This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Search
Skip to Search Results- 1Augmented Lagrangian optimization
- 1Game theory
- 1Graph Laplacian
- 1Hyperparameter robustness
- 1Neural Network Sparsity
- 1Poker
-
Spring 2024
In machine learning, sparse neural networks provide higher computational efficiency and in some cases, can perform just as well as fully-connected networks. In the online and incremental reinforcement learning (RL) problem, Prediction Adapted Networks (Martin and Modayil, 2021) is an algorithm...
-
Spring 2024
The ability to learn good representations of states is essential for solving large reinforcement learning problems, where exploration, generalization, and transfer are particularly challenging. The Laplacian representation is a promising approach to address these problems by inducing intrinsic...