Search
Skip to Search Results-
Characterization of cryobiological responses in TF-1 cells using interrupted freezing procedures
Download2014-09-22
McGann, L. E., Elliott, J. A., Ross-Rodriguez, L. U.
Cryopreservation currently is the only method for long-term preservation of cellular viability and function for uses in cellular therapies. Characterizing the cryobiological response of a cell type is essential in the approach to designing and optimizing cryopreservation protocols. For cells used...
-
2012
Law, G. K., Forbes, J. F., Elliott, J. A., McGann, L. E., Jomha, N. M., Prasad, V., Almansoori, K. A.
Background Vitrification is a method of cryopreservation by which cells and tissues can be preserved at low temperatures using cryoprotective agents (CPAs) at high concentrations (typically ⩾6.0 M) to limit the harmful effects of ice crystals that can form during cooling processes. However, at...
-
2014
Prasad, V., Laouar, L., Jomha, N. M., McGann, L. E., Fahmy, M. D., Almansoori, K. A., Elliott, J. A.
Vitrification of articular cartilage (AC) could enhance tissue availability but requires high concentrations of cyroprotective agents (CPAs). This study investigated relative injuries caused by commonly used CPAs. We hypothesized that the in situ chondrocyte dose–injury relationships of five...
-
Investigating cryoinjury using simulations and experiments: 1. TF-1 cells during two-step freezing (rapid cooling interrupted with a hold time)
Download2014-09-22
McGann, L. E., Ross-Rodriguez, L. U., Elliott, J. A.
There is significant interest in designing a cryopreservation protocol for hematopoietic stem cells (HSC) which does not rely on dimethyl sulfoxide (Me2SO) as a cryoprotectant. Computer simulations that describe cellular osmotic responses during cooling and warming can be used to optimize the...