This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Search
Skip to Search Results- 2Dyna
- 1Model-based Reinforcement Learning
- 1Reinforcement Learning
- 1Reinforcement learning
- 1experience replay
- 1model-based reinforcement learning
-
Chasing Hallucinated Value: A Pitfall of Dyna Style Algorithms with Imperfect Environment Models
DownloadSpring 2020
In Dyna style algorithms, reinforcement learning (RL) agents use a model of the environment to generate simulated experience. By updating on this simulated experience, Dyna style algorithms allow agents to potentially learn control policies in fewer environment interactions than agents that use...
-
Fall 2021
A common scientific challenge for putting a reinforcement learning agent into practice is how to improve sample efficiency as much as possible with limited computational or memory resources. Such available physical resources may vary in different applications. My thesis introduces some approaches...