
Advances in Simulation-Based Search and Batch
Reinforcement Learning

by

Chenjun Xiao

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

© Chenjun Xiao, 2022



Abstract

Reinforcement learning (RL) defines a general computational problem where

the learner must learn to make good decisions through interactive experience.

To be effective in solving this problem, the learner must be able to explore

the environment, make accurate predictions about the future, and compute

strategic plans. These joint challenges distinguish RL from other machine

learning problems. This dissertation considers two sub-topics of RL: Planning

and Batch RL.

For planning, we contribute two novel techniques to improve the efficiency

of Monte Carlo Tree Search (MCTS): 1) Memory-augmented MCTS incorpo-

rates a memory structure into MCTS in order to generate an approximate

value estimate that combines the estimate of similar states; 2) a new MCTS

algorithm that applies maximum entropy policy optimization to general se-

quential decision-making.

For batch RL, we offer three analyses towards a better understanding of

the theoretical foundations of batch RL: 1) a minimax and instance-dependent

analysis of batch policy optimization algorithms; 2) a characterization of the

curse of passive data collection in batch RL; and 3) a theoretical analysis of

convergence and generalization properties of value prediction algorithms with

overparameterized models.
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Chapter 1

Introduction

Reinforcement learning (RL) is a computational approach to solving sequen-

tial decision making problems (Sutton & Barto, 2018). At each time step, a

learner receives an observation from the environment, and executes an action

according to its policy. The environment then responds with a feedback signal

in the form of a reward. The RL problem is to learn an optimal policy that

maximizes the cumulative reward in this sequential decision making problem.

Unlike many forms of machine learning, the learner is not instructed on

which action to take, but instead must explore to find the most promising ac-

tion. Moreover, the action taken at the current time step may not only affect

the immediate reward but also all subsequent rewards. The learner must learn

to predict and plan for the future. Therefore, the challenges of value estima-

tion, sequential planning and exploration are jointly raised in reinforcement

learning. By eliminating exploration from consideration, this thesis considers

two sub-topics of RL: Planning and Batch Reinforcement Learning.

Planning refers to the problem of computing the optimal sequential de-

cision making strategy when given access to a generative model, a black-box

simulator that produces simulated interactions between the learning algorithm

and the environment. In many areas of life and research, such as game play-

ing, robot navigation, network routing and logistics optimization, an almost

perfect generative model is available for the learner. Such a strong sampling

oracle gives the learner the power to collect data cheaply and under its control.

This can significantly improve the learning efficiency over problems where one
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must collect all data by following real interactions in the environment.

Batch reinforcement learning refers to learning problems where the data

available is fixed and has been obtained by interacting with the environment

using some unknown behavior policy. Interest in this problem has grown re-

cently, as effective solutions hold the promise of extracting powerful decision

making strategies from years of logged experience, with important applications

to many practical problems. In many settings, such as robotics, healthcare,

autonomous driving and hazard management, adaptive online data collection

is impractical as it is considered to be either dangerous or expensive. One

might prefer to use scalable data-driven learning methods instead, which can

utilize previously collected data and become better and better as more train-

ing data is provided. Unfortunately, despite the prevalence and importance

of batch reinforcement learning, it also poses major algorithmic challenges

as many commonly used algorithms cannot be directly applied in the batch

setting. One of the fundamental challenges in batch reinforcement learning

is insufficient coverage of the dataset. In online reinforcement learning, the

learner is allowed to continually explore the environment to collect useful in-

formation for the learning task. In contrast, in the batch setting, the learner

has to evaluate and optimize over various candidate policies based only on

experience that has been collected a priori. The distribution mismatch be-

tween the logged experience and agent-environment interaction with a learned

policy can cause erroneous value overestimation, which leads to the failure of

standard approaches (Fujimoto et al., 2018).

1.1 Contributions

This thesis contributes two novel techniques to improve the efficiency of Monte

Carlo Tree Search (MCTS), and three analyses towards a better understand-

ing of the theoretical foundations of batch reinforcement learning. My main

contributions are:

2



Memory-augmented MCTS Chapter 3 proposes and evaluates Memory-

augmented MCTS (M-MCTS), which provides a new approach to exploit gen-

eralization in online real-time search. The key idea of M-MCTS is to incorpo-

rate a memory structure into MCTS, where each entry contains information

about a particular state. This memory is used to generate an approximate

value estimate by combining the estimates of similar states. It is shown that

the memory based value approximation is better than vanilla Monte Carlo esti-

mation with high probability under mild conditions. This work was published

as (Xiao et al., 2018) and received the AAAI-18 outstanding paper award.

Maximum entropy MCTS Chapter 4 develops a new algorithm for on-

line planning in large scale sequential decision problems that improves upon

the worst case efficiency of UCT. The idea is to augment MCTS with max-

imum entropy policy optimization, evaluating each search node by softmax

values back-propagated from simulation. To establish the effectiveness of this

approach, we investigate the single-step decision problem, stochastic softmax

bandits, and show that softmax values can be estimated at an optimal conver-

gence rate in terms of mean squared error. We then extend this approach to

general sequential decision making by developing a general MCTS algorithm,

Maximum Entropy for Tree Search (MENTS). It is proven that the probability

of MENTS failing to identify the best decision at the root decays exponentially,

which fundamentally improves the polynomial convergence rate of UCT. This

work was published as (Xiao et al., 2019).

Optimality of batch policy optimization algorithm Chapter 6 stud-

ies the problem of batch policy optimization, where a learner must infer a

behaviour policy given only access to a fixed dataset of previously collected

experience, with no further environment interaction available. To advance

the understanding of this problem, we provide three results that characterize

the limits and possibilities of batch policy optimization in the finite-armed

stochastic bandit setting. First, we introduce a class of confidence-adjusted in-

dex algorithms that unifies optimistic and pessimistic principles in a common

3



framework, which enables a general analysis. For this family, we show that any

confidence-adjusted index algorithm is minimax optimal. This includes opti-

mistic, pessimistic and neutral algorithms as special cases. Our analysis reveals

that instance-dependent optimality, commonly used to establish the optimality

of on-line stochastic bandit algorithms, cannot be achieved by any algorithm

in the batch setting. In particular, for any algorithm that performs optimally

in some environment, there exists another environment where the same algo-

rithm suffers arbitrarily larger regret. Therefore, to establish a framework for

distinguishing algorithms, we introduce a new weighted-minimax criterion that

considers the inherent difficulty of optimal value prediction. We demonstrate

how this criterion can be used to justify commonly used pessimistic principles

for batch policy optimization. This work was published as (Xiao et al., 2021c).

The curse of passive data collection in batch RL In high stake appli-

cations, active experimentation may be considered too risky and thus data are

often collected passively. While in simple cases, such as in bandits, passive

and active data collection are similarly effective, the price of passive sampling

can be much higher when collecting data from a system with controlled states.

The main focus of Chapter 7 is the characterization of this price. For exam-

ple, when learning in episodic finite state-action Markov decision processes

(MDPs) with S states and A actions, we show that even with the best (but

passively chosen) logging policy, Ω(Amin(S−1,H)/ε2) episodes are necessary (and

sufficient) to obtain an ϵ-optimal policy, where H is the length of episodes.

This shows that the sample complexity blows up exponentially compared to

the case of active data collection, a result which is not unexpected, but, as far

as we know, has not been published before. The form of the exact expression

is perhaps a little surprising. We extend these results in several directions,

such as learning in the presence of function approximation, with similar con-

clusions. A remarkable feature of our result is the sharp characterization of the

exponent that appears in the lower bound, which is critical for understanding

what makes passive learning hard. This work was published as (Xiao et al.,

2021b).
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Understanding overparameterization in value estimation The theory

of function approximation in RL typically considers low capacity representa-

tions that incur a tradeoff between approximation error, stability and general-

ization. Current deep architectures, however, operate in an overparameterized

regime where approximation error is not necessarily a bottleneck. To better

understand the utility of deep models in RL, Chapter 8 presents an analysis

of recursive value estimation using overparameterized linear representations.

First, we show that classical updates such as temporal difference (TD) learning

or fitted-value-iteration (FVI) converge to different fixed points than residual

minimization (RM) in the overparameterized linear case. We then develop

a unified interpretation of overparameterized linear value estimation as mini-

mizing the Euclidean norm of the weights subject to alternative constraints.

A practical consequence is that RM can be modified by a simple alteration

of the backup targets to obtain the same fixed points as FVI and TD (when

they converge), while universally ensuring stability. Further, we provide an

analysis of the generalization error of these methods, demonstrating per it-

eration bounds on the value prediction error of FVI, and fixed point bounds

for TD and RM. Given this new understanding, we also develop algorithmic

tools for improving recursive value estimation with deep models. In particu-

lar, we develop two regularizers that penalize out-of-span top-layer weights and

co-linearity in top-layer features respectively. Empirically we find that these

regularizers dramatically improve the stability of TD and FVI, while allowing

RM to match and even sometimes surpass their generalization performance

with assured stability. This work was published as (Xiao et al., 2021a).

1.1.1 Publications

The papers related to the topics covered in this dissertation are as follows.

• Chenjun Xiao, Jincheng Mei, Martin Mueller. Memory-augmented Monte

Carlo Tree Search. AAAI 2018. See (Xiao et al., 2018).

• Chenjun Xiao, Jincheng Mei, Ruitong Huang, Dale Schuurmans, Martin

Müller. Maximum Entropy Monte-Carlo Planning. NeurIPS 2019. See
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(Xiao et al., 2019).

• Chenjun Xiao∗, Yifan Wu∗, Tor Lattimore, Bo Dai, Jincheng Mei, Lihong

Li, Csaba Szepesvari, Dale Schuurmans1. On the Optimality of Batch

Policy Optimization Algorithms. ICML 2021. See (Xiao et al., 2021c).

• Chenjun Xiao, Iibin Lee, Bo Dai, Dale Schuurmans, Csaba Szepesvari.

The Curse of Passive Data Collection in Batch Reinforcement Learning.

AISTATS 2022. See (Xiao et al., 2021b).

• Chenjun Xiao, Bo Dai, Jincheng Mei, Oscar Ramirez, Ramki Gummadi,

Chris Harris, Dale Schuurmans. Understanding and Leveraging Over-

parameterization in Recursive Value Estimation. ICLR 2022. See (Xiao

et al., 2021a).

1∗ indicates equal contribution.
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Part I

Simulation-Based Search
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Chapter 2

Online Planning

Online planning refers to the problem of computing a near optimal policy for

an input state by interacting with a generative model of the environment. A

generative model is a black-box simulator that takes any state-action pair as

input and responds with the immediate reward and a next state randomly

sampled from the true transition distribution of the environment. In this

section, we introduce the problem setup of online planning, and briefly review

three simulation-based online planning algorithms.

2.1 Online Planning

For a set X , ∆(X ) denotes the set of probability distributions over X . We

consider an episodic MDP M = {S,A, P, r,H} (Coquelin & Munos, 2007),

where S is a finite set of states, A is a finite set of actions, P : S ×A → ∆(S)
is the transition function that gives the next state distributions for each state-

action pair to represent the transition dynamics, r : S ×A → R is the reward

function that gives the immediate reward incurred by taking a given action

on a given state, and H is the maximum episode length. At each episode, the

planning algorithm starts at an initial state s0, and uses a generative model

to simulate a H-step trajectory of the form (s0, a0, r0, s1, a1, r1, . . . , sH). At

the end of the episode, an oracle function φ assigns a stochastic evaluation

rH = φ(sH). We assume that φ is σ2-subgaussian (Boucheron et al., 2013).
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The return

Gt =
H∑

k=t

rk (2.1)

is the total reward accumulated in that episode from time t until reaching the

terminal state at time step H. The algorithm’s action selection behaviour can

be described by a policy π(a|s) that maps a state s to a probability distribution

over actions a ∈ A. For policy π, the state value function is defined to be the

expected sum of rewards from s,

vπ(s) = E
π [Gt|st = s] , (2.2)

and the action value function is defined similarly,

qπ(s, a) = E
π [Gt|st = s, at = a] . (2.3)

The optimal value functions are the maximum value achievable by any policy,

v∗(s) = maxπ v
π(s), q∗(s, a) = maxπ q

π(s, a). An optimal policy is defined as a

greedy policy with respect to q∗, π∗(s) = argmaxa q
∗(s, a). An online planning

algorithm queries a generative model finitely many times and returns a policy

π, which is expected to be a good approximation to the optimal policy of the

initial state s0 such that vπ(s0) ≈ v∗(s0). The generative model is defined as

follows:

Definition 1 (Generative Model). A generative model is a black-box oracle

that when queried with a state-action pair (s, a) ∈ S × A returns the reward

r(s, a) and a state randomly sampled from the transition distribution s′ ∼
P (·|s, a). We use G to denote a generative model, and s′, r ∼ G(s, a) to denote

the returns of the model.

The query complexity or sample complexity measures how many queries an

online planning algorithm needs in the worst case in order to compute a near

optimal policy. Since in online planning the algorithm is only asked to solve

for the initial state s0, we expect the sample complexity of an online planning

algorithm to be independent of the size of the entire state space.
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2.2 Simulation-based Planning

Simulation-based planning is one of the most popular methods for solving the

online planning problem. The main idea is to sequentially simulate episodes

starting from the input state using the generative model. The statistics col-

lected from such simulations are used to update the values of states or actions.

2.2.1 Monte Carlo Simulation

Monte Carlo (MC) methods refer to a broad class of computational algorithms

that rely on repeated random sampling to approximate a numerical solution.

The most straightforward application of MC methods in RL is to predict the

value of a policy. Recall that the value function vπ(s) (Eq. (2.2)) is defined as

the expected future discounted total reward, where the expectation is taken

over all possible trajectories under the policy π and the transition dynamics

of the MDP. Given a generative model G, to approximate such an expectation

one can use G to simulate K independent trajectories

ρ(j) = (S
(j)
t , A

(j)
t , R

(j)
t , S

(j)
t+1, . . . , S

(j)
H−1, A

(j)
H−1, R

(j)
H−1, S

(j)
H ) ,

where S
(j)
t = s andA

(j)
t ∼ π(S

(j)
t ), R

(j)
t , S

(j)
t+1 ∼ G(S(j)

t ). Let v(ρ(j)) =
∑H

h=t R
(j)
h

be the sum of the rewards on the sampled trajectory. The value function is

approximated by the empirical mean of the simulation results

vπ(s) ≈ v̂π(s) :=
1

K

K∑

j=1

v(ρ(j)) . (2.4)

The state-action value function qπ can also be estimated in a similar way.

Let q̂π be the corresponding MC evaluation. The above process requires KH

queries of the generative model in total to evaluate vπ(s).

Using MC simulations to evaluate actions gives the simplest simulation-

based planning algorithm. The algorithm first decides a simulation policy π̃,

and evaluates each candidate action a of the initial state s0 with MC simula-

tions under policy π̃. The algorithm then returns the action with the highest

empirical value,

argmax
a

q̂π̃(s0, a) .
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The overall performance of the algorithm is largely determined by the sim-

ulation policy. A simulation policy with appropriate domain knowledge can

dramatically outperform a uniform random simulation policy (Gelly et al.,

2006; Gelly & Silver, 2007; Coulom, 2007). Arguably, automatically learning

an efficient simulation policy is also a very challenging research problem (Sil-

ver & Tesauro, 2009). Another major limitation of MC simulation is that the

algorithm only uses the simulation results to update the policy of the input

state at the end of the search. For all subsequent states, the simulation policy

is not updated during the whole procedure. Due to this fact, the simple MC

simulation algorithm does not enjoy any theoretical guarantee on the returned

policy. Despite all these limitations, MC simulation serves as the basis of many

advanced variants that we discuss next.

2.2.2 Spare Sampling

Sparse sampling (Kearns et al., 2002) is a depth-first search algorithm to solve

the online planning problem. The basic idea is to extensively explore all subse-

quent states of the initial state s0 by running simulations with the generative

model. This allows the planner to construct a “sub-MDP” M ′ of the original

MDP M such that the optimal policy at s0 in M ′ is also near optimal at s0 in

M . Importantly, the size of the sub-MDP M ′ does not depend on the number

of states in M . The complexity of finding an optimal policy of M ′ has no

dependence on the size of the state space of M .

In sparse sampling, the sub-MDP M ′ is implemented as a lookahead search

tree T . Each interior node in T is labeled by a state s ∈ S, and the root node

is labeled by the initial state s0. The search tree is grown in the following

way. Starting from the root, the algorithm expands the node s by executing

each candidate action a ∈ A and sampling n successor states C(s, a) given by

querying the generative model G(s, a), which generates a total of n|A| children.
Each child s′ ∈ C(s, a) is then expanded recursively in a depth-first order until

the horizon H is reached. After the search tree is built, the value of an in-tree
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node labeled by state s is evaluated by

v̂(s) = max
a∈A

q̂(s, a) := r(s, a) + γ
1

n

∑

s′∈C(s,a)
v̂(s′) , (2.5)

where at depth H the algorithm assigns the MC estimation v̂(s′) for all leaves

s′ of T . The size of the search tree is (n|A|)H , which is independent of the

state space size of the original MDP.

The main advantage of sparse sampling over pure MC simulation is that

all simulated trajectories are not wasted and they are instead organized in a

structured way. One can think of the search tree T as a data structure that

maintains all of the simulated trajectories starting from the state of interest

under a “uniform” simulation policy that goes through all actions. At each

node of the search tree, all candidate actions are still estimated using MC

methods by taking the empirical average of the children’s estimations, which

are computed through an empirical max backup operator defined in a recursive

manner. The main limitation of sparse sampling is that it builds the search

tree uniformly. As more simulations have been collected, we expect a good

algorithm to take advantage of the simulation results and gradually adapt and

improve the simulation policy, such that it continually refocuses its attention

on the most promising parts of the state space and only grows the search

tree there. This simple idea motives the development of the Monte Carlo tree

search algorithm.

2.2.3 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) relies on a bandit algorithm to guide the

growth of the search tree online. Bandit algorithms consider the problem of

efficiently allocating computation resources in sequential decision making. In

a k-armed stochastic bandit, the learner has to choose among k arms (actions)

{1, . . . , k} with unknown reward distribution {νi}1≤i≤k. In each round t =

1, . . . , n, the learner pulls one arm a and observes a random reward Xt ∼ νa.

Let {µi}1≤i≤k be the mean reward of the arms such that µi = EX∼νi [X], and
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µ∗ = maxi µi. The goal of the learner is to minimize the cumulative regret,

Rn =
n∑

t=1

µ∗ −Xt . (2.6)

Since the reward distribution of all arms is unknown at the beginning of this

procedure, the learner needs to pull each arm several times in order to collect

more information (i.e. exploration). Once its knowledge improves, the learner

should focus more often on the apparently best choice (i.e. exploitation). The

key to solve a bandit problem efficiently is to develop a good strategy to deal

with the trade-off between exploration and exploitation.

The Upper Confidence Bounds (UCB) algorithm (Auer et al., 2002) is

based on the principle of optimism in the face of uncertainty. It selects the

action that maximizes the UCB score at each round t

at = argmax
a

µ̂t(a) + c

√
log t

Nt(a)
, (2.7)

where µ̂t(a) is the empirical reward estimate of arm a, Nt(a) is the number

of pulls of arm a at round t, and c is a constant. The UCB algorithm is

known as an optimal algorithm for the stochastic bandit problem. It is both

instance-dependent optimal and minimax optimal (Lattimore & Szepesvári,

2020).

We now are ready to introduce the MCTS algorithm. Like sparse sam-

pling, MCTS builds a search tree T and evaluates states with MC simulations

(Coulom, 2006). Instead of fully expanding the entire search space rooted at

the initial state s0, MCTS builds the search tree in an incremental fashion.

For each interior node of T that is labeled by a state s, the algorithm stores a

value estimate q̂(s, a) and a visit count N(s, a) for all actions a. The estimate

q̂(s, a) is the mean return of all simulations starting from s and a. At each

iteration of the algorithm, one simulation starts from the root of the search

tree, and proceeds by using a tree policy to select actions within the tree until

a leaf of T is reached. An evaluation function is used at the leaf to obtain a

simulation return. Typical choices of the evaluation function include function

approximation with a neural network, and Monte Carlo simulations using a
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roll-out policy. The return is propagated upwards to all nodes along the path

to the root. Finally, the search tree T is grown by expanding the leaf.

The advance of MCTS over sparse sampling is that it uses bandit algo-

rithms to balance between exploring the most uncertain branches and exploit-

ing the most promising ones. The UCT algorithm applies the UCB algorithm

(Eq. (2.7)) as its tree policy to balance the growth of the search tree (Kocsis

& Szepesvári, 2006). At a node at depth h of T labed by s′, the tree policy

selects the action

argmax
a

q̂(s, a) + c

√
logN(s)

N(s, a)
,

where N(s) =
∑

a N(s, a), and c is a parameter controlling exploration. The

UCT algorithm and its many variants have proven to be effective in many prac-

tical problems. The most famous example is the usage of its variant PUCT in

AlphaGo (Silver et al., 2016, 2017; Schrittwieser et al., 2020). UCT is asymp-

totically optimal: the value estimated by UCT converges in probability to the

optimal value, q(s, a)
p→ q∗(s, a). The probability of finding a suboptimal ac-

tion at the root converges to zero at a polynomial rate (Kocsis & Szepesvári,

2006, Theorem 6).
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Chapter 3

Memory-Augmented Monte
Carlo Tree Search

3.1 Introduction

The key idea of Monte Carlo Tree Search (MCTS) is to construct a search tree

of states evaluated by fast Monte Carlo simulations (Coulom, 2006). Starting

from a given game state, many thousands of games are simulated by random-

ized self-play until an outcome is observed. The state value is then estimated

as the mean outcome of the simulations. Meanwhile, a search tree is main-

tained to guide the direction of simulation, for which bandit algorithms can

be employed to balance exploration and exploitation (Kocsis & Szepesvári,

2006). However, with large state spaces, the accuracy of value estimation can-

not be effectively guaranteed, since the mean value estimation is likely to have

high variance under relatively limited search time. Inaccurate estimation can

mislead building the search tree and severely degrade the performance of the

program.

Recently, several machine learning approaches have been proposed to deal

with this drawback of MCTS. For example, deep neural networks are employed

to learn domain knowledge and approximate a state value function. They are

integrated with MCTS to provide heuristics which can improve the search

sample efficiency in practice (Silver et al., 2016; Tian & Zhu, 2015).

The successes of the machine learning methods can be mostly contributed

to the power of generalization, i.e., similar states share information. General-
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ized domain knowledge is usually represented by function approximation, such

as a deep neural network, which is trained offline from an expert move dataset

or self-generated simulations (Silver et al., 2016).

Compared with the amount of research done on discovering generalization

from an offline learning procedure, not too much attention has focused on

exploiting the benefits of generalization during the online real-time search.

The current chapter proposes and evaluates a Memory-Augmented MCTS al-

gorithm to provide an alternative approach that takes advantage of online

generalization. We design a memory, where each entry contains information

about a particular state, as the basis to construct an online value approx-

imation. We demonstrate that this memory-based framework is useful for

improving the performance of MCTS in both theory and practice, using an

experiment in the game of Go.

The remainder of the chapter is organized as follows: After preliminaries

introduced in Section 3.2, we theoretically analyze the memory framework in

Section 3. The proposed Memory-Augmented MCTS algorithm is presented

in Section 4. Related work and experimental results are shown in Section 5

and 6, respectively. In Section 7, we come to our conclusion and future work.

3.2 Preliminaries

We consider the MCTS algorithm described in Section 2.2.3. Let S be the set

of all possible states of a search problem. For s ∈ S, let v̂(s) = 1
N(s)

∑N(s)
i=1 Rs,i

denote the value estimation of state s from simulations, where Rs,i is the

outcome of a simulation, N(s) is the number of simulations starting from state

s. The true value of a state s is denoted by v∗(s). Let the value estimation

error of state s be δ(s) = |v̂(s)− v∗(s)|, and the true value difference between

states s and x be ε(s, x) = |v∗(s)− v∗(x)|.
Our analysis is based on the entropy regularized policy optimization frame-

work. We denote the probability simplex by ∆ = {w : w ≥ 0,1 ·w = 1}, and
denote the entropy function by H(w) = −w · logw. For any k-dimensional

vector q ∈ R
k, the entropy-regularized optimization problem is to find the
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solution of

max
w∈∆
{w · q+ τH(w)} (3.1)

where τ > 0 is the temperature parameter. This problem has recently drawn

much attention in the reinforcement learning community (Nachum et al., 2017;

Haarnoja et al., 2017; Ziebart et al., 2008). One nice property of this problem

is that given the vector q, it has a closed form solution. We define the scalar

value function Fτ (the ”softmax”),

Fτ (q) = τ log

(
M∑

i=1

eqi/τ

)
, (3.2)

and the vector-valued function fτ (q) (the ”soft indmax”),

fτ (q) =
eq/τ

∑M
i=1 e

qi/τ
= e(q−Fτ (q))/τ , (3.3)

where the exponentiation is component-wise. Note that fτ maps any real

valued vector into a probability distribution. The next lemma states the con-

nection between Fτ , fτ and the entropy regularized optimization problem.

Lemma 1. (Nachum et al., 2017; Haarnoja et al., 2017; Ziebart et al., 2008)

Fτ (q) = max
w∈∆
{w · q+ τH(w)} = fτ (q) · q+ τH(fτ (q)) .

3.3 Value Approximation with Memory

The main idea of our Memory-Augmented MCTS algorithm is to approximate

value estimates with the help of a memory, each entry of which contains the

feature representation and simulation statistics of a particular state. Approxi-

mate value estimation is performed as follows: given a memoryM and a state

s, we find the M most similar statesMs ⊂M according to a distance metric

d(·, s), such that v̂(s′) is independent with v̂(s) for s′ ∈ Ms
1, and compute a

memory-based value estimate

v̂M(s) =
M∑

i=1

wi(s)v̂(si) , s.t.

M∑

i=1

wi(s) = 1 (3.4)

1This can be guaranteed in implementation as discussed in Section 3.4.2.
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One question naturally arises, is this memory-based value approximation bet-

ter than the vanilla mean outcome estimation?

3.3.1 Analysis for Independent Sub-gaussian Evaluations

We first give an analysis by considering the following assumption.

Assumption 1. We assume that (1) v̂(s) are independent with each other

for all states in the memory; (2) the error of MC simulation, Rs,t − v∗(s), is

σ2-subgaussian for any state s ∈ S and t ≥ 1.

Based on this assumption, we attempt to show |v̂M(s) − v∗(s)| ≤ δ(s) for

state s with high probability under some mild condition. We first show a trivial

bound for P(|v̂M(s) − v∗(s)| ≤ δ(s)), then provide an improved bound with

entropy regularized policy. Let δM = maxx∈Msδ(x) and εM = maxx∈Msε(x, s).

We assume that our memory addressing scheme is able to control εM within

the range [0, ε].

A Trivial Probability Bound

The first step is to upper bound |v̂M(s)− v∗(s)| using the triangle inequality:

∣∣∣∣∣

M∑

i=1

wi(s)v̂(si)− v∗(s)

∣∣∣∣∣

≤
M∑

i=1

wi(s)|v̂(si)− v∗(s)|

≤
M∑

i=1

wi(s)(|v̂(si)− v∗(s)|+ |v∗(si)− v∗(s)|)

=
M∑

i=1

wi(s)(δ(si) + ε(si, s)) (3.5)

Using the fact that
∑M

i=1 wi(s) = 1, we can take an upper bound of (Eq. (3.5))

by
∑M

i=1 wi(s)(δ(si)+ε(si, s)) ≤ δM+εM . This upper bound is very loose, since

we do not specify any particular choice of the weights w. With a standard

probability argument we can immediately get the following:
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Proposition 1. For state s satisfying α(s) = δ(s) − ε > 0, let nmin =

minx∈Msn(x). Under Assumption 1, with probability at least 1−β, our memory-

based value function approximation has less error than δx provided that:

nmin ≥
2σ2

α(s)2
log(M/β) . (3.6)

Improved Probability Bound with Maximum
Entropy Regularization

We now provide an improvement of the previous bound by specifying the choice

of the weights w using entropy regularized optimization. Let c be a vector

where ci = δ(si) + ε(si, s), 1 ≤ i ≤ M . Our choice of w should minimize the

upper bound (Eq. (3.5)), which is equivalent to:

max
w∈∆
{w · (−c)} (3.7)

This linear optimization problem has the solution wj = 1 for j = argminici

and wk = 0 for k ̸= j. However, in practice we do not know the accurate

value of δ(si) and ε(si, x) and applying this deterministic policy may cause

the problem of addressing the wrong entries. We provide an approximation

by solving the entropy regularized version of this optimization problem:

max
w∈∆
{w · (−c) + τH(w)} (3.8)

As τ approaches zero, we recover the original problem (3.7). According to

Lemma 1, the closed form solution of problem (3.8) is

Fτ (−c) = τ log

(
M∑

i=1

e−ci/τ

)
(3.9)

by setting w = fτ (−c). Note that

−fτ (−c) · (−c) = −Fτ (−c) + τH(fτ (−c)) ≤ −Fτ (−c) + τ logM (3.10)

Thus, to show P{(Eq. (3.5)) ≤ δ} ≥ 1−β for some small constant β, it suffices

to show that P{−Fτ (−c) + τ logM ≤ δ} ≥ 1− β.

Theorem 1. For states s satisfying α(s) = δ(s)− ε > 0, let n =
∑M

i=1 n(si).

Under Assumption 1, by choosing the weight w = fτ (−c) = e−c/τ/
∑M

i=1 e
−ci/τ ,
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with probability at least 1−β our memory-based value function approximation

has less error than δ(s) provided that:

n ≥ 2σ2

(α(s)− τ logM)2
log(1/β) . (3.11)

Proof. We show that under condition (Eq. (3.11)), it can be guaranteed that

P (−Fτ (−c) + τ logM ≤ δ(s)) ≥ 1− β.

P

(
−τ log

(
M∑

i=1

exp(−ci/τ)
)
≤ δ(s)− τ logM

)

= P

(
M∑

i=1

exp(−ci/τ) ≥ exp(−(δ(s)− τ logM)/τ)

)

≥ P

(
M∑

i=1

exp(−δi/τ) ≥ exp(−(δ(s)− ε− τ logM)/τ)

)

≥ P(∃ i, exp(δ(si)/τ) ≤ exp((δ(s)− ε− τ logM)/τ)

= 1−
M∏

i=1

P (δ(si) ≥ α(s)− τ logM) (3.12)

≥ 1−
M∏

i=1

exp

(
−(α(s)− τ logM)2n(si)

2σ2

)

= 1− exp

(
−(αx − τ logM)2n

2σ2

)

The first inequality comes from our assumption that all ε(si, s) ≤ ε, and the

last inequality comes from the assumption that v̂(s) − v∗(s) is subgaussian

and Hoeffding’s inequality. All other inequalities can be obtained using stan-

dard probability arguments. Eq. (3.11) can be derived directly with standard

algebra.

The probability bound provided by Theorem 1 is much better than the

one in Proposition 1, since n is the sum of simulation counts of all addressed

memory entries, which has to be greater than nmin.

3.3.2 Analysis for Tree Search

Theorem 1 only holds under Assumption 1. Both independence and sub-

gaussian assumptions do not hold in general when applying to MCTS, since
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the payoff sequences experienced for any non-leaf state will drift in time as

the policy at nodes in the search tree is changing, and nodes in a sub-tree are

not independent. We now prove the convergence of augmenting memory-based

evaluation with MCTS.

Our analysis considers the Flat UCB algorithm (Coquelin & Munos, 2007),

which is proposed as an improvement of UCT in terms of worst-case perfor-

mance. Our technique can also be directly applied for the Bandit Algorithm for

Smooth Trees algorithm (Coquelin & Munos, 2007), which takes into account

the smoothness of the rewards for performing efficient pruning sub-optimal

branches during the search. The next result gives the convergence of memory-

based value estimation v̂M when v̂ is obtained from MCTS. More details of

Flat UCB and the proof of this result can be found in Section A.1.

Theorem 2. Consider a max search in a tree where each leaf is assigned a

sub-gaussian reward distribution and the goal is to identify the optimal leaf.

Consider running Flat UCB in a tree with branching factor K and depth D. Let

N be the total number of simulations of Flat UCB. There exists constants C1

and C2 that only depend on K and D, such that for any α > ε+τ(D+1) logK,

P(∀s, |v̂M(s)− v∗(s)| ≤ α)

≥ 1− C1

(α− ε− τ(D + 1) logK)2
e
−C2(α−ε−τ(D+1) logK)2 N

KD+1−1 .

We note that the above result shows that the memory-based evaluation is

consistent with MCTS: as N goes to infinity, we have for any s in the tree

v̂M(s) converges to v∗(s) almost surely.

3.4 Memory-Augmented MCTS

In the previous section, we prove that our memory-based value function ap-

proximation is better than the mean outcome evaluation used in MCTS with

high probability under mild conditions. The remaining question is to design

a practical algorithm and incorporate it with MCTS. In particular, this first

requires choosing an approximation of the weight function w = fτ (−c).
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3.4.1 Approximating w = fτ(−c)

Let ϕ : S → R
D be a function to generate the feature representation of a

state. For two states s, x ∈ S, we approximate the difference between v∗(s)

and v∗(x) by a distance function d(s, x) which is set to be the negative cosine

of the two states’ feature representations:

ε(s, x) ≈ d(s, x) = − cos(ϕ(s), ϕ(x)) (3.13)

We apply two steps to create ϕ. First, take the output of an inner layer of a

deep convolutional neural network and normalize it. We denote this process

as ζ : S → R
L. In practice L will be very large which is time-consuming

when computing (Eq. (3.13)). We overcome this problem by applying a fea-

ture hashing function h : RL → R
D (Weinberger et al., 2009), and the feature

representation is computed by ϕ(s) = h(ζ(s)). One nice property of feature

hashing is that it can keep the inner product unbiased. Since ζ(s) is normal-

ized, we have for s, x ∈ S:

E[cos(ϕ(s), ϕ(x))] = cos(ζ(s), ζ(x))

Let δ(s) be the term corresponding to the sampling error, which is inversely

proportional to the simulation numbers: δ(s) ∝ 1/N(s). Combining with

(Eq. (3.13)) and the fact that ey is very close to y + 1 for small y we can get

our approximation of fτ (−c):

wi(s) =
N(si) exp(−d(si, s)/τ)∑M
j=1 N(sj) exp(−d(sj, s)/τ)

(3.14)

By applying these approximations our model becomes a special case of kernel

based methods, such as Locally Weighted Regression and Kernel Regression

(Hastie et al., 2001), where τ acts like the smoothing factor in those kernel

based methods. Our model is also similar to the “attention” scheme used

in memory based neural networks (Graves et al., 2016; Weston et al., 2014;

Vinyals et al., 2016; Pritzel et al., 2017).

3.4.2 Memory Operations

One memoryM is maintained in our approach. Each entry ofM corresponds

to one particular state s ∈ S. It contains the state’s feature representation ϕ(s)
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Figure 3.1: A brief illustration of M-MCTS. When a leaf state s is searched,
the feature representation ϕ(s) is generated, which is then used to query the
memory based value approximation v̂M(s). v̂M(s) is used to update s and all
its ancestors according to Eq. (3.15), as indicated by the red arrows in the
figure.

as well as its simulation statistics v̂(s) and N(s). There are three operations

to accessM: update, add and query.

Update

If the simulation statistics of a state s have been updated during MCTS, we

also update its corresponding values v̂(s) and N(s) in the memory.

Add

To include state s, we add a new memory entry {ϕ(s), v̂(s), N(s)}. If s has

already been stored in the memory, we only update v̂(s) and N(s) at the

corresponding entry. If the maximum size of the memory is reached, we replace

the least recently queried or updated memory entry with the new one.

Query

The query operation computes a memory based approximate value given a

state s ∈ S. We first find the top M similar states inM based on the distance

function d(·, s). Note that the memory value computation requires that the

evaluations of queried states must be independent with v̂(s). This can be

guaranteed by checking that if a queried state and s are in the same path of
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the current search tree. The approximated memory value is then computed

by v̂M(x) =
∑M

i=1 wi(s)v̂(si) where the weights are computed according to

Eq. (3.14). The two advantages of addressing the top M similar states are:

first, to restrict the maximum value difference of addressed states with v∗(x)

within a range, which is shown to be useful in our analysis; second, to make

queries in a very large memory scalable. We use an approximate nearest

neighbours algorithm to perform the queries based on SimHash (Charikar,

2002).

3.4.3 Integrating Memory with MCTS

We are now ready to introduce our Memory-Augmented MCTS (M-MCTS)

algorithm. Fig. 3.1 provides a brief illustration. The main difference between

the proposed M-MCTS and regular MCTS is that, in each node of a M-MCTS

search tree, we store an extended set of statistics:

{N(s), v̂(s), NM(s), v̂M(s)}

Here, NM is the number of evaluations of the approximated memory value

v̂M(s). During in-tree search of MCTS, instead of v̂(s), we use (1− λs)v̂(s) +

λsv̂M(s) as the value of state s, which is used for in-tree selection, for ex-

ample in the UCB formula. λs is a decay parameter to guarantee no bias

asymptotically.

In the original MCTS, a trajectory of visited states T = {s0, s1, . . . , sT} is
obtained at the end of each simulation. The statistics of all states s ∈ T in

the tree are updated. In M-MCTS, we also update the in-memory statistics by

performing the update(s) operation ofM. Furthermore, when a new state s is

searched by MCTS, we compute ϕ(s) and use the add(s) operation to include

s in the memoryM.

The most natural way to obtain v̂M(s) and nM(s) is to compute and up-

date their value every time s is visited during the in-tree search stage. How-

ever, this direct method is time-consuming, especially when the memory size

is large. Instead, we only compute the memory value at the leaf node and

backpropagate the value to its ancestors. Specifically, let sh ∈ T be the
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state just added to the tree whose feature representation ϕ(sh) has already

been computed, and its memory approximated value v̂M(sh) is computed by

query(sh). Let R = v̂M(sh) ∗NM(sh) and NM(sh) =
∑M

i=1 ki(sh)N(si), where

ki(s) = exp(−d(si, s)/τ)/
∑M

j=1 exp(−d(sj, s)/τ). For state si ∈ {s0, . . . , sh},
we perform the following updates, where η ≥ 1 is a decay parameter.

X ← max(NM(sh)/η
|i−h|, 1)

NM(si)← NM(si) +X

v̂M(si)← v̂M(si) +
R− v̂M(si) ∗X

NM(si)

(3.15)

The reason for the decay parameter η is because the memory-approximated

value of a state is more similar to its closer ancestors.

3.5 Related Work

The idea of utilizing information from similar states has been previously stud-

ied in game solving. Kawano (1996) provided a technique where proofs of

similar positions are reused for proving other nodes in a game tree. Kishimoto

& Müller (2004) applied this to provide an efficient Graph History Interaction

solution, for solving the games of Checkers and Go.

Memory architectures for neural networks and reinforcement learning have

been recently described in Memory Networks (Weston et al., 2014), Differ-

entiable Neural Computers (Graves et al., 2016), Matching Network (Vinyals

et al., 2016) and Neural Episodic Control (NEC) (Pritzel et al., 2017). The

most similar work with our M-MCTS algorithm is NEC, which applies a mem-

ory framework to provide action value function approximation in reinforcement

learning. The memory architecture and addressing method are similar to ours.

In contrast to their work, we provide theoretical analysis about how the mem-

ory can affect value estimation. Furthermore, to our best knowledge, this work

is the first one to apply a memory architecture in MCTS.

The role of generalization has been previously exploited in transposition

tables (Childs et al., 2008), Temporal-Difference search (TD search) (Silver

et al., 2012), Rapid Action Value Estimation (RAVE) (Gelly & Silver, 2011),
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and mNN-UCT (Srinivasan et al., 2015). A transposition table provides a

simple form of generalization. All nodes in the tree corresponding to the same

state share the same simulation statistics. Our addressing scheme can closely

resemble a transposition table by setting τ close to zero. In M-MCTS with

τ > 0 the memory can provide more generalization, which we show to be

beneficial both theoretically and practically.

TD search uses linear function approximation to generalize between related

states. This linear function approximation is updated during the online real-

time search. However, with complex non-linear function approximation such

as neural networks, such updates are impossible to perform online. Since our

memory based method is non-parametric, it provides an alternative approach

for generalization during real time search.

RAVE uses the all-moves-as-first heuristic based on the intuition that the

value of an action is independent of when it is taken. Simulation results are not

only updated to one, but to all actions along the simulation path. mNN-UCT

applies kernel regression to approximate a state value function, which has been

shown equivalent to our addressing scheme using our choice of approximations

in Section 4. However, we use the difference between feature representations

as the distance metric, while mNN-UCT applies the distance between nodes

in the tree. Also, both RAVE and mNN-UCT do not provide any theoretical

justifications.

3.6 Experiments

We evaluate M-MCTS in the game of Go (Müller, 2002).

3.6.1 Implementation Details

Our implementation applies a deep convolutional neural network (DCNN) from

(Clark & Storkey, 2015), which is trained for move prediction by professional

game records. It has 8 layers in total, including one convolutional layer with

64 7× 7 filters, two convolutional layers with 64 5× 5 filters, two layers with

48 5× 5 filters, two layers with 32 5× 5 filters, and one fully connected layer.
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The network has about 44% prediction accuracy on professional game records.

The feature vector ϕ(s) is first extracted from the output of Conv7 which

is the last layer before the final fully connected layer of the neural network.

The dimension of this output is 23104. A dimension reduction step using

feature hashing as described in Section 4 is then applied. The feature hashing

dimension is set to 4096, which gives ϕ(s) ∈ R
4096.

The hash code in our SimHash implementation has 16 bits. We use 8 hash

tables, each of which corresponds to a unique hash function. We also apply

a multiple probing strategy. Suppose that a feature vector ϕ(s) is mapped

to the hash bin bi at the ith hash table. Let the hash code of bi be hi. To

search the neighbours of ϕ(s) in the ith table, we search those bins whose

hash codes’ hamming distance to hi is less than a threshold, set to 1 in our

implementation. The discount parameter η in Eq. (3.15) to update memory

approximated values is set to 2.

3.6.2 Baseline

Our baseline is based on the open source Go program Fuego (Enzenberger

et al., 2010), but adds DCNN to improve performance. We adopt the method

from (Gelly & Silver, 2007) and use DCNN to initialize simulation statistics.

Suppose that DCNN is called on the state s that has just been added to the

tree. For a movem, let pm be the move probability from the network, and s′ the

state transformed by takingm on s. Let pmax be the maximum of the network’s

output move probabilities. We compute two statistics V̂DCNN(s
′) = 0.5∗ (1.0+

pm/pmax) and N̂DCNN(s) = CNN STRENGTH ∗ pm/pmax. These two values

are used as the initial statistics when creating s′. We set CNN STRENGTH

to 200 in our experiment.

We implement DCNN in MCTS in a synchronized way, where the search

continues after the DCNN evaluation is returned. To increase speed, we restrict

DCNN calls to the first 100 nodes visited during the search. This baseline

achieves a win rate of 97% against original Fuego with 10,000 simulations per

move. We implement M-MCTS based on this baseline. The same DCNN is

used to extract features for the memory.
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with τ = 1 and τ = 0.1. A small temperature τ = 0.05 cannot beat the

baseline at all. We believe the reason is that in this setting M-MCTS only

focuses on the closest neighbours for generalization, but does not do enough

exploration. For M = 100, M-MCTS does not perform well in any setting of

τ , since larger M increases the chance of including less similar states.

We then investigate the impact of the size ofM by varying it from {1000, 5000, 10000}.
M and τ are set to 50 and 0.1 respectively. Results with a different number

of simulations per move are summarized in Figure 3.2(d). Intuitively, a large

memory can provide better performance, since more candidate states are in-

cluded for querying. The results shown in Figure 3.2(d) confirm this intuition:

M-MCTS achieves the best performance with |M| = 10000, while a small

memory size |M| = 1000 can even lead to negative effects for value estimation

in MCTS. We also compare M-MCTS with the baseline with equal computa-

tional time per move. By setting M = 50, τ = 0.1 and with 5 seconds per

move, M-MCTS achieves a 61% win rate against the baseline.

3.7 Conclusion

In this chapter, we present an efficient approach to exploit online generaliza-

tion during real-time search. Our method, Memory-Augmented Monte Carlo

Tree Search (M-MCTS), combines the original MCTS algorithm with a mem-

ory framework, to provide a memory-based online value approximation. We

demonstrate that this can improve the performance of MCTS in both theory

and practice.
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Chapter 4

Maximum Entropy Monte Carlo
Planning

4.1 Introduction

Monte Carlo planning algorithms have been widely applied in many challeng-

ing problems (Silver et al., 2016, 2017). One particularly powerful and general

algorithm is Monte Carlo Tree Search (MCTS) (Coulom, 2006). The key idea

of MCTS is to construct a search tree of states that are evaluated by averag-

ing over outcomes from simulations. MCTS provides several major advantages

over traditional online planning methods. It breaks the curse of dimensional-

ity by simulating state-action trajectories using a domain generative model,

and building a search tree online by collecting information gathered during

the simulations in an incremental manner. It can be combined with domain

knowledge such as function approximations learned either online (Xiao et al.,

2018) or offline (Silver et al., 2016, 2017). It is highly selective, where ban-

dit algorithm are applied to balance between exploring the most uncertain

branches and exploiting the most promising ones (Kocsis & Szepesvári, 2006).

MCTS has demonstrated outstanding empirical performance in many game

playing problems, but most importantly, it is provable to converge to the opti-

mal policy if the exploitation and exploration balanced appropriately (Kocsis

& Szepesvári, 2006; Kearns et al., 2002).

The convergence property of MCTS highly replies on the state value es-

timates. At each node of the search tree, the value estimate is also used to
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calculate the value of the action leading to that node. Hence, the convergence

rate of the state value estimate influences the rate of convergence for states

further up in the tree. However, the Monte Carlo value estimate (average over

simulations outcomes) used in MCTS does not enjoy an effective convergence

guarantee when this value is back-propagated in the search tree, since for any

given node, the sampling policy in the subtree is changing and the payoff se-

quences experienced will drift in time. In summary, the compounding error,

caused by the structure of the search tree as well as the uncertainty of the

Monte Carlo estimation, makes that UCT can only guarantee a polynomial

convergence rate of finding the best action at the root.

Ideally, one would like to adopt a state value that can be efficiently esti-

mated and back-propagated in a search tree. In this chapter, we exploit the

usage of softmax value estimate in MCTS based on the maximum entropy pol-

icy optimization framework. To establish the effectiveness of this approach,

we first propose a new stochastic softmax bandit framework for the single-

step decision problem, and show that softmax values can be estimated in a

sequential manner at an optimal convergence rate in terms of mean squared

error. Our next contribution is to extend this approach to general sequential

decision making by developing a general MCTS algorithm, Maximum Entropy

for Tree Search (MENTS). We contribute new observations that the softmax

state value can be efficiently back-propagated in the search tree, which en-

ables the search algorithm to achieve faster convergence rate towards finding

the optimal action at the root. Our theoretical analysis shows that MENTS

enjoys an exponential convergence rate to the optimal solution, improving the

polynomial convergence rate of UCT fundamentally. Our experiments also

demonstrate that MENTS is much more sample efficient compared with UCT

in practice.

4.2 Background

We consider the online planning problem described in Section 2.1. We assume

the transition and reward functions are deterministic for simplicity, while all of
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our techniques can easily generalize to the case with stochastic transitions and

rewards, with an appropriate dependence on the variances of the transition

and reward distributions.

4.2.1 Maximum Entropy Policy Optimization

The maximum entropy policy optimization problem, which augments the stan-

dard expected reward objective with a entropy regularizer, has recently drawn

much attention in the reinforcement learning community (Haarnoja et al.,

2017, 2018; Nachum et al., 2017). Given K actions and the corresponding K-

dimensional reward vector r ∈ R
K , the entropy regularized policy optimization

problem finds a policy by solving

max
π

{
π · r+ τH(π)

}
. (4.1)

where τ ≥ 0 is a user-specified temperature parameter which controls the

degree of exploration. The most intriguing fact about this problem is that

it has a closed form solution. Define the softmax Fτ and the soft indmax fτ

functions,

fτ (r) = exp{(r−Fτ (r))/τ} Fτ (r) = τ log
∑

a
exp(r(a)/τ).

Note that the softmax Fτ outputs a scalar while the soft indmax fτ maps any

reward vector r to a Boltzmann policy. Fτ (r), fτ (r) and (4.1) are connected

by as shown in Haarnoja et al. (2017); Nachum et al. (2017),

Fτ (r) =max
π

{
π · r+ τH(π)

}
= fτ (r) · r+ τH(fτ (r)). (4.2)

This relation suggests the softmax value is an upper bound on the maximum

value, and the gap can be upper bounded by the product of τ and the maximum

entropy. Note that as τ → 0, (4.1) approaches the standard expected reward

objective, where the optimal solution is the hard-max policy. Therefore, it is

straightforward to generalize the entropy regularized optimization to define the

softmax value functions, by replacing the hard-max operator with the softmax

operators (Haarnoja et al., 2017; Nachum et al., 2017),

q∗sft(s, a) = r(s, a) + Es′|s,a [v
∗
sft(s

′)] , v∗sft(s) = τ log
∑

a
exp

{
q∗sft(s, a)/τ

}
.

(4.3)
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Finally, according to (4.2), we can characterize the optimal softmax policy by,

π∗
sft(a|s) = exp

{
(q∗sft(s, a)− v∗sft(s)) /τ

}
. (4.4)

We combine maximum entropy policy optimization with MCTS, by esti-

mating the softmax values backpropagated from simulations. We show that

the softmax values can be efficiently backpropagated in the search tree, which

leads to a faster convergence rate to the optimal policy at the root.

4.3 Softmax Value Estimation with Stochastic

Bandit

We begin by introducing the stochastic softmax bandit problem. We provide

an asymptotic lower bound of this problem, propose a new bandit algorithm

for it and show a tight upper bound on its convergence rate. Our upper bound

matches the lower bound not only in order, but also in the coefficient of the

dominating term. All proofs are provided in Section B.2.

4.3.1 The Stochastic Softmax Bandit

Consider a stochastic bandit setting with arms set A. At each round t, a

learner chooses an action At ∈ A. Next, the environment samples a random

reward Rt and reveals it to the learner. Let r(a) be the expected value of the

reward distribution of action a ∈ A. We assume r(a) ∈ [0, 1], and that all

reward distributions are σ2-subgaussian 1. For round t, we define Nt(a) as the

number of times a is chosen so far, and r̂t(a) as the empirical estimate of r(a),

Nt(a) =
∑t

i=1
I{At = a} r̂t(a) =

∑t

i=1
I{Ai = a}Ri/Nt(a),

where I{·} is the indicator function. Let r ∈ [0, 1]K be the vector of expected

rewards, and r̂t be the empirical estimates of r at round t. We denote π∗
sft =

1For prudent readers, we follow the finite horizon bandits setting in (Lattimore &
Szepesvári, 2020), where the probability space carries the tuple of random variables
ST = {A0, R0, . . . , AT , RT }. For every time step t − 1 the historical observation defines
a σ-algebra Ft−1 and At is Ft−1-measurable, the conditional distribution of At is our pol-
icy at time πt, and the conditoinal distribution of the reward RAt

− r(At) is a martingale
difference sequence.
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fτ (r) the optimal soft indmax policy defined by the mean reward vector r. The

stochastic bandit setting can be considered as a special case of an episodic

MDP with H = 1.

In a stochastic softmax bandit problem, instead of finding the policy with

maximum expected reward as in the original stochastic bandits (Lattimore &

Szepesvári, 2020), our objective is to estimate the softmax value v∗sft = Fτ (r)

for some τ > 0. We define U∗ =
∑

a exp{r(a)/τ} and Ut =
∑

a exp{r̂t(a)/τ},
and propose to use the estimator vt = Fτ (r̂t) = τ logUt. Our goal is to find

a sequential sampling algorithm that can minimize the mean squared error,

Et = E[(U∗ − Ut)
2]. The randomness in Et comes from both the sampling

algorithm and the observed rewards. We first give a lower bound on Et.

Theorem 3. In the stochastic softmax bandit problem, for any algorithm that

achieves Et = O(1
t
), there exists a problem setting such that

lim
t→∞

tEt ≥
σ2

τ 2

(
∑

a

exp(r(a)/τ)

)2

.

Also, to achieve this lower bound, there must be for any a ∈ A, limt→∞ Nt(a)/t =

π∗
sft(a).

Note that in Theorem 3, we only assume Et = O(1/t), but not that the

algorithm achieves (asymptotically) unbiased estimates for each arm. Fur-

thermore, this lower bound also reflects the consistency between the softmax

value and the soft indmax policy equation 4.2: in order to achieve the lower

bound on the mean squared error, the sampling policy must converge to π∗
sft

asymptotically.

4.3.2 E2W: an Optimal Sequential Sampling Strategy

Inspired by the lower bound, we propose an optimal algorithm, Empirical

Exponential Weight (E2W), for the stochastic softmax bandit problem. The

main idea is very intuitive: enforce enough exploration to guarantee good esti-

mation of r̂, and make the policy converge to π∗ asymptotically, as suggested

by the lower bound. Specifically, at round t, the algorithm selects an action
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by sampling from the distribution

πt(a) = (1− λt)fτ (r̂)(a) + λt
1

|A| . (4.5)

In (4.5), λt = ε|A|/ log(t+1) is a decay rate for exploration, with exploration

parameter ε > 0. Our next theorem provides an exact convergence rate for

E2W.

Theorem 4. For the softmax stochastic bandit problem, E2W can guarantee,

lim
t→∞

tEt =
σ2

τ 2

(
∑

a

exp(r(a)/τ)

)2

.

Theorem 4 shows that E2W is an asymptotically optimal sequential sam-

pling strategy for estimating the softmax value in stochastic multi-armed ban-

dits. The main contribution of the present chapter is the introduction of the

softmax bandit algorithm for the implementation of tree policy in MCTS. In

our proposed new algorithm, softmax bandit is used as the fundamental tool

both for estimating each state’s softmax value, and balancing the growth of

the search tree.

4.4 Maximum Entropy MCTS

We now describe the main technical contributions of this chapter, which com-

bine maximum entropy policy optimization with MCTS. Our proposed method,

MENTS (Maximum Entropy for Tree Search), applies a similar algorithmic

design as UCT with two innovations: using E2W as the tree policy, and eval-

uating each search node by softmax values back-propagated from simulations.

4.4.1 Algorithmic Design

Let T be a look-ahead search tree built online by the algorithm. Each node

n(s) ∈ T is labeled by a state s, contains a softmax value estimate qsft(s, a),

and a visit count N(s, a) for each action a. We use qsft(s) to denote a |A|-
dimensional vector with components qsft(s, a). Let N(s) =

∑
a N(s, a) and
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vsft(s) = Fτ (qsft(s)). During the in-tree phase of the simulation, the tree

policy selects an action according to

πt(a|s) = (1− λs)fτ (qsft(s))(a) + λs
1

|A| (4.6)

where λs = ε|A|/ log(∑a N(s, a) + 1). Let {s0, a0, s1, a1, . . . , sT} be the state

action trajectory in the simulation, where n(sT ) is a leaf node of T . An

evaluation function is called on sT and returns an estimate R 2. T is then

grown by expanding n(sT ). Its statistics are initialized by qsft(sT , a) = 0 and

N(sT , a) = 0 for all actions a. For all nodes in the trajectory, we update the

visiting counts by N(st, at) = N(st, at) + 1, and the Q-values using a softmax

backup,

qsft(st, at) =

{
r(st, at) +R t = T − 1

r(st, at) + Fτ (qsft(st+1)) t < T − 1
(4.7)

The algorithm MENTS can also be extended to use domain knowledge, such

as function approximations learned offline. For instance, suppose that a policy

network π̃(·|s) is available. Then the statistics can be initialized by qsft(sT , a) =

log π̃(a|sT ) and N(sT , a) = 0 for all actions a during the expansion. Finally,

at each time step t, MENTS proposes the action with the maximum estimated

softmax value at the root s0; i.e. at = argmaxaqsft(s0, a).

4.4.2 Theoretical Analysis

This section provides the key steps in developing a theoretical analysis of the

convergence property for MENTS. We first show that for any node in the

search tree, after its subtree has been fully explored, the estimated softmax

value will converge to the optimal value at an exponential rate. Recall that in

Theorem 3, an optimal sampling algorithm for the softmax stochastic bandit

problem must guarantee limt→∞ Nt(a)/t = π∗
sft(a) for any action a. Our first

result shows that this holds for true in E2W with high probability. This

directly comes from the proof of Theorem 4.

2We adapt a similar setting to Section 4.3, where Rt is replaced by the sample from the
evaluation function, and the martingale assumption is extended to the the selection policy
and the evaluation function on the leaves.
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Theorem 5. Consider E2W applied to the stochastic softmax bandit problem.

Let N∗
t (a) = π∗

sft(a) · t. Then there exists some constants C and C̃ such that,

P

(
|Nt(a)−N∗

t (a)| >
Ct

log t

)
≤ C̃|A|t exp

{
− t

(log t)3

}
.

In the bandit case, the reward distribution of each arm is assumed to be

subgaussian. However, when applying bandit algorithms at the internal nodes

of a search tree, the payoff sequence experienced from each action will drift over

time, since the sampling probability of the actions in the subtree is changing.

The next result shows that even under this drift condition, the softmax value

can still be efficiently estimated according to the backup scheme (4.7).

Theorem 6. For any node n(s) ∈ T , define the event,

Es =

{
∀a ∈ A, |N(s, a)−N∗(s, a)| < N∗(s, a)

2

}

where N∗(s, a) = π∗
sft(a|s) · N(s). For ϵ ∈ [0, 1), there exist some constant C

and C̃ such that for sufficiently large t,

P
(
|vsft(s)− v∗sft(s)| ≥ ϵ|Es

)
≤ C̃ exp

{
−N(s)τ 2ϵ2

Cσ2

}
.

Without loss of generality, we assumeQ∗(s, 1) ≥ Q∗(s, 2) ≥ · · · ≥ Q∗(s, |A|)
for any n(s) ∈ T , and define ∆ = Q∗(s, 1)−Q∗(s, 2). Recall that by (4.2), the

gap between the softmax and maximum value is upper bounded by τ times

the maximum of entropy. Therefore as long as τ is chosen small enough such

that this gap is smaller than ∆, the best action also has the largest softmax

value. Finally, as we are interested in the probability that the algorithm fails

to find the optimal arm at the root, we prove the following result.

Theorem 7. Let at be the action returned by MENTS at iteration t. Then

for large enough t with some constant C,

P (at ̸= a∗) ≤ Ct exp

{
− t

(log t)3

}
.

Remark. MENTS enjoys a fundamentally faster convergence rate than

UCT. We highlight two main reasons behind this success result from the in-

novated algorithmic design. First, MENTS applies E2W as the tree policy

37



during simulations. This assures that the softmax value functions used in

MENTS could be effectively estimated in an optimal rate, and the tree policy

would converge to the optimal softmax policy π∗
sft asymptotically, as suggested

by Theorem 3 and Theorem 4. Secondly, Theorem 6 shows that the softmax

value can also be efficiently back-propagated in the search tree. Due to these

facts, the probability of MENTS failing to identify the best decision at the root

decays exponentially, significantly improving the polynomial rate of UCT.

4.5 Related Work

Maximum entropy policy optimization is a well studied topic in reinforcement

learning (Haarnoja et al., 2017, 2018; Nachum et al., 2017). The maximum

entropy formulation provides a substantial improvement in exploration and ro-

bustness, by adopting a smoothed optimization objective and acquiring diverse

policy behaviors. The proposed algorithm MENTS is built on the softmax

Bellman operator Eq. (4.3), which is used as the value propagation formula in

MCTS. To our best knowledge, MENTS is the first algorithm that applies the

maximum entropy policy optimization framework for simulation-based plan-

ning algorithms.

Several works have been proposed for improving UCT, since it is arguably

“over-optimistic” (Coquelin & Munos, 2007) and does not explore sufficiently:

UCT can take a long time to discover an optimal branch that initially looked

inferior. Previous work has proposed to use flat-UCB, which enforces more

exploration, as the tree policy for action selection at internal nodes (Coquelin

& Munos, 2007). Minimizing simple regret in MCTS is discussed in (Pepels

et al., 2015; Tolpin & Shimony, 2012). Instead of using UCB1 as the tree

policy at each node, these works employ a hybrid architecture, where a best-

arm identification algorithm such as Sequential Halving (Karnin et al., 2013)

is applied at the upper levels, while the original UCT is used for the deeper

levels of the tree.

Various value back-propagation strategies, particularly back-propagate the

maximum estimated value over the children, were originally studied in (Coulom,
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2006). It has been shown that the maximum backup is a poor option, since

Monte-Carlo estimation is too noisy when the number of simulations is low,

which misguides the algorithm, particularly at the beginning of search. Com-

plex back-propagation strategies in MCTS have been investigated in (Khan-

delwal et al., 2016), where a mixture of maximum backup with the well known

TD-λ operator (Sutton & Barto, 2018) is proposed. In contrast to these ap-

proaches, MENTS exploits the softmax backup to achieve a faster convergence

rate of value estimation.

4.6 Experiments

We evaluate the proposed algorithm, MENTS, across several different bench-

mark problems against strong baseline methods. Our first test domain is a

Synthetic Tree environment. The tree has branching factor (number of ac-

tions) k of depth d. At each leaf of the tree, a standard Gaussian distribution

is assigned as an evaluation function, that is each time a leaf is visited, the

distribution is used to sample a stochastic return. The mean of each Gaussian

distribution is determined in the following way: when initializing the environ-

ment each edge is assigned a random value, then the mean of the Gaussian

distribution at a leaf is the sum of values along the path from the root to

the leaf. This environment is similar to the P-game tree environment (Kocsis

& Szepesvári, 2006; Smith & Nau, 1994) used to model two player minimax

games, while here we consider the single (max) player version. Finally, we

normalize all the means in [0, 1].

We then test MENTS on five Atari games: BeamRider, Breakout, Q*bert,

Seaquest and SpaceInvaders. For each game, we train a vanilla DQN and use

it as an evaluation function for the tree search as discussed in the AlphaGo

(Silver et al., 2016, 2017). In particular, the softmax of Q-values is used as

the state value estimate, and the Boltzmann distribution over the Q-values is

used as the policy network to assign a probability prior for each action when

expanding a node. The temperature is set to 0.1. The UCT algorithm adopts
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5× 5 independent experiment (5 runs on 5 randomly initialized environment).

In all of the test environments, we observe that MENTS estimates the softmax

values efficiently. By comparison, we find that the Monte Carlo estimation

used in UCT converges far more slowly to the optimal state value, even in the

bandit setting (d = 1).

Online planning in a synthetic tree. We next compare MENTS with

UCT for online planning in the synthetic tree environment. Both algorithms

use Monte Carlo simulation with a uniform rollout policy as the evaluation

function. The error is evaluated by V ∗(s0)−Q∗(s0, at), where at is the action

proposed by the algorithm at simulation step t, and s0 is the root of the syn-

thetic tree. The optimal values Q∗ and V ∗ are computed by back-propagating

the true values from the leaves when the environment is initialized. Results

are reported in Figure 4.2. As in the previous experiments, each data point is

averaged over 5× 5 independent experiment (5 runs on 5 randomly initialized

environments). UCT converges faster than our method in the bandit environ-

ment (d = 1). This is because that the main advantage of MENTS is the use of

softmax state values, which can be efficiently estimated and back-propagated

in the search tree. In the bandit case such an advantage does not exist. In the

tree case (d > 0), we find that MENTS significantly outperforms UCT, espe-

cially in the large domain. For example, in synthetic tree with k = 8 d = 5,

UCT fails to identify the optimal action at the root in some of the random en-

vironments, result in the large regret given the simulation budgets. However,

MENTS can continuously make progress towards the optimal solution in all

random environments, confirming MENTS scales with larger tree depth.

Online planning in Atari 2600 games. Finally, we compare MENTS

and UCT using Atari games. At each time step we use 500 simulations to

generate a move. Results are provided in Table 4.1, where we highlight scores

where MENTS significantly outperforms the baselines. Scores obtained by

DQN are also provided. In Breakout, Q*bert and SpaceInvaders, MENTS

significantly outperforms UCT as well as the DQN agent. In BeamRider and

Seaquest all algorithms performs similarly, since the search algorithms only use

the DQN as the evaluation function and only 500 simulations are applied to
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tally improves the worst case efficiency of UCT. Empirically, MENTS exhibits

a significant improvement over UCT in both synthetic tree environments and

Atari game playing.
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Part II

Batch Reinforcement Learning
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Chapter 5

Reinforcement Learning

5.1 Markov Decision Process

Recall that reinforcement learning is a computational approach to solving

sequential decision making problems. At each time-step, a learner receives

an observation from the environment, and executes an action according to its

policy. The environment then responds with a feedback signal in the form of a

reward. The goal of reinforcement learning is to improve the learning agent’s

performance by computing an optimal policy that maximizes the total reward.

A reinforcement learning (RL) problem is typically formulated as a Markov

Decision Process (MDP), which is a mathematical model for modeling sequen-

tial decision making (Puterman, 2014). For set X , let ∆(X ) be the set of prob-
ability distributions over X . An MDP is defined as M = (S,A, P, r, γ), where
S is a finite set of states, A is a finite set of actions, P : S ×A → ∆(S) is the
transition function that gives the next state distributions for each state-action

pair to represent the transition dynamics, r : S×A → R is the reward function

that gives the immediate reward incurred by taking a given action on a given

state, γ ∈ [0, 1) is the discount factor. The learner’s behaviour is described

by a (memoryless)1 policy π : S → ∆(A), that computes a probability distri-

bution over actions. Let µ be the initial state distribution. Given a state s0

randomly sampled from µ, the interconnection of a policy π and the MDP M

results in a distribution P
π over the random trajectory s0, a0, r0, s1, a1, r1, . . . ,

1A memoryless policy does not depend on the history and takes only the current state
into account.
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where at ∼ π(st), rt = r(st, at), st+1 ∼ P (·|st, at). We use E
π to denote the

expectation operator under the distribution P
π.

5.2 Value Functions

Most RL solution methods use a value function to predict the long-term reward

consequences of a particular policy. For the discounted total reward criterion

with discount factor 0 ≤ γ < 1, the state value function vπ : S → R under π

is defined as

vπ(s) := E
π

[ ∞∑

t=0

γtr(St, At)
∣∣∣S0 = s

]
. (5.1)

Let vπ(µ) = Es∼µ[v
π(s)], where µ ∈ ∆(S) is the initial state distribution. The

state-action value function of π, qπ : S ×A → R, is defined as

qπ(s, a) := E
π

[ ∞∑

t=0

γtr(St, At)
∣∣∣S0 = s, A0 = a

]
. (5.2)

There exists a unique value function v∗ : S → R, called as the optimal value

function, that maximizes the value over all states s ∈ S, v∗(s) = supπ v
π. A

policy is optimal in state s if vπ(s) = v∗(s). Optimal policies also share the

same state-action value q∗ : S ×A → R such that q∗(s, a) = supπ q
π(s, a)

One of the key properties of value functions is that they satisfy the Bellman

equations, which relate the value of a state (state-action pair) to its successor

states (state-action pairs) (Bellman, 1957). In particular, for any policy π

vπ(s) = T πvπ(s) :=
∑

a

π(a|s)
[
r(s, a) + γ

∑

s′

P (s′|s, a)vπ(s′)
]
, (5.3)

and

qπ(s, a) = T πqπ(s, a) := r(s, a) + γ
∑

s′

P (s′|s, a)
∑

a′

π(a′|s′)qπ(s′, a′) , (5.4)

or in short, vπ = T πvπ and qπ = T πqπ, where T π is the Bellman operator. The

Bellman equations suggest an iterative policy evaluation algorithm to estimate

the value functions: 1) initialize a value function estimate v0; 2) at iteration

k > 0, update the value function by using the reward and transition functions
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to perform a full-width lookahead over all possible actions and state transitions

vk = T πvk−1; 3) stop when the algorithm converges.

The optimal value function also satisfies a recursive definition, which is

known as the Bellman optimality equations :

v∗(s) = Tv∗(s) := max
a

r(s, a) + γ
∑

s′

P (s′|s, a)v∗(s′) , (5.5)

and

q∗(s, a) = Tq∗(s, a) := r(s, a) + γ
∑

s′

P (s′|s, a)max
a′

q∗(s′, a′) , (5.6)

or in short, v∗ = Tv∗ and q∗ = Tq∗, where T is known as the Bellman optimal-

ity operator. The Bellman optimality equations provide the basis for the value

iteration algorithm that computes the optimal value functions. The algorithm

works similarly to the iterative policy evaluation described above, except that

the Bellman operator T π is replaced with the Bellman optimality operator T .

Alternatively, in order to compute the optimal value function one can also

use the policy iteration algorithm: 1) initialize an arbitrary policy π0; 2) at

iteration k > 0, compute qπk−1 using the iterative policy evaluation algorithm,

and define πk as the greedy policy with respect to qπk−1 ; 3) stop when the

algorithm converges. The second step is also known as policy improvement

(Sutton & Barto, 2018). Convergence analyses of all these algorithms can be

found in (Szepesvári, 2010).

5.3 Effective Planning Horizon

In the discounted infinite horizon setting, the discount factor γ makes the fu-

ture rewards less important than the present reward. Suppose that all rewards

belong to the interval [0, rmax]. If we truncate the discounted total rewards

after h ≥ 0 steps, the difference between the truncated return and the true

return is at most

γh(rh + γrh+1 + γ2rh+2 + . . . ) ≤ γh

∞∑

t=0

rt =
γhrmax

1− γ
,
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where the last equality follows by the summation rule for the geometric series.

Given an error tolerance parameter ε, this difference is bounded by ε as long

as the horizon h satisfies

h ≥ Hγ,ε :=
ln
(

rmax

ε(1−γ)

)

1− γ
. (5.7)

The quantity Hγ,ε is referred to as the effective planning horizon. Ignoring an

error of at most ε, it suffices to find a policy that maximizes the discounted

total rewards of the first Hγ,ε steps.

5.4 Discounted Occupancy Measure

Given an initial state distribution µ ∈ ∆(S) and a policy π, the (unnormalized)

discounted occupancy measure νπ
µ induced by µ, π, and the underlying MDP

M is defined as

νπ
µ(s, a) :=

∞∑

t=0

γt
P
π(St = s, At = a|S0 ∼ µ) . (5.8)

One interesting property of this occupancy measure is that the value function

can be represented as an inner product between the immediate reward function

r and the occupancy measure νπ
µ

vπ(µ) = E
π
s∼µ

[ ∞∑

t=0

γtr(St, At)
∣∣∣S0 = s

]
(5.9)

=
∑

s,a

∞∑

t=0

γt
E
π
µ [r(St, At)I(St = s, At = a)] (5.10)

=
∑

s,a

r(s, a)
∞∑

t=0

γt
P
π
µ [I(St = s, At = a)] (5.11)

=
∑

s,a

r(s, a)νπ
µ(s, a) (5.12)

= ⟨νπ
µ , r⟩ . (5.13)

5.5 Batch Reinforcement Learning

Batch RL2 is concerned with problems where one must solve a learning task

given only access to a fixed dataset of previously collected experience, with-

2This problem has also been referred to as offline RL.
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out further environment interaction. In batch RL, the learner is given a fixed

dataset D = {si, ai, ri, s′i}ni=1 which is collected by interacting with the under-

lying MDP M using some unknown behavior policy πlog. The batch nature

requires that the learning algorithm has no control and knowledge of πlog.

Similar to online RL, there are two basic tasks in the batch setting: policy

evaluation, where the goal is to predict the value of a given target policy πtarget

in M , and policy optimization, where the goal is to compute a near optimal

policy in the MDP M . We are particularly interested in the sample complexity

of a batch RL algorithm to solve a task. For example, when considering the

batch policy optimization problem, our goal is to design an algorithm which

can compute a policy π such that v∗ − vπ < ε with a minimum number of

samples n, where ε is a given target accuracy and v∗ and v are value functions

in M .
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Chapter 6

On the Optimality of Batch
Policy Optimization Algorithms

6.1 Introduction

A fundamental challenge in batch policy optimization is insufficient coverage

of the dataset. In online reinforcement learning (RL), the learner is allowed

to continually explore the environment to collect useful information for the

learning task. By contrast, in the batch setting, the learner has to evaluate and

optimize over various candidate policies based only on experience that has been

collected a priori. The distribution mismatch between the logged experience

and agent-environment interaction with a learned policy can cause erroneous

value overestimation, which leads to the failure of standard policy optimization

methods (Fujimoto et al., 2019). To overcome this problem, recent studies

propose to use the pessimistic principle, by either learning a pessimistic value

function (Wu et al., 2019; Jaques et al., 2019; Kumar et al., 2019, 2020) or

pessimistic surrogate (Buckman et al., 2020), or planning with a pessimistic

model (Kidambi et al., 2020; Yu et al., 2020). However, it still remains unclear

how to maximally exploit the logged experience without further exploration.

In this chapter, we investigate batch policy optimization with finite-armed

stochastic bandits, and make three contributions toward better understand-

ing the statistical limits of this problem. First, we prove a minimax lower

bound of Ω(1/
√
minini) for batch policy optimization with stochastic bandits,

where ni is the count of arm i in the dataset. We then introduce a notion
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of confidence-adjusted index algorithm that unifies both the optimistic and

pessimistic principles in a single algorithmic framework. Our analysis suggests

that any index algorithm with an appropriate adjustment, whether pessimistic

or optimistic, is minimax optimal.

Second, we analyze the instance-dependent regret bound of batch policy

optimization algorithms. Perhaps surprisingly, our main result shows that

instance-dependent optimality, which is commonly used in the literature of

minimizing cumulative regret of stochastic bandits, does not exist in the batch

setting. Together with our first contribution, this finding challenges recent the-

oretical findings in batch RL that claim pessimistic algorithms are an optimal

choice (Buckman et al., 2020; Jin et al., 2020c). In fact, our analysis suggests

that for any algorithm that performs optimally in some environment, there

must always exist another environment where the algorithm suffers arbitrar-

ily larger regret than an optimal strategy there. Therefore, any reasonable

algorithm is equally optimal, or not optimal, depending on the exact problem

instance the algorithm is facing. In this sense, for batch policy optimization,

there remains a lack of a well-defined optimality criterion that can be used to

choose between algorithms.

Third, we provide a characterization of the pessimistic algorithm by in-

troducing a weighted-minimax objective. In particular, the pessimistic algo-

rithm can be considered to be optimal in the sense that it achieves a regret

that is comparable to the inherent difficulty of optimal value prediction on

an instance-by-instance basis. Overall, the theoretical study we provide con-

solidates recent research findings on the impact of being pessimistic in batch

policy optimization (Buckman et al., 2020; Jin et al., 2020c; Kumar et al.,

2020; Kidambi et al., 2020; Yu et al., 2020; Liu et al., 2020).

6.2 Preliminaries

To simplify the exposition, we express our results for batch policy optimization

in the setting of stochastic finite-armed bandits. In particular, we assume

the action space consists of k > 0 arms, where the available data takes the
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form of ni > 0 real-valued observations Xi,1, . . . , Xi,ni
for each arm i ∈ [k] :=

{1, . . . , k}. This data represents the outcomes of ni pulls of each arm i. We

assume further that the data for each arm i is i.i.d. with Xi,j ∼ Pi such

that Pi is the reward distribution for arm i. Let µi =
∫
xPi(dx) denote the

mean reward that results from pulling arm i. All observations in the data set

X = (Xij)i∈[k],j∈[ni] are assumed to be independent.

We consider the problem of designing an algorithm that takes the counts

(ni)i∈[k] and observations X ∈ ×i∈[k]R
ni as inputs and returns the index of a

single arm in [k], where the goal is to select an arm that achieves the highest

mean reward. Let A(X) ∈ [k] be the output of algorithm A, Then the (simple)

regret of A can be defined as

R(A, θ) = µ∗ − EX∼θ[µA(X)] ,

where µ∗ = maxi µi is the maximum reward. Here, the expectation EX∼θ con-

siders the randomness of the data X generated from problem instance θ, and

also any randomness in the algorithm A, which together induce the distribu-

tion of the random choice A(X). Note that this definition of regret depends

both on the algorithm A and the problem instance θ = ((ni)i∈[k], (Pi)i∈[k]).

When θ is fixed, we will use R(A) to reduce clutter.

For convenience, we also let n =
∑

i ni and nmin denote the total number

of observations and the minimum number of observations in the data, let a∗

denote the optimal arm, let ∆i = µ∗ − µi denote the reward gap of arm

i, and let ∆max = maxi ∆i and ∆min = mini:∆i>0 ∆i be the maximum and

minimum reward gap. In what follows, we assume that the distributions Pi

are 1-subgaussian with means in the unit interval [0, 1]. We denote the set

of these distributions by P . The set of all instances where the distributions

satisfy these properties is denoted by Θ. The set of instances with n = (ni)i∈[k]

fixed is denoted by Θn. Thus, Θ = ∪nΘn. Finally, we define |n| = ∑i ni for

n = (ni)i∈[k].

52



6.3 Minimax Analysis

In this section, we introduce the notion of a confidence-adjusted index algo-

rithm, and prove that a broad range of such algorithms are minimax optimal

up to a constant. A confidence-adjusted index algorithm is one that calcu-

lates an index for each arm based on the data for that arm only, then chooses

an arm that maximizes the index. We consider index algorithms where the

index of arm i ∈ [k] is defined as the sum of the sample mean of this arm,

µ̂i =
1
ni

∑ni

j=1 Xi,j plus a bias term of the form α/
√
ni with α ∈ R. That is,

given the input data X, the algorithm selects an arm according to

argmax
i∈[k]

µ̂i +
α√
ni

. (6.1)

The reason we call these confidence-adjusted is because for a given confidence

level δ > 0, by Hoeffding’s inequality, it follows that

µi ∈
[
µ̂i −

βδ√
ni

, µ̂i +
βδ√
ni

]
(6.2)

with probability at least 1− δ for all arms with

βδ =

√
2 log

(
k

δ

)
.

Thus, the family of confidence-adjusted index algorithms consists of all algo-

rithms that follow this strategy, where each particular algorithm is defined

by a (data independent) choice of α. For example, an algorithm specified by

α = −βδ chooses the arm with highest lower-confidence bound (highest LCB

value), while an algorithm specified by α = βδ chooses the arm with the highest

upper-confidence bound (highest UCB value). Note that α = 0 corresponds

to what is known as the greedy (sample mean maximizing) choice.

Readers familiar with the literature on batch policy optimization will rec-

ognize that α = −βδ implements what is known as the pessimistic algorithm

(Jin et al., 2020c; Buckman et al., 2020; Kidambi et al., 2020), or distribution-

ally robust choice, or risk-adverse strategy. It is therefore natural to question

the utility of considering batch policy optimization algorithms that maximize
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UCB values (i.e., implement optimism in the presence of uncertainty, or risk-

seeking behavior, even when there is no opportunity for exploration). However,

our first main result is that for batch policy optimization a risk-seeking (or

greedy) algorithm cannot be distinguished from the more commonly proposed

pessimistic approach in terms of minimax regret. To establish this finding, we

first provide a lower bound on the minimax regret:

Theorem 8. Fix n = (ni)i∈[k] with n1 ≤ · · · ≤ nk. Then, there exists a

universal constant c > 0 such that

inf
A

sup
θ∈Θn

R(A, θ) ≥ cmax
m∈[k]

√
max(1, log(m))

nm

.

The assumption of increasing counts, n1 ≤ · · · ≤ nk, is only needed to

simplify the statement; the arm indices can always be re-ordered without loss

of generality. The proof follows by arguing that the minimax regret is lower

bounded by the Bayesian regret of the Bayesian optimal policy for any prior.

Then, with a judicious choice of prior, the Bayesian optimal policy has a simple

form. Intuitively, the available data permits estimation of the mean of action

a with accuracy O(
√

1/na). The additional logarithmic factor appears when

n1, . . . , nm are relatively close, in which case the lower bound is demonstrating

the necessity of a union bound that appears in the upper bound that follows.

The full proof appears in the supplementary material.

Next we show that a wide range of confidence-adjusted index algorithms are

nearly minimax optimal when their confidence parameter is properly chosen:

Theorem 9. Fix n = (ni)i∈[k]. Let δ be the solution of δ =
√

32 log(k/δ)
mini ni

, and

I be the confidence-adjusted index algorithm with parameter α. Then, for any

α ∈ [−βδ, βδ], we have

sup
θ∈Θn

R(I(α), θ) ≤ 12

√
log(k/δ)

mini ni

.

Remark 1. Theorem 9 also holds for algorithms that use different αi ∈
[−βδ, βδ] for different arms.
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Perhaps a little unexpectedly, we see that regardless of optimism vs. pes-

simism, index algorithms with the right amount of adjustment, or even no

adjustment, are minimax optimal, up to an order
√

log(k) factor. We note

that although these algorithms have the same worst case performance, they

can behave very differently indeed on individual instances, as we show in the

next section.

In effect, what these two results tell us is that minimax optimality is too

weak as a criterion to distinguish between pessimistic versus optimistic (or

greedy) algorithms when considering the “fixed count” setting of batch policy

optimization. This leads us to ask whether more refined optimality criteria are

able to provide nontrivial guidance in the selection of batch policy optimization

methods. One such criterion, considered next, is known as instance-optimality

in the literature of cumulative regret minimization for stochastic bandits.

6.4 Instance-Dependent Analysis

To better distinguish between algorithms we require a much more refined no-

tion of performance that goes beyond merely considering worst-case behavior

over all problem instances. Even if two algorithms have the same worst case

performance, they can behave very differently on individual instances. There-

fore, we consider the instance dependent performance of confidence-adjusted

index algorithms.

6.4.1 Instance-dependent Upper Bound

Our next result provides a regret upper bound for a general form of index algo-

rithm. All upper bounds in this section hold for any θ ∈ Θn unless otherwise

specified, and we use R(A) instead of R(A, θ) to simplify the notation.

Theorem 10. Consider a general form of index algorithm, A(X) = argmaxi µ̂i+

bi, where bi denotes the bias for arm i ∈ [k] specified by the algorithm. For

2 ≤ i ≤ k and η ∈ R, define

gi(η) =
∑

j≥i

e−
nj
2
(η−µj−bj)

2
+ +min

j<i
e−

nj
2
(µj+bj−η)2+
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and g∗i = minη gi(η). Assuming µ1 ≥ µ2 ≥ · · · ≥ µk, for the index algorithms

(6.1) we have

P (A(X) ≥ i) ≤ min{1, g∗i } (6.3)

and

R(A) ≤
∑

2≤i≤k

∆i

(
min{1, g∗i } −min{1, g∗i+1}

)
(6.4)

where we define g∗k+1 = 0.

The assumption µ1 ≥ µ2 ≥ · · · ≥ µk is only required to express the state-

ment simply; the indices can be reordered without loss of generality. The

expression in equation 6.3 is a bit difficult to work with, so to make the sub-

sequent analysis simpler we provide a looser but more interpretable bound for

general index algorithms as follows.

Corollary 1. Following the setting of Theorem 10, consider any index algo-

rithm and any δ ∈ (0, 1). Define Ui = µi+bi+βδ/
√
ni and Li = µi+bi−βδ/

√
ni.

Let h = max{i ∈ [k] : maxj<i Lj < maxj′≥i Uj′}. Then we have

R(A) ≤ ∆h +
δ

k
∆max +

δ

k

∑

i>h

(∆i −∆i−1)
∑

j≥i

e−
nj
2 (maxj′<i Lj′−Uj)

2

.

Remark 2. The upper bound in Corollary 1 can be further relaxed as R(A) ≤
∆h + δ∆max.

Remark 3. The minimax regret upper bound (Theorem 9) can be recovered a

result of Corollary 1.

Corollary 1 highlights an inherent optimization property of index algo-

rithms: they work by designing an additive adjustment for each arm, such

that all of the bad arms (i > h) can be eliminated efficiently, i.e., it is desir-

able to make h as small as possible. We note that although one can directly

plug in the specific choices of {bi}i∈[k] to get instance-dependent upper bounds

for different algorithms, it is not clear how their performance compares to one
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another. Therefore, we provide simpler relaxed upper bounds for the three

specific cases, greedy, LCB and UCB, to allow us to better differentiate their

performance across different problem instances (see supplement for details).

Corollary 2 (Regret Upper bound for Greedy). Following the setting of The-

orem 10, for any 0 < δ < 1, the regret of greedy (α = 0) on any problem

instance is upper bounded by

R(A) ≤ min
i∈[k]

(
∆i +

√
2

ni

log
k

δ
+max

j>i

√
2

nj

log
k

δ

)
+ δ .

Corollary 3 (Regret Upper bound for LCB). Following the setting of The-

orem 10, for any 0 < δ < 1, the regret of LCB (α = −βδ) on any problem

instance is upper bounded by

R(A) ≤ min
i∈[k]

∆i +

√
8

ni

log
k

δ
+ δ .

Corollary 4 (Regret Upper bound for UCB). Following the setting of The-

orem 10, for any 0 < δ < 1, the regret of UCB (α = βδ) on any problem

instance is upper bounded by

R(A) ≤ min
i∈[k]

(
∆i +max

j>i

√
8

nj

log
k

δ

)
+ δ .

Remark 4. The results in these corollaries sacrifice the tightness of instance-

dependence to obtain cleaner bounds for the different algorithms. The tightest

instance dependent bounds can be derived from Theorem 10 by optimizing η.

Discussion. The regret upper bounds presented above suggest that although

they are all nearly minimax optimal, UCB, LCB and greedy exhibit distinct

behavior on individual instances. Each will eventually select the best arm with

high probability when ni gets large for all i ∈ [k], but their performance can
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be very different when ni gets large for only a subset of arms S ⊂ [k]. For

example, LCB performs well whenever S contains a good arm (i.e., with small

∆i and large ni). UCB performs well when there is a good arm i such that

all worse arms are in S (nj large for all j > i). For the greedy algorithm, the

regret upper bound is small only when there is a good arm i where nj is large

for all j ≥ i, in which situation both LCB and UCB perform well.

Clearly there are instances where LCB performs much better than UCB

and vice versa. Consider an environment where there are two groups of arms:

one with higher rewards and another with lower rewards. The behavior policy

plays a subset of the arms S ⊂ [k] a large number of times and ignores the

rest. If S contains at least one good arm but no bad arm, LCB will select a

good played arm (with high probability) while UCB will select a bad unplayed

arm. If S consists of all bad arms, then LCB will select a bad arm by being

pessimistic about the unobserved good arms while UCB is guaranteed to select

a good arm by being optimistic.

This example actually raises a potential reason to favor LCB, since the

condition for UCB to outperform LCB is stricter: requiring the behavior policy

to play all bad arms while ignoring all good arms. To formalize this, we

compare the upper bounds for the two algorithms by taking the ni for a subset

of arms i ∈ S ⊂ [k] to infinity. For A ∈ {greedy,LCB,UCB}, let R̂S(A) be
the regret upper bounds with {ni}i∈S → ∞ and {ni}i/∈S = 1 while fixing

µ1, ..., µk in Corollary 2, 3, and 4 respectively. Then LCB dominates the three

algorithms with high probability under a uniform prior for S:

Proposition 2. Suppose µ1 > µ2 > ... > µk and S ⊂ [k] is uniformly sampled

from all subsets with size m < k, then

P

(
R̂S(LCB) < R̂S(UCB)

)
≥ 1− (k −m)!m!

k!
.

This lower bound is 1/2 when k = 2 and approaches 1 when k increases

for any 0 < m < k since it is always lower bounded by 1 − 1/k. The same

argument applies when comparing LCB to greedy.
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To summarize, when comparing different algorithms by their upper bounds,

we have the following observations: (i) These algorithms behave differently on

different instances, and none of them outperforms the others on all instances.

(ii) Both scenarios where LCB is better and scenarios where UCB is better

exist. (iii) LCB is more favorable when k is not too small because it is the

best option among these algorithms on most of the instances.

Simulation results. Since our discussion is based on comparing only

the upper bounds (instead of the exact regret) for different algorithms, it

is a question that whether these statements still hold in terms of their actual

performance. To answer this question, we verify these statements through

experiments on synthetic problems. The details of these synthetic experiments

can be found in the supplementary material.

We first verify that there exist instances where LCB is the best among

the three algorithms as well as instances where UCB is the best. For LCB

to perform well, we construct two ϵ-greedy behavior policies on a 100-arm

bandit where the best arm or a near-optimal arm is selected to be played

with a high frequency while the other arms are uniformly played with a low

frequency. In more details, the reward distribution for each arm i ∈ [100] is a

Gaussian with unit variance. The mean rewards µi are uniformly spread over

[0, 1]. In particular, we have µ1 ≥ . . . µ100, µi − µi+1 = 0.01 for 1 ≤ i < 99,

and µ1 = 1. When generating the data set, we split the arms into two sets

S1 and S2 = [k] \ S2. For each arm i ∈ S1, we collect πn data; for each

arm i ∈ S2, we collect n(1 − π|S1|)/|S2| data, where n is the total sample

size, and 0 ≤ π ≤ 1/|S1| is a parameter to be chosen to generate different

data sets. We consider four data sets: LCB -1 (S1 = {1}, π = 0.3); LCB -2

(S1 = {10}, π = 0.3); UCB -1 (S1 = {1}, π = 1e−4); UCB -2 (S1 = {1, . . . , 10},
π = 1e−4). For each instance, we run each algorithm 500 times and use the

average performance to approximate the expected simple regret. Error bars

are the standard deviation of the simple regret over the 500 runs.

Figure 6.1(a) and 6.1(b) show that LCB outperforms UCB and greedy on

these two instances, verifying our observation from the upper bound (Corol-
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lary 3) that LCB only requires a good behavior policy while UCB and greedy

require bad arms to be eliminated (which is not the case for ϵ-greedy poli-

cies). For UCB to outperform LCB, we set the behavior policy to play a set of

near-optimal arms with only a small number of times and play the rest of the

arms uniformly. Figure 6.1(c) and 6.1(d) show that UCB outperforms LCB

and greedy on these two instances, verifying our observation from the upper

bound (Corollary 4) that UCB only requires all worse arms to be identified.

We then verify the statement that LCB is the best option on most of the

instances when k is not too small. We verify this statement in two aspects:

First, we show that when k = 2, LCB and UCB have an equal chance to be

the better algorithm. More specifically, we fix n1 > n2 (note that if n1 = n2

all index algorithms are the same as greedy) and vary µ1 − µ2 from −1 to

1. The reward distribution for each arm i ∈ [2] is a Gaussian with unit

variance. We fix µ1 = 0 and vary µ2 accordingly. Intuitively, when |µ1 − µ2|
is large, the problem is relatively easy for all algorithms. For µ1 − µ2 in the

medium range, as it becomes larger, the good arm is tried more often, thus

the problem becomes easier for LCB and harder for UCB. Figure 6.2(a) and

6.2(b) confirm this and show that both LCB and UCB are the best option

on half of the instances. In Figure 6.2(a), n1 = 10, n2 = 5. In Figure 6.2(b),

n1 = 100, n2 = 10. For each instance, we run each algorithm 100 times and

use the average performance to approximate the expected simple regret. Error

bars are the standard deviation of the simple regret over the 100 runs.

Second, we show that as k grows, LCB quickly becomes the more favor-

able algorithm, outperforming UCB and greedy on an increasing fraction of

instances. More specifically, we vary k and sample a set of instances from

the prior distribution introduced in Proposition 2. For each k, we first sam-

ple 100 vectors µ⃗ = [µ1, ..., µk] in the following way: We generate µ⃗0 with

µ⃗0,i =
i−1

2(k−1)
+ 1

4
such that all reward means are evenly distributed with in

[1
4
, 3
4
]. We then add independent Gaussian noise with standard deviation 0.05

to each µ⃗0,i to get a sampled µ⃗. Generating 100 noise vectors with size k

gives 100 samples of µ⃗. For each µ⃗ we uniformly sample 100 (if exist) subsets

S ⊂ k, |S| = m (m = k/2 in (c) and m = k/4 in (d)), to generate up to 10k in-
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stochastic bandits.

For cumulative regret minimization, (Lai & Robbins, 1985) introduced an

asymptotic notion of instance optimality (Lattimore & Szepesvári, 2020). The

idea is to first remove algorithms that are insufficiently adaptive, then define a

yardstick (or benchmark) for each instance as the best (normalized) asymptotic

performance that can be achieved with the remaining adaptive algorithms. An

algorithm that meets this benchmark over all instances is then considered to

be an instance optimal algorithm.

When adapting this notion of instance optimality to the batch setting there

are two decisions that need to be made: what is an appropriate notion of

“sufficient adaptivity” and whether, of course, a similar asymptotic notion is

sought or optimality can be adapted to the finite sample setting. Here, we

consider the asymptotic case, as one usually expects this to be easier.

We consider the 2-armed bandit case (k = 2) with Gaussian reward distri-

butions N (µ1, 1) and N (µ2, 1) for each arm respectively. Recall that, in this

setting, fixing n = (n1, n2) each instance θ ∈ Θn is defined by (µ1, µ2). We

assume that algorithms only make decisions based on the sufficient statistic —

empirical means for each arm, which in this case reduces to X = (X1, X2,n)

with Xi ∼ N (µi, 1/ni).

To introduce an asymptotic notion, we further denote n = n1 + n2, π1 =

n1/n, and π2 = n2/n = 1−π1. Assume π1, π2 > 0; then each n can be uniquely

defined by (n, π1) for π1 ∈ (0, 1). We also ignore the fact that n1 and n2 should

be integers since we assume the algorithms can only make decisions based on

the sufficient statistic Xi ∼ N (µi, 1/ni), which is well defined even when ni is

not an integer.

Definition 2 (c-Minimax Optimal). Given a constant c ≥ 1, an algorithm is

said to be minimax optimal if its worst case regret is bounded by the minimax

value of the problem up to a multiplicative factor c. We define the set of

c-minimax optimal algorithms as

Mn,c =

{
A : sup

θ∈Θn

R(A, θ) ≤ c · inf
A′

sup
θ∈Θn

R(A′, θ)

}
.
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Definition 3 (Instance-dependent Lower Bound). Given a set of algorithms

M, for each θ ∈ Θn, we define the instance-dependent lower bound asR∗
M(θ) =

infA∈MR(A, θ).

The following theorem states the non-existence of instance optimal algo-

rithms up to a constant multiplicative factor.

Theorem 11. Let c0 be the constant in minimax lower bound such that

inf
A

sup
θ∈Θn

R(A, θ) ≥ c0/
√
nmin .

Then for any c > 2/c0 and any algorithm A we have

sup
θ∈Θn

R(A, θ)
R∗

Mn,c
(θ)
≥ nmin

nmin + 4
e

β2

4
+β

4

√
nmin

where β = cc0 − 2.

Corollary 5. There is no algorithm that is instance optimal up to a constant

multiplicative factor. That is, fixing π1 ∈ (0, 1), given any c > 2/c0 and for

any algorithm A , we have

lim sup
n→∞

sup
θ∈Θn

R(A, θ)
R∗

Mn,c
(θ)

= +∞ .

The proof of Theorem 11 follows by constructing two competing instances

where the performance of any single algorithm cannot simultaneously match

the performance of the adapted algorithm on each specific instance. Here

we briefly discuss the proof idea – the detailed analysis is provided in the

supplementary material.

Step 1, define the algorithm Aβ as

Aβ(X) =

{
1 if X1 −X2 ≥ β√

nmin

2 otherwise
.

For any β within a certain range, it can be shown that Aβ ∈ Mn,c, hence

R∗
Mn,c

(θ) ≤ R(Aβ, θ).

Step 2, construct two problem instances as follows. Fix a λ ∈ R and η > 0,

and define

θ1 = (µ1, µ2) = (λ+
η

n1

, λ− η

n2

) ,
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θ2 = (µ′
1, µ

′
2) = (λ− η

n1

, λ+
η

n2

) .

Since we haveX1−X2 ∼ N (∆, σ2) on instance θ1 andX1−X2 ∼ N (−∆, σ2) on

instance θ2, where ∆ = ( 1
n1

+ 1
n2
)η and σ2 = 1

n1
+ 1

n2
, the regret of Aβ on both

instances can be computed using the CDF of Gaussian distributions. Note

that R(A−β, θ1) = R(Aβ, θ2). We now chose a β1 < 0 for θ1 to upper bound

R∗
Mn,c

(θ1) by R(Aβ1 , θ1) and use β2 = −β1 > 0 to upper bound R∗
Mn,c

(θ2) by

R(Aβ2 , θ1).

Then applying the Neyman-Pearson Lemma (Neyman & Pearson, 1933) to

this scenario gives that A0 is the optimal algorithm in terms of balancing the

regret on θ1 and θ2:

R(A0, θ1) = R(A0, θ2) = min
A

max{R(A, θ1),R(A, θ2)} .

Step 3, combining the above results gives

sup
θ∈Θn

R(A, θ)
R∗

Mn,c
(θ)
≥ max

{
R(A, θ1)
R∗

Mn,c
(θ1)

,
R(A, θ2)
R∗

Mn,c
(θ2)

}

≥ max

{ R(A, θ1)
R(Aβ1 , θ1)

,
R(A, θ2)
R(Aβ2 , θ2)

}

=
max {R(A, θ1),R(A, θ2)}

R(Aβ1 , θ1)

≥ R(A0, θ1)

R(Aβ1 , θ1)
.

Note that both the regret R(A0, θ1) and R(Aβ1 , θ1) can be exact expressed

as CDFs of Gaussian distributions: R(A0, θ1) = Φ (−∆/σ) and R(Aβ1 , θ1) =

Φ
(
−β/(σ√nmin)−∆/σ

)
where Φ is the CDF of the standard normal distri-

bution. Now we can conclude the proof by picking λ = 1/2 and η = nmin/2

such that θ1, θ2 ∈ [0, 1]2. Then the result in Theorem 11 can be proved by

applying an approximation of Φ and setting β1 = −β2 = 2 − cc0 such that

both β1 and β2 are within the range that makes Aβ ∈Mn,c.

To summarize, for any algorithm that performs well on some problem in-

stance, there exists another instance where the same algorithm suffers arbi-

trarily larger regret. Therefore, any reasonable algorithm is equally optimal,

or not optimal, depending on whether the minimax or instance optimality
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is considered. In this sense, there remains a lack of a well-defined optimal-

ity criterion that can be used to choose between algorithms for batch policy

optimization.

6.5 A Characterization of Pessimism

It is known that the pessimistic algorithm, maximizing a lower confidence

bound on the value, satisfies many desirable properties: it is consistent with ra-

tional decision making using preferences that satisfy uncertainty aversion and

certainty-independence (Gilboa & Schmeidler, 1989), it avoids the optimizer’s

curse (Smith & Winkler, 2006a), it allows for optimal inference in an asymp-

totic sense Lam (2019), and in a certain sense it is the unique strategy that

achieves these properties (Van Parys et al., 2017; Sutter et al., 2020). How-

ever, a pure statistical decision theoretic justification (in the sense of (Berger,

1985)) is still lacking.

The instance-dependent lower bound presented above attempts to char-

acterize the optimal performance of an algorithm on an instance-by-instance

basis. In particular, one can interpret the objective R(A, θ)/R∗
Mn,c

(θ) defined

in Theorem 11 as weighting each instance θ by 1/R∗
Mn,c

(θ), where this can

be interpreted as a measure of instance difficulty. It is natural to consider an

algorithm to be optimal if it can perform well relative to this weighted criteria.

However, given that the performance of an algorithm can be arbitrarily differ-

ent across instances, no such optimal algorithm can exist under this criterion.

The question we address here is whether other measures of instance difficulty

might be used to distinguish some algorithms as naturally advantageous over

others.

In a recent study, Jin et al. (2020c) show that the pessimistic algorithm

is minimax optimal when weighting each instance by the variance induced by

the optimal policy. In another recent paper, Buckman et al. (2020) point out

that the pessimistic choice has the property that its regret improves whenever

the optimal choice’s value is easier to predict. In particular, with our notation,

their most relevant result (Theorem 3) implies the following: if bi defines an
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interval such that µi ∈ [µ̂i−bi, µ̂i+bi] for all i ∈ [k], then for i′ = argmaxi µ̂i−bi
one obtains 1

µ∗ − µi′ ≤ 2ba∗ . (6.5)

If we (liberally) interpret ba∗ as a measure of how hard it is to predict the

value of the optimal choice, this inequality suggests that the pessimistic choice

could be justified as the choice that makes the regret comparable to the error

of predicting the optimal value.

To make this intuition precise, consider the same problem setup as dis-

cussed in Section 6.2. Suppose that the reward distribution for each arm

i ∈ [k] is a Gaussian with unit variance. Consider the problem of estimat-

ing the optimal value µ∗ where the optimal arm a∗ is also provided to the

estimator. We define the set of minimax optimal estimators.

Definition 4 (Minimax Estimator). For fixed n = (ni)i∈[k], an estimator is

said to be minimax optimal if its worst case error is bounded by the mini-

max estimate error of the problem up to some constant. We define the set of

minimax optimal estimators as

V∗
n
=

{
ν : sup

θ∈Θn

Eθ[|µ∗ − ν|] ≤ c inf
ν′∈V

sup
θ∈Θn

Eθ[|µ∗ − ν ′|]
}

where c is a universal constant, and V is the set of all possible estimators.

Now consider using this optimal value estimation problem as a measure of

how difficult a problem instance is, and then use this to weight each problem

instance as in the definition of instance-dependent lower bound. In particular,

let

E∗(θ) = inf
ν∈V∗

n

Eθ[|µ∗ − ν|]

1This inequality follows directly from the definitions: µ∗ − µi′ ≤ µ∗ − (µ̂i′ − bi′) ≤
µ∗ − (µ̂a∗ − ba∗) ≤ 2ba∗ and we believe this was known as a folklore result, although we
are not able to point to a previous paper that includes this inequality. The logic of this
inequality is the same as that used in proving regret bounds for UCB policies (Buckman
et al., 2020; Lattimore & Szepesvári, 2020). It is also clear that the result holds for any data-
driven stochastic optimization problem regardless of the structure of the problem. Theorem
3 of (Buckman et al., 2020) with this notation states that µ∗ − µi′ ≤ mini µ

∗ − µi + 2bi.

67



be the inherent difficulty of estimating the optimal value µ∗ on problem in-

stance θ. The result (6.5) suggests (but does not prove) that supθ
R(LCB,θ)

E∗(θ) <

+∞. We now show that not only does this hold, but up to a constant factor,

the LCB algorithm is nearly weighted minimax optimal with the weighting

given by E∗(θ).

Proposition 3. For any n = (ni)i∈[k],

sup
θ∈Θn

R(LCB, θ)
E∗(θ) < c

√
log |n| ,

where c is some universal constant.

Proposition 4. There exists a sequence {nj} such that

lim sup
j→∞

sup
θ∈Θnj

R(UCB, θ)√
log |nj| · E∗(θ)

= +∞

lim sup
j→∞

sup
θ∈Θnj

R(greedy, θ)√
log |nj| · E∗(θ)

= +∞

That is, the pessimistic algorithm can be justified by weighting each in-

stance using the difficulty of predicting the optimal value. We note that this

result does not contradict the no-instance-optimality property of batch policy

optimization with stochastic bandits (Corollary 5). In fact, it only provides

a characterization of pessimism: the pessimistic choice is beneficial when the

batch dataset contains enough information that is good for predicting the op-

timal value.

6.6 Related work

In the context of offline bandit and RL, a number of approaches based on the

pessimistic principle have been proposed and demonstrated great success in

practical problems (Swaminathan & Joachims, 2015; Wu et al., 2019; Jaques

et al., 2019; Kumar et al., 2019, 2020; Buckman et al., 2020; Kidambi et al.,

2020; Yu et al., 2020; Siegel et al., 2020). We refer interested readers to

the survey by (Levine et al., 2020) for recent developments on this topic. To
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implement the pessimistic principle, distributional robust optimization (DRO)

has become a powerful tool in bandits (Faury et al., 2019; Karampatziakis

et al., 2019) and RL (Xu & Mannor, 2010; Yu & Xu, 2015; Yang, 2017; Chen

et al., 2019; Dai et al., 2020; Derman & Mannor, 2020).

From a theoretical perspective, the statistical properties of general DRO,

e.g ., the consistency and asymptotic expansion of DRO, is analyzed in (Duchi

et al., 2016). Liu et al. (2020) provides regret analysis for a pessimistic algo-

rithm based on stationary distribution estimation in offline RL with insufficient

data coverage. Jin et al. (2020c) and Kidambi et al. (2020) recently prove that

the pessimistic algorithm is nearly minimax optimal for batch policy opti-

mization. However, the theoretical justification of the benefits of pessimitic

principle vs. alternatives are missing in offline RL.

Decision theory motivates DRO with an axiomatic characterization of min-

max (or distributionally robust) utility: Preferences of decision makers who

face an uncertain decision problem and whose preference relationships over

their choices satisfy certain axioms follow an ordering given by assigning max-

min utility to these preferences (Gilboa & Schmeidler, 1989). Thus, if we

believe that the preferences of the user follow the axioms stated in the above

work, one must use a distributionally optimal (pessimistic) choice. On the

other hand, (Smith & Winkler, 2006b) raise the “optimizer’s curse” due to

statistical effect, which describes the phenomena that the resulting decision

policy may disappoint on unseen out-of-sample data, i.e., the actual value of

the candidate decision is below the predicted value. Van Parys et al. (2017);

Sutter et al. (2020) justify the optimality of DRO in combating with such an

overfitting issue to avoid the optimizer’s curse. Moreover, Delage et al. (2019)

demonstrate the benefits of randomized policy from DRO in the face of uncer-

tainty comparing with deterministic policy. While reassuring, these still leave

open the question whether there is a justification for the pessimistic choice

dictated by some alternate logic, or perhaps a more direct logic reasoning in

terms of regret in decision problem itself (Lattimore & Szepesvári, 2020).

Our theoretical analysis answer this question, and provides a complete

and direct justification for all confidence-based index algorithms. Specifically,
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we show all confidence-based index algorithms are nearly minimax optimal in

terms of regret. More importantly, our instance-dependent analysis shows that

for any algorithm one can always find a problem instance where the algorithm

will suffer arbitrarily large regret. Therefore, one cannot directly compare

the performance of two algorithms without specifying the problem instance.

Buckman et al. (2020) state that for the pessimistic choice to be a good one,

it suffices to have data that makes predicting the value of the optimal policy

feasible. We provide a formal analysis to support this intuition: the pessimistic

algorithm is nearly minimax optimal when weighting individual instance by its

inherent difficulty of estimating the optimal value. This weighted criterion can

be used to distinguish pessimistic algorithm from other confidence-adjusted

index algorithms.

6.7 Conclusion

In this chapter we study the statistical limits of batch policy optimization

with finite-armed bandits. We introduce a family of confidence-adjusted index

algorithms that provides a general analysis framework to unify the commonly

used optimistic and pessimistic principles. For this family, we show that any

index algorithm with an appropriate adjustment is nearly minimax optimal.

Our analysis also reveals another important finding, that for any algorithm

that performs optimally in some environment, there exists another environ-

ment where the same algorithm can suffer arbitrarily large regret. Therefore,

the instance-dependent optimality cannot be achieved by any algorithm. To

distinguish the algorithms in offline setting, we introduce a weighted minimax

objective and justify the pessimistic algorithm is nearly optimal under this

criterion.
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Chapter 7

The Curse of Passive Data
Collection in Batch
Reinforcement Learning

7.1 Introduction

Batch reinforcement learning (RL) broadly refers to the problem of finding a

policy with high expected return in a stochastic control problem when only a

batch of data collected from the controlled system is available. Here, we con-

sider this problem for finite state-action Markov decision processes (MDPs),

with or without function approximation, when the data is in the form of tra-

jectories obtained by following some logging policy. In more detail, the tra-

jectories are composed of sequences of states, actions, and rewards, where the

action is chosen by the logging policy, and the next states and rewards follow

the distributions specified by the MDP’s transition parameters.

There are two subproblems underlying batch RL: the design problem, where

the learner needs to specify a data collection mechanism that will be used to

collect the batch data; and the policy optimization problem, where the learner

needs to specify the algorithm that produces a policy given the batch data.

For the design problem, often times one can use an adaptive data collection

process where the next action to be taken is determined by the past data.

Another way to say this is that the data collection is done in an active way.

Recent theoretical advances in reward-free exploration (e.g., Jin et al., 2020a;

Kaufmann et al., 2021; Zhang et al., 2021b) show that one can design algo-
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rithms to collect a batch data set with only polynomial samples to have good

coverage over all possible scenarios in the environment. Near-optimal policies

can be obtained for any given reward functions using standard policy optimiza-

tion algorithms with the collected data. A complication arises in applications,

such as healthcare, education, autonomous driving, or hazard management,

where active data collection is either impractical or dangerous (Levine et al.,

2020). In these applications, the best one could do is to collect data using a

fixed, logging policy, which needs to be chosen a priori, that is before the data

collection process begins, so that the stakeholders can approve it. Arguably,

this is the most natural problem setting to consider in batch learning. The

fundamental questions are: how should one choose the logging policy so as to

maximize the chance of obtaining a good policy with as little data as possible

and how many samples are sufficient and necessary to obtain a near optimal

policy given a logging policy, and which algorithm to use to obtain such a

policy?

Perhaps surprisingly, before this work, these questions remained unan-

swered. In particular, while much work have studied the sample complexity of

batch RL, the results in these works are focusing only on the policy optimiza-

tion subproblem and as such fall short in providing an answer to our questions.

In particular, some authors give sample complexity upper and lower bounds

as a function of a parameter, dm, which could be the smallest visit probabil-

ity of state-action pairs under the logging policy (Chen & Jiang, 2019; Yin

& Wang, 2020; Yin et al., 2021a; Ren et al., 2021; Uehara et al., 2021; Yin

& Wang, 2021; Xie & Jiang, 2021; Xie et al., 2021a), or the smallest ratio

of visit probabilities of the logging versus the optimal policies, again over all

state-action pairs (Liu et al., 2019, 2020; Yin et al., 2021b; Jin et al., 2021;

Rashidinejad et al., 2021; Xie et al., 2021b). The sample complexity results

depend polynomially on 1/dm, S,A and H, where H is the episode length or

the effective horizon. Although these results are valuable in informing us the

policy optimization step of batch RL, they provide no clue as to how to choose

the logging policy to get a high value for dm and whether dm will be uniformly

bounded from below when adopting such a logging policy. In particular, if
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we take the first definition for dm, in some MDPs dm will be zero regardless

of the logging policy if some state is not accessible from the initial distribu-

tion. While this predicts an infinite sample complexity for our problem, this

is clearly too conservative, since if a state is not accessible under any policy,

it is unimportant to learn about it. This is corrected by the second defini-

tion. However, even with this definition it remains unclear whether dm will be

uniformly bounded away from zero for an MDP with a fixed number of states

and actions and the best instance-agnostic choice of the logging policy. The

lower bounds in these work also fail to provide a lower bound for our setting.

This is because in these lower bounds the instance will include an adversarially

chosen logging policy, again falling short of helping us. Essentially, these are

the gaps that we fill with this chapter.

In particular, we first show that in tabular MDPs the number of transi-

tions necessary and sufficient to obtain a good policy, the sample complexity

of learning, is an exponential function of the minimum of the number of states

and the planning horizon. In more details, we prove that the sample complex-

ity of obtaining ϵ-optimal policies is at least Ω(Amin(S−1,H+1)) for γ-discounted

problems, where S is the number of states, A is the number of actions (per

state), and H is the effective horizon defined as H = ⌊ ln(1/ϵ)
ln(1/γ)

⌋. For finite hori-

zon problems with horizon H, we prove the analogue Ω(Amin(S−1,H)/ε2) lower

bound. These results for tabular MDPs immediately imply exponential lower

bounds when linear value function approximation is applied with S replaced

by d, the number of features. We also show that warm starts (when one starts

with a policy which is achieving almost as much as the optimal policy) do

not help either, crushing the hope that one the “curse” of passivity can be

broken by adopting a straightforward two-phase data collection process (Bai

et al., 2019; Zhang et al., 2020; Gao et al., 2021). We then establish nearly

matching upper bounds for both the plug-in algorithm and pessimistic algo-

rithm, showing that the sample complexity behaves essentially as shown in the

lower bounds. While the upper bounds for these two algorithms may be off

by a polynomial factor, we do not expect the pessimistic algorithm to have a

major advantage over the plug-in method in the worst-case setting. In fact,
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the recent work of Xiao et al. (2021c) established this in a rigorous fashion

for the bandit setting by showing an algorithm independent lower bound that

matched the upper bound for both the plug-in method and the pessimistic

algorithm. In the average reward case we show that the sample complexity is

infinite.

How do our results relate to the expectations of RL practitioners (and

theoreticians)? We believe that most members of our community recognize

that batch RL is hard at the fundamental level. Yet, it appears that many

in the community are still highly optimistic about batch RL, as demonstrated

by the numerous empirical papers that document successes of various levels

and kinds (e.g., Laroche et al., 2019; Kumar et al., 2019; Wu et al., 2019;

Jaques et al., 2019; Agarwal et al., 2020c; Kidambi et al., 2020; Yu et al.,

2020; Gulcehre et al., 2020; Fu et al., 2020), or by the optimistic tone of the

above-mentioned theoretical results. The enthusiasm of the community is of

course commendable and nothing is farthest from our intentions than to break

it. In connection to this, we would like to point out that our results show that

if either H, or S (or d when we have d features) is fixed, batch RL is in fact

tractable. Yet, the lower bound assures us that we cannot afford batch RL if

both of these parameters are large, a result which one should not hide from.

Perhaps the most important finding here is the curious interplay between the

horizon and the number of states (more generally, we expect a complexity

parameter of the MDP to stand here), which is reasonable yet we find it non-

obvious. Certainly, the proof that shows that the interplay is “real” required

some new ideas. Returning to the empirical works, recent studies identify the

tandem effect from the issue of function approximation in the batch RL with

passive data collection (Ostrovski et al., 2021). Our results suggest that there

is a need to rethink how batch RL methods are benchmarked. In particular, a

tedious examination of the benchmarks shows that the promising results are

almost always produced on data sets that are collected by a noisy version of

a near-optimal policy. The problem is that this choice biases the development

of algorithms towards those that exploit this condition (e.g., the pessimistic
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algorithm), yet, this mode of data collection is unrealistic.1

Another highlight of our result is that it implies an exponential gap be-

tween the sample complexity of passive and active learning. Recently, a sim-

ilar conclusion is drawn in the paper of Zanette (2021), which served as the

main motivation for our work. Zanette (2021) demonstrated an exponential

separation for the case when batch learning is used in the presence of linear

function approximation. A careful reading of the paper shows that the lower

bound shown there does not apply to the tabular setting as the data collection

method of this chapter allows sampling from any distribution over the state-

action space, which, in the tabular setting is sufficient for polynomial sample

complexity.

7.2 Notation and Background

Notation We let R denote the set of real numbers, and for a positive integer

i, let [i] = {0, . . . , i − 1} be the set of integers from 0 to i − 1. We also let

N = {0, 1, . . . } be the set of nonnegative integers and N+ = {1, 2, . . . } be the

set of positive integers. For a finite set X , we use ∆(X ) to denote the set of

probability distributions over X . We also use the same notation for infinite sets

when the set has a clearly identifiable measurability structure such as R, which

in this context is equipped by the σ-algebra of Borel measurable sets. We use

I to denote the indicator function. We also use 1 to be the identically one

function/vector; the domain/dimension is so that the expression that involves

1 is well-defined.

We consider finite Markov decision processes (MDPs) given byM = (S,A, P, r, γ),
where S and A are finite set of states and actions, P is the transition function,

r is the reward function, and γ is the discounted factor. See Section 5.1 for

the definition of MDP. Since S and A are finite, without loss of generality, we

1Qin et al. (2021) points to another problem with the benchmarks; namely that they fail
to compare to the noise-free version of the near-optimal policy used in the data collection.
Brandfonbrener et al. (2021) observe that simply doing one step of constrained/regularized
policy improvement using an value estimate of the behavior policy performs surprisingly
well in offline RL benchmarks. They hypothesize that the strong performance is due to a
combination of favorable structure in the environment and behavior policy.
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assume that the immediate mean rewards lie in the [−1, 1] interval. We also

assume that the reward distribution is ρ-subgaussian with a constant ρ > 0.

We denote M(S,A) the set of MDPs sharing the same S and A. Since the

identity of the states and actions plays no role, without loss of generality, in

what follows we assume that S = [S] and A = [A] for some S,A positive in-

tegers. We also useM(S,A) to denote the set of MDPs with S states and A

actions (say, over the canonical sets S = [S] and A = [A]). Finally, for ε > 0,

we define the effective horizon Hγ,ε := ⌊ ln(1/ϵ)
ln(1/γ)

⌋, which is different with the

normally used effective horizon Eq. (5.7) with only a ln(1/(1− γ)) factor.

The standard goal in a finite MDP under the discounted criterion is to

identify the optimal policy π∗ that maximizes the value function in every state

s ∈ S such that v∗(s) = supπ v
π(s) . In this chapter though, we consider the

less demanding problem of finding a policy π that maximizes vπ(µ) for a fixed

initial state distribution µ, i.e., finding a policy π which achieves, or nearly

achieves v∗(µ). For an initial state distribution µ ∈ ∆(S) and a policy π, recall

that the (unnormalized) discounted occupancy measure νπ
µ Eq. (5.8) induced

by µ, π, and the MDP, is defined by

νπ
µ(s, a) :=

∞∑

t=0

γt
P
π(St = s, At = a|S0 ∼ µ) . (7.1)

As shown in Eq. (5.13), vπ(µ) can be represented as an inner product between

the immediate reward function r and the occupancy measure νπ
µ

vπ(µ) =
∑

s,a
r(s, a)νπ

µ(s, a) = ⟨νπ
µ , r⟩ . (7.2)

7.3 Batch Policy Optimization

We consider policy optimization in a batch mode, or, in short, batch policy

optimization (BPO). A BPO problem for a fixed sample size n is given by

the tuple B = (S,A, µ, n,P) where S and A are finite sets, µ is a probability

distribution over S, n is a positive integer, and P is a set of MDP-distribution

pairs of the form (M,G), where M ∈M(S,A) is an MDP over (S,A) and G

is a probability distribution over (S × A × R × S)n. In what follows a pair

(M,G) of the above form will be called a BPO instance.
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A BPO algorithm for a given sample size n and sets S,A takes data

D ∈ (S × A × R × S)n and returns a policy π (possibly history-dependent).

Ignoring computational aspects, we will identify BPO algorithms with (possi-

bly randomized) maps L : (S × A × R × S)n → Π, where Π is the set of all

policies. The aim is to find BPO algorithms that find near-optimal policies

with high probability on every instance within a BPO problem:

Definition 5 ((ε, δ)-sound algorithm). Fix ϵ > 0 and δ ∈ (0, 1). A BPO

algorithm L is (ε, δ)-sound on instance (M,G) given initial state distribution

µ if

PD∼G

(
vL(D)(µ) > v∗(µ)− ε

)
> 1− δ ,

where the value functions are for the MDP M . Further, we say that a BPO

algorithm is (ϵ, δ)-sound on a BPO problem B = (S,A, µ, n,P) if it is sound

on any (M,G) ∈ P given the initial state distribution µ.

Data collection mechanisms A data collection mechanism is a way of

arriving at a distribution G over the data given an MDP and some other

inputs, such as the sample size. We consider two types of data collection

mechanisms. One of them is governed by a distribution over the state-action

pairs, the other is governed by a policy and a way of deciding how a fixed

sample size n should be split up into episodes in which the policy is followed.

We call the first SA-sampling, the second policy-induced data collection.

• SA-sampling: An SA-sampling scheme is specified by a probability dis-

tribution µlog ∈ ∆(S×A) over the state-action pairs. For a given sample

size n, µlog together with an MDP M induces a distribution Gn(M,µlog)

over n tuples D = (Si, Ai, Ri, S
′
i)

n−1
i=0 so that the elements of this se-

quence form an i.i.d. sequence such that for any i ∈ [n], (Si, Ai) ∼ µlog,

(Ri, S
′
i) ∼ Q(·|Si, Ai).

• Policy-induced data collection: A policy induced data collection scheme

is specified by (πlog,h), where πlog : S → ∆(A) is a policy, which we shall

call the logging policy, and h = (hn)n≥1: For each n ≥ 1, hn is anm-tuple
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(hj)j∈[m] of positive integers for some m, specifying the length of the m

episodes in the data whose total length is n. Then, for any n, the pair

(πlog,hn) together with an MDP M and an initial distribution µ induces

a distribution G(M,πlog,hn, µ) over the n tuples D = (Si, Ai, Ri, S
′
i)

n−1
i=0

as follows: The data consists of m episodes, with episode j ∈ [m] having

length hj and taking the form τj = (S
(j)
0 , A

(j)
0 , R

(j)
0 , . . . , S

(j)
hj−1, A

(j)
hj−1, R

(j)
hj−1, S

(j)
hj
),

where S
(j)
0 ∼ µ, A

(j)
t ∼ πlog(·|S(j)

t ), (R
(j)
t , S

(j)
t+1) ∼ Q(·|S(j)

t , A
(j)
t ). Then,

for i ∈ [n], (Si, Ai, Ri, S
′
i) = (S

(j)
t , A

(j)
t , R

(j)
t , S

(j)
t+1) where j ∈ [m], t ∈ [hj]

are unique integers such that i =
∑

j′<j hj + t.

Now, under SA-sampling, the sets S, A, a logging distribution µlog and

state-distribution µ over the respective sets give rise to the BPO problem

B(µlog, µ, n) = (S,A, µ, n,P(µlog, n)), where P(µlog, n) is the set of all pairs of

the form (M,Gn(M,µlog)), where M ∈ M(S,A) is an MDP with the speci-

fied state-action spaces and Gn(M,µlog) is defined as above. Similarly, a fixed

policy πlog, fixed episode lengths h ∈ N
m
+ for some m integer and a fixed state-

distribution µ give rise to a BPO problem B(πlog, µ,h) = (S,A, µ, |h|,P(πlog,h)),

where P(πlog,h) is the set of pairs of the form (M,G(M,πlog,h, µ)) where

M ∈ M(S,A) and G(M,πlog,h, µ) is a distribution as defined above. Here,

we use |h| to denote
∑m−1

s=0 hs which is the sample size specified by h.

The sample-complexity of BPO with SA-sampling for a given pair (ε, δ)

and a criterion (discounted, finite horizon, or average reward) is the smallest

integer n such that for each µ there exists a logging distribution µlog and a

BPO algorithm L for this sample size such that L is (ε, δ)-sound on the BPO

problem B(µlog, µ, n). Similarly, the sample-complexity of BPO with policy-

induced data collection for a given pair (ε, δ) and a criterion is the smallest

integer n such that for each µ there exists a logging policy πlog and episode

lengths h ∈ N
m
+ with |h| = n and a BPO algorithm that is (ε, δ)-sound on

B(πlog, µ,h).

The SA-sampling based data collection is realistic when there is a simulator

that allows this type of data collection (Agarwal et al., 2020b; Azar et al.,

2013; Cui & Yang, 2020; Li et al., 2020). Besides this scenario, it is hard to
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imagine a case when SA-sampling can be realistically applied. Indeed, in most

practical settings, data collection happens by following some policy, usually

from the same initial state distribution that is used in the objective of policy

optimization.

For policy-induced data collection, a key restriction on the logging policy is

that it is chosen without any knowledge of the MDP. Moreover, that the logging

policy is memoryless rules out any adaptation to the MDP. The intention here

is to model a “tabula rasa” setting, which is relevant when one must find a

good policy in a completely new environment but only passive data collection

is available. However, our lower bound Corollary 7 shows that there is not

much to be gained even if the logging policy is known to be a good policy: If

the goal is to improve the suboptimality level of the logging policy, by saying,

a factor of two, the exponential sample complexity lower bound still applies.

From a statistical perspective, the main difference between these two data

collection mechanisms is that for policy-induced data-collection the distribu-

tion of (Si, Ai) will depend on the specific MDP instance, while this is not the

case for SA-sampling. As we shall see in the next section, this makes BPO

under SA-sampling provably exponentially more efficient.

7.4 Lower Bounds

We first give a lower bound on the sample complexity for BPO when the data

available for learning is obtained by following some logging policy:

Theorem 12 (Exponential sample complexity with policy-induced data col-

lection in discounted problems). For any positive integers S and A, discount

factor γ ∈ [0, 1) and a pair (ϵ, δ) such that 0 < ϵ < 1/2 and δ ∈ (0, 1),

any (ϵ, δ)-sound algorithm needs at least Ω(Amin(S−1,Hγ,2ε+1) ln(1/δ)) episodes

of any length with policy-induced data collection for MDPs with S states and

A actions under the γ-discounted total expected reward criterion. The result

remains true if the MDPs are restricted to have deterministic transitions.

Remark 5. Random rewards are not essential in proving Theorem 12 as long

as stochastic transitions are allowed: First, the proof can be modified to use
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Bernoulli rewards and stochastic transitions can be used to emulate Bernoulli

rewards. Note also that for ρ-subgaussian random reward, the sample complex-

ity in Theorem 12 becomes Ω(max{1, ρ2}Amin(S−1,H+1) ln(1/δ)). The maximum

appears exactly because stochastic transitions can emulate Bernoulli rewards.

Simplifying things a bit, the theorem states that the sample complexity is

exponential as the number of states and the planning horizon grow together

and without a limit. Note that this is in striking contrast to sample complexity

of learning actively, or even with SA-sampling, as we shall soon discuss it. The

hard MDP instance used to construct the lower bound is adopted from the

combination lock problem (Whitehead, 1991). The detailed proof is provided

in the Appendix, as are the proofs of the other statements. By realizing that

tabular MDPs can be considered as using one-hot features, the exponential

lower bound still holds for linear function approximation.

Corollary 6 (Exponential sample complexity with linear function approxi-

mation in the discounted problem). Let d,A be positive integers. Then the

same result as Theorem 12 with S replaced by d holds when the data collection

happens for some MDP M ∈ M(S, [A]) and in addition to the dataset the

learner is also given access to a featuremap ϕ : S → R
d such that for every

policy π of this MDP, there exists θ ∈ R
d such that vπ(s) = ϕ(s)⊤θ, ∀s ∈ S,

where vπ is the value function of π in M . The result also remains true if the

MDPs are restricted to have deterministic transitions.

One may wonder about whether this exponential complexity can be avoided

if more is assumed about the logging policy. In particular, one may hope that

improving on an already good logging policy (i.e., one that is close to optimal)

should be easier. Our next result shows that this is not the case.

Corollary 7 (Warm starts do not help). Fix πlog, 0 < ε < 1/2, δ ∈ (0, 1), S

and A as before. Let Mπlog

2ε denote a set of MDPs with deterministic transi-

tions, state space S = [S] and action space A = [A] such that πlog is 2ε-optimal

for all M ∈Mπlog

2ε . Then for any length of sampled episodes, any (ε, δ)-sound

algorithm needs at least Ω(Amin(S−1,H+1) ln(1/δ)) episodes, where H = Hγ,2ε.
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The third corollary shows that when the logging policy is not uniform, the

lower bound gets worse.

Corollary 8 (The uniform policy is the best logging policy). If πlog is not uni-

form at every state, then the sample complexity in Theorem 12 increases, and

in particular, Au can be replaced by maxS′⊂S,|S′|=u

∏
s∈S′ maxa

1
πlog(a|s) where

u = min(S− 1, H + 1).

For fixed-horizon policy optimization, we have the following result similar

to Theorem 12.

Theorem 13 (Exponential sample complexity with policy-induced data col-

lection in finite-horizon problems). For any positive integers S and A, planning

horizon H > 0 and a pair (ϵ, δ) such that 0 < ϵ < 1/2 and δ ∈ (0, 1), any

(ϵ, δ)-sound algorithm needs at least Ω(Amin(S−1,H) ln(1/δ)/ε2) episodes with

policy-induced data collection for MDPs with S states and A actions under the

H-horizon total expected reward criterion. The result also remains true if the

MDPs are restricted to have deterministic transitions.

Remark 5 and Corollaries 6 to 8 also remain essentially true; we omit these

to save space. As shown in the next result, the sample complexity could be

even worse in average reward MDPs. The different sample complexities of

the average reward problems and the two previous settings can be explained

as follows: In discounted and finite-horizon problems, rewards beyond the

planning horizon do not have to be observed in data to find a near optimal

policy. In contrast, this is not the case for the average reward setting, where

the value function is redefined to be

vπ(µ) = lim inf
T→∞

E
π

[
1

T

T−1∑

t=0

r(St, At)
∣∣∣S0 ∼ µ

]
.

Rewards at states that are “hard” to reach may have to be observed enough

in data. Thus, the fact that the planning horizon is finite is crucial for a finite

sample complexity.

Theorem 14 (Infinite sample complexity with policy-induced data collection

in average reward problems). For any positive integers S and A, any pair
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(ϵ, δ) such that 0 < ϵ < 1/2 and δ ∈ (0, 1), the sample complexity of BPO with

policy-induced data collection for MDPs with S states and A actions under the

average reward criterion is infinite.

For SA-sampling, the sample complexity becomes polynomial in the rel-

evant quantities: Staying with discounted problems, this is implied by the

results of Agarwal et al. (2020b) who study plug-in methods when a gener-

ative model is used to generate the same number of observations for each

state-action pair. In particular, they show that in this setting, if N samples

are available in each state-action pair then the plug-in algorithm will find a

policy with vπ ≥ v∗ − ε1 provided that N = Ω(ln SA
(1−γ)δ

/(ε2(1 − γ)3)). This

implies a sample complexity upper bound of size Õ(SAH3 ln(1/δ)/ε2) where

H = 1/(1−γ), though for the stronger requirement that π is optimal not only

from µ, but from each state. The upper bound is essentially matched by a

lower bound by Sidford et al. (2018) who prove their result in Section D of

their paper using a reduction to a result of Azar et al. (2013) that stated a

similar sample complexity lower bound for estimating the optimal value. Our

result is stronger than these results, which require the algorithm to produce a

“globally good” policy, i.e., a policy that is near-optimal no matter the initial

state, while in our result, the policy needs to be good only at a fixed initial

state distribution.

Theorem 15. Fix any γ0 > 0. Then, there exist some constants c0, c1 > 0

such that for any γ ∈ [γ0, 1), any positive integers S and A, δ ∈ (0, 1), and

0 < ε ≤ c0/(1 − γ), the sample size n needed by any (ε, δ)-sound algorithm

that produces as output a memoryless policy and works with SA-sampling for

MDPs with S states and A actions under the γ-discounted expected reward

criterion must be at least c1
SA ln(1/(4δ))
ε2(1−γ)3

.

Our proof for the lower bound essentially follows the ideas of Azar et al.

(2013), but an effort was made to make the proof more streamlined. In par-

ticular, the new proof uses Le Cam’s method (LeCam, 1973). We leave it for

future work to extend the result to algorithms whose output is not restricted

to memoryless policies.
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7.5 Upper Bounds

In this section, we consider the “plug-in” algorithm for BPO and the dis-

counted total expected reward criterion and will present a result for it that

shows that this simple approach essentially matches the sample complexity

lower bound of Theorem 12. For simplicity, we assume that the reward func-

tion is known.2 Given a batch of data, the plug-in algorithm uses sample

means to construct estimates for the transition probabilities. These can then

be fed into any MDP solver to get a policy. The plug-in method is an obvious

first choice that has proved its value in a number of different settings (Agarwal

et al., 2020b; Azar et al., 2013; Cui & Yang, 2020; Li et al., 2020; Ren et al.,

2021; Xiao et al., 2021c).

Let D = (Si, Ai, Ri, S
′
i)

n−1
i=0 be the data available to the algorithm, and

N(s, a, s′) =
n−1∑

i=0

I (Si = s, Ai = a, S ′
i = s′)

denote the number of transitions observed in the data from s to s′ while action

a is used. Let N(s, a) =
∑

s′ N(s, a, s′) be the number of times the pair (s, a)

is seen in the data. Provided that the visit count N(s, a) is positive, let

P̂ (s′|s, a) = N(s, a, s′)

N(s, a)

be the estimated probability of transitioning to s′ given that a is taken in

state s. Let P̂ (s′|s, a) = 0 for all s′ ∈ S when N(s, a) is zero.3 The plug-

in algorithm returns a policy by solving the planning problem defined with

(P̂ , r), exploiting that planning algorithms need only the mean rewards and the

transition probabilities (Puterman, 2014). By slightly abusing the definitions,

we will hence treat (P̂ , r) as an MDP and denote it by M̂ . In the result stated

below we also allow a little slack for the planner; i.e., the planner is allowed

to return a policy which is ϵopt-optimal.

2As noted also, e.g., by (Agarwal et al., 2020b), the sample size requirements stemming
from the need to obtain a sufficiently accurate estimate of the reward function is a lower
order term compared to that needed to accurately estimate the transition probabilities.

3The particular values chosen here do not have an essential effect on the results. For
example, when P̂ (·|s, a) is the uniform distribution over S, it will only effect the constant
factor in Theorem 16 (see Eq. (D.15) in Section D.3).
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The main result for this section is as follows:

Theorem 16. Fix S, A, an MDP M ∈ M(S,A) and a distribution µ on the

state space of M . Suppose δ > 0, ε > 0, and εopt > 0. Assume that the data

is collected by following the uniform policy and it consists of m episodes, each

of length H = Hγ,(1−γ)ε/(2γ). Let π̂ be any deterministic, εopt-optimal policy

for M̂ = (P̂ , r) where P̂ is the sample-mean based empirical estimate of the

transition probabilities based on the data collected. Then if

m = Ω̃

(
S3Amin(H,S)+2 ln 1

δ

(1− γ)4ϵ2

)
,

where Ω̃ hides log factors of S,A and H, we have vπ̂(µ) ≥ v∗(µ) − 4ε − εopt

with probability at least 1− δ.

Remark 6. Our proof technique for the upper bound can be directly applied to

the fixed H-horizon setting and gives an identical result.

In summary, the theorem states that when the logging policy is uniform,

then the plug-in algorithm will find an O(ε) optimal policy with

Õ(S3Amin(H,S)+2ln (1/δ) /(ε2(1− γ)4))

episodes. For BPO with policy-induced data collection, it is not possible to di-

rectly apply a reductionist approach based on analysis for SA-sampling, which

requires a uniform lower bound on the number of transitions observed at all the

state-action pairs. As a result, the upper bound proven with this reductionist

approach would depend on 1/mins,a ν
πlog
µ (s, a). Our direct analysis avoids this

issue, essentially replacing this minimum probability with a horizon-dependent

constant. We provide the proof of Theorem 16, as well as an analogous result

for the pessimistic policy (Jin et al., 2021; Buckman et al., 2020; Kidambi

et al., 2020; Yu et al., 2020; Kumar et al., 2020; Liu et al., 2020; Xiao et al.,

2021c) in Section D.3

7.6 Related Work

Our work is motivated by that of Zanette (2021) who considers the sample

complexity of BPO in MDPs and linear function approximation. One of the
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main results in Zanette’s paper (Theorem 2) is that the (1/2, 1/2) sample

complexity with a “reinforced” policy-induced data collection in MDPs whose

optimal action-value function is realizable with a d-dimensional feature map

given to the learner is at least Ω((1/(1−γ))
d−1
2 ). The “reinforced” data collec-

tion gives the learner full access to the transitional kernel and rewards at states

that are reachable from the start states with the policy (or policies) chosen.

Thus, the learner here has more information than in our setting, but the prob-

lem is made hard by the presence of linear function approximators. As noted

by Zanette, the same setting is trivially easy in the finite horizon setting, thus

the result shows a separation between the infinite and finite horizon settings.

The weakness of this separation is that the “reinforced data collection” mech-

anism is unrealistic. A second result in Zanette’s paper (Theorem 3) shows

that in the presence of function approximation, even under SA-sampling, the

sample complexity is still exponential in d (as in Theorem 2 mentioned above)

even when the features are so that the action-value functions of any policy

can be realized. This exponential sample complexity is to be contrasted with

the fully polynomial result available for the same setting when a generative

model is available (Lattimore et al., 2020). Thus, this second result shows a

real exponential separation between “passive and active learners”. It is in-

teresting to note that this separation disappears in the tabular setting under

SA-sampling.

For linear function approximation under SA-sampling a number of authors

show related exponential (or infinite) sample complexity when the sampling

distribution is chosen in a semi-adversarial way (Amortila et al., 2020; Wang

et al., 2021b; Chen et al., 2021) in the sense that it can be chosen to be the

worst distribution among those that provide good coverage in the feature space

(expressed as a condition on the minimum eigenvalue of the feature second

moment matrix). The main message of these results is that good coverage in

the feature space is insufficient for sample-efficient BPO. In particular, since

the hard examples in these works are tabular MDPs with O(d) state-action

pairs, the uniform distribution over the state-action space is sufficient to guar-

antee polynomial sample complexity in the same “hard MDPs”. Hence, these
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hardness results also have a distinctly different feature than the hardness result

we present.

A different line of research can be traced back to the work of Li et al. (2015)

who were concerned with statistically efficient batch policy evaluation (BPE)

with policy-induced data-collection. The significance of this work for our work

is that at the end of the paper the authors added a sidenote stating that the

sample complexity of BPE in finite horizon BPE must be exponential in the

horizon. Their example is a “combination-lock” type MDP, which served as

an inspiration for the constructions we use in our lower bound proofs. No

arguments are made for the suitability of the lower-bound for BPO, nor is a

formal proof given for the exponential sample complexity for BPE. As such,

our work can be seen as the careful examination of this remark in this paper

and its adoption to BPO. A closely related, but weaker observation, is that the

(vanilla) importance sampling estimators for BPE suffer an exponential blow-

up of the variance (Guo et al., 2017), a phenomenon that (Liu et al., 2018) call

the curse of horizon in BPE. This exponential dependence is also pointed out

by Jiang & Li (2016), who provide a lower bound on the asymptotic variance

of any unbiased estimator in BPE.

Lately, much effort has been devoted to “breaking” this aforementioned

curse. The basis of these works is the observation that if sufficient coverage for

the state-action space is provided by the logging policy, the curse should not

apply (i.e., plug-in estimators should work well). Considering finite-horizon

problems for now, the coverage condition is usually expressed as a lower bound

dm on the smallest visit probabilities, ν
πlog
µ := mins,a,t∈[H] ν

πlog

µ,t (s, a)(≤ 1/(SA)),

where ν
πlog

µ,t (s, a) = P
πlog(St = s, At = a|S0 ∼ µ). Much work then is devoted

to studying the sample-complexity of learning under the coverage requirement

ν
πlog
µ ≥ dm. Note that for a fixed value of dm, SA ≤ 1/dm must hold, hence

although these results are stated to hold over all combination of finite MDPs

and logging policies πlog such that ν
πlog
µ ≥ dm, these MDPs cannot have more

than 1/dm state-action pairs. The main result here, due to Yin et al. (2021a),

is that the sample-complexity (or, better, episode-complexity) of BPO, with

an inhomogeneous H-step MDP and up to constant and logarithmic factors,
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is H3/(dmϵ
2), achieved by the plug-in estimator. According to a result of

Yin et al. (2021b), this complexity continues to hold for the discounted setting

when it represents the “step complexity” (as opposed to “episode complexity”).

The same work also removes a factor of H both from the lower and upper

bounds for the finite horizon setting with homogeneous transitions. A further

strengthening of the results for the homogeneous setting is due to Ren et al.

(2021) who remove an additional H factor under the assumption that the

total reward in every episode belongs to the [0, 1] interval. Their lower bound

is Ω(1/(dmϵ
2)), while their upper bound is Õ(1/(dmϵ

2) + S/(dmϵ)). These

results justify the use of coverage as a way of describing the inherent hardness

of BPO. These results are complementary to ours. The lower bound in these

works for fixed dm is achieved by keeping the number of state-action pairs free,

while we consider sample complexity for a fixed number of state-action pairs.

An alternative approach to characterize the sample-complexity of BPO is

followed by Jin et al. (2021) who, for the inhomogeneous transition kernel,

finite-horizon setting, consider a weighted error metric. While their primary

interest is in obtaining results for linear function approximation, their result

can be simplified back to the tabular setting. If we do this, the new metric that

they propose takes the following form: Given a BPO algorithm L and some

data D composed of a number of full episodes of length H, the weighted error

of L on D is Z(L,D) = v∗(µ)−vL(D)(µ)
∑H−1

h=0

∑

s,a νπ
∗

µ,h(s,a)/
√

1+Nh(s,a;D)
, where π∗ is any optimal

policy and Nh(s, a;D) counts the number of times state (s, a) is seen at stage

h in the episodes in D. Their main result then shows that the minimax ex-

pected value of this metric is lower bounded by a universal constant, while the

pessimistic algorithm’s expected weighted error is upper bound by Õ(SAH).

Note that the results that are phrased with the help of the minimum coverage

probability can also be rewritten as results on the minimax error for a weighted

error where the weights would include the minimum coverage probabilities. All

these results are complementary to each other.

Average reward BPO with a parametric policy class for finite MDPs using

policy-induced data is considered by Liao et al. (2020). The authors derive an

“efficient” value estimator, and the policy returned is defined as the one that
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achieves the largest estimated value. An upper bound on the suboptimality

of the policy returned is given in terms of a number of quantities that relate

to the policy parameterization provided that a coverage condition is satisfied

similar to the coverage assumption discussed above.

Finally, we note that there is extensive literature on BPE; the reader is

referred to the works of (Yin et al., 2021a; Yin & Wang, 2020; Ren et al.,

2021; Uehara et al., 2021; Pananjady & Wainwright, 2020) and the references

therein. The most relevant works for SA-sampling are concerned with the

sample complexity of planning with generative models; see, e.g., (Azar et al.,

2013; Agarwal et al., 2020b; Yin & Wang, 2020) and the references therein.

7.7 Conclusion

The main motivation for this chapter is to fill a substantial gap in the literature

of batch policy optimization: While the most natural setting for batch policy

optimization is when the data is obtained by following some policy, the sample

complexity, the minimum number of observations necessary and sufficient to

find a good policy, of batch policy optimization with data obtained this way

has never been formally studied. Our results characterize how hard BPO under

passive data collection exactly is and how the difficulty scales as the problem

parameter changes. While our main result that, with a finite planning horizon,

the sample complexity scales exponentially is perhaps somewhat expected,

this has never been formally established and should therefore be a valuable

contribution to the field. In fact, both the lower and the upper bound required

considerable work to be rigorously establish and that the sample complexity

is finite is less obvious in light of the previous results that involved “minimum

coverage” as a superficial argument with these results suggest that the sample

complexity could grow without bound if some state-action pairs have arbitrary

small visit probabilities. That these results, as far as the details are concerned,

are non-obvious is also shown by the gap that we could not close between the

upper and lower sample complexity bounds. Another non-obvious insight of

our work is that warm starts provably cannot help in reducing the sample
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complexity. Our results should be given even more significance by the fact

that the tabular setting provides the foundation for most of the insights that

lead to better algorithms in RL.
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Chapter 8

Understanding and Leveraging
Overparameterization in
Recursive Value Estimation

8.1 Introduction

Model-free value estimation remains a core method of reinforcement learning

(RL), lying at the heart of some of the most prominent achievements in this

area (Mnih et al., 2015; Bellemare et al., 2020). Such success appears paradox-

ical however, given that value estimation is subject to the deadly triad : any

value update that combines off-policy estimation with Bellman-bootstrapping

and function approximation diverges in the worst case (Sutton & Barto, 2018).

Without additional assumptions it is impossible to ensure the viability of itera-

tive value estimation schemes, yet this remains a dominant method in RL—its

popularity supported by empirical success in many applications. Such a siz-

able gap between theory and practice reflects limited understanding of such

methods, how they behave in practice, and what accounts for their empirical

success (van Hasselt et al., 2018; Achiam et al., 2019).

Decomposing the deadly triad indicates that off-policy estimation and

bootstrapping are difficult to forego: off-policy estimation is supported by the

empirical effectiveness of action value maximization and replay buffers, while

Bellman-bootstrapping provides significant advantages over Monte Carlo es-

timation (Sutton, 1988). On the other hand, our understanding of the third

factor, the relationship between function representation and generalization,
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has evolved dramatically in recent years. Although it was once thought that

restrictive function approximation—representations that lack capacity to fit

all data constraints—might be essential for generalization, we now know that

this view is oversimplified (Belkin et al., 2019). The empirical success of deep

learning (Krizhevsky et al., 2012), extremely large models (Brown et al., 2020)

and associated theoretical advances (Jacot et al., 2018) have made it clear that

gradient-based training of overparameterized models embodies implicit biases

that encourage generalization even after all data constraints are fit exactly.

This success suggests a new opportunity for breaking the deadly triad: by

leveraging overparameterized value representations one can avoid some of the

most difficult tradeoffs in value-based RL (Lu et al., 2018).

The use of overparameterized deep models in value-based RL, however, still

exhibits mysteries in stability and performance. Although one might expect

larger capacity models to improve the stability of Bellman-bootstrapping, in

fact the opposite appears to occur (van Hasselt et al., 2018). Our own em-

pirical experience indicates that classical value estimation with deep models

always diverges eventually in non-toy problems. It has also been shown that

value updating leads to premature rank-collapse in deep models (Kumar et al.,

2021), coinciding with instability and degrading generalization. In practice,

some form of early-stopping is usually necessary to obtain successful results,

a fact that is not often emphasized in the literature (Agarwal et al., 2021).

Meanwhile, there is a long history of convergent methods being proposed in

the RL literature—starting from residual gradient (Baird, 1995), to gradient-

TD (Sutton et al., 2008; Maei et al., 2009), prox gradient TD (Liu et al., 2015,

2016), and emphatic TD (Yu, 2015; Sutton et al., 2016)—yet none of these has

demonstrated sufficient generalization quality to supplant unstable methods.

The current state of development leaves an awkward tradeoff between stability

and generalization. A stable recursive value estimation method that ensures

generalization quality with overparametrization remains elusive.

In this chapter, we investigate whether overparameterized value represen-

tations might allow the stability-generalization tradeoff to be better managed,

enabling stable estimation methods that break the deadly triad and generalize
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well. To this end, we first consider policy evaluation with overparameterized

linear value representations, a simplified setting that still imposes the deadly

triad (Zhang et al., 2021a). Here we first show that alternative updates, such

as temporal difference (TD), fitted value iteration (FVI) and residual min-

imization (RM) converge to different fixed points in the overparameterized

case (when they converge), even though these updates share a common fixed

point when the approximation error is zero and there are no extra degrees of

freedom (Dann et al., 2014). That is, these algorithms embody certain implicit

biases that only become distinguishable in the overparameterized case. From

this result, we observe that the fixed points lie in different bases, which we

use to develop a unified view of iterative value estimation as minimizing the

Euclidean norm of the weights subject to alternative constraint sets. This uni-

fication allows us to formulate alternative updates that share common fixed

points with TD and FVI but guarantee stability without requiring regular-

ization or prox constraints (Zhang et al., 2021a). Next, we analyze the gen-

eralization performance of these algorithms and provide a per-iterate bound

on the value estimation error of FVI, and fixed point bounds on the value

estimation error of TD. From these results, we identify two novel regularizers,

one that closes the gap between RM and TD and another that quantifies the

effect of the feature representation on the generalization bound. We deploy

these regularizers in a realistic study of deep model training for optimal value

estimation and observe systematic stability and generalization improvements.

We also observe that the performance gap between RM and TD/FVI can be

closed and in some cases eliminated.

8.2 Related work

Value estimation has a lengthy history throughout RL research. Our main

focus is on off-policy value estimation with parametric function representations

and iterative (i.e., gradient based) updates. We do not consider exploration nor

full planning problems (i.e., approximately solving an entire Markov decision

process (MDP)) in the theoretical development, but instead focus on offline
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value estimation; however, we do apply the findings to policy improvement

experiments in the empirical investigation.

Dann et al. (2014) provide a comprehensive survey of value estimation

with parametric function representations. Significant attention has been fo-

cused on underparameterized representations where backed up values are not

necessarily expressible in the function class, however we focus on the overpa-

rameterized case where any backed up values can be assumed to be exactly

representable with respect to finite data. This change fundamentally alters the

conclusions one can draw about algorithm behavior, as we see below. One of

the key consequences is that classical distinctions (Scherrer, 2010; Dann et al.,

2014) between objectives—e.g., mean squared Bellman error (MSBE), mean

squared projected Bellman error (MSPBE), mean squared temporal difference

error (MSTDE), and the norm of the expected TD update (NEU)—all col-

lapse when the Bellman errors can all be driven to zero. Despite this collapse,

we find that algorithms targetting the different objectives—TD and LSTD

for MSPBE (Sutton, 1988; Bradtke & Barto, 1996) and RM without double

sampling (DS) for MSTDE (Maei et al., 2009; Dann et al., 2014)—converge to

different fixed points given overparameterization, even when they ultimately

satisfy the same set of temporal consistency constraints.

It is well known that classical value updates can diverge given off-policy

data and parametric function representations (Baird, 1995; Tsitsiklis & Van Roy,

1996, 1997). The stability of these methods has therefore been studied exten-

sively with many mitigations proposed, including restricting the function rep-

resentation (Gordon, 1995; Szepesvári & Smart, 2004) or adjusting the repre-

sentation to ensure contraction (Kolter, 2011; Ghosh & Bellemare, 2020; Wang

et al., 2021c), or modifying the updates to achieve convergent variations, such

as LSTD (Bradtke & Barto, 1996; Yu, 2010), FVI (Ernst et al., 2005; Munos

& Szepesvári, 2005; Szepesvári & Munos, 2008; Lizotte, 2011) or the intro-

duction of target networks (Mnih et al., 2015; Lillicrap et al., 2016; Zhang

et al., 2021a; Carvalho et al., 2020). Others have considered modified the

updates to combat various statistical inefficiencies (van Hasselt, 2010; Weng

et al., 2020; Konidaris et al., 2011). Another long running trend has been to
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consider two time-scale algorithms and analyses. Examples are gradient-TD

methods (Sutton et al., 2008; Maei et al., 2009), prox gradient TD (Liu et al.,

2015, 2016), primal-dual TD (Dai et al., 2017; Du et al., 2017), and emphatic

TD (Yu, 2015; Sutton et al., 2016). Beyond mere convergence, however, we

discover a greater diversity in fixed points among algorithms in the overpa-

rameterized case, which play a critical but previously unacknowledged role in

generalization quality.

The fact that minimizing MSPBE via TD methods still dominates practice

appears surprising given the theoretical superiority of other objectives. It has

been argued, for example, that direct policy gradient methods (Sutton et al.,

1999) dominate minimizing Bellman error objectives (Geist et al., 2017). Even

among Bellman based approaches, it is known that MSBE can upper bound

the value estimation error (MSE) whereas MSPBE cannot (Kolter, 2011; Dann

et al., 2014), yet MSPBE minimization (via TD based methods) empirically

dominates minimizing MSBE (via residual methods). This dominance has

been thought to be due to the double sampling bias of residual methods (Baird,

1995; Dann et al., 2014), but we uncover a more interesting finding that their

fixed points lie in different bases in the overparameterized setting, and that

reducing this difference closes the performance gap.

We analyze the convergence of classical updates given offline data and pro-

vide associated generalization bounds, with the primary goal of understanding

the discrepancy between previous theory and the empirical success of TD/FVI

versus RM. Although this theory sheds new light in exploitable ways, it cannot

overcome theoretical limits on offline value estimation, such as lower bounds on

worst case error that are exponential in horizon length (Wang et al., 2021a,c;

Zanette, 2021; Xiao et al., 2021b). We analyze the convergence of the expected

updates, extendible to the stochastic case using known techniques (Yu, 2010;

Bhandari et al., 2018; Dalal et al., 2018; Prashanth et al., 2021; Patil et al.,

2021). We expand the coverage of these earlier works by including alternative

updates and focusing on the overparameterized case, uncovering previously

unobserved differences in the fixed points.

There is a growing body of work on linear value estimation and planning
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that leverages the insight of (Parr et al., 2008; Taylor & Parr, 2009) that linear

value estimation is equivalent to linear model approximation. A number of

works have strived to obtain provably efficient algorithms for approximating

the optimal policy values in this setting, but these generally rely on exploration

or strong assumptions about data coverage (Song et al., 2016; Yang & Wang,

2019; Duan et al., 2020; Agarwal et al., 2020a; Jin et al., 2020b; Yang et al.,

2020; Hao et al., 2021) that we do not make. Instead we study linear value

estimation to gain insight, but rather than focus on linear planning we leverage

the findings to improve the empirical performance of value estimation with

deep models.

8.3 Preliminaries

Notation We let R denote the set of real numbers, In an n × n identity

matrix, and I the indicator function. For a finite set X , we use ∆(X ) to denote
the set of probability distributions over X . For a vector µ we let |supp(µ)|
denote the size of the support of µ (i.e., the number of nonzero entries in µ).

For a matrix A ∈ R
n×m, we let A† be the Moore-Penrose pseudoinverse of A,

∥A∥ be its spectral norm, λmax(A) and λmin(A) be its maximum and minimum

non-zero eigenvalues. We also use ΠA = A†A to denote the projection matrix

to the row space of A. For a vector x ∈ R
d, we let ∥x∥ be its l2 norm and

∥x∥A =
√
x⊤Ax be the associated norm for a positive definite matrix A. We

also use diag(x) ∈ R
d×d to denote a diagonal matrix whose diagonal elements

are x.

8.3.1 Markov reward processes

We consider the problem of predicting the value of a given stationary policy

in a Markov Decision Process (MDP) (Section 5.1). For a stationary policy,

this problem can be naturally formulated in terms of a Markov reward process

M = {S, P, r, γ}, such that S is a finite set of states, r : S → R and P : S →
∆(S) are the reward and transition functions respectively, and γ ∈ [0, 1) is the

discount factor. For a given state s ∈ S, the function r(s) gives the immediate
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reward incurred at s, while P (·|s) gives the next-state transition probability

of s. The value function specifies the future discounted total reward obtained

from each state, which is defined as

v(s) = E

[ ∞∑

t=0

γtr(st)
∣∣∣s0 = s

]
. (8.1)

To simplify the presentation, we identify functions as vectors to allow vector-

space operations. In particular, the reward function r is identified as a vector

r ∈ R
|S|, and the transition P is identified as an |S| × |S| transition matrix,

where the s-th row Ps specifies the transition probability P (·|s) of state s.

These definitions allow the value function to be expressed using Bellman’s

equation

v = r + γPv . (8.2)

8.3.2 Linear Function Approximation

It is usually not possible to consider tabular value representations in practice,

since the state set is usually combinatorial or infinite. In our theoretical devel-

opment we focus on linear function approximations, where v is approximated

by a linear combination of features describing states; i.e., v(s) ≈ ϕ(s)⊤θ, where

θ ∈ R
d is a parameter vector and ϕ : S → R

d maps a given state s ∈ S to a

d-dimensional feature vector ϕ(s) ∈ R
d. We let Φ ∈ R

|S|×d denote the feature

matrix, with the s-th row corresponding to the feature vector ϕ(s), so that

the value approximation can be written as v ≈ Φθ. We assume ∥ϕ(s)∥ ≤ 1

for any s ∈ S, and for simplicity we also assume that there is no redundant or

irrelevant features in the feature map; that is, Φ is full rank.

8.3.3 Batch Value Estimation

We consider batch mode (“offline”) estimation of the value function. Let µ ∈
∆(S) be an arbitrary probability distribution over states and Dµ = diag(µ).

The data set consists of transition tuples {si, ri, s′i}ni=1, which are generated

by s ∼ µ, ri = r(si), s
′
i ∼ P (·|si). Let n(s) =

∑n
i=1 I(si = s) be the number

of counts of state s. We define the empirical data distribution matrix D =
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diag(µ̂), where µ̂(s) = n(s)/n is the empirical data distribution over states.

The goal is to estimate the value function by finding a weight vector θ ∈ R
d

that minimizes the value prediction error,

E(θ) = ∥Φθ − v∥2
Dµ

=
∑

s∈S
µ(s)(ϕ(s)⊤θ − v(s))2 . (8.3)

Let P̂ be the empirical transition matrix, where the s-th row represents the

estimated transition of state s: if n(s) > 0, P̂s(s
′) =

∑n
i=1 I(si = s, s′i =

s′)/n(s); if n(s) = 0, P̂s(s
′) = 0 for all s′ ∈ S. The empirical mean squared

Bellman error on the batch data can be defined as

MSBE(θ) = 1
2

∥∥r + γP̂Φθ − Φθ
∥∥2
D
. (8.4)

8.3.4 Over vs Underparameterized Features

In this chapter we are particularly interested in the overparameterized regime

d > |supp(µ̂)| where one can exactly satisfy the temporal consistencies on all

transitions in the batch data set, achieving zero Bellman error. (Obviously

this would also be possible if d = |supp(µ̂)| but the strictly overparameterized

case is more interesting, as we will see below.) By contrast, in the underpa-

rameterized regime d < |supp(µ̂)|, one can only expect to find an approximate

solution that in general has nonzero Bellman error.

We consider three core algorithms in our analysis, covering major classical

approaches.

8.3.5 Residual Minimization (RM)

RM directly minimizes the empirical mean squared Bellman error Eq. (8.4)

(MSBE) (Baird, 1995). The gradient update (Dann et al., 2014) can be ex-

pressed as

θt+1 = θt − η(Φ− γP̂Φ)⊤D
(
Φθt − (r + γP̂Φθt)

)
, (8.5)

where θt is the estimated weight at step t, and η is the learning rate. As a

gradient descent method, the convergence of this update is robust, and applies

to both linear and nonlinear function approximation.
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8.3.6 Temporal Difference (TD) Learning

The simplest variant of TD (Sutton, 1988), known as TD(0), also updates

weights iteratively using transition data to approximate the value function.

Let θt be the weight vector at step t. Then the so-called “semi-gradient” of

Eq. (8.4) is used to compute the update,

θt+1 = θt − ηΦ⊤D
(
Φθt −

(
r + γP̂Φθt

))
, (8.6)

where η is the learning rate. From Eq. (8.6), it is clear that in the underpa-

rameterized (d < |supp(µ̂)|) regime, if the system converges, it must converge

to parameters θ∗
D

such that

Φ⊤Dr − Φ⊤D(Φ− γP̂Φ)θ∗
D

= 0 ⇒ θ∗
D

= (Φ⊤D(Φ− γP̂Φ))−1Φ⊤Dr ,
(8.7)

where θ∗
D

is the TD fixed point. That is, given limited representational power,

the TD fixed point minimizes the squared projected Bellman error (MSPBE)

by solving the projected Bellman equation:

Φθ∗
D

= ΠD

Φ

(
r + γP̂Φθ∗

D

)
, (8.8)

such that ΠD

Φ = Φ(Φ⊤DΦ)−1Φ⊤D is a weighted projection matrix. It is well-

known that TD(0) can diverge if the data sampling distribution µ is not the

stationary distribution of the Markov process. One can still compute the TD

fixed point directly using batch data, for example using the LSTD algorithm

(Bradtke & Barto, 1996), but this requires computation on the order of O(d2)

compared to O(d) of the iterative update algorithm Eq. (8.6). The value

prediction error of TD is discussed in (Tsitsiklis & Van Roy, 1997; Kolter,

2011; Dann et al., 2014; Bhandari et al., 2018).

8.3.7 Fitted Value Iteration (FVI)

FVI iteratively updates the weight vector by solving a regression problem

where the target is constructed from the current estimate (Ernst et al., 2005;

Dann et al., 2014), which is also known as approximate dynamic programming
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(Sutton & Barto, 2018). In particular, given the current weight θt at iteration

t, the objective Eq. (8.9) is minimized to obtain θt+1,

FVIt(θ) =
1
2

∥∥r + γP̂Φθt − Φθ
∥∥2
D
. (8.9)

A simple calculation shows the TD fixed point matches the fixed point of FVI

whenever θ0 is in the row-span of DΦ. Although convergence of FVI can be

established under strong conditions (Szepesvári & Munos, 2008), the algorithm

can be quite unstable in the general batch setting (Chen & Jiang, 2019; Wang

et al., 2021c).

8.4 Over-Parameterized Linear Value Function

Approximation

In this section, we study the convergence properties of the value estimation

algorithms introduced in Section 8.3.3 in the overparameterized regime where

d > |supp(µ̂)|. To faciliate analysis, we first introduce additional notation to

simplify the derivations. Let {xi}ki=1 denote the states in the support of µ̂, such

that n(xi) > 0 for all i = {1, . . . , k} and k = |supp(µ̂)|. Define a mask matrix

H ∈ R
k×|S| and a truncated empirical data distribution matrix Dk ∈ R

k×k

according to

H =



1⊤
x1
...

1⊤
xk


 , Dk =



µ̂(x1)

. . .

µ̂(xk)


 , (8.10)

where 1xi
∈ {0, 1}|S| is an indicator vector such that ϕ(xi) = Φ⊤1xi

. We can

then translate between the full distribution and its support via the following.

Proposition 5. The empirical data distribution matrix D can be decomposed

as D = H⊤DkH.

Let M = HΦ, N = HP̂Φ and R = Hr denote the state features, the

expected next state features under the empirical transitions, and the rewards

on the support of the data distribution respectively.
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8.4.1 Overparameterized Residual Minimization

We first study the convergence of RM given a fixed D. First note that the

update Eq. (8.5) can be re-written as

θt+1 = (Id − η(M − γN )⊤Dk(M − γN ))θt + η(M − γN )⊤DkR . (8.11)

In the overparameterized regime, one can easily verify that there are infinitely

many solutions θ ∈ R
d satisfying (M−γN )θ = R. The gradient of Eq. (8.11)

is zero at any of these solutions, which implies that RM can have infinitely

many fixed points. However, given that RM minimizes the MSBE objective

via gradient descent, as we show in the following theorem, the RM update

initialized from θ0 = 0 will converge to a unique fixed point.

Theorem 17. With η ≤ 1
(1+γ)2

and starting from θ0 = 0, RM converges to

θRM = (M − γN )† R.

Remark 7. For simplicity we present the fixed points of RM and TD starting

from θ0 = 0. The fixed points given an arbitrary initial weight vector θ0 ∈ R
d

are shown in Sections E.1.1 and E.1.2.

This result parallels similar findings in the supervised learning literature,

that training overparameterized deep models with gradient descent (or related

algorithms) encodes implicit regularization that drives the model solution to

particular outcomes in the overparameterized regime (Soudry et al., 2018;

Gunasekar et al., 2018; Neyshabur et al., 2019). Moreover, this implicit regu-

larization is often associated with generalization benefits. However, unlike the

case for supervised learning, RM solutions do not often generalize well. Below

we uncover a key difference between the RM fixed point and those of TD and

FVI that sheds new light on the source of generalization differences.

8.4.2 Overparameterized TD Learning

We next consider the convergence properties of the TD(0) update in the over-

parameterized setting. First, rewrite the TD(0) update formula Eq. (8.6) as

θt+1 = (Id − ηM⊤Dk(M − γN ))θt + ηM⊤DkR . (8.12)
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Similar to RM, in the overparameterized regime any solutions θ ∈ R
d that

satisfy (M − γN )θ = R are the fixed points of Eq. (8.12), which implies

an infinite set of fixed points. This is quite unlike the underparameterized

case where there is a unique TD fixed point Eq. (8.7) given by the solution of

projected Bellman equation. However, we now show that in the overparame-

terized setting, similar to solving RM using gradient descent, TD also encodes

an implicit bias toward a particular fixed point.

This of course requires TD to converge, which can be assured by a simple

condition. Let W = NM †, which has a geometric interpretation that we will

exploit later in Section 8.6. Observe that

N =NΠM +N (Id − ΠM ) = NM †M +N (Id − ΠM )

=WM +N (Id − ΠM ) , (8.13)

i.e., N can be decomposed into its projection onto the row-span of M plus a

perpendicular component. Eq. (8.13) shows that W projects N onto the row

space of M ; see Fig. 8.1 for an illustration. We refer to W as the core matrix

since its norm determines the convergence of TD.

Theorem 18. Choosing η < 1
(1+γ)∥Φ∥ and starting from θ0 = 0, if ∥W ∥ < 1

γ
,

TD(0) converges to θTD = M †(Ik − γW )−1R. If ∥W ∥ ≥ 1
γ
there is an initial

θ0 for which TD(0) does not converge.

A few key observations. First, note that the RM fixed point in Theorem 17

and the TD fixed point in Theorem 18 are not identical. That is, the different

value estimation algorithms continue to demonstrate different preferences for

fixed points, but in the overparameterized setting these differences are implicit

in the algorithms and cannot be captured by the MSBE versus MSPBE objec-

tives, since both are zero for any θ that satisfies (M−γN )θ = R. Second, the

fixed point of TD lies in a different basis than RM. That is, θTD lies in the row

space of the state features M , whereas θRM lies in the row space of the residual

features M−γN , and these two spaces are not identical in general. We revisit

the significance of this difference below, but intuitively, the parameter vector

θ is being trained to predict values rather than temporal differences, and the
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Using this operator we can characterize the convergence condition of FVI,

reaching the conclusion that whenever TW is a non-expansion, FVI converges

to the same fixed point as TD.

Theorem 19. Let θ0 be the initial weight and θt ∈ R
d be the output of FVI at

iteration t. We have

θt+1 = M †T t
W
(R+ γNθ0) . (8.15)

Furthermore, given that ∥W ∥ < 1/γ, the algorithm converges to θTD = M †(Ik−
γW )−1R. If ∥W ∥ ≥ 1

γ
there is an initial θ0 for which FVI does not converge.

8.5 Unified View of Overparameterized Value

Estimators

We now show that the convergence points above can be characterized as so-

lutions to related constrained optimization problems, providing a unified per-

spective on the respective algorithm biases.

Theorem 20. θRM is the solution of the following constrained optimization,

inf
θ∈Rd

1
2
∥θ∥2 s.t. Mθ = R+ γNθ , (8.16)

and θTD is the solution of the following constrained optimization,

inf
θ∈Rd

1
2
∥θ∥2 s.t. Mθ = R+ γNθ , null(M )θ = 0 . (8.17)

That is, the convergence points of RM, TD and FVI in the overparameter-

ized case can all be seen as minimizing the Euclidean norm of the weights θ

subject to satisfying the Bellman constraints Mθ = R+ γNθ, where TD and

FVI implicitly add the additional constraint that θ must lie in the row span

of M ; moreover, this is the only constraint that differentiates TD from RM.

From this perspective, the algorithms can all be seen as iterative procedures

for solving a particular form of quadratic program, when they converge. Of

course, proper constrained optimization techniques would be able to stably

compute solutions in scenarios where TD or FVI diverge (Boyd & Vanden-

berghe, 2004), but a more direct way to ensure convergence is implied by the

following corollary.
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Corollary 9. θTD is also the solution of the following constrained optimiza-

tion,

inf
θ∈Rd

1
2
∥θ∥2 s.t. Mθ = R+ γNΠMθ . (8.18)

Note that the right hand side of the constraint simply pre-projects next

state value predictions onto the row space of M before determining the Bell-

man backed up value. This allows a novel objective to be formulated whose

minimizer recovers the same fixed point as TD,

MSCBE(θ) = 1
2
∥R+ γNΠMθ −Mθ∥2

D
, (8.19)

which stands for mean squared corrected Bellman error. Note that MSCBE is

not identical to MSPBE because the projection is applied before not after the

Bellman backup. Gradient descent minimization of MSCBE yields the same

fixed point as θTD, which is essentially equivalent to applying RM to corrected

target values while ensuring stability. Note also that in the linear case the

projection matrix ΠM only needs to be precomputed once.

8.5.1 Value Prediction Error Bounds

One can also establish generalization bounds on the value estimation error of

these methods in the overparameterized regime. We first provide a finite time

analysis of the value prediction error of FVI.

Theorem 21. Let Σ̂ = M⊤DkM be the empirical covariance matrix, and θt

be the output of FVI starting from θ0 as defined in Theorem 19. Then for any

θ∗ ∈ argminθ∈Rd E(θ),

E(θt)− E(θ∗)

≤ 1

kλmin(Σ̂)

((
ε2 + σ2

)∥∥∥
t−1∑

i=0

(γW )i
∥∥∥
2

+
∥∥(γW )t−1

∥∥2 ∥Φ∥2∥θ0 − θ∗∥2
)
+ 1

2
∥θ∗∥2

Id−ΠM
,

(8.20)

where ε = ∥N (Id − ΠM )θ∗∥ and σ = ∥H(P̂ − P )v∥.

Intuitively, ε measures the length of next-state features along the direction

θ∗, and σ is the expected value prediction error under the empirical transition

104



model, which can be bounded using standard concentration inequalities. The

proof of this theorem is given in Section E.1.5. Observe that for any step t ≥ 1,

the output of FVI θt is within the row-span of M . This allows us to decom-

pose the prediction error into a component within the row-span, controlled by

leveraging the core matrix linear operator TW , and an orthogonal component

that can be bounded by ∥θ∗∥2
Id−ΠM

.

Under the convergence conditions of Theorems 18 and 19, we also have the

following generalization bound for the value prediction error of θTD.

Corollary 10. Suppose that ∥W ∥ ≤ 1, and the value prediction for any s ∈ S
is bounded by v(s) ∈ [0, vmax]. For any θ∗ ∈ argminθ∈Rd E(θ),

E[E(θTD)] ≤
γ log(|S|/δ)

nminE[λmin(Σ̂)](1− γ)4
+

4γE[∥θ∗∥2
Id−ΠM

]

E[λmin(Σ̂)](1− γ)2
+ δvmax , (8.21)

where nmin = nmins:µ(s)>0 µ(s) is the expected minimum counts.

This result automatically implies the requirements for ensuring offline gen-

eralization, accounting both for distribution shift (Wang et al., 2021c) and

policy completeness (Munos & Szepesvári, 2005; Duan et al., 2020) in feature

space. In particular, for Eq. (8.20) and Eq. (8.21), we characterize the distribu-

tion shift using well known concentration bounds in Section E.1.6, which leads

to the denominators kλmin(Σ̂) and nminE[λmin(Σ̂)] respectively. In addition,

we explicitly characterize the misalignment between the features of current

states and next states using the core matrix, which can be used to bound

misalignment between values, replacing the feature completeness assumption.

We note that if the convergence condition cannot be satisfied, that is when

∥W ∥ ≥ 1/γ, the estimation error could be arbitrarily large. The sources of

value estimation error are explicit in Corollary 10. The first term measures

the error due to sampling (statistical error), while the second term consid-

ers out-of-span components of the optimal weight vector θ∗ with respect to

M (approximation error). The smallest eigenvalue of the empirical covari-

ance matrix E[λmin(Σ̂)], as well as the length of the orthogonal components

E[∥θ∗∥2
Id−ΠM

], can both be controlled using classical techniques for concen-

tration properties of random matrix. In Section E.1.7 we present the exact
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approach for bounding these two terms. Furthermore, by Corollary 9, one

can also apply Corollary 10 to an algorithm that directly optimizes MSCBE.

Although a solution of Eq. (8.18) must exist, its value prediction error can be

arbitrarily large given that ∥W ∥ ≥ 1/γ. This also connects to a similar re-

sult for the TD fixed point that minimizes MSPBE in the underparameterized

regime (Kolter, 2011).

8.6 Regularizers for Deep Reinforcement Learn-

ing Algorithms

For tractability, the theory in prior sections assumes fixed representations with

a linear parameterization on only the final layer parameters of the value func-

tion. However, in practice, deep RL algorithms also learn the representations

in an end-to-end fashion. Inspired by the linear case, we now identify two

novel regularizers that are applicable more generally—one that closes the gap

between RM and TD inspired by the unified view of different fixed points, and

another that quantifies the effect of feature representation on the generaliza-

tion bound.

Two-Part Approximation Most deep RL algorithms rely on approximat-

ing the value function with a deep neural network Qω that predicts the future

outcome of a given state-action pair (Mnih et al., 2015; Kalashnikov et al.,

2018; Lillicrap et al., 2016). In practice, Qω is trained by TD learning that

minimizes the objective
∑

s,a(r(s, a) + γQ̄ω(s, a) − Qω(s, a)), where Q̄ω(s, a)

is known as the target network to increase the learning stability. We view

Qω as a two part-approximation with ω = (ϕ, θ), where the output of the

penultimate layer is referred as the feature mapping ϕ, the weight of last

fully connected layer is referred as θ, and the Q-function is approximated by

Qω(s, a) = ϕ(s, a)⊤θ. Our goal is to define regularizers on ϕ and θ that can be

effectively applied to practical algorithms.

The first regularizer directly takes inspiration from Theorem 20: by re-

stricting the linear weight θ within the row space of M (now defined by exited
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(s, a) pairs in the data), RM finds the same fixed point as TD. We implement

this idea by penalizing the norm of the perpendicular component of θ,

Rθ = ∥θ − ΠMθ∥ , (8.22)

In practice we compute this regularizer for each minibatch of data. The pro-

jection step is computed by a least squares algorithm with an additional l2

regularization for numerical stability.

The second regularizer is designed to address the effect of the feature repre-

sentation on convergence and value prediction error. In particular, as shown by

Theorems 18 and 19, a sufficient condition that guarantees the convergence of

TD and FVI is that the spectral norm of W be upper bounded by 1/γ, which

by Theorem 21 will also reduce the bound on generalization error. Hence, it is

natural to penalize the norm of this matrix using standard automatic differen-

tiation tools. However, such an approach is prone to numerical difficulty, as it

involves differentiation through a matrix pseudo inverse. We instead propose

an alternative regularizer inspired by the geometric interpretation of the core

matrix Eq. (8.13): recall from Fig. 8.1 that W can be viewed as the weights

that project N onto the row space of M . To ensure that an arbitrary feature

vector can be well approximated using W , it would be ideal if M was or-

thonomral, which would imply an ideally-behaved basis to represent N . This

intuition justifies the following regularization:

Rϕ =
∥∥βId −M⊤DkM

∥∥ , (8.23)

where β is a scale parameter designed to approximate the column norm. That

is, the regularizer forces the neural network to learn an orthogonal feature em-

bedding by normalizing the empirical feature covariance matrix. The gradient

of Rϕ can also approximated using mini-batches. We augment the original

learning objectives by adding both Rθ and Rϕ weighted by hyper-parameters.

8.6.1 Empirical Justification of Regularizers

The goal of our experiments is to assess the applicability of the proposed

regularization schemes based on orthogonality and projection operations to
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ing learning rate, target network moving average, regularization combining

weight, and β in Eq. (8.23), are considered as tunable hyper-parameters. We

use Google Vizier (Golovin et al., 2017), a black-box optimization parameter

tuning engine for tuning. Additional details describing the complete experi-

ment setup for each environment are provided in Section E.2. These findings

demonstrate that our regularization schemes can be used to improve the per-

formance of both vanilla TD learning and RM. Note that RM is typically less

popular than TD due to its worse empirical performance. On Acrobot and

Reacher, our method was able to fully close the gap between RM and TD. On

Cartpole, (where vanilla RM dominates vanilla TD), and on Pendulum, our

regularizers also deliver significant improvements to the TD learning baseline

and modest improvements to the RM baseline.

Finally, we assess the applicability of the proposed regularization Rϕ in

the setting of online RL. We add the regularization Rϕ to the critic update

of DDPG (denoted as reg ddpg) and compare it with the original algorithm.

The results are provided in Fig. 8.3. All results are averaged over 100 runs

with different random seeds.

8.7 Conclusion

We have investigated the fixed points of classical updates for value estimation

in the overparameterized setting, where there is sufficient capacity to fit all

the Bellman constraints in a given data set. We find that TD and FVI have

different fixed points than RM, but in the linear case the difference can be

entirely attributed to a constraint missing from RM that the solution lie in

the row space of the predecessor state features. We devised two novel regular-

izers based on these findings, which stabilized the performance of TD without

sacrificing generalization, while improving the generalization of RM, in the

setting of estimating optimal values with a deep model.
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Chapter 9

Conclusions and Future
Directions

This dissertation introduces two novel techniques to improve the efficiency

of Monte Carlo Tree Search (MCTS), and provides three analyses towards a

better understanding of the theoretical foundations of batch RL. Below we

summarize the contributions and discuss some future directions.

MCTS is an influential planning algorithm that combines tree search with

simulations. The performance of MCTS highly replies on the accuracy of

value estimation. Inaccurate estimates can mislead building the search tree

and severely degrade the performance of the program. To improve the qual-

ity of value estimate, Chapter 3 exploits the benefits of generalization during

online planning by augmenting MCTS with a memory structure. On the the-

oretical side, we prove that the memory can be used to provide better value

estimates than vanilla Monte Carlo estimation with high probability under

mild conditions. On the practical side, we demonstrate the effectiveness of

memory-augmented MCTS in the game of Go. An interesting direction for fu-

ture study is that the feature representation used in memory operations reuses

a pre-trained neural network designed for move prediction. Instead, we plan

to explore approaches that incorporate feature representation learning in an

end-to-end fashion. Chapter 4 exploits the idea of applying maximum entropy

policy optimization in MCTS. The proposed algorithm, Maximum Entropy

for Tree Search, evaluates each node in the search tree using softmax values

backproagated from simulations. It has been proven that the softmax value

111



can be efficiently back-propagated in the search tree, which enables the search

algorithm to achieve faster convergence rate towards finding the optimal action

at the root.

In the second part of the thesis, we set out to study the fundamental limits

of batch RL. Chapter 6 investigates the optimality of batch policy optimization

(BPO) algorithms. Our analysis reveals that any confidence-adjusted index

algorithm is nearly minimax optimal, and the instance-dependent optimality

cannot be achieved by any algorithm. These observations leave an important

open question: There remains a lack of a well-defined theoretical framework

that can be used to distinguish between different algorithms. Chapter 7 fills a

substantial gap in the literature of batch RL: While the most natural setting

for BPO is when the data is obtained by following some policy, the sam-

ple complexity of BPO with data obtained this way has never been formally

studied. Our results explicitly characterize the hardness of BPO under passive

data collection and how the difficulty scales as the problem parameter changes.

Another remarkable finding of our work is that even warm starts (when one

starts with a policy which is achieving almost as much as the optimal policy)

provably cannot help in reducing the sample complexity. Chapter 8 studies

the convergence properties of classical value estimation algorithms in the over-

parameterized setting, where the function approximation is capable to fit all

the Bellman constraints in the given batch data. Our main observation is that

temporal difference (TD) learning, fitted value iteration and residual mini-

mization embody certain implicit biases that only become distinguishable in

the overparameterized regime. We also develop a unified view to characterize

the fixed points of these algorithm: Iterative value estimation can be viewed as

minimizing the Euclidean norm of the weights subject to alternative constraint

sets. This work leaves a number of interesting open questions, including char-

acterizing the implicit bias of other algorithms, such as gradient or emphatic

TD variants remains, and identifying new regularizers that further close the

performance gap between TD and residual minimization.
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Barwińska, A., Colmenarejo, S. G., Grefenstette, E., Ramalho, T., Agapiou,

J., et al. Hybrid computing using a neural network with dynamic external

memory. Nature, 538(7626):471–476, 2016.

Gulcehre, C., Wang, Z., Novikov, A., Paine, T. L., Colmenarejo, S. G., Zolna,

K., Agarwal, R., Merel, J., Mankowitz, D., Paduraru, C., et al. Rl un-

plugged: A suite of benchmarks for offline reinforcement learning. arXiv

preprint arXiv:2006.13888, 2020.

Gunasekar, S., Lee, J., Soudry, D., and Srebro, N. Characterizing implicit bias

in terms of optimization geometry. In International Conference on Machine

Learning (ICML), 2018.

Guo, Z. D., Thomas, P. S., and Brunskill, E. Using options and covariance

testing for long horizon off-policy policy evaluation. In NeurIPS, pp. 2489–

2498, 2017.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Reinforcement learning

with deep energy-based policies. arXiv preprint arXiv:1702.08165, 2017.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a stochastic actor. arXiv

preprint arXiv:1801.01290, 2018.

Hao, B., Duan, Y., Lattimore, T., Szepesvári, C., and Wang, M. Sparse
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Appendix A

Proofs for Chapter 3:
Memory-augmented MCTS

A.1 Proof

In this section we prove Theorem 2.

A.1.1 Notation

Similarly to (Coquelin & Munos, 2007), we consider a max search in a tree

with branching factor K and depth D in our analysis. Let s0 be the root of the

tree. Each leaf l is assigned a reward distribution Pl, with bounded support

included in [0, 1], whose law is unknown. For any node s, let L(s) be the set

of leaves that belong to the sub-tree starting from s, C(s) be the set of child

nodes of s.

We use v∗ to denote the optimal value. For a leaf node l, v∗(l) =
∫
xPl(dx).

For non-leaf node s, v∗(s) = maxs′∈C(s) v
∗(s′). Thus v∗(s) = maxl∈L(s) v

∗(l).

Let v∗ = v∗(s0) to simplify the notation. For each state s, let ∆(s) = v∗−v∗(s).
For n ≥ 1, let v̂n(s) be the MC evaluation of state s using n simulations

v̂n(s) =
1

n

n∑

t=1

Xt,s =
1

n

∑

l∈L(s)
n(l)v̂n(l)(l) , (A.1)

where Xt,s is the simulation result received at the t-th visit of s, n(s) is the

number of times node s has been visited. We also write v̂n(s)(s) as v̂(s) to
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simplify the notations. The regret is defined as

Rn(s) = nv∗(s)−
n∑

t=1

Xt,s = n(v∗(s)− v̂n(s)) . (A.2)

We also define the pseudo-regret as

R̄n(s) = nv∗(s)−
n∑

t=1

v∗(Lt) =
∑

l∈L(s0)
n(l)∆(l) . (A.3)

We have the following result on the pseudo-regret (Coquelin & Munos, 2007)1.

Lemma 2. Let β > 0. For a given s in the tree and a given n ≥ 1, with

probability at least 1− β,

1

n

∣∣Rn(s)− R̄n(s)
∣∣ ≤

√
2 log 2

β

n
. (A.4)

A.1.2 Flat UCB

At each round t, a bandit-based tree search algorithm runs a simulation by

selecting a path from the root to a leaf, and observes a random reward Xt ∼
PLt , where we denote the leaf chosen at round t by Lt. The Flat UCB algorithm

considers the following bandit algorithm to select children during the search

• For any leaf l ∈ L, B(s) = v̂(s) + cn(s), where for m ≥ 1

cm =

√
log(KDm(m+ 1)/β)

2m
. (A.5)

• For any non-leaf node s, B(s) = maxs′∈C(s′) B(s′).

Define L′(s) = {i ∈ L(s), v∗(s) − v∗(i) > 0} to be the set of sub-optimal

leaves of s, and ∆̃s = mini∈L′(s) v
∗(s)− v∗(i). We have the following result for

Flat UCB (Theorem 2 of (Coquelin & Munos, 2007)).

Lemma 3. Let β > 0. Consider the Flat UCB algorithm and a fixed state s

and a fixed simulation count n ≥ 1 through s. Then with probability at least

1− β, the pseudo-regret is bounded by a constant independent of n

R̄n(s) ≤
∑

i∈L′(s)

1

(v∗(s)− v∗(i))2
log

(
2

(v∗(s)− v∗(i))2
KD+1β−1

)
≤ 6KD

∆̃s

log

(
2KD+1

∆̃2
sβ

)
.

(A.6)
1The result and proofs are given in the middle of Page 4 of (Coquelin & Munos, 2007).
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Proof. The proof follows Theorem 2 of (Coquelin & Munos, 2007). Consider

the event E under which, for all leaves i ∈ L, for all m ≥ 1, we have |v̂m(i)−
v∗(i)| ≤ cm. Using a union bound and Hoeffding’s inequality,

P (|v̂m(i)− v∗(i)| > cm, ∀m ≥ 1, ∀i ∈ L) ≤ KD
∑

m≥1

β

KDm(m+ 1)
= β .

(A.7)

Since L′(s) ⊂ L, we have for all i ∈ L′(s), |v̂m(i)− v∗(i)| ≤ cm for all m ≥ 1.

Given the event E holds, we can provide a regret bound by bounding the

number of times each sub-optimal leaf is visited. Let i ∈ L′(s) be a sub-optimal

leaf such that v∗(s)−v∗(i) > 0. Let i∗ be the optimal leaf. If at some round the

leaf i is chosen, we have v̂(i)+cn(i) ≤ v̂(i∗)+cn(i∗). Using the confidence interval

bounds for leaves i and i∗, we deduce that v∗(s) = v∗(i∗) ≤ v∗(i) + 2cn(i). Let

∆s,i = v∗(s)− v∗(i) and βm = β
KDm(m+1)

for m ≥ 1. Then

log β−1
n(i)

n(i)
≥ ∆2

s,i

2
. (A.8)

Hence, n(i) is bounded by the smallest integer n0 such that n0

log(β−1
n0

)
> 2/∆2

s,i.

Using the argument of (Coquelin & Munos, 2007), a rough upper bound on n0

is 6
∆2

s,i
log
(

2
∆2

s,i
KD+1β−1

)
. This gives the number of times a suboptimal leaf i

is chosen is at most,

n(i) ≤ 6

∆2
s,i

log

(
2

∆2
s,i

KD+1β−1

)
. (A.9)

The bound on the pseudo-regret immediately follows from the fact that R̄n(s) ≤
∑

i∈L′(s) n(i)∆s,i.

Combining Lemma 2 and Lemma 3 gives the following result.

Lemma 4. Let β > 0. Consider the Flat UCB algorithm and a fixed state s

and a fixed simulation count n ≥ 1 through s. Then there exists constants C1

and C2 that only depend on K,D and ∆̃s such that for any 0 < α < 1,

P (|v̂n(s)− v∗(s)| ≤ α) ≥ 1− C1e
−C2α2n . (A.10)

135



Proof. Let E1 be the event under which

∣∣Rn(s)− R̄n(s)
∣∣ ≤

√
2n log

2

β
. (A.11)

By Lemma 2, we have P(E1) ≥ 1− β. Let E2 be the event under which

R̄n(s) ≤
6KD

∆̃s

log

(
2KD+1

∆̃2
sβ

)
. (A.12)

By Lemma 3, we have P(E2) ≥ 1−β. Let Ē be the opposite event of E. Then

P(E1 and E2) = 1− P(Ē1 or Ē2) ≥ 1− (P(Ē1) + P(Ē2)) ≥ 1− 2β . (A.13)

Next we decompose the error by

|v̂n(s)− v∗(s)| = 1

n
|Rn| =

1

n
|Rn − R̄n + R̄n| ≤

1

n
|Rn − R̄n|+

1

n
|R̄n| (A.14)

By Eq. (A.13), we have the following holds with probability at least 1− 2β,

|v̂n(s)− v∗(s)| ≤ 6KD

n∆̃s

log

(
2KD+1

∆̃2
sβ

)
+

√
2 log 2/β

n
. (A.15)

Choosing β = 2KD+1

∆̃2
s

e−
α2∆̃sn

12KD+1 gives that

|v̂n(s)− v∗(s)| ≤ 6KD

n∆̃s

log


 2KD+1

∆̃2
s
2KD+1

∆̃2
s

e−
α2∆̃sn

12KD+1


+

√√√√
2

n
log

2

2KD+1

∆̃2
s

e−
α2∆̃sn

12KD+1

(A.16)

≤ α2

2
+

√
2

n
log

∆̃2
s

KD+1
+

α2∆̃s

6KD+1
(A.17)

≤ α

2
+

α√
6
< α , (A.18)

where the last step we use 0 < α < 1, ∆̃s < 1 and K,D ≥ 1. This implies that

P (|v̂n(s)− v∗(s)| ≤ α) ≥ 1− C1e
−C2α2n , (A.19)

where we let C1 =
4KD+1

∆̃2
s

and C2 =
∆̃s

12KD+1 .
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A.1.3 Result

LetM be the memory, each entry of which contains the statistics for a state

(s, n(s), v̂n(s)(s)). Given a memoryM, the memory based value for any state

s is defined as

v̂M(s) =
M∑

i=1

wiv̂n(si)(si) , (A.20)

where w is the softmax policy defined by wi ∝ exp(−(δ(si) + ε(s, si))/τ). We

consider the case where we store all states in the memory and M = KD+1− 1.

We have the following result (restatement of Theorem 2).

Theorem 22. Let N be the total number of simulations. There exists con-

stants C1 and C2 that only depend on K and D, such that for any α >

ε+ τ(D + 1) logK,

P(∀s, |v̂M(s)− v∗(s)| ≤ α)

≥1− C1

(α− ε− τ(D + 1) logK)2
e
−C2(α−ε−τ(D+1) logK)2 N

KD+1−1 .

Proof of Theorem 22. Let M = KD+1 − 1. First consider an arbitrary target

states s and recall that the error is decomposed as

|v̂M(s)− v∗(s)| ≤
M∑

i=1

wi(δ(si) + ε(s, si)) , (A.21)

where ε(si, s) is a deterministic similarity measurement defined beforehand.

Recall that ε = maxi ε(s, si). The weight w is chosen as a softmax over

−(δ(si) + ε(s, si)) (note that ε(s, si) is not random.). Then

M∑

i=1

wi(δ(si) + ε(s, si)) = −
(

M∑

i=1

wi(−(δ(si) + ε(s, si))) + τH(w)

)
+ τH(w)

(A.22)

= −τ log
M∑

i=1

exp

(
−δ(si) + ε(s, si)

τ

)
+ τH(w)

(A.23)

≤ −τ log
M∑

i=1

exp

(
−δ(si) + ε(s, si)

τ

)
+ τ logM

(A.24)
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where the second equation follows from that w is the softmax policy, which

gives the optimal solution of maximum entropy optimization. The optimal

value is given by the softmax value (log-sum-exp). Then

P (|v̂M(s)− v∗(s)| ≤ α) (A.25)

≥ P

(
−τ log

M∑

i=1

exp

(
−δ(si) + ε(s, si)

τ

)
≤ α− τ logM

)
(A.26)

= P

(
M∑

i=1

exp

(
−δ(si) + ε(s, si)

τ

)
≥ exp

(
−α− τ logM

τ

))
(A.27)

≥ P

(
M∑

i=1

exp

(
−δ(si)

τ

)
≥ exp

(
−α− ε− τ logM

τ

))
(A.28)

≥ P
(
∃i, eδ(si) ≤ eα−τ logM−ε

)
(A.29)

= P (∃i, δ(si) ≤ α′) , (A.30)

where in the last step we write α′ = α−τ logM−ε. Let i∗ = argmaxi∈{1,...,M} n(si)

be a source state with the maximum number of simulations. We know n(i∗) ≥
N/M . Then

P (∃i, δ(si) ≤ α′) ≥ P (δ(si∗) ≤ α′) (A.31)

≥ P (∀n(i∗) ∈ [N/M,N/M + 1, . . . , N ], δ(i∗) ≤ α′) (A.32)

= 1− P (∃n(i∗) ∈ [N/M,N/M + 1, . . . , N ], δ(i∗) ≥ α′)
(A.33)

≥ 1−
N∑

n=N/M

P (n(i∗) = n, δ(i∗) ≥ α′) (A.34)

≥ 1−
N∑

n=N/M

C1e
−C2α′2n (A.35)

≥ 1− C1

∫

n≥N/M

e−C2α′2ndn (A.36)

= 1− C1

C2α′2 e
−C2α′2 N

M , (A.37)

where Eq. (A.34) follows by a union bound, and Eq. (A.35) follows by Lemma 4

(C1 and C2 are the constants defined in Lemma 4). Thus

P (|v̂M(s)− v∗(s)| ≤ α) ≥ 1− C1

C2α′2 e
−C2α′2 N

M . (A.38)
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This gives the value approximation error of a given target state s. Then

P (∀s, |v̂M(s)− v∗(s)| ≤ α) = 1− P (∃s, |v̂M(s)− v∗(s)| ≥ α) (A.39)

≥ 1−
∑

s

P (|v̂M(s)− v∗(s)| ≥ α) (A.40)

≥ 1− MC1

C2α′2 e
−C2α′2 N

M . (A.41)

where the first inequality follows by a union bound. This finishes the proof.
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Appendix B

Proofs for Chapter 4: Maximum
Entropy Monte Carlo Planning

B.1 Experimental Details

We provide the experiment details in this section.

Value estimation in synthetic tree. For all settings, we use τ = 0.01

for the softmax value. The exploration parameters for both MENTS and UCT

are tuned from {0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}.
Online planning in synthetic tree. The exploration parameters for

MENTS and UCT are tuned from {0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}. The tem-

perature parameter τ of MENTS is tuned from {0.5, 0.1, 0.05, 0.01, 0.005}.
Online planning in Atari 2600 games. The exploration parameter

for both algorithms are tuned from {5.0, 2.0, 1.0, 0.5, 0.1} The temperature

parameter τ of MENTS is tuned from {0.1, 0.05, 0.01}. The results is averaged
over ten environment restarts.

In games such as BeamRider, one test game will take thousands of environ-

ment steps. Therefore, we only test the algorithms within 10,000 environment

steps. The search algorithms are used every 10 steps. For the other steps the

agent will use the DQN to select action.
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B.2 Proofs

B.2.1 Proofs for softmax stochastic bandit

We first introduce a Lemma that approximates the exponential function of

empirical estimator using delta method ?. This Lemma will be used for both

lower bound and upper bound analysis.

Lemma 5. Let X1, . . . , Xn be i.i.d. random variables, such that E[Xi] = µ

and VarXi = σ2 <∞, X̄n =
∑n

i=1 Xi/n. The first two moment of exp
(
X̄n/τ

)

could be approximated by,

E

[
exp

(
X̄n

τ

)]
= eµ/τ +

σ2

2n

(
eµ/τ

τ 2

)
+R (n) (B.1)

Varexp

(
X̄n

τ

)
=

σ2

n

(
eµ/τ

τ

)2

+R′ (n) (B.2)

where |R(n)| ≤ O (n−2) , |R′(n)| ≤ O (n−2).

Proof. By Taylor’s expansion,

exp

(
X̄n

τ

)
= eµ/τ +

eµ/τ

τ

(
X̄n − µ

)
+

eµ/τ

2τ 2
(
X̄n − µ

)2
+

eξ/τ

6τ 3
(
X̄n − µ

)3

for some ξ between µ and X̄n. Taking the expectation on both sides,

E

[
exp

(
X̄n

τ

)]
= eµ/τ + 0 +

eµ/τ

2τ 2
VarX̄n +

eξ/τ

6τ 3
E

[(
X̄n − µ

)3]
.

Let R(n) = eξ/τ

6τ3
E

[(
X̄n − µ

)3]
. By Lemma 5.3.1 of ?, |R(n)| ≤ O(n−2), which

gives Eq. (B.1).

Furthermore, note that
(
E

[
exp

(
X̄n

τ

)])2

=

(
eµ/τ +

σ2

2n

(
eµ/τ

τ 2

)
+R(n)

)2

= e2µ/τ +
σ2

n

(
eµ/τ

τ

)2

+
C1

n2

+ C2R(n) + C3
R(n)

n

for some constant C1, C2, C3. On the other hand, following the same idea of

deriving Eq. (B.1),

E

[(
exp

(
X̄n

τ

))2
]
= e2µ/τ +

2σ2

n

(
eµ/τ

τ

)2

+ R̃(n)
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where |R̃(n)| ≤ O(n−2). The proof of Eq. (B.2) ends by taking the difference

of the above two equations.

B.2.2 Proof of Theorem 3

We consider the learning problem in a Bayesian setting. In the stochastic

bandit problem, we assume the expected reward of each action r(a) is inde-

pendently sampled from a Gaussian prior N (0, σ2
0). At time step t, for any

action a, a reward Xa,t is sampled from N (r(At), σ
2), independently to all the

previous observations. The learner chooses an action At according to some

policy and observe Xt = XAt,t. Without loss of generality, we assume that

σ2 = 1 and τ = 1. Our goal is to prove

lim
t→∞

E

[
t
(
U − Ût

)2
− σ2

τ 2

(∑
a
er(a)/τ

)2]
≥ 0 ,

where the expectation is taken on the randomness of the algorithm, the ex-

pected rewards r, and the observation Xa,i given r. Therefore the existence of

r that provides the lower bound is guaranteed since r satisfies the property in

expectation.

We define Ũt to be the posterior mean of U , i.e. the conditional expectation

of U given the observations Xa,t. Thus, E

[(
U − Ût

)2
−
(
U − Ũt

)2]
≥ 0. The

benefit of considering Ũt is that Ũt can further be decomposed into the Bayes

estimator of each action, even without the assumption that Ût is decomposable

or Ût has (asymptotic) unbiased estimator for each arm.

We next introduce two technical lemmas that are useful to prove the lower

bound. The first result shows that for an algorithm that performs well on all

possible environments, it must pull each arm at least in Ω(log t) in t rounds.

Note that unlike in the regret analysis for stochastic multi-armed bandits,

where one only cares about how many times the suboptimal arms are pulled,

the Ω(log t) lower bound on Nt(a) for suboptimal arms is not strong enough

to provides a tight lower bound of Et.

Lemma 6. For any algorithm A such that Et = O(1
t
), it holds that Nt(a) =

Ω(log t) for any arm a.
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In the Bayesian learning setting defined above, since exp (Xa,t) has a log-

normal distribution with a Gaussian prior, its posterior estimation is still log-

normal. The second result studies the concentration rate of the posterior

estimation.

Lemma 7. Let Φ(a) =
∑Nt(a)

i=1 Xa,i+1/2

τ0+Nt(a)
be the posterior estimation of r(a) and

define ∆(a) = er(a) − eΦ(a). We have

E [∆(a)|Nt(a), r] = O

(
1

Nt(a)

)

E
[
∆(a)2

∣∣Nt(a), r
]
= e2r(a)

(
Nt(a)

(Nt(a) + σ0)2
+O

(
1

N2
t (a)

))
.

Now we are ready to present the proof of the lower bound.

Proof of Theorem 3. By the tower rule and the fact that Ũ is the minimizer

of the mean squared error,

E

[
t
(
U − Ût

)2]
≥ E

[
t
(
U − Ũt

)2]
= E

[
E

[
t
(
U − Ũt

)2 ∣∣∣∣ r
]]

,

It then suffices to prove that

lim
t→∞

E

[
t
(
U − Ũt

)2 ∣∣∣∣ r
]
≥
(∑

a
er(a)

)2

for any r. The rest of the proof is always conditioned on r. Let Xa,t =

Xa,1, . . . , Xa,Nt(a) be the observations of action a up to time step t. We can

decompose Ũ by

Ũt = E [U |Xj,t, j ∈ {1, . . . , K}] =
K∑

j=1

E
[
er(j)

∣∣Xj,t, j ∈ {1, . . . , K}
]

=
K∑

j=1

E
[
er(j)

∣∣Xj,t

]
.

Therefore, the Bayesian estimator of U is

Ũt =
∑

j

exp

(∑Nt(j)
i=1 Xj,i + 1/2

τ0 +Nt(j)

)
.

It remains to bound
(
U − Ũt

)2
conditioned on r. Note that

(
U − Ũt

)2
=

(
∑

j

er(j) − exp

(∑Nt(j)
k=1 Xj,k + 1/2

τ0 +Nt(j)

))2

=
∑

j

∆2
j +

∑

i ̸=j

∆j∆i,
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where ∆j = er(j) − exp(
∑Nt(j)

k=1 Xj,k+1/2

τ0+Nt(j)
). Finally, define Pt(j) = Nt(j)/t and let

τ0 → 0. By Lemma 7, we have

lim
t→∞

tE

[(
U − Ũt

)2
| r
]
= lim

t→∞
tE

[
E

[(
U − Ũt

)2 ∣∣∣∣Nt(1), . . . , Nt(k), r

]]

= lim
t→∞

E



∑

j

e2r(j) +O
(

1
Nt(j)

)

Pt(j)




≥
(∑

a
er(a)

)2

where the last inequality follows by Cauchy-Schwarz inequality and Lemma 6.

Note that for the inequality to hold there must be for all action k ∈ [K],

Nt(k) = N∗
t (k).

For the general case, where σ, τ ̸= 1, we can simply scale the reward by

τ , then the variance of Xj,k is σ2

τ2
. The proof still holds and we obtain the

following inequality,

lim
t→∞

tE

[(
U − Ũt

)2
| r
]
≥ σ2

τ 2

(
∑

a

π̄(a)er(a)/τ

)2

.

B.2.3 Concentration of Nt(a) in Bandit (Theorem 5)

Define Ñt(a) =
∑

s πs(a), where πs is the policy followed by E2W at time step

s. By Theorem 2.3 in ? or ?, we have the following concentration result.

P

(
|Nt(a)− Ñt(a)| > ϵ

)
≤ 2 exp

(
− ϵ2

2
∑t

s=1 σ
2
s

)
≤ 2 exp

(
−2ϵ2

t

)
,

where σ2
s ≤ 1/4 is the variance of Benoulli distribution with p = πs(k) at time

step s. Denote the event

Ẽϵ = {∀a ∈ A, |Ñt(a)−Nt(a)| < ϵ}.

Thus we have

P

(
Ẽc

ϵ

)
≤ 2|A| exp

(
−2ϵ2

t

)
.

It remains to bound P

(
|Ñt(a)−N∗

t (a)| ≥ ϵ
)
. To prove Theorem 5, we first

introduce two technical lemmas, which prove the accuracy of our estimate
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on the reward and connect the convergence of the reward estimation to the

convergence of policy.

Lemma 8. For the stochastic softmax bandit problem, E2W can guarantee

that, for t ≥ 4,

P

(
∥r− r̂t∥∞ ≥

2σ

log(2 + t)

)
≤ 4|A| exp

(
− t

(log(2 + t))3

)
.

Lemma 9. Given two soft indmax policies, π(1) = fτ (r
(1)) and π(2) = fτ (r

(2)),

we have
∥∥π(1) − π(2)

∥∥
∞ ≤

(
1 +

1

τ

)∥∥r(1) − r(2)
∥∥
∞

Proof of Theorem 5. We denote the following event,

Ert =

{
∥r− r̂t∥∞ <

2σ

log(2 + t)

}
.

For any time step s and action a, by the definition of πs(a) we have,

|πs(a)− π∗(a)| ≤ |π̂s(a)− π∗(a)|+ λs.

Thus, to bound |Ñt(a) − N∗
t (a)|, conditioned on the event ∩t

i=1Ert and for

t ≥ 4 there is,

|Ñt(a)−N∗
t (a)| ≤

t∑

s=1

|π̂s(a)− π∗(a)|+
t∑

s=1

λs

≤
(
1 +

1

τ

) t∑

s=1

∥r̂s − r∥∞ +
t∑

s=1

λs (by Lemma 9)

≤
(
1 +

1

τ

) t∑

s=1

2σ

log(2 + s)
+

t∑

s=1

λs (by Lemma 8)

≤
(
1 +

1

τ

)∫ t

s=0

2σ

log(2 + s)
ds+

∫ t

s=0

|A|
log(1 + s)

ds

≤ Ct

log t
,
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for some constant C depending on |A|, σ and τ . Finally,

P

(
|Ñt(a)−N∗

t (a)| ≥
Ct

log t

)
≤

t∑

i=1

P
(
Ec

rt

)
=

t∑

i=1

4|A| exp
(
− t

(log(2 + t))3

)

≤4|A|t exp
(
− t

(log(2 + t))3

)
.

Therefore,

P

(
|Nt(a)−N∗

t (a)| ≥ (1 + C)
t

log t

)

≤P
(
|Ñt(k)−N∗

t (k)| ≥
Ct

log t

)
+ P

(
|Nt(k)− Ñt(k)| >

t

log t

)

≤4|A|t exp
(
− t

log(2 + t)3

)
+ 2|A| exp

(
− 2t

log(2 + t)2

)

≤O
(
t exp

(
− t

(log t)3

))

B.2.4 Proof of Theorem 4

Proof of Theorem 4. Let δt = Ct/ log t with some constant C. Define the

following set

Gt =
{
s

∣∣∣∣s ∈ 1 : t, ⌈N∗
t (a) + δt⌉ ≥ s ≥ ⌊N∗

t (a)− δt⌋
}
,

and its complementary set Gct = {1, 2, . . . , t} \ Gt.
By Theorem 5, ∀a ∈ {1, . . . , K}, with probability at least 1−O

(
t exp

(
− t

(log t)3

))
,

Nt(a) ∈ Gt. By law of total expectation and Lemma 5,

E

[
exp

(
r̂t(a)

τ

)]
=

t∑

s=1

P (Nt(a) = s)E

[
exp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a) = s

]

=
t∑

s=1

P (Nt(a) = s)

(
er(a)/τ +

σ2

2s

(
er(a)/τ

τ 2

))
+

t∑

s=1

P (Nt(a) = s)O
(
s−2
)

=
t∑

s=1

P (Nt(a) = s)

(
σ2

2s

(
er(a)/τ

τ 2

)
+O

(
s−2
))

+ er(a)/τ

(B.3)

We divide the summation in two parts. For s ∈ Gct , by Theorem 5,

∑
s∈Gc

t

P (Nt(a) = s) ·
(
σ2

2s

(
er(a)/τ

τ 2

)
+O

(
s−2
))
≤ O

(
1

t

)
(B.4)
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For s ∈ Gt,
∑

s∈Gt

P (Nt(a) = s) ·
(
σ2

2s

(
er(a)/τ

τ 2

)
+O

(
s−2
))
≤ O

(
(N∗

t (a)− δt)
−1)

(B.5)

Combine the above together,

t (U − E [Ut])
2 = t

(
∑

a

E

[
exp

(
r̂t(a)

τ

)]
− exp

(
rt(a)

τ

))2

= t

(
∑

a

O

(
1

t

)
+O

(
(N∗

t (a)− δt)
−1)
)2

.

Thus,

lim
t→∞

t (U∗ − E [Ut])
2 = 0,

i.e. Ut is a consistent estimate for U∗.

To bound Et, it remains to bound the variance of Ut since it is unbiased.

By the law of total variance,

Varexp

(
r̂t(a)

τ

)
= E

[
Varexp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a)

]
+VarE

[
exp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a)

]

(B.6)

Note that by Lemma 5, the first term is

E

[
Varexp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a)

]

=
t∑

s=1

P (Nt(a) = s) Varexp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a) = s

=
t∑

s=1

P (Nt(a) = s)

(
σ2

s

(
er(a)/τ

τ

)2

+O
(
s−

3
2

))

Using the same idea in Eq. (B.4) and Eq. (B.5), we consider the summation

in two parts. For s ∈ Gct ,

∑
s∈Gc

t

P (Nt(a) = s) ·
(
σ2

s

(
er(a)/τ

τ

)2

+O
(
s−

3
2

))
≤ O

(
1

t

)

For s ∈ Gt,

∑
s∈Gt

P (Nt(a) = s) ·
(
σ2

s

(
er(a)/τ

τ

)2

+O
(
s−

3
2

))
≤ σ2

τ 2
· e2r(a)/τ

N∗
t (a)− δt

+O
(
(N∗

t (a)− δt)
− 3

2

)
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Put these together we have,

E

[
Varexp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a)

]
≤ O

(
1

t

)
+

σ2

τ 2
· e2r(a)/τ

N∗
t (a)− δt

+O
(
(N∗

t (a)− δt)
− 3

2

)

(B.7)

For the second term of Eq. (B.6) we have,

VarE

[
exp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a)

]
= E

[(
E

[
exp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a)

])2
]
−
(
E

[
exp

(
r̂t(a)

τ

)])2

For the first term, by Lemma 5,

E

[(
E

[
exp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a)

])2
]

=
t∑

s=1

P (Nt(a) = s)

(
E

[
exp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a)

])2

=
t∑

s=1

P (Nt(a) = s)

(
e2r(a)/τ +

σ2

s

(
er(a)/τ

τ

)2
)

+O
(
s−3/2

)

≤ e2r(a)/τ +O

(
1

t

)
+

σ2

τ 2
· e2r(a)/τ

N∗
t (a)− δt

+O
(
(N∗

t (a)− δt)
− 3

2

)

where the last inequality follows by the same idea of proving (B.7). For the

second term, combining Eqs. (B.3) to (B.5),

(
E

[
exp

(
r̂t(a)

τ

)])2

= exp

(
2r(a)

τ

)
+O

(
1

t

)
+O

(
(N∗

t (a)− δt)
−1)

Then we have,

VarE

[
exp

(
r̂t(a)

τ

) ∣∣∣∣Nt(a)

]
≤ O

(
1

t

)
+

σ2

τ 2
· e2r(a)/τ

N∗
t (a)− δt

+O
(
(N∗

t (a)− δt)
−1)

(B.8)

Note that

lim
t→∞

t · σ
2

τ 2
· e2r(a)/τ

N∗
t (a)− δt

= lim
t→∞

σ2

τ 2
· e2r(a)/τ

π∗(a)− δt
t

=
σ2

τ 2
· e

r(a)/τ

π̄(a)
·
(
∑

a

π̄(a) exp(r(a)/τ)

)
(B.9)
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Combine Eq. (B.7), Eq. (B.8) and Eq. (B.9) together,

lim
t→∞

tVarÛt

= lim
t→∞

t

(
∑

a

π̄2(a)Varexp

(
r̂t(a)

τ

))

≤ lim
t→∞

t
∑

a

π̄2(a)

(
O

(
1

t

)
+

σ2

τ 2
· e2r(a)/τ

N∗
t (a)− δt

)

+ t
∑

a

π̄2(a)O
(
(N∗

t (a)− δt)
−1)

=
σ2

τ 2

(
∑

a

π̄(a)er(a)/τ

)2

which ends the proof.

B.2.5 Technical Lemmas

Proof of Lemma 6. Consider two gaussian environments ν1 and ν2 with unit

variance. The vector of means of the reward per arm in ν1 is (r(1), . . . , r(K))

and (r(1) + 2ϵ, r(2), . . . , r(K)) in ν2. Define

U1 =
∑K

i=1
eri , U2 = er1+2ϵ +

∑K

i=2
eri

Let P1 and P2 be the distribution induced by ν1 and ν2 respectively. Denote

the event,

E =
{
|Ût − U1| > er1ϵ

}
,

By definition, the error Et,ν1 under ν1 satisfies

Et,ν1 ≥ P1 (E)E
[
(U1 − Ût)

2 |E
]
≥ P1 (E) e2r1ϵ2,

and the error Et,ν2 under ν2 satisfies

Et,ν2 ≥ P2 (E
c)E

[
(U2 − Ût)

2 |Ec
]
≥ P2 (E

c) e2r1ϵ2.

Therefore, under the assumption that the algorithm suffers O(1
t
) error in both

environments,

O(
1

t
) = Et,P1 + Et,P2 ≥ P1 (E) e2r1ϵ2 + P2 (E

c) e2r1ϵ2

= e2r1ϵ2 (P1 (E) + P2 (E
c)) ≥ 1

2
e2r1ϵ2e−2Nt(k)ϵ2 .
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where the last inequality follows by Pinsker’s inequality and Divergence decom-

position Lemma Lattimore & Szepesvári (2020). Therefore Nt(k) = Ω(log(t)).

Proof of Lemma 7. Define

Γ(a) = Φ(a)− r(a) =
Nt(a)

Nt(a) + τ0
(r̂(a)− r(a)) +

1/2− τ0r(a)

τ0 +Nt(a)
.

By the fact that the variance of Xa,t given r is 1,

E [Γ(a) |Nt(a), r] =
1/2− τ0r(a)

τ0 +Nt(a)
.

E
[
Γ(a)2

∣∣Nt(a), r
]
=

σ2Nt(a)

(Nt(a) + τ0)2
+O

(
1

N2
t (a)

)
,

Then we have

E [∆(a)|Nt(a), r] = er(a) − E
[
eΦ(a)|Nt(a), r

]

= er(a)
(
1− E

[
eΓ(a)|Nt(a), r

])
= O

(
1

Nt(a)

)

Similarly,

E
[
∆(a)2

∣∣Nt(a), r
]
= e2r(a)

(
Nt(j)

(Nt(j) + σ0)2
+O

(
1

N2
t (j)

))
.

Proof of Lemma 8. By the choice of λs =
|A|

log(1+s)
, it follows that for all a and

t ≥ 4,

Ñt(a) =
∑t

s=1
πs(a) ≥

∑t

s=1

1

log(1 + s)

≥
∑t

s=1

1

log(1 + s)
− s/(s+ 1)

(log(1 + s))2

≥
∫ 1+t

1

1

log(1 + s)
− s/(s+ 1)

(log(1 + s))2
ds

=
1 + t

log(2 + t)
− 1

log 2

≥ t

2 log(2 + t)
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Conditioned on the event Ẽϵ where we set ϵ =
t

4 log(2+t)
, it follows that Nt(a) ≥

t
4 log(2+t)

. Then, for any action a by the definition of sub-gaussian,

P


|r(a)− r̂t(a)| >

√
8σ2 log(2

δ
) log(2 + t)

t




≤P


|r(a)− r̂t(a)| >

√
2σ2 log(2

δ
)

Nt(a)


 ≤ δ.

Let δ satisfy that log(2/δ) = t
(log(2+t))3

,

P

(
|r(a)− r̂t(a)| >

2σ

log(2 + t)

)
≤ 2 exp

(
− t

(log(2 + t))3

)

Therefore for t ≥ 2

P

(
∥rt − r̂t∥∞ ≥

2σ

log(2 + t)

)

≤P
(
∥rt − r̂t∥∞ ≥

2σ

log(2 + t)

∣∣∣∣ Ẽϵ

)
+ P

(
Ẽc

ϵ

)

≤
∑

k

P

(
|r(a)− r̂t(a)| >

2σ

log(2 + t)

∣∣∣∣ Ẽϵ

)
+ P

(
Ẽc

ϵ

)

≤2|A| exp
(
− t

(log(2 + t))3

)
+ 2|A| exp

(
− t

2(log(t+ 2))2

)

≤4|A| exp
(
− t

(log(2 + t))3

)

Proof of Lemma 9. Note that

∥∥π(1) − π(2)
∥∥
∞ ≤

∥∥log π(1) − log π(2)
∥∥
∞

≤ 1

τ

∥∥r(1) − r(2)
∥∥
∞ +

∣∣Fτ (r
(1))−Fτ (r

(2))
∣∣

The proof ends by using the fact
∣∣Fτ (r

(1))−Fτ (r
(2))
∣∣ ≤

∥∥r(1) − r(2)
∥∥
∞, which

follows Lemma 8 of Nachum et al. (2017).

B.3 Proofs for Tree

This section contains the detailed proof for theorems in the tree setting, in

particular, Theorem 6 and Theorem 7.
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B.3.1 Proof of Theorem 6

Proof. We prove this using induction on the depth D of tree. For the base

case (D=0), the result directly follows by the fact ν is sub-gaussian. Now, at

some internal node n(s) ∈ T , assume the result holds for all its children, we

prove the result still holds.

For any state s, we define EV(s) = exp(vsft(s)/τ) and EV∗(s) = exp(v∗sft(s)/τ).

Note that

EV− EV∗ ≥ ϵEV∗ ⇔ V ≥ τ log(1 + ϵ) + V ∗

EV∗ − EV ≥ ϵEV∗ ⇔ V ≤ τ log(1− ϵ) + V ∗

Therefore it is equivalent to prove for any node in tree,

P (|EV(s)− EV∗(s)| ≥ ϵEV∗(s)|Es) ≤ C̃ exp

{
−ϵ2N(s)

Cσ2

}

for some constant C and C̃. Note that by the definition of U we have

EV(s) =
∑

a

exp(qsft(s, a)/τ) =
∑

a

exp{(r(s, a) + vsft(sa))/τ}

where sa is the state reached by taking action a at state s. Since the reward

is deterministic and bounded which only affects the scale, we can then only

consider the convergence of vsft(sa). Consider a decompose vector α such that
∑

a αaEV
∗(sa) = ϵEV∗(s).

P (|EV(s)− EV∗(s)| ≥ ϵEV∗(s) |Es) ≤
∑

a

P (|EV(sa)− EV∗(sa)| ≥ αaEV
∗(sa) |Es)

≤
∑

a

C̃a exp

(
−α2

aN(s)π∗
sft(a|s)

2Caσ2

)
,

where the last inequality is by the induction hypothesis. Let α2
aπ

∗
sft(a|s) =

M where
√
M = ϵEV∗(s)

∑

a EV∗(sa)/
√

π∗
sft(a|s)

. One can verify that
∑

a αaEV
∗(sa) =
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ϵEV∗(s). Therefore,

P (|EV(s)− EV∗(s)| ≥ ϵEV∗(s)) ≤
∑

a

C̃a exp


− N(s)

2Caσ2

(
ϵEV∗(s)

∑
a EV

∗(sa)/
√
π∗
sft(a|s)

)2



≤|A|C̃ exp


−ϵ2N(s)

2Cσ2

EV∗(s)2
(∑

a

√
EV∗(s)EV∗(sa)

)2




≤|A|C̃ exp


−ϵ2N(s)

2Cσ2

EV∗(s)
(∑

a

√
EV∗(sa)

)2




≤|A|C̃ exp

(
− 1

|A|
ϵ2N(s)

2Cσ2

)

≤C̃1 exp

(
−ϵ2N(s)

C̃2σ2

)
.

Picking C̃ = max{C̃1, C̃2} leads to the conclusion.

B.3.2 Proof of Theorem 7

Proof. Let a∗ be the action with largest softmax value and s be the root state.

Moreover, let U(sa) = exp (qsft(s, a)/τ) and U∗(sa) = exp (q∗sft(s, a)/τ). The

event Es is defined as in Theorem 6. The probability that MENT selects an

sub-optimal arm at s is,

P (∃a ∈ A, U(sa) > U(sa∗)) ≤P (∃a ∈ A, U(sa) > U(sa∗) |Es) + P (Ec
s)

≤
∑

a

P (U(sa) > U(sa∗) |Es) + P (Ec
s) .

Since we can upper bound P (Ec
s) by Theorem 5, it remains to bound P (U(sa) > U(sa∗) |Es).

P (U(sa) > U(sa∗) |Es)

=P (U(sa)− U(sa∗)− U∗(sa) + U∗(sa∗) > U∗(sa∗)− U∗(sa) |Es)

≤P (|U(sa∗)− U∗(sa∗)| > αU∗(sa∗) |Es) + P (|U(sa)− U∗(sa)| > βU∗(sa) |Es)

≤C̃a∗ exp

{
−N∗(s, a∗)α2

2Ca∗σ2

}
+ C̃a exp

{
−N∗(s, a)β2

2Caσ2

}

where αU∗(sa∗) + βU∗(sa) = U∗(sa∗)− U∗(sa). The last inequality follows by

Theorem 6, since U(sa)− U∗(sa) = exp(r(s, a)) (exp (vsft(s
′))− exp (v∗sft(s

′))),
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where s′ is the state of the child of n(s) taking action a. Recall that for any

action a, N∗(s, a) = t · π∗
sft(a|s). We can choose α and β similarly as in the

proof,

α =
(U∗(sa∗)− U∗(sa))/

√
π∗
sft(a

∗|s)
U∗(s, a)/

√
π∗
sft(a|s) + U∗(s, a∗)/

√
π∗
sft(a

∗|s)

β =
(U∗(sa∗)− U∗(sa))/

√
π∗
sft(a|s)

U∗(s, a)/
√
π∗
sft(a|s) + U∗(s, a∗)/

√
π∗
sft(a

∗|s)
.

Then, there exists some constant Ca and C ′
a such that

P (U(sa) > U(sa∗) |Es) ≤ C ′
a exp

(
− t

2Caσ2

(U∗(sa∗)− U∗(sa))
2

U∗(s)(
√
U∗(s, a) +

√
U∗(s, a∗))2

)
.

We can omit the terms depending on U∗ since they only affect the scale (we

can switch to a new constant C ′
a.) Finally, by Theorem 5,

P (∃a ∈ A, U(sa) > U(sa∗)) ≤
∑

a

P (U(sa) > U(sa∗) |Es) + P (Ec
s)

≤
∑

a

C ′
a exp

{
− t

2Caσ2

}
+ C ′t exp

{
− t

(log t)3

}

≤ Ct exp

{
− t

(log t)3

}

for some constant C not depending on t.
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Appendix C

Proofs for Chapter 6: On the
Optimality of Batch Policy
Optimization Algorithms

C.1 Proof of Minimax Results

C.1.1 Proof of Theorem 8

Let m ≥ 2 and µ1, . . . , µm be a collection of vectors in R
k with µb

a = ∆I{a = b}
where ∆ > 0 is a constant to be chosen later. Next, let θb be the environment

in Θn with Pa a Gaussian distribution with mean µb
a and unit variance. Let

B be a random variable uniformly distributed on [m] where m ∈ [k]. The

Bayesian regret of an algorithm A is

BR∗ = inf
A

E [R(A, θB)] = ∆E [I{A ̸= B}] ,

where A ∈ [k] is the σ(X)-measurable random variable representing the de-

cision of the Bayesian optimal policy, which is A = argmaxb∈[k] P{B = b|X}.
By Bayes’ law and the choice of uniform prior,

P{B = b|X} ∝ exp

(
−1

2

k∑

a=1

na(µ̂a − µb
a)

2

)

= exp

(
−1

2

k∑

a=1

na(µ̂a −∆I{a = b})2
)

.

Therefore, the Bayesian optimal policy chooses

A = argmin
b∈[k]

nb(∆/2− µ̂b) .
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On the other hand,

BR∗ = ∆P{A ̸= B} = ∆

k

k∑

b=1

Pb(A ̸= b) ,

where Pb = P{·|B = b}. Let b ∈ [m] be arbitrary. Then,

Pb{A ̸= b}

≥ Pb

{
µ̂b ≤ ∆ and max

a∈[m]\{b}
µ̂a ≥

∆

2

(
1 +

nb

na

)}

≥ 1

2


1−

∏

a∈[m]\{b}

(
1− Pb

{
µ̂a ≥

∆

2

(
1 +

nb

na

)})


≥ 1

2

(
1−

∏

a>b

(1− Pb {µ̂a ≥ ∆})
)

,

where in the second inequality we used independence and the fact that the

law of µ̂b under Pb is Gaussian with mean ∆ and variance 1/nb. The first

inequality follows because
{
µ̂b ≤ ∆ and max

a ̸=b
µ̂a ≥

∆

2

(
1 +

nb

na

)}
⊂ {A ̸= b} .

Let b < a ≤ m and

δa(∆) =
1

∆
√
na +

√
4 + na∆2

√
2

π
exp

(
−na∆

2

2

)
.

Since for a ̸= b, µ̂a has law N (0, 1/na) under Pb, by standard Gaussian tail

inequalities (Abramowitz et al., 1988, §26),

Pb{µ̂a ≥ ∆} = Pb{µ̂a

√
na ≥ ∆

√
na} ≥ δa(∆) ≥ δm(∆) ,

where the last inequality follows from our assumption that n1 ≤ · · · ≤ nk.

Therefore, choosing ∆ so that δm(∆) = 1/(2m),

BR∗ ≥ ∆

2m

∑

b∈[m]

(
1− (1− δm(∆))m−b

)

≥ ∆

2m

∑

b∈[m]

(
1−

(
1− 1

2m

)m−b
)

≥ ∆

2m

∑

b≤m/2

(
1−

(
1− 1

2m

)m/2
)

≥ ∆(m− 1)

20m
≥ ∆

40
.
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A calculation shows there exists a universal constant c > 0 such that

∆ ≥ c

√
log(m)

nm

,

which shows there exists a (different) universal constant c > 0 such that

inf
A

sup
θ
R(A, θ) ≥ BR∗ ≥ max

m≥2
c

√
log(m)

nm

.

The argument above relies on the assumption that m ≥ 2. A minor modi-

fication is needed to handle the case where n1 is much smaller than n2. Let

B be uniformly distributed on {1, 2} and let θ1, θ2 ∈ Θn be defined as above,

but with µ1 = (∆, 0) and µ2 = (−∆, 0) for some constant ∆ > 0 to be tuned

momentarily. As before, the Bayesian optimal policy has a simple closed form

solution, which is

A =

{
1 if µ̂1 ≥ 0

2 otherwise .

The Bayesian regret of this policy satisfies

BR∗ =
1

2
R(A, θ1) +

1

2
R(A, θ2) ≥

1

2
R(A, θ1)

≥ 1

2
P1{A = 2} ≥ ∆

2
P1{µ̂1 < 0}

≥
√

2

π

∆

2∆
√
n1 + 2

√
4 + n1∆2

exp

(
−n1∆

2

2

)

≥ 1

13

√
1

n1

,

where the final inequality follows by tuning ∆.
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C.1.2 Proof of Theorem 9

Proof. Let i′ = argmaxi µ̃i. Then, given that (6.2) is true for all arms, which

is with probability at least 1− δ, we have

µ∗ − µi′ = µ∗ − µ̃a∗ + µ̃a∗ − µ̃i′ + µ̃i′ − µi′

≤ µ∗ − µ̃a∗ + µ̃i′ − µi′

≤ µ∗ − µ̂a∗ + µ̂i′ − µi′ + 2

√
2 log(k/δ)

mini ni

≤
√

32 log(k/δ)

mini ni

,

where the first two inequalities follow from the definition of the index algo-

rithm, and the last follows from (6.2). Using the tower rule gives the desired

result.

C.2 Proof of Instance-dependent Results

C.2.1 Instance-dependent Upper Bound

Proof of Theorem 10. Assuming µ1 ≥ µ2 ≥ ... ≥ µk, if we have P (A(X) ≥ i) ≤
bi, then we can write

R(A) =
∑

2≤i≤k

∆iP (A(X) = i)

=
∑

2≤i≤k

∆i (P (A(X) ≥ i)− P (A(X) ≥ i+ 1))

=
∑

2≤i≤k

(∆i −∆i−1)P (A(X) ≥ i)

≤
∑

2≤i≤k

(∆i −∆i−1) bi

=
∑

2≤i≤k

∆i(bi − bi+1) .

To upper bound P (A(X) ≥ i), let Ii be the index used by algorithm A,
i.e., A(X) = argmaxi Ii. Then

P (A(X) ≥ i) ≤ P

(
max
j≥i

Ij ≥ max
j<i

Ij

)
.
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Hence we can further write

P (A(X) ≥ i) ≤ P

(
max
j≥i

Ij ≥ max
j<i

Ii,max
j<i

Ij ≥ η

)

+ P

(
max
j≥i

Ij ≥ max
j<i

Ii,max
j<i

Ij < η

)

≤ P

(
max
j≥i

Ij ≥ η

)
+ P

(
max
j<i

Ij < η

)
. (C.1)

Next we optimize the choice of η according to the specific choice of the index.

For this let Ii = µ̂i + bi.

Continuing with equation C.1, for the first term, by the union bound we

have

P

(
max
j≥i

Ij ≥ η

)
≤
∑

j≥i

P (Ij ≥ η) .

For each j ≥ i, by Hoeffding’s inequality we have

P (Ij ≥ η) ≤ e−
nj
2
(η−µj−bj)

2
+ .

For the second term in equation C.1, we have P (maxj<i Ij < η) ≤ P (Ij < η)

for each j < i.

By Hoeffding’s inequality we have

P (Ij < η) ≤ e−
nj
2
(µj+bj−η)2+ ,

and thus

P

(
max
j<i

Ij < η

)
≤ min

j<i
e−

nj
2
(µj+bj−η)2+ .

Define

gi(η) =
∑

j≥i

e−
nj
2
(η−µj−bj)

2
+ +min

j<i
e−

nj
2
(µj+bj−η)2+

and g∗i = minη gi(η). Then we have

P (A(X) ≥ i) ≤ min{1, g∗i } .

Putting everything together, we bound the expected regret as

R(A) ≤
∑

2≤i≤k

∆i

(
min{1, g∗i } −min{1, g∗i+1}

)

where we define g∗k+1 = 0.
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Proof of Remark 3. Recall the definition of gi(η):

gi(η) =
∑

j≥i

e−
nj
2
(η−µj−bj)

2
+ +min

j<i
e−

nj
2
(µj+bj−η)2+ .

Let η = µ1 − 2
√

2
nmin

log k
δ
. Then, for the second term of gi(η),

min
j<i

e−
nj
2
(µj+bj−η)2+ ≤ e

−n1
2

(

2
√

2
nmin

log k
δ
−
√

2
n1

log k
δ

)2

+ ≤ δ

k
.

For the first term,

∑

j≥i

e−
nj
2
(η−µj−bj)

2
+ =

∑

j≥i

e
−nj

2

(

µ1−2
√

2
nmin

log k
δ
−µj−bj

)2

+ ≤
∑

j≥i

e
−nmin

2

(

∆j−3
√

2
nmin

log k
δ

)2

+ .

Thus,

g∗i ≤
∑

j≥i

e
−nmin

2

(

∆j−3
√

2
nmin

log k
δ

)2

+ +
δ

k
.

For arm i such that ∆i ≥ 4
√

2
nmin

log k
δ
, by Theorem 10 we have P (A(X) ≥

i) ≤ g∗i ≤ δ. The result then follows by the tower rule.

Proof of Corollary 1. For each i, let ηi = maxj<i Lj. Then,

gi(ηi) =
∑

j≥i

e−
nj
2
(maxj<i Lj−µj−bj)

2
+ +min

j<i
e−

nj
2
(µj+bj−maxj<i Lj)

2
+ .

Let s = argmaxj<i Lj. For the second term we have,

min
j<i

e−
nj
2
(µj+bj−maxj<i Lj)

2
+ ≤ e−

ns
2
(µs+bs−Ls)

2
+ ≤ δ

k
.

Next we consider the first term. Recall that h = max{i ∈ [k] : maxj<i Lj <

maxj′≥i Uj′}. Then for any i > h, we have maxj<i Lj ≥ Uj′ for all j′ ≥ i.

Therefore,

∑

j≥i

e
−nj

2 (maxj′<i Lj′−µj−bj)
2

+

=
∑

j≥i

e
−nj

2

(

maxj′<i Lj′−Uj+

√

2
nj

log k
δ

)2

+

≤ δ

k

∑

j≥i

e−
nj
2 (maxj′<i Lj′−Uj)

2

.
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Note that for i ≤ h, ∆i ≤ ∆h. Thus we have,

R(A) ≤ ∆h +
∑

i>h

(∆i −∆i−1)P(A(X) ≥ i)

≤ ∆h +
δ

k
∆max +

δ

k

∑

i>h

(∆i −∆i−1)
∑

j≥i

e−
nj
2 (maxj′<i Lj′−Uj)

2

,

which concludes the proof.

Proof of Corollary 2. Considering the greedy algorithm, for each i ≥ 2,

gi(η) =
∑

j≥i

e−
nj
2
(η−µj)

2
+ +min

j<i
e−

nj
2
(µj−η)2+ .

Define hi = argmaxj<i µj −
√

2
nj

log k
δ
and ηi = µhi

−
√

2
nhi

log k
δ
. Then we

have e
−

nhi
2 (µhi

−ηi)
2

+ = δ/k. Then for j ≥ i we have

e−
nj
2
(ηi−µj)

2
+ = e

−nj
2

(

µhi
−µj−

√

2
nhi

log k
δ

)2

+ .

When µhi
− µj ≥

√
2

nhi
log k

δ
+
√

2
nj

log k
δ
we have e−

nj
2
(ηi−µj)

2
+ ≤ δ/k.

Define

Ui = I

{
∀j ≥ i, µhi

− µj ≥
√

2

nhi

log
k

δ
+

√
2

nj

log
k

δ

}
.

Then we have g∗iUi ≤ k−i+2
k

δ ≤ δ. According to Theorem 10 we have P (A(X) ≥ i) ≤
min{1, g∗i }, so for any i such that P (A(X) ≥ i) > δ, we must have Ui = 0,

which is equivalent to

max
j<i

µj −
√

2

nj

log
k

δ
< max

j≥i
µj +

√
2

nj

log
k

δ
. (C.2)

Let î be the largest index i that satisfies Eq. (C.2). Then P

(
A(X) ≥ î+ 1

)
≤

δ. Thus we have P
(
µ∗ − µA(X) ≤ ∆î

)
≥ 1− δ, it remains to upper bound ∆î.

For any i ∈ [k], if î ≤ i then ∆î ≤ ∆i. If î > i we have

max
j<î

µj −
√

2

nj

log
k

δ
≥ µi −

√
2

ni

log
k

δ
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and

max
j≥î

µj +

√
2

nj

log
k

δ
≤ µî +max

j>i

√
2

nj

log
k

δ
.

Applying equation C.2 gives

∆î −∆i = µi − µî ≤
√

2

ni

log
k

δ
+max

j>i

√
2

nj

log
k

δ
,

so

∆î ≤ ∆i +

√
2

ni

log
k

δ
+max

j>i

√
2

nj

log
k

δ

holds for any i ∈ [k], concluding the proof.

Proof of Corollary 3. Let η = maxi µi −
√

8
ni
log k

δ
. Considering the LCB al-

gorithm, for each i ≥ 2, we have

gi(η) =
∑

j≥i

e
−nj

2

(

η−µj+

√

2
nj

log k
δ

)2

+ +min
j<i

e
−nj

2

(

µj−η−
√

2
nj

log k
δ

)2

+ .

Define hi = argmaxj<i µj −
√

8
nj

log k
δ
and ηi = µhi

−
√

8
nhi

log k
δ
. Then we

have e
−

nhi
2

(

µhi
−ηi−

√

2
nj

log k
δ

)2

+ = δ/k. Now, consider j ≥ i. Then,

e
−nj

2

(

ηi−µj+

√

2
nj

log k
δ

)2

+ ≤ δ

k

whenever ηi − µj ≥ 0, i.e. µhi
−
√

8
nhi

log k
δ
≥ µj.

Define

Ui = I

{
∀j ≥ i, µhi

−
√

8

nhi

log
k

δ
≥ µj

}
.

Then we have g∗iUi ≤ k−i+2
k

δ ≤ δ. According to Theorem 10 we have P (A(X) ≥ i) ≤
min{1, g∗i }, so for any i such that P (A(X) ≥ i) > δ, we must have Ui = 0,

which is equivalent to that there exists some s ≥ i such that

µs > max
j<i

µj −
√

8

nj

log
k

δ
. (C.3)
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Let î be the largest index i that satisfies equation C.3. Then we have P
(
A(X) ≥ î+ 1

)
≤

δ and thus P
(
µ∗ − µA(X) ≤ ∆î

)
≥ 1− δ. It remains to upper bound ∆î.

For any i ∈ [k], if î ≤ i then ∆î ≤ ∆i. If î > i we have

µî > max
j<î

µj −
√

8

nj

log
k

δ
≥ µi −

√
8

ni

log
k

δ
.

Therefore,

∆î = ∆i + µi − µî ≤ ∆i +

√
8

ni

log
k

δ
,

which concludes the proof.

Proof of Corollary 4. Consider now the UCB algorithm. Then, for each i ≥ 2,

gi(η) =
∑

j≥i

e
−nj

2

(

η−µj−
√

2
nj

log k
δ

)2

+ +min
j<i

e
−nj

2

(

µj−η+

√

2
nj

log k
δ

)2

+ .

Pick η = µ1 then the second term in gi(η) becomes δ/k. For j such that

∆j ≥
√

8
nj

log k
δ
we have

e
−nj

2

(

η−µj−
√

2
nj

log k
δ

)2

+ ≤ δ

k
.

Define

Ui = I

{
∀j ≥ i,∆j ≥

√
8

nj

log
k

δ

}
.

Then we have g∗iUi ≤ k−i+2
k

δ ≤ δ. According to Theorem 10 we have P (A(X) ≥ i) ≤
min{1, g∗i }, so for any i such that P (A(X) ≥ i) > δ, we must have Ui = 0,

which is equivalent to

max
j≥i

µj +

√
8

nj

log
k

δ
> µ1 . (C.4)

Let î be the largest index i that satisfies equation C.4. Then we have P
(
A(X) ≥ î+ 1

)
≤

δ. Therefore, we have P
(
µ∗ − µA(X) ≤ ∆î

)
≥ 1−δ. It remains to upper bound

∆î.
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For any i ∈ [k], if î ≤ i then ∆î ≤ ∆i. If î > i, we have

max
j≥î

µj +

√
8

nj

log
k

δ
≤ µî +max

j>i

√
8

nj

log
k

δ
.

Applying equation C.4 gives

∆î = µ1 − µî ≤ max
j>i

√
8

nj

log
k

δ
.

Therefore,

∆î ≤ max

{
∆i,max

j>i

√
8

nj

log
k

δ

}
≤ ∆i +max

j>i

√
8

nj

log
k

δ
.

for any i ∈ [k], which concludes the proof.

Proof of Proposition 2. Fixing S ⊂ [k], we take {ni}i∈S →∞ and {ni}i/∈S = 1.

The upper bound for LCB in Corollary 3 can be written as

R̂S(LCB) = min

{
min
i∈S

∆i,min
i/∈S

(
∆i +

√
8 log

k

δ

)}
+ δ

= min
i∈S

∆i + δ

= ∆min{i∈[k]:i∈S} + δ .

Similarly, we have

R̂S(UCB) = min
i∈[k]

(
∆i + max

j>i,j /∈S

√
8 log

k

δ

)
+ δ

and

R̂S(greedy) ≥ min
i∈[k]

(
∆i + max

j>i,j /∈S

√
2 log

k

δ

)
+ δ .

Note that for δ ∈ (0, 1),
√

2 log k
δ
> 1 ≥ ∆max. So we can further lower bound

R̂S(UCB) and R̂S(greedy) by ∆h + δ where h = min{i ∈ [k] : ∀j > i, j ∈ S}.
Let m = |S|. Notice that unless S = {k − m + 1, ..., k}, we always have

min{i ∈ [k] : i ∈ S} < min{i ∈ [k] : ∀j > i, j ∈ S}. So we have R̂S(LCB) <

R̂S(UCB) (or R̂S(greedy)) whenever S ̸= {k−m+1, ..., k}. Under the uniform
distribution over all possible subsets for S, the event S = {k −m + 1, ..., k}
happens with probability

(
k
m

)−1
, which concludes the proof.
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C.2.2 Instance-dependent Lower Bounds

Proof of Theorem 11. We first derive an upper bound for R∗
Mn,c

(θ). Assuming

X = (X1, X2,n) with Xi ∼ N (µi, 1/ni), for any β ∈ R, we define algorithm

Aβ as

Aβ(X) =

{
1, if X1 −X2 ≥ β√

nmin
;

2, otherwise .

We now analyze the regret for Aβ. By Hoeffding’s inequality we have the

following instance-dependent regret upper bound:

Proposition 6. Consider any β ∈ R and θ ∈ Θn. Let ∆ = |µ1 − µ2|. If

µ1 ≥ µ2 then

R(Aβ, θ) ≤ I

{
∆ ≤ β√

nmin

}
β√
nmin

+ I

{
∆ >

β√
nmin

}
e
−nmin

4

(

∆− β√
nmin

)2

+ .

Furthermore, if µ1 < µ2, we have

R(Aβ, θ) ≤ I

{
∆ ≤ −β√

nmin

} −β√
nmin

+ I

{
∆ >

−β√
nmin

}
e
−nmin

4

(

∆+ β√
nmin

)2

+ .

Maximizing over ∆ gives our worst case regret guarantee:

Proposition 7. For any β ∈ R,

sup
θ∈Θn

R(Aβ, θ) ≤
|β|+ 2√
nmin

.

Aβ(X) is minimax optimal for a specific range of β:

Proposition 8. If |β| ≤ cc0 − 2 then Aβ ∈Mn,c.

Given θ ∈ Θn, to upper bound R∗
Mn,c

(θ), we pick β such that Aβ ∈ Mn,c

and Aβ performs well on θ. For θ where µ1 ≥ µ2, we set β = 2 − cc0 thus

R∗
Mn,c

(θ) ≤ R(A2−cc0 , θ). For θ where µ1 < µ2, we set β = cc0 − 2 thus

R∗
Mn,c

(θ) ≤ R(Acc0−2, θ).

We now construct two instances θ1, θ2 ∈ Θn and show that no algorithm

can achieve regret close to R∗
Mn,c

on both instances. Fixing some λ ∈ R and

η > 0, we define

θ1 = (µ1, µ2) = (λ+
η

n1

, λ− η

n2

)
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and

θ2 = (µ′
1, µ

′
2) = (λ− η

n1

, λ+
η

n2

) .

On instance θ1 we have X1 −X2 ∼ N (( 1
n1

+ 1
n2
)η, 1

n1
+ 1

n2
) while on instance

θ2 we have X1 − X2 ∼ N (−( 1
n1

+ 1
n2
)η, 1

n1
+ 1

n2
). Let Φ be the CDF of the

standard normal distribution N (0, 1), ∆ = ( 1
n1
+ 1

n2
)η, and σ2 = 1

n1
+ 1

n2
. Then

we have

R(Aβ, θ1) = ∆Pθ1 (Aβ = 2)

= ∆Pθ1

(
X1 −X2 <

β√
nmin

)

= ∆Φ

(
β −∆

√
nmin

σ
√
nmin

)
,

and

R(A−β, θ2) = ∆Pθ2 (A−β = 1)

= ∆Pθ2

(
X1 −X2 ≥ −

β√
nmin

)

= ∆Φ

(
β −∆

√
nmin

σ
√
nmin

)
.

It follows that our upper bound on R∗
Mn,c

is the same for both instances, i.e.,

R(A2−cc0 , θ1) = R(Acc0−2, θ2). Next we show that the greedy algorithm A0 is

optimal in terms of minimizing the worse regret between θ1 and θ2.

Lemma 10. Let A0 be the greedy algorithm where A0(X) = 1 if X1 ≥ X2 and

A0(X) = 2 otherwise. Then we have

R(A0, θ1) = R(A0, θ2) = min
A

max{R(A, θ1),R(A, θ2)} .

Proof of Lemma 10. The first step is to show that by applying the Neyman-

Pearson Lemma, thresholding algorithms on X1 −X2 perform the most pow-

erful hypothesis tests between θ1 and θ2.

Let fθ be the probability density function for the observation (X1, X2)

under instance θ. Then, the likelihood ratio function can be written as

fθ1(X1, X2)

fθ2(X1, X2)
=

e−
n1
2
(X1−λ−η/n1)2−n2

2
(X2−λ+η/n2)2

e−
n1
2
(X1−λ+η/n1)2−n2

2
(X2−λ−η/n2)2

= e2η(X1−X2) .
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Applying the Neyman-Pearson Lemma to our scenario gives the following

statement:

Proposition 9 (Neyman-Pearson Lemma). For any γ > 0 let Aγ be the

algorithm where Aγ(X) = 1 if
fθ1 (X1,X2)

fθ2 (X1,X2)
≥ γ and Aγ(X) = 2 otherwise. Let

α = Pθ1 (Aγ(X) = 2). Then for any algorithm A′ such that Pθ1 (A′(X) = 2) =

α, we have Pθ2 (A′(X) = 1) ≥ Pθ2 (Aγ(X) = 1).

Note that
fθ1 (X1,X2)

fθ2 (X1,X2)
≥ γ is equivalent to X1 − X2 ≥ (2η)−1 log γ. Re-

turning to the proof of Lemma 10, consider an arbitrary algorithm A′ and

let α = R(A′, θ1)/∆ = Pθ1 (A′(X) = 2). Let γ be the threshold that sat-

isfies Pθ1 (Aγ(X) = 2) = α. This exists because X1, X2 follow a continu-

ous distribution. According to Proposition 9 we have Pθ2 (A′(X) = 1) ≥
Pθ2 (Aγ(X) = 1). Therefore, we have shown that R(Aγ, θ1) = R(A′, θ1) and

R(Aγ, θ2) ≤ R(A′, θ2), which means that for any algorithm A′ there exists

some γ such that

max{R(Aγ, θ1),R(Aγ, θ2)} ≤ max{R(A′, θ1),R(A′, θ2)} .

It remains to show that γ = 1 is the minimizer of max{R(Aγ, θ1),R(Aγ, θ2)}.
This comes from the fact that R(Aγ, θ1) is a monotonically increasing function

of γ while R(Aγ, θ2) is a monotonically decreasing function of γ and γ = 1

makes R(Aγ, θ1) = R(Aγ, θ2), which means that γ = 1 is the minimizer.

We now continue with the proof of Theorem 11. Applying Lemma 10 gives

sup
θ∈Θn

R(A, θ)
R∗

Mn,c
(θ)
≥ max

{
R(A, θ1)
R∗

Mn,c
(θ1)

,
R(A, θ2)
R∗

Mn,c
(θ2)

}

≥ max

{ R(A, θ1)
R(A2−cc0 , θ1)

,
R(A, θ2)
R(Acc0−2, θ2)

}

=
max {R(A, θ1),R(A, θ2)}

R(A2−cc0 , θ1)

≥ R(A0, θ1)

R(A2−cc0 , θ1)

=
Φ
(
−∆

σ

)

Φ
(
− cc0−2

σ
√
nmin
− ∆

σ

) . (C.5)
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Now we apply the fact that for x > 0, x
1+x2ϕ(x) < Φ(−x) < 1

x
ϕ(x) to lower

bound equation C.5, where ϕ is the probability density function of the standard

normal distribution. Choosing β = cc0 − 2, we have

Φ
(
−∆

σ

)

Φ
(
− β

σ
√
nmin
− ∆

σ

) ≥ β +∆
√
nmin

σ
√
nmin

∆/σ

1 + (∆/σ)2
e

1
2

(

β2

σ2nmin
+ β∆

σ2√nmin

)

≥ η2

nmin + η2
e

β2

4
+ βη

2
√
nmin .

Picking λ = 1/2 and η = nmin/2 such that θ1, θ2 ∈ [0, 1]2, we have

sup
θ∈Θn

R(A, θ)
R∗

Mn,c
(θ)
≥ nmin

nmin + 4
e

β2

4
+β

4

√
nmin ,

which concludes the proof.

C.3 Proof for Section 6.5

For any θ, let µ1 and n1 be the reward mean and sample count for the optimal

arm. We first prove that E∗(θ) is at the order of 1/
√
n1 for any θ. Our proof

uses the following result.

Proposition 10. Let p and q be two Bernoulli distributions with parameter p

and p′. If p ≥ 1/2 we have KL(p, p′) ≥ 1
2
log 1

4q
.

Proof of Proposition 10.

KL(p, p′) = p log
p

p′
+ (1− p) log

1− p

1− p′

= p log p+ (1− p) log(1− p)− p log p′ − (1− p) log(1− p′)

≥ log
1

2
+

1

2
log

1

p′
+ (1− p) log

1

1− p′

≥ 1

2
log

1

4
+

1

2
log

1

p′

=
1

2
log

1

4p′
.

Proposition 11. There exist universal constants c0 and c1 such that, for any

θ ∈ Θn, c0/
√
n1 ≤ E∗(θ) ≤ c1/

√
n1.
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Proof of Proposition 11. Let c be the constant in the definition of V∗
n
. We

define θ′ ∈ Θ such that the only difference between θ′ and θ is the mean for

the optimal arm: θ′ has µ′
1 = µ1 +

4c√
n1
. Then KL(θ, θ′) = 8c2.

We first apply the fact that the empirical mean estimator ν = µ̂1 has

Eθ [|µ1 − ν|] ≤ 1√
n1

for any θ, which implies that infν supθ Eθ [|µ1 − ν|] ≤ 1√
n1
.

Thus, for any estimator ν ∈ V∗
n
, Eθ′ [|µ′

1 − ν|] ≤ c√
n1
. By Markov inequality, we

have Pθ′

(
|µ′

1 − ν| ≥ 2c√
n1

)
≤ 1

2
. Thus Pθ′

(
ν ≤ µ1 +

2c√
n1

)
≤ 1

2
. Let A = I{ν ≥

µ1+
2c√
n1
} be a Bernoulli random variable, p = Pθ(A = 1) and p′ = Pθ′(A = 1).

Let KL(p′, p) be the KL divergence between two Bernoulli distribution with

parameters p′ and p. By Proposition 10, we have

KL(p′, p) ≥ 1

4
log

1

4p
.

Then

Pθ

(
ν ≥ µ1 +

2c√
n1

)
= Pθ(A = 1) ≥ 1

4
e−2KL(p′,p) (C.6)

Let fθ and fθ′ be the densities of Pθ and Pθ′ . By the log sum inequality, we

have

KL(p′, p) = Pθ′(A = 1) log
Pθ′(A = 1)

Pθ(A = 1)
+ Pθ′(A = 0) log

Pθ′(A = 0)

Pθ(A = 0)

=

∫

A

fθ′(x)dx log

∫
A
fθ′(x)dx∫

A
fθ(x)dx

+

∫

Ac

fθ′(x)dx log

∫
Ac fθ′(x)dx∫
Ac fθ(x)dx

≤
∫

A

fθ′(x) log
fθ′(x)

fθ(x)
dx+

∫

Ac

fθ′(x) log
fθ′(x)

fθ(x)
dx

=

∫
fθ′(x) log

fθ′(x)

fθ(x)
dx = KL(θ′, θ) .

Combining this with Eq. (C.6) shows that

Pθ

(
ν ≥ µ1 +

2c√
n1

)
≥ 1

4
e−2KL(p′,p) ≥ 1

4
e−2KL(θ,θ′) =

1

4
e−16c2 . (C.7)

Therefore, we have

Eθ [|µ1 − ν|] ≥ 2c√
n1

Pθ

(
ν ≥ µ1 +

2c√
n1

)
≥ ce−16c2

2
√
n1

.

Therefore, ce−16c2

2
√
n1

is a lower bound on E∗(θ) for any θ. An upper bound on

E∗(θ) can be obtained by the empirical estimator and the definition of V∗
n
. In
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conclusion, there exist universal constants c0 and c1 such that, for any θ ∈ Θn,

c0/
√
n1 ≤ E∗(θ) ≤ c1/

√
n1.

Proof of Proposition 3. Picking δ = 1√
|n|

for the LCB algorithm, according to

Corollary 3 gives that there exists a universal constant c (which may contain

the term log k) such that R(LCB, θ) ≤ c
√

log |n|
√
n1

. Applying Proposition 11

concludes the proof.

Proof of Proposition 4. Consider a sequence of counts n1,n2, ... with n2 = 1

and n1 = 2, 3, ...,+∞. Fix µ1 = µ2 + 0.1 and let ∆ = µ1 − µ2. For the UCB

algorithm, we have

R(UCB, θ) = ∆Pθ

(
µ̂2 +

βδ√
n2

≥ µ̂1 +
βδ√
n1

)

= 0.1Pθ

(
µ̂1 − µ̂2 ≤

βδ√
n2

− βδ√
n1

)

≥ 0.1Pθ

(
µ̂1 − µ̂2 ≤

(
1− 1√

2

)
βδ

)

≥ 0.1Pθ

(
µ̂1 − µ̂2 ≤

(
1− 1√

2

))

≥ 0.1Pθ (µ̂1 − µ̂2 ≤ ∆)

= 0.05

where we applied the fact that βδ ≥ 1 for any δ ∈ (0, 1) and the random vari-

able µ̂1− µ̂2 follows a Gaussian distribution with mean ∆. Applying Proposi-

tion 11 gives

lim sup
j→∞

sup
θ∈Θnj

R(UCB, θ)√
log |nj| · E∗(θ)

≥ lim sup
j→∞

0.05
√
j + 1

c1
√

log(j + 2)
= +∞

For the greedy algorithm, we have

R(greedy, θ) = 0.1Pθ (µ̂1 − µ̂2 ≤ 0) .

The random variable µ̂1− µ̂2 follows a Gaussian distribution with mean ∆ > 0

and variance 1
n1
+ 1

n2
≥ 1. Since shrinking the variance of µ̂1− µ̂2 will lower the
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probability Pθ (µ̂1 − µ̂2 ≤ 0), we have R(greedy, θ) ≥ 0.1Φ(−0.1) where Φ is

the CDF for the standard normal distribution. Now using a similar statement

as for the UCB algorithm gives the result.
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Appendix D

Proofs for Chapter 7: The
Curse of Passive Data
Collection in Batch
ReinforcementLearning

D.1 An absolute bound on the state-action

probability ratios under the uniform log-

ging policy and the uniform mix of deter-

ministic policies

For a policy π, t ≥ 0, (s, a) ∈ S ×A let

νπ
µ,t(s, a) := P

π(St = s, At = a|S0 ∼ µ) .

As noted beforehand, ratios of these marginal probabilities appear in previous

upper (and lower) bounds on how well the value of a target policy πtrg can

be estimated given data from a logging policy πlog. To minimize clutter, let

νtrg
µ,t stand for ν

πtrg

µ,t and, similarly, let ν log
µ,t stand for ν

πlog

µ,t . The purpose of this

section is to present a short calculation that bounds
νtrgµ,t(s,a)

νlogµ,t(s,a)
, which is the ratio

that appears in the previously mentioned bounds. First, we bound this ratio

for the uniform logging policy when πlog(a|s) = 1/A.

Proposition 12. When πlog is the uniform policy, for any t ≥ 0, (s, a) ∈ S×A
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and πtrg is any target policy,

νtrg
µ,t (s, a)

ν log
µ,t (s, a)

≤ At+1 . (D.1)

Furthermore, there exists a MDP and (s, a) ∈ S×A such that νtrg
µ,t (s, a)/ν

log
µ,t (s, a) ≥

AS for t+ 1 ≥ S.

Proof. Fix an arbitrary pair (st, at) ∈ S × A. Let s0:t denote a sequence

(s0, . . . , st) of states and let a0:t denote a sequence (a0, . . . , at) of actions. We

have

νtrg
µ,t (st, at) =

∑

s0:t−1
a0:t−1

µ(s0)πtrg(a0|s0)p(s1|s0, a0) . . . πtrg(at−1|st−1)p(st|st−1, at−1)πtrg(at|st)

≤
∑

s0:t−1
a0:t−1

At+1µ(s0)πlog(a0|s0)p(s1|s0, a0) . . . πlog(at−1|st−1)p(st|st−1, at−1)πlog(at|st)

= At+1ν log
µ,t (st, at) .

Dividing both sides by ν log
µ,t (st, at) gives the desired bound. The inequality is

tight when there is only one possible path (s0, a0, s1, a1, . . . , st, at) to (st, at) in

an MDP and the target policy is the deterministic policy taking the actions

in the unique path.

We now show an example to prove the second part of the claim. Consider

a MDP with two states S = {s1, s2} and two actions A = {a1, a2}. The

MDP always starts at state s1 at the beginning of an episode, that is µ(s1) =

1, µ(s2) = 0. At state s1 under action a2, the MDP transits to s2, while it

stays at s1 under a1. State s2 is absorbing under any action. Let πtrg be a

deterministic policy πtrg ∈ DET such that πtrg(s1) = a1, it can be verified that

ν
πtrg

µ,t (s1, a1) = 1 for any t ≥ 1. First consider the uniform logging policy. For

t ≥ 1,

ν log
µ,t (s1, a1) = ν log

µ,t−1(s1, a1)P(s1, a1|s1, a1) =
1

2
ν log
µ,t−1(s1, a1) = · · · =

1

2t+1
.

Thus for t+ 1 ≥ S, ν
πtrg

µ,t (s1, a1)/ν
log
µ,t (s1, a1) = 2t+1 ≥ AS.

Now consider using the mixture of deterministic policies as πlog. One can

see that ν log
µ,t (s1, a1) =

1
2
since it will always stay at s1 as long as a policy always

selects a1 at s1, and there are 2 out of 4 such deterministic policies.
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From the proof it is clear that the result continues to hold even if the target

policy depends on the full history.

The uniform mix of all deterministic policies selects one among all AS

deterministic policies at the beginning where each of them can be chosen with

probability 1/AS. Then, it uses the chosen deterministic policy in all time

periods. A key difference between the two logging policies we consider is that

the uniform policy randomly chooses an action every time the system reaches

a state whereas the uniform mix of all deterministic policies randomly selects

a deterministic policy at the beginning and then uses the deterministic policy

afterwards, thus, a random selection happens only once. Now we prove a

counterpart of Proposition 12 for the uniform mix of all deterministic policies.

Proposition 13. When πlog is the uniform mix of deterministic policies, for

any t ≥ 0, (s, a) ∈ S ×A and πtrg is any deterministic target policy,

νtrg
µ,t (s, a)

ν log
µ,t (s, a)

≤ Amin(t+1,S) . (D.2)

Proof. Let DET be the set of stationary deterministic policies over S and A.
Fix an arbitrary pair (st, at) ∈ S ×A. We have

ν log
µ,t (st, at) =

1

AS

∑

π∈DET

νπ
µ,t(st, at)

=
1

AS

∑

π∈DET

∑

s0:t−1
a0:t−1

µ(s0)p(s1|s0, a0) . . . p(st|st−1, at−1)1(a0 = π(s0), . . . , at = π(st))

=
1

AS

∑

s0:t−1
a0:t−1

∑

π∈DET

µ(s0)p(s1|s0, a0) . . . p(st|st−1, at−1)1(a0 = π(s0), . . . , at = π(st))

=
1

AS

∑

s0:t−1
a0:t−1

µ(s0)p(s1|s0, a0) . . . p(st|st−1, at−1)
∑

π∈DET

1(a0 = π(s0), . . . , at = π(st))

≥ 1

AS

∑

s0:t−1
a0:t−1

µ(s0)p(s1|s0, a0) . . . p(st|st−1, at−1)A
S−t−1

≥ 1

At+1
νtrg
µ,t (st, at).
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Also, for (s, a) ∈ S ×A we have

νtrg
µ,t (s, a) ≤

∑

π∈DET

νπ
µ,t(s, a) = AS 1

AS

∑

π∈DET

νπ
µ,t(s, a) = ASν log

µ,t (s, a),

and this completes the proof. The inequality is tight when there is only one

possible path (s0, a0, s1, a1, . . . , st, at) to (st, at) in an MDP, the target policy

is the deterministic policy taking the actions in the unique path, and the path

does not repeat any state.

D.2 Lower Bound Proofs

Before these proofs, an equivalent form of (ϵ, δ)-soundness will be useful to

consider. Recall that L is (ϵ, δ)-sound on instance (M,G) if

PD∼G

(
vL(D)(µ) > v∗(µ)− ε

)
> 1− δ ,

Now, PD∼G

(
vL(D)(µ) > v∗(µ)− ε

)
= 1−PD∼G

(
vL(D)(µ) ≤ v∗(µ)− ε

)
. Hence,

L is (ϵ, δ)-sound on instance (M,G) if and only if

PD∼G

(
vL(D)(µ) ≤ v∗(µ)− ε

)
< δ .

Finally, by reordering, this last display is equivalent to

PD∼G

(
v∗(µ)− vL(D)(µ) ≥ ε

)
< δ .

Thus, L is not (ϵ, δ) sound on (M,G) if

PD∼G

(
v∗(µ)− vL(D)(µ) ≥ ε

)
≥ δ . (D.3)

We will need some basic concepts, definitions, and results from information

theory. For two probability measures, P and Q over a common measurable

space, we use DKL(P,Q) to denote the relative entropy (or Kullback-Leibler

divergence) of P with respect to Q, which is infinite when P is not abso-

lutely continuous with respect to Q, and otherwise it is defined as D(P ||Q) =
∫
log(dP

dQ
)dP , where dP/dQ is the Radon-Nikodym derivative of P with re-

spect to Q. By abusing notation, we will use P (X) to denote the probability

distribution P (X ∈ ·) of a random element X under probability measure P .
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We let {s0, s1, . . . , sH , z} be arbitrary, distinct states and choose µ to be

the distribution that is concentrated at s0. Let πlog be the distribution used

to construct the batch (which could depend on µ). We now define two MDPs,

M1,M−1 ∈ M(S,A) (cf. Fig. D.1). For any s ∈ S, let as = argmina πlog(a|s)
be the action with the minimal chance of being selected by πlog. Note that

πlog(as|s) ≤ 1/A.

The transition structure in the two MDPs are identical, the transitions are

deterministic and almost all the rewards are also the same with the exception

of one transition. The details are as follows. State z is absorbing: For any

action taken at z, the next state is z. For i < H, si is followed by si+1 when asi

is taken, while the next state is z when any other action is taken at this state.

At sH under any action, the next state is z. The rewards are deterministically

zero for any state-action pair except when the state is sH and action asH is

taken at this state. In this case, the reward R is drawn from a Gaussian with

mean α ∈ {−1,+1} in MDP Mα.

We will use vπα, v∗α and νµ,α to denote the value function of a policy π

on Mα, the optimal value function on Mα, and the discounted occupancy

measure on Mα with µ as the initial state distribution, respectively. Note that

v∗1(s0) = γH ≥ γ
ln(1/(2ϵ))
ln(1/γ) = 2ϵ, where the first inequality is because γ ≤ 1 and

H ≤ ln(1/(2ϵ))
ln(1/γ)

by its definition. Note also that v∗−1(s0) = 0.

Fix πlog and the episode lengths h = (h0, . . . , hm−1). We show that if the

number of episodes m is too small, then no algorithm will be sound both on

M1 and M−1.

For this fix an arbitrary BPO algorithm L. Let the data collected by

following the logging policy πlog be D = (Si, Ai, Ri, S
′
i)

n−1
i=0 . Let π be the

output of L. Let Pα be the distribution over (D, π) induced by using πlog on

Mα with episode lengths h and µ and then running L on D to produce π.

Note that both P1 and P−1 share the same measure space. Let Eα be the

expectation operator for Pα.

Define the event E = {vπ1 (s0) < ε}. Let Ec be the complement of E. Let

a ∨ b denote the maximum of a and b. We first prove the following claim:
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Claim: If

P1(E) ∨ P−1(E
c) ≥ δ (D.5)

then L is not (ϵ, δ)-sound.

Proof of the claim. By Eq. (D.3), L is not (ϵ, δ)-sound if

P1(v
∗
1(s0)− vπ1 (s0) ≥ ϵ) ∨ P−1(v

∗
−1(s0)− vπ−1(s0) ≥ ϵ) ≥ δ .

By v∗1(s0) ≥ 2ε, we have

P1(v
∗
1(s0)− vπ1 (s0) ≥ ϵ) ≥ P1(v

π
1 (s0) ≤ ϵ) ≥ P1(v

π
1 (s0) < ϵ) = P1(E) .

Similarly, by v∗−1(s0) = 0, we have

P−1(v
∗
−1(s0)− vπ−1(s0) ≥ ϵ) = P−1(v

π
−1(s0) ≤ −ϵ) ≥ P−1(v

π
1 (s0) ≥ ϵ) = P−1(E

c) ,

where the inequality follows because if vπ1 (s0) ≥ ϵ holds then since vπ1 (s0) =

⟨νπ
1 , r

π
1 ⟩ = νπ

1 (sH , asH )r
π
1 (sH , asH ) = νπ

1 (sH , asH ) and since the transitions in

M1 and M−1 are same, we have νπ
−1(sH , asH ) = νπ

1 (sH , asH ) ≥ ε and therefore

vπ−1(s0) = −νπ
−1(sH , asH ) ≤ −ε.

Putting things together, we get that

P1(v
∗
1(s0)− vπ1 (s0) ≥ ϵ) ∨ P−1(v

∗
−1(s0)− vπ−1(s0) ≥ ϵ) ≥ P1(E) ∨ P−1(E

c) ≥ δ,

where the last inequality follows by our assumption.

It remains to prove that Eq. (D.5) holds. For this, note that by the

Bretagnolle-Huber inequality (Lemma 11) we have,

P1(E) ∨ P−1(E
c) ≥ P1(E) + P−1(E

c)

2
≥ 1

4
exp(−DKL(P1,P−1)) . (D.6)

It remains to upper bound DKL(P1,P−1). Let U0 = S0, U1 = A0, U2 = R0,

U3 = S ′
0, U4 = S1, . . . , U4(n−1) = S ′

n−1. Further, for 0 ≤ j ≤ 4n− 1 let U0:j =

(U0, . . . , Uj) and let U0:−1 stand for a “dummy” (trivial) random element. By
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the chain rule for relative entropy,1

DKL(P1,P−1) = E1[DKL(P1(π|U0:4(n−1)),P−1(π|U0:4(n−1)))]

+

4(n−1)∑

j=0

E1[DKL(P1(Uj|U0:j−1),P−1(Uj|U0:j−1))] .

Note that, P1-almost surely, P1(π|U0:4(n−1)) = P−1(π|U0:4(n−1)) since, by defini-

tion, L assigns a fixed probability distribution over the policies to any possible

dataset. For 0 ≤ j ≤ 4(n − 1), let Dj = DKL(P1(Uj|U0:j−1),P−1(Uj|U0:j−1)).

Since the only difference between M1 and M−1 is in the reward distribution

corresponding to taking action asH in state sH , unless j = 4i + 2 for some

i ∈ [n] and Si = sH , Ai = asH , we have Dj = 0 P1-almost surely. Fur-

ther, when j = 4i + 2, P1-almost surely we have Dj = I{Si = sH , Ai =

asH}(1− (−1))2/2 = 2I{Si = sH , Ai = asH} by the formula for the relative

entropy between N (1, 1) and N (−1, 1). Therefore,

DKL(P1,P−1) = 2E1

[
n−1∑

i=0

I{Si = sH , Ai = asH}
]
≤ 2mP1(SH = sH , AH = asH ) ≤

2m

AH+1
,

where the first inequality follows from that, by the construction of M1, sH can

be visited only in the Hth step of any episode, the data in distinct episodes

are identically distributed, and there are at most m episodes. The second

inequality follows because

P1(SH = sH , AH = asH ) = P1(AH = asH |SH = sH)P1(SH = sH)

= P1(AH = asH |SH = sH)P1(AH−1 = asH−1
, SH−1 = sH−1)

= P1(AH = asH |SH = sH)P1(AH−1 = asH−1
|SH−1 = sH−1) . . .P1(A0 = as0 |S0 = s0)

= πlog(as0 |s0) . . . πlog(asH |sH) ≤
1

AH+1
,

where the last inequality follows by the choice of asi , i ∈ [H + 1]. Plugging

the upper bound on DKL(P1,P−1) into Eq. (D.6), we get that

P1(E) ∨ P−1(E
c) ≥ 1

4
exp(−2mA−(H+1))

1Here, we use a notation common in information theory, which uses P (X) (P (X|Y ))
to denote the distribution of X induced by P (the conditional distribution of X, given Y ,
induced by P , respectively).
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which is larger than δ if m ≤ (AH+1 ln 1
4δ
)/2. The result then follows by our

previous claim.

To prove the result for S < Hγ,2ε + 2, we use the same construction as

described above with Hγ,2ε′ = S − 2 < Hγ,2ε for some ε′ ≥ ε. Then any

learning algorithm L needs at least (AHγ,2ε′+1 ln 1
4δ
)/2 episodes to be (ε′, δ)-

sound. To be (ε, δ)-sound it needs at least the same amount of data. This

finishes the proof.

Proof of Corollary 7. The result directly follows from the lower bound con-

struction in Theorem 12.

Proof of Corollary 8. We first consider the case S ≥ H + 2. Recall that H =

Hγ,2ε. Define Smin to be the set of H+1 states that have the smallest πlog,min(s)

values, where we let πlog,min(s) = mina∈A πlog(a|s). Construct the same MDPs

as in the proof of Theorem 12 using the states in Smin to form the chain. Then,

the same proof holds with AH+1 replaced by

∏

s∈Smin

1

πlog,min(s)
. (D.7)

Since πlog is not uniform, the above value is strictly greater than AH+1.

For the case S < H + 2, let Smin to be the set of S − 1 states that have

the smallest πlog,min(s) values. Construct the same MDPs as above. Then the

same arguments hold as in the last part of the proof of Theorem 12 except

that AS−1 is replaced by equation D.7, which is strictly greater than AS−1.

This concludes the proof of the corollary.

Proof of Theorem 13. This proof is similar to the proof of Theorem 12. We

first consider the case where S ≥ H+1. We construct the same MDPs as in the

proof of Theorem 12 except that the chain consists of H states, that is, ending

at sH−1 and the hidden reward R is at (sH−1, asH−1
). The logging policy πlog

collects m trajectories with length H as the dataset D = (Si, Ai, Ri, S
′
i)

mH−1
i=0 ,

where S0 = SH = · · · = S(m−1)H = s0. Now we consider two MDPs Mα ∈
M, α ∈ {2ε,−2ε}, where the reward R ∼ N (α, 1) on Mα.
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We use the same notation as in the proof of Theorem 12. Define the event

E = {vπ2ε(s0) < ε}. Then, by following the same arguments we can show that

L is not (ε, δ)-sound on M2ε if P2ε(E) ≥ δ and that L is not (ε, δ)-sound on

M−2ε if P−2ε(E
c) ≥ δ.

By the Bretagnolle–Huber inequality, we have

max{P2ε(E),P−2ε(E
c)} ≥ P2ε(E) + P−2ε(E

c)

2
≥ 1

4
exp(−DKL(P2ε,P−2ε)) .

Similarly as in the proof of Theorem 12, we obtain

DKL(P2ε,P−2ε) = 8ε2E2ε

[
mH−1∑

i=0

I{Si = sH−1, Ai = asH−1
}
]

= 8mε2E2ε

[
H−1∑

i=0

I{Si = sH−1, Ai = asH−1
}
]

= 8mε2P2ε(SH−1 = sH−1, AH−1 = asH−1
) ≤ 8mε2

AH
,

where the second equality is obtained by the fact that the episodes are indepen-

dently sampled. Combining the above together we have that if m ≤ AH ln 1
4δ

8ε2
,

max{P2ε(E),P−2ε(E
c)} ≥ δ, which means that L is not (ε, δ)-sound on either

M2ε or M−2ε.

To prove the result for S ≤ H, we use the same construction as described

above with H ′ = S − 1 < H. Then any learning algorithm L needs at least
AH′

ln 1
4δ

8ε2
trajectories to be (ε, δ)-sound. This finishes the proof.

Proof of Theorem 14. We use MDPs similar to those in the proof of Theo-

rem 12 but with some key differences. Let the state space consist of three parts

S = {s0, s1, . . . , sH−1}∪{y}∪{z}, where H = S− 2. Consider µ concentrated

on s0. For any s ∈ S, let as = argmina πlog(a|s). At si for i ∈ {0, . . . , H − 2},
it transits to si+1 by taking asi and transits to z by taking any other actions,

where z is an absorbing state. At sH−1, by taking any action it transits to y

with probability p > 0 and goes back to s0 with probability 1− p. y is also an

absorbing state, but there is a reward R for any action in y. The rewards are

deterministically zero for any other state-action pairs.

Now consider two such MDPs Mα ∈ M, α ∈ {2ε,−2ε}, where the reward

R ∼ N (α, 1) on Mα. We keep using the same notation vα and νµ,α, the latter
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of which denotes the occupancy measure on Mα with µ as the initial state

distribution. Also, we use the rest of notation in the proof of Theorem 12.

Recall that π is the output policy of a learning algorithm L.
Define the event E = {vπ2ε(s0) < ε}.

Claim: If

P2ε(E) ∨ P−2ε(E
c) ≥ δ (D.8)

then L is not (ϵ, δ)-sound.

Proof of the claim. By Eq. (D.3), L is not (ϵ, δ)-sound if

P2ε(v
∗
2ε(s0)− vπ2ε(s0) ≥ ϵ) ∨ P−2ε(v

∗
−2ε(s0)− vπ−2ε(s0) ≥ ϵ) ≥ δ .

By the definition of M2ε, the optimal policy is choosing asi at si for i ∈
{0, . . . , H − 2}. We have v∗2ε(s0) = 2ε, because p is positive, and thus, the

optimal policy reaches y in finite steps with probability one. Thus, we have

P2ε(v
∗
2ε(s0)− vπ2ε(s0) ≥ ϵ) = P2ε(2ε− vπ2ε(s0) ≥ ϵ) ≥ P2ε(v

π
2ε(s0) < ϵ) = P2ε(E) .

Similarly, by v∗−2ε(s0) = 0, we have

P−2ε(v
∗
−2ε(s0)− vπ−2ε(s0) ≥ ϵ) = P−2ε(v

π
−2ε(s0) ≤ −ϵ) ≥ P−2ε(v

π
2ε(s0) ≥ ϵ) = P−2ε(E

c) ,

where the inequality follows because if vπ2ε(s0) ≥ ϵ holds then since vπ2ε(s0) =

⟨νπ
2ε, r

π
2ε⟩ = 2ενπ

2ε(y) and since the transitions in M2ε and M−2ε are same, we

have νπ
−2ε(y) = νπ

2ε(y) ≥ 1/2 and therefore vπ−2ε(s0) = −2ενπ
−2ε(y) ≤ −ε.

Putting things together, we get that

P2ε(v
∗
2ε(s0)− vπ2ε(s0) ≥ ϵ) ∨ P−2ε(v

∗
−2ε(s0)− vπ−2ε(s0) ≥ ϵ) ≥ P2ε(E) ∨ P−2ε(E

c) ≥ δ,

where the last inequality follows by our assumption.

Following the same arguments in the proof of Theorem 12, we have

DKL(P2ε,P−2ε) = 8ε2E2ε

[
n−1∑

i=0

I{Si = y}
]
= 8ε2

n−1∑

i=0

P2ε{Si = y}

= 8ε2p
n−1∑

i=1

P2ε{Si−1 = sH−1} ≤
8ε2np

AH−1
.
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Combining the above together and using the Bretagnolle–Huber inequality

(Lemma 11) as we did in the proof of Theorem 12, we have that if n ≤
AH−1 ln 1

4δ

8ε2p
, then L is not (ε, δ)-sound on either M2ε or M−2ε. We obtain the

result by sending p to zero from the right hand side.

For the proof of Theorem 15, we will need some results on the relative

entropy between Bernoulli distributions, which we present now. Let Ber(p)

denote the Bernoulli distribution with parameter p ∈ [0, 1]. As it is well known

(and not hard to see from the definition),

D(Ber(p),Ber(q)) = d(p, q)

where d(p, q) is the so-called binary relative entropy function, which is defined

as

d(p, q) = p log(p/q) + (1− p) log((1− p)/(1− q)) .

Proposition 14. For p, q ∈ (0, 1), defining p∗ to be p or q depending on which

is further away from 1/2,

d(p, q) ≤ (p− q)2

2p∗(1− p∗)
. (D.9)

Proof. Let R be the unnormalized negentropy over [0,∞)2. Then, by Theorem

26.12 of the book of Lattimore & Szepesvári (2020), for any x, y ∈ (0,∞)2,

DR(x, y) =
1

2
∥x− y∥2∇R(z)

for some z on the line segment connecting x to y. We have R(z) = z1 log(z1)+

z2 log(z2)−z1−z2. Hence,∇R(z) = [log(z1), log(z2)]
⊤ and∇R(z) = diag(1/z1, 1/z2),

both defined for z ∈ (0,∞)2. Thus,

DR(x, y) =
(x1 − y1)

2

2z1
+

(x2 − y2)
2

2z2
.

Now choosing x = (p, 1 − p), y = (q, 1 − q), we see that x, y ∈ (0,∞)2

if p, q ∈ (0, 1). In this case, with some α ∈ [0, 1], z = αx + (1 − α)y =

(αp+(1−α)q, α(1−p)+(1−α)(1−q))⊤ = (αp+(1−α)q, 1−(αp+(1−α)q))⊤.
Hence, z2 = 1− z1 and

d(p, q) =
(p− q)2

2z1
+

(p− q)2

2(1− z1)
=

(p− q)2

2z1(1− z1)
.
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Now, z1(1 − z1) ≥ p∗(1 − p∗) (the function z 7→ z(1 − z) has a maximum at

z = 1/2 and is decreasing on “either side” of the line z = 1/2). Putting things

together, we get

d(p, q) =
(p− q)2

2z1(1− z1)
≤ (p− q)2

2p∗(1− p∗)
.

Now we re-state Theorem 15 and prove it.

Theorem 23 (Restatement of Theorem 15). Fix any γ0 > 0. Then, there exist

some constants c0, c1 > 0 such that for any γ ∈ [γ0, 1), any positive integers

S and A, δ ∈ (0, 1), and 0 < ε ≤ c0/(1 − γ), the sample size n needed by

any (ε, δ)-sound algorithm that produces as output a memoryless policy and

works with SA-sampling for MDPs with S states and A actions under the

γ-discounted expected reward criterion must be so that is at least c1
SA ln(1/(4δ))
ε2(1−γ)3

.

Proof of Theorem 23. The proof also uses Le Cam’s method, just like Theo-

rem 12. At the heart of the proof is a gadget with a self-looping state which

was introduced by Azar et al. (2013) to give a lower bound on the sample

complexity of estimating the optimal value function in the simulation setting

where the estimate’s error is measured with its worst-case error.

The idea of the proof is illustrated by Fig. D.2. Fix an initial state distri-

bution µ concentrated on an arbitrary state s0 ∈ S. Let µlog be the logging

distribution chosen based on µ and let (s′, a′) be any state-action pair that has

the minimum sampling probability under µlog. Note that µlog(s
′, a′) ≤ 1/(SA).

Assume that s′ ̸= s0. As we shall see by the end of the proof, there is no loss

of generality in making this assumption (when s′ = s0, the lower bound would

be larger).

We construct two MDPs as follows. The reward structures of the two

MDPs are completely identical and the transition structures are also identical

except for when action a′ is taken at state s′. In particular, in both MDPs, the

rewards are identically zero except at state s′, where for any action the reward

incurred is one. The transition structures are as follows: Let p0 < p̄ < p1 be in
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f(P (s′|s′, π(s′))) and also v∗(µ) = f(p̄) in MDP M0 and v∗(µ) = f(p1) in

MDP M1.

By Taylor’s theorem, for some p ∈ [p0, p1], we have

f(p1) = f(p0) + f ′(p)(p1 − p0) ≥ f(p0) + f ′(p0)(p1 − p0) ,

where the inequality follows by p1 > p0 and the fact that f ′ is increasing.

Thus, if p1−p0 ≥ 4ε/f ′(p0), we have f(p1) ≥ f(p0)+4ε. Because of the choice

of p0,

f ′(p0) =
γ2

(1− γp0)2
=

γ2

(1− γ)2b2
.

We let p1 = p0+4ε/f ′(p0). Then, we have p1 < 1 given that ε ≤ c0/(1− γ) :=
γ(b−1)

8(1−γ)b2
, because

p1 − 1 = p0 + 4ε/f ′(p0)− 1 =
1− b+ γb

γ
+

4(1− γ)2εb2

γ2
− 1

=
4(1− γ)2εb2 + γ(γ − 1)(b− 1)

γ2
≤ (γ − 1)(b− 1)

2γ
< 0 , (D.10)

where the first inequality is due to the choice of ε. Lastly, we set p̄ so that

f(p̄) = [f(p0) + f(p1)]/2 (such p̄ uniquely exists because f is increasing and

continuous). Note that f(p1)− f(p̄) ≥ 2ε and f(p̄)− f(p0) ≥ 2ε.

Let P0 and P1 be the joint probability distribution on the data and the

output policy of any given learning algorithm L, induced by µ, µlog, L, and the

two MDPs M0 and M1, respectively. For any algorithm L, let E = {π(a′|s′) ≥
1/2}, where π is the output of L.

If E is true, in M0,

vπ(µ) = π(a′|s′)f(p0) + (1− π(a′|s′))f(p̄) ≤ f(p0) + f(p̄)

2
≤ (f(p̄)− 2ε) + f(p̄)

2
= f(p̄)− ε .

Thus, L is not (ε, δ)-sound for M0 if P0(E) ≥ δ. If Ec holds, in M1,

vπ(µ) = π(a′|s′)f(p1) + (1− π(a′|s′))f(p̄) ≤ f(p1) + f(p̄)

2
≤ f(p1) + (f(p1)− 2ε)

2
= f(p1)− ε .

Therefore, if P1(E
c) ≥ δ, then L is not (ε, δ)-sound for M1.

By the Bretagnolle-Huber inequality (Lemma 11) we have,

max{P0(E),P1(E
c)} ≥ P0(E) + P1(E

c)

2
≥ 1

4
exp (−DKL(P0||P1)) .
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Recall that n is the number of samples. Since M0 and M1 differ only in

the state transition from (s′, a′), by the chain rule of relative entropy, with a

reasoning similar to that used in the proof of Theorem 12, we derive

DKL(P0,P1) = nP0(Si = s′, Ai = a′)DKL(Ber(p0),Ber(p1)) ≤
n

SA
· (p0 − p1)

2

2p1(1− p1)

=
n

SA
· 16ε

2(1− γ)4b4

2γ4p1(1− p1)

<
n

SA
· 16ε

2(1− γ)3b4

γ3(b− 1)p0
,

where the first inequality is due to Proposition 14 and the second inequality

is due to Eq. (D.10) and the fact that p0 < p1.

Now fix γ0 ∈ (0, 1) and let γ ≥ γ0 and choose b = 0.5(1 + 1−γ0/2
1−γ0

) ∈
(1, 1−γ/2

1−γ
). Then, combining the above together and reordering show that if

n ≤ c1
SA ln(1/(4δ))
ε2(1−γ)3

where c1 =
γ3
0(b−1)p0
16b4

, we can guarantee that L is not (ε, δ)-

sound on either M0 or M1, concluding the proof.

D.3 Upper bound proofs

We start with some extra notation. We identify the transition function P as

an SA × S matrix, whose entries Psa,s′ specify the conditional probability of

transitioning to state s′ starting from state s and taking action a, and the

reward function r as an SA × 1 reward vector. We use ∥x∥1 to denote the

1-norm
∑

i |xi| of x ∈ R
n.

Recall first that we defined P π to be the transition matrix on state-action

pairs induced by the policy π. Define the H-step action-value function for

H > 0 by

qπH =
H−1∑

h=0

(γP π)hr .

We let vπH denote the H-step state-value function. In what follows we will

need quantities for M̂ , which, in general could be any MDP that differs from

M from only its transition kernel. Quantities related to M̂ receive a “hat”.

For example, we use P̂ for the transition kernel of M̂ , P̂ π for the state-action

transition matrix induced by a policy π and P̂ , etc.
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In subsequent proofs, we will need the following lemma, which gives two

decompositions of the difference between the action-value functions on two

MDPs, M and M̂ :

Lemma 12. For any policy π, transition model P̂ , and H > 0,

qπH − q̂πH = γ

H−1∑

h=0

(γP π)h(P − P̂ )v̂πH−h−1 , (D.11)

q̂πH − qπH = γ

H−1∑

h=0

(γP̂ π)h(P̂ − P )vπH−h−1 . (D.12)

Proof. By symmetry, it suffices to prove Eq. (D.11). For convenience, we re-

express a policy π as an S × SA matrix/operator Π. In particular, as a left

linear operator, Π maps q ∈ R
SA to

∑
a π(a|·)q(·, a) ∈ R

S. Note that with this

P π = PΠ, P̂ π = P̂Π, vπh = Πqπh and v̂πh = Πq̂πh . To reduce clutter, as π is fixed,

for the rest of the proof we drop the upper indices and just use vh, v̂h, qh and

q̂h.

Note that for H > 0,

qH = r + γPΠqH−1 , and

q̂H = r + γP̂Πq̂H−1 .

Hence,

qH − q̂H = γ(PΠqH−1 − P̂Πq̂H−1)

= γ(P − P̂ )Πq̂H−1 + γPΠ(qH−1 − q̂H−1) .

Then using Πq̂H−1 = v̂H−1 and recursively expanding qH−1− q̂H−1 in the same

way gives the result, noting that q0 = r = q̂0.

We need two standard results from the concentration of binomial random

variables.

Lemma 13 (Multiplicative Chernoff Bound for the Lower Tail, Theorem 4.5 of

?). Let X1, . . . , Xn be independent Bernoulli random variables with parameter

p, Sn =
∑n

i=1 Xi. Then, for any 0 ≤ β < 1,

P

(
Sn

n
≤ (1− β)p

)
≤ exp

(
−β2np

2

)
.
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Lemma 14. Let n be a positive integer, p > 0, δ ∈ (0, 1) such that

2

np
ln

1

δ
≤ 1

4
. (D.13)

Let Sn be as in the previous lemma, p̂ = Sn/n. Then, with probability at least

1− δ, it holds that

p̂ ≥ p/2 > 0

while we also have

1

p̂
≤ 1

p
+

2

p

√
2

np
ln

1

δ
.

on the same (1− δ)-probability event.

In what follows, we will only need the first lower bound, p̂ ≥ p/2 from

above; the second is useful to optimize constants only.

Proof. According to the multiplicative Chernoff bound for the low tail (cf.

Lemma 13), for any 0 < δ ≤ 1, with probability at least 1− δ, we have

p̂ ≥ p−
√

2p

n
ln

1

δ
.

Denote by Eδ the event when this inequality holds. Using Eq. (D.13), on Eδ
we have

p̂ ≥ p−
√

2p

n
ln

1

δ
= p

(
1−

√
2

pn
ln

1

δ

)
≥ p

(
1− 1

2

)
=

p

2
> 0 ,

and thus, thanks to 1/(1− x) ≤ 1 + 2x which holds for any x ∈ [0, 1/2],

1

p̂
≤ 1

p

1

1−
√

2
np

ln 1
δ

≤ 1

p
+

2

p

√
2

np
ln

1

δ
.

Our next lemma bounds the deviation between the empirical transition

kernel and the “true” one:
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Lemma 15. With probability 1− δ, for any (s, a) ∈ S ×A,

∥P̂ (·|s, a)− P (·|s, a)∥1 ≤ β(N(s, a), δ) (D.14)

where for u ≥ 0,

β(u, δ) = 2

√
S ln 2 + ln u+(u+1)SA

δ

2u+

,

where u+ = u ∨ 1.

Proof. By abusing notation, for u ≥ 0, let β(u) = 2

√
S ln 2+ln

u+(u+1)

δ

2u+
, where

u+ = u ∨ 1. We will prove below the following claim:

Claim: For any fixed state-action pair (s, a), with probability 1− δ,

∥P̂ (·|s, a)− P (·|s, a)∥1 ≤ β(N(s, a)) .

Clearly, from this claim the lemma follows by a union bound over the

state-action pairs. Hence, it remains to prove the claim.

For this fix (s, a) ∈ S × A. Recall that the data D = ((Si, Ai, Ri, S
′
i)i∈[n])

that is used to estimate P̂ (·|s, a) consists ofm trajectories of lengthH obtained

by following the uniform policy πlog while the initial state is selected from µ

at random. In particular, for j ∈ [m], the jth trajectory is

(S
(j)
0 , A

(j)
0 , R

(j)
0 , . . . , S

(j)
hj−1, A

(j)
H−1, R

(j)
H−1, S

(j)
H ) ,

where S
(j)
0 ∼ µ, A

(j)
t ∼ πlog(·|S(j)

t ), (R
(j)
t , S

(j)
t+1) ∼ Q(·|S(j)

t , A
(j)
t ). Clearly, if

q := P

(
∃0 ≤ i ≤ H − 1 : S

(0)
i = s, A

(0)
i = a

)
= 0 then N(s, a) = 0 holds with

probability one. The claim then follows since when N(s, a) = 0, P̂ (·|s, a) is

identically zero, hence,

∥P̂ (·|s, a)− P (·|s, a)∥1 = ∥P (·|s, a)∥1 = 1 ≤ 1.177 . . . ≤ β(0) . (D.15)

Hence, it remains to prove the claim for the case when q > 0, which we

assume from now on. For convenience, append to the data infinitely many

further trajectories, giving rise to the infinite sequence (Si, Ai, Ri, S
′
i)i≥0. Let

τ0 = 0 and for u ≥ 1, let τu = min{i ∈ N : i > τu−1 and Si = s, Ai = a} be
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the “time” indices when (s, a) is visited, where we define the minimum of an

empty set to be infinite. Since q > 0, almost surely (τu)u≥0 is a well-defined

sequence of finite random variables. Now let Xu = S ′
τu be the “next state”

upon the uth visit of (s, a). Let p̂u(s
′) =

∑u
v=1 I{Xv=s′}

u
. Note that

P̂ (·|s, a) = p̂N(s,a)(·) (D.16)

provided that N(s, a) > 0. By the Markov property, it follows that (Xv)v≥1

is an i.i.d. sequence of categorical variables with common distribution p(·) :=
P (·|s, a).

Now,

∥p̂u − p∥1 = max
y∈{−1,+1}S

⟨p̂u − p, y⟩ ,

while

⟨p̂u − p, y⟩ = 1

u

u∑

v=1

y(Xv)−
∑

s′

p(s′)y(s′)

︸ ︷︷ ︸
∆v

.

Now, (∆v)1≤v≤u is an i.i.d. sequence, |∆v| ≤ 2 for any v and E∆v = 0. Hence,

by Hoeffding’s inequality, with probability 1− δ,

1

u

u∑

v=1

∆v ≤ 2

√
ln 1

δ

2u
.

Since the cardinality of {−1,+1}S is 2S, applying a union bound over y ∈
{−1,+1}S , we get that with probability 1− δ,

∥p̂u − p∥1 ≤ 2

√
S ln 2 + ln 1

δ

2u
.

Applying another union bound over u, owing to that
∑∞

u=1
1

u(u+1)
= 1, we get

that with probability 1− δ, for any u ≥ 1,

∥p̂u − p∥1 ≤ 2

√
S ln 2 + ln u(u+1)

δ

2u
= β(u) .

Since ∥p̂0 − p∥1 ≤ 1 ≤ β(0) (cf. Eq. (D.15)), the claim follows by Eq. (D.16).
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We now state a lemma that bounds, with high probability, the error of

predicting the value of some fixed policy when the prediction is based on a

transition kernel P ′ which is “close” to the true transition kernel P , where

closedness is based on how often the individual state-action pairs have been

visited. This notion of closedness is motivated by Lemma 15; this lemma can

be used when P ′ = P̂ , or some other transition kernel in the vicinity of P̂ .

The former will be needed in the analysis of the plug-in method presented

here; while the latter will be used in the next section where we analyze the

pessimistic algorithm.

Lemma 16. Let δ ∈ (0, 1) and m be the number of episodes collected by the

logging policy and fix any policy π. For any P ′ such that for any (s, a) ∈ S×A,

∥P ′(·|s, a)− P (·|s, a)∥1 ≤
C√

N(s, a) ∨ 1
,

with probability at least 1− δ for C > 0, we have

vπ(µ)− vπP ′(µ) ≤ 4γCSA
min(H,S)

2
+1

(1− γ)2
√
m

+
8γSA

(1− γ)2
ln SA

δ

m
+ ε . (D.17)

Proof. Note that

γHγ,ϵ ≤ γ1+
ln(1/ϵ)
ln(1/γ) = γϵ .

Hence, for H = Hγ,(1−γ)ε/(2γ),

γH ≤ 1
2
ϵ(1− γ) .

Owning to that the immediate rewards belong to [−1, 1], it follows that for

any policy π,

qπ − qπP ′ ≤ qπH − qπP ′,H + ε1 , (D.18)

where we use qπP ′,H to denote the H-step value function under transition model

P ′. Define Nh(s, a) as the number of episodes when the hth state-action pair

in the episode is (s, a). Note that N(s, a) ≥ Nh(s, a). Let Zh = {(s, a) ∈
S ×A : νπ

µ,h(s, a) >
8
m
ln SA

δ
} and let F be the event when

Nh(s, a)

m
≥

ν
πlog

µ,h (s, a)

2
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holds for any (s, a) ∈ Zh.
2 By Lemma 14, P(F) ≥ 1− δ.

Assume that F holds. Combining Eq. (D.18) with Lemma 12, we get that

on this event

vπ(µ)− v̂π(µ) ≤ (µπ)⊤(qπH − qπP ′,H) + ε

= γ

H−1∑

h=0

γh(νπ
µ,h)

⊤(P − P ′)vπP ′,H−h−1 + ε (by Eq. (D.11))

≤ γ

1− γ

H−1∑

h=0

γh
∑

s,a

νπ
µ,h(s, a)∥P (·|s, a)− P ′(·|s, a)∥1 + ε

(by ∥v̂πH−h−1∥∞ ≤ 1/(1− γ))

≤ γ

1− γ

H−1∑

h=0

γh
∑

(s,a)∈Zh

νπ
µ,h(s, a)∥P (·|s, a)− P ′(·|s, a)∥1 +

8γSA

m(1− γ)2
ln

SA

δ
+ ε

(by the definition of Zh)

≤ γ

1− γ

H−1∑

h=0

γh
∑

(s,a)∈Zh

√
νπ
µ,h(s, a)∥P (·|s, a)− P ′(·|s, a)∥1 +

8γSA

m(1− γ)2
ln

SA

δ
+ ε

(by νπ
µ,h(s, a) ≤ 1)

≤ γAmin(H,S)/2

1− γ

H−1∑

h=0

γh
∑

(s,a)∈Zh

√
ν
πlog

µ,h (s, a)∥P ′(·|s, a)− P (·|s, a)∥1 +
8γSA

m(1− γ)2
ln

SA

δ
+ ε

(by Proposition 12)

≤ 2γAmin(H,S)/2C

1− γ

H−1∑

h=0

γh
∑

(s,a)∈Zh

√
ν
πlog

µ,h (s, a)
1√

Nh(s, a) ∨ 1
+

8γSA

m(1− γ)2
ln

SA

δ
+ ε

(by the definition of P ′)

≤ 2γAmin(H,S)/2C

1− γ

H−1∑

h=0

γh
∑

(s,a)∈Zh

√
ν
πlog

µ,h (s, a)

√
2

mν
πlog

µ,h (s, a)
+

8γSA

m(1− γ)2
ln

SA

δ
+ ε

(by the definitions of F and Zh)

≤ 4γAmin(H,S)/2C

(1− γ)2
√
m

SA +
8γSA

m(1− γ)2
ln

SA

δ
+ ε .

This finishes the proof.

For the plug-in method we use the previous lemma with P ′ = P̂ , resulting

in the following corollary:

2Note that Zh, and thus also F depends on π, which is the reason that the result, as
stated, holds only for a fixed policy.
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Corollary 11. Let δ ∈ (0, 1) and m be the number of episodes collected by the

logging policy and fix any policy π. With probability at least 1− δ, we have

vπ(µ)− vπ
P̂
(µ) ≤ 8γSA

min(H,S)
2

+1

(1− γ)2

√
S ln 2 + ln 2n(n+1)SA

δ

2m
+

8γSA

(1− γ)2
ln 2SA

δ

m
+ ε .

Proof. Fix δ ∈ (0, 1). Let Eδ be the event when for any (s, a) ∈ S ×A,

∥P̂ (·|s, a)− P (·|s, a)∥1 ≤ β(N(s, a), δ) , (D.19)

where β is defined in Lemma 15, which also gives that P(Eδ) ≥ 1− δ. Further,

defining

Cδ = 2

√
S ln 2 + ln n(n+1)SA

δ

2
,

note that β(u, δ) ≤ Cδ/
√
u ∨ 1. Now, let Fδ be the event when the conclusion

of Lemma 16 holds. Then, on the one hand, by a union bound, P(Eδ/2∩Fδ/2) ≥
1− δ, while on the other hand on Eδ/2∩Fδ/2, the condition of Lemma 16 holds

for P ′ defined so that

P ′(·|s, a) =
{
P̂ (·|s, a) , if ∥P̂ (·|s, a)− P (·|s, a)∥1 ≤ β(N(s, a), δ/2) ;

P (·|s, a) , otherwise .

with C := Cδ/2.

Furthermore, on Eδ/2, P̂ (·|s, a) = P (·|s, a) holds for any (s, a) pair. Hence,

the result follows by replacing δ with δ/2 in Eq. (D.17) and plugging in Cδ/2

in place of C.

We now are ready to prove the upper bound of plug-in algorithm.

Theorem 24 (Restatement of Theorem 16). Fix S, A, an MDP M ∈M(S,A)

and a distribution µ on the state space of M . Suppose δ > 0, ε > 0, and

εopt > 0. Assume that the data is collected by following the uniform policy

and it consists of m episodes, each of length H = Hγ,(1−γ)ε/(2γ). Let π̂ be

any deterministic, εopt-optimal policy for M̂ = (P̂ , r) where P̂ is the sample-

mean based empirical estimate of the transition probabilities based on the data

collected. Then if

m = Ω̃

(
S3Amin(H,S)+2 ln 1

δ

(1− γ)4ϵ2

)
,
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where Ω̃ hides log factors of S,A and H, we have vπ̂(µ) ≥ v∗(µ) − 4ε − εopt

with probability at least 1− δ.

Proof. We upper bound the suboptimality gap of π̂ as follows:

v∗(µ)− vπ̂(µ) = v∗(µ)− v̂π
∗
(µ) + v̂π

∗
(µ)− v̂π̂(µ) + v̂π̂(µ)− vπ̂(µ)

≤ v∗(µ)− v̂π
∗
(µ) + v̂π̂(µ)− vπ̂(µ) + εopt . ( π̂ is εopt-optimal in M̂)

By Corollary 11 and a union bound, with probability at least 1 − δ, for any

deterministic policy π obtained from the data D we have

vπ(µ)− v̂π(µ)

≤ 8γSA
min(H,S)

2
+1

(1− γ)2

√
S ln 2 + ln 2n(n+1)SA

δ
+ S lnA

2m
+

8γSA

(1− γ)2
ln 2SA

δ
+ S lnA

m
+ ε

≤ 8γS
3
2A

min(H,S)
2

+1

(1− γ)2

√
ln 2 + ln H2SA

δ
+ ln 2m+ lnA

2m
+

8γSA

(1− γ)2
ln 2SA

δ
+ S lnA

m
+ ε ,

Thus, given that

m = Ω̃

(
S3Amin(H,S)+2 ln 1

δ

(1− γ)4ϵ2

)
,

where Ω̃ hides log-factors, with probability at least 1− δ we have,

v∗(µ)− vπ̂(µ) ≤ v∗(µ)− v̂π
∗
(µ) + v̂π̂

∗
(µ)− vπ̂

∗
(µ) + εopt ≤ 4ε+ εopt .

D.3.1 Pessimistic Algorithm

We present a result in this section for the “pessimistic algorithm” in the dis-

counted total expected reward criterion to complement the results in the main

text (Jin et al., 2021; Buckman et al., 2020; Kidambi et al., 2020; Yu et al.,

2020; Kumar et al., 2020; Liu et al., 2020). The sample complexity we show

is the same as for the plug-in method. While this may be off by a polynomial

factor, we do not expect the pessimistic algorithm to have a major advantage

over the plug-in method in the worst-case setting. In fact, the recent work of

Xiao et al. (2021c) established this in a rigorous fashion for the bandit setting
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by showing an algorithm independent lower bound that matched the upper

bound for both the plug-in method and the pessimistic algorithm. As argued

by Xiao et al. (2021c) (and proved by Jin et al. (2021) in the context of lin-

ear MDPs, which includes tabular MDPs), the advantage of the pessimistic

algorithm is that it is weighted minimax optimal with respect to a special

criterion.

The pessimistic algorithm with parameters δ ∈ (0, 1) and ϵopt > 0 chooses

a deterministic ϵopt policy π̃ of the MDP with reward r and transition kernel

P̃ , the latter of which is obtained via

P̃ = argmin
P ′∈Pδ

v∗P ′(µ) ,

where for a transition kernel P ′ we use v∗P ′ to denote the optimal value function

in the MDP with immediate rewards r and transition kernel P ′, and Pδ is is

defined as

Pδ =
{
P ′ : for any (s, a) ∈ S ×A , ∥P̂ (·|s, a)− P ′(·|s, a)∥1 ≤ β(N(s, a), δ)

}
,

where β is defined in Lemma 15. Recall that the same result ensures that P ,

the “true” transition kernel belongs to Pδ with probability at least 1− δ.

Theorem 25 (Pessimistic algorithm). Fix S, A, an MDP M ∈ M(S,A) and

a distribution µ on the state space of M . Suppose δ > 0, ε > 0, and ϵopt > 0.

Assume that the data is collected by following the uniform policy and it consists

of m episodes, each of length H = Hγ,(1−γ)ε/(2γ). Then, if

m = Ω̃

(
S3Amin(H,S)+2 ln 1

δ

(1− γ)4ϵ2

)
,

where Ω̃ hides log factors of S,A and H, we have vπ̃(µ) ≥ v∗(µ)−2ε−εopt with
probability at least 1−δ, where π̃ is the output of the pessimistic algorithm run

with parameters (δ, ϵopt).

Proof. Let us denote by vπP ′ the value function of policy π in the MDP with

reward r and transition kernel P ′. Let ∆π = vπ
P̃
(µ) − vπ(µ) and let π∗ is an
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deterministic optimal policy in the “true” MDP. Such a policy exists (e.g., see

Theorem 6.2.10 of Puterman (2014)). We have

v∗(µ)− vπ̃(µ) = v∗(µ)− vπ̃
P̃
(µ) + ∆π̃

≤ v∗(µ)− v∗
P̃
(µ) + ∆π̃ + ϵopt (by the definition of π̃)

≤ v∗(µ)− vπ
∗

P̃
(µ) + ∆π̃ + ϵopt (because vπ

∗

P̃
≤ v∗

P̃
)

≤ ∆π∗
+∆π̃ + ϵopt . (because v∗(µ) = vπ

∗
(µ))

Hence, it remains to upper bound ∆π∗
and ∆π̃. For this, we make the

following claim:

Claim: Fix any policy π. Then, with probability at least 1− δ, we have

vπ(µ)− vπ
P̃
(µ) ≤ 16γSA

min(H,S)
2

+1

(1− γ)2

√
S ln 2 + ln 2n(n+1)SA

δ

2m
+

8γSA

(1− γ)2
ln 2SA

δ

m
+ ε .

Proof of Claim. For the latter, note that the proof of Corollary 11 can be

repeated with the only change that now instead of Eq. (D.19), we have

∥P (·|s, a)− P̃ (·|s, a)∥1 ≤ ∥P (·|s, a)− P̂ (·|s, a)∥1∥P̂ (·|s, a)− P̃ (·|s, a)∥1 ≤ 2β(N(s, a), δ) .

From this claim, by a union bound over all the AS deterministic policies,

we get that with probability 1− δ, for any deterministic policy π,

vπ(µ)− vπ
P̃
(µ)

≤ 16γSA
min(H,S)

2
+1

(1− γ)2

√√√√
(
S ln 2 + ln 2n(n+1)SA

δ
+ S lnA

)

2m
+

8γSA

(1− γ)2
ln 2SA

δ
+ S lnA

m
+ ε .

Since π̃, by definition is also a deterministic policy, the last display holds with

probability 1− δ for π̃ as well. Putting things together gives that

v∗(µ)− vπ̃(µ)

≤ 32γSA
min(H,S)

2
+1

(1− γ)2

√
S ln 2 + ln 2n(n+1)SA

δ
+ S lnA

2m
+

16γSA

(1− γ)2
ln 2SA

δ
+ S lnA

m
+ 2ε+ ϵopt .

The proof is finished by a calculation similar to that done at the end of the

proof of Theorem 24.
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Appendix E

Proofs for Chapter 8:
Understanding and Leveraging
Overparameterization in
Recursive Value Estimation

E.1 Proofs

E.1.1 Proof of Theorem 17

Theorem 26 (Restatement of Theorem 17). Let θ0 ∈ R
d be the initial weight

vector. With η ≤ 1
(1+γ)2

, RM converges to θRM = (M − γN )† R + (Id −
ΠM−γN )θ0.

Proof. Let A = M −γN for simplicity. First recall the residual minimization

update,

θt+1 =
(
Id − ηA⊤DkA

)
θt + ηA⊤DkR . (E.1)

Let θ∗ = A†R. It can be verified θ∗ is one of the feasible solution as Aθ∗ = R.

Then we use induction to show that for any θ0 ∈ R
d and t ≥ 0

θt+1 − θ∗ = (Id − ηA⊤DkA)t+1(θ0 − θ∗) . (E.2)

The base case holds by the update rule Eq. (E.1). Suppose that the statement
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holds for t, then we have

θt+1 − θ∗ =
(
Id − ηA⊤DkA

)
θt + ηA⊤DkR− θ∗ (E.3)

=
(
Id − ηA⊤DkA

)
θt − (Id − ηA⊤DkA)θ∗ (E.4)

=
(
Id − ηA⊤DkA

)
(θt − θ∗) (E.5)

=
(
Id − ηA⊤DkA

)t+1
(θ0 − θ∗) . (E.6)

Thus,

θt+1 = (Id − ηA⊤DkA)t+1θ0 + (Id − (Id − ηA⊤DkA)t+1)θ∗ . (E.7)

We let V ΛV ⊤ be its eigendecomposition of A⊤DkA, which is the empirical

covariance matrix of residual features. Let V− be the null space of V . Then

Id − (Id − ηA⊤DkA)t+1 (E.8)

=Id − (V V ⊤ − ηV ΛV ⊤ + V−V
⊤
− )t+1 (E.9)

=Id − (V (Ik − ηΛ)V ⊤ + V−V
⊤
− )t+1 (E.10)

=Id − (V−V
⊤
− )t+1 − V (Ik − ηΛ)t+1V ⊤ (E.11)

=V V ⊤ − V (Ik − ηΛ)t+1V ⊤ (E.12)

=V
(
Ik − (Ik − ηΛ)t+1

)
V ⊤ (E.13)

Let λmax be the largest eigenvalue ofA
⊤DkA. We now show that λmax ≤ 1+γ.

λmax

(
A⊤DkA

)
≤

k∑

i=1

µ̂(si)λmax

(
(ϕ(si)− γϕ̄(s′i))(ϕ(si)− γϕ̄(s′i))

⊤
)
≤ (1 + γ)2 ,

(E.14)

where we use the fact that λmax is a convex function and we assume ∥ϕ(s)∥ ≤
1 for all s ∈ S. Thus, given that η ≤ 1

1+γ
, η ≤ 1

λmax
. Then Id − (Id −

ηA⊤DkA)t+1 = V V ⊤ as t→∞. Thus

lim
t→∞

θt = lim
t→∞

(Id − ηA⊤DkA)t+1θ0 + V V ⊤θ∗ = lim
t→∞

(Id − ηA⊤DkA)t+1θ0 + θ∗ ,

(E.15)

where the last equality follows by that θ∗ is in the row space of A by definition.

When θ0 = 0, we have the algorithm converges to θ∗.
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We next show the result for general θ0. Let θ0 = θ10 + θ20, where θ10 =

ΠM−γNθ0 is the component of θ0 that is in the row space of A, θ20 = (Id −
ΠM−γN )θ0 is the perpendicular residual. Then,

lim
t→∞

(Id − ηA⊤DkA)t+1θ0 (E.16)

= lim
t→∞

(V−V
⊤
− + V (Ik − ηΛ)t+1V ⊤)(θ10 + θ20) (E.17)

=θ20 + lim
t→∞

V (Ik − ηΛ)t+1V ⊤θ10 = θ20 , (E.18)

where the last step follows by the choice of η. This finishes the proof.

E.1.2 Proof of Theorem 18

We will need the matrix binomial theorem in the proof.

Lemma 17 (Matrix Binomial Theorem). For n ≥ 0 and two matrices X,Y

(I +XY )nX = X(I + Y X)n . (E.19)

Proof.

(I +XY )nX =
n∑

k=0

(
n

k

)
(XY )kX = X

n∑

k=0

(
n

k

)
(Y X)k = X(I + Y X)n .

(E.20)

Theorem 27 (Restatement of Theorem 18). Assuming that M⊤Dk(M−γN )

is diagonalizable Let θ0 ∈ R
d be the initial weight vector. With η < 1

(1+γ)∥Φ∥ ,

if ∥W ∥ < 1
γ
, TD(0) converges to θTD = M †(Ik − γW )−1R + β, where β =

Q0Q
−1
0 θ0, Q0 are eigenvectors of M⊤Dk(M − γN ) with zero eigenvalues. If

∥W ∥ ≥ 1
γ
there is an initial θ0 for which TD(0) does not converge.

Proof. We first rewrite the TD update formulate as

θt+1 = (Id − ηM⊤Dk(M − γN ))θt + ηM⊤DkR (E.21)
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A simple recursive argument shows that for any θ0 ∈ R
d,

θt+1 = (Id − ηM⊤Dk(M − γN ))t−1θ0 + η

t∑

i=0

(Id − ηM⊤Dk(M − γN ))iM⊤DkR .

(E.22)

By the matrix binomial theorem (Lemma 17),

(Id − ηM⊤Dk(M − γN ))iM⊤Dk = M⊤Dk(Ik − η(M − γN )M⊤Dk)
i .

(E.23)

By writing N as the projection to the row-span of M and the perpendicular

component, we have

(M − γN )M⊤ (E.24)

=(M − γNM †M − γN (Id −M †M ))M⊤ (E.25)

=(Ik − γW )MM⊤ , (E.26)

where the last step follows by (Id−M †M )M⊤ = 0. Thus we can rewrite θt+1

as

θt+1 = (Id − ηM⊤Dk(M − γN ))t−1θ0 + ηM⊤Dk

t∑

i=0

(Ik − η(M − γN )M⊤Dk)
iR

(E.27)

= (Id − ηM⊤Dk(M − γN ))t−1θ0 + ηM⊤Dk

t∑

i=0

(Ik − η(Ik − γW )MM⊤Dk)
iR ,

(E.28)

Given ∥W ∥ < 1/γ, we have that all eigenvalues of Ik − γW are positive.

Let η < 1
(1+γ)∥Φ∥ , then

∥η(Ik − γW )MM⊤Dk∥ < η∥(Ik − γW )∥∥MM⊤Dk∥ < 1 , (E.29)

otherwise the matrix power series diverges. Thus

ηM⊤Dk

t∑

i=0

(Ik − η(Ik − γW )MM⊤Dk)
iR = M †(Ik − γW )−1R . (E.30)

Therefore, given that θ0 = 0, we have the algorithm converge to M †(Ik −
γW )−1R.
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We now show the convergence point for an arbitrary θ0. Let QΛQ−1 be the

eigen decomposition of M⊤Dk(M − γN ). By the low rank structure of this

matrix, it has at most h ≤ k non-zero eigenvalues. Let Q0 be the eigenvectors

with eigenvalue zero. Then

lim
t→∞

(Id − ηM⊤Dk(M − γN ))tθ0 (E.31)

= lim
t→∞

Q(Id − ηΛ)tQ−1θ0 (E.32)

=Q0Q
−1
0 θ0 , (E.33)

where the last step follows by the choice of η.

Characterization for Non-diagonalizable Case

In the above analysis, we assume that the matrix M⊤Dk(M − γN ) is di-

agonalizable. We now characterize the convergent point for the general case

using Jordan normal form of the matrix. Let Z = M⊤Dk(M − γN ) and

Z = QJQ−1 be the jordan normal form of Z. We still denote Q0 the eigen-

vectors with eigenvalue zero. Then there is

lim
t→∞

(I − ηZ)t = lim
t→∞

Q(I − ηJ)tQ−1 (E.34)

Since I−ηJ has a block diagonal structure, its power can be obtained by first

computing the power of each block. Let Ji be the jordan block with eigenvalue

λi. We write Ji = λiI + L, where L is a matrix such that the only non-zero

entries of L are on the first off-diagonal. Then we can write the i-th block of

J as (1− ηλi)I − ηL. Using the binomial theorem we get

((1− ηλi)I − ηL)t =
t∑

s=0

(
t
s

)
(1− ηλi)

t−s(−ηL)s . (E.35)

Note that Ls is the matrix with ones on the s-th diagonal away from the main

diagonal, and Ls = 0 for s larger than the size of L. Therefore, ((1− ηλi)I −
ηL)t is a triangular matrix with (1−ηλi)

t on the main diagonal, −ηt(1−ηλi)
t−1

on the first off-diagonal, and so on. Therefore, the eigenvalues of this matrix

are all (1− ηλi)
t. Then given a learning rate that η < 1/λmax, for any jordan

block with λi > 0, we have that the matrix power converges. For λi = 0, the
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jordan block corresponds to eigenvectors that are in the kernel space of Z.

Thus, suppose that all eigenvalues of Z are non-negative, we have

lim
t→∞

Q(I − ηJ)tQ−1θ0 = Q0Q
−1
0 θ0 . (E.36)

Note that if a negative λi exists, the above derivations can still be used to

characterize the convergent sub-component of θ0. The non-convergent sub-

component of θ0 will diverge with an exponential rate as shown above.

E.1.3 Proof of Theorem 19

Proof. We first prove the update formula. Recall the FVI update,

θt = M †(R+ γNθt−1) .

For t = 1 the result holds by definition. Suppose that

θt = M †

(
t−2∑

i=0

(γNM )iR+ (γNM †)t−1(R+ γNθ0)

)
(E.37)

We now prove the result for t+ 1 by induction.

θt+1 = M †(R+ γNθt) (E.38)

= M †

(
R+ γNM †

(
t−2∑

i=0

(γNM †)iR+ (γNM †)t−1(R+ γNθ0)

))

(E.39)

= M †

(
R+

(
t−1∑

i=1

(γNM †)iR+ (γNM †)t(R+ γNθ0)

))
(E.40)

= M †

(
t−1∑

i=0

(γNM †)iR+ (γNM †)t(R+ γNθ0)

)
(E.41)

Clearly the convergence of this algorithm depends on the spectral norm of

NM †. In particular, given that ∥NM †∥ < 1/γ, we have the algorithm

converges to

M †(Ik − γW )−1R (E.42)

as t→∞. This finishes the proof.
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E.1.4 Proof of Theorem 20 and Corollary 9

Proof. We first prove the result for residual minimization fixed point θRM. The

proof is adopted from characterizing the minimum norm solution of solving

least square (Boyd & Vandenberghe, 2004). Let A = M − γN for simplicity.

We write the Lagrange of the optimization problem,

L(θ, α) = inf
θ∈Rd

sup
α∈Rk

1

2
∥θ∥2 + α⊤(R−Aθ) (E.43)

= sup
α∈Rk

1

2
∥A⊤α∥2 + α⊤R− α⊤AA⊤α (E.44)

= sup
α∈Rk

α⊤R− 1

2
α⊤AA⊤α . (E.45)

Solving for α∗ and add it to θ∗ = A⊤α∗ gives that θ∗ = A†R.

We next prove Corollary 9, which characterizes the TD and FVI fixed point

θTD. Let W = NM †. We write the Lagrange of the optimization problem,

L(θ, α) = inf
θ∈Rd

sup
α∈Rk

1

2
∥θ∥2 + α⊤(R− (Ik − γW )Mθ) (E.46)

= sup
α∈Rk

1

2
∥M⊤(Ik − γW )⊤α∥2 + α⊤R− α⊤(Ik − γW )MM⊤(Ik − γW )⊤α

(E.47)

= sup
α∈Rk

α⊤R− 1

2
α⊤(Ik − γW )MM⊤(Ik − γW )⊤α . (E.48)

Solving for α∗ and add it to θ∗ = M⊤(Ik− γW )⊤α∗ gives that θ∗ = M †(Ik−
γW )−1R. The second part of Theorem 20 is immediately followed by this.

E.1.5 Proof of Theorem 21

Lemma 18. Let θt be the output of FVI at iteration t with θ0 as the initial

parameter. We have that M †Mθt = θt for any t ≥ 1.

Proof. The claim is implied by the fact that θt is in the row space of M . In

particular, by Theorem 19, θt = M †α for some α ∈ R
n. Thus,

M †Mθt = M †MM †α = M †α = θt . (E.49)

This finishes the proof.
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Lemma 19. E(θ) is 1-smoothness.

Proof. Recall the prediction error of θ ∈ R
d

E(θ) = 1

2
∥Φθ − v∥2

Dµ
=

1

2
∥θ − θ∗∥2Σ , (E.50)

where Σ = Φ⊤DµΦ. The gradient of θ is E ′(θ) = Σ(θ − θ∗). Then

∥E ′(θ1)− E ′(θ2)∥ = ∥Σ(θ1 − θ2)∥ ≤ λmax(Σ) ∥(θ1 − θ2)∥ ≤ ∥θ1 − θ2∥ , (E.51)

where we use ∥ϕ(s)∥ ≤ 1 for all s ∈ S and λmax(Σ) ≤
∑

s µ(s)λmax(ϕ(s)ϕ(s)
⊤) ≤

1.

Lemma 20. Let εapp = NΠ⊥
M
θ∗ and σstat = H(P − P̂ )Φθ∗. We have

Mθ∗ = R+ γ(εapp + εstat) + γWMθ∗ . (E.52)

Proof. Using the definitions we have,

Mθ∗ = R+ γHPΦθ∗ (E.53)

= R+ γNθ∗ + γH(P − P̂ )Φθ∗ (E.54)

= R+ γ(WM +NΠ⊥
M
)θ∗ + γH(P − P̂ )Φθ∗ (E.55)

= R+ γ(εapp + εstat) + γWMθ∗ . (E.56)

Proof. By Theorem 19, θt = M †T t−1(R + γNθ0) is the output of FVI at

iteration t. By noting that E(θ∗) = 0 and Lemma 19, for any θ ∈ R
d.

E(θ) ≤ 1

2
∥θ − θ∗∥2 = 1

2

(
∥θ − θ∗∥2

M†M + ∥θ − θ∗∥2
Id−M†M

)
. (E.57)

We first consider the second term. By Lemma 18,

∥θt − θ∗∥2
Id−M†M = (θt − θ∗)⊤

(
Id −M †M

)
(θt − θ∗) = ∥θ∗∥2

Id−M†M .

(E.58)

We now consider the first term. By Lemma 20,

M (θ∗ − θt) = Mθ∗ − T t−1(R+ γNθ0) (E.59)

=
t−2∑

i=0

(γW )i (R+ γ(εapp + εstat)) + (γW )t−1(Mθ∗)−
t−2∑

i=0

(γW )iR− (γW )t−1(R+ γNθ0)

(E.60)

=γ

(
t−2∑

i=0

(γW )iεapp +
t−1∑

i=0

(γW )iεstat + (γW )t−1N (θ∗ − θ)

)
(E.61)
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Let Σ̂ = M⊤DkM be the empirical covariance matrix. Note that λmin(M
⊤M )/k ≥

λmin(Σ̂). To show this, let D̄ = diag( 1
k
, . . . , 1

k
), and M = USV ⊤ be the SVD

of M . Then

λ+
min(M

⊤D̄M ) = min
∥x∥=1

x⊤M⊤D̄Mx (E.62)

= min
∥α∥=1

α⊤SU⊤D̄USα (E.63)

≥ min
∥α∥=1

α⊤SU⊤DkUSα (E.64)

= λ+
min(M

⊤DkM ) (E.65)

where we replace x = V α since V are orthonormal bases, and mini∈[k] µ̂i ≤
1/k. Therefore,

∥M †∥ = 1/
√
λ+
min(M

†M ) ≤ 1/

√
kλ+

min(Σ̂).

Combining the results above we have,

∥θt − θ∗∥2
M†M =

∥∥M †M (θt − θ∗)
∥∥2 (E.66)

≤ ∥M †∥2 ∥M (θt − θ∗)∥2 (E.67)

≤ γ

kλmin(Σ̂)

∥∥∥∥∥

t−1∑

i=0

(γW )i(εapp + εstat) + (γW )t−1N (θ∗ − θ)

∥∥∥∥∥

2

(E.68)

≤ 4γ

kλmin(Σ̂)


(ε2 + σ2)

∥∥∥∥∥

t−1∑

i=0

(γW )i

∥∥∥∥∥

2

+
∥∥(γW )t−1

∥∥2 ∥Φ∥2∥θ0 − θ∗∥2

 .

(E.69)

Combine this with Eq. (E.58) finishes the proof.

E.1.6 Proof of Corollary 10

Proof. Recall that in the proof of Theorem 21 we have

∥θt − θ∗∥2
M†M ≤

4γ

kλmin(Σ̂)


(ε2 + σ2)

∥∥∥∥∥

t−1∑

i=0

(γW )i

∥∥∥∥∥

2

+
∥∥(γW )t−1

∥∥2 ∥Φ∥2∥θ0 − θ∗∥2

 .

(E.70)
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Given that ∥W ∥ < 1, we have for the fixed point θ∞,

∥θt − θ∗∥2
M†M ≤

4γ(ε2 + σ2)

kλmin(Σ̂)(1− γ)2
(E.71)

We first consider σ2 = ∥H(P − P̂ )v∥2. By Hoeffding’s inequality and a

union bound we have with probability at least 1− δ, for any s ∈ supp(D),

∣∣∣(P̂s − Ps)
⊤v
∣∣∣ ≤ 1

1− γ

√
log(|S|/δ)
2n(s)

. (E.72)

Thus, let nmin = mins:n(s)>0 n(s), we have

σ2

k
≤ log(|S|/δ)

2(1− γ)2nmin

. (E.73)

Now we consider ε2 = ∥NΠ⊥
M
θ∗∥2. Since NΠ⊥

M
is perpendicular to M , and

all features have norm bounded by one,

ε2

k
≤ ∥θ∗∥2

Id−M†M . (E.74)

Combine the above we have,

E(θ) ≤ 1

2
∥θ − θ∗∥2

M†M +
1

2
∥θ∗∥2

Id−M†M (E.75)

≤ 2γ

λmin(Σ̂)(1− γ)2

(
log(|S|/δ)

2(1− γ)2nmin

+ ∥θ∗∥2
Id−M†M

)
+

1

2
∥θ∗∥2

Id−M†M

(E.76)

=
γ log(|S|/δ)

λmin(Σ̂)(1− γ)4nmin

+
4γ

λmin(Σ̂)(1− γ)2
∥θ∗∥2

Id−M†M (E.77)

Finally, using the tower rule gives the desired result.

E.1.7 Concentration of Eigenvalues and Bounding the
Orthogonal Complement

We will need the following result (?, Theorem 6), which is concerned with

the magnitude of projection onto the eigenspace of a covariance matrix. The

result is based on (?, Theorem 1)
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Lemma 21. Let Σ̂ = 1
n

∑
i xix

⊤
i be the covariance matrix of i.i.d. data xi ∈

R
d. Denote the h-“tail” of eigenvalues of a covariance matrix Σ̂ = as

λ>h =
n∑

i=h+1

λi . (E.78)

Let Ur be the first r eigenbasis for r ∈ [n]. Then for any z ∈ R
d, with

probability at least 1− δ,

E
[
∥Π⊥

Ur
z∥22
]
≤ min

h∈[r]





1

n
λ>h +

1 +
√
h√

n

√√√√ 2

n

n∑

i=1

∥xi∥2


+ ∥z∥22

√
18

n
ln

(
2n

δ

)
.

(E.79)

The next lemma gives a non-asymptotic result to understand the behaviour

of λ̂min (?, Lemma 1).

Lemma 22. Let X = [X1, . . . ,Xn] ∈ R
d×n be a random matrix with i.i.d.

columns, such that maxi ∥Xi∥2 ≤ K, and let Σ̂ = XX⊤/n, and Σ = E[X1X
⊤
1 ].

Then, for every α ≥ 0, with probability at least 1− 2e−α, we have

λ+
min(Σ̂) ≥ λ+

min(Σ)

(
1−K2

(
c

√
d

n
+

√
α

n

))2

+

for n ≥ d , (E.80)

and furthermore, assuming that ∥Xi∥Σ† =
√
d, for all i ∈ [n], we have

λ+
min(Σ̂) ≥ λ+

min(Σ)

(√
d

n
−K2

(
c+ 6

√
α

n

))2

+

for n < d , (E.81)

where we have an absolute constant c = 23.5
√
ln 9.

E.2 Experiment setup

In this section, we provide additional details about the experimental setup and

hyper-parameters used for each of the environments. For all of these environ-

ments the regularization weights were considered as tunable hyper-parameters.

In addition, for Rϕ (see Eq 8.23), the scale factor β was also considered as a

parameter to be tuned in order to approximate the feature matrix norm. We

use Google Vizier to automatically tune the hyper parameters (Golovin et al.,

2017).
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E.2.1 Acrobot

• Replay buffer with 10k tuples sampled using a random policy across

trajectories with maximum episode length of 64.

• A DQN with hidden units consisting of fully connected layers with

(100, 100) units.

• Batch size 64.

• Learning rate of 1e-3.

• Regularized RM with weight of 2e-2 on Rϕ and 1e-4 on Rw.

• Regularized TD with weight of 0 on Rϕ and 1e-4 on Rw.

E.2.2 Reacher

• Replay buffer with 10k tuples sampled from a random policy across tra-

jectories with maximum steps per episode of length 50.

• Learning rate 1e-4.

• A value network for the continuous action inputs with a fc observation

layer with params (50,), a fc action layer with params (50,) and a joint

fc layer with params (100,).

• Batch size 64.

• Gradient clipping with a norm of 10.0

• Regularized RM with weight of 0.15 on Rw and 0 on Rϕ.

• Regularized TD with weight of 2e-2 on Rw and 7e-3 on Rϕ.

E.2.3 Cartpole

• Replay buffer with 10k tuples sampled using a random policy across

trajectories with maximum steps per episode of length 50.
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• A DQN with hidden units consisting of fully connected layers with

(100, 100) units.

• Batch size 64.

• Learning rate 1e-3.

• Regularized RM with weight of 0.29 on Rw and 0 on Rϕ.

• Regularized TD with weight of 1.5e-3 on Rw and 5e-3 on Rϕ.

E.2.4 Pendulum

• Replay buffer with 1k tuples obtained by sampling directly from a fixed

initial state distribution using a random policy.

• A value network for the continuous action inputs with a fc observation

layer with params (50,), a fc action layer with params (50,) and a joint

fc layer with params (100,).

• Batch size 64.

• Learning rate 1e-3.

• Regularized RM with weight of 1.0 on Rw and 5.4e-4 on Rϕ.

• Regularized TD with weight of 0 on Rw and 1.0 on Rϕ.

E.2.5 Mujoco

• The Q-function is approximated by two hidden layer fully neural net-

works, where the hidden layer size is 256.

• Batch size 256.

• Learning rate 3e-4.

• Regularized TD with weight of 0 on Rw and 1.0 on Rϕ.
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