation results showing the advantage of employing smoothed esti-
mate x̂k−1|k for estimation of parameter ρ of the CSTR model.

Fig.2.8 and Fig.2.9 show the overall simulation comparison for the estimation of
CSTR model between unconstrained estimation, constrained estimation by the pro-
jection method and constrained estimation by the proposed method. It is seen that

26



inequality constrained estimation can significantly improve the parameter estimation
performance. Furthermore, the proposed method can achieve better performance
than the conventional projection method in constrained parameter estimation.
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Figure 2.8: Simulation results of parameter ρ estimation error in the CSTR model.
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Figure 2.9: Simulation results for parameter E
R
estimation error in the CSTR model.

2.5.2 Example 2: PMMA polymerization reactor system

In this section, we employ a poly(methyl methacrylate) (PMMA) polymerization
reactor (shown in Fig.2.10) for demonstrating the performance of the proposed in-
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equality constrained parameter estimation algorithm. The process is described by
the following differential equations [27]:

dCm

dt
= −

[
kp exp

(−Ep

RT

)
+ kfm exp

(−Efm

RT

)]
CmP0(CI , T ) +

F (Cmin
− Cm)

V
(2.73a)

dCI

dt
= −kI exp

(−EI

RT

)
CI +

FICIin − FCI

V
(2.73b)

dT

dt
= kp exp

(−Ep

RT

)
Cm

(−ΔHp)

ρcp
P0(CI , T )− UA

ρcpV
(T − Tj) +

F (Tin − T )

V
(2.73c)

dD0

dt
=

[
0.5kTc exp

(−ETc

RT

)
+ kTd

exp

(−ETd

RT

)]
[P0(CI , T )]

2

+ kfm exp

(−Efm

RT

)
CmP0(CI , T )− FD0

V
(2.73d)

dDI

dt
= Mm

[
kp exp

(−Ep

RT

)
+ kfm exp

(−Efm

RT

)]
CmP0(CI , T )− FDI

V
(2.73e)

dTj

dt
=

Fcw

Vo
(Two − Tj) +

UA

ρwcwVo
(T − Tj) (2.73f)

where

P0(CI , T ) =

⎡⎣ 2f ∗CIkI exp
(−EI

RT

)
kTd

exp
(−ETd

RT

)
+ kTc exp

(
−ETc

RT

)
⎤⎦0.5

(2.74)

Figure 2.10: Schematic of poly(methyl methacrylate) (PMMA) polymerization re-
actor
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Two measurements are available for this process:

y1 = T + v1 (2.75a)

y2 = Tj + v2 (2.75b)

where Ts is 0.013h.
In operating and controlling the PMMA polymerization reactor, the flowrate

of the coolant Fcw is the manipulated variable u. The values of all the parameters
involved in the reactor are listed in Table 2.2, and greater detail can be found in [27].

Table 2.2: Values of parameters in PMMA polymerization reactor system

Parameter Value Parameter Value

kp 1.77×109 kmol/m3·h Ep 1.83×104 kJ/kmol
kfm 1.01×1015 kmol/m3·h Efm 7.45×104 kJ/kmol
kI 3.79×1018 kmol/m3·h EI 1.29×105 kJ/kmol
kTc 3.82×1010 kmol/m3·h ETc 2.94×103 kJ/kmol
kTd

3.15×1011 kmol/m3·h ETd
2.94×103 kJ/kmol

R 8.314 kJ/kmol·K F 1 m3/h
Cmin

8 kmol/m3 V 0.1 m3

FI 0.017 m3/h CIin 6 kmol/m3

−ΔHp 57800 kJ/kmol ρ 866 kg/m3

cp 2 kJ/kg·K U 720 kJ/h·K·m2

A 2 m2 Tin 350 K
Mm 100 kg/kmol Vo 0.02 m3

Two 293 K ρw 1000 kg/m3

cw 4.2 kJ/kg·K f ∗ 0.58

In this parameter estimation problem, values of U and −ΔH are assumed un-
known. As shown earlier, inequality parameter constraints can be obtained based
on available steady-state measurements. Then, we use the available measurements y
and inequality constraints to obtain the parameter and state estimates simultaneous-
ly. Note that the states D0 and DI are not observable from the measurements of T
and Tj . Initial parameter guesses for the estimator are U = 710 and −ΔH = 57600,
while their true values are 720 and 57800 respectively. The covariance matrices of
state noise and measurement noise are assumed to be

Q = diag
[
10−8, 10−8, 10−4, 10−4, 10−4, 1

]
, R = diag

[
10−3, 10−3

]
Fig.2.11 and Fig.2.12 show the parameter estimation results on the PMMA poly-

merization reactor model. It is shown in Fig.2.11 that the proposed method has
faster convergence for the parameter U than the projection method. As shown in
Fig.2.12, the two methods have a similar performance for parameter −ΔH . This is
because the inequality constraints do not have much information constraining −ΔH .
In other words, parameter −ΔH has little impact on the steady-state measurements
of the process.
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Figure 2.11: Simulation results for estimation of parameter U of the PMMA poly-
merization reactor model.
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Figure 2.12: Simulation results for estimation of parameter −ΔH of the PMMA
polymerization reactor model.

2.5.3 Examples on control improvement with estimators

Improvement of control performance is often the ultimate goal of state estimation.
The estimators (filters), as introduced before, can be used to reduce the noise in the
measurements, as well as to obtain the estimates of the unmeasurable variables. In
this section, two control examples will be shown to illustrate the potential benefits
of estimators in practical control applications.
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The block diagram of a feedback control loop is shown in Fig.2.13.

Figure 2.13: Block diagram of a feedback control loop

In Fig.2.13, the controller is employed for tracking the reference signal r. The
main purpose of a tracking system is to keep a variable at a specified operating
point by proper action of the controller, so that the plant can run smoothly and
efficiently. The feedback signal normally comes from the measurements y. There is
noise both in the process and in the measurement, which is assumed to be Gaussian
in the simulations. For the tracking system shown in Fig.2.13, it can only be used
to make the variables that are measurable to track the setpoint.

In Fig.2.14, an estimator is added into the tracking control system. For the mea-
surable states, the estimator can be used to reduce the noise. For the unmeasurable
states, they can be recovered by the estimator, so that they can also be controlled
in an inferential manner.

Figure 2.14: Block diagram of a feedback control loop with an estimator

In the following sections, estimation based tracking systems are employed for
both the CSTR process and the PMMA polymerization reactor to illustrate the
efficacies of estimators in control applications.

CSTR process

The CSTR process, as shown in Section 2.5.1, has two states CA and T , which are
both measurable with y1 and y2 respectively. The temperature of the cooling jacket
Tc is the control input u. In this example, the operating temperature T (state x2)
is the variable to control. Assume that the CSTR process operates at a nominal
condition T = 324.48 K. A PI controller with proportional gain of 3, integral gain of
0.08 is employed to change the operating condition from T = 324.48 K to T = 282
K. The control diagrams for this CSTR temperature tracking system are shown in
Fig.2.15, where Fig.2.15(B) has an estimator.

31



Figure 2.15: Block diagrams of temperature tracking systems for a CSTR process.
(A) Feedback control; (B) Feedback control with estimator.

The comparison of tracking performance between control systems (A) and (B) is
shown in Fig.2.16. The fluctuation around the reference signal comes from the noise
in the measured output signal. It is shown that the estimator based control system
has improved performance with much less fluctuation in the tracking of temperature
T in this CSTR process.
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Figure 2.16: Performance comparison of tracking temperature T in a CSTR process
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PMMA polymerization reactor

The six states of the PMMA polymerization reactor (shown in Section 2.5.2) are
listed in Table 2.3.

Table 2.3: States of the PMMA polymerization reactor

State Symbol

x1 Cm observable, interest of tracking
x2 CI observable
x3 T measurement y1
x4 D0 unobservable
x5 DI unobservable
x6 Tj measurement y2

The concentration of monomer Cm in the reactor is of control interest as it
indicates the quality of the polymer. Because the state Cm is not directly accessible
through measurements, an estimator has to be employed in order to control the value
of Cm. The control system diagram is shown in Fig.2.17, where a PI controller with
proportional gain of 15, integral gain of 1 is used in the feedback control system.

Figure 2.17: Block diagram of concentration tracking system for a PMMA polymer-
ization reactor

Assume that the process is now operating with Cm = 7.73 kmol/m3, while a
reference signal with Cm = 7.8 kmol/m3 is applied to the control system. The
flowrate of the coolant Fcw is the control input u in this system.

In this control example, the values of the states and the parameters are unknown
in the estimator. The initial guess of Cm is 7 kmol/m3 while initial guesses for
parameter U and−ΔH are 700 and 57400 respectively. Fig.2.18 shows the control
performance with unconstrained estimator. It can be observed that there is a severe
overshoot in the tracking performance in Fig.2.18. This overshoot is caused by the
inaccurate estimate of x1, which leads to the improper action of the controller.
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Figure 2.18: Control performance of tracking monomer concentration Cm with un-
constrained estimator

Then, we use the constrained estimator in this control system. Parameter con-
straints can improve the state estimation performance, and consequently the control
performance. Fig.2.19 shows the control performance with constrained estimator
with inequality parameter constraints. The initial condition of the estimator is the
same as for the unconstrained estimator. It is seen that the tracking performance
with constrained estimator in Fig.2.19 is much better than the performance with
unconstrained estimator in Fig.2.18, because of the faster recovery of the state esti-
mation.
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Figure 2.19: Control performance of tracking monomer concentration Cm with con-
strained estimator

2.6 Conclusions

The inequality constrained parameter estimation with the UKF has been considered
in this chapter. In the comparison of parameter estimation with nonlinear filtering
algorithms EKF and UKF, it is shown that the UKF has better performance than
the EKF due to its more accurate description of the propagation of the covariance
in nonlinear models. Next, we address the potential benefit of inequality parameter
constraints to the estimation performance. An approach to constructing inequality
parameter constraints for linear and nonlinear systems is developed, from which we
can obtain constraints using steady-state routine operating data.

An inequality constrained estimation scheme is then proposed, as well as a con-
straint implementation method. The resulting algorithm constrains the parameter
estimate and minimizes the measurement error. Moreover, it provides faster estima-
tion convergence for parameters. Finally, the performance of the proposed inequality
parameter constrained estimation method is demonstrated on a continuous-discrete
CSTR process as well as a PMMA polymerization reactor system.

35



Chapter 3

Inequality Constrained Parameter
Estimation with Ensemble Kalman
Filter

Constrained parameter estimation with the ensemble Kalman filter (EnKF) is con-
sidered in this chapter. We first present the Monte Carlo sampling strategy for
representing the distribution of the state estimate. Then, the EnKF algorithm is
introduced. Its performance is assessed with different ensemble sizes and is also
compared to the UKF. We then propose a projection method for constraining the
particles in the EnKF without modifying the unconstrained covariance. This pro-
jection method can provide convergence in the constrained parameter estimation.
We also propose a new constrained parameter estimation method with the EnKF
which results in better performance than the projection method. This method is
similar to the constrained method used in the UKF. The methods introduced in this
chapter are demonstrated on a continuous-discrete CSTR process.

3.1 Introduction

In this chapter, we consider another nonlinear filtering algorithm known as the en-
semble Kalman filter (EnKF). The EnKF, which was first introduced by Evensen [9]
in 1994, uses Monte Carlo sampling method when generating the initial ensemble,
the process noise ensemble and the measurement noise ensemble. The ensemble of
sample points are then propagated through the nonlinear system and the probability
distribution of the state is recovered from the samples. Table 3.1 briefly summarizes
some of the common filters in the literature.

Table 3.1: Classification of filters
Kalman Bayes’ rule

No sampling EKF

Deterministic sampling
UKF

Resample at each iteration

Monte Carlo sampling
EnKF

Particle filter
Draw samples only once
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In contrast with the EKF, the EnKF represents the error covariance matrix by
an ensemble of samples. Thus, the uncertainty is represented by a set of model
realizations in the EnKF, rather than an explicit expression for the error covariance
matrix as in the EKF. The EKF approximation can introduce large errors in the
covariance because of the model nonlinearity. In the EnKF, the approximation
of forecasting the mean and covariance is accomplished by the propagation of the
ensemble of samples forward in time.

Both the EnKF and the UKF belong to a broader category of filters called
derivative-free filters. In derivative-free filters, better estimates of the moments of
a distribution can be obtained using samples rather than using the Taylor series
approximation of the nonlinear function. The main difference between the EnKF
and the UKF is that the former uses stochastic sampling method while the latter
uses a deterministic sampling method. A large number of samples are necessary for
generating good estimates in the EnKF. Moreover, the EnKF draws samples only
once at the initialization, and the state estimate and covariance can be recovered
from the corresponding samples while running the filter.

The EnKF is widely used in applications like weather forecasting, where the
models are of extremely high order and nonlinear, the initial states are highly un-
certain, and a large number of measurements are available [10]. The EnKF has
been shown to be very efficient and robust for real-time updating in weather fore-
casting [28], oceanography [29] and meteorology [30]. Also, in petroleum reservoir
simulation, Nævdal et al. [31] implemented the EnKF in monitoring of the near-well
zones in an oil reservoir, in order to estimate the reservoir’s permeability distribu-
tion. The success indicates that the EnKF is capable of handling highly nonlinear
and complex systems [32].

The conventional solution for constraint incorporation in estimators such as the
Kalman filter, the EKF and the UKF is the use of the projection method. In
the projection method, the estimates which violate the constraints are projected
onto the constraint boundaries. However, for the EnKF, where an ensemble of
particles are involved, an appropriate projection method which provides convergence
in the estimation performance must be used. Besides the projection method, moving
horizon estimation (MHE) can naturally take constraints into consideration, but
the computational load remains an issue for high-dimensional systems. Moreover,
accurate arrival cost approximation is difficult in the presence of constraints.

The main contributions of this chapter are as follows: We propose an appro-
priately modified projection method for the samples in the EnKF that retains the
unconstrained covariance, by which the EnKF can provide the convergence in the
constrained estimation. We then propose an alternative constrained parameter esti-
mation method with the EnKF. This method exhibits better performance than the
projection method. The efficacies of these methods are demonstrated on a simulated
chemical process.

This chapter is organized as follows. First, in Section 3.2, we introduce three
different ways, namely the mean and covariance, the sigma points, the Monte Carlo
samples, for representing the distribution of an estimate. In Section 3.3, the EnKF
algorithm is presented and its performance for parameter estimation is assessed.
The influence of the ensemble size for the EnKF is studied, and it is also compared
with the UKF. In Section 3.4, constrained estimation with the EnKF is considered.
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We propose a modified projection method that works with the EnKF. Then, a
new constrained algorithm is proposed which provides better performance than the
projection method when applied to the EnKF. Finally, a continuous-discrete CSTR
process is employed to demonstrate the performance of these methods.

3.2 Preliminaries

3.2.1 Estimate representation

In state estimation, we normally use the first two moments, the mean vector xk

and the covariance matrix Pk, to represent an underlying distribution. An accurate
covariance is critical to the performance of an estimator. A simple illustration of
the mean and covariance is shown in Fig.3.1.

Figure 3.1: Illustration of mean and covariance of a two dimensional estimate

In the unscented Kalman filter (UKF), a set of deterministic samples, called
sigma points, are employed to represent the distribution of an estimate. We should
note that both the number of the sigma points, the values of the sigma points, as well
as the weights of the sigma points are calculated based on a deterministic method.
For instance, five weighted sigma points should be selected for a two dimensional
distribution. Details of the selection method and weights calculation can be found
in the Chapter 2. An illustration of using sigma points to represent the distribution
is shown in Fig.3.2.

Figure 3.2: Sigma points representation of a two dimensional estimate

Besides the sigma point representation, we can use the Monte Carlo approach
to build the necessary statistics. In Monte Carlo sampling method, an ensemble of
particles is obtained by randomly drawing from a distribution. The number of the
particles are chosen according to demands of accuracy, and each of the particles is
equally weighted. Fig.3.3 is an illustration of the Monte Carlo sampling method.
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Figure 3.3: Monte Carlo samples of a two dimensional estimate

Once we have these particles, we can recover the estimate and its covariance by
calculating the ensemble mean and covariance. For instance, say have an ensemble
X of size N ,

X = [x1, . . . , xN ] (3.1)

where X is an n×N matrix (n is the dimension of the state). The recovered mean
and covariance can be calculated by Eq.3.2 and Eq.3.3, respectively.

x̄ =
1

N

N∑
i=1

xi (3.2)

P =
1

N − 1

N∑
i=1

(xi − x̄)(xi − x̄)T (3.3)

It is essential that the ensemble is statistically representative. Suppose now
that we have a normal distribution with mean 0 and variance 1. The Monte Carlo
samples with ensemble size 100 and ensemble size 10000 are shown in Fig.3.4. It
is seen that the distribution can be better recovered with larger ensemble size.
When the ensemble size N increases, the estimate representation error will decrease
proportional to 1/

√
N .
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Figure 3.4: Monte Carlo sampling comparison with different ensemble sizes ((a) 100,
(b) 10000)
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3.2.2 Ensemble Kalman filter

The ensemble Kalman filter (EnKF) belongs to a broader category of filters known
as derivative-free filters. The EnKF is initialized by choosing a number of random
particles that capture the initial probability distribution, as described above. These
particles are propagated through the nonlinear model, and the estimates (prior and
posterior) are approximated by the ensemble mean and covariance.

Let us again consider the following nonlinear model,

xk+1 = f(xk, uk) + wk (3.4a)

yk = h(xk) + vk (3.4b)

where wk and vk are uncorrelated zero-mean white noise with covariance matrices
Q and R, respectively.

The filter is initialized by generating an initial ensemble. In this work, we use
mvnrnd in MATLAB to draw the initial ensemble from an initial guess of the estimate
(x0 and P0). Implementation of the EnKF requires an adequate number of particles,
since a small number of particles may not guarantee a good approximation of the
true covariance matrix. Where the ensemble size is too small to be statistically
representative of the estimate, it is said to be underestimated. Underestimation is
a fundamental problem in the EnKF [33]. On the other hand, a large number of
particles require extensive storage and computing resources. Once we have obtained
the initial ensemble, the EnKF algorithm can be applied.

The EnKF consists of three steps:

1. a prediction step that propagates the ensemble cloud through the model to
generate a prior ensemble

2. an analysis step that computes the Kalman gain based on the ensemble statis-
tics

3. an update step that updates the prior ensemble to the posterior ensemble with
the measurement information

Prediction
In the prediction step, the particles [x1

k, . . . , x
N
k ] are propagated one step for-

ward through the state model f . Also, we consider that the nonlinear model
is not perfect and contains model errors, which is represented by wk. In order
to fully capture the propagation of the state particles, an ensemble of particles
of wk is also generated based on its distribution N (0, Q). The state noise
particles are denoted by [w1

k, . . . , w
N
k ].

Thus, the predicted state ensemble is calculated by

xi−
k+1 = f(xi

k, uk) + wi
k (3.5)

Also, the predicted output is calculated based on the measurement model

yi−k+1 = h(xi−
k+1) (3.6)
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As we have the predicted state ensemble from Eq.3.5, the prior state esti-
mate x−

k+1 and prior covariance P−
k+1 can be obtained from Eq.3.7 and Eq.3.8,

respectively.

x−
k+1 =

1

N

N∑
i=1

xi−
k+1 (3.7)

P−
k+1 =

1

N − 1

N∑
i=1

(xi−
k+1 − x−

k+1)(x
i−
k+1 − x−

k+1)
T (3.8)

In the prediction step, an ensemble of prior state particles and predicted out-
puts are generated. The prior state estimate (mean and covariance) can be
recovered from the prior state particles.

Analysis
In the analysis step, we can obtain the Kalman gain using the ensemble statis-
tics. The output error covariance matrix is defined as the sample covariance
of yi−k+1 around the its sample mean. The sample mean of the output ensemble
is calculated by

y−k+1 =
1

N

N∑
i=1

yi−k+1 (3.9)

The output error covariance P yy is calculated by

P yy
k+1 =

1

N − 1

N∑
i=1

(yi−k+1 − y−k+1)(y
i−
k+1 − y−k+1)

T (3.10)

Similarly, we need to calculate the cross covariance matrix P xy as

P xy
k+1 =

1

N − 1

N∑
i=1

(xi−
k+1 − x−

k+1)(y
i−
k+1 − y−k+1)

T (3.11)

Both the output error covariance P yy and cross-covariance P xy have similar
meaning as in the unscented Kalman filter. In the EnKF, they are calculated
based on the equally weighted particles rather than the weighted sigma points
used in the UKF. The analysis step of the EnKF calculates the Kalman gain
K as follows:

K = P xy
k+1(P

yy
k+1 +R)−1 (3.12)

The above form of the Kalman gain is a modification of the standard Kalman
gain represented as K = P−HT (HP−HT + R)−1. One of the advantages of
the EnKF is that the prior covariance P− is not required in the calculation of
K.

Update
In the update step, each of the particles in the predicted ensemble is updated
independently with the information of the incoming measurement yk+1. In
order to update the particles properly, it is critical to perturb the measurement
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yk+1. It has been shown that unless a measurement ensemble is generated at
each iteration, the updated ensemble will have a covariance that is too low,
which can result in a large bias [34]. The perturbed measurement ensemble is
calculated by

yik+1 = yk+1 + vik (3.13)

where vik represents the measurement noise for the ith particle, which follows
N (0, R).

Therefore, each particle can be updated using the following equation:

xi
k+1 = xi−

k+1 +K(yik+1 − yi−k+1) (3.14)

Similarly, the posterior mean and covariance can be recovered from Eq.3.15
and Eq.3.16 respectively.

xk+1 =
1

N

N∑
i=1

xi
k+1 (3.15)

Pk+1 =
1

N − 1

N∑
i=1

(xi
k+1 − xk+1)(x

i
k+1 − xk+1)

T (3.16)

Eq.3.5 to Eq.3.16 above represent the ensemble Kalman filtering algorithm, and a
schematic is provided in Fig.3.5.

Figure 3.5: Schematic of the ensemble Kalman filter (EnKF)

It should be noted that errors in the EnKF come from two sources, both related
to the sampling of the probability distribution: 1. initial representation of the
distribution by particles; 2. state and measurement noise representation by particles.
A large ensemble size will be helpful in reducing the errors in the EnKF. The EnKF
will have identical performance to the Kalman filter if the ensemble size goes to
infinity for a linear system.

Both the UKF and the EnKF belong to the class of derivative-free filters, but
major differences between the UKF and the EnKF lie in
1. The method of drawing samples
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2. The choice of re-drawing samples
3. The Kalman gain calculation
4. The need for a perturbed measurement ensemble
5. The method used for ensemble update from prior to posterior

Moreover, the prior and posterior mean x− and x, and prior and posterior co-
variance P− and P are not necessarily to obtain in the EnKF in each iteration. All
of them can be recovered by the corresponding ensemble.

3.3 EnKF for parameter estimation

Parameter estimation, or dual state and parameter estimation, has evoked significant
interest in process control. Generally, parameter estimation is a nonlinear estimation
problem solved by augmenting the unknown parameters as additional model states.
Typically, random walk models are used to describe the dynamics/uncertainties of
the parameters of interest. We have shown earlier that the extended Kalman filter
(EKF) and unscented Kalman filter (UKF) are powerful tools to estimate states and
parameters simultaneously. In this section, a simulation of a continuous stirred tank
reactor (CSTR) with discrete measurements is employed to assess the parameter
estimation performance of the EnKF.

The model of the CSTR process is given by [26]

ĊA =
q

V
(CAf − CA)− k0e

− E
RT CA + w1 (3.17a)

Ṫ =
q

V
(Tf − T ) +

(−ΔH)

ρCp
k0e

− E
RT CA +

UAr

V ρCp
(Tc − T ) + w2 (3.17b)

This process has two states, concentration CA and temperature T . ρ and E
R

are
assumed to be unknown parameters that are to be estimated. The random walk
models for them are

ρ̇ = 0 + w3 (3.18)

Ė

R
= 0 + w4 (3.19)

Two discrete measurements are available as

y1,k = CA,k + v1,k (3.20)

y2,k = Tk + v2,k (3.21)

The initial guesses for ρ and E
R

are 1025 and 8755, while their true values are
1000 and 8750, respectively. Both the unknown parameters are treated as augmented
states. Hence, in the parameter estimation of this CSTR process, we have four states
to be estimated. Covariance matrices for the process and measurement zero-mean
Gaussian noise are set as

Q =

⎡⎢⎢⎣
1× 10−5 0 0 0

0 1× 10−3 0 0
0 0 1× 10−10 0
0 0 0 1× 10−10

⎤⎥⎥⎦ , R =

[
1× 10−4 0

0 1× 10−2

]
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We choose different ensemble sizes to evaluate the performance of the EnKF
for parameter estimation with the same initial condition. The first EnKF uses 100
particles to represent the distribution, while the second EnKF uses 400 particles.
The simulation results are shown in Fig.3.6 and Fig.3.7 for parameters ρ and E

R

respectively. A comparison with the performance of the UKF is also provided.
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Figure 3.6: Comparison of the estimation performance for ρ in the CSTR model
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Figure 3.7: Comparison of the estimation performance for E
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in the CSTR model

Fig.3.6 and Fig.3.7 show that the larger the ensemble size we employ, the better
the performance of the EnKF has. The UKF, which uses weighted deterministic
sigma points rather than equally weighted random points, can achieve similar per-
formance with less computational load.
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3.4 Inequality constrained parameter estimation

with the EnKF

In practical applications, parameter constraints are commonly encountered. In this
work, we consider inequality parameter constraints shown as

dL ≤ c(θ) ≤ dU (3.22)

where dL and dU indicate the lower and upper bound of the inequality constraints.
Implementation of such parameter constraints in estimation will be useful for im-
proving estimation performance. We have introduced a method to construct in-
equality parameter constraints in Chapter 2. In this section, we will discuss several
ways of implementation of inequality constraints in the EnKF, and propose a proper
projection method and a constrained parameter estimation method with the EnKF.

3.4.1 Constrained EnKF algorithm

Prakash et al. [21] proposed a constrained EnKF algorithm for state estimation. The
approach includes using a truncated multivariate distribution in the presence of state
constraints. Furthermore, both the projection method and the optimization-based
solution are employed in this algorithm to solve the constrained nonlinear state
estimation problem.

In this method, the ensemble particles will propagate through the nonlinear
model f to obtain the prior ensemble. Then, the propagated particles which lie
outside the feasible region are projected onto the constraint boundaries to obtain
the constrained prior ensemble. This is shown in Eq.3.23

xi−
c = Pr[xi−] (3.23)

Then, in the update step, the ensemble of constrained state estimates (poste-
rior) is obtained by solving a number of constrained optimization problems. The
optimization problem for each particle is shown below:

xi = argminxi(y − h(xi))TR−1(y − h(xi)) + (xi − xi−
c )TP−1(xi − xi−

c ) (3.24)

subject to the constraints.
The efficacy of this method for constrained nonlinear state estimation has been

shown in [21]. However, for the constrained parameter estimation problem, the pa-
rameter estimates may not be properly updated using Eq.2.53 once the parameter
constraints are active. This method fails mainly because the first term in the ob-
jective function is not even needed, because y is only a function of x. Therefore,
this method may result in infeasible or inaccurate estimates for parameter estima-
tion. Simulation studies will demonstrate its failure in the constrained parameter
estimation.

3.4.2 Projection method

The projection (or clipping) method is very common in accounting for constraints.
In this section, we will investigate its possible use in the EnKF.
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In the EnKF, a number of particles are involved in both the prediction and the
update steps. The unconstrained particles are given as

X = [x1, x2, . . . , xN ] (3.25)

We use
X̃ = [x̃1, x̃2, . . . , x̃N ] (3.26)

to denote the constrained particles.
In most filtering algorithms, the covariance plays an important role in properly

updating the estimate. Some constraint implementation methods may influence the
covariance significantly and lead to poor performance of the estimator. Below, we
will show three different methods of projection in the EnKF, and evaluate them in
the sense of covariance consistency.

First method Projection of all the particles
The projection method projects the violated particles onto the constraints
boundaries. In this way, the covariance of the constrained ensemble will be
different from that of the unconstrained ensemble. We use the ensemble of
parameter ρ to illustrate the performance of this projection method. The con-
strained particles are subject to the specified nonlinear inequality constraints
shown in Section 2.5.1. The trajectories of unconstrained particles and con-
strained particles of ρ are shown in Fig.3.8 (both of them have ensemble sizes
equal to 400). We also have the unconstrained distribution of the ensemble in
Fig.3.9(a) and the constrained distribution in Fig.3.9(b). It is seen that the
value of the ensemble is changed due to the constraint, and the distribution
is significantly changed, too. The variance of the constrained particles, in this
case, is less than that of the unconstrained particles. This kind of distribution
change can lead to the inaccuracy of estimation result.
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Figure 3.8: Plot of unconstrained and constrained particles of ρ

46



1024 1026 1028 1030
0

0.05

0.1

0.15

0.2

0.25

Value of ensemble of ρ
(a)

pr
ob

ab
ili

ty

 

 

1004 1006 1008 1010
0

0.05

0.1

0.15

0.2

0.25

Value of ensemble of ρ
(b)

pr
ob

ab
ili

ty

 

 

Figure 3.9: Distribution of the ensemble of parameter ρ before and after applying
constraints by the first projection method

Second method Projection of the mean value and redrawing particles
In order to avoid significant change in the covariance while imposing the con-
straints, one can simply constrain the estimated mean value of the particles
onto the constraint boundaries, and then use the same covariance to redraw
particles. In this method, there will not be much change in the covariance,
but we cannot guarantee that all the particles fall into the constrained space.
The illustration of this method is shown in Fig.3.10. Fig.3.10(a) shows the
unconstrained distribution of the ensemble while the constrained distribution
of the ensemble is shown in Fig.3.10(b). It is seen that the covariances remain
similar in this method, although they are not identical. This can lead to a
bias in the estimation result, and a simulation will be shown later to confirm
this.
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Figure 3.10: Distribution of the ensemble of parameter ρ before and after applying
constraints by the second projection method

Third method Projection of the mean value and shifting all the particles by the
same difference
It has been discussed above that a change of covariance may result in poor
estimation performance; therefore, we need to find a way to obtain the identical
covariance after constraint incorporation using the projection method. In this
method, we also constrain the mean value of the unconstrained particles onto
the constraints boundaries. Then, we calculate the difference D as

D = x̃− x̄ (3.27)

where x̄ is the mean value of unconstrained particles, and x̃ is the constrained
mean value. Once we obtain the difference D, we can obtain the shifted
particles by

x̃i = xi +D (3.28)

In this method, the mean value of the constrained particles falls on the con-
straints boundaries and the covariance after imposing the constraint remains
the same. This method also cannot guarantee that all the particles fall into the
constrained space. This method is illustrated in Fig.3.11, where Fig.3.11(a)
represents the unconstrained distribution of the ensemble while the constrained
distribution of the ensemble is shown in Fig.3.11(b). It is seen that the values
of particles are changed due to the constraints, while the covariances are iden-
tical. This method can provide improved constrained parameter estimation
performance compared to the second projection method.
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Figure 3.11: Distribution of the ensemble of parameter ρ before and after applying
constraints by the third projection method

3.4.3 Proposed method

Although the third method presented in the previous section is the best choice of the
three methods discussed, it is based on simple projection. In this section, a further
improved method will be proposed. This method is similar to the constrained UKF
method proposed in the previous chapter. In this method, the mean value of the
constrained parameter estimates will fall into the constrained space, rather than on
the constraint boundaries as in the projection method. The constrained mean value
is obtained by solving

x̃k = argminxk
(yk − ŷk)

TR−1(yk − ŷk) + (xk − x̄k)
T I(xk − x̂k) (3.29)

subject to the inequality parameter constraints

dL ≤ c(θ) ≤ dU (3.30)

where ŷk is the estimated output from the previous step k−1 with decision variable
θ. By solving the optimization problem, a parameter θ which falls into the con-
strained space can be obtained. In other words, the mean value of the constrained
particles is more precisely recovered than in the third projection method as stated
in the previous section. Then, we shift all the particles by the difference between the
constrained mean value and the unconstrained mean value, to get an identical co-
variance. A simulation result will be presented later to demonstrate the superiority
of this method.
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3.5 Simulation example

In this section, we consider the inequality constrained parameter estimation of the
CSTR model. The methods described in Section 3.4 will be applied to demonstrate
their performance. The inequality parameter constraints come from the steady-state
measurements of the process and are shown below:[

0.9451
312.6003

]
≤

[
c1(θ)
c2(θ)

]
≤

[
0.9570
312.7239

]
(3.31)

Detail of the constraint generation can be found in Chapter 2.
First, we apply the constrained EnKF method proposed by Prakash et al. [21].

This method includes projection of the prior ensemble and updating of the ensemble
by solving a set of optimization problems. The objective function of the optimiza-
tion problem is not feasible for constrained parameter estimation. Fig.3.12 and
Fig.3.13 are the simulation results of estimating parameters ρ and E

R
with this con-

strained EnKF method. It is obvious that this method leads to large inaccuracy in
constrained parameter estimation.
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Figure 3.12: Inequality constrained estimation of parameter ρ in the CSTR model
by the constrained EnKF proposed by Prakash et al.
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Figure 3.13: Inequality constrained estimation of parameter E
R
in the CSTR model

by the constrained EnKF proposed by Prakash et al.

Then, the first projection method is applied. In this method, after obtaining the
unconstrained ensemble with the EnKF at each sampling instant, the constrained
ensemble is calculated based on Eq.4.25. Also, the second projection method is ap-
plied. In this method, the ensemble mean is constrained and the ensemble particles
are re-drawn with the same covariance. Simulation results are shown in Fig.3.14
and Fig.3.15 for parameters ρ and E

R
respectively. It is seen that bias is present in

the estimation performance.
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Figure 3.14: Inequality constrained estimation of parameter ρ in the CSTR model
by the first and second projection methods
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Figure 3.15: Inequality constrained estimation of parameter E
R
in the CSTR model

by the first and second projection methods

Next, we use the third projection method to estimate the inequality constrained
parameters. In this method, the mean of the estimate is constrained onto the
constraints boundaries, while an identical covariance is preserved for the ensemble.
Fig.3.16 and Fig.3.17 are the simulation results of estimation of parameters ρ and
E
R
. This projection method provides the convergence of the estimation.

0 0.5 1 1.5 2

x 10
4

995

1000

1005

1010

1015

1020

1025

Time

E
st

im
at

io
n 

of
 ρ

 

 

Estimation performance
True value

Figure 3.16: Inequality constrained estimation of parameter ρ in the CSTR model
by the third projection method
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Figure 3.17: Inequality constrained estimation of parameter E
R
in the CSTR model

by the third projection method

Finally, the proposed method is applied, and it results in faster recovery of
estimates compared to the projection method. In the proposed method, the con-
strained parameter estimates can fall into the constrained space, rather than on
the constraints boundaries as in the projection method. Fig.3.18 and Fig.3.19 are
simulation results compared to the third projection method. It is shown that the
proposed method can improve the performance of the constrained parameter esti-
mation.
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Figure 3.18: Inequality constrained estimation of parameter ρ in the CSTR model
by the proposed method
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Figure 3.19: Inequality constrained estimation of parameter E
R
in the CSTR model

by the proposed method

3.6 Conclusions

Constrained parameter estimation with the ensemble Kalman filter (EnKF) has been
considered in this chapter. A more appropriate use of the projection method in con-
straining the particles in the EnKF is introduced. In constraints incorporation, an
identical covariance should be generated in order to obtain better convergence in
the estimation result. An inequality constrained parameter estimation method is
proposed. The proposed method can provide faster recovery of parameter estimates
to account for parameter constraints compared to the projection method. The intro-
duced projection method and the proposed method are compared in the estimation
performance of a continuous-discrete CSTR process, where the performance of the
proposed method is shown to be superior.
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Chapter 4

Inequality Constrained Parameter
Estimation with Moving Horizon
Estimation

Moving horizon estimation (MHE) for constrained parameter estimation is consid-
ered in this chapter. We first present the MHE algorithm, as well as common
approaches for arrival cost approximation. We then address the problem with MHE
when incorporating constraints directly. The proposed method provides an alterna-
tive way for constrained parameter estimation with MHE. The estimation perfor-
mance is demonstrated on a continuous-discrete CSTR model.

4.1 Introduction

In this chapter, we consider another estimation method known as moving horizon
estimation (MHE). MHE is an optimization based strategy for state estimation.
MHE can be regarded as the dual of model predictive control (MPC). The success of
employing on-line optimization in industrial MPC provided the motivation for MHE.
Unconstrained state estimation with moving horizon was proposed by Thomas [35],
and later on by Kwon, Bruckstein and Kailath [36]. Moving horizon state estimation
was first applied in nonlinear initial state estimation in a noise free environment
without constraints by Jang, Joseph and Mukai in 1986 [37].

Solving the optimization problem, however, is computationally demanding, be-
cause the problem dimension grows with time as more data are processed. One
method to reduce the computational load is to bound the size of the estimation
problem by employing a moving horizon approximation. In moving horizon estima-
tion, the state estimate is determined on-line by solving a finite horizon optimization
problem. As new measurements become available, the old measurements are dis-
carded from the estimation window, and the finite horizon state estimation problem
is solved again to determine the new estimate of the state.

Because MHE is formulated as an optimization problem, it is possible to explicit-
ly handle inequality constraints. Muske and Rawlings [38] derived some preliminary
conditions for the stability of state estimation with inequality constraints. Tyler
and Morari [39] demonstrated how constraints may result in instability for nonmin-
imum phase systems. For the constrained problem, unfortunately, it is not possible
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to generate an analytic expression for the arrival cost. In addition, it is difficult to
include the information of constraints into the arrival cost.

The rest of this chapter is organized as follows. First, we introduce the problem
formulation and the moving horizon estimation (MHE) algorithm in Section 4.2. In
Section 4.3, various arrival cost approximations in unconstrained MHE are inves-
tigated. Then, the constrained estimation with MHE is considered in Section 4.4.
The problem of directly constrained MHE lies in the approximation of the arrival
cost, and it will introduce large bias in the estimation result. We propose an alter-
native method to perform the constrained parameter estimation with MHE, which
provides better performance than the directly constrained MHE. Simulation results
illustrating their performance are shown in Section 4.5.

4.2 Moving horizon estimation

4.2.1 Problem formulation

The estimation problem is considered again in this section. The process dynamics
are given by the following equations

xk+1 = f(xk, uk) + wk (4.1a)

yk = h(xk) + vk (4.1b)

where
wk ∼ N (0, Q) (4.2)

vk ∼ N (0, R) (4.3)

The state function, f , and the measurement function, h, are not necessarily
linear. The estimate of the state xk given measurements {y1, y2, . . . , yk} can be
achieved using different kinds of algorithms. The Kalman filter can provide optimal
estimation performance if we have linear functions f and h. For nonlinear estimation
problems, the extended Kalman filter (EKF), the unscented Kalman filter (UKF) or
the ensemble Kalman filter (EnKF) can be applied to obtain sub-optimal estimation
solutions. The EKF, the UKF and the EnKF are based on the prediction-update
Kalman structure. Their solutions are not optimal because there will be error when
representing the real state distribution.

Another approach that provides a solution for the estimation problem is MHE.
The MHE can be viewed as a dual formulation of model predictive control (MPC),
and is based on Bayesian maximum a posteriori (MAP) estimation. Unlike Kalman-
based approaches, the MHE relies on linear programming or nonlinear programming
solvers to find an estimate solution at each sampling instant.

4.2.2 Moving horizon estimation algorithm

The Bayesian MAP estimate of the state x given the measurement y is defined as

x̂ = argmax
x

p(x|y) (4.4)
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Eq.4.4 means that the most likely value of x given y should be obtained as the
estimate x̂. For state space models, we want to find the MAP estimates of the states
{x0, . . . , xT } given the measurements {y0, . . . , yT−1}, that is,

{x̂0, . . . , x̂T} = arg max
{x0,...,xT }

p(x0, . . . , xT |y0, . . . , yT−1) (4.5)

Using Bayes’ rule as well as the nonlinear model of Eq.4.1, one can derive that
(see [40] for detail)

{x̂0, . . . , x̂T}
= arg max

{x0,...,xT }
p(x0, . . . , xT |y0, . . . , yT−1)

= arg min
{x0,...,xT }

ΣT−1
k=0 log pvk(yk − h(xk)) + log p(xk+1|xk) + log px0(x0)

= arg min
{x0,...,xT }

ΣT−1
k=0

(‖yk − h(xk)‖2R−1 + ‖xk+1 − f(xk, uk)‖2Q−1

)
+ ‖x0 − x̄0‖2P−1

0

= arg min
{x0,...,xT }

ΣT−1
k=0

(‖vk‖2R−1 + ‖wk‖2Q−1

)
+ ‖x0 − x̄0‖2P−1

0

where wk and vk are estimated noise and P0 and x̄0 are initial guesses of the covari-
ance and mean of the state. Hence, the solution of the Bayesian MAP estimation of
states {x0, . . . , xT} becomes a minimization problem. This minimization problem
can be re-formulated as

arg min
x0,{wk}T−1

k=0

ΣT−1
k=0Lk(wk, vk) + Γ(x0) (4.6)

where
Lk(wk, vk) = ‖vk‖2R−1 + ‖wk‖2Q−1, Γ(x0) = ‖x0 − x̄0‖2P−1

0

It should be noted that Γ(x0) is an initial penalty function, which summarizes a
priori knowledge of the initial state (Γ(x̄0) = 0 and Γ(x) > 0 for x �= x̄0).

All the state estimates can be obtained by repeatedly solving Eq.4.6 as new
measurement arrives. This is called full information estimation, which has the best
theoretical properties in terms of stability and optimality. We should also note that
to obtain the estimate {x0, . . . , xT}, or x0, {wk}T−1

k=0 , we need to solve an optimization
problem. The problem complexity grows at least linearly with the horizon T , which
will make the computational load a major problem.

In order to reduce the computational load, we use a moving window of length
N and reformulate the estimation problem as

arg min
x0,{wk}T−1

k=0

ΣT−1
k=T−NLk(wk, vk) + ΣT−N−1

k=0 Lk(wk, vk) + Γ(x0) (4.7)

= arg min
z,{wk}T−1

k=T−N

ΣT−1
k=T−NLk(wk, vk) + ZT−N(z) (4.8)

where ZT−N(z) is called the arrival cost at time T −N . The arrival cost is a penalty
function which summarizes the a priori knowledge of the state at time T −N . The
arrival cost can be interpreted as encapsulating all the knowledge before the moving
window. The MHE is illustrated in Fig.4.1.
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Figure 4.1: Illustration of moving horizon estimation (MHE)

The arrival cost calculation or approximation is important in using MHE and
the discussions on arrival cost will be provided later in Section 4.3.

4.2.3 Observability condition of MHE

Observability, which is a system property, is a measure of whether the internal states
of a system can be recovered from measurements.

The observability will be determined by the system property if the full informa-
tion estimation in Eq.4.6 is employed to obtain the estimate. However, we normally
apply a moving window in the MHE to estimate the unknown states. The prior
information outside the moving window will have to be approximated using the ar-
rival cost. If we have a poor arrival cost approximation, then we have to check the
observability condition of the MHE in order to recover the states of a system within
the window length N .

The observability rank condition for the MHE is that the row rank of ∂G
∂x

must
equal n (number of states), where matrix G is defined as [41]

G =

⎡⎢⎢⎢⎣
h(xt−N )

h ◦ f(xt−N)
...

h ◦ f ◦ . . . ◦ f(xt−N )

⎤⎥⎥⎥⎦ ,

where ◦ is function composition, i.e., h ◦ f = h(f(x)). It means that we need
to ensure that there are sufficient measurements available in the moving window
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to recover the unknown states. For a linear system, ∂G
∂x

(Eq.4.9) is similar to the
observability matrix O (Eq.4.10). This is shown below:

∂G

∂x
=

∂

⎡⎢⎢⎢⎣
Cxt−N

CAxt−N
...

CAN−1xt−N

⎤⎥⎥⎥⎦
∂xt−N

=

⎡⎢⎢⎢⎣
C
CA
...

CAN−1

⎤⎥⎥⎥⎦ (4.9)

O =

⎡⎢⎢⎢⎣
C
CA
...

CAn−1

⎤⎥⎥⎥⎦ (4.10)

For a nonlinear system, the observability rank condition only implies local observ-
ability around the x. For a comprehensive discussion of observability in MHE,
readers are referred to [41].

4.3 Arrival cost approximations in MHE

The major issue with the full information estimation shown in Eq.4.6 in real appli-
cations lies in the computational load, which makes it hard to be applied on-line.
In order to reduce the computational load, a horizon is chosen and the arrival cost
is employed.

All the information (measurements and estimates) before the moving window is
summarized in the arrival cost. Generally, it is difficult to compute the arrival cost
ZT−N(z) in Eq.4.8 exactly. The following two types of arrival cost approximations
are often used.

The simplest possible approximation of the arrival cost is to pick ZT−N(z) as a
constant, which means the information before the window is not taken into consid-
eration. By this method, a lower performance will be expected. A simulation will
be presented later in Section 4.5.

Another approach, which is the most common approach, is to approximate the
arrival cost by

ẐT−N(z) = ‖z − x̂mh
T−N‖2P−1

T−N
(4.11)

where Pk is the variance/covariance of the estimated trajectory {x̂mh
k }. Eq.4.11 can

be seen as applying a penalty for {x̂mh
k } (the initial guess in the moving window)

when trying to solve an optimization problem. Therefore, a good approximation of
the covariance P is important to get a good arrival cost approximation in MHE.
From stability considerations, the estimator should not weight the past data too
much [42, 41]. This is especially important when comes to the initial guess of P0.
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Linear system

The covariance can be calculated and updated based on the Kalman filter (KF) in
the case of a linear system. The linear system is shown as

xk+1 = Fxk +Buk + wk (4.12a)

yk = Hxk + vk (4.12b)

In Kalman filter, the prior covariance can be calculated using

P−
k+1 = FPkF

T +Q (4.13)

with an initial condition given by P0.
The Kalman gain can be calculated using

K = P−
k HT (HP−

k HT +R)−1 (4.14)

The posterior covariance can be calculated using

P+
k = (I −KH)P−

k (4.15)

Then, by substituting Eq.4.14 into Eq.4.15, and also substituting Eq.4.13 into
Eq.4.15, we have

Pk+1 = FPkF
T − FPkH

T (HPkH
T +R)−1HPkF

T +Q (4.16)

The covariance propagation for a linear model can be accomplished using Eq.4.16,
which is known as the discrete Riccati equation.

Nonlinear system

For nonlinear discrete systems, an approximation of covariance propagation can
still be obtained by using Eq.4.16. In the nonlinear application of discrete Riccati
equation, F and H are the Jacobians of nonlinear functions f(·) and h(·).

Most systems in practice are continuous processes with discrete measurements.
Therefore, the system model and measurement model are given by

ẋ = f(x, u) + w (4.17a)

yk = h(xk) + vk (4.17b)

In the continuous-discrete system, we can propagate the covariance by using the
following two equations:

Ṗ (t) = FP (t) + P (t)F T +Q where we get P− (4.18)

Pk+1 = (I − P−HT (HP−HT +R)−1H)P− (4.19)

where F and H are Jacobians of the nonlinear function f(·) and h(·). The covari-
ance propagation in this method is the same as in the continuous-discrete extended
Kalman filter.

Besides using the EKF method to propagate the covariance of a nonlinear system,
the unscented Kalman filter (UKF) can also be used to propagate the covariance.
A brief procedure for each iteration in the UKF is shown below:
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1. Selection of sigma points X .

2. Sigma points propagation through nonlinear model f(·) and h(·).
3. Updating sigma points.

4. Calculation of the posterior covariance of the sigma points.

The UKF provides better covariance approximation than the EKF, and details can
be found in Chapter 2.

Moving horizon estimation with larger window sizes will benefit the estimation
performance; however, it also becomes the weakness of MHE in real on-line appli-
cations. It is shown earlier in this section that the arrival cost can be employed to
reduce the window size. Once we can get a good approximation for the arrival cost,
a larger window may not be necessary. Simulations will be provided later in Section
4.5 to demonstrate the proper selection of window size.

4.4 Inequality constrained parameter estimation

with MHE

In practical applications, parameter constraints are commonly encountered. In this
work, we consider inequality parameter constraints as

dL ≤ c(θ) ≤ dU (4.20)

where dL and dU indicate the lower and upper bound of the inequality constraints.
Since MHE is an optimization based method, it can take constraints into consid-
eration naturally. In this section, we will first investigate the performance of the
constrained MHE. Then, a new constrained parameter estimation method with MHE
is proposed.

4.4.1 Problems with directly constrained MHE

In the unconstrained MHE, z, {wk}T−1
k=T−N is obtained by solving the following opti-

mization problem:

ẑ, {ŵk}T−1
k=T−N = arg min

z,{wk}T−1
k=T−N

ΣT−1
k=T−N

(‖vk‖2R−1 + ‖wk‖2Q−1

)
+ ‖z − x̂mh

T−N‖2P−1
T−N

(4.21)
Please note that in Eq.4.21, we have not included constraints into this opti-

mization problem. The arrival cost, or more specifically, the covariance P , can be
calculated either by the EKF or the UKF algorithm. Normally, the EKF or the
UKF algorithm also does not consider constraints when propagating the covariance.

Then, consider the MHE which takes the constraint into consideration directly.
The optimal solution at each sampling instant is obtained using:

z̃, {w̃k}T−1
k=T−N = arg min

z,{wk}T−1
k=T−N

ΣT−1
k=T−N

(‖vk‖2R−1 + ‖wk‖2Q−1

)
+ ‖z − x̂mh

T−N‖2P−1
T−N

(4.22)
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subject to
dL ≤ c(θ) ≤ dU (4.23)

As we can see, the only difference between the Eq.4.21 and Eq.4.22 is that the
latter is constrained when solving the optimization problem. This also explains why
the MHE is able to handle constraints naturally. However, Eq.4.22 may not deliver
good estimation performance due to the arrival cost approximation. If the arrival
cost is approximated by using the EKF or the UKF, the information of the constraint
may not be adequately captured in the arrival cost; hence, the performance is not
satisfactory. This problem is illustrated in Fig.4.2.

Figure 4.2: Illustration of moving horizon estimation (MHE) with constraints

In Fig.4.2, it is feasible to incorporate the constraints within the moving win-
dow. However, the constraint information before the window may not be adequately
captured in the arrival cost; hence, the performance is not satisfactory. A general
analytical expression for the constrained arrival cost is rarely available, and it has
been an open problem [43].

4.4.2 Proposed method

The inequality constraints for parameters can be viewed as constraints on the model.
Therefore, the constraints can provide us some knowledge to obtain a better model
for estimation. Hence, we propose a two-step method to include the inequality
constraints into the estimation with MHE.

In the first step, we use the unconstrained MHE to obtain an unconstrained
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estimate.

ẑ, {ŵk}T−1
k=T−N = arg min

z,{wk}T−1
k=T−N

ΣT−1
k=T−N

(‖vk‖2R−1 + ‖wk‖2Q−1

)
+ ‖z − x̂mh

T−N‖2P−1
T−N

(4.24)
Then in the second step, we update the model by using the simple projection

method,
x̃ = argmin

x
(x− x̂)TW (x− x̂) (4.25)

subject to
dL ≤ c(θ) ≤ dU (4.26)

where W is a weighting matrix which can be either I or P−1. If we set W = I we
obtain the least squares estimate subject to the constraints. If we set W = P−1,
it will result in a constrained estimate that is closer to the true value than the
unconstrained estimate in each iteration [44].

In the first step of the proposed method, the covariance P is calculated using
the EKF or the UKF algorithm. That is to say, the covariance P does not have
information of the constraints either. The constraints are only employed in updating
the model in Eq.4.25. Even though there is not much information of the constraints
in the covariance P , it still can be used to approximate the arrival cost for MHE
along with a better process model. Simulation results will be presented later in
Section 4.5 showing the efficacy of this method.

4.5 Simulation examples

4.5.1 Example 1: A discrete nonlinear system

The discrete nonlinear model [42] is given by

x1,k+1 = 0.99x1,k + 0.2x2,k + w1,k (4.27)

x2,k+1 = −0.1x1,k +
0.5x2,k

1 + x2
2,k

+ w2,k (4.28)

yk = x1,k − 3x2,k + vk (4.29)

(4.30)

where the true initial value of state x is [1,2]. w and v are white noises for state and
measurement equations respectively.

The initial guess for this model in MHE is given by

xini =

[
10
10

]
Pini =

[
1

1

]
For this example, the window size is set as N = 3. Therefore, we need to

calculate the optimal solution of x̂k, ŵk, ŵk+1 and ŵk+2 at each sampling instant.
First, we use the MHE to estimate states x1 and x2 without considering infor-

mation before the window. In this case, the objective function in MHE will be

arg min
z,{wk}T−1

k=T−N

ΣT−1
k=T−NLk(wk, vk) + Φ
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where Φ is a constant value. The estimation performance with constant arrival cost
is shown in Fig.4.3 (for state x1) and Fig.4.4 (for state x2).
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Figure 4.3: Estimation of x1 with constant arrival cost in MHE for a discrete non-
linear model
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Figure 4.4: Estimation of x2 with constant arrival cost in MHE for a discrete non-
linear model

Then, we consider the arrival cost in the MHE. The objective function of the
optimization problem becomes

arg min
z,{wk}T−1

k=T−N

ΣT−1
k=T−NLk(wk, vk) + ZT−N (z)

= arg min
z,{wk}T−1

k=T−N

ΣT−1
k=T−NLk(wk, vk) + ‖z − x̂mh

T−N‖2P−1
T−N
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where P can be calculated using Eq.4.16. The estimation performance is shown in
Fig.4.5 (for state x1) and Fig.4.6 (for state x2). It can be seen that there is less error
in the estimation result compared to the MHE with constant arrival cost. The arrival
cost is important and can contribute significantly to the estimation performance in
MHE.
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Figure 4.5: Estimation of x1 with arrival cost approximation in MHE for a discrete
nonlinear model
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Figure 4.6: Estimation of x2 with arrival cost approximation in MHE for a discrete
nonlinear model
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4.5.2 Example 2: CSTR process

CSTR state estimation

The CSTR process involves two state equations and two measurement equations.
The CSTR model is shown below:

ẋ1 = 1− x1 − 7.2× 1010e
− 8750

x2 x1 + w1 (4.31)

ẋ2 = 350− x2 + 150.6276× 1014e
− 8750

x2
x1

1000
+ 2092.05

(u− x2)

1000
+ w2 (4.32)

y1,k = x1,k + v1,k (4.33)

y2,k = x2,k + v2,k (4.34)

with sampling time TS = 0.05s.
Using the observability rank condition, it is shown that the window length N = 1

is sufficient for the MHE to be observable for state estimation in this CSTR process.
Therefore, the optimal solution will include x̂k, ŵk at each sampling instant. We
use the continuous-discrete EKF method to propagate the covariance in the arrival
cost approximation. Simulation results for estimating state x1 and x2 are shown in
Fig.4.7 and Fig.4.8 respectively. It is shown that the state estimates can converge
to their real values with the MHE.
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Figure 4.7: State estimation of x1 in the CSTR model with MHE
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Figure 4.8: State estimation of x2 in the CSTR model with MHE

CSTR parameter estimation

In this CSTR parameter estimation example, we treat ρ and E
R
as augmented states

x3 and x4 respectively. Hence, the model used in estimation is:

ẋ1 = 1− x1 − 7.2× 1010e
−x4

x2 x1 + w1 (4.35)

ẋ2 = 350− x2 + 150.6276× 1014e
−x4

x2
x1

x3
+ 2092.05

(u− x2)

x3
+ w2 (4.36)

ẋ3 = 0 + w3 (4.37)

ẋ4 = 0 + w4 (4.38)

y1,k = x1,k + v1,k (4.39)

y2,k = x2,k + v2,k (4.40)

with sampling time TS = 0.05s. True values of parameters ρ and E
R

are 1000 and
8750 respectively. The observability rank condition shows window length N = 2
ensures the MHE to be observable for the states and unknown parameters even
with poor arrival cost approximation. Similarly, the optimal solution of x̂k, ŵk and
ŵk+1 will be obtained at each sampling instant.

We first use the continuous-discrete EKF method for MHE arrival cost approxi-
mation in the CSTR parameter estimation. Then, the UKF method for arrival cost
approximation is also applied. Simulation comparisons are shown in Fig.4.9 and
Fig.4.10. It can be observed that the UKF is better than the EKF in the arrival
cost approximation, because the latter involves large linearization errors.
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Figure 4.9: Comparison of estimation of parameter ρ in the CSTR model using
MHE with different arrival cost approximations
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Figure 4.10: Comparison of estimation of parameter E
R

in the CSTR model using
MHE with different arrival cost approximations

It is said previously that N should be at least 2 in order to ensure the observ-
ability of MHE if we have a poor approximation of the arrival cost. Since we have
investigate the above approximation methods, we decrease the window length to
N = 1 and see how it works. Simulation results with a smaller window length of
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N = 1 are compared with N = 2 in Fig.4.11 and Fig.4.12. It is seen that as long
as we have good approximation of arrival cost, a smaller window size can retain the
accuracy of the state estimation.
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Figure 4.11: Comparison of estimation of parameter ρ in the CSTR model using
MHE with different window lengths

0 50 100 150 200 250
8750

8755

8760

8765

8770

8775

8780

8785

8790

8795

8800

Time

E
st

im
at

io
n 

of
 p

ar
am

et
er

 E
/R

 

 

Window length N=1
Window length N=2

Figure 4.12: Comparison of estimation of parameter E
R

in the CSTR model using
MHE with different window lengths
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CSTR constrained parameter estimation

In this section, we consider the inequality constrained parameter estimation prob-
lem of the CSTR model. The methods described in Section 4.4 will be applied to
demonstrate their performance. The inequality parameter constraints come from
the steady-state measurements of the process and are shown below,[

0.9451
312.6003

]
≤

[
c1(θ)
c2(θ)

]
≤

[
0.9570
312.7239

]
(4.41)

Detail of these constraints can be found in the Chapter 2.
First, the MHE in which the constraints are added directly is applied. The UKF

is used for the arrival cost approximation. Since the arrival cost approximation is
not informative enough to include the information of constraints, it is inaccurate.
Hence, there will be large bias in the estimation performance. Fig.4.13 and Fig.4.14
are the simulation results for estimating parameters ρ and E

R
with this constrained

MHE. The black line indicates unconstrained estimation, while the blue dashed line
indicates constrained estimation. It is shown that this method will result in large
bias in the estimation.
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Figure 4.13: Comparison of estimation of parameter ρ in the CSTR model between
unconstrained MHE and directly constrained MHE
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Figure 4.14: Comparison of estimation of parameter E
R
in the CSTR model between

unconstrained MHE and directly constrained MHE

The proposed method is then applied to the estimation problem. In the proposed
method, the model of the process is updated because of the constraints at each
sampling instant. Hence, we will have better recovery of the estimates in the MHE.
Fig.4.15 and Fig.4.16 are the simulation results for estimating parameters ρ and
E
R

with the proposed method. It is shown that the proposed method has faster
convergence than the unconstrained MHE, and has no bias in the estimation.
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Figure 4.15: Simulation comparison between constrained and unconstrained estima-
tion and the proposed method for estimating parameter ρ in the CSTR model
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Figure 4.16: Simulation comparison between constrained and unconstrained estima-
tion and proposed method for estimating parameter E

R
in the CSTR model

4.6 Conclusions

In this chapter, we have investigated the moving horizon estimation (MHE) method
for constrained parameter estimation. Various arrival cost approximations for the
unconstrained MHE are presented and evaluated using a discrete nonlinear model
as well as a CSTR model. The major problem with the directly constrained MHE
is the difficulty of incorporating constraint information into the arrival cost. The
proposed method provides an alternative way for constrained parameter estimation
with MHE. It can result in faster convergence than the unconstrained MHE and also
has better performance than the directly constrained MHE. A continuous-discrete
CSTR model with inequality parameter constraints is employed to demonstrate the
performance of the proposed method.
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Chapter 5

Conclusions and recommendations

5.1 Concluding remarks

The main contributions of this thesis are the development of inequality parameter
constraints from steady-state routine operation data, and proposals of constrained
estimation methods which result in improved constrained estimation performance.
The specific contributions of this thesis can be summarized as follows:

1. Development of a method to construct inequality parameter constraints from
steady-state routine operation data.

2. Development of a constrained parameter estimation framework for the UKF.

3. Development of a constraint implementation method under the UKF frame-
work which provides faster convergence than the projection method.

4. Proposal of the appropriate use of projection method in constraining the par-
ticles in the EnKF, which retains the same covariance as the unconstrained
ensemble.

5. Development of a new constrained parameter estimation method with the
EnKF, which results in better performance than the projection method.

6. Development of an alternative method for constrained parameter estimation
with the MHE that provides better performance than the directly constrained
MHE.

7. Evaluation of the proposed methods using simulated chemical processes.

5.2 Recommendations for future work

Constrained estimation is an interesting and active area of research. In this thesis,
we have investigated the inequality constrained parameter estimation problem. We
have proposed several possible solutions but a number of problems remain open.
The following problems are worthy of further investigations:
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1. Mean and covariance inconsistency problem.
In constrained estimation with that Kalman filter or EKF, there is always a
way to constrain the mean value of the estimate. However, the covariance
handling in constrained estimation remains a difficult problem and it is an im-
portant issue in estimation algorithms. The problem applies to both the UKF
and the EnKF, and an appropriate method should be developed to ensure the
mean and covariance, which are recovered from the samples, to be consistent
even with constraints.

2. MHE arrival cost approximation.
The poor arrival cost approximation, which does not include the constraint
information, could lead to the failure of MHE. It is important to find a good
approximation to the arrival cost to incorporate the constraint information.

3. NLP solvers.
The search for a solution using nonlinear programming solvers is common to
encounter in constrained handling, and it is sometimes time consuming. So
there is a need to find better NLP solvers that is more efficient in order for
on-line implementation.
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