This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Search
Skip to Search Results- 1Computer Go
- 1Machine Learning
- 1Monte Carlo Tree Search
- 1Move Prediction
- 1Offline Reinforcement Learning
- 1Ranking Model
-
Spring 2023
Reinforcement learning (RL) defines a general computational problem where the learner must learn to make good decisions through interactive experience. To be effective in solving this problem, the learner must be able to explore the environment, make accurate predictions about the future, and...
-
Fall 2016
In this thesis, we investigate the move prediction problem in the game of Go by proposing a new ranking model named Factorization Bradley Terry (FBT) model. This new model considers the move prediction problem as group competitions while also taking the interaction between features into account....