Usage
  • 80 views
  • 48 downloads

The Role of Information in Online Learning

  • Author / Creator
    Bartók, Gábor
  • In a partial-monitoring game a player has to make decisions in a sequential manner. In each round, the player suffers some loss that depends on his decision and an outcome chosen by an opponent, after which he receives "some" information about the outcome. The goal of the player is to keep the sum of his losses as low as possible. This problem is an instance of online learning: By choosing his actions wisely the player can figure out important bits about the opponent's strategy that, in turn, can be used to select actions that will have small losses. Surprisingly, up to now, very little is known about this fundamental online learning problem. In this thesis, we investigate this problem. In particular, we investigate to what extent the information received influences the best achievable cumulative loss suffered by an optimal player. We present algorithms that have theoretical guarantees for achieving low cumulative loss, and prove their optimality by providing matching, algorithm independent lower bounds. Our new algorithms represent new ways of handling the exploration-exploitation trade-off, while some of the lower bound proofs introduce novel proof techniques.

  • Subjects / Keywords
  • Graduation date
    2012-11
  • Type of Item
    Thesis
  • Degree
    Doctor of Philosophy
  • DOI
    https://doi.org/10.7939/R3QQ78
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Doctoral
  • Department
    • Department of Computing Science
  • Supervisor / co-supervisor and their department(s)
    • Szepesvári, Csaba (Computing Science)
  • Examining committee members and their departments
    • Bowling, Michael (Computing Science)
    • Greiner, Russel (Computing Science)
    • Ben-David, Shai (Computer Science, University of Waterloo)
    • Schuurmans, Dale (Computing Science)
    • Gombay, Edit (Mathematical and Statistical Sciences)