This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Search
Skip to Search Results- 3Reinforcement Learning
- 2Machine Learning
- 1Domain Adaptation
- 1Monte Carlo Tree Search
- 1Offline Reinforcement Learning
- 1Optimization
-
Spring 2023
Reinforcement learning (RL) defines a general computational problem where the learner must learn to make good decisions through interactive experience. To be effective in solving this problem, the learner must be able to explore the environment, make accurate predictions about the future, and...
-
Fall 2021
The optimization of non-convex objective functions is a topic of central interest in machine learning. Remarkably, it has recently been shown that simple gradient-based optimization can achieve globally optimal solutions in important non-convex problems that arise in machine learning, including...
-
Spring 2021
This dissertation demonstrates how to utilize data collected previously from different sources to facilitate learning and inference for a target task. Learning from scratch for a target task or environment can be expensive and time-consuming. To address this problem, we make three contributions...