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Abstract

The ability to learn good representations of states is essential for solving large

reinforcement learning problems, where exploration, generalization, and trans-

fer are particularly challenging. The Laplacian representation is a promising

approach to address these problems by inducing intrinsic rewards for temporally-

extended action discovery and reward shaping that can be used, among other

things, to generate informative state encoding. To obtain the Laplacian represen-

tation one needs to compute the eigensystem of the graph Laplacian, which is of-

ten approximated through optimization objectives compatible with deep learning

approaches. These approximations, however, depend on hyperparameters that

are impossible to tune efficiently, converge to arbitrary rotations of the desired

eigenvectors, and are unable to accurately recover the corresponding eigenvalues.

In this dissertation we introduce a theoretically sound objective and correspond-

ing optimization algorithm for approximating the Laplacian representation. Our

approach naturally recovers both the true eigenvectors and eigenvalues while elim-

inating the hyperparameter dependence of previous approximations. We provide

theoretical guarantees for our method and we show that those results translate

empirically into robust learning across multiple environments.
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Preface

Most of the content of this thesis is based on a paper submitted to ICLR (Gomez

et al., 2023a) and co-authored with my supervisors, Marlos C. Machado and

Michael Bowling.

iii



Bound to this flesh.

This guise, this mask.

This dream.

Wake up remember.

We are born of one breath, one word.

We are all one spark, sun becoming.

– Pneuma, Tool.

In the beginning was the Word, and the Word was with God, and the

Word was God. He was with God in the beginning. Through him all

things were made; without him nothing was made that has been

made. In him was life, and that life was the light of all mankind.

– John 1.
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Chapter 1

Introduction

Reinforcement learning is a framework for decision-making where an agent con-

tinually takes actions in its environment and, in doing so, controls its future

states. After each action, given the current state and the action itself, the agent

receives a reward and a next state from the environment. The objective of the

agent is to maximize the sum of these rewards. In principle, the agent has to

visit all states and try all possible actions a reasonable number of times to deter-

mine the optimal behavior. However, in complex environments, e.g., when the

number of states is large or the environment changes with time, this is not a

plausible strategy. Instead, the agent needs the ability to learn state and action

abstractions that facilitate continual exploration (i.e., having the ability to visit

all states at will) and generalization (i.e., being able to transfer the knowledge

from one state to unexplored states).

The Laplacian framework (Mahadevan, 2005; Mahadevan & Maggioni, 2007)

proposes one such abstraction. This abstraction is based on the graph Laplacian,

which is a linear map that encodes the topology of the state space based on

both the policy the agent uses to select actions and the environment dynamics.
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Specifically, the d−dimensional Laplacian representation is a map from states to

vectors—thus an abstraction—whose entries correspond to d eigenvectors of the

Laplacian.

Among other properties, the Laplacian representation induces a metric space

where the Euclidean distance of two representations correlates to the temporal

distance of their corresponding states—meaning the number of time steps neces-

sary to go from one state to another—and its entries correspond to directions that

maximally preserve state value information. Correspondingly, it has been used for

reward shaping (Wu et al., 2019; Wang et al., 2023), as a state representation for

value approximation (e.g., Mahadevan & Maggioni, 2007; Lan et al., 2022; Wang

et al., 2022), as a set of intrinsic rewards for exploration via temporally-extended

actions (see overview by Machado et al., 2023), and to achieve state-of-the-art

performance in sparse reward environments (Klissarov & Machado, 2023).

When the number of states, |S|, is small, the graph Laplacian can be rep-

resented as a matrix and one can use standard matrix eigendecomposition tech-

niques to obtain its eigensystem1 and the corresponding Laplacian representation.

In practice, however, |S| is large, or even uncountable. Thus, at some point it

becomes infeasible to directly compute the eigenvectors of the Laplacian. In this

context, Wu et al. (2019) proposed a scalable optimization procedure to obtain

the Laplacian representation in state spaces with uncountably many states. Such

an approach is based on a general definition of the graph Laplacian as a linear

operator, also introduced by Wu et al. (2019). Importantly, this definition allows

us to model the Laplacian representation as a neural network and to learn it by

minimizing an unconstrained optimization objective, the graph drawing objective

(GDO).

1We use the term eigensystem to refer to both the eigenvectors and eigenvalues of a linear
operator.
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A problem with this objective, however, is that arbitrary rotations of the

eigenvectors of the Laplacian also minimize it (Wang et al., 2021). This not

only implies that the solution found could differ from the true eigenvectors, but

also that the gradient dynamics could be unstable. As a solution, Wang et al.

(2021) proposed the generalized graph drawing objective (GGDO), which breaks

the symmetry of the optimization problem by introducing a sequence of decreas-

ing hyperparameters to GDO. While the true eigenvectors are the only solution

to this new objective, the rotations of the smallest eigenvectors2 are still equi-

librium points of the generalized objective and their stability is not guaranteed

when minimizing this objective with stochastic gradient descent. Consequently,

there is variability in the solutions one actually finds when minimizing such an

objective, depending, for example, on the initialization of the network and on the

hyperparameters chosen.

Considering the potential of the Laplacian representation to address some of

the main challenges in reinforcement learning, namely the discovery of state and

action abstractions for exploration and generalization, this work seeks to solve

the main shortcomings of the recent techniques to learn the Laplacian represen-

tation with neural networks. Correspondingly, we propose an alternative opti-

mization objective, the Augmented Lagrangian Laplacian Objective (ALLO), for

approximating the Laplacian representation. We prove that the unique stable

equilibrium point under gradient ascent-descent dynamics of ALLO corresponds

to both the true eigenvectors and eigenvalues of the Laplacian, independently

of the original hyperparameters of GGDO. Besides theoretical guarantees, we

empirically demonstrate that our proposed approach is robust across different

environments with different topologies and state representations, and that it is

2We refer to the eigenvectors with corresponding smallest eigenvalues as the “smallest eigen-
vectors”. The same logic applies to the “largest eigenvectors”.
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able to accurately recover the eigenvalues of the graph Laplacian as well.

The rest of the thesis is organized as follows. In Chapter 2, we introduce

the necessary background to understand and motivate both the Laplacian rep-

resentation and ALLO. In particular, we introduce the reinforcement learning

framework, the exploration and generalization problems in this framework, and

how they motivate the need for action and state abstractions. We also introduce

the definitions of GDO and GGDO, their extension to abstract measure spaces,

and how this extension leads to the actual deep learning loss function being op-

timized. In Chapter 3, we motivate each of the components that define ALLO,

namely the stop-gradients, the dual variables, and the barrier coefficient. Then,

in Chapter 4 we explain why ALLO is the proper objective for learning the Lapla-

cian representation. Specifically, we prove that the Laplacian representation is

the unique stable equilibrium for ALLO, when there is no function approximation.

In Chapter 5, we present different experiments that demonstrate the potential of

ALLO for learning the Laplacian representation when using deep learning mod-

els and optimizers. Finally, in Chapter 6 we summarize the contributions of this

work and possible future work building on top of it.

4



Chapter 2

Background

We first review the reinforcement learning setting, before presenting the Lapla-

cian representation. Then, we introduce optimization objectives proposed in the

literature for approximating this representation. After this, we generalize the

Laplacian and the objectives to the setting of abstract measure spaces. This will

allow us to introduce the deep learning approximation considered in the experi-

ments where we learn the Laplacian representation.

2.1 Reinforcement learning

Here we introduce basic concepts in reinforcement learning along with the main

challenges in the field. These will allow us to define and motivate the Laplacian

representation.

5



2.1.1 Agent-environment system

We consider the setting in which an agent interacts with an environment. The

environment is a reward-agnostic Markov-decision process M = (S,A, P ) with

state space S, finite action space A = {1, · · · , |A|}, and transition probability

map P : S × A → ∆(S), which maps a state-action pair, (s, a), to a state

distribution, P (·|s, a), in the simplex, ∆(S). The agent is characterized by the

policy, π : S → ∆(A), that it uses to choose actions. At time-step t = 0, an initial

state S0 is sampled from some given initial state distribution µ0 ∈ ∆(S). Then,

the agent samples an action A0 from its policy and, as a response, the environment

transitions to a new state S1, following the distribution P (S0, A0). After this,

the agent selects a new action, the environment transitions again according to

P , and so on. The agent-environment interaction determines a Markov process,

a stochastic dynamical system, which, when S is finite, is characterized by the

transition matrix Pπ, where (Pπ)s,s′ =
∑︁

a∈A π(a|s)P (s′|s, a) is the probability of

transitioning from state s to state s′ while following policy π.

2.1.2 Reinforcement learning tasks

Typically, in reinforcement learning, when the agent executes an action and the

environment transitions to a new state, the agent also receives a reward signal

determined by a reward function r : S × A → R. Then, the objective of the

agent becomes to find the policy that maximizes the expected future rewards.

Correspondingly, we define a reinforcement learning task T = (r, γ) as a tuple

consisting of a reward function r and a discount factor γ ∈ [0, 1), where the factor

γ is used to weigh the contribution of future rewards (for a detailed discussion
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on reinforcement learning tasks, see White, 2017).1

2.1.3 The trajectory space and value functions

To adequately define the objective of the agent once a reinforcement learning task

is posed, let us first introduce the trajectory space. A trajectory τ is an infinite

sequence of the form (s0, a0, s1, a1, · · · ). Along with a dynamical system, the

agent-environment interconnection together with the initial state distribution, µ0,

determine a unique probability measure Pπ
M,µ0

over the trajectory space Ω = (S×

A)N. Hence, one can reason about random variables and their expected values

in the trajectory measure space2 (Ω,P(Ω),Pπ
M,µ0

) (for an in-depth discussion, see

Szepesvári, 2023).

In particular, given an MDP M and a task T , we can define the return G of

a random trajectory τ = (S0, A0, S1, A1, · · · ) as the discounted sum of rewards

G(τ) =
∑︁∞

t=0 γ
tr(St, At). The state value function of a policy π is the expected

value of the return given an initial state: vπ(s) = Eπ
M [G|S0 = s]. Then, an

optimal policy π∗ is one such that vπ∗ is maximal for any possible state, i.e.,

vπ∗(s) ≥ vπ(s), ∀s ∈ S, π, and the objective of the agent is to find one such

optimal policy.3

1More generally, both the reward function and the discount factor can be functions of the
current state and action, and also the next state. Nonetheless, the simpler definition is enough
for our purpose of motivating the Laplacian.

2As common, we use P(Ω) to denote the power set of Ω
3Note that the expected value, Eπ

M , and thus an optimal policy π∗, is independent of µ0,
because we are setting the initial state as the fixed state s.
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2.1.4 The exploration-exploitation dilemma

While we mentioned that the agent is characterized by its policy π, the agent is

not static. After all, its objective is to find an optimal policy given a task T .

Thus, the agent is better understood as an algorithm A that, at a given time-step

t ∈ N, chooses a policy πt from the space of possible policies ∆(A)S , based on the

finite history τt = (S0, A0, R1, S1, A1, R2 · · · , St), where Ak ∼ πk, for 0 ≤ k < t.

In principle, any agent A that always finds an optimal policy given an arbitrary

pair (M,T ) is a “good” agent. However, in practice we not only care about being

able to solve reinforcement learning tasks, but about solving them efficiently.

That is, we would like the agent to find π∗ with as few interactions as possible.

This meta-objective is usually framed as a minimization of either regret or sample

complexity. In the case of regret, the main idea is to minimize the expected

difference between the sum of rewards, up to some horizon H ∈ N, obtained by

an oracle that knows an optimal policy, and the sum of rewards actually obtained

by the agent A during its exploration of different policies. Alternatively, in the

case of sample complexity, usually analyzed under the Probably-Approximately-

Correct (PAC) framework, the idea is to minimize the number of times that the

agent behaves suboptimally, i.e., when the expected difference vπ∗ − vπt is larger

than some specified threshold ε > 0 (see Szepesvári, 2010; Brunskill & Li, 2014,

respectively, for explicit definitions).

Both efficiency meta-objectives pose a trade-off that the agent needs to re-

solve: the agent needs to explore its possible behaviours (i.e., policies) to estimate

their corresponding values and, at the same time, it needs to choose behaviours

that maximize rewards, under its current knowledge. This trade-off is usually

referred to as the exploration-exploitation dilemma and it is at the core of what

“solving” reinforcement learning means. In general, successful algorithms are
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those that visit all state-action pairs a reasonable number of times, as fast as

possible, to estimate with some acceptable confidence how good they are, and

then commit to behave in such a way that only high-value trajectories are likely.

Some theoretically successful examples are E3 (Kearns & Singh, 2002) and R-

MAX (see Brafman & Tennenholtz, 2002; Kakade, 2003).

Despite the existence of efficient algorithms, there are two considerations that

make achieving the exploration-exploitation balance challenging in practice: in

general, the problem of interests i) are non-stationary, meaning that either the

MDP M or the task T can change with time, which makes necessary a perpetual

exploration; and ii) they have a large number of states or actions, which means

that it is infeasible to visit all of them.

2.1.5 Reinforcement learning as continual learning

Usually, reinforcement learning is narrowly understood as the set of optimization

problems and corresponding solution methods posed by the possible MDP-task

pairs (M,T ) (Sutton, 1997). However, as hinted in the previous paragraph, rein-

forcement learning can be more broadly understood as the problem of choosing

appropriate actions, online, given a unique input stream of observations, as op-

posed to states (Sutton, 2020). These observations are lossy versions of the

states, which are generated via the agent-environment interaction, as described

earlier, but where the environment is potentially a non-stationary system. The

agent, then, is forced to continually model and revise its knowledge about the

world4 and the possible ways to behave on it (see Ring, 1995, for an early take

on reinforcement learning agents as continual learners).

Generally speaking, the agent could live in a tragic world where efficient

4Here, world is to be understood as the non-stationary agent-environment system.
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learning is not possible. If the rate of and manner in which the world changes is

too fast or arbitrary, the agent cannot interact enough times with the environment

to make reasonable guesses about the optimal actions to take. One example is

the case of non-stationary multi-armed bandits, where there is a single state,

i.e., |S| = 1. Under an efficient agent A, if during H ∈ N interactions the

number of times that the optimal arm (action) changes is 0 ≤ C ≤ H, then the

dynamic regret of A is order
√
HC (Abbasi-Yadkori et al., 2022). Thus, if C is

proportional to H, meaning that the optimal action changes almost all times,

the regret becomes linear in H. In other words, the agent will always remain

regretful.

Following this observation, a reasonable stance is to assume that, while the

environment might be changing all the time, there exist some invariances that

partially determine the possible dynamics and tasks that the agent can interact

with. Then, an ideal agent is one that can efficiently discover the invariant

structure in the world and is able to exploit it to learn efficiently under the non-

stationarity conditions. Consequently, much of the recent literature has focused

on finding appropriate ways to represent and exploit invariances (e.g., see Sodhani

et al., 2022; Gomez et al., 2023b). Two central and similar approaches rely on

learning action and state abstractions (Sutton, 1998; Sutton et al., 2023). These

abstractions allow the agent to represent and reason about the world in different

temporal scales of behaviour, in such a way that it is possible to separate, at

each scale, what is constant or informative from what is not. In what follows, we

will introduce these two types of abstractions and the associated problems they

address. Later on, we will relate the Laplacian representation with both of them.

10



2.1.6 Options and the exploration problem

Before focusing on any particular type of abstraction, let us revisit the prob-

lem of exploration in reinforcement learning. As mentioned earlier, the agent-

environment interaction induces a probability measure Pπ
M,µ0

in the trajectory

space. The agent has the power, then, to influence Pπ
M,µ0

by choosing its policy,

but it is limited by the connectivity imposed by the MDP probability map P .

In this way, the agent can choose to traverse more some trajectories than oth-

ers while abiding by the topology of M . From this viewpoint, the exploration

problem lies in the agent being able to traverse all possible trajectories (or at

least all representative trajectories), to then identify which ones it should remain

visiting. This can be particularly difficult for MDPs with numerous states and

actions since the more decisions the agent needs to consider the more unlikely

some trajectories become and the more concentration of measure happens for

small regions of the trajectory space. Moreover, under the continual learning

framework discussed, the agent has to retain the ability to continually explore all

trajectories, i.e., it must be able to repeatedly traverse arbitrary trajectories.

A particularly successful approach to deal with the exploration problem con-

sists in the use of temporally-extended action abstractions referred to as op-

tions (e.g., see Machado et al., 2023; Klissarov & Machado, 2023). An option

O = (SO, πO,TO) is, formally speaking, a tuple that contains a set of states

SO ⊂ S, a policy πO : S → ∆(A), and a probability density map, the termina-

tion function, TO : S → ∆({0, 1}) (for a detailed introduction, see Sutton et al.,

1999). Intuitively, an option represents a temporally-extended action πO that can

be executed from any state contained in SO. In the call-and-return formalism,

the way in which the option is executed is that, at each state encountered S, a

primitive action A is sampled according to πO, and then with some probability

11



T(S) the agent terminates the execution of πO, after which a new option is chosen

to be executed. One can notice how options provide a second decision-making

level —or, in general, arbitrarily many levels of decision— where the agent only

needs to reason about which options to select, instead of which actions, and where

the intermediate transitions can be potentially ignored. The reason why options

are desirable for exploration in particular is that they force the agent to commit

to a coherent behaviour for an extended period of time. Such mechanism allows

to shift the region of trajectories where the concentration of measure happens.

Hence, if the agent chooses an appropriate set of diverse options, it can explore the

possible different trajectories to then effectively choose an optimal policy. This

becomes particularly relevant in the continual learning setting when the MDP M

is assumed to be fixed while the task T fluctuates, given that effective exploration

is not directly affected by the task. Under these considerations, how to find ap-

propriate sets of options for exploration becomes a fundamental research problem

in reinforcement learning (for a thorough discussion, see Machado, 2019).

2.1.7 State abstractions and the generalization problem

Even under the assumption that exploration is not a problem, be it because

there is some mechanism that allows the agent to experience a diverse set of

transitions, or that we do not care about finding an optimal policy efficiently, or

that the environment and task are stationary, if the state space is immeasurably

larger than the memory and computational capacities of the agent, then there is

no guarantee that the agent will be able to learn in any meaningful way. The

reason is that essentially any visited state will be a new state, and then no amount

of exploration would lead the agent to increase its confidence about how good is

executing an action at a particular state. Assuming that it is possible to learn

12



in such a state space then entails assuming that obtaining information about a

state s reveals information about any other possible state s′, to some extent or

another. In this way, the generalization problem lies in the agent being able to

maximally infer information about arbitrary states given its current experience.

The generalization problem is usually phrased as a state abstraction learning

problem where the goal is to learn a map ϕ : S → S̄ that maps states to an

abstract state space S̄. In earlier works, the idea was to cluster together states

such that either their dynamics, rewards, values, or optimal actions (e.g., Walsh

et al., 2006) were the same, in a single or a multi-task setting (for an early review,

see Li et al., 2006). Later on, natural generalizations introduced abstractions ϕ

such that the abstract space is endowed with some type of metric D. In this

case, the idea is to map states that are similar in some sense, but not necessarily

equivalent —be it because they result in similar transitions (e.g., Zhang et al.,

2021), rewards, values (e.g., Abel et al., 2020), or optimal actions (e.g., Gomez

et al., 2023b) —to points in the abstract space that are close under the metric

D (for a review, see Abel et al., 2018).

The problem of learning an adequate state abstraction is intimately related

with the problem of option discovery. Both of these abstractions lead to hierar-

chies of decisions levels, and an appropriate interaction of them could naturally

lead to the desired exploration-exploitation balance in a continual learning set-

ting. In particular, recent works have proposed iterative cycles of learning where

attaining maximal features given a representation leads to discover options, while

using those options lead to explore novel states that induce changes on the agent’s

representation (e.g., see Sutton et al., 2023; Machado et al., 2023). In the next

section we will see how the Laplacian representation is a viable candidate to be

used as a state abstraction in such an iterative cycle.
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2.2 The Laplacian representation

Now we introduce the state abstraction that will become the focus of this doc-

ument, the Laplacian representation, and we provide the main arguments sup-

porting its use.

2.2.1 Graph theory and the Laplacian representation

In graph theory, the object of study is a node set V whose elements are pairwise

connected by edges. The edge between a pair of nodes v, v′ ∈ V is quantified by

a non-negative real number wv,v′ , which is 0 only if there is no edge between the

nodes. The adjacency matrix, W ∈ R|V|×|V|, stores the information of all edges

such that (W)v,v′ = wv,v′ . The degree of a node v is the sum of the adjacency

weights between v and all other nodes in V . The degree matrix D ∈ R|V|×|V|

is the diagonal matrix containing these degrees. The Laplacian of a graph L is

defined as L = D − W, and, just as the adjacency matrix, it fully encodes the

information of the graph.

If we consider the state space of an MDP M as the set of nodes, V = S, and

W as determined by Pπ, then we might expect the graph Laplacian to encode

useful temporal information aboutM , meaning the number of time steps required

to go from one state to another. In accordance with Wu et al. (2019), we broadly

define the Laplacian in the tabular reinforcement learning setting as any matrix

L = I − f(Pπ), where f : R|S|×|S| → Sym|S|(R) is some function that maps

Pπ to a symmetric stochastic matrix.5 For example, if Pπ is symmetric, the

Laplacian is typically defined as either L = I−Pπ or L = I− (1− λ)Φλ
π, where

Φλ
π = (I− λPπ)

−1 is a matrix referred to as the successor representation matrix

5The Laplacian has |S| different real eigenvectors and corresponding eigenvalues only if it
is symmetric.
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(Dayan, 1993; Machado et al., 2018). In the case where Pπ is not symmetric, L

is usually defined as L = I − 1
2
(Pπ + P⊤

π ) to ensure it is symmetric (Wu et al.,

2019).

The Laplacian representation, ϕ : S → Rd, maps a state s to d correspond-

ing entries in a set of 0 < d ≤ |S| chosen eigenvectors of L, i.e., ϕ(s) =

[e1[s], · · · , ed[s]]⊤, where ei is the i−th smallest eigenvector of L and ei[s], its

s−th entry (Mahadevan & Maggioni, 2007; Stachenfeld et al., 2014; Machado

et al., 2017).

2.2.2 Value approximation with the Laplacian represen-

tation

To motivate the use of the Laplacian representation, we need to understand its

mathematical properties, in particular, the properties of its eigensystem. For

this, we will follow closely derivations in Mahadevan (2005) and Machado (2019).

As an initial approach, let us consider the case in which the state space is tabular,

i.e., S = {1, · · · , |S|}. In this case, the value function can be written as a vector

vπ in R|S| that satisfies the Bellman equation (Bellman, 1952):

vπ = rπ + γPπvπ , (2.1)

where rπ[s] =
∑︁

a∈A π(a|s)r(s, a) is the expected reward at state s following

policy π. If we introduce the successor representation matrix6 Φγ
π, then the value

function can be expressed as a linear function of the mean reward vector:

vπ = Φγ
πrπ . (2.2)

6This matrix is guaranteed to exist provided that Pπ is a stochastic matrix, which implies
it has eigenvalues lower than or equal to 1.
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Assuming that Φγ
π is symmetric, we can express it as the matrix product

EΛE⊤, where the columns e1, · · · , e|S| of E are the eigenvectors of Φγ
π, and the

diagonal of Λ contains the corresponding eigenvalues λSR,1 ≥ · · · ≥ λSR,|S| of

Φγ
π. Thus, we can rewrite our value function in terms of inner-products with the

eigenvectors:

vπ =

|S|∑︂
i=1

λSR,i⟨ei, rπ⟩ ei .

This sum can be approximated by truncating it up to some number of com-

ponents d:

vπ ≈ ṽπ =
d∑︂

i=1

λSR,i⟨ei, rπ⟩ ei .

If one considers an adversarial setting where rπ is chosen from a unitary sphere

to increase the ℓ2−distance between vπ and ṽπ, then the components that should

remain after truncation are those corresponding to the largest d eigenvalues

λSR,1 ≥ λSR,2 ≥ · · · ≥ λSR,d. So, we can conclude that the largest eigenvec-

tors of Φγ
π form a basis for the subspace of value functions that lie closest to the

possible value functions resulting from a reward rπ with maximum ℓ2−norm of 1.

In other words, the largest eigenvectors provide a natural basis for the possible

value functions that can result from the agent-environment interaction.

It is not difficult to note that the eigenvectors of Pπ, Φ
γ
π, and L are all shared

when Pπ, and thus Φγ
π, is symmetric. To see this, assume ei is an eigenvector

of Pπ with corresponding eigenvalue λP,i. Then, Pt
πei = Pt−1

π (λP,iei) = · · · =

λt
P,iei. Since Φγ

π =
∑︁∞

t=0 γ
tPt

π,
7 we obtain that ei is an eigenvector of Φγ

π with

corresponding eigenvalue λSR,i = 1
1−γλP,i

, considering the geometric series for

γλP,i. Similarly, if we define the Laplacian as L = I−Pπ or L = I− (1− γ)Φγ
π,

we obtain that ei is an eigenvector with corresponding eigenvalue λi = 1 − λP,i

7The Neumann series
∑︁∞

t=0 M
t always exists for a matrix M with eigenvalues of magnitude

less than or equal to 1 and it is equal to (I−M)−1.
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or λi = 1 − (1 − γ)λSR,i =
γ(1−λP,i)

1−γλP,i
, respectively. Hence, we can conclude that

the eigenvectors of the Laplacian associated to the smallest8 d−eigenvalues λ1 ≤

· · · ≤ λd provide a natural basis for the possible value functions.

2.2.3 A basis of behaviour

In view of the above, one could argue that each coordinate of the Laplacian rep-

resentation, i.e., each eigenvector ei, captures a particularly different aspect, or

mode, of all the possible value functions. On top of this, Equation (2.2) tells us

that the value function space is a rotated and scaled version of the reward space.

Hence, the coordinates ei capture particular reward modes as well. Lastly, consid-

ering the reward hypothesis, i.e., that any goal corresponds to the accumulative

maximization of a reward function (see Bowling et al., 2023), we reach the nat-

ural conclusion that each Laplacian representation coordinate encodes a distinct

mode of behaviour, and that, as a whole, the Laplacian representation covers the

main modes of behaviour that an agent can display. That is, the Laplacian repre-

sentation is a principled state abstraction candidate to solve the option discovery

problem laid out in the previous section.

There are multiple technical details that make the previous line of argumen-

tation imprecise and even untrue. However, in what follows we will provide

additional arguments for why in a general sense it holds true.

A main caveat of the Laplacian representation is that, as defined here, the

Laplacian L is policy dependent. That is, its eigenvectors are functions of the

policy π chosen by the agent. The fact that the particular eigenvectors for a policy

π capture distinct reward modes is not affected by this. However, the ordering

of these modes do depend on the specific policy, meaning that the first d modes

8Notice that the largest eigenvalues of Φγ
π correspond to the smallest eigenvalues of L.
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given a policy π do not necessarily correspond to “main” modes of behaviour

in any meaningful way. Furthermore, while one eigenvector ei may capture a

reward mode different to the reward mode captured by another eigenvector ej,

it is questionable whether the behaviour modes captured by them are different.

While in general it is true that, given a specific P , a policy π might lead to

arbitrary reward modes, there are two properties of the modes that always hold

and that make them relevant in a general sense. To identify these properties, let

us consider how the rewards propagate following the topology of the state space S.

si

sj
pij

S
Figure 2.1: State space with 2D lattice
topology

In Figure 2.1 we can see a sketch that

depicts a tabular state space with 2D

lattice topology, meaning that each

state corresponds to a tile in a 2D lat-

tice and therefore has four contiguous

neighbours. The arrows pointing up

represent a reward of 1 and the arrow

pointing down a reward of −1. In this

manner, if we imagine that the reward

in the state sj propagates to its neigh-

bour si with the same probability as the transition probability pij = (Pπ)si,sj ,

then the expected reward entering state si is
∑︁

j∈N (i) pijrj, where N (i) corre-

sponds to the set of the four neighbour states. If we assume that in this case the

transition probabilities are uniform, the incoming reward is 1
2
. If in addition we

multiply the entering reward by the reward of the state, we obtain a measure Ci

of how correlated si is with its neighbours. Hence, we have Ci =
∑︁

j∈N (i) pijrirj,

which in our example is 1
2
and it would be −1

2
if the arrow was the opposite.

Since pij = 0 for any j /∈ N (i), we can express the mean correlation for si as a

sum over all states, i.e., Ci =
∑︁|S|

j=1 pijrirj. So, in the end, if we add up all the
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mean correlations, we obtain a single mean correlation measure C for the reward

vector r: C(r) =
∑︁|S|

i,j=1 pijrirj = r⊤Pπr. We can then see that the quadratic

form r⊤Lr is equal to the difference between the norm of r, its auto-correlation,

and the mean correlation with the neighbours: r⊤Lr = ∥r∥22 − C(r). The reason

why this equality is interesting is the following. If we apply it to one of the

eigenvectors ek, we can see that e⊤k Lek = e⊤k (λkek) = λk = 1−C(ek). Hence, the

eigenvalue provides a negative measure of mean correlation given the dynamics.

Moreover, the state space we introduced here is exactly the same as the 2D Ising

lattice model in statistical physics where the rewards correspond to spins, and

the expression
∑︁|S|

i=1 riri −
∑︁|S|

i,j=1 pijrirj is the energy of a spin configuration.9

That is, the eigenvalue λk is the energy of the reward mode ek. Then,

the lower the energy λk, the higher the correlation, and the more unlikely to

observe local changes in the reward. We can conclude that if two eigenvectors

ei and ej do not share their eigenvalue, then they will present a different level

of variability and, in particular, a different number of local maxima. As a re-

sult, if we use them as intrinsic reward functions, the associated optimal policies,

usually called eigenoptions (see the definition by Machado et al., 2017), present

a different number of sink states. Consequently, the length of the trajectories

spanned by the different policies vary and so the obtained behaviours correspond

to different time-scales (to see experiments confirming this phenomena, refer to

the survey by Machado et al., 2023). Moreover, since the eigenvectors are or-

thogonal, the local maxima for two eigenvectors has to occur in different states

(otherwise their inner product would not cancel). In particular, for low energy

eigenvectors, i.e., those corresponding to the Laplacian representation, the few

existing local maxima will be typically distant between each other, owing to the

9To be precise, this is the energy of the configuration when there is an external magnetic
field equal to the configuration and the couplings between the spins are given by the transition
probabilities.
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large correlation around the maxima.

In summary, irrespective of the policy π, the Laplacian representation induces

behaviour modes that are maximally different in a meaningful way. Specifically,

the behaviours correspond to the visitation of maximally distant regions, under

the distance induced by the topology of S, and they correspond to different

temporal scales. In other words, the Laplacian representation presents a

general approach to discover options for exploration.

2.3 Optimization approach to the Laplacian

Now that we have defined and motivated the use of the Laplacian representation,

we are interested in techniques that reliably allow to approximate it in a general

setting (i.e., where the state space can be arbitrarily large). For this, we intro-

duce the optimization approach to the Laplacian. The main idea is to propose

an optimization problem such that its solution corresponds to the Laplacian rep-

resentation. Then, any iterative optimization technique, like stochastic gradient

descent, becomes a plausible algorithm to obtain the Laplacian representation.

2.3.1 The Graph Drawing Objective

Given the graph Laplacian L, the spectral graph drawing optimization problem

(Koren, 2003) is defined as follows:10

min
u1,··· ,ud∈R|S |

d∑︂
i=1

⟨ui,Lui⟩ (2.3)

such that ⟨uj,uk⟩ = δjk , 1 ≤ k ≤ j ≤ d ,

10Note that, under the previously introduced interpretation of the eigenvalues, this problem
corresponds to energy minimization.
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where ⟨·, ·⟩ is the inner product in R|S| and δjk is the Kronecker delta. This

optimization problem has two desirable properties. The first one is that the d

smallest eigenvectors of L are a global optimizer.11 Hence, the Laplacian repre-

sentation ϕ associated with L is a solution to this problem. The second property is

that both objective and constraints can be expressed as expectations, making the

problem amenable to stochastic gradient descent. In particular, the original con-

strained optimization problem (2.3) can be approximated by the unconstrained

graph drawing objective (GDO):

min
u∈Rd|S|

d∑︂
i=1

⟨ui,Lui⟩+ b
d∑︂

j=1

d∑︂
k=1

(︁
⟨uj,uk⟩ − δjk

)︁2
, (2.4)

where b ∈ (0,∞) is a scalar hyperparameter and u = [u⊤
1 , · · · ,u⊤

d ]
⊤ is the vector

that results from concatenating the vectors (ui)
d
i=1 (Wu et al., 2019).

2.3.2 The Generalized Graph Drawing Objective

As mentioned before, any rotation of the smallest eigenvectors of the Laplacian

L is a global optimizer of the constrained optimization problem (2.3). Hence,

even with an appropriate choice of hyperparameter b, GDO does not necessarily

approximate the Laplacian representation ϕ. As a solution, Wang et al. (2021)

present the generalized graph drawing optimization problem:

min
u∈Rd|S|

d∑︂
i=1

ci⟨ui,Lui⟩ (2.5)

such that ⟨uj,uk⟩ = δjk , 1 ≤ k ≤ j ≤ d ,

11This should be intuitive, given that these are the set of independent vectors with lowest
energy. For proofs in the tabular setting, see the work by Koren (2003) for the case d = 2, and
Lemma 1 for arbitrary d. For the abstract setting, see the work by Wang et al. (2021).
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Figure 2.2: Average cosine similarity between the true Laplacian representation
and GGDO. Each curve corresponds to a different value for a hyperparameter
defining GGDO (named the barrier penalty coefficient), averaged over 60 seeds.
The thickest curve correspond to the best coefficient and the shaded regions, to
a 95% confidence interval.

where c1 > · · · > cd > 0 is a monotonically decreasing sequence of d hyperparam-

eters. Correspondingly, the unconstrained generalized graph drawing objective

(GDDO) is defined as:

min
u∈Rd|S|

d∑︂
i=1

ci⟨ui,Lui⟩+ b
d∑︂

j=1

d∑︂
k=1

min(cj, ck)
(︁
⟨uj,uk⟩ − δjk

)︁2
. (2.6)

Wang et al. (2021) prove that the optimization problem (2.5) has a unique

global minimum that corresponds to the smallest eigenvectors of L, for any possi-

ble choice of the hyperparameter sequence (ci)
d
i=1. However, in the unconstrained

setting (2.6), which is the setting used when training neural networks, these hy-

perparameters do affect both the dynamics and the quality of the final solution.

In particular, Wang et al. (2021) found in their experiments that the linearly

decreasing choice ci = d − i + 1 performed best across different environments.

More importantly, under gradient descent dynamics, the introduced coefficients

are unable to break the symmetry among arbitrary rotations of the eigenvectors

since they remain as equilibrium points (see Corollary (1) in Section 4).

These issues are particularly problematic because it is impossible to tune
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the hyperparameters of GGDO without already having access to the prob-

lem solution: previous results, when sweeping hyperparameters, used the cosine

similarity between the true eigenvectors and the approximated solution as a per-

formance metric. To make matters worse, the best hyperparameters are en-

vironment dependent, as shown in Figure 2.2. Thus, when relying on GDO,

or GGDO, it is impossible to guarantee an accurate estimate of the eigenvectors

of the Laplacian in environments where one does not know these eigenvectors in

advance, which obviously defeats the whole purpose.

2.4 Extension to abstract state spaces

The definition of the Laplacian representation and the associated graph drawing

optimization problems (2.3) and (2.5) relied on the assumption that the state

space was a finite set S = {1, · · · , |S|}. In particular, the Laplacian L was

defined as a matrix, and the notion of eigenvector depended on the standard

Euclidean inner product. Since we are interested in the Laplacian representation

being applicable to real-world problems, in general the size of the state space can

be assumed, for all intents and purposes, infinite and, in particular, uncountable.

This motivates the need to generalize the previous concepts and objectives to the

case of abstract spaces. For this, we follow closely the work of Wu et al. (2019).

2.4.1 Reinforcement learning in abstract spaces

To work with a potentially uncountable state space S, we have to revisit the

definition of reward-agnostic Markov-decision process. In principle, the definition

holds as is, but there are gaps to fill and details worth mentioning. First, the state

distribution P (s, a) corresponding to the state-action pair (s, a), now denoted
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as P(·|s, a), is not well-defined by itself. In the abstract setting, distributions

are probability measures defined over a measurable set, which means that we

need to choose an appropriate σ−algebra Σ ⊂ P(S) containing those sets of

states that can be measured. In this way, the state space is now an abstract

measurable space (S,Σ) and the simplex ∆(S) refers to the set of probability

measures defined over (S,Σ). Moreover, the policy π remains the same, but the

Markov process induced by it cannot be represented anymore by a matrix Pπ. In

its place, we have now the transition probability map Pπ : S → ∆(S) defined by

Pπ(s) =
∑︁

a∈A π(a|s)P(·|s, a). Beyond this, the definitions of reward functions,

tasks, trajectories, returns, and state value functions all remain the same. Hence,

the objective given an MDP-task pair (M,T ) is the same: solve the optimization

problem argmaxπ∈∆(A)S vπ.

2.4.2 Linear operators and the abstract Laplacian

As matrices, both L and Pπ mapped vectors in R|S| back to the same finite-

dimensional vector space. This was the property that, in particular, allowed to

connect the eigensystem of L with the (sub-)basis in the value space that best

preserved the value functions given a fixed Pπ. For this to make sense in the

abstract setting, and preserve the same relationship, we need to determine what

is the abstract vector space V where the value functions live, and then redefine

the Laplacian as a general linear operator in the set of linear operators End(V).

In principle, we know that any value function v is a function from S to R, i.e.,

v ∈ RS . In addition, since value functions are still defined as expected values,

given some policy π, we recover the Bellman equation:

24



vπ(s) = Eπ
M

[︄
∞∑︂
t=0

γtr(St, At)
⃓⃓⃓
S0 = s

]︄

=
∑︂
a∈A

π(a|s)

(︄
r(s, a) + γEπ

M

[︄
∞∑︂
t=1

γtr(St, At)
⃓⃓⃓
S0 = s, A0 = a

]︄)︄

= rπ(s) + γ
∑︂
a∈A

π(a|s)Eπ
M

[︄
Eπ
M

[︄
∞∑︂
t=0

γtr(S ′
t, A

′
t)
⃓⃓⃓
S ′
0 = S1

]︄ ⃓⃓⃓
S0 = s, A0 = a

]︄)︄

= rπ(s) + γ
∑︂
a∈A

π(a|s)Eπ
M

[︄
vπ(S1)

⃓⃓⃓
S0 = s, A0 = a

]︄

= rπ(s) + γ
∑︂
a∈A

π(a|s)
∫︂
S
vπ(s

′)P(ds′|s, a)

= rπ(s) + γ

∫︂
S
vπ(s

′)Pπ(ds
′|s) ,

where, similarly as before, rπ(s) =
∑︁

a∈A π(a|s)r(s, a), and
∫︁
S is used to denote

the Lebesgue integral in S.

To obtain the same expression (2.1) as before, we need to define the “product”

Pπvπ. We can achieve this by choosing a common probability measure ρ in (S,Σ)

and introducing the probability densities pπ(·|s) : S → [0,∞) for all s ∈ S,

defined as the Radon-Nikodym derivatives pπ(s
′|s) = dPπ(·|s)

dρ

⃓⃓⃓
s′
. This is the same

to say that the probability of reaching a state in the set B ⊂ S, starting from

state s, is the integral of the density in B:

Pπ(B|s) =
∫︂
B
pπ(s

′|s)ρ(ds′) .

In this manner, we can introduce the transition operator Pπ : RS → RS ,
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defined by:

[Pπv](s) =

∫︂
S
v(s′)pπ(s

′|s)ρ(ds′) ,

and, as a result, we obtain our desired Bellman equation:

vπ = rπ + γPπvπ .

Note, however, that the Lebesgue integral defining Pπ could be infinite for

some arbitrary function v ∈ RS . This means that we need to constrain our vector

space to those functions v such that
∫︁
S v(s

′)pπ(s
′|s)ρ(ds′) < ∞, for all s. More

generally, if we want to define the Laplacian as the operator L = I − f(Pπ), for

some arbitrary function f , we require that
∫︁
S v(s)p(s)ρ(ds) < ∞ for an arbitrary

density p. One can prove that the square of
∫︁
S v(s)p(s)ρ(ds) is upper-bounded by

the product
∫︁
S v(s)

2ρ(ds)·
∫︁
S p(s)

2ρ(ds) (see Section 2.11 in the book by Bogachev

& Ruas, 2007). Hence, if we require both value functions and densities to be

square integrable with respect to our chosen metric ρ, then the Laplacian will be

well-defined. In this manner, we restrict our abstract MDPs to have probability

maps P such that the resultant transition densities pπ are square ρ−integrable

and the vector space of value functions considered is V = L2(ρ) = {v ∈ RS :∫︁
S v(s)

2ρ(ds) < ∞}.

As a final step, we define the Laplacian in the abstract reinforcement learn-

ing setting, or abstract Laplacian for simplicity, as the square ρ−integrable lin-

ear operator L = I − f(Pπ) in End(V), where I is the identity linear operator

and f : End(V) → End(V) is a function that maps Pπ to a self-adjoint square

ρ−integrable linear operator f(Pπ). That a linear operator is self-adjoint means,

essentially, that its corresponding density with respect to ρ is symmetric. Thus,
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this restriction is equivalent to ask that L is a symmetric matrix in the finite-

dimensional case. Correspondingly, when pπ(s
′|s) ̸= pπ(s|s′), we can define f in

such a way that the density of f(Pπ) is
1
2
(pπ(s|s′)+ pπ(s

′|s)) (see Equation (4) in

Wu et al., 2019).

2.4.3 Graph drawing objectives revisited

The concept of eigenvector remains the same in the abstract setting, meaning

that an eigenvector ei ∈ V of the Laplacian L (or any other linear operator)

and its corresponding eigenvalue λi ∈ R is a vector such that Lei = λiei. We

are interested, however, in finding a countable set of such eigenvectors with the

property of being all “orthogonal”. This is where things change in the abstract

setting, since the concept of orthogonality depends on the explicit choice of an

inner-product ⟨·, ·⟩ : V × V → [0,∞). Now, having already selected a measure

ρ in the state space, a natural choice is the induced inner-product ⟨v1, v2⟩ρ =∫︁
S v1(s)v2(s)ρ(ds), which is the expected correlation of the input vectors under

the measure ρ.

Under the previous considerations, the graph drawing optimization problem

can be extended to the abstract setting as:

min
u1,··· ,ud∈V

d∑︂
i=1

⟨ui,Lui⟩ρ (2.7)

such that ⟨uj, uk⟩ρ = δjk , 1 ≤ k ≤ j ≤ d .

We can notice that the only change with respect to the original problem (2.3)

is that solutions are now functions in V , instead of finite-dimensional vectors in

R|S|, and the inner-product is now the one induced by ρ, i.e., ⟨·, ·⟩ρ. Clearly, the

remaining optimization problems (2.4-2.6) can be extended in the same manner.
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2.4.4 Monte-Carlo approximations to the drawing objec-

tives

What remains is to show that the abstract version of the GDO is an expectation.

As mentioned earlier, this is very convenient, as it implies that the GDO, or its

gradient, can be estimated via Monte-Carlo sampling techniques.

Without loss of generality, let us suppose that Pπ is self-adjoint and that the

Laplacian is defined as L = I − Pπ. Then, considering that pπ is symmetric, in

the sense that pπ(s
′|s) = pπ(s|s′), we have:

⟨ui, Lui⟩ρ = ⟨ui, (I − Pπ)ui⟩ρ

= ⟨ui, ui⟩ρ − ⟨ui, Pπui⟩ρ

=

∫︂
S
ui(s)

2ρ(ds)−
∫︂
S
ui(s)[Pπui](s)ρ(ds)

=

∫︂
S
ui(s)

2ρ(ds)

∫︂
S
pπ(s

′|s)ρ(ds′)⏞ ⏟⏟ ⏞
=1

−
∫︂
S
ui(s)

∫︂
S
pπ(s

′|s)ui(s
′)ρ(ds′)⏞ ⏟⏟ ⏞

=[Pπui](s)

ρ(ds)

=
1

2

(︄
2

∫︂
S

∫︂
S
ui(s)

2pπ(s
′|s)ρ(ds)ρ(ds′)− 2

∫︂
S

∫︂
S
ui(s)pπ(s

′|s)ui(s
′)ρ(ds′)ρ(ds)

)︄

=
1

2

(︄∫︂
S

∫︂
S
ui(s)

2pπ(s
′|s)ρ(ds)ρ(ds′) +

∫︂
S

∫︂
S
ui(s

′)2pπ(s
′|s)ρ(ds′)ρ(ds)

− 2

∫︂
S

∫︂
S
ui(s)pπ(s

′|s)ui(s
′)ρ(ds′)ρ(ds)

)︄

=
1

2

∫︂
S

∫︂
S
(ui(s)− ui(s

′))
2
pπ(s

′|s)ρ(ds)ρ(ds′)

=
1

2
ES∼ρ

[︄
ES′∼Pπ(·|S)

[︄
(ui(S)− ui(S

′))
2

]︄]︄
.

Hence, we can conclude that each contributing term in the loss function of the

graph drawing optimization problems (2.3) and (2.5) can be approximated by
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sampling pairs of consecutive states (S, S ′), where state S is sampled from the

measure ρ, and the next state S ′ from the transition measure given S, i.e., Pπ(·|S).

Finally, taking into account that the chosen inner-product ⟨·, ·⟩ρ is an expected-

value in itself, we can write the abstract version of the GGDO as:

min
u1,··· ,ud∈V

E
S∼ρ

S′∼Pπ(·|S)

[︄
1

2

d∑︂
i=1

ci (ui(S)− ui(S
′))

2

]︄
+ · · · (2.8)

· · ·+ b E
S∼ρ
Z∼ρ

[︄
d∑︂

j,k=1

min(cj, ck) (uj(S)uk(S)− δjk) (uj(Z)uk(Z)− δjk)

]︄
.

2.4.5 Deep learning approximation

So far, we introduced a general definition of the Laplacian that works in arbi-

trary measure spaces. However, there is no way to compute the solution of an

optimization problem where the feasible set is an abstract space V . Instead, we

have to approximate the solutions and we do so by means of parametric func-

tion approximators. In particular, we replace the d functions (u1, · · · , ud) in the

problem (2.8) by the parametric model ϕθ : S → Rd, where θ is a finite dimen-

sional parameter vector. In our case, ϕθ represents a neural network, and θ a

vector containing the weights of the network. This choice allows us to find an

approximate solution by iteratively sampling a transition batch, calculating the

corresponding optimization objective, and propagating the gradients by means

of any stochastic gradient descent-based optimizer. In the following chapters we

will see why this gradient-descent procedure is incompatible with GGDO and

how our proposed objective, ALLO, overcomes this incompatibility in theory and

in practice.
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Chapter 3

Augmented Lagrangian Laplacian

Objective

In this chapter we introduce a method that retains the benefits of GGDO while

avoiding its pitfalls. Specifically, we relax the goal of having a unique global

minimum for a constrained optimization problem like (2.5). Instead, we modify

the stability properties of the unconstrained dynamics to ensure that the only

stable equilibrium point corresponds to the Laplacian representation.

3.1 Asymmetric Constraints as a Generalized

Graph Drawing Alternative

We want to break the dynamical symmetry of the Laplacian eigenvectors that

make any of their rotations an equilibrium point for GDO (2.4) and GGDO (2.6)

while avoiding the use of hyperparameters. For this, let us consider the original

graph drawing optimization problem (2.3). If we set d = 1, meaning we try
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to approximate only the first eigenvector e1, it is clear that the only possible

solution is u∗
1 = e1. This happens because the only possible rotations are ±e1.

If we then try to solve the optimization problem for d = 2, but fix u1 = e1, the

solution will be (u∗
1,u

∗
2) = (e1, e2), as desired. Repeating this process d times,

we can obtain ϕ. Thus, we can eliminate the need for the d hyperparameters

introduced by GGDO by solving d separate optimization problems. To replicate

this separation while maintaining a single unconstrained optimization objective,

we introduce the stop-gradient operator J·K in GDO. This operator does not

affect the objective in any way, but it indicates that, when following gradient

descent dynamics, the real gradient of the objective is not used. Instead, when

calculating derivatives, whatever is inside the operator is assumed to be constant.

Specifically, the objective becomes:

min
u∈Rd|S|

d∑︂
i=1

⟨ui,Lui⟩+ b
d∑︂

j=1

j∑︂
k=1

(︁
⟨uj, JukK⟩ − δjk

)︁2
. (3.1)

Note that in addition to the stop-gradient operators, the upper bound in the

inner summation is now the variable j, instead of the constant d. These two

modifications ensure that ui changes only to satisfy the constraints associated to

the previous vectors (uj)
i−1
j=1 and itself, but not the following ones, i.e., (uj)

d
j=i+1.

Hence, the asymmetry in the descent direction achieves the same effect as having

d separate optimization problems. In particular, as proved in Lemma 2 in the next

section, the descent direction of the final objective, yet to be defined, becomes 0

only for permutations of a subset of the Laplacian eigenvectors, and not for any

of its rotations.
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3.2 Augmented Lagrangian Dynamics for Exact

Learning

The regularization term added in all of the previous objectives (2.4), (2.6), and

(3.1) is typically referred to as a quadratic penalty with barrier coefficient b. This

coefficient shifts the equilibrium point of the original optimization problems (2.3)

and (2.5), and one can only guarantee that the desired solution is obtained in the

limit b → ∞ (see Chapter 17 by Nocedal & Wright, 2006). In practice, one can

increase b until a satisfactory solution is found. However, not only is there no

direct metric to tell how close one is to the true solution, but also an extremely

large b is empirically bad for neural networks when optimizing GDO or GGDO. As

a principled alternative, we propose the use of augmented Lagrangian methods.

Specifically, we augment the objective (3.1) by adding the original constraints,

multiplied by their corresponding dual variables, (βjk)1≤k≤j≤d. This turns the

optimization problem into the following max-min objective, which we call the

augmented Lagrangian Laplacian objective (ALLO):

max
β

min
u∈Rd|S|

d∑︂
i=1

⟨ui,Lui⟩+
d∑︂

j=1

j∑︂
k=1

βjk

(︁
⟨uj, JukK⟩ − δjk

)︁
+ · · · (3.2)

· · ·+ b

d∑︂
j=1

j∑︂
k=1

(︁
⟨uj, JukK⟩ − δjk

)︁2
,

where β = [β1,1, β2,1, β2,2, · · · , βd,1, · · · , βd,d] ∈ Rd(d+1)/2 is a vector containing all

of the dual variables. There are two reasons to introduce the additional linear

penalties, which at first glance do not seem to contribute anything that the

quadratic one is not adding already. First, for an appropriately chosen b, the

equilibria of the max-min objective (3.2) corresponds exactly to permutations

of the smallest Laplacian eigenvectors, and only the sorted eigenvectors are a
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stable solution under gradient ascent-descent dynamics. Second, the optimal

dual variables β∗ are proportional to the smallest Laplacian eigenvalues, meaning

that with this single objective one can recover naturally both eigenvectors and

eigenvalues of L (see the next section for the formalization of these claims).

Something to note is that the standard augmented Lagrangian has been dis-

cussed in the literature as a potential approach for learning eigenvectors of linear

operators, but it was dismissed due to lack of empirical stability (Pfau et al.,

2019). ALLO overcomes this problem through the introduction of the stop-

gradient operators, which are responsible for breaking the symmetry of the Lapla-

cian eigenvector rotations, in a similar way as how gradient masking is used in

spectral inference networks (Pfau et al., 2019).

3.3 Barrier Dynamics

For the introduced max-min objective to work, in theory, b has to be larger than

a finite value that depends on the specific Laplacian L. Moreover, if f(Pπ) in

the definition of L is a stochastic matrix, which is the case for all of the typical

definitions mentioned previously, one can exactly determine a lower bound for b,

as proved in the next section. In practice, however, we found that b still needs

to be increased. In our experiments, we do so in a gradient ascent fashion, just

as with the dual variables.
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Chapter 4

Theoretical Results

To prove the soundness of the proposed max-min objective, we need to show two

things: 1) that the equilibria of this objective correspond to the desired eigen-

system of the Laplacian, and 2) that this equilibria are stable under stochastic

gradient ascent-descent dynamics.

4.1 Stationary solutions

As an initial motivation, the following Lemma deals with the first point in the

stationary setting. While it is already known that the set of solutions to the

graph drawing optimization problem (2.3) corresponds to the rotations of the

smallest eigenvectors of L, the Lemma considers a primal-dual perspective of the

problem that allows one to relate the dual variables with the eigenvalues of L.

This identification is relevant since previous methods are not able to recover the

eigenvalues.

Lemma 1. Consider a symmetric matrix L ∈ R|S|×|S| with increasing, and pos-

sibly repeated, eigenvalues λ1 ≤ · · · ≤ λ|S|, and a corresponding sequence of
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eigenvectors (ei)
|S|
i=1. Then, given a number of components, 1 ≤ d ≤ |S|, the pair

(u∗
i )

d
i=1, (β

∗
jk)1≤k≤j≤d, where u

∗
i = ei and β∗

jk = −λjδjk, is a solution to the primal-

dual pair of optimization problems corresponding to the spectral graph drawing

optimization problem (2.3). Furthermore, any other primal solution corresponds

to a rotation of the eigenvectors (ei)
d
i=1.

Proof. Let βjk ∈ R denote the dual variables associated to the constraints of the

optimization problem (2.3), and L be the corresponding Lagrangian function:

L((ui)i, (βjk)k≤j) :=
d∑︂

i=1

⟨ui,Lui⟩+
d∑︂

j=1

j∑︂
k=1

βjk(⟨uj,uk⟩ − δjk) .

Then, any pair of solutions (u∗
i )i, (β

∗
jk)k≤j must satisfy the Karush-Kunh-Tucker

conditions. In particular, the gradient of the Lagrangian should be 0 for both

primal and dual variables:

∇ui
L((u∗

i )i, (β
∗
jk)k≤j) = 2Lu∗

i +
i∑︂

k=1

β∗
iku

∗
k +

d∑︂
j=i

β∗
jiu

∗
j = 0 , ∀ 1 ≤ i ≤ d ; (4.1)

∇βjk
L((u∗

i )i, (β
∗
jk)k≤j) = ⟨u∗

j ,u
∗
k⟩ − δjk = 0 , ∀ 1 ≤ k ≤ j ≤ d . (4.2)

The Equation (4.2) does not introduce new information since it only asks

again for the solution set (u∗
i )

d
i=1 to form an orthonormal basis. Equation (4.1)

is telling us something more interesting. It asks Lu∗
i to be a linear combination

of the vectors (u∗
i )

d
i=1, i.e., it implies that L always maps u∗

i back to the space

spanned by the basis. Since this is true for all i, the span of (u∗
i )

d
i=1 must coincide

with the span of the eigenvectors (eσ(i))
d
i=1, for some permutation σ : S → S, as

proved in Proposition 1 in the Appendix. Intuitively, if this was not the case,

then the scaling effect of λj along some eσ(j) would take points that are originally

in span(u∗
i )

d
i=1 outside of this hyperplane.
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Since we know that the span of the desired basis is span(eσ(i))
d
i=1, for some

permutation σ : S → S, we can restrict the solution to be a set of eigenvectors

of L. The function being minimized then becomes
∑︁d

i=1 λσ(i), which implies that

a primal solution is the set of d smallest eigenvectors. Now, any rotation of this

minimizer results in the same loss and is also in span(ei))
d
i=1, which implies that

any rotation of these eigenvectors is also a primal solution.

Considering the primal solution where u∗
i = ei, Equation (4.1) becomes:

∇ui
L((ei)i, (β∗

jk)k≤j) = 2(λi + β∗
ii)ei +

i−1∑︂
k=1

β∗
ikek +

d∑︂
j=i+1

β∗
jiej = 0 , ∀ 1 ≤ i ≤ d .

Since the eigenvectors are normal to each other, the coefficients all must be 0,

which implies that the corresponding dual solution is β∗
ii = −λi and β∗

jk = 0 for

j ̸= k.

4.2 Gradient ascent-descent equilibria

Now that we know that the primal-dual pair of optimization problems associated

to (2.3) has as a solution the smallest eigensystem of the Laplacian, the follow-

ing Lemma shows that the equilibria of the max-min objective (3.2) coincides

only with this solution, up to a constant, and any possible permutation of the

eigenvectors, but not with its rotations.

Lemma 2. The pair u∗,β∗ is an equilibrium pair of the max-min objective (3.2),

under gradient ascent-descent dynamics, if and only if u∗ coincides with a subset

of eigenvectors of the Laplacian (eσ(i))
d
i=1, for some permutation σ : S → S, and

β∗
jk = −2λσ(j)δjk.

Proof. Let us denote L the objective (3.2). Then, we have the following gradient
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ascent-descent dynamical system:

ui[t+ 1] = ui[t]− αprimal · gui
(u[t],β[t]) , ∀ 1 ≤ i ≤ d, (4.3)

βjk[t+ 1] = βjk[t] + αdual ·
∂L
∂βjk

(u[t],β[t]) , ∀ 1 ≤ k ≤ j ≤ d , (4.4)

where t ∈ N is the discrete time index, αprimal, αdual > 0 are step sizes, and

gui
is the gradient of L with respect to ui, taking into account the stop-gradient

operator. We avoid the notation∇ui
L to emphasize that gui

is not a real gradient,

but a chosen direction that ignores what is inside the stop-gradient operator.

The equilibria of our system corresponds to those points for which u∗
i [t+1] =

u∗
i [t] and β∗

jk[t+ 1] = β∗
jk[t]. Hence,

gui
(u∗,β∗) = 2Lu∗

i +
i∑︂

j=1

βiju
∗
j + 2b

i∑︂
j=1

(⟨u∗
i ,u

∗
j⟩ − δij)u

∗
j = 0 , ∀1 ≤ i ≤ d,

(4.5)

∂L
∂βjk

(u∗,β∗) = ⟨u∗
j ,u

∗
k⟩ − δjk = 0 , ∀1 ≤ k ≤ j ≤ d . (4.6)

We proceed now by induction over i, considering that Equation (4.6) tells us

that u∗ corresponds to an orthonormal basis. For the base case i = 1 we have:

gu1(u
∗,β∗) = 2Lu∗

1 + β1,1u
∗
1 = 0 .

Thus, we can conclude that u1 is an eigenvector eσ(1) of the Laplacian, and

that β1,1 corresponds to its eigenvalue, specifically β1,1 = −2λσ(1), for some per-

mutation σ : S → S. Now let us suppose that uj = eσ(j) and βjk = −2λσ(j)δjk
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for j < i. Equation (4.5) for i then becomes:

gui
(u∗,β∗) = 2Lu∗

i + βiiu
∗
i +

i−1∑︂
j=1

βijeσ(j) = 0 .

In general, we can express u∗
i as the linear combination u∗

i =
∑︁|S|

j=1 cijeσ(j)

since the eigenvectors of the Laplacian form a basis. Also, given that ⟨uj,uk⟩ = 0,

we have that cij = 0 for j < i. Hence,

2

|S|∑︂
j=i

cijLeσ(j)+βii

|S|∑︂
j=i

cijeσ(j)+
i−1∑︂
j=1

βijeσ(j) =

|S|∑︂
j=i

cij(2λσ(j)+βii)eσ(j)+
i−1∑︂
j=1

βijeσ(j) = 0 .

By orthogonality of the eigenvectors, we must have that each coefficient is 0,

implying that βij = 0 and either cij = 0 or βii = −2λσ(j). The last equation allows

us to conclude that a pair (cij, cik) can only be different to 0 simultaneously for j, k

such that λσ(j) = λσ(k), i.e., ui lies in the subspace of eigenvectors corresponding

to the same eigenvalue, where each point is in itself an eigenvector. Thus, we can

conclude, that ui = eσ(i) and βij = −2λiδij, as desired.

As a Corollary to Lemma 2, let us suppose that we fix all the dual variables

to 0, i.e., βjk = 0. Then, we will obtain that the constraints of the original opti-

mization problem (2.3) must be violated for any possible equilibrium point. This

explains why optimizing GGDO in Equation (2.6) may converge to undesirable

rotations of the Laplacian eigenvectors, even when the smallest eigenvectors are

the unique solution of the original associated constrained optimization problem.

Corollary 1. The point u∗ is an equilibrium point of the objective (2.4) or the

objective (2.6), under gradient descent dynamics, if and only if for any 1 ≤ i ≤ d

there exists a 1 ≤ j ≤ d such that ⟨u∗
i ,u

∗
j⟩ ≠ δij. That is, the equilibrium is

guaranteed to be different to the eigenvectors of the Laplacian.
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4.3 Stable equilibrium

Finally, we prove that even when all permutations of the Laplacian eigenvectors

are equilibrium points of the proposed objective (3.2), only the one corresponding

to the ordered smallest eigenvectors and its eigenvalues is stable. This is in

contrast with GGDO.

Theorem 1. The only permutation in Lemma 2 that corresponds to an stable

equilibrium point of the max-min objective (3.2) is the identity permutation, under

an appropriate selection of the barrier coefficient b. That is, there exist a finite

barrier coefficient such that u∗
i = ei and β∗

jk = −2λjδjk correspond to the only

stable equilibrium pair, where λi is the i−th smallest eigenvalue of the Laplacian

and ei its corresponding eigenvector. In particular, any b > 2 guarantees stability.

The main idea of the proof is as follows. We have that gui
in Equation

(4.3) and ∂L/∂βjk in Equation (4.4) define the chosen ascent-descent direction.

Concatenating these vectors and scalars in a single vector g(u,β), the stability

of the dynamics can be determined from the Jacobian matrix J(g). Specifically, if

all the eigenvalues of this matrix have a positive real part in the equilibrium pair

u∗,β∗, we can conclude that the equilibrium is stable. If there is one eigenvalue

with negative real part, then it is unstable (see Chicone, 2006; Sastry, 2013;

Mazumdar et al., 2020). As proven below, for any pair 1 ≤ i < j ≤ |S|, there

exists a real eigenvalue proportional to λσ(j) − λi. This means that, unless the

σ permutation is the identity, there will be at least one negative eigenvalue and

the equilibrium corresponding to this permutation will be unstable.

Proof. Let us define the following vectors defining the descent directions for u
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and β:

gu =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

gu1

gu2

...

gud

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, gβ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂L
∂β1,1

∂L
∂β2,1

∂L
∂β2,2

...

∂L
∂βd,1

...

∂L
∂βd,d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, the global ascent-descent direction can be represented by the vector

g =

⎡⎣ gu

−gβ

⎤⎦ .

To determine the stability of any equilibrium point of the ascent-descent dy-

namics introduced in Lemma 2, we only need to calculate the Jacobian of g, the

matrix J := J(g) whose rows correspond to the gradients of each entry of g, and

determine its eigenvalues (Chicone, 2006).

We proceed to take the gradients of Equation 4.5 and 4.6:

Jij(u,β) := (∇ui
guj

(u,β)⊤)⊤

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2L+ βiiI+ 2b
[︁
(⟨ui,ui⟩ − 1)I+ 2ui ⊗ ui

]︁
+ 2

i−1∑︁
k=1

buk ⊗ uk , if i = j ;

βijI+ 2b
(︁
⟨ui,uj⟩I+ ui ⊗ uj

)︁
, if i > j ;

0 , if i < j ;
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Jkβij
(u,β) :=

(︃
−∇uk

∂L
∂βij

(u,β)

)︃⊤

= −u⊤
j δik − u⊤

i δjk ;

Jβjki(u,β) :=
∂

∂βjk

gui
(u,β) = uiδijδik + ukδij(1− δjk) ;

Jβkℓβij
(u,β) :=

∂2L
∂βkℓ∂βij

(u,β) = 0 .

Then, we have that in any equilibrium point u∗,β∗, i.e., in a permutation σ

of the Laplacian eigensystem (as per Lemma 2), the Jacobian satisfies:

Jij(u
∗,β∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2L− 2λiI+ 4beσ(i) ⊗ eσ(i) + 2
i−1∑︁
k=1

beσ(k) ⊗ eσ(k) , if i = j ;

2beσ(i) ⊗ eσ(j) , if i > j ;

0 , if i < j ;

Jkβij
(u∗,β∗) = −e⊤σ(j)δik − e⊤σ(i)δjk ;

Jβjki(u
∗,β∗) = eσ(i)δijδik + eσ(k)δij(1− δjk) ;

Jβkℓβij
(u∗,β∗) = 0 .

Now, we determine the eigenvalues of this Jacobian. For this, we need to solve

the system:

Jv = ηv , (4.7)

where η denotes an eigenvalue of the Jacobian and v its corresponding eigenvec-

tor.
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To facilitate the solution of this system, we use the following notation:

v =

⎡⎣w
ν

⎤⎦ , vu =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

w1

w2

...

wd

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, ν =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ν1,1

ν2,1

ν2,2
...

νd,1
...

νd,d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where wi ∈ R|S|, for all 1 ≤ i ≤ d, and νjk ∈ R, for all 1 ≤ k ≤ j ≤ d. With this,

the eigenvalue system (4.7) becomes:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︁d

j=1 Jjiwj +
∑︁d

j=1

∑︁j
k=1 Jβjkiνjk = ηwi , ∀ 1 ≤ i ≤ d ;

∑︁d
k=1 Jkβij

wk = ηνij , ∀ 1 ≤ j ≤ i ≤ d .

(4.8)

Since the Laplacian eigenvectors form a basis, we have the decomposition

wi =
∑︁|S|

j=1 cijeσ(j), for some sequence of reals (cij)
|S|
j=1. Hence, replacing the values

of the Jacobian components in the upper equation of the system (4.8), we obtain:
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i−1∑︂
j=1

2b(eσ(i) ⊗ eσ(j))wj +

(︃
2L− 2λiI+ 4beσ(i) ⊗ eσ(i) + 2

i−1∑︂
k=1

beσ(k) ⊗ eσ(k)

)︃
wi + · · ·

· · ·+
d∑︂

j=1

j∑︂
k=1

(︃
eσ(i)δijδik + eσ(k)δij(1− δjk)

)︃
νjk − ηwi = 0

=⇒ 2
i−1∑︂
j=1

bcjieσ(j) + 2

|S|∑︂
j=1

(λj − λi)cijeσ(j) + 4beσ(i) +
i−1∑︂
j=1

bcijeσ(j) + · · ·

· · ·+ νiieσ(i) +
i−1∑︂
k=1

νikeσ(k) − η

|S|∑︂
j=1

cijeσ(j) = 0 .

Since the eigenvectors form a basis, we have that each coefficient in the sum

of terms must be 0. Hence, we obtain the following conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cij[2(λσ(j) − λi) + 2b− η] = −2bcji − νij , ∀ 1 ≤ j < i ≤ d ;

cii(4b− η) = −νii , ∀ 1 ≤ i ≤ d ;

cij[2(λσ(j) − λi)− η] = 0 , ∀ 1 ≤ i < j ≤ |S| .

(4.9)

Each of these conditions specify the possible eigenvalues of the Jacobian ma-

trix J. First and foremost, the third condition tells us that η = 2(λσ(j)−λi) is an

eigenvalue independent of b, for any possible pair i ≤ j. Since we are supposing

the eigenvalues are increasing with their index, for the eigenvalues to be positive,

the permutation σ : S → S must preserve the order for all indexes, which only

can be true for the identity permutation. That is, all the Laplacian eigenvector

permutations that are not sorted are unstable.

In addition, deriving the rest of the eigenvalues from the remaining two con-

ditions in (4.9) and the second set of equations of the system (4.8), we obtain a
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lower bound for b that guarantees the stability of the Laplacian representation.

In particular, from the second set of equations of the system (4.8) we can obtain

a relationship between the coefficients cij and cji with νij, for all 1 ≤ j ≤ i ≤ d:

d∑︂
k=1

Jjβij
wk =

d∑︂
k=1

(︃
− e⊤σ(j)δik − e⊤σ(i)δjk

)︃(︃ |S|∑︂
ℓ=1

ckℓeσ(ℓ)

)︃

= −cij − cji = ηνij . (4.10)

Replacing this into the second condition in (4.9) we get that η = 2b ±

2
√︂

b2 − 1
2
. These set of eigenvalues (two for each i) always have a positive real

part, as long as b is strictly positive. In addition, if b ≥ 1
2
, we get purely real

eigenvalues, which are associated with a less oscillatory behavior (see Sastry,

2013).

Finally, if we assume that η ̸= 2(λσ(i) − λj) for j < i (i.e., η is not an

eigenvalue already considered), we must have that cji = 0, and so, by (4.10),

−cij = ηνij. Replacing this into the first condition in (4.9), we get that η =

(λσ(j)−λi)+b±
√︁

[(λσ(j) − λi) + b]2 − 1 ≥ −2+b−
√︁
[(λσ(j) − λi) + b]2 − 1. Thus,

if b is larger than the maximal eigenvalue difference for the first d eigenvalues of

L, we have guaranteed that these eigenvalues of the Jacobian will be positive.

Furthermore, since the eigenvalues are restricted to the range [0, 2], we have that

b > 2 ensures a strict stability of the Laplacian representation.
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Chapter 5

Experiments

We evaluate three different aspects of the proposed max-min objective: robust-

ness, eigenvalue accuracy, and the necessity of each of the components of the

proposed objective. For robustness, we determine the quality of the Laplacian

representation for different initial values of the barrier coefficient and for envi-

ronments of different sizes, and we contrast them against the baseline, GGDO.

For eigenvalue accuracy, we compare the estimates obtained with the dual vari-

ables of our objective against those obtained from the original graph drawing loss

function in (2.3), as described by Wang et al. (2023). Finally, we perform two dif-

ferent ablations to determine which components of our objective are empirically

responsible for successful Laplacian representation learning.

5.1 Robustness

In this section, we cover the three sets of experiments performed to test ALLO’s

robustness.
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GridRoom-1 GridRoom-16 GridMaze-19

Figure 5.1: Examples of grid environments. The color corresponds to the second
smallest eigenvector of the Laplacian learned by ALLO. Red represents negative
values; and blue, positive ones.

5.1.1 Barrier coefficient sweep

We start by considering the grid environments shown in Figure 5.1. We generate

200, 000 transition samples in each of them from a uniform random policy and

a uniform initial state distribution. We use the (x, y) coordinates of the agent’s

position as inputs to a fully-connected neural network ϕθ : R2 → Rd, parameter-

ized by θ, with 3 layers of 256 hidden units to approximate the d−dimensional

Laplacian representation ϕ, where d = 11. The network is trained using stochas-

tic gradient descent with our objective, as explained in Section 2.4.5. We repeat

this process with different initial barrier coefficients, using the same values as in

Figure 2.2.

Figure 5.2 shows the average cosine similarity of eigenvectors found using

ALLO compared to the true Laplacian eigenvectors. In all three environments

ALLO learns close approximations of the smallest d−eigenvectors in fewer gra-

dient updates than GGDO (see Figure 2.2), without a strong dependence on the

chosen initial barrier coefficients.
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Figure 5.2: Average cosine similarity between the true Laplacian representation
and ALLO. Each curve corresponds to a different initial barrier coefficient b,
averaged over 60 seeds. The thickest curve corresponds to the best coefficient
and the shaded regions, to a 95% confidence interval.

5.1.2 Environment robustness

As a second and more conclusive experiment, we select the barrier coefficient that

displayed the best performance for GGDO across the three previous environments

(b = 2.0), and the best barrier increasing rate, αbarrier, for our method across the

same environments (αbarrier = 0.01). Then, we use these values to learn the

Laplacian representation in the 12 different grid environments shown in Figure

5.3. Note that each environment has a different number of states, ranging from

|S| = 11 (GridMaze-7) to |S| = 1088 (GridRoom-64), and also a particular topol-

ogy, presenting both totally disconnected regions (e.g., GridMaze-32), highly con-

nected regions (e.g., GridRoom-1), and symmetries (compare GridRoom-4 and

GridRoomSym-4). Given that in this case some environments are considerably

large, the numbers of transition samples used is 1 million.

Figure 5.4a compares the average cosine similarities obtained with each method.

In particular, it shows the mean difference of the average cosine similarities across

60 seeds. Noticeably, the baseline fails completely in the two smallest environ-

ments (i.e., GridMaze-7 and GridMaze-9), and it also fails partially in the two

largest ones (i.e., GridMaze-32 and GridRoom-64). In contrast, ALLO finds close
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GridRoom-1 GridRoom-16 GridMaze-19 GridRoom-64

GridMaze-7GridMaze-9 GridMaze-32GridMaze-26

GridRoom-4 GridRoomSym-4 GridRoom-32 GridMaze-17

Figure 5.3: Grid environments where the Laplacian representation is learned with
both GGDO and ALLO. Color corresponds to the second smallest eigenvector of
the Laplacian learned by ALLO.

approximations of the true Laplacian representation across all environments, with

the exception of GridRoomSym-4, where it still found a more accurate representa-

tion than GGDO. These results are statistically significant for 9 out of 12 environ-

ments, with a p-value threshold of 0.01 (see Table 6.1 in the Appendix). Again,

this suggests that the proposed objective is successful in removing the untunable-

hyperparameter dependence observed in GGDO. Moreover, Figure 5.4b shows

the same cosine similarity comparison, but for each independent eigenvector. In

the majority of the cases, the largest differences can be observed in the largest

eigenvectors (e.g., in GridMaze-9 and GridRoom-4), but there are instances in

which the baseline has problems finding the smallest eigenvectors as well (e.g., in
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Di�erence of means (avg. cosine similarity)

(a) Average cosine similarity across the d components.

(b) Cosine similarity for each of the components. GR and GM stand for
GridRoom and GridMaze. Blue bars correspond to p-values below 0.01.

Figure 5.4: Cosine similarity difference between ALLO and GGDO when using
the (x, y) state representation. Error bars show the standard deviation of
the differences, defined as

√︁
σ2
ALLO/nALLO + σ2

GGDO/nGGDO, where σ denotes the
sample standard deviation, and n the number of seeds (= 60 in all cases).
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GridRoom-64 and GridMaze-32). These failures are particularly concerning since

they indicate that the baseline could struggle in finding the best components for

exploration in more complex environments, which is one of the main motivations

of learning the Laplacian representation in the first place.

5.1.3 State representation robustness

As an additional robustness test, we changed the state representation used as

input to the neural network. In particular, we used a pixel representation where

each tile in the subplots of Figure 5.3 corresponds to a single pixel. In this way,

the inputs ranged from a size of 7×9×3 to a size of 41×41×3. Correspondingly,

we added two convolutional layers with no pooling, stride of 2, and kernel size of

3 to the previous fully connected network.

Figure 5.5 contains analogous cosine similarity comparisons to those observed

in Figure 5.4 for the (x, y) state representation. There are three main differences

with the previous results. First, the average cosine similarity difference (Figure

5.5a) is now only significant in 7 out of 12 environments, instead of 9 of 12

(see Tables 6.1 and 6.2 in the Appendix), but the difference is higher for several

environments (e.g., GridRoom-32 and GridRoom-1). Second, ALLO only finds

the true Laplacian representation in 6 out of 12 environments, as opposed to

11 out of 12. From those 6 where perfect learning is not achieved, 4 have a

cosine similarity above 0.9, one corresponds to the same environment where the

Laplacian representation was not perfectly learned before, and there is one for

which the similarity is only 0.61. Focusing on these results, we observed that

ALLO was able to recover the Laplacian representation for some seeds, but for

others the output of the neural network collapsed to a constant. This suggests

that maintaining the same hyperparameters with the new state representation
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Di�erence of means (avg. cosine similarity)

(a) Average cosine similarity across the d components.

(b) Cosine similarity for each of the components. GR and GM stand for
GridRoom and GridMaze. Blue bars correspond to p-values below 0.01.

Figure 5.5: Cosine similarity difference between ALLO and GGDO when using
the pixel state representation. Error bars show the standard deviation of
the differences, defined as

√︁
σ2
ALLO/nALLO + σ2

GGDO/nGGDO, where σ denotes the
sample standard deviation, and n the number of seeds (∈ [50, 60] in all cases).
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and convolutional layers could have resulted in divergence problems unrelated

to ALLO. Lastly, we can observe (see Figure 5.5b) that GGDO fails in finding

the smallest non-constant eigenvector in multiple cases (e.g., in GridRoom-16

and GridRoom-1), supporting the hypothesis that GGDO is not scalable to more

complex settings, as opposed to ALLO, and preventing the use of the Laplacian

for exploration.

5.2 Eigenvalue accuracy

The dual variables of ALLO should capture the eigenvalues of their associated

eigenvectors. Here, we quantify how well they approximate the true eigenvalues

in the same 12 grid environments as in Figure 5.4. In particular, we compare our

eigenvalue accuracy against those found with a simple alternative method (Wang

et al., 2023), based on GGDO and on Monte Carlo approximations. In short, this

method uses the equivalence between the eigenvalues and the energy expression

we derived in the Background, in Section 2.2.3. Figure 5.6 shows that the average

relative error for the second to last eigenvalues, meaning all except one, is consis-

tently larger across all environments when using the alternative approach, with

a significance level of 0.01. This is not a surprising result given the poor results

in eigenvector accuracy for GGDO. However, in several environments the error

is high even for the smallest eigenvalues, despite GGDO approximations being

relatively more accurate for the associated eigenvectors. Across environments

and across the eigenspectrum, our proposed objective provides more accurate

estimates of the eigenvalues (see Table 6.3 in the Appendix for the exact values

obtained).
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0.0
0.5GridRoomSym-4 -

0.0
0.5GridMaze-32 -

0.00
0.25GridRoom-16 -

0.00
0.25GridMaze-26 -
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0.5GridMaze-9 -
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GridMaze-19 -
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0.5GridRoom-4 -
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0.00
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GridRoom-64 -

2 4 6 8 10
Eigenvalue index

0.0
0.5GridRoom-1 -

Figure 5.6: Relative errors for eigenvalue approximations between ALLO and
GGDO when using the (x, y) state representation. Error bars show the stan-
dard deviation of the differences, corresponding to 60 different seeds. GR and GM

stand for GridRoom and GridMaze. Blue bars correspond to p-values below 0.01.
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Figure 5.7: Average cosine similarity for different objectives in the environment
GridMaze-19, for initial barrier coefficient b = 0.1, and for different barrier in-
crease rates αbarrier.

5.3 Ablations

ALLO has three components that are different from GGDO: (1) the stop-gradient

as a mechanism to break the symmetry, (2) the dual variables that penalize

the linear constraints and from which we extract the eigenvalues of the graph

Laplacian, and (3) the mechanism to monotonically increase the barrier coef-

ficient that scales the quadratic penalty. Our theoretical results suggest that the

stop-gradient operation and the dual variables are necessary, while increasing the

barrier coefficient could be helpful, eventually eliminating the need for the dual

variables if all one cared about was to approximate the eigenvectors of the graph

Laplacian, not its eigenvalues. In this section, we perform ablation studies to val-

idate whether these insights translate into practice when using neural networks

to minimize our objective. Specifically, in GridMaze-19, we compare the average

cosine similarity of ALLO, with the same objective but without dual variables,

and with GGDO, which does not use dual variables, nor the stop gradient, nor

the increasing coefficients. For completeness, we also evaluate GGDO objective

with increasing coefficients.

The curves in each panel of Figure 5.7 represent the different methods we eval-

uate, while the different panels evaluate the impact of different rates of increase

54



of the barrier coefficient. Our results show that increasing the barrier coefficients

is indeed important, and not increasing it, as in GDO and GGDO, actually pre-

vents us from obtaining the true eigenvectors. It is also interesting to observe

that the rate in which we increase the barrier coefficient matters empirically, but

it does not prevent our solution to obtain the true eigenvectors. The importance

of the stop gradient is evident when one looks at the difference in performance

between GGDO and ALLO (and variants), particularly when not increasing the

barrier coefficients. Finally, it is interesting to observe that the addition of the

dual variables, which is essential to estimate the eigenvalues of the graph Lapla-

cian, does not impact the performance of our approach. Based on our theoretical

results, we conjecture the dual variables add stability to the learning process in

larger environments, but we leave this for future work.
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Chapter 6

Conclusions and Future Work

When introducing the generalized graph drawing optimization problem (2.5),

Wang et al. (2021) proved theoretically that, by introducing a sequence of mono-

tonically decreasing hyperparameters, the unique global minimizer corresponds

to the desired eigensystem of the Laplacian. However, our results, exemplified

by Figure 2.2, demonstrated how in practice the problem of obtaining arbitrary

rotations of the smallest eigenvectors was not solved.

The shortcoming with the approach proposed by Wang et al. (2021) is that,

while it is sound in the stationary setting, it does not correspond to the actual

learning dynamics being used to find the Laplacian representation. Under this

light, the main contributions of the work presented are the following:

1. We introduced a theoretically sound max-min objective and corresponding

gradient ascent-descent dynamics for which the Laplacian representation

is the unique stable equilibrium point. That is, we solved the problem of

obtaining arbitrary rotations of the smallest eigenvectors in the learning

setting (at least when there are no approximations), which is the setting
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that is relevant in practice.

2. We shed light on how problematic it is for the customary deep learning ap-

proach to turn constrained optimization problems into unconstrained ver-

sions. In particular, introducing a constant hyperparameter that multiplies

the constraints and turns them into a regularization component of the loss

function (as in GGDO) can be arbitrarily harmful and invalidate the prop-

erties of the solutions to the original constrained optimization problem. In

this way, our max-min approach can be potentially used in similar deep

learning approximations to constrained optimization problems.

3. In line with the previous contribution, we demonstrated that it is useful to

consider directly the dynamic properties of proposed learning algorithms,

as opposed to the properties of possibly unreachable solutions.

4. We introduced the use of stop-gradient operators to break the symmetry

between the smallest eigenvectors in the original graph drawing optimiza-

tion problem (2.5). While simple, this was a novel and central element in

the proof of Theorem 1.

5. Since the proofs of Lemma 2 and Theorem 1 do not depend on any particular

property of the Laplacian, our proposed method allows us to learn the

smallest eigenvectors of any self-adjoint linear operator whose application

can be expressed as expectations. In this way, our method provides a simple

alternative to the spectral inference networks proposed by Pfau et al. (2019).

As future work, there are three main directions to consider: obtaining a deeper

theoretical understanding, exploiting the access to a proper approximation of

the Laplacian representation, and exploring the use of eigenvalues of the graph

Laplacian.
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Advancing our theoretical understanding. While we proved that ALLO

and its respective dynamics should converge to the Laplacian representation for

any given barrier coefficient b > 2, empirically we saw that increasing the co-

efficient could be beneficial, even for the GGDO baseline. Thus, it would be

valuable to better understand the impact of the change of this coefficient in the

optimization process to accelerate learning. Also, our theoretical results do ap-

ply to the abstract setting and empirically hold, to a large extent, in the neural

network-based function approximation setting. Nonetheless, it is still necessary

to analyze the effect of introducing function approximators since the minima of

ALLO could change and even become unstable, as observed in some cases when

the pixel representation of the state was used. Moreover, we are assuming an

offline learning setting where an agent collects transition samples and only then

they are used to learn the Laplacian representation. It is relevant to understand

how to make this process work in an online setting. Two reasons are that in the

offline-learning setting we are completely avoiding the problem of exploration, by

assuming that we can uniformly sample the initial state, and the continual learn-

ing problem, given that we are implicitly assuming the policy and the topology

of the state space are fixed.

Exploiting the proper Laplacian representation. Now that we have a the-

oretically sound method to learn the Laplacian representation, it would be ex-

citing to see the impact on algorithms that rely on it. In particular, there could

be improvements in exploration thanks to better, i.e., more accurate, eigenoption

learning (e.g., applying ALLO to the results of Klissarov & Machado, 2023). Ad-

ditionally, there is potential in combining the deep learning Laplacian representa-

tion with tile-coding function approximators, and similar non-deep learning ap-

proximators that use localized basis functions, for value function estimation (e.g.,
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see Chapter 9 in Sutton & Barto, 2018). The reason for this is that the Lapla-

cian representation induces a vector space where “spatial” distance corresponds

to temporal distance. Hence, it becomes reasonable to cluster together states that

are close, since their values should not change too abruptly as a consequence of

the Bellman equation.

Exploring the use of eigenvalues. Finally, since we can now obtain the

eigenvalues of the graph Laplacian, it would be interesting to see how they could

be leveraged, e.g., as an emphasis vector for feature representations or as a proxy

for the duration of temporally-extended actions discovered from the Laplacian.

59



References

Yasin Abbasi-Yadkori, András György, and Nevena Lazic. A New Look at

Dynamic Regret for Non-Stationary Stochastic Bandits. arXiv, 2022. URL

https://arxiv.org/abs/2201.06532.

David Abel, Dilip Arumugam, Lucas Lehnert, and Michael L. Littman. State

Abstractions for Lifelong Reinforcement Learning. In International Conference

on Machine Learning (ICML), 2018. URL http://proceedings.mlr.press/

v80/abel18a.html.

David Abel, Nate Umbanhowar, Khimya Khetarpal, Dilip Arumugam, Doina Pre-

cup, and Michael L. Littman. Value Preserving State-Action Abstractions. In

International Conference on Artificial Intelligence and Statistics (AISTATS),

2020. URL http://proceedings.mlr.press/v108/abel20a.html.

Richard Bellman. On the Theory of Dynamic Programming. Proceedings of the

National Academy of Sciences, 1952. URL https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC1063639.

Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure Theory,

2007.

Michael Bowling, John D. Martin, David Abel, and Will Dabney. Settling the Re-

60

https://arxiv.org/abs/2201.06532
http://proceedings.mlr.press/v80/abel18a.html
http://proceedings.mlr.press/v80/abel18a.html
http://proceedings.mlr.press/v108/abel20a.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1063639
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1063639


ward Hypothesis. In International Conference on Machine Learning (ICML),

2023. URL https://proceedings.mlr.press/v202/bowling23a.html.

Ronen I. Brafman and Moshe Tennenholtz. R-MAX - A General Polynomial Time

Algorithm for Near-Optimal Reinforcement Learning. Journal of Machine

Learning Research, 2002. URL http://jmlr.org/papers/v3/brafman02a.

html.

Emma Brunskill and Lihong Li. PAC-inspired Option Discovery in Lifelong

Reinforcement Learning. In International Conference on Machine Learning

(ICML), 2014. URL http://proceedings.mlr.press/v32/brunskill14.

html.

Carmen Chicone. Ordinary Differential Equations with Applications, 2006.

Peter Dayan. Improving Generalization for Temporal Difference Learning: The

Successor Representation. Neural Computation, 1993. URL https://doi.

org/10.1162/neco.1993.5.4.613.

Diego Gomez, Michael Bowling, and Marlos C. Machado. Proper Laplacian Rep-

resentation Learning. arXiv, 2023a. URL https://doi.org/10.48550/arXiv.

2310.10833.

Diego Gomez, Nicanor Quijano, and Luis Felipe Giraldo. Information Opti-

mization and Transferable State Abstractions in Deep Reinforcement Learn-

ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023b.

URL https://doi.org/10.1109/TPAMI.2022.3200726.

Sham M. Kakade. On the Sample Complexity of Reinforcement Learning.

PhD Thesis, University of College London, 2003. URL https://homes.cs.

washington.edu/~sham/papers/thesis/sham_thesis.pdf.

61

https://proceedings.mlr.press/v202/bowling23a.html
http://jmlr.org/papers/v3/brafman02a.html
http://jmlr.org/papers/v3/brafman02a.html
http://proceedings.mlr.press/v32/brunskill14.html
http://proceedings.mlr.press/v32/brunskill14.html
https://doi.org/10.1162/neco.1993.5.4.613
https://doi.org/10.1162/neco.1993.5.4.613
https://doi.org/10.48550/arXiv.2310.10833
https://doi.org/10.48550/arXiv.2310.10833
https://doi.org/10.1109/TPAMI.2022.3200726
https://homes.cs.washington.edu/~sham/papers/thesis/sham_thesis.pdf
https://homes.cs.washington.edu/~sham/papers/thesis/sham_thesis.pdf


Michael J. Kearns and Satinder Singh. Near-Optimal Reinforcement Learning in

Polynomial Time. Machine Learning, 2002. URL https://doi.org/10.1023/

A:1017984413808.

Martin Klissarov and Marlos C. Machado. Deep Laplacian-based Options

for Temporally-Extended Exploration. In International Conference on Ma-

chine Learning (ICML), 2023. URL https://proceedings.mlr.press/v202/

klissarov23a.html.

Yehuda Koren. On Spectral Graph Drawing. In International Computing and

Combinatorics Conference (COCOON), 2003. URL https://doi.org/10.

1007/3-540-45071-8_50.

Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, and Marc G.

Bellemare. On the Generalization of Representations in Reinforcement Learn-

ing. In International Conference on Artificial Intelligence and Statistics (AIS-

TATS), 2022. URL https://proceedings.mlr.press/v151/le-lan22a.

html.

Lihong Li, Thomas J. Walsh, and Michael L. Littman. Towards a Unified Theory

of State Abstraction for MDPs. In International Symposium on Artificial In-

telligence and Mathematics (ISAIM), 2006. URL http://anytime.cs.umass.

edu/aimath06/proceedings/P21.pdf.

Marlos C. Machado. Efficient Exploration in Reinforcement Learning

through Time-Based Representations. PhD Thesis, University of Alberta,

2019. URL https://era.library.ualberta.ca/items/581b87e0-a777-

40a1-9776-f85a85864d6c.

Marlos C. Machado, Marc G. Bellemare, and Michael H. Bowling. A Laplacian

Framework for Option Discovery in Reinforcement Learning. In International

62

https://doi.org/10.1023/A:1017984413808
https://doi.org/10.1023/A:1017984413808
https://proceedings.mlr.press/v202/klissarov23a.html
https://proceedings.mlr.press/v202/klissarov23a.html
https://doi.org/10.1007/3-540-45071-8_50
https://doi.org/10.1007/3-540-45071-8_50
https://proceedings.mlr.press/v151/le-lan22a.html
https://proceedings.mlr.press/v151/le-lan22a.html
http://anytime.cs.umass.edu/aimath06/proceedings/P21.pdf
http://anytime.cs.umass.edu/aimath06/proceedings/P21.pdf
https://era.library.ualberta.ca/items/581b87e0-a777-40a1-9776-f85a85864d6c
https://era.library.ualberta.ca/items/581b87e0-a777-40a1-9776-f85a85864d6c


Conference on Machine Learning (ICML), 2017. URL http://proceedings.

mlr.press/v70/machado17a.html.

Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald

Tesauro, and Murray Campbell. Eigenoption Discovery through the Deep Suc-

cessor Representation. In International Conference on Learning Representa-

tions (ICLR), 2018. URL https://openreview.net/forum?id=Bk8ZcAxR-.
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Appendix

6.1 Additional theoretical derivations

Proposition 1. Let T ∈ RS×S be a symmetric matrix, u1, · · · ,uS ∈ RS and

λ1, · · · , λS ∈ R be its eigenvectors and corresponding eigenvalues, and e1, · · · , ed ∈

RS be a d−dimensional orthonormal basis of the subspace E := span((ei)i). Then,

if E is closed under the operation of T, i.e., T(E) ⊆ E, there must exist a

d−dimensional subset of eigenvectors {v1, · · · ,vd} ⊆ {u1, · · · ,uS} such that E

coincides with their span, i.e., E = span((vi)i) = span((ei)i).

Proof. Let w ̸= 0 be a vector in E . Then, by definition of E , it can be expressed

as a linear combination w =
∑︁d

i=1 αiei, where αi ∈ R, and at least one of the

coefficients is non-zero. Let us consider now the operation of T on w in terms of

its eigenvectors. Specifically, we can express it as

Tw =
S∑︂

j=1

λj⟨uj,w⟩uj ,

which, by linearity of the inner-product, becomes

Tw =
S∑︂

j=1

(︄
λj

d∑︂
i=1

αi⟨uj, ei⟩

)︄
uj .
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Considering the hypothesis that E is closed under T, we reach a necessary con-

dition:

S∑︂
j=1

(︄
λj

d∑︂
i=1

αi⟨uj, ei⟩

)︄
uj

!
=

d∑︂
i=1

βiei , (6.1)

where βi ∈ R, and at least one of them is non-zero.

We proceed by contradiction. Let us suppose that there does not exist a

d−dimensional subset of eigenvectors {v1, · · · ,vd} such that E = span((vi)i).

Since the eigenvectors form a basis of the whole space, we can express each ei as

linear combinations of the form

ei =
S∑︂

j=1

cijui =
S∑︂

j=1

⟨uj, ei⟩uj .

So, supposing that E does not correspond to any eigenvector subspace, there must

exist d′ > d different indices j1, · · · , jd′ and corresponding pairs (ik, jk) such that

cikjk ̸= 0. If this was not the case, this would imply that all the ei lie in the span

of some subset of d or fewer eigenvectors, and so E would correspond to this span.

Hence, we have that the coefficients αi are arbitrary and that at least d + 1

inner products are not zero. This implies that w lies in a subspace of dimension

at least d + 1 spanned by the d′ eigenvectors v1, · · · ,vd′ with vk = ujk . Now,

the condition in Equation (6.1) requires this subspace to be the same as E , but

this is not possible since E is d−dimensional. Thus, we can conclude that there

must exist a basis of d eigenvectors v1, · · · ,vd of T such that E = span((vi)i) =

span((ei)i).
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6.2 Average cosine similarity comparison

Env ALLO GGDO t-statistic p-value

GridMaze-17 0.9994 (0.0002) 0.9993 (0.0003) 0.641 0.262
GridMaze-19 0.9989 (0.0006) 0.9936 (0.0185) 2.218 0.015
GridMaze-26 0.9984 (0.0007) 0.9331 (0.0517) 9.770 0.000
GridMaze-32 0.9908 (0.0161) 0.8014 (0.0901) 16.018 0.000
GridMaze-7 0.9996 (0.0002) 0.2959 (0.0159) 343.724 0.000
GridMaze-9 0.9989 (0.0007) 0.3755 (0.0081) 596.775 0.000
GridRoom-1 0.9912 (0.0003) 0.9906 (0.0003) 9.691 0.000
GridRoom-16 0.9990 (0.0004) 0.9980 (0.0023) 3.297 0.001
GridRoom-32 0.9982 (0.0010) 0.9857 (0.0266) 3.647 0.000
GridRoom-4 0.9965 (0.0052) 0.9073 (0.0063) 84.136 0.000
GridRoom-64 0.9917 (0.0059) 0.7617 (0.0834) 21.326 0.000

GridRoomSym-4 0.8411 (0.0742) 0.8326 (0.0855) 0.581 0.281

Table 6.1: Average cosine similarities for ALLO and GGDO when using the
(x, y) state representation. The sample average is calculated using 60 seeds.
The standard deviation is shown in parenthesis and the maximal average is shown
in boldface when the difference is statistically significant, meaning the associated
p-value is smaller than 0.01.
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Env ALLO GGDO t-statistic p-value

GridRoom-16 0.9992 (0.0003) 0.7836 (0.3897) 4.251 0.000
GridRoom-1 0.9914 (0.0002) 0.7114 (0.4199) 5.080 0.000
GridMaze-9 0.9988 (0.0013) 0.3773 (0.0064) 720.882 0.000
GridMaze-19 0.9789 (0.1354) 0.9480 (0.2032) 0.926 0.178
GridRoom-32 0.9073 (0.2591) 0.3795 (0.4183) 7.917 0.000
GridMaze-26 0.9330 (0.2214) 0.8466 (0.2358) 1.935 0.028
GridMaze-17 0.9995 (0.0001) 0.9687 (0.1658) 1.429 0.079
GridMaze-32 0.6198 (0.3056) 0.5810 (0.3745) 0.598 0.276
GridRoomSym-4 0.8434 (0.0743) 0.8407 (0.0686) 0.197 0.422
GridMaze-7 0.9997 (0.0002) 0.3015 (0.0211) 253.863 0.000
GridRoom-4 0.9965 (0.0076) 0.8950 (0.1065) 7.297 0.000
GridMaze-11 0.9349 (0.0496) 0.3975 (0.0592) 52.931 0.000

Table 6.2: Average cosine similarities for ALLO and GGDO when using the pixel
state representation. The sample average is calculated using 60 seeds. The
standard deviation is shown in parenthesis and the maximal average is shown in
boldface when the difference is statistically significant, meaning the associated
p-value is smaller than 0.01.
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6.3 Average eigenvalues

Env True ALLO GGDO

GridRoomSym-4 0.0000 0.0000 (0.0000) 0.0000 (0.0000)
0.0540 0.0429 (0.0003) 0.0395 (0.0003)
0.0540 0.0434 (0.0003) 0.0387 (0.0003)
0.1068 0.0863 (0.0005) 0.0703 (0.0005)
0.4502 0.4034 (0.0007) 0.0531 (0.0007)
0.4507 0.4045 (0.0007) 0.0529 (0.0007)
0.4507 0.4054 (0.0007) 0.0524 (0.0007)
0.4512 0.4066 (0.0008) 0.0520 (0.0008)
0.4915 0.4479 (0.0008) 0.0156 (0.0008)
0.4951 0.4513 (0.0007) 0.0121 (0.0007)
0.4951 0.4526 (0.0008) 0.0108 (0.0008)

GridRoom-16 0.0000 0.0000 (0.0000) 0.0000 (0.0000)
0.0016 0.0017 (0.0000) 0.0016 (0.0000)
0.0063 0.0055 (0.0000) 0.0051 (0.0000)
0.0139 0.0116 (0.0001) 0.0111 (0.0001)
0.0242 0.0199 (0.0002) 0.0189 (0.0002)
0.0367 0.0301 (0.0002) 0.0279 (0.0002)
0.0511 0.0420 (0.0002) 0.0382 (0.0002)
0.0663 0.0546 (0.0003) 0.0482 (0.0003)
0.0832 0.0688 (0.0005) 0.0591 (0.0005)
0.1007 0.0836 (0.0006) 0.0691 (0.0006)
0.1161 0.0969 (0.0005) 0.0774 (0.0005)

GridMaze-9 0.0000 0.0001 (0.0000) 0.0000 (0.0000)
0.1582 0.1154 (0.0006) 0.0962 (0.0006)
0.3083 0.2354 (0.0011) 0.1159 (0.0011)
0.4899 0.3961 (0.0015) 0.0181 (0.0015)
0.6613 0.5674 (0.0020) 0.0000 (0.0020)
0.7529 0.6692 (0.0024) 0.0000 (0.0024)
0.7777 0.6986 (0.0023) 0.0000 (0.0023)
0.8266 0.7585 (0.0027) 0.0000 (0.0027)
0.8613 0.8038 (0.0028) 0.0000 (0.0028)
0.8768 0.8251 (0.0029) 0.0000 (0.0029)
0.8796 0.8292 (0.0029) 0.0000 (0.0029)

GridMaze-7 0.0000 0.0001 (0.0000) 0.0000 (0.0000)
0.1833 0.1325 (0.0006) 0.1034 (0.0006)
0.4622 0.3645 (0.0011) 0.0437 (0.0011)
0.5208 0.4186 (0.0010) 0.0000 (0.0010)
0.7148 0.6158 (0.0012) 0.0000 (0.0012)
0.7958 0.7084 (0.0014) 0.0000 (0.0014)
0.8392 0.7621 (0.0014) 0.0000 (0.0014)
0.8549 0.7826 (0.0017) 0.0000 (0.0017)
0.8739 0.8076 (0.0015) 0.0000 (0.0015)
0.8934 0.8347 (0.0016) 0.0000 (0.0016)
0.9091 0.8572 (0.0018) 0.0000 (0.0018)

GridRoom-32 0.0000 0.0000 (0.0000) 0.0000 (0.0000)
0.0008 0.0010 (0.0000) 0.0008 (0.0000)
0.0018 0.0019 (0.0000) 0.0017 (0.0000)
0.0039 0.0036 (0.0000) 0.0031 (0.0000)
0.0065 0.0057 (0.0001) 0.0053 (0.0001)
0.0135 0.0114 (0.0001) 0.0105 (0.0001)
0.0161 0.0135 (0.0001) 0.0124 (0.0001)
0.0200 0.0167 (0.0001) 0.0151 (0.0001)
0.0270 0.0223 (0.0002) 0.0206 (0.0002)
0.0284 0.0236 (0.0002) 0.0212 (0.0002)
0.0364 0.0301 (0.0002) 0.0265 (0.0002)

GridRoom-64 0.0000 0.0000 (0.0000) 0.0001 (0.0000)
0.0004 0.0007 (0.0000) 0.0006 (0.0000)
0.0010 0.0012 (0.0000) 0.0009 (0.0000)
0.0016 0.0017 (0.0000) 0.0017 (0.0000)
0.0020 0.0021 (0.0000) 0.0015 (0.0000)
0.0021 0.0022 (0.0000) 0.0018 (0.0000)
0.0035 0.0033 (0.0000) 0.0031 (0.0000)
0.0041 0.0038 (0.0000) 0.0034 (0.0000)
0.0063 0.0055 (0.0000) 0.0051 (0.0000)
0.0090 0.0078 (0.0001) 0.0072 (0.0001)
0.0097 0.0084 (0.0001) 0.0078 (0.0001)

Env True ALLO GGDO

GridMaze-32 0.0000 0.0000 (0.0000) 0.0001 (0.0000)
0.0000 0.0007 (0.0001) 0.0004 (0.0001)
0.0004 0.0008 (0.0000) 0.0006 (0.0000)
0.0013 0.0015 (0.0000) 0.0010 (0.0000)
0.0037 0.0035 (0.0000) 0.0033 (0.0000)
0.0043 0.0040 (0.0000) 0.0038 (0.0000)
0.0058 0.0053 (0.0001) 0.0050 (0.0001)
0.0063 0.0056 (0.0001) 0.0053 (0.0001)
0.0075 0.0067 (0.0001) 0.0059 (0.0001)
0.0099 0.0085 (0.0001) 0.0080 (0.0001)
0.0148 0.0126 (0.0001) 0.0118 (0.0001)

GridMaze-26 0.0000 0.0000 (0.0000) 0.0001 (0.0000)
0.0005 0.0008 (0.0000) 0.0007 (0.0000)
0.0034 0.0032 (0.0000) 0.0030 (0.0000)
0.0039 0.0037 (0.0001) 0.0035 (0.0001)
0.0048 0.0044 (0.0001) 0.0039 (0.0001)
0.0058 0.0051 (0.0001) 0.0048 (0.0001)
0.0094 0.0080 (0.0001) 0.0078 (0.0001)
0.0129 0.0109 (0.0001) 0.0105 (0.0001)
0.0156 0.0131 (0.0001) 0.0130 (0.0001)
0.0195 0.0164 (0.0002) 0.0154 (0.0002)
0.0255 0.0213 (0.0002) 0.0201 (0.0002)

GridMaze-17 0.0000 0.0000 (0.0000) 0.0000 (0.0000)
0.0029 0.0027 (0.0000) 0.0026 (0.0000)
0.0116 0.0097 (0.0001) 0.0094 (0.0001)
0.0257 0.0212 (0.0001) 0.0199 (0.0001)
0.0448 0.0368 (0.0002) 0.0331 (0.0002)
0.0682 0.0562 (0.0003) 0.0490 (0.0003)
0.0952 0.0790 (0.0004) 0.0647 (0.0004)
0.1251 0.1045 (0.0005) 0.0809 (0.0005)
0.1572 0.1327 (0.0005) 0.0950 (0.0005)
0.1907 0.1624 (0.0006) 0.1065 (0.0006)
0.2249 0.1937 (0.0007) 0.1163 (0.0007)

GridMaze-19 0.0000 0.0000 (0.0000) 0.0000 (0.0000)
0.0016 0.0016 (0.0000) 0.0014 (0.0000)
0.0058 0.0051 (0.0000) 0.0048 (0.0000)
0.0068 0.0059 (0.0001) 0.0056 (0.0001)
0.0140 0.0117 (0.0001) 0.0111 (0.0001)
0.0232 0.0192 (0.0002) 0.0177 (0.0002)
0.0365 0.0300 (0.0002) 0.0283 (0.0002)
0.0403 0.0332 (0.0003) 0.0306 (0.0003)
0.0516 0.0425 (0.0004) 0.0390 (0.0004)
0.0559 0.0461 (0.0003) 0.0416 (0.0003)
0.0821 0.0679 (0.0004) 0.0567 (0.0004)

GridRoom-4 0.0000 0.0000 (0.0000) 0.0000 (0.0000)
0.0490 0.0392 (0.0003) 0.0357 (0.0003)
0.0576 0.0462 (0.0003) 0.0416 (0.0003)
0.1122 0.0908 (0.0005) 0.0732 (0.0005)
0.3905 0.3448 (0.0014) 0.0923 (0.0014)
0.4420 0.3963 (0.0009) 0.0592 (0.0009)
0.4531 0.4080 (0.0010) 0.0517 (0.0010)
0.4585 0.4139 (0.0010) 0.0451 (0.0010)
0.4787 0.4348 (0.0008) 0.0283 (0.0008)
0.4917 0.4489 (0.0010) 0.0152 (0.0010)
0.5209 0.4802 (0.0008) 0.0000 (0.0008)

GridRoom-1 0.0000 0.0000 (0.0000) 0.0000 (0.0000)
0.0895 0.0728 (0.0003) 0.0610 (0.0003)
0.0895 0.0735 (0.0004) 0.0629 (0.0004)
0.1643 0.1372 (0.0005) 0.0986 (0.0005)
0.2801 0.2412 (0.0006) 0.1175 (0.0006)
0.2801 0.2425 (0.0005) 0.1183 (0.0005)
0.3277 0.2868 (0.0007) 0.1128 (0.0007)
0.3277 0.2884 (0.0007) 0.1134 (0.0007)
0.4376 0.3980 (0.0009) 0.0622 (0.0009)
0.4622 0.4229 (0.0008) 0.0432 (0.0008)
0.4622 0.4244 (0.0008) 0.0419 (0.0008)

Table 6.3: Average eigenvalues for ALLO and GGDO. For each environment,
the true eigenvalues are shown in decreasing order, from the 2nd one up to the
11th. The sample averages are calculated using 60 seeds and in parenthesis are
the standard deviations.
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