
It’s a magical world, Hobbes, ol’ buddy... Let’s go exploring!

– Calvin (Calvin and Hobbes).

Games lubricate the body and the mind.

– Benjamin Franklin.

Rock is an equilibrium.

– Michael Bowling.
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Abstract

One way to create a champion level poker agent is to compute a Nash Equilibrium in an abstract

version of the poker game. The resulting strategy is then used to play in the full game. With this

approach, translation is required between the full and abstract games in order to use the abstract

strategy. In limit poker this translation step is defined when the abstraction is chosen. However,

when considering no-limit poker the translation process becomes more complicated. We formally

describe the process of translation and investigate its consequences. We examine how the current

method, hard translation, can result in exploitable agents and introduce a new probabilistic method,

soft translation, that produces more robust players. We also investigate how switching between

strategies with different underlying abstractions affects the performance of an agent.
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Chapter 1

Introduction

Games have always been a prevalent part of society. Going back as far as recorded history allows,

we observe that basically every society played games of some type. Games stimulate the mind

and provide a competitive environment and social outlet where people can strategize. In modern

times, the best game players are world renowned for mastering games like backgammon and chess.

With the rise in computing power and further development of game theory, it is not surprising that

computers have become key players in some of these games.

Games have been used as a testbed for artificial intelligence research since John von Neumann

and John Nash laid the foundation for game theory over 50 years ago [21, 18]. Since then game

theory, heuristic search, monte carlo simulation and linear optimization have seen intense study

and development. With the advent of current technological advances, much of this theory has been

implemented in computers and resulted in champion level agents in chess (Deep Blue [11]), checkers

(Chinook [26]) and even poker (Polaris [13]). There are several reasons why games have been used

so much in artificial intelligence research.

Well Defined Rules: The rules in games are well defined. It is clear what the possible situations

are and what actions are legal in any given situation. Every player is forced to play within the rules,

making it impossible to play unexpected tricks.1 This makes it easier to create agents to play games.

Clear Rewards: The possible rewards in games are clearly defined. Certain situations in a

game have rewards associated with them. These rewards may be very simple, for instance in chess

or checkers the reward is simply +1 for being in a winning state, -1 in a losing state and 0 elsewhere.

In a game like poker, however, the reward represents the number of chips won/lost during the hand.

Easy Evaluation: Given the ruleset and reward functions, it is easy to evaluate a strategy or set

of strategies for a given game. If the game is small enough, this can be a direct calculation using

the given strategies. In other situations, the agents can be repeatedly played against each other to

determine which is better.
1Though of course, a player may play in an unexpected manner within the ruleset.
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1.1 Poker

The game of poker is used as the primary testbed for the work in this dissertation. Poker has been

studied for some time [3] and has grown in popularity in recent years. In addition, three annual

AAAI Computer Poker Competitions [33] have helped spur poker research.

Poker exhibits many properties that make it an interesting game to study. First, it is a very large

game, which means that it is computationally infeasible to store the entire game in memory. Second,

there is a large amount of stochasticity in the game in the dealing of cards. This means that luck is a

factor in determining who wins an individual hand and makes it more difficult to differentiate which

player has more skill. Third, poker is a game of imperfect information in that a player’s cards are

not visible to the other players. This means that techniques used for games like checkers and chess,

games of perfect information, are in general not effective for poker. Finally, poker has many reward

values instead of the standard 1 for winning and -1 for losing. In poker, the reward is the number of

chips won/lost in a hand, and one of the main skills is the ability to manipulate this amount to win

more chips and lose fewer chips.

Two variants of poker are primarily used in this dissertation. The first is Texas Hold’em. This

game is the most popular variant of poker being played today and is most often the variant of poker

shown on television. Additionally, this is the variant used in the annual AAAI poker competitions.

The second variant is Leduc Hold’em. Leduc Hold’em is a much smaller game used for experi-

ments and is not generally played by humans. This variant is used because it is small enough to

theoretically solve, and thus we can obtain more accurate measurements when creating agents for

this game.

Texas Hold’em is a game played with a standard 52 card deck consisting of 4 suits and 13 ranks.

Each player makes the best 5-card poker hand possible according to the standard poker ranking. The

game consists of several stages.

Blinds: One player is designated the dealer (this generally rotates after each hand). The player

to the left of the dealer is the small blind who makes a forced bet whose size is half that of the big

blind. The player to the left of the small blind is the big blind who makes a forced bet whose size is

a small bet. A small bet is the unit amount determining the stakes of the game.

Pre-flop: All players are dealt two private cards only they can use, followed by a betting round.

Flop: Three community cards are revealed that all players can use, followed by a betting round.

These community cards, and all subsequent community cards, are often referred to as the board

cards.

Turn: One community card is revealed, followed by a betting round.

River: A final community card is revealed, followed by a final betting round.

Showdown: If more than one player has not folded during the betting rounds, the player with

the best 5-card poker hand wins the money placed into the pot during the betting rounds.

The betting round differs slightly depending on the variant being played. In all variants, the
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pre-flop betting round begins with the person left of the big blind, and all other betting rounds begin

with the small blind. Every player can choose to either fold (forfeit their hand), check/call (match

the largest current bet), or bet/raise (add additional chips to the pot that others must match). In limit

Texas Hold’em, the amount raised is determined by the round and not by the players. In the first

two rounds the bet size is one small bet, and in the last two rounds it is two small bets (one big bet).

No-limit differs in that players can bet/raise any number of chips between a minimum bet and all

of their chips. The minimum bet/raise is either the size of the bet currently faced or one small bet,

whichever is larger.

Heads-up No-limit Texas Hold’em refers to the no-limit betting version of Texas Hold’em in

which there are only two players. In no-limit, every player starts with a number of chips, referred

to as their stack. An arbitrary number of no-limit variants can be created by varying the stack sizes

of the players in the game. Throughout this dissertation three such games will be referenced, which

have stack sizes of 500 big blinds (BB), 200BB and 100BB. The 500BB game was used in the 2007

and 2008 No-limit AAAI Computer Poker Competitions, whereas the 200BB game was used in the

2009 competition. The 100BB game is the stack size most commonly played by humans, and thus

some experiments were run in this game as well.

In no-limit Hold’em a small bet (sb) is the size of the big blind as well as the minimum bet size

when making a bet. In all of our no-limit variants the small bet is 2 chips (and thus the small blind

is 1 chip). When evaluating players, we will generally refer to their performance in terms of small

bets won per hand, or sb/h. The term millibets (mb) is also used, with one small bet equal to 1, 000

mb. All results will be given in either sb/h or mb/h, depending on the magnitude of the data.

Leduc Hold’em is a game similar to Texas Hold’em but much smaller. The Leduc game only

has 6 cards: 2 suits with 3 ranks. Each player is dealt one private card, and the flop consists of only

one public card. There are only two betting rounds, one after the private cards are dealt and one after

the flop is dealt. At the showdown, there are no flushes or straights so the highest hand is a pair,

followed by whoever has the highest cards.

The variant we use has stack sizes of 12 chips and each player antes 1 chip at the start of each

hand. Since this game is so small, we can directly calculate the best response to any strategy. This

means that given any strategy, we can compute a value that tells us how exploitable that strategy is.

In Leduc Hold’em sb/h and mb/h are again used for player evaluation. However, since each player

antes 1 chip, the small bet is equal to one chip instead of two.

1.2 Motivation

The research performed for this dissertation was inspired by a single point of data from the 2007

AAAI Computer Poker Competition [33]. In this competition I was partially responsible for cre-

ating a variety of agents, dubbed PokeMinn. These agents worked by performing expected-value

computations on a model of the game. The two limit versions of PokeMinn had been well tested and

3



had their parameters tweaked to provide slightly different but good behaviors. The no-limit version

of PokeMinn may or may not have been written the night before the competition deadline, fulfilling

only the requirements that it run without crashing and within the time allotted. Needless to say, I

was not expecting much to come out of this agent. However, the results of the competition, shown

in Table 1.1, highlight an interesting event. In the table, every row denotes a player as (X) Name,

with the column denoted by the same number corresponding to the same player. The intersection of

two players shows the amount that the row player beat the column player by. Many similar tables

will be shown in this dissertation. It is important to note that a player that folds every hand loses at

most 0.75 sb/h.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Avg
(1) BluffBot20 0.17 0.24 0.58 2.09 2.89 3.44 0.48 1.85 2.47 1.58
(2) GS3 -0.17 -0.08 0.50 3.16 0.12 1.88 4.20 -42.06 5.02 -3.05
(3) Hyperborean07 -0.24 0.08 -0.05 6.66 5.46 6.80 8.70 14.05 22.12 7.06
(4) SlideRule -0.58 -0.50 0.05 11.60 9.73 10.34 10.39 15.64 10.79 7.49
(5) Gomel1 -2.09 -3.16 -6.66 -11.60 3.18 8.37 11.45 62.39 52.33 12.69
(6) Gomel2 -2.89 -0.12 -5.46 -9.73 -3.18 15.08 11.91 58.99 40.26 11.65
(7) Milano -3.44 -1.88 -6.80 -10.34 -8.37 -15.08 5.74 12.72 27.04 -0.04
(8) Manitoba1 -0.48 -4.20 -8.70 -10.39 -11.45 -11.91 -5.74 18.82 50.68 1.85
(9) PokeMinn -1.85 42.06 -14.05 -15.64 -62.39 -58.99 -12.72 -18.82 34.30 -12.01
(10) Manitoba2 -2.47 -5.02 -22.12 -10.79 -52.33 -40.26 -27.04 -50.68 -34.30 -27.22

Table 1.1: Performance results of the no-limit aspect of the 2007 AAAI Computer Poker Competi-
tion in smallbets/hand (sb/h)

Looking at Table 1.1, one may notice that the match between GS3 and PokeMinn appears to

be an outlier. GS3 finished in second place, losing to only two other agents by a small amount.

PokeMinn finished in second to last place, beating only one other agent. Regardless, PokeMinn

beat GS3 by 42.06 sb/h, the largest amount (in absolute value) that any of the top 4 bots obtained

against any opponent. This loss was so drastic it caused GS3’s average performance to be −3.05

sb/h, the third lowest overall average. The competition was run in a bankroll runoff fashion. For this

metric all players are considered, and the player with the lowest bankroll is removed. This process

is repeated without the removed player(s) until only one player remains. Thus, when PokeMinn was

eliminated GS3’s average bankroll rose significantly. Obviously, this result was very strange and

required further investigation.

After speaking with some of the other participants, it appears that GS3 had been interpreting

PokeMinn’s bets strangely. GS3 had been built with only 4 betting options: fold, call, bet the size

of the pot and go all-in. Whenever PokeMinn made a bet larger than the size of the pot, GS3 had

to decide whether to interpret that bet as a pot bet or an all-in bet. Due to PokeMinn’s design, it

regularly made bets of over 100 chips, followed by going all-in. GS3 interpreted the first bet as a

pot bet (despite the real size of the pot being 12 chips or smaller) and it would call, but it would later

fold to the all-in bet. This allowed PokeMinn to regularly win hundreds of chips from GS3.

As the tournament coordinator said, “If [PokeMinn] had been making the bets GS3 thought

it was, GS3 would have crushed it.” As PokeMinn was generally a weak player, the fact that it
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could exploit a much better player so well meant that there were issues in this game people were

not considering. It may be true that the underlying strategy for GS3 was very strong, but since it

interpreted the real game state poorly it could be exploited for a large number of chips. Thus, I set

out to investigate this situation and determine what was happening.

1.3 Contribution

This dissertation focuses mainly on the implementation of poker agents created at the University of

Alberta. Most of the concepts discussed are generalizable to other games. The basic concept for

creating poker strategies is shown in Figure 1.1. We wish to compute a full game strategy, but due to

the size of the full game this cannot be done directly. Instead, we walk through three steps. We first

create an abstraction of the full game. Second, we compute a solution to the abstract game. Third,

we translate between the full game and the abstract game to use the abstract solution to play the real

game.

Figure 1.1: Full game strategy development process

Abstraction: A smaller version of poker is created by abstracting the full game. One method for

creating the abstraction is to bucket the possible card combinations according to how good they are

(for instance, according to some hand strength metric). Another method is to restrict what actions

are legal, thus reducing the size of the game tree.

Equilibrium Computation: The abstract game is solved by computing a Nash equilibrium. A

variety of algorithms for doing this will be discussed in Section 2.2. This computation results in a

strategy for the abstract game.

Translation: States in the real game must be translated into states in the abstract game in order

to use the strategy for the abstract game in the real game. This can be a simple mapping of real

states to abstract states or a more complicated process. This enables one to use the abstract strategy

to play in the full game.

This work focuses on translation, the final step. As was seen in Table 1.1, a strong player with

poor translation can result in a very exploitable player. The concept of translation will be formally

defined and analyzed, including an in-depth examination of the no-limit agents produced by the

5



University of Alberta. We also design a number of exploitative techniques that take advantage of

agents that employ poor translation methods. In designing these techniques, we are able to find new

translation methods that defend against exploitative agents. These methods come in the form of soft

translation, a probabilistic translation method that results in a smooth view of the action space, and

strategy switching, a translation method that takes advantage of strategies with different underlying

abstractions. Both of these methods are shown to produce more robust players than the current

translation methods being used.

In addition to the work on translation, this dissertation explores the no-limit aspect of poker

strategies. Many of the techniques used for limit poker, including DIVAT [2] and importance sam-

pling [4], are extended to no-limit and examined. The abstraction methods used by limit poker

are also investigated, and an extensive exploration of possible abstraction choices for no-limit is

performed. This investigation provides us with a better understanding of the important aspects of

no-limit poker and will help us create an agent capable of competing with champion level human

players.

Chapter 2 discusses the underlying concepts in game theory revolving around abstraction and

equilibria. It also shows some brief results from extending evaluation techniques used in Limit

Texas Hold’em to the no-limit game. Chapter 3 analyzes how the no-limit Polaris agent works,

laying the ground work for important aspects of translation. Chapter 4 formalizes the concept of

translation and shows how this concept applies to poker. Additionally, it provides a new method of

translation that creates more robust players than before. Finally, Chapter 5 investigates the concept

of switching, within a hand, between strategies that use several different abstractions to create a

player with a better understanding of the real game.
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Chapter 2

Background

2.1 Extensive Form Games

Although this work deals primarily with the game of poker, most of the algorithms and techniques

described can be applied to many highly complex, competitive scenarios with imperfect informa-

tion. Many such problems, including poker, can be represented using an extensive form game tree

formulation. One of the reasons why this formulation is so useful is because of the power it provides

in creating strategies for games, as well as the flexibility it provides in describing many different

games. Given a zero-sum two player extensive form game, we know that there exists an equilibrium

strategy. An equilibrium strategy is a strategy in which no player can benefit by deviating from the

strategy and results in a strategy that bounds the worst case scenario. We can also evaluate strategies

in terms of how far from equilibrium they are. This provides us with an excellent metric for evaluat-

ing strategies, in that we can calculate how much a strategy can be beaten by. All of these concepts

will be formalized below.

2.1.1 Definition

An extensive game involves combinations of actions taken by players and chance. For example, in

poker, the actions would be the player actions (fold, call or raise) together with the chance actions

(cards dealt). Each list of actions is called a history and hidden information can be modeled by

partitioning the histories into sets, called information sets, whose elements cannot be distinguished

from one another by the acting player. For example, in poker, two histories that differ only by the

opponent’s cards would be indistinguishable and would be in the same information set. Each history

also has a player or chance assigned to it, designating whose turn it is to act.

Formally, we can define an extensive game as follows.

Definition 1 (Extensive Game) [23, p. 200] A finite extensive game with imperfect information is

denoted Γ and has the following components:

• A finite set N of players.
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• A finite set H of sequences, the possible histories of actions, such that the empty sequence is

in H and every prefix of a sequence in H is also in H . Z ⊆ H are the terminal histories.

No sequence in Z is a strict prefix of any sequence in H . A(h) = {a : (h, a) ∈ H} are the

actions available after a non-terminal history h ∈ H \ Z.

• A player function P that assigns to each non-terminal history a member of N ∪ {c}, where

c represents chance. P (h) is the player who takes an action after the history h. If P (h) = c,

then chance determines the action taken after history h. Let Hi be the set of histories where

player i chooses the next action.

• A function fc that associates with every history h for which P (h) = c a probability measure

fc(·|h) on A(h). fc(a|h) is the probability that a occurs given h, where each such probability

measure is independent of every other such measure.

• For each player i ∈ N , a partition Ii of Hi with the property that A(h) = A(h′) whenever h

and h′ are in the same member of the partition. Ii is the information partition of player i; a

set Ii ∈ Ii is an information set of player i.

• For each player i ∈ N , a utility function ui that assigns each terminal history a real value.

ui(z) is rewarded to player i for reaching terminal history z. If N = {1, 2} and for all z,

u1(z) = −u2(z), an extensive form game is said to be zero-sum.

In this work we focus exclusively on two player zero-sum games. Many games also work under the

assumption of perfect recall. Perfect recall refers to the fact that a player remembers every action

that was taken, by both players and chance, during the game.

We can define a strategy σ for an extensive game as a probability distribution over legal actions

for every possible history.

Definition 2 (Strategy) [32] A strategy of player i σi is a function over A(Ii) for each Ii ∈ Ii and

Σi is the set of all strategies for player i. A strategy profile σ consists of a strategy for each player,

σ1, σ2, ..., with σ−i referring to all the strategies in σ except σi.

Let πσ(h) be the probability of history h occurring if players choose actions according to σ. We

can decompose πσ = Πi∈N∪{c}π
σ
i (h) into each player’s contribution to this probability. Hence,

πσ
i (h) is the probability that if player i plays according to σ then for all histories h′ that are a

proper prefix of h with P (h′) = i, player i takes the corresponding action in h. Let πσ
−i(h) be

the product of all players’ contribution (including chance) except player i. For I ⊆ H , define

πσ(I) =
∑

h∈I πσ(h), as the probability of reaching a particular information set given σ, with

πσ
i (I) and πσ

−i(I) defined similarly.

If we have a strategy for a game, then we can create an agent that plays the game according to that

strategy. A strategy player is a player that, when it is player i and h ∈ Ii, takes actions by sampling
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from σi(Ii). If all players play according to some strategy σ, then we can define the expected

utility for player i to be ui(σ). This expected utility can be directly calculated because having σ

allows us to calculate the probability of reaching each terminal node, and thus the expected value is

simply the weighted sum of the utility of the terminal nodes. Using the above notation, we find that

ui(σ) =
∑

h∈Z ui(h)πσ(h). We will often use the notation ui(σi, σj) to refer to ui({σi, σj}).

2.1.2 Poker Example

Poker can be described as a zero-sum extensive form game. Due to the size of most poker games,

it is difficult to explicitly describe them. However, we can do so using heads-up Kuhn poker [15].

Kuhn poker is a simple game in which there are only three cards, the jack, queen and king. Each

player antes one chip and receives one private card. The first player can then check (k) or bet (b).

If the first player checked, the second player can also check or bet, otherwise the second player can

call (k) or fold (f ). If the second player bets, the first player can also call or fold. If neither player

has folded, the player with the higher card wins the pot. We can see how this is formulated as an

extensive game.

Definition 3 (Kuhn Poker) A formalization of the Kuhn Poker extensive form game is as follows:

• N = {1,2}

• All histories h ∈ H are of the form {∅}, {c} or {ca1...an} where c are the cards dealt

to the players and can be any of the following: cKQ, cKJ , cQK , cQJ , cJQ, cJK . a1...an

is the betting sequence and can be k, b, kk, kb, kbk, kbf, bk, bf . Z ⊆ H are the histories

kk, kbk, kbf, bk, bf .

• P (∅) = chance, P (c) = 1, P (ca1) = 2, P (ca1a2) = 1

• fc is evenly distributed over the options and is thus 1/6 for all options

• Each player cannot see the private card of the other player. Thus, I1 has any history with the

prefix cKQ and the history that differs by changing the first action to cKJ in the same block

of the partition. The same holds true for cQK and cQJ as well as cJQ and cJK . Player 2

exhibits a similar property with the cards reversed. All other differences in the histories result

in being in different information sets.

• We have u1(cbf) = 1, u1(ckbf) = −1, u1(ckk) = 1 when player 1 is dealt the higher card

and -1 otherwise. For z ∈ {ckbk, cbk}, u1(z) = 2 when player 1 is dealt the higher card and

-2 otherwise.

One can imagine how this formalization could extend to larger games of poker. More cards can

be dealt, cards can be dealt multiple times, and more actions can be taken by the players.
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2.1.3 Best Response and Nash Equilibria

If we have some strategy σ, then we can calculate the utility for player i, ui(σ), given that all players

play according to σ. If we fix σi and vary the other player strategies to create σ′, the new utility

ui(σ′) may be different. Ideally, we would like some guarantee on what utility player i will obtain

when using strategy σi, which brings us to the concept of a Nash Equilibrium [18].

Definition 4 (Nash Equilibrium) A Nash equilibrium is a strategy in which no player can benefit

by deviating from the strategy. Thus, σ is a Nash equilibrium if and only if for all players i:

ui(σ′i, σ−i) ≤ ui(σi, σ−i) ∀σ′i (2.1)

An ε-Nash equilibrium is a strategy σ where each player is at most ε away from an equilibrium, or

for all players i:

ui(σ′i, σ−i) ≤ ui(σi, σ−i) + ε ∀σ′i (2.2)

Nash equilibria are strategies that are minimally exploitable. Exploitability is defined as how

much a player could take advantage of another player’s strategy. For instance, if we consider player

i’s strategy to be a set of variables, we can calculate the strategy that maximizes player i’s utility,

given that all other players play according to σ. Thus, if we let σi vary but keep all other player

strategies within σ constant, we can find the best response for player i to σ−i.

Definition 5 (Best Response) Given some strategy σ−i the best response to σ−i for player i is the

strategy σi that maximizes player i’s utility, having value:

bri(σ−i) = max
σi∈Σi

ui(σi, σ−i) (2.3)

We observe that if σ∗ is an equilibrium strategy, then bri(σ∗−i) = ui(σ∗). If σ is not an equilib-

rium strategy, then we say that bri(σ−i)− ui(σ∗) is the exploitability of σ−i. Thus, we can say that

a strategy σ is an ε-Nash equilibrium if bri(σ−i) − ui(σ∗) < ε ∀ i. In two player games, the best

response tells us how far a player’s strategy is from equilibrium. In zero-sum games, we have that∑
i ui(σ∗) = 0, and thus

∑
i bri(σ−i) is the exploitability of the strategy profile σ.

2.2 Equilibrium Algorithms

Nash equilibria guarantee an upper bound on the exploitability of an agent. In two player zero-sum

games, the expected utility of an equilibrium strategy profile is 0. John Nash proved that every

two player zero-sum game has an equilibrium solution [18]. The question is then how to find an

equilibrium in a given game, and a variety of techniques have been developed over the years to do

so. Linear programming is a concept that was developed in 1963 [6] and still proves to be useful

today. However, new methods have arisen that allow one to solve larger games. Two families of

methods include gradient-based algorithms [7] and counterfactual regret minimization [32].
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2.2.1 Linear Programming

Linear programming is a technique that has been around since 1963 [6]. The general concept is that

we wish to maximize a real-valued affine function f :

f(x1, x2, ..., xn) = a1x1 + a2x2 + ... + anxn + b (2.4)

or equivalently aT x, with some constraints on the vector x = {x1, ..., xn}, which can be specified

as Ax ≤ c and x ≥ 0, where A is a matrix of constraint coefficients and c is a vector. Once a

problem has been formalized as a linear programming problem, it can then be solved in polynomial

time using a number of methods including the simplex method [19] and the interior point method

[17].

Poker can be formulated as a linear programming problem using the sequence form repre-

sentation of a strategy [29]. Given a two player game with strategy σ = {σ1, σ2}, we know

that the utility for a player can be calculated as ui(σ) =
∑

h∈Z ui(h)πσ(h). Since we know

σ, πσ(h) is simply the product of chance node and strategy probabilities. We can then write

πσ(h) = πσ
1 (h)πσ

2 (h)πσ
c (h)∀h, and ui(σ) =

∑
h∈Z πσ

1 (h)πσ
2 (h)πσ

c (h)ui(h). We note that all

πσ
c (h) and ui(h) are constants, and thus we only need to solve for πσ

1 (h) and πσ
2 (h). Let x and

y represent vectors of all possible sequences for players 1 and 2, respectively, including the null

sequence. Define A to be the expected payoff matrix for player 1, where Aij = πσ
c (h)u1(h) if fol-

lowing sequences i and j by players 1 and 2 results in a valid terminal history h ∈ Z, and Aij = 0

otherwise. The game then takes the form of xT Ay, where player 1 is attempting to maximize this

value and player 2 is attempting to minimize this value. Finally, we have the constraints on x and

y in the form of Ex = e, Fy = f , x ≥ 0 and y ≥ 0. The constraints require that the sum of the

probabilities leading into an information set equals the sum of the probabilities leaving the informa-

tion set. For instance, if we have a sequence s with an associated weight w and the set of sequences

S having s as their immediate prefix, then the sum of the weights of the sequences in S must be w.

This applies to the constraints for both x and y. The problem is thus defined in a way that is solvable

using linear programming techniques. When described in this fashion, the memory required to run

the algorithm is linear in the number of states in the game. This contrasts to newer methods, which

only require memory linear in the number of information sets in the game. For our experiments,

we use CPLEX [12], a linear programming solver, to solve smaller games of poker including Leduc

Hold’em.

2.2.2 Gradient-Based Algorithms for Finding Nash Equilibria

Gradient-based algorithms for finding Nash equilibria is an approach described by Gilpin and col-

leagues [7]. Gradient-based algorithms descend to the equilibrium point in an extensive game from

an arbitrary starting point. To start, they consider the saddle-point problem that follows from the

11



sequence form representation of a two player zero-sum sequential game:

max
x

min
y

xT Ay = min
y

max
x

xT Ay (2.5)

The problem with using gradient-based algorithms here is that miny xT Ay and maxx xT Ay are not

smooth functions. Thus, they must first be smoothed before any work can be done.

Gilpin and colleagues use the excessive gap smoothing technique [20] to smooth the aforemen-

tioned functions. This technique provides them with prox functions d1 and d2 that allow them to

create smooth versions of the previous functions: minyxT Ay+u2d2(y) and maxxxT Ay−u1d1(x)

for some u1, u2 > 0. Their algorithm is then designed to reduce u1 and u2 over time as x and y

converge to approximate solutions. These solutions are then ε-Nash equilibria in the original game.

2.2.3 Counterfactual Regret Minimization

Counterfactual regret minimization is a technique first proposed by Zinkevich et al.[32] and Johan-

son [13]. This technique uses regret minimization to eventually converge to an equilibrium. The

concept of regret is that after performing some actions, we can calculate how much we would rather

have performed some other actions. Specifically, if we play one game according to strategy σ and

obtain some utility u, our regret is u∗ − u, where u∗ is the maximum utility we could have obtained

by playing some other strategy (though this strategy must be the same when repeatedly playing the

game). If a game is played repeatedly, we can define the average regret to be the average of the

regret for every play. If the average regret of all the players in a game is less than ε then the strategy

is an ε-Nash equilibrium [32, page 3].

The important concept of CFR is to calculate a regret at every information set instead of over

the whole strategy space. Given strategies σt for each time step t, information set I and utility of

playing σt given we reached set I ui(σt, I), then the immediate counterfactual regret is [32, page

4]:

RT
i,imm =

1
T

argmax
a∈A(I)

T∑
t=1

πσt

−i(ui(σt|I→a, I)− ui(σt, I)) (2.6)

where σt|I→a represents σt where player i performs action a at information set I . They prove that

minimizing the counterfactual regret at every information set also minimizes the overall regret, and

thus leads to an equilibrium solution when played in self-play. CFR is the method we use to create

our agents in the Texas Hold’em game.

2.3 Abstraction

Since many games are too large to handle in their entirety, abstraction is often used to make the game

a manageable size. Large games can be abstracted by merging information sets to reduce their total

number. Since an information set contains histories and a history is a sequence of player and chance

actions, there are several techniques for increasing the size of an information set. One technique
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combines chance actions together into buckets. For example, in poker, multiple player hands could

be combined together into a single bucket. A second technique artificially reduces the number of

allowable player actions in the abstraction. For example, in no-limit poker, a raise could artificially

be constrained to be the amount currently in the pot (pot) or the current player’s full stack (all-in).

2.3.1 Definitions

More formally, game abstraction is defined as follows.

Definition 6 (Abstraction) [30] An abstraction for player i is a pair αi =
〈
αI

i , α
A
i

〉
, where,

• αI
i is a partitioning of Hi, defining a set of abstract information sets that must be coarser1

than Ii, and

• αA
i is a function on histories where αA

i (h) ⊆ A(h) and αA
i (h) = αA

i (h′) for all histories h

and h′ in the same abstract information set. We will call this the abstract action set.

The null abstraction for player i, is φi = 〈Ii, A〉. An abstraction α is a set of abstractions αi,

one for each player. Finally, for any abstraction α, the abstract game, Γα, is the extensive game

obtained from Γ by replacing Ii with αI
i and A(h) with αA

i (h) when P (h) = i, for all i.

Waugh et al.[30] did an analysis of the effect of abstracting games. In particular, they found

that monotonicity in abstraction refinement does not hold. Assume we have two abstractions αa

and αb of Γ such that αa is a strict refinement of αb, so that every information set in αb is the

union of some information sets in αa. This means that αa holds strictly more information about the

real world than αb. Waugh found that an equilibrium solution to Γαa could be more exploitable in

Γ than an equilibrium solution to Γαb . In essence, larger abstractions do not necessarily produce

better strategies.

This definition of abstraction runs into some problems when performing action abstraction. In

no-limit poker, players have possibly hundreds of betting options, which makes the game incredibly

large (the 500BB game has roughly 1071 game states [9]). Creating and storing the partitioning

for this space would be infeasible, and thus we want a type of abstraction that does not require us

to explicitly specify the partition. Additionally, if we wish to restrict which actions are legal, then

suddenly a large number of histories no longer make sense. If bets of size 2 are disallowed, then

a normal abstract game would still have histories in which these bets occur. However, there is no

need for the game definition to contain histories in which a bet of size 2 occurs. If we were only

to maintain the legal histories according to the abstraction definition, then the number of histories

would be much smaller. Therefore, we define a more general kind of abstraction, called a loose

abstraction, that provides more flexibility.

1Recall that partition A is coarser than partition B, if and only if every set in B is a subset of some set in A, or equivalently
x and y are in the same set in A if x and y are in the same set in B.
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Definition 7 (Loose Abstraction) An extensive game Γ′ is a loose abstraction of Γ if H ′ ⊆ H and

∃ an abstraction α such that ∀i

• ∃ a bijection between I′i and αI
i and any two histories h′1, h

′
2 ∈ H ′ in the same information

set in I′i are in the same information set in αI
i

• A′(h′) = αA
i (h′) ∀ h′ ∈ H ′

The concept of a loose abstraction is that there exists a partitioning of the full game space, but

we are not explicitly specifying it. We see that this is a more flexible type of abstraction in that for

any abstraction α, Γα is a loose abstraction of Γ. This definition allows us to define an abstract game

based solely on restricting a specific set of actions from the real game, without specifying how the

other actions are handled. However, to use an abstract game strategy to play in the real game we

must find a way to handle the histories in the real game that contain these restricted actions. This is

generally done with translation, which is the focus of this work.

2.3.2 Card Abstraction

There are a variety of different methods that have been used to abstract the cards in poker, but all

of them revolve around bucketing. If we have n available buckets, we must decide how to partition

the full card space into said buckets. In general, we wish to place similar hands in the same bucket,

for some metric of similar. Thus, card abstraction typically boils down to different methods of

clustering hands. When doing so, there are a variety of different bucket types one can focus on.

Bucketing Options

If a player never forgets something it once knew, it is said to have perfect recall. When considering

bucketed games, this means that the player remembers what bucket it was in on every round. Perfect

recall has some benefits because of the guarantees it provides with respect to equilibrium solving.

However, it restricts how many buckets one can have on each round, as the total number of buckets

is the product of the number of buckets on each round. In particular, it means that the total number

of bucket sequences for every round is strictly increasing, such that an abstraction with 8 buckets

on every round actually has 8 buckets on the preflop, 64 bucket sequences on the flop, 512 on the

turn, and 4096 on the river. While remembering earlier round buckets helps differentiate the current

situation, it means we cannot have a large number of buckets on earlier rounds. If we want to

increase the number of buckets on the preflop, this also increases the number of buckets everywhere

else in the abstraction. A solution to this problem is to drop the perfect recall assumption.

Imperfect recall refers to having an abstraction in which the player forgets information it pre-

viously knew. For instance, if our player forgets what bucket it was in on the preflop once the flop

comes, it is said to have imperfect recall. While imperfect recall allows us more flexibility in ab-

straction creation, using it means that we are no longer guaranteed to converge to an equilibrium. In
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practice, this has not been an issue. Imperfect recall allows us to increase the number of buckets on

earlier rounds without increasing the number of buckets in later rounds. For instance, in the preflop

there are only 169 possible 2-card combinations one could have, taking into account suit isomor-

phisms. Using imperfect recall, we could create a player that has 169 buckets on the preflop that are

forgotten once the flop is dealt. This could increase the number of flop buckets to 64, since the 8

buckets originally used to remember the preflop may now be used for the flop. Keeping 8 buckets

on the turn and river would mean that the river still only has 4096 bucket sequences. However, we

now have complete information about our cards on the preflop. The ability to increase the number

of buckets on earlier rounds also gives us the ability to include different types of buckets.

Bucketing Methods

One bucketing method is potential-aware automated abstraction [8]. This method uses a bottom-up

approach. In order to find the buckets for the preflop, it begins by clustering the river hands according

to hand strength. It then clusters the hands on the turn according to the possible river hands they

can become. For every cluster a set of histograms over possible future clusters is defined. The

distance between two clusters is the L2-distance of the histograms of future clusters. After the turn

buckets are assigned, the same type of clustering is repeated for the flop and finally preflop. In order

to obtain the flop buckets, a similar method is employed with the restriction that for each preflop

bucket, only hands that are possible children of that bucket are considered. Doing this ensures that

the agent has perfect recall. This process is then repeated for the turn and river rounds to obtain the

final abstraction.

Another bucketing method is percentile bucketing [13, page 26]. This method works by dis-

tributing all of the hands into the n available buckets according to a hand strength metric, with the

top 1/n% hands going into the first bucket and so on. Hand strength refers to the percentage of all

hands that a particular hand would beat. Two hand strength metrics percentile bucketing can use

are expected hand strength (hs) and expected hand strength squared (hs2) [13, pages 22-28]. For

any given hand, we can roll out all of the remaining cards to find all possible future hands it could

become (and the probabilities of those hands occurring). We can then compute the expectation of

the final hand strength (or square of) over all these possible hands. Using perfect recall, the buckets

for each round are dependent upon previous round buckets. For instance, if the flop buckets depend

upon the preflop buckets, then each flop bucket actually consists of the pair [preflop bucket, raw flop

bucket]. When using imperfect recall, this is not necessarily the case in that the flop buckets consist

only of flop data.

Public buckets refer to buckets that specify what type of public information is available. Previ-

ously, once the flop came we would bucket our hand based upon its hand strength. Public buckets

allow us to cluster the board cards, providing the player with information about the texture of the

board. For instance, some boards may have more draw capabilities or have paired cards, whereas
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others may have few opportunities for high strength hands. This can greatly affect how strong two

hands that have equal strength (according to hs2) actually are. To create public buckets we first

create an abstraction. A transition table is then created between rounds for each board, in that it

shows the probability of transitioning from each bucket in round A to each bucket in round B given

the board. These tables are then used as input to the K-Means clustering algorithm [10], which gives

us the clusters of boards that can be used as public buckets.

Notation

The card abstractions we use are a combination of some of the aforementioned techniques, in par-

ticular, percentile bucketing and public buckets with and without perfect recall. There are several

types of notation we use to describe the actual abstraction used. Nhs and Nhs2 refer to having N

hand strength or hand strength squared buckets. hs2 is assumed to be the bucket type if none is

specified, except on the river in which hs is used because it is equivalent to hs2 at that point. For

instance, 8.8.8.8 refers to the perfect recall player that has 8 hs2 buckets on every round. Occa-

sionally we will refer to abstractions as being 8s sized, which means the abstraction is roughly the

same size as the 8.8.8.8 abstraction (in terms of total game states). When using imperfect recall, irN

specifies that there are N buckets allotted on this round, but they are forgotten in future rounds. For

instance, ir169.64.8.8 refers to the imperfect recall player that has perfect preflop buckets that are

forgotten, and then the appropriate hs2 buckets to be 8s sized on the remaining rounds. It has 64 hs2

buckets on the flop because the perfect recall version would be remembering 8 preflop buckets, and

combined with the 8 flop buckets makes 64 total buckets. pubN refers to having N public buckets,

and when nesting different types of buckets we refer to them as YxZ, where Y and Z are types of

bucket abstractions. Finally, dir-Y-Z specifies that we know Y for this round, but only remember Z

in later rounds. Thus, ir169.dir-pub20x36hs2x5hs-pub20x1.dir-pub3x20hs2x3hs-pub3x1.60 refers

to the player that has a perfect preflop that is forgotten, a flop that nests 20 public buckets with 36

hs2 buckets and 5 hs buckets but only remembers the 20 public buckets, a turn that nests 3 new pub-

lic buckets with 20 hs2 buckets and 3 hs buckets but only remembers the public buckets, and a river

with 60 hs buckets. This allows us to create a wide variety of abstractions to use for experiments

and competitions.

2.3.3 Action Abstraction

The action abstraction we use works by restricting the number of actions a player can take. The

method used by many researchers and first published by Gilpin et al.[9] limits every player to 4

actions: fold (f), check/call (c), raise pot (p), or go all-in (a). Raising pot refers to making a bet of

the size of the number of chips in the pot, and going all-in refers to betting all of the chips in one’s

stack. This is an abstraction of the full game in which the actions are restricted to f , c, p, and a,

referred to as fcpa. If we wish to add other betting options, we need only assign them a different
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letter. For instance, we refer to a bet of twice the size of the pot as a double-pot bet (d). The

betting abstraction used is then the concatenation of the letters representing legal actions, generally

in increasing order. Unlike with card abstraction, we do not cluster all the real states into abstract

states. Instead, we rely on translation between the full game and the abstract game to handle bet

sizes that are not legal in the abstract game. The translation process is described in more detail in

the following chapters.

2.4 Evaluation

We have seen that there are a large number of ways to create poker agents, most of which come

from the ways one can abstract the game. However, as we will see later, how we translate action

sequences also drastically affects the play of our agents. Thus, when trying out a new abstraction

type or new translation method, we wish to be able to evaluate how well the agent using it performs.

This allows us to compare how an agent using some method performs in comparison to an agent

using a different method.

One evaluation method is to calculate the best response to the player. This method is an excellent

metric because it tells us exactly how exploitable a player is. For this reason we regularly create

players in the Leduc Hold’em game that implement the techniques we are evaluating, since Leduc is

small enough to calculate the best response to our players. Although this is an excellent metric for

the strategies it evaluates, we have the problem that the smaller game may not properly model the

situations we encounter when playing the larger game of Texas Hold’em. Unfortunately, all Texas

Hold’em variants we use are too large to compute best responses in a timely manner. This means

that we have to use other methods to evaluate our players.

The most obvious method for evaluation is to play our agents against other agents and record

the outcome. Although winnings is a good indicator of which player is better, sometimes we may

not be able to play enough hands to obtain statistical significance in a match. We can use DIVAT [2]

to obtain a better estimate. DIVAT is a technique that attempts to factor out the inherent luck in the

game. We can also use importance sampling [4], which allows us to evaluate hands the players never

actually played. Both of these techniques provide us with the ability to more accurately evaluate

poker play than using direct play on randomly dealt hands.

2.4.1 Direct Play

The normal method for evaluating whether one player is better than another is to simply have them

play hands of poker against each other. However, when we do so we have to deal with the fact that

there is a large amount of variance in the game. This means that we often have to play many hands

in order to properly evaluate a match. One method we can use to reduce this variance is to play

duplicate matches. A duplicate match refers to playing two matches with the same cards, except

the players are in different seats in each match. The score for each hand is then defined to be the
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sum of the scores for that hand in each match. This ensures that each player is put into the same

situations as the other, and thus luck plays a smaller role. This works well for computer agents since

we can ensure that they have no memory of the other side of the match (or the cards that would be

coming).

Bankroll Std Duplicate Std
Bluffbot vs Hyperborean -0.11 18.04 11.38
Bluffbot vs Tartanian 0.61 31.46 20.24
Tartanian vs Hyperborean -0.63 32.46 20.50
Ballarat vs Bluffbot -2.57 45.30 30.70
Ballarat vs Hyperborean -2.13 44.18 29.95
Ballarat vs Tartanian -5.37 73.20 48.00

Table 2.1: Money variance analysis of the 2008 no-limit competition in sb/h

Table 2.1 shows an analysis of the 2008 no-limit competition. The first column shows the match

being evaluated, with each match being between two of the four competitors: Bluffbot, Hyperborean,

Tartanian and Ballarat. The third column shows the standard deviation of the money won/lost each

hand, assuming each hand is independent of the other hands. The last column shows the duplicate

standard deviation, which assumes that the value for each duplicate hand is the sum of the values

for the two corresponding hands. Looking at the table, we observe two things of importance. First,

we see that the standard deviation varies wildly from 18 sb/h to 73 sb/h for non-duplicate hands.

Since players have more control over the pot size, this means that the variance of the match will be

much more dependent upon the players in the match than it is in limit poker. Second, we see that

the duplicate standard deviation is roughly 2/3 of the regular standard deviation, regardless of the

match. It seems that duplicate matches provide a reduction of roughly 1/3, which is good but small

when considering how much the standard deviation is dependent upon the players in the match.

When performing a match between two of our agents we generally wish to have a very accurate

measure as to the difference in their ability. Thus, unless otherwise specified, all of the agent-agent

matches described in this work play 10 duplicate matches of 500,000 hands each, resulting in a total

of 10,000,000 hands being played. This provides us with very accurate measurements. In the 500BB

game, results generally have a standard deviation of around 15-25 mb/h. In the 100BB and 200BB

games, the standard deviation is near 5-10 mb/h and 10-20 mb/h, respectively.

There are certain instances in which we wish to evaluate two different techniques a player could

employ, but we cannot simply play them against each other. For example, when testing a technique

that deals with translation between the real action space and the abstract action space, playing agents

that use different techniques against each other will not help us if they only take actions that are legal

actions in the abstract game. In this situation we need to create other agents that can test the bounds

of these techniques. A suite of agents can then be played against the different players we create, and

we can evaluate the players based upon how well they perform relative to each other. Essentially,

because the game is too large to compute a best response, we create a suite of agents that we hope
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reasonably tests the exploitability of the agents.

2.4.2 DIVAT

In the past, DIVAT has been used to evaluate heads-up limit matches [2, 14]. DIVAT is an estimator

that works by attempting to calculate the skill displayed in a match by removing the most obvious

factors of luck. It does this by comparing a player’s actions against a baseline strategy and assigning

a value of skill based upon whether it performs better or worse than the baseline strategy. The

primary reason why DIVAT is a good estimator is that it has been proven to be unbiased [31]. This

means that in the long term, DIVAT is expected to return the same result as the metric it is estimating,

in our case money.

The concept of DIVAT is actually fairly simple. First, one obtains a baseline strategy for the

game being played. In poker, one such strategy is always-call, in which the player chooses to

check/call for every action. Although this strategy is not very realistic, it is simple, fast, and easy

to understand. Having obtained a baseline strategy, one needs to look at every sequence of actions

not containing chance nodes and compare the expected value of the baseline strategy against the

expected value of what actually occurred. In poker, this is done on a round by round basis. For

instance, on the flop we would calculate two values. First, we would play out the round as if each

player played using the baseline strategy. We would then calculate the expected value of the resulting

state (this is done by rolling out the remaining chance nodes assuming both players play according

to the baseline strategy), which we will refer to as V (Baseline). Second, we play out the round

according to the actual actions and again calculate the expected value of the resulting state in the

same manner as before, which we will refer to as V (Actual). The DIVAT score for the round is

then V (Actual) − V (Baseline). By repeating this for every round in the game and summing up

the results, we obtain the DIVAT score for the hand.

DIVAT has been shown to be very effective at reducing the variance in limit matches. Most

heads-up limit matches have a standard deviation of around 6 sb/h, and Kan et al.were able to

achieve standard deviations as low as 1.93 sb/h [2] using DIVAT. This was using a bet-for-value

baseline strategy that logically folded bad hands and raised with good hands. Ideally we could apply

the same concept to the no-limit game and obtain similar results.

Bankroll Std Duplicate Std
Bluffbot vs Hyperborean -0.12 15.48 9.99
Bluffbot vs Tartanian 0.63 24.76 16.49
Tartanian vs Hyperborean -0.63 28.84 18.65
Ballarat vs Bluffbot -2.52 35.35 24.59
Ballarat vs Hyperborean -2.11 37.65 25.77
Ballarat vs Tartanian -5.33 63.50 43.15

Table 2.2: DIVAT variance analysis of the 2008 no-limit competition in sb/h

Table 2.2 shows the DIVAT analysis of the 2008 no-limit competition, using always-call as the
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baseline strategy for DIVAT. A simple no-limit bet-for-value strategy was created to be used as a

baseline strategy, but it took much longer to run and only produced marginally better results than

using always-call. Looking at the table, we see that the values are fairly similar to the ones in

Table 2.1. Overall, DIVAT appears to reduce the standard deviation by 10-20%. This is somewhat

disappointing, as it is nowhere near the same reduction that was achieved in the limit game. We

believe that since the players have more control over the pot size and it is less common to reach a

showdown than in limit poker, that a more advanced baseline strategy would be needed to obtain

better results.

2.4.3 Importance Sampling

Importance sampling is another method for reducing variance in player evaluation when one of the

player’s strategy is known explicitly. The key aspect to importance sampling is that it allows us to

use situations we did not observe, but are similar to what we did observe, to evaluate players [4].

This means that we obtain many more samples than originally available. Importance sampling also

allows us to evaluate the strategy of players not in the observed match. This allows us to estimate

how well another player would perform against a particular opponent without actually playing that

player in the match.

The concept of importance sampling is that we can compute the expected value of some value

function V given a set of observations O, a strategy σ used to produce O, and another strategy σ′.

This is done by calculating the probabilities of each h ∈ O occurring given that either σ or σ′ were

used to play. The ratio of these probabilities is used to weight the observed value V (h), and the sum

of the weighted values gives us the expected value. On-policy importance sampling refers to when

we are evaluating the observed strategy, or σ = σ′. Off-policy refers to when we are evaluating a

different strategy than the observed one, or σ 6= σ′.

We refer to using basic importance sampling when it is only run on O. However, since we

have σ and σ′ we can evaluate other situations as well. If for some observation h ∈ O the player

could have taken an action that would result in no more opponent actions, then we can evaluate the

history in which that action occurred. This is called game ending actions (GEA) and occurs in poker

whenever our player could have folded, called a bet on the river, or (in no-limit) called an all-in bet.

Additionally, we can evaluate situations that our opponent cannot distinguish from h ∈ O. This is

called other cards (OC) and in poker consists of switching the player’s private cards with different

cards, since the opponent cannot see them and thus cannot act upon them. Finally, the value function

V is just the money exchanged in the hand. However, since it can be any evaluation function, we

can also use DIVAT as the value function, allowing us to combine the two techniques.

Table 2.3 shows how well importance sampling reduces variance in several full-information

situations. The second column is an on-policy evaluation of an 8s agent in an 8s-8s match (they use

the same strategy, the number simply differentiates the players). The third column is an on-policy
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IS type fcpa.8.8.8.81 vs fcpa.8.8.8.82 Bluffbot vs Hyperborean
fcpa.8.8.8.81 (On) Hyperborean (On) fcpa.8.8.8.8 (Off)

Money-Basic 18.18 18.04 168.74
Money-GEA 17.98 18.11 101.49
Money-OC 14.65 14.21 56.21
Money-GEA.OC 12.61 12.86 55.38
DIVAT-Basic 15.33 15.48 99.61
DIVAT-GEA 15.03 15.76 80.69
DIVAT-OC 12.39 12.12 55.07
DIVAT-GEA.OC 10.03 11.12 54.40

Table 2.3: Importance sampling effect on standard deviation in sb/h

evaluation of Hyperborean in the Bluffbot-Hyperborean match from the 2008 competition. Finally,

the last column is an off-policy evaluation of an 8s agent for the same match. It is important to

note that basic importance sampling using money as the value function returns the same results as

evaluating the match as normal.

Looking at the table, we see a reduction in the standard deviation as more of the options are

turned on. The values for the on-policy evaluations in both of the matches are fairly similar. The

values for the off-policy evaluation, however, are much higher. In the end, we are able to reduce

the standard deviation of these evaluations by 45%, 38%, and 68%, respectively. This will be useful

when evaluating matches in the future.
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Chapter 3

Analysis of the No-limit Polaris
Agent

3.1 Introduction

This chapter provides an analysis of the inner-workings of the no-limit Polaris agents. The term

Polaris refers to the suite of agents produced by the University of Alberta Computer Poker Research

Group and can encompass a wide variety of variants and strategies. Despite many similarities be-

tween limit and no-limit, creating an agent to play in the no-limit game can be quite different from

the limit game. The biggest difference is the addition of action (betting) abstraction, which brings

with it two new major complications. The first complication is that we now have a trade-off between

making a larger betting abstraction and making a larger card abstraction for a fixed game size. The

other major complication is that it is no longer a trivial task to use an abstract strategy to play in the

full game. We now have to translate real action sequences into action sequences recognized by the

abstract game and vice versa, which can be a dangerous process.

Section 3.2 describes the different types of abstraction we must consider. In Section 3.3 we

examine exactly how Polaris performs translation, how translation has been improved and how these

changes lead to the formalization of state translation. In Section 3.4, we discuss the two main

translation concepts that form the basis for translation in Polaris.

3.2 Abstraction Allocation

When creating an agent for a large game we must first decide on which abstraction of the real

game to use. We generally have a fixed size for the abstraction, but can vary some parameters to

create it. Unlike limit games, we must consider abstractions for the action space in addition to card

abstraction. With fixed computational power, we must take into account the fact that a larger betting

abstraction means we must use a smaller card abstraction. Finally, when considering how to create

the card abstraction, we should take into account the differences that come with the no-limit game.

We may wish to rearrange the bucket assignments because of how the action space is formed.
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3.2.1 Betting Abstraction

As mentioned in Section 2.3.3, we use a betting abstraction based on pot fractions. We allow our

agent to make a bet of X% of the pot, where X can vary. In practice, we usually consider the options

to fold, call, bet 100% of the pot, or go all-in (the fcpa abstraction). Additionally, we sometimes

consider half the pot (h), three-quarter pot (q), 1.5 times pot (w), double the pot (d), ten times the

pot (t), or eleven times the pot (e). When we add the half-pot (and three-quarter pot) option we

restrict the number of times it can be used. Specifically, an agent can only perform the half-pot

action once per round and not at all on the preflop. These restrictions are necessary to reduce the

size of the betting tree to a tractable size. For example, the unrestricted fchpa tree has roughly 151

times as many nodes as the fcpa tree in the 500BB game. Restricting the betting in this way reduces

the increase to a factor of 26. The most common betting abstractions we use in Texas Hold’em are

fcpa and fcpta. When performing experiments in Leduc Hold’em, we will often use fchpda and all

subsets produced by removing any combination of h, p, or d. This allows us to show results for a

variety of betting abstractions.

Adding additional betting options generally increases the size of the betting space exponentially.

In practice, the actual increase in size is dependent upon the size of the bet, the other betting options,

and the stack sizes in the game. For instance, adding the restricted half-pot option to the fcpta

betting abstraction affects different stack sizes much differently. In the 500BB game, it increases the

size by a factor of 19.0. In the 200BB and 100BB games, the increase is only a factor of 9.9 and 7.2,

respectively. The question then becomes whether such an increase is worth it or not, keeping in mind

that instead of adding this betting option we could increase the granularity of the card abstraction by

the same amount.

To test the trade off between card and betting abstractions, we performed an experiment compar-

ing several abstractions in the 100BB game. Two agents were created in the 8s abstraction size, one

of which had the half-pot option and one did not. Another agent was created in the 12s abstraction

size without the extra option. The results are shown in Table 3.1. It is important to note that the 12s

abstraction is roughly 4.7 times larger than 8s, and again the fchpta abstraction is 7.2 times larger

than fcpta, making the fchpta 8s abstraction 1.5 times larger than the 12s abstraction.

(1) (2) (3)
(1) fchpta.ir169.64.8.8 0 20 66
(2) fcpta.ir169.72hs2x2hs.12.12 -20 0 43
(3) fcpta.ir169.64.8.8 -66 -43 0

Table 3.1: Card/betting abstraction trade-off performance of several 100BB agents in mb/h

The results suggest that having the additional betting option has a significant effect. In fact,

the results appear to be proportional to the size of the abstractions. The fchpta abstraction beats

its fcpta counterpart by 66 mb/h, roughly 1.5 times the 43 mb/h the 12s abstraction manages.

However, the fchpta abstraction beats 12s by 20 mb/h, which is slightly larger than we might
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expect considering it is only 1.5 times larger. This suggests that the extra option is at least as good

as increasing the card abstraction by the same amount. Unfortunately, in larger games (200BB or

500BB), the increase in size from extra actions may not be a feasible option.

(1) (2) (3)
(1) fchpea.ir169.dir-pub20x36hs2x5hs-20x1.dir-pub3x20hs2x3hs-3x1.60 0 36 36
(2) fcpea.ir169.dir-pub20x75hs2x36hs-20x1.dir-pub3x50hs2x18hs-3x1.900 -36 0 4
(3) fchqpwea.ir169.ir72hs2x3hs.ir72hs3x3hs.216 -36 -4 0

Table 3.2: Card/betting abstraction trade-off performance of several 200BB agents in mb/h

Table 3.2 shows the results of another experiment done concerning the card/betting abstraction

trade-off. Unlike the last experiment, this experiment was performed in the 200BB game and all

three of these agents were specifically designed to be the same size. Thus, an agent with a betting

abstraction twice as large has a card abstraction of half the size. This allows us to more directly ana-

lyze the trade-offs of changing the abstraction sizes. Strategy (2) has the smallest betting abstraction,

fcpea, allowing only the bets of pot, eleven pot and all-in. Strategy (1) allows an additional half pot

bet, making its betting abstraction roughly 15.7 times larger. Strategy (3) also allows a three-quarter

pot bet and 1.5 pot bet, making its betting abstraction roughly 248.0 times larger than that of strategy

(2) and roughly 15.8 times larger than that of strategy (1).

Looking at the table, we see that strategy (1) appears to perform the best, beating both of the

other strategies by 36 mb/h. This is somewhat surprising, considering the high cost (a factor of 15.7)

of adding in the half pot bet. Perhaps more surprising, though, is the fact that strategy (3) played as

well as strategy (2) despite having a card abstraction 248 times smaller. This shows that these extra

betting options really make a huge difference.

3.2.2 Card Abstraction

The addition of imperfect recall, as mentioned in Section 2.3.2, has greatly increased our options

when creating card abstractions. In particular, it has given us the ability to have a perfect preflop,

which refers to having a bucket for every possible preflop hand (after suit isomorphisms), and public

buckets. However, the abstractions used have been focused on limit play, where most of the money

comes from the turn and river rounds. In no-limit, every round has the possibility of having all of

the money enter the pot. This means that it may be more important to have more buckets on every

round, as well as having better knowledge of how good one’s hand is at any instant. Table 3.3 shows

the results of an experiment in which we created agents using different levels of recall.

Six agents were used in this experiment, with three of them being 8s-sized, two 12s-sized, and

one that is 25% larger than 8s. In particular, we see that the more imperfect recall we use, the better

our agents seem to perform. This is best seen by the fact that there seems to be a strict dominance

of (3) over (4) over (6). We also observe that, despite being significantly smaller abstractions, the

imperfect recall 8s-sized strategies ((3) and (4)) all outperform (5). As (3) performs the best out of
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(1) (2) (3) (4) (5) (6)
(1) ir169.dir-pub20x205-20x1.pub3x68-3x1.68 0 6 20 56 108 201
(2) ir169.72hs2x2hs.12.12 -6 0 28 67 86 193
(3) ir169.ir64.ir512.4096 -20 -28 0 23 67 163
(4) ir169.64.8.8 -56 -67 -23 0 34 126
(5) 12.12.12.12 -108 -86 -67 -34 0 217
(6) 8.8.8.8 -201 -193 -163 -126 -217 0

Table 3.3: Imperfect recall performance of several 500BB fcpta agents in mb/h

this group, it seems to suggest that it is far more important to have more immediate buckets than to

remember previous buckets. This concept is reflected in our current no-limit agents, as they forget

all strength buckets at every round.1 Additionally, we see that the best overall strategy appears to be

(1). (1) is the same as (3) except that we increased the number of buckets on the flop and turn to

match the river, giving us enough room to add public bucket information. Although this significantly

increases the number of buckets on the flop and turn, it only increases the size of the abstraction by

roughly 25%.2 This change allows the strategy to keep pace with (2), a strategy roughly 4 times

larger that also uses imperfect recall on the preflop. These changes have allowed us to make smaller

abstractions that have better performance. Having more buckets on earlier rounds means that some

of those buckets can be used for orthogonal metrics, for instance public buckets, or instead we could

increase the size of the betting abstraction while still having a large number of buckets.

3.3 Polaris Translation

The concept behind the translation used by Polaris agents is fairly straightforward. Since most

agents use the fcpa abstraction, they can only understand four actions. Thus, any action that occurs

in the real game must be interpreted as one of those four actions. Additionally, since two of the

actions are not bets (fold, call), those can only be mapped to themselves. All we really need to do

is to map any bet to either pot or all-in. More generally, we need to map any real bet to one of the

legal abstract bets. If b is the real bet and c, d are the two closest abstract bets such that c < b < d,

then we map b to c or d according to whether c/b or b/d is largest. For instance, if we observe a bet

of size 20 and the closest legal bets are 12 and 88, then we will interpret this as a bet of 12 since
12
20 = 0.6 > 20

80 = 0.25. By doing this for every action in the real game, we obtain a state in the

abstract game and can then use the strategy for the abstract game.

It is important to note that when this translation is done, it results in a state in the abstract

game and a lot of information about the real state is lost. According to the previous example, after

translating the bet of 20 into a bet of 12, the agent now believes that the bet of 12 occurred. This

means that it believes that its opponent placed 8 fewer chips into the pot than what actually happened.

1They do however remember public bucket information, since that information does not change when we advance to
further rounds.

2The number of betting sequences increases on each round, so increasing the number of buckets on earlier rounds has a
much smaller effect than increasing the number of buckets on later rounds.
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The agent acts according to the current abstract state, and thus does not understand that there are 8

more chips in the pot. This can lead to situations in which the agent has a very poor understanding

of the real situation, because it believes the pot size to be drastically different than what it actually

is.

After querying the strategy for an action in the abstract game, we must decide what action to

perform in the real game. Polaris attempts to fix the pot size in the real game to match the pot size in

the abstract game. For instance, if the pot size is 10 in the real game but 12 in the abstract state after

translation, then the agent will add one chip to whatever action it takes (the opponent calling will

add the second chip that fixes the size of the pot). Specifically, the agent looks at how many chips

it is supposed to have in the pot after taking its action in the abstract state and attempts to match

this number in the real state. Thus, if it believes it should have X more/less chips in the pot than it

currently does, it will modify its next action to include X more/less chips (if doing so does not make

it an illegal action). This tries to ensure that the real pot size will never be that different from the

abstract pot size.

3.3.1 Exploitative Techniques

Unfortunately, this type of translation leads to some exploitable behavior. Since all bets must be

translated to either pot or all-in, this means that there are large ranges of bets that will all be inter-

preted as the pot action. Specifically, any bet smaller than
√

p ∗ a is interpreted as a pot bet, where

p is the size of the pot and a is the size of an all-in bet. This is because
√

p∗a
a =

√
p√
a

= p√
p∗a . This

means that, when making a pot bet, one could choose to bet anything up to this amount (referred to

as up-betting) or similarly as low as the minimum bet (referred to as down-betting). This fact can be

exploited in several ways.

The most obvious method to exploit this many to one mapping is for an agent to alter its bets

based upon its hand strength. Since our agent’s bucketing method already uses a hand strength

metric, it can simply query the abstraction for the current bucket. Once the agent knows the bucket,

it can deem each hand good or bad based on whether the current bucket is a high bucket or a low

bucket. If the agent assumes the opponent folds half its hands to any bet the agent makes, this means

that for the agent’s hand to be good it needs to be in the top half of the hands its opponent would

call with. Thus, if an opponent folds the bottom 50% of their hands, then an average hand assuming

a call would have a strength of 75%. So if the hand is in the top 25% of buckets it is a good hand

and in the bottom 75% it is a bad hand. We can now define an agent that uses this information to

its advantage. This is the +- player, which up-bets with good hands and down-bets with bad hands.

Doing so allows it to make the pot larger when it is more likely to win and to keep the pot smaller

when it is more likely to lose.

There are two other simple agents that can take advantage of the many to one mapping without

considering hand strength. The first is the AllDown player, which simply down-bets every bet. The
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second is the naı̈vePA player. This player does not look at a strategy to decide what to do, but simply

performs the same actions every hand. All it does is up-bet a pot bet, followed by down-betting an

all-in bet. This is effective because it floods the pot with chips, which the opponent does not see.

It then goes all-in, forcing the opponent to make a tough decision in which it incorrectly folds too

often since it believes the pot is too small to call (when in reality the pot is over 10 times the size it

thinks it is). It is surprising how effective this method works, particularly as the naı̈vePA technique

does not require the agent to even look at its cards.

Finally, there are two more metrics for evaluating how well a translation method works. The first

is heads-up play against the BluffBot 2.0 agent [25] that won the 2007 no-limit competition. The

second is to look at the best response value for a strategy in the Leduc Hold’em game.

3.3.2 Translation Fixes

Without modifications we can get into some strange situations. One such situation is if an agent is

playing against another version of itself and the pot is too small. Instead of calling, the agent will

make a small bet in order to increase the pot size to the correct amount. However, the other agent

will interpret this action as a bet and not a call, thus resulting in an extra bet in the abstract state and

meaning that the real pot is still too small. In attempting to call, this agent will again make a small

bet to fix the pot. This process repeats until an agent folds or both agents are all-in, as neither agent

will ever take the call action. This is a behavior we do not want our agents to have.

The biggest problem an agent has is misinterpreting its previous actions. In the situation just de-

scribed, the agent is making a call but performs a different action in the real game. When translating

the real state later, we want the agent’s action to be interpreted as whatever the abstract strategy told

it to do, not what it actually did. AbstractActions (AA) refers to viewing real actions in terms of the

abstract states they occur in. Essentially, this is the inverse concept to fixing the pot size when the

agent takes an action. If it increases the size of its bets when the pot is too small, then it should view

larger bets on too-small pots as smaller bets. Specifically, it can look at the disparity between the

real pot and the pot in the abstract state and take this into account when translating the next observed

action. For instance, if the opponent has committed 2 more chips to the pot in the real game than

in the abstract game, then the agent will consider the next bet to be a bet of 2 chips more. This

ensures that if in some state the abstract strategy says to take action a and the action b is taken in the

real state, that later the agent will map action b to the abstract action a. Doing this makes sure that

the retrospective view of an event matches the abstract actions the agent wanted to take during that

event.

Another modification is CallisCall (CisC), which refers to maintaining call actions. There is

a problem when the pot is smaller than the agent thinks it is, and instead of calling or checking

it actually puts in a small bet to fix the size of the pot. Doing so is very dangerous because it

allows the opponent to take another action. The fact that checking/calling affects the game tree quite

27



differently from a bet means that we should avoid, or at least be very careful about, turning calls into

bets through translation. Thus, CallisCall simply ensures that whenever the abstract strategy tells

the agent to call, it will perform a call action in the real game and not some other action.

The last modification is ExtendCall (EC). If the opponent makes a very small bet, it may be

beneficial to view it as a check instead of a bet. For instance, if an agent bets 2 chips into a pot of

100, interpreting the bet as a pot bet of 100 greatly distorts the bet. By considering a check as a

bet of 1, some small bets can be translated into checks. This can only be done in certain situations

and requires some post processing of the end state. The first situation is if the bet is the first action,

in which case mapping to a check has no effect on the game tree (/b → /c). The second situation

occurs when the bet is the second action and the first action was a check, which then gets mapped to

no actions having occurred (/cb → /). This, however, gets overridden by the last situation, which

occurs when the action is the last raise action in a round. In this situation, it is mapped to a call and

all the remaining actions in the round are ignored (/...bc→ /...c). This allows us to treat small bets

as checks in some situations.

3.3.3 Results

We took an fcpa agent using the perfect recall 8s card abstraction (8.8.8.8) in the 500BB Texas

Hold’em game as well as an fcpa agent in the 12-stack Leduc Hold’em game and applied combina-

tions of these modifications to its translation. It should be noted that +-, AllDown and naı̈vePA use

the same translation as the agent being tested, and accordingly the fixes affected their behavior as

well. The unfixed translation was used by our agent in the 2007 competition, which ended up losing

to the competitor BluffBot 2.0.3 Table 3.4 shows the results of this experiment.

Unfixed CisC EC AA EC,CisC AA,CisC AA,EC All
+- 1061 1324 1540 1363 1630 1707 1450 1623
AllDown 1884 29 1276 2008 26 62 2021 50
naı̈vePA 12652 12652 12649 12252 12649 12252 12252 12252
BluffBot 2.0 270 6 101 – -30 – – -105
Leduc BR 1634 710 1063 1634 1087 693 783 881

Table 3.4: Translation fixes effects in mb/h

Immediately we notice that almost all of these changes increased the exploitability of our agent

against the +- player. However, we see the opposite when looking at the best response in the Leduc

BR row. The most likely reason for this is that since the +- player uses the same translation as our

agent, the fixes helped that agent as much (or more) than they helped Polaris.

It appears that the act of preserving calls (CisC) produced the largest improvement overall. The

most dramatic change is against the AllDown player. This is likely because any time the AllDown

player bet there is still the same chance of our agent folding, and a call by our agent would result

3The data for BluffBot is incomplete, and the existing data has a standard deviation around 125 mb/h. Unfortunately, we
cannot obtain more data due to complications with the benchmark server.
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in a raise, allowing the AllDown player to act again (and possibly raise if it had a good hand). This

change also reduced the exploitability of the Leduc player by more than half, eliminating a large

flaw in our strategies.

The AbstractActions fix produced moderate improvements. Looking at the Leduc best re-

sponse value, it is interesting to see that alone it has no effect, but when combined with one of the

other fixes it provides some improvement. This is likely because the problem addressed by AA is

ignored (by the best response) in lieu of the much larger problems that CisC and EC address.

The ExtendCall fix produced mixed results. Although it generally provides an improvement

over the unfixed translation, when combined with CisC it seems to produce worse results than CisC

alone. This is seen mainly by the fact that the Leduc best response values for (EC,CisC) and All,

1087 and 881 mb/h respectively, get better when EC is removed, down to 710 and 693 mb/h. How-

ever, it is possible that the small stack sizes in the Leduc game mean that we do not encounter the

ridiculous situations where a bet of 2 chips is considered to be a much larger amount. We decided

to keep this fix until we could more soundly say whether it was good or bad.

Having all of these fixes implemented appears to provide a significant improvement in our trans-

lation. It reduces the exploitability of our agent by about half in the Leduc best response. Addition-

ally, the data suggests that had these fixes been implemented for the 2007 competition, our agent

may have defeated BluffBot.3 Unfortunately, none of these fixes appear to have any significant ef-

fect on the naı̈vePA player. This is especially concerning, considering the fact that this player does

not even have to look at its cards to be effective.

As a temporary defensive measure, we decided to add another betting option to help defend

against the +- and naı̈vePA players. We wanted a betting option near the pot-allin boundary in order

to minimize the effect the naı̈vePA player can have. For this reason we chose to add a 10-pot bet,

with the added effect that it only increased the size of the (500BB) game by 68%. Adding this betting

option is tantamount to throwing a giant boulder into the grand canyon to try to fill it. However, it

is quite effective for handling the naı̈vePA player, reducing how much it exploits our agent from

12252 mb/h down to 451 mb/h. It also helps us against the +- player, reducing the value from 1623

mb/h to 324 mb/h. As this addition is only a band-aid for our translation, an actual solution to these

exploitative strategies is discussed in Chapter 4.

3.4 Translation Concepts

When performing translation we generally query a strategy in an abstract game to decide what action

to take. As the state of an abstract game may be different from the state of the real game, we have to

choose how to act on these differences. This leads to two options, to adapt the abstract strategy to the

real state (real translation), or to adapt the real state to the abstract strategy (abstract translation).

Abstract translation is the method Polaris generally uses. It attempts to view what is happening

in the real game in terms of the abstract strategy it contains. For poker, this means that when making
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bets it will modify the bet amounts in an attempt to push the pot size closer to the amount it thinks

the pot should be. Additionally, it views real bets in terms of the abstract pot size instead of the real

pot size. For example, if there are 16 chips in the real pot, 12 chips in the abstract pot and it observes

a bet of 10 chips, it will consider this a bet of 10 + (16 − 12)/2 = 12 chips into a pot of 12 chips

(a 100% pot bet). This is exactly what the AbstractAction fix did as specified in Section 3.3.2. In

essence, abstract translation always tries to move the real game state closer to an abstract state.

Real translation refers to viewing actions as occurring in the real game rather than the abstract

game. This allows one to view the real situation more accurately, but it means that it is easier to

get into situations that the abstract strategy does not model well. In poker, this approach refers to

interpreting bets according to the real actions taken. For instance, if the pot size is 16 and someone

makes a bet of 10, the agent will interpret this bet as a 63% pot bet. If an agent wants to make a pot

bet, it will bet exactly the amount that is in the real pot (in a pot of size 16 it would bet 16). The

important concept of this method is understanding the pot odds of an opponent bet, rather than the

pot size.

It may seem that using real translation is better than abstract translation, but we expect it to

perform worse. This is because using real translation allows an opponent to exploit the translation

more. For instance, if the opponent is up-betting according to the +- exploitative strategy, then they

can do so more effectively against an agent using real translation. For example, the opponent can

up-bet multiple times in one hand when real translation is used, but only effectively up-bet once per

hand against an agent using abstract translation. Since abstract translation views bets in terms of the

abstract state, up-betting twice in a row is no more effective than up-betting on the second bet (since

the abstract state is the same at the second bet). This is best explained with an example.

Assume we are at the start of a hand in the 500BB game, and the effective pot size is 4. The first

up-bet would be of size b
√

4 ∗ 998c = 63, and a call would make the pot 4 + 63 ∗ 2 = 130. The

second up-bet (using real translation) would be b
√

130 ∗ 935c = 348, and a call would make the pot

130+2 ∗ 348 = 826! Keep in mind that Polaris now thinks that two pot bets have occurred, making

the pot size 4 + 2 ∗ 4 = 12 after the first bet and 12 + 2 ∗ 12 = 36 after the second bet. Using

abstract translation, the pot discrepancy is calculated as the amount the opponent had contributed

to the pot in the real state, 130/2 = 65, minus the same amount in the abstract state, 12/2 = 6.

Thus, the second bet would be considered to be 65 − 6 = 59 chips larger, whereas a pot bet would

be the size of the abstract pot, in this case 12. This means the second up-bet could be as large as

b
√

12 ∗ 994c = 109, which is independent of the real pot size at that point. We then factor into

account the pot discrepancy, meaning that the second up-bet would be 109 − 59 = 50, making the

pot of size 130 + 50 ∗ 2 = 230. This is equivalent to only up-betting the second bet, as that also

results in the same size of 12 + 109 ∗ 2 = 230.

To test this hypothesis, we ran some experiments using both abstract and real translation. We

used the +- player as described in Section 3.3.1 as well as the best response in the same Leduc game.
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The results are shown in Table 3.5. As expected, real translation appears to be more exploitable than

abstract translation. Thus, Polaris continues to use abstract translation to play.

Match Real Abstract
fcpta vs +- 682 324
fcpa vs +- 2243 1623
Leduc BR 1199 881

Table 3.5: Performance of real translation versus abstract translation in mb/h

3.5 Conclusion

In this chapter we discussed how the no-limit Polaris agents work. The two most important aspects

of these agents are abstraction and translation. When choosing an abstraction, we must consider

the trade-off between card abstraction and betting abstraction. We found that in no-limit, when

considering card abstraction, it is most important to have as much current knowledge as possible.

This means that we want as many buckets as possible on each round, forgetting any previous hand

strength buckets. Doing so allows us to create better abstractions that use less space, giving us more

space to allocate to the betting abstraction. Although it is very expensive to add additional betting

options, it appears to provide significant improvements in the play of the agents.

The translation Polaris uses is somewhat complicated. When performing such translation, we

must pay careful attention to exactly what we are doing. We want to make sure that we understand

how translating action a into action b will affect the game tree, and avoid translations that result in

poor behavior. Most importantly, we want to maintain internal consistency in that we never view a

previous action as something different than what we originally intended. Even after fixing some of

the problems that Polaris’s translation had, it is still susceptible to exploitative techniques. Chapter

4 more formally discusses state translation and how to create more robust players.
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Chapter 4

State Translation

4.1 Introduction

In this chapter we discuss the concept of state translation and how it affects the play of different

strategies.1 State translation refers to the process of translating a state in the full game to a state in

an abstracted game. Specifically, the combination of a strategy in an abstract game and a translation

function results in a strategy in the full game. Although the concepts described in this chapter apply

to all extensive form games, we use poker as an example. In practice, an abstraction on chance

nodes uses an explicit partition so that translation is just a table look-up. In poker, it is common to

use a hand strength function to partition the two card starting hands into a fixed number of buckets,

where the hands AA, KK and the other strongest hands are usually in the same bucket. However,

the player action space is usually just restricted without an explicit partition being created. In poker,

the actions may be restricted to fcpa without explicitly describing how a double-pot bet is handled.

In this case, one must convert a real action history into a legal history in the abstract game in order

to use the abstract strategy.

Using translation has several advantages. The first advantage is that we do not need to create

a full partitioning of the set of real histories. In very large games, creating such a partition is not

feasible and so not needing to create/store a partition is an important point. Another advantage is

that after computing a strategy for the abstract game, we can create several players by implementing

different types of translation methods. This means that one expensive equilibrium computation can

result in a variety of strategies in the real game depending upon how the translation is performed.

Finally, translation allows the player to take actions in the real game that are not legal actions in the

abstract game. There are many situations in which knowledge about the real situation, which is lost

in the abstract game, can influence what actions a player should take.

Throughout this chapter we will be using the extensive game notation defined in Chapter 2. In

particular, we assume that we have an extensive game Γ as well as Γ′ that is a loose abstraction of Γ.

We will refer to the possible histories, H and H ′, and sets of legal actions, A and A′, associated with

1Portions of this chapter appeared in [27]
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these games, where H and A belong to Γ and H ′ and A′ belong to Γ′. In Section 4.2 we discuss the

current method of translation, first described by Gilpin and colleagues [9]. We also discuss ways to

exploit a player using that method. Section 4.3 describes a new probabilistic translation method that

produces more robust players. In Section 4.4 we illustrate both translation approaches in the context

of poker. In Section 4.5 we show how an intelligent agent can learn the parameters of an opponent’s

translation function. Finally, the results of a variety of experiments are given in Section 4.6.

4.2 Hard Translation

4.2.1 Definitions

Hard translation refers to a translation function that is a mapping of real histories to abstract his-

tories. Specifically,

Definition 8 A hard translation function is a function on histories T (h) ∈ H ′ where h ∈ H .

Hard translation provides a partitioning of real-game histories that is sufficient to convert a loose

abstraction into an explicit abstraction. A translation function can be used to define the partitioning

αI
i where h, h′ are in the same information set if and only if T (h) = T (h′).

The simplest way to implement such a translation function is to step through the history sequen-

tially and convert each real action into a legal action in the abstract game.

Definition 9 A hard translation in-step function is a function on histories and actions tin(h, a) ∈

A′(T (h)) where h ∈ H, a ∈ A(h).

This allows us to recursively define the translation function as follows:

T ((h, a)) = (T (h), tin(h, a)). (4.1)

An example of hard translation is as follows. Assume we are playing in a Texas Hold’em game and

the betting sequence is cr2c/cr6 (c is a check/call, rX is a raise of size X and / denotes the end of

a betting round). If the abstract game only allows bets of 0.5 or 1 times the pot, then the raise of 6

chips presents a problem since it is 0.75 times the pot.2 The logical conclusion is to map the 6 chip

raise to either 4 or 8.

cr2c/cr6
↗
↘

cr2c/cr4

cr2c/cr8
(4.2)

It is important to note that there are other ways to define the translation function that give us

more power in the translation. This type of step function ensures that the length of the abstract

history returned is the same as that of the real history. This means that the action returned by the

step function must have a similar affect on the game tree as the real action given. An example of

2The first call makes the pot size 4 chips. The raise of 2 is then a half pot bet, which ends up making the pot size 8 chips.
The raise of 6 is then 0.75 of the pot.
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this in poker is the act of translating a bet to a call or vice-versa. These two actions affect the game

tree quite differently (for instance, translating a bet to a call could prematurely end a round) and

using such a step function for translation would likely fail. Instead, there are situations in which

we wish to translate a sequence of real actions to a sequence of abstract actions of different length.

The easiest way to do this is to create exemption situations, in which we handle the translation in a

special manner. Section 3.3.2 discussed how this was done for the Polaris agent, when we wanted

to translate small bets into checks.

Ideally the step function would return the abstract action that is most similar to the real action

given the real history. Thus, if we define a similarity metric then the step function can simply return

the action with the highest similarity value.

Definition 10 A similarity metric is a function on histories and actions S(h, a, a′) ∈ < where

h ∈ H, a ∈ A(h), a′ ∈ A′(T (h)).

And the step function then becomes:

tin(h, a) = argmax
a′

(S(h, a, a′)) (4.3)

Looking at the previous example, we could define the similarity metric to be the ratio of the two bets.

Thus, S(h, r6, r4) = 4/6 and S(h, r6, r8) = 6/8, where h = {cards}cr2c/cr6, and as 6/8 > 4/6,

the r6 action would be mapped to r8.

Finally, one last step is required. After a player has queried the abstract strategy for an action it

must decide what action to take in the real game. The purpose of the out-step function is to translate

the action in the abstract game into an action in the real game. This enables a player to take actions

in the full game that are not legal actions in the abstract game.

Definition 11 A hard translation out-step function is a function on histories and actions

tout(h, a′) ∈ A(h) where h ∈ H, a′ ∈ A′(T (h)).

Since most actions in the abstract game are legal actions in the real game, an agent could simply

perform the action specified. However, there are a variety of situations in which one may want to

do something else. An example of this in poker is when the pot size is different than we expect it

to be. Suppose the size of the pot in the real game is 40 chips, whereas the size of the pot in the

abstract game (after translation) is 36 chips. We know that the closer the pot size is in the real game

to what the abstract model expects it to be, then the better the agent performs. Thus, if the abstract

strategy says to make a pot bet (a bet of 36 chips), the agent will instead make a bet of 34 chips. If

the opponent calls, the pot size in the real game becomes 2 ∗ 34 + 40 = 108, as the abstract game

expects (2 ∗ 36 + 36 = 108). Alternatively, we could argue that we want the pot ratio of the real bet

to match the pot ratio of the abstract bet. Thus, the agent would then make a bet of 40 chips, since

that is the real pot size. The translation concepts we use in poker were explained in detail in Section

3.4.
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When defining these step functions it is important that we do so in a way that does not confuse

the agent. Depending on how the equilibrium strategy was computed, it may have bad or no data in

certain parts of the game tree. In particular, it may return bad data if asked what to do in a situation

it believes has 0% chance of occurring. This situation is easily avoided by only performing actions

the strategy says to perform. Although the agent would never perform an action the strategy says not

to perform, it is possible that it would think that it did so. When interpreting its previous actions, it

is important that it always maps the real action it performed back to the abstract action the strategy

told it to play. Otherwise, it will start jumping around the abstract game tree and no longer play an

equilibrium strategy within its own game. For instance, consider the history cr2c/c. The agent’s

strategy says to make a half pot bet (4), but tout(h, r4) = r6, resulting in a raise of 6. The agent will

then see the sequence cr2c/cr6. Since r6 maps to r8, it will translate the sequence to cr2c/cr8,

different from the cr2c/cr4 it intended. We can ensure that this never happens by requiring the

out-function to be an inverse of the in-function. If this is violated, then it can confuse the agent

and result in poor play. We say that a translation function maintains internal consistency if the

following holds:

tin(h, tout(h, a′)) = a′ ∀h ∈ H, a′ ∈ A′(T (h)) (4.4)

Note that since tin operates on a larger domain than tout does, that the converse of this statement

(tout(h, tin(h, a)) = a) is not (and can never be) true ∀h, a.

We can see how maintaining internal consistency was part of the translation fixes implemented

in Section 3.3.2. Primarily, the AbstractActions fix was designed to fix the internal inconsistency the

agent had. The agent modified its actions to reflect a pot discrepancy, but it did not interpret previous

actions in the same way. Thus, it was possible for it to attempt to perform an abstract action it would

later translate into a different action. Similarly, the CallisCall fix also dealt with internal consistency.

The agent would want to perform a call in the abstract game but instead performed a bet that it would

later translate as a bet in the abstract game.

4.2.2 Weaknesses

Hard translation suffers from the fact that it is a many-to-one mapping. Looking at the cr2c/cr6

sequence again, we observe how this mapping is exploitable by considering the situations where r6

is mapped to both r4 and r8.

• cr2c/cr6
cr2c/cr8

}
→ cr2c/cr8

• cr2c/cr4
cr2c/cr6

}
→ cr2c/cr4

In the first situation, both r6 and r8 are mapped to r8. If we were going to make a bet of 8 and had

bad cards (we are bluffing, trying to get our opponent to fold), we could bet 6 chips instead of 8. The

action would have the same chance of causing the opponent to fold, but we would be risking fewer
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chips if our opponent called. In the second situation, if we were going to make a bet of 4 and had

good cards, we could bet 6 chips instead of 4. Here we increase the size of a pot we are likely to win

without decreasing the probability of a call from our opponent, which we want because we believe

we have a stronger hand.

The exploitative concept can be generalized to other situations. In particular, we know that for

a given state, there exists some set of actions B that the agent would translate to the same abstract

action c. It is not important to know the action c or how the agent will react, only that every action

in the set B is treated equally. There are several ways to find such sets, varying from learning them

(see Section 4.5) to simply knowing the similarity metric the player is using. The knowledge of

how an agent translates the action space is much more dangerous than the knowledge of the card

abstraction being used for two reasons.

The first reason is that agents can control what actions they take, whereas they have no control

over what cards are dealt. This means that an agent can actively push the real game into situations

where the opponent plays poorly. For this we would choose the action a ∈ B that most confuses

our opponent. This is likely the action with the lowest similarity to c, that is argminaS(h, a, c).

This results in the abstract state returned by translation being as far from the real state as possible.

An example of this in poker is that making the largest pot bet possible (the largest bet such that the

opponent interprets it as a pot bet) results in a situation where the real pot contains many more chips

than the abstract pot. This results in the player having a poor concept of pot odds, especially when

later faced with an all-in bet.

The second reason is that an agent need not know the opponent’s strategy to exploit it. With card

abstraction, an agent needs to know how the opponent plays within the information set to understand

why it handles different situations in the real game poorly. With betting abstraction, knowing that

an agent treats a set of actions the same is enough. Here the agent simply chooses the action a ∈ B

that maximizes its immediate utility, knowing that the opponent will not notice the effect. In poker,

this can be done by modifying bet sizes according to hand strength. When making a bet that will

be translated to a pot bet, the agent could instead make the largest bet possible that translates to a

pot bet when it has a good hand and the smallest pot bet possible when it has a bad hand. This

means that when the agent wins the pot is generally larger than expected and when it loses the pot

is generally smaller. This is concept behind the +- player, described in Section 3.3.1.

It is possible that no opponent would understand the translation function enough in order to

exploit it. However, it is possible to learn how an agent performs its translation. Assuming an agent

is using hard translation, we need only learn which actions it responds to similarly and which it treats

differently. We developed a method that can, with high accuracy and within 100 hands, estimate how

an agent is performing hard translation. This method is described in detail in Section 4.5. In order to

counter this method as well as the previously described types of exploitation, we desire a translation

method that does not exhibit a many-to-one mapping that hard translation does. This leads to the
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concept of soft translation.

4.3 Soft Translation

4.3.1 Definitions

A translation function is a soft translation function if it maps real histories to sets of weighted

abstract histories. Specifically,

Definition 12 A soft translation function is a function on histories T s(h) ⊆ <×H ′ where h ∈ H .

The concept is that maintaining several histories will provide us with a more accurate view of the

world than just one. We can then sample the set of histories according to their weights to obtain an

individual history that we act upon. We can also consider a hard translation function to be a special

case of a soft translation function, in which one history has weight 1 and all other histories weight

0. Similar to hard translation, we can again define a step function that will help us implement this

concept.

Definition 13 A soft translation in-step function is a function on histories and actions tsin(h, a) ⊆

<×A′(T s(h)), where h ∈ H, a ∈ A(h).

We can use the similarity metric previously defined to determine the weights of actions returned.

The step function then becomes

tsin(h, a) = {(α ∗ S(h, a, a′), a′)|a′ ∈ A′(T (h))} (4.5)

where α is the normalizing constant. Soft translation makes it possible to differentiate states that

were previously viewed as identical. While raises of 4 and 8 might both be mapped to themselves

with 100% weight, a raise of 6 may be mapped to both states according to their normalized similarity

values ({2/3, 3/4} normalized is {0.47, 0.53}).

cr2c/cr4→
{

cr2c/cr4 1.0

cr2c/cr6→
{

cr2c/cr4 0.47
cr2c/cr8 0.53

cr2c/cr8→
{

cr2c/cr8 1.0

Again we can step through the action history, except now we convert every real action into a

weighted set of abstract actions. By weighting these actions by their (normalized) similarity values,

we obtain a more accurate analog of what actually happened in the real game. When performing

such a translation, we find that the number of (non-zero) weighted histories grows exponentially

in the number of real actions. One way to avoid this is to sample the actions returned by the step

function according to their weights instead of storing all of them. This does not affect the final

distribution and allows us to perform translation while maintaining only one abstract history. In this

manner we can view soft translation as a non-deterministic version of hard translation.
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The out-step function need not be defined differently for soft translation. This is because sam-

pling the set of histories and the abstract strategy still results in one abstract action to perform. This

action can then be translated out using the same function as described for hard translation. However,

we again need to be careful that we do not confuse the player. If T (h) returns {b, b′} and the player

samples from b to choose the action a, then it may not want to sample from the resultant history

h′ = b′a later on since b′ may suggest to never take action a. This would result in the player query-

ing a bad part of the game tree, which can result in unpredictable behavior. The way to fix this is

different depending on whether the player is sampling the set of weighted actions throughout trans-

lation or maintaining the full (exponentially increasing) set. From a game theoretical standpoint,

both of these methods result in the same distribution over selected actions.

If the player is using the exponential version of soft translation, then it needs to update the

weights of the histories by the probability it would have taken such an action. For instance, if

the strategy for b is to perform a 70% of the time and a′ 30% of the time, and the strategy for b′

is a′ 100% of the time, then the weight of the resultant history h = ba is multiplied by 0.7 (the

probability it would have performed a given b) and the weight of the resultant history h′ = b′a by 0

(the probability it would have performed a given b′).

If the player samples from the action sets it received, we need to enforce that, within one game,

the step function returns the same abstract history given the same input. In other words, given

h ∈ H , we desire that the h′ ∈ H ′ returned by translation is the same within one hand. Assuming

the sampling process is governed by a random number generator, we can seed the random number

generator with a game ID (or some hash of said ID). This ensures that the history h will be translated

in the same way given the same ID, but perhaps differently should it arise in another hand.

4.3.2 Effects

The primary focus of soft translation is to allow the player to distinguish between two similar states.

In particular, soft translation gives us the guarantee that two actions a, b ∈ A(h), a 6= b elicit

different responses from the player (assuming that the player reacts differently to different actions

in the abstract game). The weights of the states also give the player a better understanding of every

state, meaning that there are fewer states in which the player has a poor understanding of the real

situation.

The concept of maintaining several histories perhaps makes more sense in situations where the

opponent’s action is hidden. In attempting to model such a situation, simply assuming the most

likely event occurred would result in the player being unprepared when this assumption is incorrect.

Instead, one can model the situation by weighting different events according to the probability that

they occurred. Our situation differs in that we know what our opponent did, but we do not understand

what that action means. Just as we would describe a motorcycle as a mixture of a bicycle and a car,

describing an unknown situation as a mixture of known situations can more accurately describe the
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real situation.

Unfortunately, soft translation gives us no guarantee that our agent will perform the correct

action. It is possible that none of the strategies for the returned histories contain the correct response

since they simply cannot model the situation accurately enough. However, when dealing with actions

that do not exist in the abstract game to begin with, all guarantees of optimality are lost and we are

stuck using methods without useful bounds on their worst case scenarios.

4.3.3 Dominated Actions

The concept of considering multiple possible histories provides us with another interesting concept.

In games there is the concept of a dominated action, an action a in which one is guaranteed a lower

utility in all situations than some other action a′. We say that a′ dominates a at a particular informa-

tion set if the utility of performing a′ is greater than the utility of performing a for all possible states

within the information set and for all possible strategies the opponent could play. As performing

dominated actions is always a mistake, we seek strategies that do not perform them. In fact, in full

information games a strategy that never takes a dominated action is actually an equilibrium. This is

because equilibria in full information games do not need to hide information, and thus every full in-

formation game has an equilibrium that does not mix over its action space (it is a pure strategy) [24,

pages 163-171]. In full information games every non-dominated action is taken with some proba-

bility in some equilibrium, and it is safe to switch between equilibria (unlike in partial information

games, see Chapter 5). Thus, a combination of non-dominated actions results in an equilibrium

strategy.

The concept of non-dominated actions can be extended to soft translation. In an abstract state,

we consider any action to be dominated if the strategy for that state says to perform it with 0%

probability (or < ε% probability for small ε) and it is a legal action to perform. Now consider the

weighted set of abstract histories returned by a soft translation function. Define B to be the set of

histories with weight > ε%. By querying the abstract strategy for each history h′ ∈ B, we can

determine which actions are dominated in each history Dh′ ⊆ A′(h′). We can then define the union

of these actions Ds = ∪h′∈BDh′ to be the set of pseudo-dominated actions. This set of actions is

then removed from the legal set of actions for every history in B, and we ensure that the player does

not take an action that is dominated in one of the histories it is partially in.

Removing the set of pseudo-dominated actions from the set of legal actions is a dangerous con-

cept to implement. The intuition comes from a strong underlying concept of not performing dom-

inated actions, but we have no theoretical guarantees that what we are doing will have a positive

impact. There are two obvious flaws to using this idea. The first is that the behavior of a player

using this concept is no longer smooth in that a slight alteration in actions can result in a significant

change in play. For example, if in poker we made a bet of 4 chips into a pot of 4 chips the player

would interpret this as a pot bet with weight 1, however if we bet 5 chips it would mix between
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a pot bet and the next highest bet b. Thus, any dominated actions from the strategy for b would

be invalidated even if b is a bet of 1, 000. Thus, b could suggest that all actions are dominated by

folding, and the player would then fold even if the player would call a pot bet. The second flaw

is that it is possible to invalidate all legal actions. If every legal action is dominated in one of the

returned histories, then we suddenly have no legal actions to choose from. For instance, if a raise

is interpreted as a pot bet then the fold action is dominated, whereas if it is interpreted as b every-

thing but fold is dominated, then no actions remain. Although these issues cannot be immediately

addressed in an intelligent manner, we can still test this concept by performing some default action

(check/call) whenever translation fails and observe the results.

4.4 Application to Poker

4.4.1 Hard Translation

With the translation methods, real game and abstract game defined, all that is needed to implement

hard translation is a similarity metric and an out-step function. Recall that the most common betting

abstraction used in the no-limit game allows each player to fold, call, bet pot, or go all-in (fcpa).

This means that every bet must be translated to one of these four actions. The metric used by several

of the competitors in the AAAI no-limit poker competitions was described by Gilpin et al.[9] and

will be formalized here.

Definition 14 The geometric similarity of a real action a and a legal action a′ in the abstract game

is as follows, where b, b′ are the respective bet sizes associated with a, a′.

S(h, a, a′) =
{

b/b′ if b < b′

b′/b otherwise (4.6)

This is the metric we use in our translation function.

To define the out-step function, we need to map the legal abstract actions to real bet amounts.

We will do this in two ways, using both real and abstract translation as defined in Section 3.4. As

long as we apply whichever concept we are using to both the out and in translation step functions

we can maintain internal consistency.

Knowing the similarity metric we can immediately see how a player using the current translation

method and the fcpa abstraction would interpret certain bets. For instance, if p is the number of

chips associated with a pot bet and a is the number of chips associated with an all-in bet, then we can

find the bet b that is 50% between p and a. This occurs at p
b = b

a ⇒ b2 = pa. Thus, we know that

any bet larger than
√

pa will be interpreted as all-in, and any bet smaller than that will be interpreted

as a pot bet. Similarly, if we consider a check to be a bet of 1, then
√

p is the border that determines

whether a bet is considered a pot bet or a check/call.3 This means that any amount from
√

p to
√

pa

3Since calling affects the game tree differently than a bet, we can only translate real bets into check/calls in certain
situations.
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will be interpreted as a pot bet, and we can choose to use whichever one will benefit us the most

knowing such a player cannot tell the difference.

4.4.2 Soft Translation

A slightly different metric is used for our soft translation function. Looking at the previous metric,

we see that every action will always have a non-zero similarity value. However, since the weights of

all actions are important in soft translation, we desire that when the similarity value of one action is

1 that the values of all other actions are 0. Because the different bet sizes lay on the number line, we

only need to consider the closest legal bets larger and smaller than the actual bet (all other actions

are given weight 0). If b1 < b < b2 where b is the real bet associated with a and b1 and b2 are the

bets of the two closest legal abstract actions a1, a2, then the metrics are as follows.

S(h, a, a1) =
b1/b− b1/b2

1− b1/b2
(4.7)

S(h, a, a2) =
b/b2 − b1/b2

1− b1/b2
(4.8)

Thus, we have that the metric S(h, a, a1) = 1 when a = a1 and S(h, a, a1) = 0 when a = a2, as

desired. An important aspect of this property is that if the original history being translated is a legal

history in the abstract game, then soft translation will return this history with weight 1.

We also see how the previous exploitative methods no longer work. This is because bets near
√

p will return (0.5-c,0.5-p) and bets near
√

pa will return (0.5-p,0.5-a). Thus, a bet of
√

p + 1 and
√

pa − 1 will be treated quite differently. Additionally, bets near
√

pa will be treated similarly, so

attempting to manipulate bets near that border will be less obviously effective.

4.5 Boundary Exploration

Although we know that hard translation can lead to exploitable behavior, we still need to understand

how the translation is being implemented in order to exploit it. If we assume an agent is using hard

translation with a betting abstraction of type fcpa, then we need to find the boundary between p

and a that determines whether a bet is translated down to p or up to a. Finding this location will

specify the range of bets that are interpreted as pot and all-in bets, and thus allow us to exploit the

translation.

4.5.1 Problem Definition

Assume the agent has two legal bet amounts a and b and any bet c between them, a < c < b, must

be translated to either a or b. There then exists a true boundary point θ∗ such that:

c =
{

a if c ≤ θ∗

b if c > θ∗
(4.9)
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Our goal is to find θ∗ as quickly and accurately as possible. This is done by observing the agent’s

responses to various actions. We assume that the set of responses come from two independent

distributions, one associated with a and one with b. If we have an estimated boundary point θ, then

we can assign all responses to bets in [a, θ] to the a distribution and all responses to bets in (θ, b] to

the b distribution. This allows us to evaluate the likelihood that θ is the correct boundary point.

First we discretize the betting space such that we have n possible bets to investigate, all of which

fall in [a, b]. Although we could simply distribute the n bets uniformly over [a, b], this need not be

the case. If we believe the boundary to be at one of several points, we can directly investigate those

locations. For instance, in poker two common boundary points are the arithmetic mean, a+b
2 , and

the geometric mean,
√

ab. If we know an agent is using one of these two points, then we need not

investigate other locations.

In order to estimate the boundary location, we store a set of observations of the agent. For each

of the possible bet amounts, we store how often the agent folds, calls and raises in response to the

bet. This provides us with a matrix S that is our observation set:

S =

 F1 . . . Fn

C1 . . . Cn

R1 . . . Rn

 (4.10)

where Fi the number of observed instances of a fold in response to the i bet (and similarly for

Ci, Ri). Given an estimated boundary θ we can define observation sets for the two assumed distribu-

tions. Let (Fa, Ca, Ra) be the observations associated with the a distribution and (Fb, Cb, Rb) be the

observations associated with the b distribution. We then have Fa =
∑θ

i=1 Fi and Fb =
∑n

i=θ+1 Fi

and similarly for the others.

Once we have the observed distributions, we can evaluate their likelihood (and thus the con-

fidence that θ is the correct boundary point). Let V (θ, S) ∈ [0, 1] be an evaluation function that

assigns a confidence value for the boundary point θ given S. Similarly, let V (S) = maxθV (θ, S)

be the confidence value of the observation set S. The concept is that we continue to obtain data until

such a point that V (S) exceeds some confidence threshold. At that point we believe to have a good

estimate of the boundary point.

When calculating V (S) we do not want several θ to have high confidence values. It does not

make sense to be highly confident that several boundary points are correct when only one can be.

Thus we assume that V (θ, S) is normalized over the possible θ. Normalizing the confidence values

ensures that we consider the confidence of different points relative to each other. This allows us

to use metrics that may assign high confidence levels to multiple points or, in our case, assign low

confidence values to all points. The next step is to define this evaluation function.

4.5.2 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is an optimization method where the assumed distribu-

tions are assigned values to maximize the probability of the observed data. First, we define fa, ca

42



and ra = 1 − fa − ca to be the probability of observing a fold, call and raise given that we pulled

from the a distribution. We can then state the probability of observing the given data as follows:

Pa(S|θ) = fFa
a ∗ cCa

a ∗ rRa
a (4.11)

Our goal is then to find fa, ca and ra that maximize Pa(S|θ). These values are found to be the

empirical probability of the data.

fa =
Fa

Fa + Ca + Ra
(4.12)

ca =
Ca

Fa + Ca + Ra
(4.13)

ra =
Ra

Fa + Ca + Ra
(4.14)

The probability of observing the full data set is then the product of the probabilities of observing

the a and b distributions.

P (S|θ) = Pa(S|θ) ∗ Pb(S|θ) = fFa
a ∗ cCa

a ∗ rRa
a ∗ fFb

b ∗ cCb

b ∗ rRb

b (4.15)

The evaluation function is then the normalized probability of observing the data.

V (θ, S) = α ∗ P (S|θ) (4.16)

where α is the normalizing constant.

4.5.3 Estimation Algorithm

Given an observation set S we can assign a value to how confident we are in estimating the boundary

point. If the confidence value is not high enough, we can obtain more data in the hope of obtaining

a more confident bound. Unlike many problems, we have direct control over the additional data we

obtain. Specifically, we can choose which bet option could benefit most from an extra data point.

Thus, we desire a method for determining which action is most likely to increase the confidence

value of the observation set by the largest amount. The simplest way to do so is to directly estimate

the possible future confidence values of the observation set. Given the current data set S, we can

estimate the probability of obtaining a fold/call/raise for a particular action. We then assume that

we received such a response, update S, and calculate the new V (S). The action to take is the action

that results in the highest estimated V (S). Algorithm 1 describes this process in detail.

This algorithm tells us what action to perform given an observation set S. All we have to do

to find the boundary point is to repeatedly query this algorithm until we obtain a sufficiently high

confidence value. Algorithm 2 describes this process.

4.5.4 Results

We implemented the EstimateBoundary algorithm (Algorithm 2) and tested it against a version

of Polaris. Specifically, we used an agent with the 5.5.5.5 card abstraction and the fcpa betting
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ChooseAction(S):
Input: Observation set S of size [m,n]
Output: pos
maxval = 0;
pos = 0;
for i = 1 to n do

val = 0;
total = 0;
for j = 1 to m do

total = total + S[j, i];
S′ = S;
S′[j, i] + +;
val = val + S[j, i] ∗ V (S′);

end
val = val/total;
if val > maxval then

maxval = val;
pos = i;

end
end
return pos;

Algorithm 1: Obtain the next action to perform

EstimateBoundary(actions, γ):
Input: Array of n possible actions, confidence halting criterion γ
Output: pos
S ← nullmatrix;
for i = 1 to n do

Perform action[i], update S according to response
end
while V (S) < γ do

Perform action[ChooseBet(S)], update S according to response
end
return argmaxi V (i, S);

Algorithm 2: Explores the action space to find a split location
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abstraction, where we modified the translation function to use different boundary locations. We

chose to use 20 betting amounts uniformly distributed in [p, a], the range between pot and all-in. We

set the confidence criterion γ to be 0.99 and set a hard cap of 500 hands. Although computer agents

can play millions of hands without difficulty, the matches run in the AAAI no-limit competition

only run for a couple thousand hands each. Thus, speed is very important and we decided that if the

algorithm could not converge to a boundary point in 500 hands then it was learning too slowly. It

was determined a failure any time the algorithm converged to the wrong boundary point or hit the

500 hand mark.

The algorithm was run for 100 trials on each of five different boundary points. We recorded the

average iteration of convergence as well as the error rate and the average error (how far the estimated

boundary point was from the actual boundary point). A boundary point of 0.1 refers to the boundary

being at 0.1 ∗ (a− p) + p. Table 4.1 shows the results of the experiment.

Boundary Point 0.1 0.3 0.5 0.7 0.9
Average Iteration 66.86 79.75 93.23 99.56 114.60
Error Rate 0% 0% 1% 1% 4%
Average Error 0 0 0.0035 0.0050 0.0160

Table 4.1: Effectiveness of EstimateBoundary at predicting a Polaris agent’s boundary point

Table 4.1 shows that convergence is reached quite quickly and with high accuracy. Not shown

in this table is the fact that most of the failures came from the algorithm converging to the wrong

location. Thus, we could raise the confidence criterion to lower the error rate for a slight performance

hit in the convergence time. Regardless, this shows that a hard translation function can be exploited

by an unknowledgeable opponent with a good learning algorithm.

4.6 Results

We constructed a series of experiments to compare the performance of hard and soft translation.

We created three no-limit agents for each no-limit variant we used. Within each variant, the three

agents use the same solution to the abstracted game, but one uses hard translation, one uses soft

translation, and one uses soft translation with dominated actions removed (ND). The first variant

used is the fcpa betting abstraction of the full no-limit 500BB game. The second variant uses the

fchpta betting abstraction in the 100BB game. Both of these variants use the ir169.64.8.8 card

abstraction. The final variant is a Leduc Hold’em game with stacks of size 12. For the Leduc game,

a variety of betting abstractions were used, namely the power set of the hpd betting options, with

fca always allowed. For the Leduc agents, we can directly calculate the value of the best response to

their strategies. Since the other games are too large to calculate this value, the agents in the first two

variants are played against a set of opponents designed to test their translation abilities. Additionally,

we reinvestigated the effects of real translation versus abstract translation (see Section 3.4).
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4.6.1 Opponents

Since the full no-limit poker game is too large to compute a proper best response to our agents, we

created a variety of different opponents to test the agents. Some of the opponents were designed

to exploit hard translation and others simply play using a strategy created with a different betting

abstraction. Note that in this section, a large pot bet or a small pot bet refers to making the largest

or smallest possible bet that our opponent will interpret as a pot bet. This notation will also be used

when referencing bet amounts other than a pot bet.

The first set of opponents that were created were designed to exploit hard translation. This

exploitation is done by controlling the size of the pot in a way that is invisible to a player using hard

translation. Knowing, for instance, the range of bets that the player interprets as a pot bet allows us

to make larger or smaller pot bets and thus control the size of the pot. Controlling the pot size allows

us to exploit the player in two ways. The two players based on these exploitative methods are the +-

and naı̈vePA players. These players are the same as the ones described in Section 3.3.1.

Several other players were constructed using the same concepts as the +- player. The -+ players

works the same way except it reverses the type of bet it makes based upon its hand. We expect

that reversing the +- strategy will have the opposite effect on the amount of money won against the

player. Two other opponents, +1-1 and -1+1, are variations on these techniques. When making a

bet, these players will instead bet 1 chip more or less depending on the strength of their hand. These

players were mainly created to test how robust the soft-ND translation is. By varying their bets by

only one chip, they cause pseudo-dominated actions to be removed without greatly changing their

bets.

Lastly we have two opponents that do not use exploitative techniques. These opponents are

simply equilibrium solutions to different betting abstractions. This means that they will take actions

that need to be translated by the player, but these actions are not designed to take advantage of how

the player’s translation method works. fc75pa and fc125pa bet 75% and 125% of the pot instead

of 100% of the pot, respectively. These players do not use the same strategy as their opponent, but

rather the solution to their own abstracted games.

In summary, naı̈vePA, +- and +1-1 are all designed to exploit the normal translation method to

different degrees. The inverse players, -+ and -1+1, are weak agents that manage to hurt themselves

by exploiting the translation in the wrong direction. +1-1 and -1+1 were designed to test the robust-

ness of soft-ND translation by betting just off of the expected amounts. Lastly, fc75pa and fc125pa

are designed to see how well the methods handle bets that are non-exploitive but also not part of the

abstraction. All of these agents use hard translation when playing.

4.6.2 Abstract Translation

This section shows results using abstract translation. Table 4.2 shows the results for the 500BB game

using the fcpa betting abstraction. It is important to note that a player that folds every hand loses at
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most 750 mb/h. Additionally, in last year’s AAAI no-limit competition, first place beat second place

by 109 mb/h.

Hard Soft Soft ND
naı̈vePA 15458 5696 -6114
+- 1053 554 -95
-+ -1666 -401 -2233
+1-1 30 21 19
-1+1 -26 -9 -12
fc75pa 14 30 26
fc125pa -30 0 14

Table 4.2: Translation results for 500BB players in mb/h using abstract translation

Table 4.2 shows that naı̈vePA beats the player using hard translation by 15458 mb/h. This is

amazing considering that naı̈vePA does not look at the cards it is dealt. We also see that naı̈vePA

beats the player using soft translation by 5696, a significantly smaller amount but still positive. The

naı̈vePA player is still effective against soft translation because the second bet it makes (the small

all-in bet) is a relatively small amount due to the effects of using abstract translation. Additionally,

its exploitative technique is still working 25% of the time. Each bet is interpreted as a pot bet

roughly 50% of the time and as an all-in bet 50% of the time. This means that 25% of the time it

works correctly (pot followed by all-in), 25% it fails critically (pot followed by pot), and 50% it

fails safely (all-in on the first bet, which generally results in the player folding and naı̈vePA winning

the blinds). Since the cost for its technique failing is relatively low, it still profits. Later we will

see that this is not the case when there is an additional bet between pot and all-in or when using

real translation. Finally, removing dominated actions results in naı̈vePA losing by 6114 mb/h. This

is largely attributed to the fold action being disallowed when the agent has a decent hand, resulting

in the agent calling the bets down more often and thus increasing the proportion of hands where

naı̈vePA’s technique fails critically.

Similarly, the +- player’s winnings are reduced by soft translation. It beats the agent using hard

translation by 1053 mb/h, which is reduced to 554 mb/h by soft translation. Conversely, we see

that soft translation does not beat the inverse players by as much as hard translation. This makes

sense, since the goal of soft translation is to reduce the effect of this type of exploitation. Thus, if it

defends against an exploitive method then it likely exploits the inverse method less. Again, we see

that soft-ND translation provides a significant improvement over soft translation in both situations.

When playing against the +1-1 and -1+1 players, soft translation had a similar effect as against

the +- and -+ players. It reduced the exploitative technique slightly without completely defending

against it. However, we notice that soft-ND performed very closely to soft translation. This means

that the possible complication of removing actions does not appear to be an issue in general.

Against both the fc75pa and fc125pa players soft translation performed slightly worse. Soft-ND

performed similarly to soft translation or slightly worse. It appears this method does not have the
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same effect on these players as it does on the exploitative ones. This may be because the exploitative

methods are using the same abstraction as the agent being played against, whereas the fc75pa and

fc125pa players are using a different abstraction.

Hard Soft Soft ND
naı̈vePA 944 -591 -3712
+- 282 48 49
-+ -202 -8 -136
+1-1 19 13 14
-1+1 -46 -19 46
fc75pa -40 -7 1
fc125pa -138 -96 43

Table 4.3: Translation results for 100BB players in mb/h using abstract translation

Table 4.3 shows the results for the 100BB game using the fchpta betting abstraction. The data

shows mostly the same results as the 500BB game, with two notable exceptions. First, soft transla-

tion turns a win for naı̈vePA into a loss. This occurs because the cost for naı̈vePA’s technique failing

is much higher due to the extra ten-pot bet option. Second, we see that soft-ND translation results

in larger losses against the -1+1 and fc125pa players.

Hard-P1 Soft-P1 SoftND-P1 Hard-P2 Soft-P2 SoftND-P2
fchpda 0.26 0.18 0.39 0.44 0.36 0.36
fcpda 1.01 0.84 0.86 0.61 0.59 0.59
fchda 0.49 0.28 0.28 0.54 0.42 2.22
fchpa 0.70 0.28 0.56 0.47 0.38 0.38
fcha 0.64 0.26 1.28 0.89 0.49 2.84
fcpa 1.14 0.90 1.04 0.62 0.59 0.62
fcda 0.54 0.53 0.98 0.61 0.63 0.64
fca 1.10 0.54 1.12 1.28 0.75 1.26

Table 4.4: Exploitability of various 12-stack Leduc Hold’em players in sb/h using abstract transla-
tion

Table 4.4 shows the results for the 12-stack Leduc Hold’em game. Hard-P1 shows the ex-

ploitability of a player using hard translation in mb/h by a knowledgeable opponent sitting in po-

sition 1 (and similarly for the other columns). Each row shows the results for a player using a

different betting abstraction. It is important to note that in this game each player antes 1 chip instead

of posting blinds, and thus the always-fold player loses 1 sb/h.

Looking at the table, we see that the exploitability of a player using soft translation is almost al-

ways smaller than the exploitability of a player using hard translation. The one exception is position

2 against the fcda player, in which soft translation is exploitable by 0.63 sb/h instead of the 0.61

sb/h exploitation of hard translation. Looking at the effects of using soft-ND translation, the results

are mixed. It many cases it is less exploitable than hard translation, though rarely does it perform

better than soft translation. Additionally, some times it creates very poor players, in particular the

fcha player in which it increases the original exploitability of 0.64 and 0.89 to 1.28 and 2.84. It
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seems that an opponent who knows exactly how the soft-ND translation fails can exploit it for a

large amount.

4.6.3 Real Translation

In this section we show results of using real translation. Table 4.5 shows the results for the players in

the 500BB game using the fcpa betting abstraction. These results have several differences from the

results using abstract translation (Table 4.2). First, the naı̈vePA player wins only 13506 sb/h instead

of 15458. Additionally, it loses money when soft translation is used. This is because real translation

forces the second bet to be at the real boundary between pot and all-in, which is a larger amount than

when using abstract translation. Thus, when the technique fails the naı̈vePA player loses many more

chips than when using abstract translation. However, this same reason causes the player to be more

exploitable to the +- player and its variants. The amount won by the +- player increases to 2711 sb/h

from 1053, a significant increase. Aside from these changes, the trends in the results are mostly the

same as before. The same can be said for the 100BB game (using the fchpta betting abstraction),

shown in Table 4.6.

Hard Soft Soft ND
naı̈vePA 13506 -2753 -12530
+- 2711 841 682
-+ -2582 -582 -1979
+1-1 74 59 59
-1+1 -69 -42 -43
fc75pa 7 34 21
fc125pa -5 -8 12

Table 4.5: Translation results for 500BB players in mb/h using real translation

Hard Soft Soft ND
naı̈vePA 517 -1569 -3929
+- 466 61 23
-+ -472 -70 -205
+1-1 62 47 24
-1+1 -63 -8 55
fc75pa -12 -6 -8
fc125pa -126 -64 70

Table 4.6: Translation results for 100BB players in mb/h using real translation

Table 4.7 shows the results for the 12-stack Leduc Hold’em game. We see that the exploitability

of soft translation is smaller than the exploitability of hard translation in every situation. If we com-

pare the values in this table to those in Table 4.4, we see that the exploitability using real translation

is higher than when using abstract translation in almost every situation. This confirms that abstract

translation appears to be more robust than real translation.
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Hard-P1 Soft-P1 SoftND-P1 Hard-P2 Soft-P2 SoftND-P2
fchpda 0.41 0.23 0.42 0.50 0.41 0.41
fcpda 1.18 0.84 1.56 1.23 1.12 1.12
fchda 0.61 0.25 0.25 0.57 0.46 1.96
fchpa 0.76 0.38 0.61 0.52 0.43 0.43
fcha 0.86 0.36 1.46 1.06 0.61 2.84
fcpa 1.44 0.92 1.95 1.04 0.93 0.93
fcda 0.84 0.51 1.16 1.39 1.13 1.20
fca 1.19 0.59 1.12 1.61 0.88 1.36

Table 4.7: Exploitability of various 12-stack Leduc Hold’em players in mb/h using real translation

4.7 Conclusion

In this chapter we formally described the methods of translation used to handle extensive games

with large action sets. Additionally, we looked at the current method of translation, described why it

could result in an exploitable agent and showed examples of how this can be done in poker. We also

described a new probabilistic translation method that helps counter these exploitative techniques.

This new method greatly reduced how exploitable the agent was to these techniques. Additionally,

we experimented with removing pseudo-dominated actions in soft translation, resulting in agents

that are more robust to simple exploitative techniques but more exploitable against a fully knowl-

edgeable opponent. Unfortunately, our data also showed that an agent using soft translation could

suffer a minor performance loss when playing non-exploitative opponents that play using a different

action abstraction. It is possible that further development of this technique can reduce or reverse

this performance loss. In addition to exploring the effects of soft translation, we revisited the effects

of real versus abstract translation. The data showed that even when using soft translation, abstract

translation appears to perform better than real translation.

Unfortunately, as the real game space is too large to calculate exactly how exploitable these

players are, we cannot say anything definitive about how well these translation methods perform

in full no-limit Texas Hold’em. However, we do know that soft translation produces more robust

players in Leduc Hold’em, and we could assume a similar situation would hold in larger games.

Regardless, naı̈vePA does not even have to consider its own cards in order to win a significant

amount against a player using hard translation. As no-limit poker programs progress toward being

competitive against world-class human players, such an obvious flaw cannot exist.
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Chapter 5

Strategy Switching

5.1 Introduction

The concept of strategy switching is to change the strategy being followed in the middle of a game.

There are several reasons for doing this. The first is that a strategy may only be defined for a certain

portion of the game, and thus another strategy is needed for other parts of the game. This occurs

when a game is split into separate parts in order to be solved. For instance, we could split poker into

a preflop model consisting of the first 3 rounds and a postflop model consisting of the last 3 rounds.

By computing a strategy within each of these sub-games and switching between these strategies

according to what round it is, we obtain a strategy for the full game. This is how the Opti [1] agent

worked.

Another reason for switching between strategies is to use different abstractions. If the underly-

ing abstractions used by the strategies are different, then certain situations in the full game would

more closely map to one abstraction or another and we could use the strategy associated with the

abstraction that best captures the real situation. For instance, if we have two poker strategies, one

which uses the fchpa betting abstraction and one which uses fcpdta, then it seems logical that we

would want to use the fchpa strategy when a half pot bet is observed in the full game. Similarly, if

a double pot bet is observed we would want to use the fcpdta strategy. In this way we can create an

agent that understands both half pot and double pot bets, assuming that both sized bets do not occur.

Switching between strategies is not a new concept and is generally considered to be a bad idea.

This is because in imperfect information games switching between two equilibrium strategies does

not necessarily result in an equilibrium strategy. However, when dealing with abstraction we find

that strategy switching can provide some advantages. Section 5.2 describes why this concept can be

implemented safely in perfect information games. Section 5.3 shows why this concept is not safe

in games of imperfect information. Section 5.4 describes the process of creating a set of strategies

in Leduc Hold’em that cover all important situations in the game. Finally, Section 5.5 shows the

results of some experiments involving strategy switching.
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5.2 Perfect Information Games

In a game of perfect information, it is possible to switch between several carefully chosen equilib-

rium strategies in a way that results in playing an equilibrium strategy. Because we have perfect

information in the game, the actions taken later in a game are seemingly independent from the ac-

tions taken earlier in the game. This leads to the concept of subgame perfect equilibrium [22, pages

162-176]. A strategy is a subgame perfect equilibrium if it is an equilibrium strategy in every

subgame of the full game. In this situation, such a strategy can be swapped in at any information

set in the game and produce equilibrium play from that point on. Thus, switching between subgame

perfect equilibria within a game results in playing an equilibrium strategy.

The most common method for obtaining a subgame perfect equilibrium is using Minimax [24,

pages 163-171]. Minimax works by using backwards induction from the terminal nodes of the game

tree. It computes the optimal move at the bottom of the game tree and stores the value of taking

that action. It then backs up the tree, calculating the optimal move at every level since the value

of the child states are known. Once the algorithm hits the root node it is finished and describes

an equilibrium solution for the game. This results in a subgame perfect equilibrium because the

algorithm considers only the ancestors of a state when calculating the strategy for that state, resulting

in an equilibrium strategy for every branch of the tree and thus a subgame perfect equilibrium. This

means that in perfect information games we can efficiently find equilibrium strategies that can safely

be switched between without losing any guarantees of optimality.

5.3 Imperfect Information Games

In games of imperfect information, subgame perfect equilibria generally do not exist. This is because

most equilibrium solutions must mix their actions and how they play later in the game is dependent

upon how they mix their actions earlier in the game because their opponents’ beliefs are affected by

these previous actions. However, this in itself does not show that switching between two equilibrium

strategies within a game will result in poor play. For this we turn to an example in Kuhn poker, a

game described in Section 2.1.2.

In Kuhn poker the equilibria for the first player take the form of α = γ/3, β = (1 + γ)/3 for

any γ ∈ [0, 1]. α represents the probability the player bets with a Jack, β represents the probability

the player calls a bet with a Queen, and γ represents the probability the player bets with a King. All

other situations are dominated, specifically one never bets with a Queen, always calls a bet with a

King, and never calls a bet with a Jack. The second player should always bet with a King since the

game ends if the player checks. The equilibrium for the second player is to both bet with a Jack and

call a bet with a Queen 1/3 of the time. When playing an equilibrium, the first player is expected to

lose 1/18 antes per game.

Within Kuhn poker, we can consider switching between two equilibrium strategies for the first
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player. We use strategy γ = 0, β = 1/3, α = 0 when no actions have been taken and strategy

γ = 1, β = 2/3, α = 1/3 when the first player checked and the second player bet. This effectively

results in a strategy consisting of α = 0, β = 2/3, γ = 0, which we note breaks the previous

equilibrium parameterization. The best response to this strategy is to never bet with a Jack (and

calling with a Queen is irrelevant since the first player never bets). Now, we can calculate the value

of the best response to this strategy. When the deal is cJQ or cJK , the first player will check and

result in a value of −1. When the deal is cKQ or cKJ , both players check and the first player

wins 1. When the deal is cQK the first player checks, the second player bets and the first player

calls 2/3 of the time, resulting in a value of −2 ∗ 2/3 − 1 ∗ 1/3 = −5/3. When the deal is cQJ

both players check, resulting in a value of 1. The total value of the game to the first player is then

1/6∗(−1−1+1+1−5/3+1) = −2/18, twice the amount an equilibrium loses. Thus, we see how

switching between strategies can result in worse play. Despite the lack of theoretical guarantees, we

still believe this concept could be beneficial because the theoretical guarantees were already lost

when we chose to perform abstraction.

5.4 Cover Set

When playing no-limit poker, understanding the pot size and bet amount is very important. As seen

in Chapter 4, a poor understanding of these concepts leads to exploitable agents. Thus, we wish to

create an agent that does not have this drawback, but it is difficult to do so in a feasible manner.

Strategy switching provides a way to better understand a state space by switching between several

different agents that specialize in different areas of the game. By creating a suite of agents that

together perfectly understand the important aspects of the game, it may be possible to create more

robust players.

When playing no-limit poker, possibly the two most important things to understand are the bet

ratio (the ratio of the bet to the pot size) and the stack ratio (the ratio of the starting stack size to

the current pot size). These two ratios allow an agent to understand the pot odds of calling a bet

as well as how many more chips it has to bet with. We want an agent that, in all situations in the

full game, has a perfect understanding of the bet and stack ratios. This can be done by creating a

suite of agents, each designed to handle different bet and stack ratio occurrences. If this suite of

agents handles every possible situation in the full game, then we say that the set of agents covers the

pot/stack ratio space.

We experimented with creating such a set of agents in the 12-stack Leduc Hold’em game. Each

agent used a betting abstraction of type fcba where b represents some pot-fraction bet. Because

we were dealing with agents using different pot-fractions, all bets (aside from all-in) in the full

game were translated to b. Note that this type of translation is different from both abstract and real

translation. In order to create the suite of agents, we walked the full game tree to find all the possible

pot and stack ratio situations. At every information set we first calculated the bet ratio needed. If
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the last action was a bet, then b would be set to the pot-fraction of that last bet. Otherwise, we

considered abstractions for all the possible pot-fraction bets the player could make. We then found

an abstract game that, given the ante amount, stack size and betting sequence, would result in the

correct stack ratio once translation was performed. Each abstract game is uniquely defined by the

stack/ante ratio and pot-fraction bet. Thus, each abstract game handled many situations in the full

game and it was easy to check if we already had an abstraction that handled the situation we were

examining. This resulted in a suite of 172 abstracts games and resulting abstract game strategies,

listed in Table A.1.

In order to use these agents, a strategy switching player was created. This player calculates the

current bet and stack ratios and checks which agents in its suite can match those ratios after transla-

tion has been performed. When not faced with a bet, any bet ratio is allowed. If multiple agents fit

the situation, then the player samples uniformly from those agents. Additionally, we experimented

with using subsets of the full cover. In this situation each agent was weighted according to how

closely it matched the given bet and stack ratios, and the strategy switching player samples from

these agents according to these weights. Specifically, given ratios a, b with a < b, the weight asso-

ciated with how close those ratios are is a/b. If the last action was not a bet, then the weight is the

ratio of the stack ratios, otherwise it is the product of the ratios for the stack and bet ratios.

5.5 Results

Table 5.1 shows the exploitability of a variety of cover sets in the 12-stack Leduc Hold’em game as

well as the exploitability of the fcpa player using both soft and hard translation. Full Cover refers

to the full cover of 172 agents. Sub Cover refers to using a handpicked subset of 15 agents, listed in

Table A.2. Sample X refers to one of 10 sample sets that were created. Each of these sample sets

contains the fcpa player as well as 14 other randomly chosen (without replacement) agents from

the set of 172.

Table 5.1 shows the exploitability of various cover players, where P1 and P2 refer to the ex-

ploitability when the knowledgeable opponent is sitting in seat 1 or 2, respectively. we observe that

the full cover did not perform the best. It is outperformed by a player using the fcpa abstraction

with abstract and soft translation, as well as the hand-picked sub cover and even random sample

8. This means that it can be disadvantageous to add additional strategies to the suite, even if those

strategies could provide a better understanding of the full game in certain situations. Additionally,

none of these agents came anywhere close to performing near equilibrium, which is unfortunate

considering how many games had to be solved to create these players. Overall, the hand-picked

sub cover performed the best at 0.64 mb/h exploitable. This suggests that intelligently picking what

strategies should belong in the suite used for switching could create a more robust player.

For the next experiment we took two abstractions of the same size in the 200BB Texas Hold’em

game and attempted to switch between them intelligently. One of the abstractions (2) has the half-pot
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P1 P2 Average
Equilibrium 0.07 -0.07 0.00
fcpa (real,hard) 1.44 1.04 1.24
fcpa (real,soft) 0.92 0.93 0.93
fcpa (abstract,hard) 1.14 0.62 0.88
fcpa (abstract,soft) 0.90 0.59 0.75
Full Cover 0.62 0.93 0.78
Sub Cover 0.73 0.55 0.64
Sample 1 1.10 0.64 0.87
Sample 2 0.99 0.56 0.78
Sample 3 1.75 0.89 1.32
Sample 4 1.94 1.04 1.49
Sample 5 0.82 0.76 0.79
Sample 6 1.83 0.97 1.40
Sample 7 1.91 1.16 1.54
Sample 8 0.69 0.67 0.68
Sample 9 1.96 0.92 1.44
Sample 10 2.12 1.47 1.80

Table 5.1: Exploitability of various cover sets in Leduc Hold’em in sb/h

bet option and a smaller card abstraction than the other (1). The concept is that until a half-pot bet is

observed in the game, the player would rather use a strategy with a larger card abstraction. This led

to the development of two coach players. The Defensive Coach plays strategy (1) until a half-pot

bet is observed from the opponent, at which point it switches to strategy (2). The Full Coach plays

the same as the Defensive Coach except that it also switches to strategy (2) if that strategy suggests

making a half-pot bet with some probability (> 0.001). Ideally these players would perform better

than both strategy (1) and (2).

(1) (2)
Full Coach -348 -32
Defensive Coach 0 -125
(1) fcpea.ir169.pub20x75hs2x36hs.pub3x50hs2x18hs.900 0 -36
(2) fchpea.ir169.pub20x36hs2x5hs.pub3x20hs2x3hs.60 36 0

Table 5.2: Switching results for half pot bets in the 200BB stack game in mb/h

Table 5.2 shows the results of the coach players. It appears that the more often the coach players

switch between the two strategies, the worse they perform. The Defensive Coach ties strategy (1)

since it never actually switches to strategy (2). However, it loses by a significant amount (125 mb/h)

to strategy (2), roughly 3.5 times as much as strategy (1) loses to strategy (2) (36 mb/h). The Full

Coach performs much better against strategy (2), though it still loses by 32 mb/h. This performance

is mainly due to the fact that it plays strategy (2) most of the time and only occasionally uses

strategy (1). Conversely, it performs extremely poorly against strategy (1), as it switches between

the strategies more frequently since its opponent never makes a half-pot bet.
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5.6 Conclusion

Overall, the concept of switching between strategies within a hand produced mixed results. On

one hand, we observed that using a coach to switch between two strategies according to the public

information performs worse than either strategy independently. This reinforces the theoretical results

that suggest that switching strategies mid-game produces non-equilibrium play. On the other hand,

we were able to produce more robust players when switching between strategies based upon different

betting abstractions in the Leduc game. Although the resulting players are not as close to equilibrium

as originally hoped, they are still more robust than any player generated using prior methods. This

is a small consolation, however, as these cover players require the generation of many strategies

whereas soft translation requires only one.

It is possible that further developing the type of translation used by the cover players and choos-

ing a better suite of strategies could improve the robustness of the final player. However, the scal-

ability of this method discourages us from further investigating what will most likely be additional

minor gains in the Leduc game. In the full Texas Hold’em game, it is not feasible to create so many

strategies or even strategies with certain bet sizes. The concept could still be implemented, but it

would be restricted to a small number of carefully chosen abstractions and a significant amount of

time and resources would be needed to create these players. In the mean time, our CPU cycles are

better spent elsewhere.
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Chapter 6

Conclusion

In this dissertation we examined the concept of state translation and how it is applied in no-limit

poker. We defined functions that can be used to implement translation and described the properties,

such as maintaining internal consistency, that we want these functions to have. We then described

the current translation concept being used, hard translation, and developed a new method, soft trans-

lation, that produces more robust players. Having a better understanding of how translation works

allows us to produce better players and design better translation systems in the future.

Along with formally describing translation, we examined how the no-limit Polaris agents worked.

Due to the nature of the no-limit game, we found that using card abstractions with more immediate

information provided a direct benefit to the player. We also found that, despite their cost, adding

additional betting options significantly improved the play of the agents. When analyzing the trans-

lation used by Polaris, we found many strange behaviors that, after being fixed, resulted in better

agents. This analysis also exhibited some of the strengths translation provides. The first strength

is the fact that a player’s behavior can be changed without modifying the underlying strategy used.

This meant that we could modify the translation function to produce better play without solving the

abstract game again. The second strength is the ability of the player to take actions in the real game

that are not legal in the abstract game. We saw how using the concept of abstract translation, where

we interpret the real situation in terms of the abstract game, performed better than real translation,

where we interpret the real situation as given. It seems that keeping the real state as close to an

abstract state as possible allows the agents to better understand the situation.

Finally, we investigated switching between strategies within a hand. The concept is that if the

abstraction underlying each strategy is different, then each strategy understands a different portion

of the game space and we can switch to the best strategy for the given situation. Although this

technique has the potential to produce the most robust players, the results for this concept were not

as good as hoped considering the scalability issues it has.
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6.1 AAAI No-Limit Competition Results

6.1.1 2008 Competition

In the 2008 competition we submitted an agent using the ir169.72hs2x2hs.12.12 card abstraction and

the fcpta betting abstraction. This agent also had all of the translation fixes as detailed in Section

3.3.2 but used hard translation. Table 6.1 shows the results of the 2008 no-limit competition. Our

agent (Hyperborean08) won the competition, beating all of the other opponents. Most importantly,

it beat BluffBot 3.0 by 109 mb/h, whose predecessor we lost to in 2007 (BluffBot 2.0). In 2007 we

had submitted an agent using the fcpa betting abstraction and the 8.8.8.8 card abstraction. Table

3.3 contains both our 2008 agent (strategy (2)) as well as an agent very similar to our 2007 agent

(strategy (6), which differs only in an extra ten-pot bet). The 2008 agent beat the other agent by

193 mb/h. In the 2007 competition (Table 1.1), BluffBot 2.0 beat our agent by 2371 mb/h. Since

the 2008 agent beat the 2007 agent by less than BluffBot beat the 2007 agent and we assume that

BluffBot 3.0 was better than BluffBot 2.0, we claim that the translation fixes were the determining

factor in defeating BluffBot 3.0 (as we also claim that the same fixes would have resulted in our

2007 agent defeating BluffBot 2.0 had they been implemented at that time).

(1) (2) (3) (4) Avg
(1) Hyperborean08 0.109 0.625 2.13 0.95

(2) BluffBot 3.0 -0.109 0.611 2.566 1.02
(3) Tartanian2-Beta -0.625 -0.611 5.371 1.38

(4) Ballarat -2.13 -2.566 -5.371 -3.36

Table 6.1: Performance results of the no-limit aspect of the 2008 Computer Poker Competition in
sb/h

6.1.2 2009 Competition

In the 2009 competition we submitted two agents since there was now both an equilibrium compe-

tition, in which the players attempt to beat all their opponents, and a bankroll competition, in which

the players attempt to make as much money as possible. These agents used the strategies (1) and (3)

from Table 3.2. It is also important to note that the 2009 competition was run in the 200BB game,

whereas the 2007 and 2008 competitions were run in the 500BB game. Our equilibrium submission

was an agent using the fchqpwea betting abstraction and the ir169.ir72hs2x3hs.ir72hs3x3hs.216

card abstraction and employed soft translation.

Our bankroll submission was an exploitative agent that attempted to use many of the exploitative

techniques that were described in this dissertation. First, the agent would perform exploration by

raising different amounts and observing the opponent’s response. After an initial period, the agent

would then attempt to exploit the model it had built of its opponent. Specifically, the agent would

1Due to how close the top three competitors were, additional matches were run for only those agents. After these matches,
BluffBot was beating Hyperborean07 by 380 mb/h
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analyze whether the model would be exploitable using methods similar to the ones employed by the

naı̈vePA and +- players. If it believed such techniques would work, it would employ the method it

predicted would produce the highest value. Otherwise, it reverted to an underlying strategy using soft

translation. This strategy used the fchpea betting abstraction and the ir169.dir-pub20x36hs2x5hs-

20x1.dir-pub3x20hs2x3hs-3x1.60 card abstraction.

(1) (2) (3) (4) (5) Avg
(1) Hyperborean-BR -0.06 0.09 2.12 3.53 1.42
(2) Hyperborean-Eqm 0.06 0.09 0.47 0.46 0.27
(3) BluffBot4 -0.09 -0.09 0.19 0.22 0.06
(4) Tartanian3RM -2.12 -0.47 -0.19 -0.11 -0.72
(5) Tartanian3 -3.53 -0.46 -0.22 0.11 -1.03

Table 6.2: Performance results of the no-limit aspect of the 2009 Computer Poker Competition in
sb/h

Table 6.2 shows the results of the 2009 competition. Our agents (Hyperborean) took first and

second in both the bankroll and equilibrium competitions. We see that the equilibrium agent (Eqm)

defeated all other opponents, successfully defending against the exploitative methods employed by

the bankroll agent (BR). We also observe that the bankroll agent managed to win roughly 5 times as

many chips on average as the equilibrium agent. This was largely due to the fact that it defeated the

Tartanian agents by 2.12 and 3.53 sb/h. Once again, a player that folds every hand loses at most by

0.75 sb/h. This shows that even state of the art agents are susceptible to exploitative techniques.

6.2 Future Work

Despite the improvements based on the concepts in this dissertation, there is still more work to be

done. It is possible that further development of many of the concepts discussed could result in even

more robust agents. However, there are several other items that could greatly improve a no-limit

agent that were not discussed.

6.2.1 No-Limit Man-Machine Match

At some point we wish to play our no-limit agents against professional players like we did with our

limit agents [5]. However, our resident poker expert believes that our current agents are not strong

enough. This seems strange, as the card abstraction being used by the no-limit agents is a finer

abstraction than the one used by the limit agents in the last limit man-machine competition. Thus, it

seems that either the card abstraction being used is still not good enough or the betting abstraction

being used is still too small.

We showed in Section 3.2 how a no-limit agent benefited from using a different abstraction

than a limit agent. However, we are still unsure of what type of abstraction would be best. Ideally

we would like a method for evaluating abstractions that does not require us to explicitly compute
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strategies within the abstractions to test them. Section 3.2 also showed us that having many betting

options can greatly increase the performance of an agent. Looking at the fchqpwea abstraction, we

see that despite having a card abstraction several hundreds of times smaller, it plays as well as the

agent using the fcpea abstraction. Thus, it is possible that the agents still do not understand the

betting space enough to be competitive with human players.

Regardless of what we have seen so far, it may simply be the fact that we have not extracted the

important details out of the no-limit game yet. We create abstractions based upon educated guesses,

but perhaps these guesses are simply wrong. It is also possible that the abstractions being used are

too small to be competitive with human players, and that we simply need to use larger abstractions

(which becomes a problem of algorithmic complexity and computing resources). In addition, we

also have the problem that it will be much more difficult to obtain statistical significance in such

a match. Looking at Table 2.3, the lowest standard deviation we achieved in no-limit was roughly

10 sb/h. This amount is around 5 times as much as the 1.93 sb/h achieved by DIVAT in limit,

meaning that we would need at least 25 times as many hands as we did when performing the limit

competitions. No matter what the cause, more work still needs to be done before a champion level

no-limit player is possible.

6.2.2 Imperfect Recall Betting

Imperfect recall allows one to forget previous information, thus allowing more information to be

known at any point in time. When creating card abstractions, this technique was used to increase

the number of buckets on each round, since the bucket would be forgotten at the next round. This

produced significant improvements for no-limit agents (see Section 3.2). The same concept can be

applied to the betting sequence, except that it is more difficult to implement.

The concept of imperfect recall betting is that we forget the specifics of the betting sequence but

remember the important properties. For instance, we could only remember the size of the current

pot and the bet faced (if any). This would allow the player to have many different betting options

without significantly increasing the size of the state space, since many different betting sequences

would map to the same {pot,bet} information set. There are many ways this could be done, and its

possible that it could provide improvements as drastic or better than imperfect recall on the cards

did.

The problem with imperfect recall betting is that it is difficult to implement. Although the

state space is much smaller, walking the entire game tree (now a directed acyclic graph) would still

require as much work as the perfect recall version of the abstraction. With cards, one can get around

this by sampling hands, which is not that difficult since the dealing is controlled by chance and

is independent of any player actions. To do the same with player actions, we end up repeatedly

playing hands of poker instead of walking the game tree. A new version of CFR, dubbed MCCFR

[16], allows one to use imperfect recall on action sequences. However, this has not been applied to
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poker yet. No-limit poker seems like a prime testbed for this concept.

6.2.3 Translation as Transfer Learning

In Chapter 4, translation is defined as a method for using a strategy from an abstract game to play in

the unabstracted game. However, there is no reason that these two games have to have this relation.

The definitions and properties given for translation work equally well for any two games. We could

say that we wish to play in game Γ using a strategy for game Γ′, with no assumption of any relation

between Γ and Γ′. A translation function could certainly be defined, but the question is how to

define it such that it results in a good player.

Given two games Γ and Γ′, it may be possible to analyze their game spaces to find a suitable

translation function between the games. Among two similar games, for instance two different types

of poker, it would likely not be very difficult to define such a function. However, it may be the

situation where we want to use one strategy for many different games, for instance in the General

Game Playing Competition [28]. Is it possible to design a system that would automatically define a

good translation function between some base game and the game being played?

Instead of computing a solution for one game to be used in many other games, it may be wise

to compute solutions to several different games. One could then analyze the game being played

and use the strategy that plays in the most similar game. This concept is similar to the strategy

switching concept described in Chapter 5, except that here we would not be switching strategies

within a game, but rather between games. Thus, we do not lose any of the theoretical guarantees

equilibrium computations allow us. As we did in Chapter 5, we would need to define the set of

games to compute strategies for and to use in play, which is another problem in itself.
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Appendix A

Switching Data

Stack/Ante Ratio Pot Fraction Bet
12.000000 0.500000
12.000000 1.000000
12.000000 1.500000
12.000000 2.000000
12.000000 2.500000
12.000000 3.000000
12.000000 3.500000
12.000000 4.000000
12.000000 4.500000
12.000000 5.000000

9.000000 0.250000
7.080000 0.166667
5.821782 0.125000
4.941176 0.100000
4.269231 0.083333
3.756522 0.071429
3.355932 0.062500
3.027027 0.055556
2.769231 0.050000
6.534653 0.111111
7.080000 0.125000

13.747573 0.187500
7.603960 0.142857
5.346535 0.111111

14.422018 0.214286
25.584906 0.285714

8.330097 0.166667
5.666667 0.125000
9.980198 0.187500

15.089109 0.250000
25.603960 0.333333
41.294118 0.416667

9.148515 0.200000
5.945946 0.142857
4.352941 0.111111

10.099010 0.214286
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16.320000 0.285714
15.647059 0.300000

7.309091 0.187500
25.058824 0.400000
38.400000 0.500000
56.160000 0.600000
10.077670 0.250000

6.294118 0.166667
4.543689 0.125000

10.059406 0.250000
15.339623 0.333333
22.514286 0.416667
16.000000 0.375000

7.111111 0.214286
10.368932 0.285714
24.000000 0.500000
34.111111 0.625000
46.860000 0.750000
62.138614 0.875000
11.040000 0.333333

6.534653 0.200000
4.631579 0.142857
3.600000 0.111111
9.777778 0.300000
5.322581 0.187500

13.900990 0.400000
19.200000 0.500000
25.431193 0.600000
16.000000 0.500000

6.718447 0.250000
9.235294 0.333333

12.233010 0.416667
21.720000 0.666667

6.631579 0.285714
28.396040 0.833333
36.000000 1.000000
44.400000 1.166667
53.702970 1.333333

6.712871 0.250000
4.693069 0.166667
3.634615 0.125000
9.148515 0.375000
4.961538 0.214286

15.140187 0.625000
18.712871 0.750000
22.680000 0.875000
15.000000 0.750000

6.117647 0.300000
3.882353 0.187500
7.722772 0.400000
9.600000 0.500000
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11.559633 0.600000
18.000000 1.000000

5.520000 0.333333
6.705882 0.416667

21.000000 1.250000
24.000000 1.500000
27.000000 1.750000
30.000000 2.000000
33.000000 2.250000

6.653465 0.333333
4.685714 0.200000
3.600000 0.142857
2.945455 0.111111
8.000000 0.500000
4.475248 0.250000
9.320388 0.666667
4.228571 0.285714

10.641509 0.833333
13.320000 1.166667
14.640000 1.333333

5.227723 0.375000
3.495146 0.214286
6.000000 0.500000
6.742857 0.625000
7.500000 0.750000
8.235294 0.875000
4.320000 0.400000
4.800000 0.500000
5.280000 0.600000
3.657143 0.416667
2.514286 0.050000
2.731707 0.055556
2.285714 0.050000
2.970297 0.062500
2.470588 0.055556
2.086957 0.050000
3.314286 0.071429
2.654867 0.062500
2.244604 0.055556
1.920000 0.050000
3.657143 0.083333
2.888889 0.071429
2.379310 0.062500
2.000000 0.055556
1.730769 0.050000
4.117647 0.100000
3.140187 0.083333
2.532110 0.071429
2.117647 0.062500
2.910891 0.125000
1.811321 0.055556
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2.423077 0.111111
1.570093 0.050000
4.680000 0.125000
3.445545 0.100000
2.705882 0.083333
3.540000 0.166667
2.213592 0.071429
2.823529 0.142857
1.882353 0.062500
2.340000 0.125000
2.823529 0.187500
1.631068 0.055556
1.981651 0.111111
1.431193 0.050000
5.307692 0.166667
3.728155 0.125000
4.500000 0.250000
2.880000 0.100000
3.360000 0.200000
3.840000 0.300000
2.330097 0.083333
2.653846 0.166667
3.000000 0.250000
3.326733 0.333333
1.945946 0.071429
2.192308 0.142857
2.446602 0.214286
2.679612 0.285714
1.680000 0.062500
1.864078 0.125000
2.057143 0.187500
1.471698 0.055556
1.621622 0.111111
1.320000 0.050000

Table A.1: Full cover set for 12-stack Leduc Hold’em
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Stack/Ante Ratio Pot Fraction Bet
12.000000 0.500000
12.000000 1.000000
12.000000 1.500000
12.000000 2.500000
12.000000 4.000000

5.520000 0.333333
1.920000 0.050000
2.340000 0.125000

10.059406 0.250000
15.089109 0.250000
24.000000 0.500000
18.000000 1.000000

7.080000 0.166667
6.000000 0.500000
2.679612 0.285714

Table A.2: Sub cover set for 12-stack Leduc Hold’em
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