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Abstract

In a partial-monitoring game a player has to make decisions in a sequential

manner. In each round, the player suffers some loss that depends on his deci-

sion and an outcome chosen by an opponent, after which he receives “some”

information about the outcome. The goal of the player is to keep the sum of

his losses as low as possible. This problem is an instance of online learning:

By choosing his actions wisely the player can figure out important bits about

the opponent’s strategy that, in turn, can be used to select actions that will

have small losses. Surprisingly, up to now, very little is known about this

fundamental online learning problem.

In this thesis, we investigate this problem. In particular, we investigate to

what extent the information received influences the best achievable cumulative

loss suffered by an optimal player. We present algorithms that have theoretical

guarantees for achieving low cumulative loss, and prove their optimality by

providing matching, algorithm independent lower bounds. Our new algorithms

represent new ways of handling the exploration-exploitation trade-off, while

some of the lower bound proofs introduce novel proof techniques.
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Chapter 1

Introduction

In this chapter we first introduce the full- and bandit-information versions
of prediction with expert advice. Next, we present the framework of partial
monitoring, which generalizes both of the above. Then, we define the notion
of learnability and regret of a prediction problem. The material presented in
this chapter is a standard part of the literature, whose most relevant part will
be reviewed in Chapter 2.

1.1 Prediction with expert advice: full and

bandit information

Online learning is a problem formulation in machine learning where a learner
has to make decisions on a turn-by-turn basis. On every turn, after the learner
makes his decision, he suffers some loss.1 The loss suffered depends on the
learner’s decision and some unknown process running in the background. Be-
fore making his decision, the learner might receive some additional information
about the current turn. Unlike in other learning models such as supervised
learning, the learner is evaluated based on losses suffered during the learning
process. Consider the following example:

Example 1. Temperature forecasting. Every day you must predict the
temperature for the next morning. Your loss is the absolute difference between
your prediction and the actual temperature.

Many mass phenomena can be modelled as a stochastic process. In the
case of temperature forecasting, one possibility is to view the sequence of
temperatures as an i.i.d.2 sequence, in which case one can prove that a good
strategy would be to predict the empirical median of past observations. One
may however wonder if predicting the median is always a good strategy? In
particular, what happens when the i.i.d. assumption is violated? Will the

1For simplicity we chose to adopt the masculine form and also because most of our
learners are imperfect as are our masculine brothers.

2Independent, identically distributed.
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prediction strategy break down in an uncontrolled manner? In particular,
how should one evaluate a given prediction strategy? An attractive approach,
which allows the generalization of many results available for the stochastic
case is to evaluate the forecaster by comparing his total loss to the loss of each
of a fixed set of competitors.

In many cases, the predictions of the competitors can actually be used to
come up with one’s own forecast. This leads to the problem of prediction with
expert advice.

Example 2. Temperature forecasting with expert advice. Assume
that you are the CEO of a weather-forecast company, which is paid based on
how accurately it predicts the temperature for the next morning. You hire
N ∈ N professional forecasters (experts) to help you. Every day at noon,
the experts send their temperature predictions for the next morning to you.
With the help of data collected about how well the individual experts could
predict the temperature in the past, you should decide what temperature to
predict for tomorrow morning. The next morning you get to know the actual
temperature. Your loss is the absolute difference between your prediction and
the real temperature. If you knew which of your experts is going to be most
accurate, you could just take his prediction: it is assumed that the loss of this
expert is small enough. Thus, the goal is to compete with this best expert in
hindsight.

It has been proven that, in this setting, one can predict “almost as well”
as the best expert in the sense that there exist an algorithm such that, using
this algorithm, the average excess loss of the forecaster compared to the best
expert will vanish in the long run.3

In the above example, the outcome (i.e., the morning temperature) is re-
leased every day. This means that the learner has access to full information in
the sense that he can evaluate the losses of all the experts (and in fact, every
possible prediction) every morning. However, in some problems the informa-
tion received by the learner is restricted. Imagine for example that in the
temperature forecasting problem the temperature is not released but only the
difference between the actual temperature and the prediction becomes avail-
able every morning. Although this problem looks contrived, in many other
cases there is no other choice than to assume this form of restricted feedback:

Example 3. Multi-armed bandits. You go to a casino with N ∈ N slot
machines. Every slot machine works differently. In every time step, you pull
an arm of one of the slot machines and receive a reward (or suffer a loss).
The problem is to collect as much reward as possible. You are evaluated in
comparison to the best possible arm in hindsight.

In this example, if you pull an arm in a time step, you do not know what
would have happened had you pulled a different arm. Therefore, there are two
competing strategies serving different needs:

3The precise statement, together with references, will be given in the next chapter.
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1. Pull the arm that looks the best.

2. Pull an arm that has not been pulled too much.

The first pure strategy attempts to exploit the knowledge gathered so far,
whereas the second one attempts to explore to gain more information. It is
easy to see that we need to use a compound strategy that mixes the two
strategies: if we only exploit, we might miss some good arms that looked bad
at the beginning, but if we always explore we might rarely gain high rewards.
The problem of how to mix these two pure strategies is called the explor-
ation-exploitation dilemma and is a recurring feature of many online learning
problems.

Examples 2 and 3 illustrate the two most widely used feedback models in
online learning. However, there exist several online learning problems that
cannot be modeled as either of these. A general framework that allows the
modeling of such problems is the framework of partial monitoring.

1.2 Partial monitoring

In partial monitoring learning problems, a player and an opponent play a
repeated game. The game, G = (N ,M,Σ,L,H), is specified by an information
set Σ, an action set N , an outcome set M, a loss function L : N ×M 7→ R,
and a feedback function H : N ×M 7→ Σ. In every round, the opponent and
the player simultaneously choose an outcome Jt fromM and an action It from
N , respectively. The player then suffers the loss `t = L(It, Jt) and receives
the feedback ht = H(It, Jt). Only the feedback is revealed to the player, the
outcome and the loss remain hidden. The player’s goal is to minimize his
cumulative loss and his performance is measured against the best action in
hindsight: The difference between the best possible loss that could have been
achieved and the actual loss of the player will be called the regret. We assume
that the range of the losses is bounded4, typically in [−1, 1] or [0, 1]. Note that
this model assumes no noise: the loss and feedback are deterministic given the
action and the outcome. It is also important to note that the game (and in
particular, the functions L and H) are revealed to the player before the game
begins.

Because we wish to allow stochastic choices of actions and outcomes in
the sequel, we shall assume that N and M are measurable spaces. In most
of our examples, in fact these spaces will be trivially measurable since they
are finite. In the few other remaining examples, these spaces will be sub-
sets of appropriate Euclidean spaces. For these cases we will consider Borel
measurability.

Based on the opponent’s strategy for selecting outcomes, we distinguish
three cases:

4Although there exist some results for unbounded losses (see e.g., Allenberg et al. [2006]),
most of the related literature makes the assumption that losses are bounded.
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• Stationary memoryless, stochastic opponent: The outcomes are chosen
in an i.i.d. manner from a distribution defined over M.

• Oblivious adversarial opponent: The opponent chooses an outcome ar-
bitrarily at every time step. The player’s actions are never revealed to
the opponent and thus we can equivalently think of the opponent as an
arbitrary sequence of outcomes that is fixed before the game begins.5

• Non-oblivious or adaptive adversarial opponent: At every time step, the
opponent chooses an outcome arbitrarily. In this case the opponent has
access to the player’s past actions.

In this thesis we only deal with opponents of the first two types. From now
on, the term “adversarial opponent” refers to the oblivious adversarial case.

While the opponent is not allowed to make use of the player’s previous
actions when choosing an outcome, the player can, and should, use his past
observations. A strategy or algorithm A is a function6 that outputs an action at
every time step t based on the history Ht−1 = (I1, h1, . . . , It−1, ht−1) and a ran-
dom variable ξt, where (ξ1, ξ2, . . .) is an i.i.d. sequence of uniformly distributed
random variables. The ability to randomize the player’s decisions is essential
when playing against an adversarial opponent: deterministic algorithms might
be second-guessed, causing high regret7. We denote by A(Ht−1, ξt) the “de-
cision” of the algorithm. Since one typically wants to design algorithms for
a class of games instead of a single game, A(Ht−1, ξt) is an abuse of nota-
tion. The algorithm makes its decision based not only on the history and the
randomness but it receives, as mentioned earlier, the game G itself.

1.3 Examples

In this section we describe some “real-world” examples of learning problems
that can be modeled in the partial monitoring framework. For this, we need
to specify the elements of the tuple G = (N ,M,Σ,L,H).

Example 4. Horse race. Suppose there is a horse race every day with the
same N ∈ N horses. The goal is to predict the winner before each race. After
each race, the results, an ordering of the horses, is announced. If the horse we
predicted to win comes kth, the loss is (k − 1)/N .

5Technically, the choices of the opponent could still be stochastic.
6The word “algorithm” is misused in the sense that computational aspects are not dis-

cussed. Further, in what follows we will essentially identify learners with the algorithm that
they use, so the words algorithm and learner will be used interchangeably.

7Deterministic algorithms can achieve low regret under some special conditions even
against an adversary. For example, if the action space is some convex set in a Euclidean
space and the loss function is strongly convex for any outcome, then, in the case of L = H,
i.e., full-information problems, a very simple strategy called “Follow the leader” can achieve
logarithmic regret in terms of the time horizon.
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This problem is put into our framework as follows: The player has to choose
a horse, thus N = {1, . . . , N}. An outcome is a permutation of the horses,
hence M = perm(N ). In particular, for π ∈ M, π : N → N is a bijection
and π(i) will denote the place of horse i in the outcome. The feedback is the
same as the outcome, thus Σ = M and H(i, π) = π, where i ∈ N , π ∈ M.
Finally, L(i, π) = (π(i)− 1)/N .

This example is an instance of a full information game because the losses
of all actions can be recovered based from the feedback no matter the outcome
and the action:

Definition 1. A partial-monitoring game G = (N ,M,Σ,L,H) is a game with
full information if there exists a function f : N × Σ 7→ RN such that for any
action i ∈ N and outcome j ∈M,

f (i,H(i, j)) = L (·, j) .

Example 5. Commuting. We go to our workplace every morning. We can
choose to do so by car, public transport, or bike or we can walk, or ask our
colleague to pick us up. The loss is the time spent on commuting.

The action set is the five ways of going to work (N = {1, 2, . . . , 5}) the
outcome is the losses for all possibilities, thus, assuming that each individual
loss is in the [0, 1] interval,M⊂ [0, 1]5. The loss function is L(i, x) = xi, where
x = (x1, . . . , x5) ∈ M. The feedback is a loss, thus, Σ = [0, 1]. Our feedback,
however, is restricted to the loss for the action we chose: H(i, x) = xi. This
game is an instance of what we call a bandit game, or a game with bandit
information. These games allow the player to recover the loss of the action
chosen from the feedback received:

Definition 2. A partial-monitoring game G = (N ,M,Σ,L,H) is a game with
bandit information if there exists a function f : N ×Σ 7→ R such that for any
action i ∈ N and outcome j ∈M,

f (i,H(i, j)) = L (i, j) .

Note that this definition does not state that the only information given by
the feedback is the loss of the action we chose. For example, according to this
definition, all full information games are bandit information games as well.

Example 6. Dynamic pricing. Consider a monopolist who has an unlimited
supply of a nonperishable single product, with no marginal cost of production.
The monopolist (or seller) can set the prices for the product and it is assumed
that he will receive feedback in real time for each individual customers. Each
customer (buyer) secretly decides about a maximum price he is willing to
pay for the product. If the buyers’s maximum price is lower than the seller’s
price, no transaction happens and the seller suffers some constant storage loss.
Otherwise, the transaction occurs and the seller’s loss is the difference between
the buyer’s maximum price and his own price.

5



In this example, the learner is the seller and the opponent is the buyer,
N ,M⊂ R, Σ = {“sold”,“not sold”}, and the loss and feedback functions can
be described as

L(i, j) =

{
c, if i > j;
j − i, if i ≤ j,

H(i, j) =

{
“not sold”, if i > j;
“sold”, if i ≤ j,

where c is a fixed cost of lost sales. Interestingly, this problem cannot be
modeled as either a full information game or a bandit game. In particular,
it is not possible to recover the loss of the action chosen from the feedback
received. Thus, at first sight, it may be surprising that it is still possible for
the player to act in a reasonable manner.

1.4 Learnability and regret

As briefly mentioned previously, the performance of the learner is evaluated
based on his cumulative loss as compared to that of the best fixed action in
hindsight over some period of time of length T . Formally, this difference or
regret is defined by

RT = RAT (J1, . . . , JT ) =
T∑
t=1

L(It, Jt)−min
i∈N

T∑
t=1

L(i, Jt) .

Note that in this definition, the regret depends on the choices of both the
learner and the opponent, and might even be random if, for example, the
learner (or his opponent) randomizes his actions.

A question of major importance is how the regret depends on the length
of the time horizon T . For example, if the regret grows linearly with T then
this means that the learner performs significantly worse than the best constant
action, and we say that the learner fails to learn. On the other hand, if the
regret is sublinear in T , RT = o(T ) or lim supT→∞RT/T = 0 (in an appropriate
probabilistic sense) then this means that in the long run the learner’s average
loss gets infinitesimally close or better than that of the best action in hindsight.
In this case, we may say that the learner “learned to play” the game.

In case of a sublinear regret, it becomes important to have a closer look
at the growth rate of the regret, as it can tell us “how efficiently” does the
learner learn.

For the different opponent models, we measure the performance of the
learner in slightly different ways. These definitions, given in the next two
sections, differ in terms of how we deal with the stochastic nature of the
regret.
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1.4.1 Regret against adversarial opponents

Consider online learning against an adversarial opponent. In this case, we will
be interested in the worst-case regret of an algorithm A defined as

RAT (G) = sup
J1,...,JT∈M

RAT (J1, . . . , JT ) .

The worst-case regret, as follows from its name, describes how well the algo-
rithm does when the opponent uses the “hardest” possible outcome sequence
against the algorithm.

The minimax expected regret (or minimax regret for short) builds on top
of the worst-case regret and it indicates the “hardness” of a game G itself:

RT (G) = inf
A

E[RAT (G)] .

Intuitively, the minimax regret is the worst-case expected regret of the best
possible algorithm.

1.4.2 Regret against stochastic opponents

The notion of regret is slightly relaxed for stochastic opponents in that instead
of comparing with the cumulative loss of the best action in hindsight, we
compare against the expected cumulative loss of the action with the smallest
expected loss. Formally, let µ be a distribution over M and let the outcomes
(Jt)1≤t≤T form an i.i.d. sequence with the common marginal µ (i.e., Jt ∼ µ).
Then, we define the regret of algorithm A against µ as

RAT (µ) =
T∑
t=1

L(It, Jt)− T inf
i∈N

E[L(i, J1)] .

We also call this type of regret the individual or problem dependent regret.
In the same manner as in the previous case, we define the minimax expected
regret of a game:

RT (G) = inf
A

sup
µ

E[RAT (µ)] .

Note that we have heavily overloaded the notation RT . However, from the
context it should always be clear if we mean regret against a stochastic or an
adversarial opponent, whereas the arguments RT (·) make it clear if we mean
minimax, worst-case, or individual regret.

1.4.3 Bounds on the regret

In the previous sections we defined our two regret concepts. In this section, we
discuss the form of bounds on the regret that we will prove in the subsequent
chapters.

7



Upper bounds on the regret. If we design an algorithm A, we want to
know how it performs on a game.8 To this end, we prove upper bounds on
the regret. Let us first discuss the case of worst-case regret against adversarial
opponents. Since the regret can be random, we usually look at the following
kinds of bounds:

1. High probability worst-case bounds. These bounds usually state that no
matter what the game is (within a selected class), for any given 0 ≤ δ <
1, the regret satisfies with probability at least 1− δ,

RAT (G) ≤ f(G, T, δ)

with some function f .

2. Expected worst-case bounds. As the name suggests, in such a bound the
expected worst-case regret is bounded:

E[RAT (G)] ≤ f(G, T ) .

When the opponent is stochastic, we have the analogue bounds, but we
allow the function f to depend on µ, the outcome distribution used by the
opponent.9 Bounds that do not depend on µ are worst-case against stochastic
opponents. Such bounds are also called uniform.

Lower bounds on the minimax regret. These results give lower bounds
on the minimax regret of a game, against stochastic or adversarial opponents.
These bounds become important when one wants to decide if an algorithm is
(near-)optimal for a game; if we have an upper bound on our algorithm for
the worst-case regret, and we also have a lower bound on the minimax regret
then, by comparing the two bounds, we can tell if the algorithm is further
improvable (in a worst-case sense).

In this work, we focus in particular on how the minimax regret scales with
the time horizon. In particular, we will say that the minimax regret is of order
O(Tα) up to logarithmic factors if there exists an algorithm with worst-case
regret scaling as O(TαpolylogT ), while at the same time a lower bound for the
minimax regret scaling as Ω(Tα) is also known.

In the subsequent chapters we will investigate partial-monitoring games of
different types. The main problem will be to determine the minimax regret of
any given game.

8Here, the algorithm is meant in the general sense of a method that can be applied to
many games. In particular, the algorithm may “read” the definition of the game and modify
its behavior based on the game’s definition.

9It is possible to derive refined bounds in the adversarial case, as well, that depend on
the outcomes chosen by the opponent [e.g., Hazan and Kale, 2008, 2011]. However, in this
thesis we will not consider such bounds.
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1.5 Relation to supervised learning

In the field of supervised learning, the learner is given a set of labeled examples
(x1, y1), (x2, y2), . . . , (xn, yn) sampled i.i.d. from a distribution, where xi are
feature vectors, and yi are labels. The task of the learner is to present a decision
maker that maps feature vectors to labels. The learner is evaluated based on
how accurately it is able to predict the label, given a feature vector x sampled
(usually) from the same distribution as the training examples.

The online version of the game can be formulated as a repeated game where
at time step t, xt is given to the learner, he guesses a label ŷt and then receives
the true label yt.

The main difference between the two versions of the problem is that while
in the supervised learning setting the learner is evaluated based on his accuracy
after seeing all training examples, in the online learning setting the learner is
evaluated based on his accuracy during the learning process. This makes the
online learning setting inherently harder.

In fact, it is shown that for any online learning game, any learner with
small regret can be turned into a supervised learning agent that achieves good
accuracy. This transformation is called “Online to batch conversion” (see e.g.,
Littlestone [1989], Cesa-Bianchi et al. [2004], Dekel and Singer [2006]). The
simplest of these methods works as follows: At every time step t, the online
learner has a decision maker that predicts yt. We let the supervised learner
choose a decision maker uniformly randomly from this set.

The precise statement, taken from Cesa-Bianchi et al. [2004] is as follows.

Theorem 1. Let D be the decision space of the predictor and Y be the set of
labels. Let D be convex and the loss function ` : D×L 7→ [0, L] be convex in its
first argument. Let an arbitrary online algorithm output hypotheses H0, . . . , Hn

when run on examples (X1, Y1), . . . , (Xn, Yn). Let er(h) = E [`(h(X), Y )] where
(X, Y ) is drawn from the same distribution as the examples. Then, for any
0 < δ ≤ 1, the hypothesis H̄ = 1/n

∑n−1
t=0 Ht satisfies

P

(
er(Ĥ) ≥ M

n
+ L

√
2

n
log

1

δ

)
≤ δ ,

where M is the cumulative loss of the online algorithm.
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Chapter 2

Background

In this chapter we provide a more detailed background of online learning,
necessarily restricting ourselves to literature highly relevant to our research
topic given the enormity of the field.

2.1 Full-information games

Sequential decision making problems have been studied since at least the
1950s [Blackwell, 1954, Hannan, 1957]. Most of the early works addressed
the full-information case with finitely many actions and outcomes. Perhaps
the best known algorithm for this problem is due to Littlestone and War-
muth [1994] and Vovk [1990]. Their method, called the Weighted Majority
algorithm (or aggregating algorithm by Vovk), maintains weights for the ac-
tions, uses a multiplicative update based on the observed losses and draws an
action at every time step from the distribution defined by the weights (see
Algorithm 4.4.1).

This Weighted Majority algorithm, with appropriately set parameter, is
known to achieve an expected regret of

√
(T/2) logN , which is optimal in the

sense that there is a matching lower bound. As we will see in examples below,
this algorithm is the core of the algorithms designed for many other online
learning problems that assume adversarial opponents.

2.2 Multi-armed bandits

The multi-armed bandit problem with stochastic opponent was first introduced
by Robbins [1952]. For the case where the opponent’s distributions come
from a smoothly parameterized family of distributions, a solution enjoying
unimprovable asymptotic individual regret for a large family of problems was
presented by Lai and Robbins [1985]. Their solution for some sufficiently
regular families of parametric distributions can be summarized as follows:1

1In fact, Lai and Robbins [1985] gave an algorithm schema that is built around general,
but unspecified estimators of the mean and the so-called upper confidence indices. At the
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Algorithm 1 The Weighted Majority algorithm (after Littlestone and War-
muth [1994] and Vovk [1990])

Input parameter: η > 0
Initialization: w ← (1, . . . , 1)
for t = 1, 2, . . . do

Play action It drawn from the multinomial distribution with parameters
pi = wi/

∑N
j=1wj, i = 1, . . . , N

Observe Jt
Compute the losses `i ← L(i, Jt), i = 1, . . . , N
Update the weights wi ← wi exp(−η`i), i = 1, . . . , N

end for

1. Choose each action once.

2. From time step K + 1, calculate maximum likelihood based estimates of
the parameters for all the distributions underlying each action and also
maintain an upper confidence bound. This upper confidence bound is cal-
culated based on a Kullback-Leibler ball around the maximum likelihood
estimates.

3. At time step kK + i (k ∈ Z+), choose action i if its upper confidence
bound is larger than max1≤i≤K µ̂i, where µ̂i is an estimate of the mean
of action i; otherwise choose arg max1≤i≤K µ̂i.

This algorithm, called Upper Confidence Indices, UCI introduces the principle
of “optimism in the face of uncertainty”. If we do not know “enough” about
an action (i.e., we have not chosen it sufficiently many times), the action is
assumed to be a good action and we choose it. This method ensures that every
action will be explored sufficiently frequently.

The general UCI algorithm needs to find the upper confidence indices nu-
merically. In general, this means that it needs to store the whole history of
observations up to the current time step, which might be problematic in some
application. This issue was overcome by Agrawal [1995], who, instead of using
all the samples, calculated the upper confidence bounds based only on the
sample means and the counts of the number of times the actions were chosen.

These results were generalized to the non-parametric case by Auer et al.
[2002], who introduced the algorithm UCB1. In UCB1, the upper confidence
bounds are computed in a simple way based only on the sample means and the
arm counts, and the action chosen in every time step is the one that has the
highest upper confidence bound. They also prove a finite time regret bound
of O(N log T ), where the O(·) notation hides problem dependent parameters,
namely the differences between the mean of the optimal arm and that of the
suboptimal arms.

price of losing generality, we decided to simplify their general solution schema, while keeping
its essence, to make it easier to follow.
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Algorithm 2 UCB1 due to Auer et al. [2002]. Formulated using rewards.

Initialization: Choose each action once
for t = N + 1, N + 2, . . . do

It ← arg maxi=1,...,N

(
x̄i +

√
2 log t
ni

)
{x̄i: average reward for action i, ni:

number of times action i was chosen}
Receive reward
Update x̄It and nIt

end for

Algorithm 3 The Exp3 algorithm [Auer et al., 2003]

Input parameters: γ > 0, η > 0
Initialization: w ← (1, . . . , 1)
for t = 1, 2, . . . do

Play action It drawn from the multinomial distribution with parameters
pi = (1− γ) wi∑N

j=1 wj
+ γ 1

N
, i = 1, . . . , N

Observe loss `It ← L(It, Jt)
Compute ˆ̀

It ← `It/pIt
Update weight wIt ← wIt exp(−η ˆ̀

It)
end for

The multi-armed bandit problem against an adversarial opponent was an-
alyzed by Auer et al. [2003], who introduced a variety of algorithms for the
non-stochastic multi-armed bandit problem and proved regret bounds with
different requirements. The simplest of them, called Exponential-weight algo-
rithm for Exploration and Exploitation, or Exp3, is proven to achieve expected
regret2 of Õ(

√
NT ). This matches a lower bound, proven in the same article,

up to a logarithmic factor in the number of arms.
The Exp3 algorithm builds on the Weighted Majority algorithm. There are

two main differences between these algorithms. First, when Exp3 draws an
action, it does not directly use the weights, but mixes them with the uniform
distribution. This is to make sure that the algorithm explores all the actions
sufficiently frequently, even the ones that seem suboptimal. Second, since Exp3
does not have access to all the losses, it uses an estimate at every time step.
The estimate ˆ̀

i is defined to be zero whenever i is not the chosen action and
ˆ̀
i = `i/pi when i is the chosen action, where pi is the probability of choosing

action i. It can be shown that the estimates ˆ̀
i are unbiased estimates of the

real losses at every time step, given the history.
In their recent work, Audibert and Bubeck [2010] removed the logarithmic

factor from the upper bound of the minimax regret of bandit games. Their
algorithm, INF for Implicitly Normalized Forecaster, is presented in Algo-
rithm 4. The algorithm is similar in spirit to Exp3, but instead of exponential
weights, they use a cleverly chosen potential function. One drawback of INF

2The notation Õ(·) hides polylogarithmic terms.
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Algorithm 4 The INF algorithm [Audibert and Bubeck, 2010]

Input parameters: function ψ : R∗− 7→ R∗+
Initialization: p← (1/N, . . . , 1/N), Ĝi ← 0 (i = 1, . . . , N)
for t = 1, 2, . . . do

Play action It drawn from p.
Observe gain gIt
Compute ĝi ← I{It=i}gIt

pi
, Ĝi ← Ĝi + ĝi for i = 1, . . . , N

Let C normalization factor satisfy
∑N

i=1 ψ(Ĝi − C) = 1

Compute pi ← ψ(Ĝi − C) for i = 1, . . . , N
end for

is that it uses an implicit normalization at every time step (hence the name),
and thus one has to use some approximation to run the algorithm.

2.2.1 Bandits with experts

In the original bandit model, the regret is defined as the excess loss compared to
the best constant action. In the temperature prediction problem (Example 2),
the goal is to compete with the best forecaster, which suggests that the set of
actions should be identified with the set of experts. However, the problem has
more structure to it: the experts all predict temperatures and even the loss is
defined in terms of temperatures. We can say that the set of temperatures in
this problem form a set of primitive actions. This leads to the consideration of
a two-level model, where the goal is to compete with the best expert predictor
from an expert set, and all experts act by choosing a prediction from the
primitive action set N . As before, losses and feedbacks can be assigned to
each (primitive) action-outcome pair.

In the full information case, the additional structure is not particularly
helpful. However, this is not the case for bandit information: Assuming that
the experts announce the probability distributions that they would use to
choose the primitive actions, Auer et al. [2003] proposed an algorithm called
Exp4 (building on Exp3), which was shown to achieve O(

√
TN logK) expected

regret, where K is the size of the expert set. What is notable here is that the
bound depends only on the logarithm of the number of experts. In contrast, if
Exp3 was directly applied to the problem, the bound would be O(

√
TK logK).

Thus, when N � K, the bound of Exp4 is better. More recently, an algorithm
which further improves this bound to O(

√
TS logK) with S ≤ min(K,N) was

suggested by McMahan and Streeter [2009]. Here, the parameter S measures
the extent to which the experts agree in their recommendations.
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2.3 Bandits with infinitely many arms

As we see from the previous section, the minimax regret of the bandit game
grows with the number of arms. It follows that, unless we introduce some new
assumptions, bandit problems with infinitely many arms are not learnable.

If we assume that the set of arms is a subspace of Rd for some dimension
d and the reward of an arm v ∈ Rd is a random variable with mean θ>v for
some hidden θ ∈ Rd, we arrive at the stochastic linear bandit problem. This
case was considered by Auer [2003] and later by Dani et al. [2008]. Their
algorithms use the upper confidence bound idea. Instead of calculating a
confidence interval around the mean reward3, a confidence ellipsoid around
the parameter θ is constructed. Dani et al. [2008] showed that if the set of
arms is a polytope then the expected regret can be bounded from above by
O(d2 log T ). However, if the set of arms has a “smooth” surface (e.g., the set
is a ball) then no algorithm can achieve a regret smaller than Ω(d

√
T ). Dani

et al. also present an algorithm that achieves O(d
√
T log3/2 T ) expected regret.

The same bound is achieved by Rusmevichientong and Tsitsiklis [2010] who
propose an algorithm that, as opposed to the strategy of Dani et al., does not
require the knowledge of the time horizon T . More recently, Abbasi-Yadkori
et al. [2011] proposed a new variant that was shown to improve the time-
dependence of the bound by removing a multiplicative factor log1/2 T from the
bound. At the same time, they have shown that their new algorithm improves
the practical performance of the previous algorithms by a large margin.

In the adversarial version of linear bandits, the opponent’s outcome space
is M ⊂ Rd. The reward of an arm v at time step t is θ>t v, where θt is the
outcome at time step t. This model is called bandit linear optimization and
was analyzed by Abernethy et al. [2008], who showed that the minimax regret

of such a game is Õ(d
√
T ), whenever the set of arms is convex and compact.

Another possible assumption is to assume the set of arms comes from a
metric space and the average reward function is Lipschitz. This model was
considered by Kleinberg et al. [2008] who proved that for uniformly locally
α-Lipschitz reward functions with 0 < α ≤ 1 over the interval [0, 1] the min-

imax expected regret is Õ(T (1+α)/(1+2α)). When α = 1, i.e., the function is

Lipschitz, this gives a regret of order Õ(T 2/3). This result was extended by
Auer et al. [2007] to the case when the reward function enjoys a higher or-
der smoothness around its maxima. In particular, it was shown that if the
reward function has finitely many maxima and the function can be well ap-
proximated by a quadratic function in the vicinity of its maxima then the
minimax regret is Θ(

√
T log T ). There also exist extensions of these results to

the multi-dimensional case (see Kleinberg et al. 2008, Bubeck et al. 2009, 2011

3Rewards can be thought of as the negation of losses. There is no consensus amongst re-
searchers about whether to use rewards or losses in online learning. In the bandit literature,
rewards are more common, while in other areas of online learning, researchers use losses.
In this document, we will use losses, however, in the literature review we keep the one the
original source used.
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and the references therein).
If we assume that the loss function is convex, the model of online convex

optimization arises (e.g., Zinkevich 2003). In this model, the outcome set M
is the set of convex functions over a convex and compact subset N of Rd (note
that N still plays the role of the action set). This model is very general in
the sense that many online learning problems can be cast as online convex
optimization. The related literature on this topic is enormous and is beyond
the scope of this document. For an introduction, the reader is advised to refer
to the book by Cesa-Bianchi and Lugosi [2006] and references therein.

2.4 Between bandits and full-information

The work of Mannor and Shamir [2011] deals with online learning games where
the feedback structure is a hybrid between bandits and full-information. Their
assumption is that when the learner chooses an action, he observes the loss of
that action along with the losses of some other actions. The feedback structure
can be represented as a graph: the vertices correspond to the actions, and
there is an edge from an action i to action j if, by choosing action i, the
learner also observes the loss of action j. In their paper, Mannor and Shamir
[2011] distinguish two cases:

1. The undirected case when an edge from i to j implies the existence of
the edge from j to i. That is, if an action helps observing the loss of
another, it works the other way as well.

2. The directed case, when the above assumption does not necessarily hold.

In their work, Mannor and Shamir introduce new algorithms for both cases,
and provide upper bounds for the expected regret.

Their first algorithm, introduced for the undirected case is called ExpBan.
This algorithm is a combination of an experts algorithm and a bandit algo-
rithm. First it splits the graph to cliques (complete subgraphs), and define the
cliques as “meta-actions”. Then the algorithm plays a bandit algorithm on the
cliques while within each clique, it chooses an action using a full-information
algorithm. The expected regret of this algorithm heavily depends on the num-
ber of cliques needed to partition the graph. Denoting the minimum number
of cliques needed by χ, the expected regret of this algorithm is shown to be
bounded by

E[RT ] ≤ C
√
Tχ logN .

This result is quite satisfying in the sense that it interpolates between the
bandit and the full-information upper bound. Indeed, for bandits, χ = N
gives back the result of Exp3, while for full-information games, χ = 1 leads to
the bound of the Weighted Majority algorithm.
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Algorithm 5 ELP (taken from Mannor and Shamir [2011])

Input: η, {γ(t)}, {si(t)}, neighbor sets of actions {Ni(t)}
Initialization: w ← (1, . . . , 1)
for t = 1, . . . , T do

Play action It drawn from the multinomial distribution p = (p1, . . . , pN)
with pi = (1− γ(t)) wi∑N

j=1 wj
+ γ(t)si(t), 1 ≤ j ≤ N

Observe rewards gj where j ∈ NIt(t) ∪ {It}
Compute the reward estimates g̃j ←

I{It∈Nj(t)}∑
i∈Nj(t)

pi
gj, 1 ≤ j ≤ N

Update the weights wj ← wje
ηg̃j , 1 ≤ j ≤ N

end for

The other algorithm introduced by Mannor and Shamir is the ELP al-
gorithm (for “Exponentially-weighted algorithm with Linear Programming”),
whose pseudocode is given as Algorithm 5. This algorithm works also for prob-
lems where the graph is different in every time step. The algorithm builds on
Exp3 with the twist that the exploration distribution is calculated via a clever
linear programming problem, whose solution is the values si(t) (a similar trick
is used by McMahan and Streeter 2009). The upper bound derived for ELP is
stronger than that of ExpBan for the undirected case: instead of the clique-
covering number, the independence number (the maximum number of vertices
that do not have edges between them) appears in the bound. The paper also
shows a matching lower bound for the undirected case. For the directed case,
the bound is identical to that of ExpBan on the undirected case.

2.5 Finite partial monitoring

Finite partial monitoring is a special case of partial monitoring. Here the
action set N and the outcome set M are finite. Hence, the loss function
and the observation function can be represented as two matrices, one for the
values of the loss function for each pairs of actions and outcomes and one
for the values of the feedback function. A finite partial monitoring game is
defined by a pair of N -by-M matrices (L,H), where N and M are the number
of actions and outcomes, respectively. We call L the loss matrix and H the
feedback matrix. The matrix L is real-valued, while H is Σ-valued.

The problem of finite partial monitoring was introduced by Piccolboni
and Schindelhauer [2001], who also introduced the algorithm FeedExp3. This
algorithm differs from Exp3 only in how it estimates the losses ˆ̀

i. Denoting
the loss and the feedback matrices as L and H, and assuming that there exists
a matrix K such that L = KH, the losses are estimated as ˆ̀

i = Ki,Itht/pIt ,
where ht is the feedback received. Again, it is not hard to see that, under
the said condition, these estimated losses are unbiased estimates of the true
unseen losses for all the actions.
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Algorithm 6 The FeedExp3 algorithm by Piccolboni and Schindelhauer
[2001]

Input: L,H, K matrices
Parameters: γ, η
Initialization: w ← (1, . . . , 1)
for t = 1, 2, . . . do

Play action It drawn from the multinomial distribution with parameters
pi = (1− γ)wi/

∑N
j=1 wj + γ/N , i = 1, . . . , N

Observe feedback ht = HIt,Jt

for i = 1, . . . , N do
Compute ˆ̀

i ← Ki,Itht/pIt
Update weights wi ← wie

−η ˆ̀
i

end for
end for

In their paper, Piccolboni and Schindelhauer [2001] prove an upper bound
on the expected regret of O(T 3/4) for any learnable game. Later, this bound
was strengthened to O(T 2/3) by Cesa-Bianchi et al. [2006], who also presented
a specific partial monitoring game, a variant of the so-called label efficient
prediction game, for which they prove a lower bound on the expected regret of
Ω(T 2/3). This result shows that the worst-case bound on the class of all non-
trivial finite partial-monitoring games of O(T 2/3) is not improvable. However,
as we see for example with multi-armed bandits, some non-trivial partial-
monitoring games can have minimax regret growth rate better than Θ(T 2/3).
As cited from Cesa-Bianchi et al. [2006], “it remains a challenging problem to
characterize the class of problems that admit rates of convergence4 faster than
O(T−1/3)”.

4In their paper they use the average per round regret instead of the cumulative regret.
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Chapter 3

Summary of contributions

In this chapter, we list our contributions that will be described in details in
the subsequent chapters.

3.1 Partial monitoring with two outcomes

We start with a characterization of the minimax regret (up to logarithmic
factors) of almost all games with finitely many actions and two outcomes,
against non-stochastic opponents (see Chapter 4). We show that, apart from
a set of degenerate games (see Condition 2), partial-monitoring games can be
categorized into four classes; trivial games with 0 minimax regret, easy games
with Θ̃(

√
T ) minimax regret, hard games with Θ(T 2/3) minimax regret, and

hopeless games with Θ(T ) minimax regret. This classification result breaks
down to the following theorems:

1. The minimax regret of a finite game is zero if and only if there exists an
action that has always the smallest loss, independently of the outcome
(Lemma 1).

2. All other finite games admit a lower bound for the minimax regret of
Ω(
√
T ) (Theorem 4).

3. In a two-outcome game, if no action gives feedback information then the
minimax regret is lower bounded by Ω(T ).

4. If the condition in Case 3 does not apply, then the algorithm FeedExp3
by Piccolboni and Schindelhauer [2001] achieves O(T 2/3) minimax regret
(proven by Cesa-Bianchi et al. [2006]).

5. For a two-outcome non-degenerate game, if the separation condition
holds (see Definition 1), then a regret of Õ(

√
T ) is achievable. We

introduce the algorithm AppleTree and prove the upper bound in
Section 4.4.
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6. For a two-outcome non-degenerate game, if the separation condition does
not hold then the minimax regret is lower bounded by Ω(T 2/3) (Theo-
rem 5).

The six cases above give the characterization result.

3.2 Partial monitoring with two actions

Our next contribution deals with the “dual” case; after investigating games
with two outcomes, we turn our attention to games with two actions (see
Chapter 5). We show that if a game has only two actions then there are
three categories: trivial and hopeless games with 0 and Θ(T ) minimax regret,
respectively, and a third category with Θ(

√
T ) minimax regret. This basically

means that there are no “hard” games; any two-action game that is not trivial
or hopeless is easy.

We prove the above result by showing that if a game is not trivial or hope-
less, then with some trivial transformations, one can turn the game into a
new one where the loss and feedback matrices are identical (L = H). This
essentially means that, under the new game, the learner has bandit-like infor-
mation in every round (see Theorem 6). Then, using an algorithm that works
for bandit games, an O(

√
T ) regret is achievable.

3.3 Classification of finite stochastic partial-

monitoring games

We generalize our results on two-outcome and two-action games to games with
any finite number of outcomes and actions, under the extra assumption that
the opponent is stochastic. We show that the games can be categorized to the
same four categories as two-outcome games; trivial, easy, hard, and hopeless
games. The distinguishing condition between easy and hard games is the local
observability condition (see Definition 10), a generalization of the separation
condition. This condition ensures that actions that are in some sense neighbors
(see Definition 8 for a precise description) can be used to estimate the difference
of their expected losses.

We prove the upper bound of the minimax regret for easy games by in-
troducing and analyzing the algorithm Balaton. The description of the
algorithm can be found in Section 6.2.1, while the analysis is in Section 6.2.2.
To complete the characterization result, we prove an Ω(T 2/3) lower bound
on the regret of games that do not satisfy the local observability condition
(Theorem 11).
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3.4 Better algorithms for finite stochastic par-

tial monitoring

The algorithm Balaton was designed for the purpose of proving the classifi-
cation result. In particular, it is shown that Balaton achieves Õ(

√
T ) regret

on easy games. In Chapter 7 we turn our attention to designing algorithms
with some improved properties.

First, we introduce the algorithm CBP-Vanilla. The advantages of
CBP-Vanilla over Balaton are the following:

• It is an anytime algorithm: it does not need to know the time horizon
(T ) to achieve low regret.

• Apart from achieving near-optimal minimax regret (Corollary 1), it also
achieves a logarithmic individual regret (Theorem 12).

• It performs significantly better empirically (see Section 7.2.3).

Then, we present the algorithm CBP, an extension of CBP-Vanilla, that
is able to achieve near optimal minimax regret for both easy and hard games.
The additional advantageous properties of CBP are:

• If run on an easy game, it simulates CBP-Vanilla.

• It achieves O(T 2/3) minimax regret for hard games (Corollary 2).

• If we appropriately restrict the space of strategies that the opponent can
use, CBP achieves Õ(

√
T ) minimax regret.

The last assertion essentially means that if the opponent plays in an “easy
region” of the game, then the game behaves the same way as if it was an easy
game. For the precise statement, see Theorem 14.

We empirically compare two of our algorithms (CBP and Balaton) with
FeedExp3 of Piccolboni and Schindelhauer [2001]. These empirical results are
found in Section 7.2.3.

3.5 Online probing

In this work (see Chapter 8) we introduce a new online learning game where
in every time step the learner has to predict a label based on some features
received at the beginning of the turn. The learner has to decide which features
to request, where each feature has an additional cost assigned to it. Addition-
ally, there can be a cost of requesting the true label at the end of the turn.
We define the regret as the cumulative loss of the learner compared to that of
the best linear predictor.

We study two versions of the above game. In the first version, the cost of
requesting the label is zero, therefore we can assume without loss of generality
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that the learner asks for the true label in every time step. We show that the
minimax regret of the game with free labels scales with the time horizon as
Õ(
√
T ) (Theorem 15). In the second version, the cost of requesting the label

is strictly positive. We show that in this case, the minimax regret scales as
Θ̃(T 2/3) (Theorems 16 and 17). The difference between the regret growth rate
of the two versions of the game is another nice indication of how the feedback
structure can dramatically change the complexity of an online learning game.
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Chapter 4

Two-outcome games1

The first games we investigate are partial-monitoring games with two outcomes
and a finite number of actions. As we will see, these games serve as a step-
ping stone towards understanding games with any finite number of outcomes.
In this chapter we show that, apart from a small set of degenerate games,
partial-monitoring games with two outcomes fall into one of the following four
categories:

1. Trivial games with minimax regret zero;

2. Easy games with minimax regret Θ̃(
√
T );

3. Hard games with minimax regret Θ(T 2/3); and

4. Hopeless games with minimax regret Ω(T ).

In particular, this classification result shows that there exist no non-degenerate
games with minimax regret Θ(Tα) for 1/2 < α < 2/3.

4.1 Basic definitions and notations

Remember that a finite partial-monitoring game G = (L,H) is specified by a
pair of N ×M matrices (L,H) where N is the number of actions, M is the
number of outcomes, L is the loss matrix, and H is the feedback matrix. We
use the notation n = {1, . . . , n} for any integer and denote the actions and
outcomes by integers starting from 1, so the action set is N and the outcome
set is M . We denote by L[i, j] and H[i, j] (i ∈ N , j ∈ M) the entries of L
and H, respectively. We denote by `i the column vector consisting of the ith

row (i ∈ N) of L, and we call it the loss vector of action i. The elements of
L are arbitrary real numbers. The elements of H belong to some alphabet Σ,
we only assume that the learner is able to distinguish two different elements of
the alphabet. We often use the set of natural or real numbers as the alphabet.

1Versions of the work in this chapter appeared in Bartók, Pál, and Szepesvári [2010] and
Antos, Bartók, Pál, and Szepesvári [2012].

22



The matrices L, H are known by both the learner and the opponent. The
game proceeds in T rounds. In each round t = 1, 2, . . . , T , the learner chooses
an action It ∈ N and simultaneously the opponent chooses an outcome Jt ∈M .
Next, the learner receives the feedback H[It, Jt]. Nothing else is revealed to the
learner; in particular Jt and the loss L[It, Jt] incurred by the learner remain
hidden.

In this chapter we assume that the opponent is (oblivious) adversarial, that
is, we assume that the sequence of outcomes J1, J2, . . . , JT is a fixed determinis-
tic sequence chosen before the first round of the game. A randomized strategy
(algorithm) A of the learner is a sequence of random functions A1,A2, . . . ,AT
where each of the functions maps the feedback from the past outcomes (and
learner’s internal random “bits”) to an action It; formally At : Σt−1×Ω→ N .

The goal of the learner is to keep his cumulative loss
∑T

t=1 L[It, Jt] small.
With the notation of this chapter, the (cumulative) regret of an algorithm A
is defined as

RT = RAT (G) =
T∑
t=1

L[It, Jt]−min
i∈N

T∑
t=1

L[i, Jt] .

4.2 Characterization of games with two out-

comes

In this section, we give the main characterization result of this chapter. We
need a preliminary definition that is useful for any finite game:

Definition 3 (Properties of Actions). Let G = (L,H) be a finite partial-
monitoring game with N actions and M outcomes. Let i ∈ N be one of its
actions. Let ∆M denote the set of M-dimensional probability vectors.

• Action i is called dominated if for any p ∈ ∆M there exists an action i′

such that `i′ 6= `i and `>i′ p ≤ `>i p.

• Action i is called non-dominated if it is not dominated.

• Action i is called degenerate if it is dominated and there exists a distri-
bution p ∈ ∆M such that for all i′ ∈ N , `>i p ≤ `>i′ p.

• Action i is called all-revealing if any pair of outcomes j, j′, j 6= j′ satisfies
H[i, j] 6= H[i, j′].

• Action i is called none-revealing if any pair of outcomes j,j′ satisfies
H[i, j] = H[i, j′].

• Action i is called partially-revealing if it is neither all-revealing, nor
none-revealing.
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• All-revealing and partially-revealing actions together are called revealing
actions.

• Two or more actions with the same loss vector are called duplicate ac-
tions.

The property of being dominated has an equivalent dual definition: action
i is dominated if there exists a set of actions with their respective loss vec-
tors different from `i such that some convex combination of their loss vectors
componentwise lower bounds `i.

In games with M = 2 outcomes, each action is either all-revealing or
none-revealing. This dichotomy is one of the key properties that lead to the
classification theorem for two-outcome games. To emphasize the dichotomy,
from now on we will refer to actions as revealing and non-revealing whenever
it is clear from the context that M = 2.

This dichotomy also allows us to assume without of loss generality that
there are no duplicate actions. Clearly, if multiple actions with the same
loss vector exist, all but one can be removed (together with the corresponding
rows of L and H) without changing the minimax regret: If all of them are non-
revealing, we keep one of the actions and remove all the others. Otherwise, we
keep a revealing action and remove the others. Then replacing any algorithm
by one that, instead of a removed action, chooses always the corresponding
kept action, it is easy to see that the loss of the new algorithm cannot increase
and equals the loss of this algorithm for the original game. Thus, the two
games will have the same minimax regret.

The concepts of dominated and non-dominated actions can be visualized
for two-outcome games by drawing the loss vector of each action as a point
in R2. The points corresponding to the non-dominated actions lie on the
bottom-left boundary of the convex hull of the set of all the actions, as shown
in Figure 4.1. Enumerating the non-dominated actions ordered according to
their loss for the first outcome gives rise to a sequence (i1, i2, . . . , iK), which
we call the chain of non-dominated actions.

To state the classification theorem, we introduce the following conditions.

Condition 1 (Separation condition). A two-outcome game G satisfies the
separation condition if, after removing duplicate actions, its chain of non-
dominated actions does not have a pair of consecutive actions ik, ik+1 such
that both of them are non-revealing. The set of games satisfying this condition
will be denoted by S.

Condition 2 (Non-degeneracy condition). A two-outcome game G is degen-
erate if it has a degenerate revealing action. If G is not degenerate, we call it
non-degenerate and we say that it satisfies the non-degeneracy condition.

As we will soon see, the separation condition is the key to distinguish be-
tween hard and easy games. On the other hand, the non-degeneracy condition
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`·,2

`·,1

i3

i2

i1

i4

Revealing non-dominated action

Non-revealing non-dominated action

Dominated action (revealing or non-revealing)

Figure 4.1: The figure shows each action i as a point in R2 with coordinates
(L[i, 1],L[i, 2]). The solid line connects the chain of non-dominated actions,
which, by convention are ordered according to their loss for the first outcome.

is merely a technical condition that we need in our proofs. The set of degener-
ate games is excluded from the characterization (in Chapter 6 this gap will be
filled in). With this preparations, we are now ready to state our main result.

Theorem 2 (Classification of Two-Outcome Partial-Monitoring Games). Let
S be the set of all finite partial-monitoring games with two outcomes that
satisfy the separation condition. Let G = (L,H) be a game with two outcomes
that satisfies the non-degeneracy condition. Let K be the number of non-
dominated actions in G, counting duplicate actions only once. The minimax
expected regret RT (G) satisfies

RT (G) =


0, K = 1; (4.1a)

Θ̃
(√

T
)
, K ≥ 2, G ∈ S; (4.1b)

Θ
(
T 2/3

)
, K ≥ 2, G 6∈ S, G has a revealing action;(4.1c)

Θ(T ), otherwise. (4.1d)

We call the games in cases (4.1a)–(4.1d) trivial, easy, hard, and hopeless,
respectively. Case (4.1a) is proven by the following lemma which shows that a
trivial game is also characterized by having 0 minimax regret in a single round
or by having an action “dominating” alone all the others:

Lemma 1. For any finite partial-monitoring game, the following four state-
ments are equivalent:

a) The minimax regret is zero for each T .

b) The minimax regret is zero for some T .
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c) There exists a (non-dominated) action i ∈ N whose loss is not larger than
the loss of any other action irrespectively of the choice of opponent’s action.

d) The number of non-dominated actions is one (K = 1).

The proof of Lemma 1, as all the other lemmas of this thesis, can be found
in the Appendix.

Case (4.1d) of Theorem 2 is proven the following way2:

Proof of Theorem 2 Case (4.1d). We know thatK ≥ 2 and G has no revealing
action. Then for any algorithm A,

E[RAT (G)] ≥ sup
j∈M,J1=···=JT=j

E

[
T∑
t=1

L[It, Jt]−min
i∈N

T∑
t=1

L[i, Jt]

]

≥ 1

M

M∑
j=1

E

[
T∑
t=1

L[It, j]− T min
i∈N

L[i, j]

]

=
1

M

T∑
t=1

E

[
M∑
j=1

L[It, j]

]
− T

M

M∑
j=1

min
i∈N

L[i, j] .

Here It is a random variable usually depending on J1:T−1, that is, on j through
the outcomes. However, since G has no revealing action, now the distribution
of It is independent of j, thus E[

∑M
j=1 L[It, j]] ≥ mini∈N

∑M
j=1 L[i, j] for each

t, and we have

E[RAT (G)] ≥ T
1

M

[
min
i∈N

M∑
j=1

L[i, j]−
M∑
j=1

min
i∈N

L[i, j]

]
︸ ︷︷ ︸

c

= cT ,

where c > 0 if K ≥ 2 (because c ≥ 0, and c = 0 would imply Lemma 1 c),
thus also d)). Since c depends only on L, E[RT (G)] ≥ cT = Θ(T ).

The upper bound of case (4.1c) can be derived from a result of Cesa-
Bianchi and Lugosi [2006]: Note that the entries of H can be changed without
changing the information revealed to the learner as long as one does not change
the pattern of which elements in a row are equal and different. Cesa-Bianchi
and Lugosi [2006, Theorem 6.5] show that if the entries of H can be chosen
such that

rank(H) = rank

((
H
L

))
then O(T 2/3) expected regret is achievable. This condition holds trivially for
two-outcome games with at least one revealing action and N ≥ 2. It remains
to prove the upper bound for case (4.1b), the lower bound for (4.1b), and the
lower bound for (4.1c); we prove these in Sections 4.4, 4.5, and 4.6, respectively.

2Note that the linear lower bound could also be derived from the result of Piccolboni
and Schindelhauer [2001] but in the case of two outcomes, it is worthwile to show that there
is a much simpler proof.
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4.3 Examples

Before we dive into the proof of the remaining parts of Theorem 2, we give a
few examples of finite partial-monitoring games with two outcomes and show
how the theorem can be applied. For each example we present the matrices
L,H and depict the loss vectors of actions as points in R2.

Example 7. [One-Armed Bandit] We start with an example of a multi-armed
bandit game. Multi-armed bandit games are those where the feedback equals
the instantaneous loss, that is, when L = H.3

L =

(
0 0
−1 1

)
, H =

(
0 0
−1 1

)
.

`·,2

`·,1

Revealing non-dominated action

Non-revealing non-dominated action

Because the loss of the first action is 0 regardless of the outcome, and the loss
varies only for the second action, we call this game a one-armed bandit game.
Both actions are non-dominated and the second one is revealing, therefore this
is an easy game and according to Theorem 2 the minimax regret is Θ̃(

√
T ).

(For this specific game, it can be shown that the minimax regret is in fact
Θ(
√
T ).)

Example 8. [Apple Tasting] Consider an orchard that wants to hand out its
crop of apples for sale. However, some of the apples might be rotten. The
orchard can do a sequential test. Each apple can be either tasted (which
reveals whether the apple is healthy or rotten) or the apple can be given out
for sale. If a rotten apple is given out for sale, the orchard suffers a unit
loss. On the other hand, if a healthy apple is tasted, it cannot be sold and,
again, the orchard suffers a unit loss. This can be formalized by the following
partial-monitoring game [Helmbold et al., 2000]:

3“Classically”, non-stochastic multi-armed bandit problems are defined by the restriction
that in no round can the learner gain any information about the losses of actions other than
the chosen one, that is, L is not known in advance to the learner. (Also, the domain set of
losses is often infinite there (M = ∞).) When H = L in our setting, depending on L, this
might or might not be the case; the “classical bandit” problem with losses constrained to a
finite set is a special case of games with H = L. However, the latter condition also allows
other types of games where the learner can recover the losses of actions not chosen, and so
which could be “easier” than classical bandits due to the knowledge of L. Nevertheless, it
is easy to see that these games are at most as hard as classical bandit games.
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L =

(
1 0
0 1

)
, H =

(
a a
b c

)
.

`·,2

`·,1

Revealing non-dominated action

Non-revealing non-dominated action

Here, the set of feedbacks has three elements: Σ = {a, b, c}. The first action
corresponds to giving out the apple for sale, the second corresponds to tasting
the apple; the first outcome corresponds to a rotten apple, the second out-
come corresponds to a healthy apple. Both actions are non-dominated and
the second one is revealing, therefore this is an easy game and according to
Theorem 2 the minimax regret is Θ̃(

√
T ). This is apparently a new result for

this game. Also notice that the picture is just a translation of the picture for
the one-armed bandit.

Example 9. [Label Efficient Prediction] Consider a situation when we would
like to sequentially classify emails as spam or as legitimate. For each email we
have to output a prediction, and additionally we can request, as feedback, the
correct label from the user. If we classify an email incorrectly or we request
its label, we suffer a unit loss. (If the email is classified correctly and we do
not request the feedback, no loss is suffered.) This can be formalized by the
following partial-monitoring game [Cesa-Bianchi and Lugosi, 2006]:

L =

1 1
0 1
1 0

 , H =

a b
c c
d d

 .

`·,2

`·,1

Non-revealing non-dominated action

Revealing dominated action

Here, the set of feedbacks has four elements: Σ = {a, b, c, d}, the first action
corresponds to a label request, and the second and the third action correspond
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to a prediction (spam and legitimate, respectively) without a request. The
outcomes correspond to spam and legitimate emails.

We see that the chain of non-dominated actions contains two neighboring
non-revealing actions and there is a dominated revealing action. Therefore,
this is a hard game and, by Theorem 2, the minimax regret is Θ(T 2/3). This
specific example was the only non-trivial game known before our work with
minimax regret at least Ω(T 2/3) [Cesa-Bianchi et al., 2006, Theorem 5.1].

Example 10. [A Hopeless Game] The following game is an example where
the feedback does not reveal any information about the outcome:

L =

(
1 0
0 1

)
, H =

(
a a
b b

)
.

`·,2

`·,1

Non-revealing non-dominated action

Here, the set of feedbacks has two elements: Σ = {a, b}. Because both actions
are non-revealing and non-dominated, this is a hopeless game and thus its
minimax regret is Θ(T ).

Example 11. [A Trivial Game] In the following game, the best action, regard-
less of the outcome sequence, is action 2. A learner that chooses this action
in every round is guaranteed to have zero regret.

L =

2 1
1 0
1 1

 , H =

a b
c d
e f

 .

`·,2

`·,1

Revealing non-dominated action

Revealing dominated action

Here, the set of feedbacks has six elements: Σ = {a, b, c, d, e, f}. Because this
game has only one non-dominated action (action 2), it is a trivial game and
thus its minimax regret is 0.
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Example 12. [A Degenerate Game] The next game does not satisfy the
non-degeneracy condition and therefore Theorem 2 does not apply.

L =

2 0
1 1
0 2

 , H =

a a
b c
d d


`·,2

`·,1

Non-revealing non-dominated action

Revealing dominated (degenerate) action

Here, the set of feedbacks has four elements: Σ = {a, b, c, d}. The minimax
regret of this game is between Ω(

√
T ) andO(T 2/3). It remains an open problem

to close this gap and determine the exact rate of growth.

4.4 Upper bound for easy games

In this section we present our algorithm for games satisfying the separation
condition and the non-degeneracy condition, and prove that this algorithm
achieves Õ(

√
T ) regret with high probability. We call the algorithm Apple-

Tree since it builds a binary tree, leaves of which are apple tasting games.

4.4.1 The algorithm

In the first step of the algorithm we can simplify the game by first removing
the dominated actions and then the duplicates as mentioned beforehand.

The idea of the algorithm is to recursively split the game until we arrive
at games with two actions only. Now, if one has only two actions in a partial-
information game, the game must be either a full-information game (if both
actions are revealing) or an instance of a one-armed bandit (with one revealing
and one non-revealing action).

To see why this latter case corresponds to one-armed bandits, assume with-
out loss of generality that the first action is the revealing action. Now, it is
easy to see that the regret of a sequence of actions in a game does not change
if the loss matrix is changed by subtracting the same number from a column.4

4As a result, for any algorithm, if RT is its regret at time T when measured in the
game with the modified loss matrix, the algorithm’s “true” regret will also be RT (i.e.,
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v

Child(v, 1) Child(v, 2)

Figure 4.2: The binary tree built by the algorithm. The leaf nodes represent
neighboring action pairs.

By subtracting L[2, 1] from the first and L[2, 2] from the second column we
thus get the “equivalent” game where the second row of the loss matrix is zero,
arriving at a one-armed bandit game (see Example 7). Since a one-armed ban-
dit is a special form of a two-armed bandit, one can use Exp3.P due to Auer
et al. [2003] to achieve the O(

√
T ) regret.

Now, if there are more than two actions in the game, then the game is split,
putting the first half of the actions into the first and the second half into the
second subgame, with a single common shared action. Recall that, in the chain
of non-dominated actions, the actions are ordered according to their losses
corresponding to the first outcome. This is continued until the split results in
games with two actions only. The recursive splitting of the game results in a
binary tree (see Figure 4.2). The idea of the strategy played at an internal
node of the tree is as follows: An outcome sequence of length T determines the
frequency ρT of outcome 2. If this frequency is small, the optimal action is one
of the actions of G1, the first subgame (simply because then the frequency of
outcome 1 is high and G1 contains the actions with the smallest loss for the first
outcome). Conversely, if this frequency is large, the optimal action is one of
the actions of G2. In some intermediate range, the optimal action is the action
shared between the subgames. Let the boundaries of this range be ρ∗1 < ρ∗2 (ρ∗1
is thus the solution to (1−ρ)L[s−1, 1] +ρL[s−1, 2] = (1−ρ)L[s, 1] +ρL[s, 2]
and ρ∗2 is the solution to (1−ρ)L[s+1, 1]+ρL[s+1, 2] = (1−ρ)L[s, 1]+ρL[s, 2],
where s = dK/2e is the index of the action shared between the two subgames.)

If we knew ρT , a good solution would be to play a strategy where the
actions are restricted to that of either game G1 or G2, depending on whether
ρT ≤ ρ∗1 or ρT ≥ ρ∗2. (When ρ∗1 ≤ ρT ≤ ρ∗2 then it does not matter which
action-set we restrict the play to, since the optimal action in this case is
included in both sets.) There are two difficulties. First, since the outcome
sequence is not known in advance, the best we can hope for is to know the

the algorithm’s regret when measured in the original, unmodified game). Piccolboni and
Schindelhauer [2001] exploit this idea, too.
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running frequencies ρt = 1
t

∑t
s=1 I{Js=2}. However, since the game is a partial-

information game, the outcomes are not revealed in all time steps, hence, even
ρt is inaccessible. Nevertheless, for now let us assume that ρt was available.
Then one idea would be to play a strategy restricted to the actions of either
game G1 or G2 as long as ρt stays below ρ∗1 or above ρ∗2. Further, when ρt
becomes larger than ρ∗2 while previously the strategy played the action of G1

then we have to switch to the game G2. In this case, we start a fresh copy (a
reset) of a strategy playing in G2. The same happens when a switch from G2

to game G1 is necessary. These resets are necessary because at the leaves we
play according to strategies that use weights that depend on the cumulated
losses of the actions exponentially. To see an example when without resets
the algorithm fails to achieve a small regret, consider the case when there are
3 actions, the middle one being revealing. Assume that during the first T/2
time steps the frequency of outcome 2 oscillates between the two boundaries
so that the algorithm switches constantly back and forth between the games
G1 and G2. Assume further that in the second half of the game, the outcome
is always 2. This way the optimal action will be 3. Nevertheless, up to time
step T/2, the player of G2 will only see outcome 1 and thus will think that
action 2 is the optimal action. In the second half of the game, he will not
have enough time to recover and will play action 2 for too long. Resetting the
algorithms of the subgames avoids this behavior.

If the number of switches was large, the repeated resetting of the strategies
could be equally problematic. Luckily this cannot happen, hence the resetting
does minimal harm. We will in fact show that this generalizes to the case even
when ρt is estimated based on partial feedback (see Lemma 2).

Let us now turn to how ρt is estimated. As mentioned in Section 4.2,
mapping a row of H bijectively leads to an equivalent game, thus for M = 2
we can assume without loss of generality that in any round, the algorithm
receives (possibly random) feedback Ht ∈ {1, 2, ∗}: if a revealing action is
played in the round, Ht = Jt ∈ {1, 2}, otherwise Ht = ∗. Let H1:t−1 =
(I1, H1, . . . , It−1, Ht−1) ∈ (N × Σ)t−1, the (random) history of actions and
observations up to time step t − 1. If the algorithm choosing the actions
decides with probability pt ∈ (0, 1] to play a revealing action (pt can depend
on H1:t−1) then I{Ht=2}/pt is a simple unbiased estimate of I{Jt=2} (in fact,
E
[
I{Ht=2}/pt|H1:t−1

]
= I{Jt=2}). As long as pt does not drop to a too low value,

ρ̂t = 1
t

∑t
s=1

I{Hs=2}
ps

will be a relatively reliable estimate of ρt (see Lemma 3).
However reliable this estimate is, it can still differ from ρt. For this reason, we
push the boundaries determining game switches towards each other:

ρ′1 =
2ρ∗1 + ρ∗2

3
, ρ′2 =

ρ∗1 + 2ρ∗2
3

. (4.2)

We call the resulting algorithm AppleTree, because the elementary par-
tial-information 2-action games in the bottom essentially correspond to in-
stances of the apple tasting problem (see Example 8). The algorithm’s main
entry point is shown on Algorithm 7. Its inputs are the game G = (L,H), the
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Algorithm 7 The entry point of the AppleTree algorithm Main(G, T, δ)

Input: G = (L,H) is a game, T is a horizon, 0 < δ < 1 is a confidence
parameter
G← Purify(G)
BuildTree(root,G, δ)
for t← 1 to T do
Play(root)

end for

Algorithm 8 The initialization routine InitEta(G, T ).

Input: G is a game, T is a horizon
if IsRevealing(G, 2) then
η(v)←

√
8 ln 2 /T

else
η(v)← γ(v)/4

end if

time horizon and a confidence parameter 0 < δ < 1. The algorithm first elimi-
nates the dominated and duplicate actions. This is followed by building a tree
that is used to store variables necessary to play in the subgames (Algorithm 9):
If the number of actions is 2, the procedure initializes various parameters that
are used either by a bandit algorithm (based on Exp3.P [Auer et al., 2003]),
or by the Weighted Majority algorithm (WM) by Littlestone and Warmuth
[1994] (see Algorithm in Chapter 2). In the other case, it calls itself recur-
sively on the split subgames and with an appropriately decreased confidence
parameter.

The main worker routine is called Play. This is again a recursive function
(see Algorithm 10). The special case when the number of actions is two is
handled in routine PlayAtLeaf, which will be discussed later. When the
number of actions is larger, the algorithm recurses to play in the subgame
that was remembered as the game to be preferred from the last round and
then updates its estimate of the frequency of outcome 2 based on the infor-
mation received. When this estimate changes so that a switch of the current
preferred game is necessary, the algorithm resets the algorithms in the subtree
corresponding to the game switched to, and changes the variable storing the
index of the preferred game. The Reset function used for this purpose, shown
on Algorithm 11, is also recursive.

At the leaves, when there are only two actions, either WM or Exp3.P is
used. These algorithms are used with their standard optimized parameters
(see Corollary 4.2 for the tuning of WM, and Theorem 6.10 for the tuning of
Exp3.P, both from the book of Cesa-Bianchi and Lugosi [2006]). For com-
pleteness, their pseudocodes are shown in Algorithms 12–13. Note that with
Exp3.P we use the loss matrix transformation described earlier, hence the loss
matrix has zero entries for the second (non-revealing) action, while the entry
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Algorithm 9 The tree building procedure BuildTree(v,G, δ)

Input: G = (L,H) is a game, v is a tree node
if NumOfActions(G)= 2 then

if not IsRevealing(G, 1) then
G← SwapActions(G)

end if
wi(v)← 1/2, i = 1, 2
β(v)←

√
ln(2/δ)/(2T )

γ(v)← 8β(v)/(3 + β(v))
InitEta(G, T )

else
(G1,G2)← SplitGame(G)
BuildTree(Child(v, 1), G1, δ/(4T ) )
BuildTree(Child(v, 2), G2, δ/(4T ) )
g(v)← 1, ρ̂(v)← 0, t(v)← 1
(ρ′1(v), ρ′2(v))← Boundaries(G)

end if
G(v)← G

for action 1 and outcome j is L[1, j](v)− L[2, j](v). Here L[i, j](v) stands for
the loss of action i and outcome j in the game G(v) that is stored at node v.

4.4.2 Proof of the upper bound

Theorem 3. Assume G = (L,H) satisfies the separation condition and the

non-degeneracy condition and L[i, j] ≤ 1. Denote by R̂T the regret of Algo-
rithm AppleTree up to time step T . There exist constants c,p such that for
any 0 < δ < 1 and T ∈ N, for any outcome sequence J1, . . . , JT , the algorithm

with input G, T, δ achieves P
(

R̂T ≤ c
√
T lnp(2T/δ)

)
≥ 1− δ .

Throughout the proof we will analyze the algorithm’s behavior at the root
node. We will use time indices as follows. Let us define the filtration {Ft =
σ(I1, . . . , It)}t, where It is the action the algorithm plays at time step t. For
any variable x(v) used by the algorithm, we will use xt(v) to denote the value
of x(v) that is measurable with respect to Ft, but not measurable with respect
to Ft−1. From now on, we also abbreviate xt(root) by xt. We start with two
lemmas. The first lemma shows that the number of switches the algorithm
makes is small.

Lemma 2. Let S be the number of times AppleTree calls Reset at the root
node. Then there exists a universal constant c∗ such that S ≤ c∗ lnT

∆
, where

∆ = ρ′2 − ρ′1 with ρ′1 and ρ′2 given by (4.2).

Note that here we use the non-degeneracy condition to ensure that ∆ > 0.
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Algorithm 10 The recursive function Play(v)

Input: v is a tree node
if NumOfActions(G(v))= 2 then

(p, h)← PlayAtLeaf(v)
else

(p, h)← Play(Child(v, g(v)))

ρ̂(v)← (1− 1
t(v)

)ρ̂(v) + 1
t(v)

I{h=2}
p

if g(v) = 2 and ρ̂(v) < ρ′1(v) then
Reset(Child(v, 1)); g(v)← 1

else if g(v) = 1 and ρ̂(v) > ρ′2(v) then
Reset(Child(v, 2)); g(v)← 2

end if
t(v)← t(v) + 1

end if
Return (p, h)

Algorithm 11 Function Reset(v)

Input: v is a tree node
if NumOfActions(G(v))= 2 then
wi(v)← 1/2, i← 1, 2

else
g(v)← 1, ρ̂(v)← 0, t(v)← 1
Reset(Child(v, 1))

end if

The next lemma shows that the estimate of the relative frequency of out-
come 2 is not far away from its true value.

Lemma 3. For any 0 < δ < 1, with probability at least 1 − δ, for all t ≥
8
√
T ln(2T/δ)/(3∆2), |ρ̂t − ρt| ≤ ∆.

Proof of Theorem 3. To prove that the algorithm achieves the desired regret
bound we use induction on the depth of the tree, d. If d = 1, AppleTree
plays either WM or Exp3.P. WM is known to satisfy Theorem 3, and, as
we discussed earlier, Exp3.P achieves O(

√
T lnT/δ) regret as well. As the

induction hypothesis we assume that Theorem 3 is true for any T and any
game such that the tree built by the algorithm has depth d′ < d.

Let Q1 = {1, . . . , dK/2e}, Q2 = {dK/2e, . . . , K} be the sets of actions
associated with the subgames in the root. (Recall that the actions are ordered
with respect to L[·, 1].) Furthermore, let us define the following values: Let
T 0

0 = 1, let T 0
i be the first time step t after T 0

i−1 such that gt 6= gt−1. In
other words, T 0

i are the time steps when the algorithm switches between the
subgames. Finally, let Ti = min(T 0

i , T + 1). From Lemma 2 we know that
TSmax+1 = T + 1, where Smax = c∗ lnT

∆
. It is easy to see that Ti are stopping

times for any i ≥ 1.
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Algorithm 12 Function PlayAtLeaf(v)

Input: v is a tree node
if RevealingActionNumber(G(v))= 2 then

{Full-information case}
(p, h)←WM(v)

else
p← (1− γ(v)) w1(v)

w1(v)+w2(v)
+ γ(v)/2

U ∼ U[0,1) {U is uniform in [0, 1)}
if U < p then
h← CHOOSE(1) {h ∈ {1, 2}}
L1 ← (L[1, h](v)− L[2, h](v) + β(v))/p
L2 ← β(v)/(1− p)
w1(v)← w1(v) exp(−η(v)L1)
w2(v)← w2(v) exp(−η(v)L2)

else
h← CHOOSE(2) {here h = ∗}

end if
end if
Return(p, h)

Without loss of generality, from now on we will assume that the optimal
action i∗ ∈ Q1. If i∗ = dK/2e then, since it is contained in both subgames,
the bound trivially follows from the induction hypothesis and Lemma 2. In
the rest of the proof we assume i∗ < K/2.

Let S = max{i ≥ 1 | T 0
i ≤ T} be the number of switches, c = 8

3∆2 , and

B be the event that for all t ≥ c
√
T ln(4T/δ), |ρ̂t − ρt| ≤ ∆. We know from

Lemma 3 that P (B) ≥ 1 − δ/2. On B we have that |ρ̂T − ρT | ≤ ∆, and
thus, using that i∗ < K/2, ρT ≤ ρ∗1. This implies that in the last phase the
algorithm plays on G1. It is also easy to see that before the last switch, at
time step TS − 1, ρ̂ is between ρ∗1 and ρ∗2, if TS is large enough. Thus, up to
time step TS − 1, the optimal action is dK/2e, the one that is shared by the
two subgames. This implies that

∑TS−1
t=1 L[i∗, Jt] − L[dK/2e, Jt] ≥ 0. On the

other hand, if TS ≤ c
√
T ln(4T/δ) then

TS−1∑
t=1

L[i∗, Jt]− L[dK/2e, Jt] ≥ −c
√
T ln(4T/δ) .
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Algorithm 13 Function WM(v)

Input: v is a tree node
p← w1(v)

w1(v)+w2(v)

U ∼ U[0,1) {U is uniform in [0, 1)}
if U < p then
I ← 1

else
I ← 2

end if
h← CHOOSE(I) {h ∈ {1, 2}}
w1(v)← w1(v) exp(−η(v)L[1, h](v))
w2(v)← w2(v) exp(−η(v)L[2, h](v))
Return(p, h)

Thus, we have

R̂T =
T∑
t=1

L[It, Jt]− L[i∗, Jt]

=

TS−1∑
t=1

(L[It, Jt]− L[i∗, Jt]) +
T∑

t=TS

(L[It, Jt]− L[i∗, Jt])

≤ I{B}

(
TS−1∑
t=1

(L[It, Jt]− L[dK/2e, Jt]) +
T∑

t=TS

(L[It, Jt]− L[i∗, Jt])

)
+ c
√
T ln(4T/δ) +

(
I{Bc}

)
T︸ ︷︷ ︸

D

≤ D + I{B}
Smax∑
r=1

max
i∈Qπ(r)

Tr−1∑
t=Tr−1

(L[It, Jt]− L[i, Jt])

= D + I{B}
Smax∑
r=1

max
i∈Qπ(r)

T∑
m=1

I{Tr−Tr−1=m}

Tr−1+m−1∑
t=Tr−1

(L[It, Jt]− L[i, Jt]) ,

where π(r) is 1 if r is odd and 2 if r is even. Note that for the last line of
the above inequality chain to be well defined, we need outcome sequences of
length at most 2T . It does us no harm to assume that for all T < t ≤ 2T , say,
Jt = 1.

Recall that the strategies that play in the subgames are reset after the

switches. Hence, the sum R̂
(r)

m =
∑Tr−1+m−1

t=Tr−1
(L[It, Jt]− L[i, Jt]) is the regret

of the algorithm if it is used in the subgame Gπ(r) for m ≤ T steps. Then,
exploiting that Tr are stopping times, we can use the induction hypothesis to

bound R̂
(r)

m . In particular, let C be the event that for all m ≤ T the sum is less
than c

√
T lnp(2T 2/δ). Since the root node calls its children with confidence

37



parameter δ/(2T ), we have that P (Cc) ≤ δ/2. In summary,

R̂T ≤ D + I{Cc}T + I{B}I{C}Smaxc
√
T lnp 2T 2/δ

≤ I{Bc∪Cc}T + c
√
T ln(4T/δ) + I{B}I{C}

c∗ lnT

∆
c
√
T lnp 2T 2/δ.

Thus, on B∩C, R̂T ≤ 2pcc∗

∆

√
T lnp+1 (2T/δ) , which, together with P (Bc ∪ Cc) ≤

δ concludes the proof.

Remark The above theorem proves a high probability bound on the regret.
We can get a bound on the expected regret if we set δ to 1/

√
T . Also note

that the bound given by the induction grows in the number of non-dominated
actions as O(K log2K).

4.5 Lower bound for non-trivial games

In the following sections, ‖·‖1 and ‖·‖ denote the L1- and L2-norm of a vector
in a Euclidean space, respectively.

In this section, we show that non-trivial games have minimax regret at
least Ω(

√
T ). We state and prove this result for all finite games, in contrast

to earlier related lower bounds that apply to specific losses (see Cesa-Bianchi
and Lugosi [Cesa-Bianchi and Lugosi, 2006, Theorems 3.7, 6.3, 6.4, 6.11] for
full-information, label efficient, and bandit games).

Theorem 4 (Lower bound for non-trivial games). If G = (L,H) is a finite
non-trivial (K ≥ 2) partial-monitoring game then there exists a constant c > 0
such that for any T ≥ 1 the minimax expected regret RT (G) ≥ c

√
T .

We prove the above theorem under two different assumptions. The first
proof assumes that the opponent is non-stochastic. In the second proof we lift
this assumption and prove the theorem for stochastic opponents. Note that,
as opposed to upper bound statements, in the case of lower bounds, bounds
stated for the stochastic case are “stronger” in the sense that a lower bound
in the stochastic case implies the same bound for the adversarial case.

Proof of Theorem 4 for adversarial opponents. We start with a lemma that
ensures the existence of a pair i1,i2 of actions and an outcome distribution p
with M atoms such that both i1 and i2 are optimal under p.

Lemma 4. Let G = (L,H) be any finite non-trivial game with N actions and
M ≥ 2 outcomes. Then there exists p ∈ ∆M satisfying both of the following
properties:

(a) All coordinates of p are positive.

(b) There exist actions i1,i2 ∈ N such that `i1 6= `i2 and for all i ∈ N ,

`>i1p = `>i2p ≤ `>i p .
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The following lemma is a variant of Khinchine’s inequality (see e.g. [Cesa-
Bianchi and Lugosi, 2006, Lemma A.9]) for asymmetric random variables. The
idea of the proof is the same as there and originally comes from Littlewood
[1930].

Lemma 5 (Khinchine’s inequality for asymmetric random variables). Let

X1, X2, . . . , XT

be i.i.d. random variables with mean E[Xt] = 0, finite variance E[X2
t ] =

Var[Xt] = σ2, and finite fourth moment E[X4
t ] = µ4. Then,

E

∣∣∣∣∣
T∑
t=1

Xt

∣∣∣∣∣ ≥ σ3

√
3µ4

√
T .

When M = 1, G is always trivial, thus we assume that M ≥ 2. Without
loss of generality we may assume that all the actions are all-revealing.

Let p ∈ ∆M be a distribution of the outcomes that satisfies conditions (a)
and (b) of Lemma 4. By renaming actions we can assume without loss of
generality that `1 6= `2 and actions 1 and 2 are optimal under p, that is,

`>1 p = `>2 p ≤ `>i p (4.3)

for any i ∈ N .
Fix any learning algorithm A. We use randomization, replacing the out-

comes with a sequence J1, J2, . . . , JT of random variables i.i.d. according to p,
and independently of the internal randomization of A. Then we can write

E[RAT (G)] = E

[
T∑
t=1

L[It, Jt]−min
i∈N

T∑
t=1

L[i, Jt]

]

= E

[
T∑
t=1

E[L[It, Jt] | It]−min
i∈N

T∑
t=1

L[i, Jt]

]
. (4.4)

Here, in the last two expressions, the expectation is with respect to both the
internal randomization of A and the random choice of J1, J2, . . . , JT . Now,
since Jt is independent of It, we see that E[L[It, Jt] | It] = `>Itp. By (4.3), we
have `>Itp ≥ `>1 p = `>2 p. Therefore (upper bounding also the minimum),

T∑
t=1

E [L[It, Jt] | It]−min
i∈N

T∑
t=1

L[i, Jt] =
T∑
t=1

`>Itp−min
i∈N

T∑
t=1

L[i, Jt]

≥
T∑
t=1

`>1 p− min
i=1,2

T∑
t=1

L[i, Jt] (4.5)

= max
i=1,2

T∑
t=1

(
`>1 p− L[i, Jt]

)
.
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Using the identity max{a, b} = 1
2
(a+ b+ |a− b|), the latest expression is

1

2

[
T∑
t=1

(
`>1 p− L[1, Jt]

)
+

T∑
t=1

(
`>1 p− L[2, Jt]

)
+

∣∣∣∣∣
T∑
t=1

(
`>1 p− L[1, Jt]

)
−

T∑
t=1

(
`>1 p− L[2, Jt]

)∣∣∣∣∣
]

=
1

2

T∑
t=1

(
`>1 p− L[1, Jt] + `>2 p− L[2, Jt]

)
+

1

2

∣∣∣∣∣
T∑
t=1

(L[2, Jt]− L[1, Jt])

∣∣∣∣∣ ,
where (4.3) was used in the first term. The expectation of the first term
vanishes since E[L[i, Jt]] = `>i p. Let Xt = L[2, Jt] − L[1, Jt]. We see that
X1, X2, . . . , XT are i.i.d. random variables with mean E[Xt] = 0. Therefore,

E

[
max
i=1,2

T∑
t=1

(
`>1 p− L[i, Jt]

)]
=

1

2
E

∣∣∣∣∣
T∑
t=1

Xt

∣∣∣∣∣ ≥ c
√
T , (4.6)

where the last inequality follows from Theorem 5 and the constant c depends
only on `1, `2, and p. For the theorem to yield c > 0, it is important to note
that the distribution of Xt has finite support and with positive probability
Xt 6= 0 since `1 6= `2 and all coordinates of p are positive. Hence, both E[X2

t ]
and E[X4

t ] are finite and positive.
Now, putting together (4.4), (4.5), and (4.6) gives the desired lower bound

E[RAT (G)] ≥ c
√
T . Since c depends only on L, also RT (G) ≥ c

√
T .

Proof of Theorem 4 for stochastic opponents. The proof is similar to the lower
bound proof of Auer et al. [2003].

Recall that ∆M ⊂ RM is the (M −1)-dimensional probability simplex. For
the proof, we start with a geometrical lemma, which ensures the existence of a
pair i1,i2 of non-dominated actions that are “neighbors” in the sense that for
any small enough ε > 0, there exists a pair of “ε-close” outcome distributions
p+ εw and p− εw such that i1 is uniquely optimal under the first distribution,
and i2 is uniquely optimal under the second distribution overtaking each non-
optimal action by at least Ω(ε) in both cases.

Lemma 6 (ε-close distributions). Let G = (L,H) be any finite non-trivial
game with N non-duplicate actions and M ≥ 2 outcomes. Then there exist
two non-dominated actions i1,i2 ∈ N , p ∈ ∆M , w ∈ RM \ {0}, and c,α > 0
satisfying the following properties:

(a) `i1 6= `i2.

(b) `>i1p = `>i2p ≤ `>i p for all i ∈ N and the coordinates of p are positive.

(c) Coordinates of w satisfy
∑M

j=1 w(j) = 0.
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For any ε ∈ (0, α),

(d) p1 = p+ εw ∈ ∆M and p2 = p− εw ∈ ∆M ,

(e) for any i ∈ N , i 6= i1, we have (`i − `i1)>p1 ≥ cε,

(f) for any i ∈ N , i 6= i2, we have (`i − `i2)>p2 ≥ cε.

We now continue with a technical lemma, which can be used to derive an
upper bound on the Kullback-Leibler (KL) divergence (or relative entropy)
between the distributions p− εw, p+ εw from the previous lemma. Recall that
the KL divergence between two probability distributions p,q ∈ ∆M is defined
as

D(p ‖ q) =
M∑
j=1

pj ln

(
pj
qj

)
.

Lemma 7 (KL divergence of ε-close distributions). Let p ∈ ∆M be a probability
vector and let p = minj∈M :p(j)>0 p(j). For any vector ε ∈ RM such that both
p− ε and p+ ε lie in ∆M and |ε(j)| ≤ p(j)/2 for all j ∈M , the KL divergence
of p− ε and p+ ε satisfies

D(p− ε ‖ p+ ε) ≤ c‖ε‖2,

where c = 6 ln(3)−4
p

> 0.

When M = 1, G is always trivial, thus we assume that M ≥ 2. Without
loss of generality we may assume that all the actions are all-revealing. Then,
as in Section 4.2 for M=2, we can also assume that there are no duplicate
actions, thus for any two actions i and i′, `i 6= `i′ .

Lemma 6 implies that there exist two actions i1,i2, p ∈ ∆M , w ∈ RM ,
and c1,α > 0 satisfying conditions (a)–(f). To avoid cumbersome indexing, by
renaming the actions we can achieve that i1 = 1 and i2 = 2. Let p1 = p + εw
and p2 = p− εw for some ε ∈ (0, α). We determine the precise value of ε later.
By Lemma 6 (d), p1,p2 ∈ ∆M .

Fix any randomized learning algorithm A and time horizon T . Let

J1, J2, . . . , JT

be i.i.d. random variables chosen from pk with either k = 1 or k = 2. It is
assumed that (J1, J2, . . . , JT ) are independent of the internal randomization
of A. For k ∈ {1, 2}, let Pk (·) denote the probability measure induced when
Jt ∼ pk, while let Ek(·) be the corresponding expectation operator. Let

N
(k)
i = N

(k)
i (A, T ) =

T∑
t=1

Pk (It = i) ∈ [0, T ] (4.7)

denote the expected number of times action i is chosen by A up to time step
T when Jt ∼ pk.
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Parts (e) and (f) of Lemma 6 imply that for any i ∈ N if `i 6= `k then
(`i − `k)>pk ≥ c1ε. Therefore, we can bound the expected regret as

Ek[RAT (G)] =
∑

i∈N\{k}

N
(k)
i (`i − `k)>pk ≥

∑
i∈N\{k}

N
(k)
i c1ε = c1

(
T −N (k)

k

)
ε .

(4.8)
Averaging (4.8) over k ∈ {1, 2} we get

E[RAT (G)] ≥ c1

(
2T −N (1)

1 −N (2)
2

)
ε/2 . (4.9)

We now focus on lower bounding 2T −N (1)
1 −N (2)

2 . We start by showing that

N
(2)
2 is close to N

(1)
2 . The following lemma, which is the key lemma of both

lower bound proofs, carries this out formally and states that the expected
number of times an action is played by A does not change too much when
we change the model, if the outcome distributions p1 and p2 are “close” in
KL-divergence:

Lemma 8. For any partial-monitoring game with N actions and M outcomes,
algorithm A, pair of outcome distributions p1,p2 ∈ ∆M and action i, we have

N
(2)
i −N (1)

i ≤ T

√
D(p2 ‖ p1)N

(2)
rev/2

and

N
(1)
i −N (2)

i ≤ T

√
D(p1 ‖ p2)N

(1)
rev/2,

where N
(k)
rev =

∑T
t=1 Pk (It ∈ R) =

∑
i′∈RN

(k)
i′ under model pk, k = 1,2 with R

being the set of revealing actions.5

We use Lemma 8 for i = 2 and that N
(2)
rev ≤ T to bound the difference

N
(2)
2 −N (1)

2 as

N
(2)
2 −N (1)

2 ≤ T
√
D(p2 ‖ p1)T/2 = T 3/2

√
D(p2 ‖ p1)/2 . (4.10)

We upper bound D(p2 ‖ p1) using Lemma 7 with ε = εw. The lemma implies
that D(p2 ‖ p1) ≤ c2ε

2 for ε < ε0 with some ε0, c2 > 0 which depend only on
w and p. Putting this together with (4.10) we get

N
(2)
2 < N

(1)
2 + c3εT

3/2

where c3 =
√
c2/2. Together with N

(1)
1 +N

(1)
2 ≤ T we get

2T −N (1)
1 −N (2)

2 > 2T −N (1)
1 −N (1)

2 − c3εT
3/2 ≥ T − c3εT

3/2 .

5It seems from the proof that N
(k)
rev could be slightly sharpened to N

(k,T−1)
rev =∑T−1

t=1 Pk (It ∈ R).
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Substituting into (4.9) and choosing ε = 1/(2c3T
1/2) gives the desired lower

bound
E[RAT (G)] >

c1

8c3

√
T

provided that our choice of ε ensures that ε < min(α, ε0) =: ε1 that depends
only on L. This condition is satisfied for all T > T0 = 1/(2c3ε1)2. Since c1, c3,
and ε1 depend only on L, for such T , RT (G) ≥ c1

8c3

√
T .

The non-triviality of the game implies that Lemma 1 d) does not hold, so
neither does b), that is, RT (G) > 0 for T ≥ 1. Thus choosing

c = min

(
min

1≤T≤T0

RT (G)√
T

,
c1

8c3

)
,

c > 0 and for any T , RT (G) ≥ c
√
T .

4.6 Lower bound for hard games

In this section, we present an Ω(T 2/3) lower bound for the expected regret of
any two-outcome game in the case when the separation condition does not
hold.

Theorem 5 (Lower bound for hard games). If M = 2 and G = (L,H)
satisfies the non-degeneracy condition and the separation condition does not
hold then there exists a constant C > 0 such that for any T ≥ 1 the minimax
expected regret RT (G) ≥ CT 2/3.

Proof. We follow the lower bound proof for the label efficient prediction from
Cesa-Bianchi and Lugosi [2006] with a few changes. The most important
change, as we will see, is the choice of the models we randomize over.

As the first step, the following lemma shows that non-revealing degenerate
actions do not influence the minimax regret of a game.

Lemma 9. Let G be a non-degenerate game with two outcomes. Let G′ be the
game we get by removing the degenerate non-revealing actions from G. Then
RT (G) = RT (G′).

By the non-degeneracy condition and Lemma 9, we can assume without
loss of generality that G does not have degenerate actions. We can also as-
sume without loss of generality that actions 1 and 2 are the two consecu-
tive non-dominated non-revealing actions. It follows by scaling and a reduc-
tion similar to the one we used in Section 4.4.1 that we can further assume
(L[1, 1],L[1, 2]) = (0, α), (L[2, 1],L[2, 2]) = (1 − α, 0) with some α ∈ (0, 1).
Using the non-degeneracy condition and that actions 1 and 2 are consecutive
non-dominated actions, we get that for all i ≥ 3, there exists some λi ∈ R
depending only on L such that

L[i, 1] > λiL[1, 1] + (1− λi)L[2, 1] = (1− λi)(1− α) ,

L[i, 2] > λiL[1, 2] + (1− λi)L[2, 2] = λiα .
(4.11)
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Let λmin = mini≥3 λi, λmax = maxi≥3 λi, and λ∗ = λmax − λmin.
We define two models for generating outcomes from {1, 2}. In model 1,

the outcome distribution is p1(1) = α+ ε, p1(2) = 1− p1(1), whereas in model
2, p2(1) = α− ε, p2(2) = 1− p2(1) with 0 < ε ≤ min(α, 1− α)/2 to be chosen
later.

Let J1, J2, . . . , JT be i.i.d. random variables chosen from pk with either
k = 1 or k = 2. It is assumed that (J1, J2, . . . , JT ) are independent of the
internal randomization of A. For k ∈ {1, 2}, let Pk (·) denote the probability
measure induced when Jt ∼ pk, while let Ek(·) be the corresponding expecta-
tion operator.

Let N
(k)
i be the expected number of times action i is chosen by A under

pk up to time step T , as in (4.7).

Finally, let N
(k)
≥3 =

∑
i≥3N

(k)
i . Note that, if ε < ε0 with some ε0 depending

only on L then only actions 1 and 2 can be optimal for these models. Namely,
action k is optimal under pk, hence Ek[RAT (G)] can be expressed in terms of

N
(k)
i :

Ek[RAT (G)] =
∑

i∈N\{k}

N
(k)
i (`i−`k)>pk =

N∑
i=3

N
(k)
i (`i−`k)>pk+N (k)

3−k(`3−k−`k)>pk

(4.12)
for k = 1,2. Now, by (4.11), there exists τ > 0 depending only on L such that
for all i ≥ 3, L[i, 1] ≥ (1− λi)(1− α) + τ and L[i, 2] ≥ αλi + τ . These bounds
and simple algebra give that

(`i − `1)>p1 = (L[i, 1]− L[1, 1])(α + ε) + (L[i, 2]− L[1, 2])(1− α− ε)
≥ ((1− λi)(1− α) + τ)(α + ε) + (αλi + τ − α)(1− α− ε)
= (1− λi)ε+ τ

≥ (1− λmax)ε+ τ =: f1

and
(`2 − `1)>p1 = (1− α)(α + ε)− α(1− α− ε) = ε .

Analogously, we get

(`i − `2)>p2 ≥ λminε+ τ =: f2 and (`1 − `2)>p2 = ε .

Note that if ε < τ/max(|1 − λmax|, |λmin|) then both f1 and f2 are positive.
Substituting these into (4.12) gives

Ek[RAT (G)] ≥ fkN
(k)
≥3 + εN

(k)
3−k . (4.13)

The following lemma is an application of Lemmas 8 and 7:

Lemma 10. There exists a constant c > 0 (depending on α only) such that
for any ε > 0,

N
(1)
2 ≥ N

(2)
2 − cT ε

√
N

(2)
≥3 and N

(2)
1 ≥ N

(1)
1 − cT ε

√
N

(1)
≥3 .
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Let l = arg mink∈{1,2}N
(k)
≥3 . Now, for k 6= l we can lower bound the regret

using Lemma 10 for (4.13):

Ek[RAT (G)] ≥ fkN
(k)
≥3 +ε

(
N

(l)
3−k − cT ε

√
N

(l)
≥3

)
≥ fkN

(l)
≥3+ε

(
N

(l)
3−k − cT ε

√
N

(l)
≥3

)
(4.14)

as fk > 0. For k = l we do this subtracting cT ε2
√
N

(l)
≥3 ≥ 0 from the right-

hand side of (4.13) leading to the same lower bound, hence (4.14) holds for
k = 1,2. Finally, averaging (4.14) over k ∈ {1, 2} we have the bound

f1 + f2

2
N

(l)
≥3 + ε

(
N

(l)
2 +N

(l)
1

2
− cT ε

√
N

(l)
≥3

)
=

(
(1− λmax + λmin)ε

2
+ τ

)
N

(l)
≥3

+ ε

(
T −N (l)

≥3

2

)
− cT ε2

√
N

(l)
≥3

=

(
τ − λ∗ε

2

)
N

(l)
≥3 +

εT

2
− cT ε2

√
N

(l)
≥3 .

Choosing ε = c2T
−1/3 (≤ c2) with c2 > 0 gives

E[RAT (G)] ≥
(
τ − λ∗c2T

−1/3

2

)
N

(l)
≥3 +

c2T
2/3

2
− cc2

2T
1/3

√
N

(l)
≥3

≥
(
τ − λ∗c2

2

)
N

(l)
≥3 +

c2T
2/3

2
− cc2

2T
1/3

√
N

(l)
≥3

=

((
τ − λ∗c2

2

)
x2 +

c2

2
− cc2

2x

)
T 2/3 = q(x)T 2/3,

where x = T−1/3

√
N

(l)
≥3 and q(x) can be written and lower bounded as

q(x) =

(
τ − λ∗c2

2

)(
x− cc2

2

2τ − λ∗c2

)2

+
c2

2
− c2c4

2

4τ − 2λ∗c2

≥ c2

2

(
1− c2c2

2τ − λ∗c2

)
independently of x whenever λ∗c2 < 2τ and c2 ≤ 1. Now, it is easy to see that
if c2 = min(τ/(c2 + λ∗), 1) then these hold, moreover, q(x) ≥ c2/4 > 0 giving
the desired lower bound

E[RAT (G)] ≥ c2

4
T 2/3

provided that our choice of ε ensures that ε < min(α/2, (1 − α)/2, ε0, τ/|1 −
λmax|, τ/|λmin|) =: ε1 that depends only on L. This condition is satisfied
for all T > T0 = (c2/ε1)3. Since c2 and ε1 depend only on L, for such T ,
RT (G) ≥ c2

4
T 2/3.

If the separation condition does not hold then the game is clearly non-
trivial which, using Lemma 1 b) and d) as in the proof of Theorem 4, implies
that RT (G) > 0 for T ≥ 1. Thus choosing

C = min

(
min

1≤T≤T0

RT (G)

T 2/3
,
c2

4

)
,

45



C > 0 and for any T , RT (G) ≥ CT 2/3.

4.7 Discussion

In this chapter we classified non-degenerate partial-monitoring games with two
outcomes based on their minimax regret. An immediate question is how the
classification extends to degenerate games. From the results in this chapter,
we can not even tell if all degenerate games fall into one of the four categories
or whether there are some games with minimax regret of Θ̃(Tα) for some
α ∈ (1/2, 2/3).

Besides the issue of degenerate games, the most important question is
whether the results generalize to games with more outcomes. A simple ob-
servation is that, given a finite partial-monitoring game, if we restrict the
opponent’s choices to any two outcomes, the resulting game’s hardness serves
as a lower bound on the minimax regret of the original game. This gives us a
sufficient condition that a game has Ω(T 2/3) minimax regret.

As it turns out, the separation condition—the condition that separates
easy from hard games with two outcomes—can be generalized to general finite
games. We explain how the generalization is carried out in Chapter 6, where
we give the classification (including degenerate games) for all finite games
against stochastic environments. The question against adversarial opponents,
building upon the work presented in Chapter 6, was answered by Foster and
Rakhlin [2011] (for a short summary of their work, see Section 6.2.5).
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Chapter 5

Two-action games1

In the previous chapter, we dealt with games with two outcomes. The analysis
of such games led us to the observation that two-action games play an impor-
tant rule in the classification. Indeed, the algorithm AppleTree splits the
game into two-action games, and then plays those games depending on their
feedback structure. For that reason, we started to think about the “dual” case:
games with two actions and any finite number of outcomes. We know from the
previous chapter that to have a Ω(T 2/3) lower bound on the minimax regret of
a game with two outcomes, one needs at least three actions: two consecutive
non-revealing actions are needed so that the game is not easy, and a revealing
action to make the game non-hopeless. This naturally raises questions: If a
game has only two actions, what can its minimax regret be? Do we have the
same four classes as in the two-outcome case? Or is the “hard” class missing?
Are there more classes due to more outcomes? In this chapter, we answer
these questions.

5.1 Results

The intuition that having Θ(T 2/3) minimax regret requires at least three ac-
tions turns out to be a good lead: in this chapter we show that for two-action
games, only three classes exist. These three classes are: trivial, easy, and
hopeless. In fact, we show something even stronger: we prove that if a game
is not trivial nor hopeless, then it can be transformed to a bandit game. Then
any bandit algorithm can be used to have O(

√
T ) regret.

To prove the above statement, we first need to precisely define what we
mean by “transforming” a game to another.

Definition 4. Take two games, G = (L,H), G′ = (L′,H′), where L, L′,
H, and H′ are N ×M matrices. We say that G′ is simulation-and-regret-
not-harder than G (or, in short, G′ is easier than G, or G′ ≤ G) when the
following holds: Fix any algorithm A. Then, one can find an algorithm A′
such that the behavior of A on G can be replicated by using A′ on G′ in the

1Based on joint work with András Antos and Csaba Szepesvári.
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sense that for the same outcome sequence, the two algorithms will choose the
same action sequences and the regret in the second case is at most the regret
in the first case, that is, RA

′

T (G′) ≤ RAT (G).
We say that G and G′ are simulation-and-regret-equivalent (or equivalent,

G′ ' G) when both G′ ≤ G and G ≤ G′.

Clearly, ≤ is a preorder and ' is an equivalence relation on the set of
N ×M games, moreover, if G′ ≤ G then RT (G′) ≤ RT (G), and if G ' G′

then their minimax regret is the same.
We need a few simple lemmata on these relations of games:

Lemma 11. The regret of a sequence of actions in a game G = (L,H) does not
change if the loss matrix is changed by subtracting the same real number from
each coordinate of one of its columns (see e.g., Piccolboni and Schindelhauer
[2001]). Therefore, letting 1 = (1, . . . , 1)> ∈ RN , v ∈ RM , and G′ = (L −
1v>,H), we have that G ' G′.

Lemma 12. If G = (L,H) and G′ = (L,H′) differ only in their feedback ma-
trices and H′ can be obtained by h′ij = fi(hij) with the help of some mappings
fi (i ∈ N) then G ≤ G′. If each fi is injective then G ' G′.

In what follows, a transformation of some game into another game that
takes either the first or the second form just defined shall be called an admis-
sible transformation.

The following proposition shows that if a 2-action partial-monitoring game
is non-trivial and non-hopeless then there is no loss in generality by assuming
that L = KH for some K ∈ R2×2. This statement for arbitrary N and most
of the ideas for its proof could be extracted from the paper of Piccolboni and
Schindelhauer [2001, see Section 4, Theorem 3]. An exact detailed proof for
N = 2 is included here for the sake of completeness.

Proposition 1. Let G0 = (L0,H0) be a non-trivial non-hopeless 2-action
partial-monitoring game. Then, there exist matrices L,H ∈ R2×M such that
G0 ≤ G = (L,H) and L = KH for some K ∈ R2×2. Namely, K can be(

0 0
1 1

)
. (5.1)

Proof of Proposition 1. First, we transform L0 to L using Lemma 11 with v>

being the first row of L0. Thus, the first row of L becomes identically zero,
and we get a non-trivial non-hopeless game G1 = (L,H0) ' G0. Let ` denote
the transpose of the second row of L. In what follows we construct the matrix
H using an admissible transformation of H0 defined in Lemma 12.

To go on with constructing H, we need the following concept:

Definition 5. Let G = (L,H) a finite partial-monitoring game. Let si be
the number of distinct symbols in the ith row of H and let σ1, . . . , σsi ∈ Σ be
an enumeration of those symbols. Then the signal matrix Si ∈ {0, 1}si×M of
action i is defined as Si[k, l] = I{H[i,l]=σk}.
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H0 =

(
1 2 3 1
1 2 2 2

)
−→ A =


1 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0
0 1 1 1


Figure 5.1: An example for the construction of matrix A used in the proof of
Proposition 1. The first three rows of A are constructed from the first row of
H0 which has three distinct elements, the remaining two rows are constructed
from the second row of H0. For more details, see the text.

Note that this concept will be extensively used in the next chapter, and
thus Definition 5 will be repeated there.

Now, we construct matrix A in the following way. We take game G0 and
construct the signal matrices S1 and S2 according to Definition 5. Then, we
define A by “stacking” the matrices S1 and S2 on top of one another:

A =

(
S1

S2

)
.

See Figure 5.1 for an example.
The following lemma is the key to prove Proposition 1. We let ImM denote

the image space of the matrix M , that is, ImM = {v : ∃w s.t. v = Mw}.
Lemma 13. If ` 6∈ Im A> then G1 is trivial or hopeless.

Using the assumption that G1 is non-trivial and non-hopeless, we have
from Lemma 13 that ` ∈ Im A> must hold. That is, ` can be written as a
linear combination of the rows of A:

` =
m∑
i=1

λiai,

where m = m1 +m2 and the vectors a>i are the rows of A. Let

h1 =

m1∑
i=1

λiai and h2 =
m∑

i=m1+1

λiai.

Finally, let

H =

(
h>1
h>2

)
and G = (L,H). Now if the kth and k′th entries of the first row of H0 are
identical then [ai]k = [ai]k′ for 1 ≤ i ≤ m1, hence also [h1]k = [h1]k′ . The
same holds for the second row of H0 and h2. Thus, H can be obtained by
appropriate mappings from H0, and Lemma 12 implies G1 ≤ G.

On the other hand, setting K as in (5.1), ` = h1 + h2 implies that L =
KH.
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The following Proposition is more than what we need, but it is interesting
in itself:

Theorem 6. Let G = (L,H) be a 2-action partial-monitoring game such that
L = KH for some K ∈ R2×2. Then, there exist a 2×M bandit game G′ such
that G ≤ G′. If K is given by (5.1) then G ' G′.

Proof. We will construct a bandit game G′ = (L′,H′) ≥ G that satisfies
L′ = H′. Let K = [kij]2×2 and

D = diag(k11 − k21, k22 − k12)

be a 2×2 diagonal matrix, and define the feedback matrix of G′ by H′ = DH.
Then, both rows of H′ are scalar multiples of the corresponding rows of H.
Hence, by these mappings and Lemma 12, G ≤ (L,H′). If K is given by (5.1)
then D = diag(−1, 1), thus both mappings are injective and G ' (L,H′). On
the other hand, K−D = 1k> where k> = (k21, k12). Consider the loss matrix

L′
4
= L− 1(k>H).

By Lemma 11, G′ = (L′,H′) ' (L,H′). Moreover,

L′ = L− (1k>)H = L− (K−D)H = DH = H′.

Now, we are ready to prove our main result.

Theorem 7. Each non-trivial non-hopeless 2-action partial-monitoring game
is easier than an appropriate 2×M bandit game. Consequently, its minimax
regret is Θ(

√
T ), where T is the number of time steps.

Proof. According to Proposition 1 and Theorem 6, if G0 is non-trivial and
non-hopeless then we can construct first G = (L,H) such that L = KH and
G0 ≤ G, then a 2 ×M bandit game G′ such that G ≤ G′. Thus G0 ≤ G′,
which in turn implies RT (G0) ≤ RT (G′) = O(

√
T ) by Auer et al. [2003].

On the other hand, RT (G0) = Ω(
√
T ) comes from Theorem 4, finishing the

proof.

Remark 1. It is worthwhile to consider why the above proof works only for
N = 2. We used the property that from any 2 × 2 matrix K we can subtract
a diagonal matrix resulting in a matrix with identical rows. For N ≥ 3, this
obviously does not hold (there is not enough “degrees of freedom”). Indeed,
for N ≥ 3, we know from Chapter 4 that there exist games with regret rates
between Θ(

√
T ) and Θ(T ).

The immediate implication of Theorem 7 is the following classification the-
orem:

Theorem 8. Every two-action finite partial-monitoring game G = (L,H)
falls into one of the following three categories

1. trivial with minimax regret 0;

2. hopeless with minimax regret Θ(T ); or

3. bandit-like with minimax regret Θ(
√
T ).
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5.2 Discussion

In this chapter we showed that if a game has only two actions, then there are
only three categories regarding the growth rate of the minimax regret: the
class of “hard” games is missing. In some sense, this result is stronger than
just classifying all games: we also showed that the games that fall into the
“easy” category, are always equivalent to a bandit game. Hence, we did not
have to design a new algorithm to prove the O(

√
T ) upper bound: one can

use any bandit algorithm of their taste, provided that it achieves the desired
regret bound.
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Chapter 6

Classification of finite stochastic
partial-monitoring games1

In the two previous chapters, we addressed the problem of classifying partial-
monitoring games with constraints on the number of outcomes or actions. In
this chapter we turn our attention to games with any finite number of actions
and outcomes. We show that against stochastic opponents, the same four
categories are present as for two-outcome games, including even the degenerate
games.

6.1 Preliminaries

Recall that an instance of partial monitoring with N actions and M outcomes
is defined by the pair of matrices L ∈ RN×M and H ∈ ΣN×M , where Σ is an
arbitrary set of symbols. In each round t, the opponent chooses an outcome
Jt ∈ M and simultaneously the learner chooses an action It ∈ N . Then, the
feedback H[It, Jt] is revealed and the learner suffers the loss L[It, Jt]. It is
important to note that the loss is not revealed to the learner.

In this chapter we deal with stochastic opponents only. In this case, the
outcome sequence J1, J2, . . . is an i.i.d. sequence of random variables. The
common distribution of these random variables, p ∈ ∆M , shall be called an
opponent strategy, where ∆M , also called the probability simplex, is the set
of all distributions over the M outcomes. Given an opponent strategy p, the
expected loss of action i equals to `>i p, where `i is the column vector obtained
from the ith row of L.

The following definitions are essential for understanding how the structure
of L and H determines the “hardness” of a game.

Action i is called optimal under strategy p if its expected loss is not greater
than that of any other action i′ ∈ N . That is, `>i p ≤ `>i′ p. Determining
which actions are optimal under the various opponent strategies yields the cell
decomposition2 of the probability simplex ∆M :

1A version of the work in this chapter appeared in Bartók, Pál, and Szepesvári [2011]
2The concept of cell decomposition also appears in Piccolboni and Schindelhauer [2001].
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Definition 6 (Cell decomposition). For every action i ∈ N , let Ci = {p ∈
∆M : action i is optimal under p}. The sets C1, . . . , CN constitute the cell
decomposition of ∆M .

Now we can define the following important properties of actions:

Definition 7 (Properties of actions).

• Action i is called dominated if Ci = ∅. If an action is not dominated
then it is called non-dominated.

• Action i is called degenerate if it is non-dominated and there exists an
action i′ such that Ci ( Ci′.

• If an action is neither dominated nor degenerate then it is called Pareto-
optimal. The set of Pareto-optimal actions is denoted by P.

From the definition of cells, we can see that the cell of an action is ei-
ther empty or it is a closed convex polytope. Furthermore, Pareto-optimal
actions have (M − 1)-dimensional cells. The following definition also uses the
dimensionality of polytopes:

Definition 8 (Neighbors). Two Pareto-optimal actions i and j are neighbors
if Ci ∩ Cj is an (M − 2)-dimensional polytope. We denote by N the set of
unordered pairs over N that contains neighboring action-pairs. The neigh-
borhood action set of two neighboring actions i, j is defined as N+

i,j = {k ∈
N : Ci ∩ Cj ⊆ Ck}.

Note that the neighborhood action set N+
i,j naturally contains i and j. If

N+
i,j contains some other action k then either Ck = Ci, Ck = Cj, or Ck =

Ci ∩ Cj.
In general, the elements of the feedback matrix H can be arbitrary symbols.

Therefore, the nature of the symbols themselves does not matter in terms of
the structure of the game. What determines the feedback structure of a game
is the occurrence of identical symbols in each row of H. To “standardize” the
feedback structure, we can use the signal matrices introduced in Chapter 5.
The definition provided there is repeated to ease the job of the reader:

Definition 5. Let G = (L,H) a finite partial-monitoring game. Let si be
the number of distinct symbols in the ith row of H and let σ1, . . . , σsi ∈ Σ be
an enumeration of those symbols. Then the signal matrix Si ∈ {0, 1}si×M of
action i is defined as Si[k, l] = I{H[i,l]=σk}.

The idea of this definition is that if p ∈ ∆M is the opponent’s strategy then
Sip gives the distribution over the symbols underlying action i. In fact, it is
also true that observing H[It, Jt] is equivalent to observing the vector SIteJt ,
where ek is the kth unit vector in the standard basis of RM . From now on we
assume without loss of generality that the learner’s observation at time step t
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is the random vector Yt = SIteJt . Note that the dimensionality of this vector
depends on the action chosen by the learner, namely Yt ∈ RsIt .

Let the symbol ⊕ denote the direct sum of subsets of a vector space, that
is, A⊕B = {u+ v : u ∈ A, v ∈ B}. The following two definitions play a key
role in classifying partial-monitoring games based on their difficulty.

Definition 9 (Global observability [Piccolboni and Schindelhauer, 2001]). A
partial-monitoring game (L,H) admits the global observability condition, if
for all pairs i, j of actions, `i − `j ∈ ⊕k∈N ImS>k .

Definition 10 (Local observability). A pair of neighboring actions i, j is said
to be locally observable if `i − `j ∈ ⊕k∈N+

i,j
ImS>k . We denote by L ⊂ N the

set of locally observable pairs of actions (the pairs are unordered). A game
satisfies the local observability condition if every pair of neighboring actions
is locally observable, i.e., , if L = N .

When discussing lower bounds we will need the definition of algorithms.
For us, an algorithm A is a mapping A : Σ∗ → {1, 2, . . . , N} that maps
past feedback sequences to actions. That the algorithms are deterministic is
assumed for convenience. In particular, the lower bounds we prove can be
extended to randomized algorithms by conditioning on the internal random-
ization of the algorithm. Note that the algorithms we design are themselves
deterministic.

6.2 Classification of finite partial-monitoring

games

In this section we present the theorem that classifies all finite stochastic partial-
monitoring games based on how their minimax regret scales with the time
horizon along with an illustration and the proof of the theorem.

Theorem 9 (Classification). Let G = (L,H) be a partial-monitoring game
with N actions and M outcomes. Let C = {C1, . . . , Ck} be its cell decomposi-
tion, with corresponding loss vectors `1, . . . , `k. The game G falls into one of
the following four categories:

(a) RT (G) = 0 if there exists an action i with Ci = ∆M . This case is called
trivial.

(b) RT (G) = Θ(T ) if there exist two Pareto-optimal actions i and j such that
`i − `j is not globally observable. This case is called hopeless.

(c) RT (G) = Θ̃(
√
T ) if it is not trivial and it satisfies the local observability

condition. These games are called easy.

(d) RT (G) = Θ(T 2/3) if G is not hopeless and it does not satisfy the local
observability condition. These games are called hard.
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hopelesstrivial
easy hard

dynamic pricing l.e.p.bandits

full-info

Figure 6.1: Partial monitoring games and their minimax regret as it was known
previously. The big rectangle denotes the set of all games. Inside the big
rectangle, the games are ordered from left to right based on their minimax
regret. In the “hard” area, l.e.p. denotes label-efficient prediction. The grey
area contains games whose minimax regret is between Ω(

√
T ) and O(T 2/3)

but their exact regret rate was unknown. This area is now eliminated, and the
dynamic pricing problem is proven to be hard.

Note that the conditions listed under (a)–(d) are mutually exclusive and
cover all finite partial-monitoring games. The only non-obvious implication is
that if a game is easy then it cannot be hopeless. The reason this holds is
because for any pair of cells Ci, Cj in C, the vector `i− `j can be expressed as
a telescoping sum of the differences of loss vectors of neighboring cells.

The next sections are dedicated to proving Theorem 9. We start with the
simple cases. If there exists an action whose cell covers the whole probabil-
ity simplex then choosing that action in every round will yield zero regret,
proving case (a). The condition in Case (b) is due to Piccolboni and Schin-
delhauer [2001], who showed that under the condition mentioned there, there
is no algorithm that achieves sublinear regret3. The upper bound for case (d)
is achieved by the FeedExp3 algorithm due to Piccolboni and Schindelhauer
[2001], for which a regret bound of O(T 2/3) was shown by Cesa-Bianchi et al.
[2006]. The lower bound for case (c) can be found in Chapter 4 (Theorem 4).
For a visualization of previous results, see Figure 6.1.

The above assertions help characterize trivial and hopeless games, and
show that if a game is not trivial and not hopeless then its minimax regret
falls between Ω(

√
T ) and O(T 2/3). Our contribution in this chapter is that

we give exact minimax rates (up to logarithmic factors) for these games. To
prove the upper bound for case (c), we introduce a new algorithm, which we
call Balaton, for “Bandit Algorithm for Loss Annihilation”4. This algorithm
is presented in Section 6.2.1, while its analysis is given in Section 6.2.2. The
lower bound for case (d) is presented in Section 6.2.3.

3Although Piccolboni and Schindelhauer state their theorem for adversarial environ-
ments, their proof applies to stochastic environments without any change (which is impor-
tant for the lower bound part).

4Balaton is also the name of a lake in Hungary. We thank Gergely Neu for suggesting
the name.

55



Example

Before getting into proving Theorem 9, we demonstrate its strength with the
help of an example. Namely, we show that the discretized dynamic pricing
game (see Example 6 in Section 1.3) is hard. Recall that dynamic pricing is
a game between a vendor (learner) and a customer (environment), where in
each round, the vendor sets a price he wants to sell his product at (action),
and the costumer sets a maximum price he is willing to buy the product for
(outcome). If the product is not sold, the vendor suffers some constant loss,
otherwise his loss is the difference between the customer’s maximum and his
price. The customer never reveals the maximum price and thus the vendor’s
only feedback is whether he sold the product or not.

The discretized version of the game with N actions (and outcomes) is
defined by the matrices

L =


0 1 2 · · · N − 1
c 0 1 · · · N − 2
...

. . .
...

c · · · c 0 1
c · · · · · · c 0

 H =


1 · · · · · · 1

0
. . .

...
...

. . . . . .
...

0 · · · 0 1

 ,

where c is a positive constant (see Figure 6.2 for the cell-decomposition for
N = 3). It is easy to see that all the actions are Pareto-optimal. Also, after
some linear algebra it turns out that the point

p∗ =

(
1

1 + c
,

c

(1 + c)2
,

c2

(1 + c)3
, . . . ,

cN−2

(1 + c)N−1
,

cN−1

(1 + c)N−1

)>
is a common vertex of all cells in the interior of the probability simplex. It
follows that any two actions are neighbors. On the other hand, if we take two
actions i and i′ such that |i − i′| 6= 1, `i − `i′ is not locally observable. For
example, the signal matrices for actions 1 and action N are

S1 =
(
1 · · · 1

)
SN =

(
1 · · · 1 0
0 · · · 0 1

)
,

whereas `N−`1 = (c, c−1, . . . , c−N+2,−N+1)>. It is obvious that `N−`1 is
not in the direct sum of the row spaces of S1 and SN , and thus by Theorem 9,
the game of dynamic pricing is hard.

6.2.1 Balaton: An algorithm for easy games

In this section we present our algorithm that achieves Õ(
√
T ) expected regret

for easy games (case (c) of Theorem 9). The input of the algorithm is the loss
matrix L, the feedback matrix H, the time horizon T and an error probability
δ, to be chosen later. Before describing the algorithm, we introduce some
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(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

p∗

1

2

3

Figure 6.2: The cell decomposition of the discretized dynamic pricing game
with 3 actions. If the opponent strategy is p∗, then action 2 is the optimal
action.

notation. We define a graph G associated with game G the following way. Let
the vertex set be the set of cells of the cell decomposition C of the probability
simplex such that cells Ci, Cj ∈ C share the same vertex when Ci = Cj. The
graph has an edge between vertices whose corresponding cells are neighbors.
This graph is connected, since the probability simplex is convex and the cell
decomposition covers the simplex.

Recall that for neighboring actions i, j, if the game is locally observable,
`i − `j ∈ ⊕k∈N+

i,j
ImS>k . It follows that there exist observer vectors vi,j,k such

that `i − `j =
∑

k∈N+
i,j
S>k vi,j,k. The existence of these vectors is the core

property of locally observable games that makes it possible to have Õ(
√
T )

regret upper bound because, as we will see, it enables us to estimate loss
differences of neighboring actions for a low cost.

The main idea of the algorithm is to successively eliminate actions in an
efficient, yet safe manner. When all remaining Pareto-optimal actions share
the same cell, the elimination phase finishes and from this point, one of the
remaining actions is played. During the elimination phase, the algorithm works
in rounds. In each round every “alive” action is played once. The resulting
observations are used to estimate the loss-difference between the alive actions.
If some estimate becomes sufficiently precise, the action of the pair deemed
to be suboptimal is eliminated (possibly together with some other actions).
To determine if an estimate is sufficiently precise, we will use an appropriate
stopping rule. A small regret will be achieved by tuning the error probability
of the stopping rule appropriately.

The details of the algorithm are as follows: In the preprocessing phase,
the algorithm constructs the neigbourhood graph, the neighorhood action sets
N+
i,j assigned to the edges of the graph, the signal matrices Si, and the vectors

vi,j,k. In addition, it constructs a path in the graph connecting any pairs of
nodes, and initializes some variables used by the stopping rule.

In the elimination phase, the algorithm runs a loop. In each round of
the loop, the algorithm chooses each of the alive actions once and, based on

the observations, the estimates δ̂i,j of the loss-differences δi,j
4
=(`i − `j)>p∗ are

updated, where p∗ is the actual opponent strategy. The algorithm maintains
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Algorithm 14 Balaton

Input: L,H, T, δ
Initialization:
[G, C, {vi,j,k}, {path(i,j)}, {(LB(i,j), UB(i,j), σ(i,j), R(i,j))}]←Initialize(L,H)
t← 0, n← 0
aliveActions← {1 ≤ i ≤ N : Ci ∩ interior(∆M) 6= ∅}
main loop
while |VG| > 1 and t < T do
n← n+ 1
for each i ∈ aliveActions do
Oi ← ExecuteAction(i)
t← t+ 1

end for
for each edge (i, j) in G: δ̂i,j ←

∑
k∈N+

i,j
Y >k vi,j,k end for

for each non-adjacent pair (i, j) in G: δ̂i,j ←
∑

(k,l)∈path(i,j) δ̂k,l end for

haveEliminated← false
for each vertex pair (i, j) in G do
δ̃i,j ←

(
1− 1

n

)
δ̃i,j + 1

n
δ̂i,j

if BStopStep(δ̃i,j, LB(i,j), UB(i,j), σ(i,j), R(i,j), n, 1/2, δ) then

toEliminate(i, j)← sgn(δ̃i,j)
haveEliminated← true

else
toEliminate(i, j)← 0

end if
end for
[aliveActions, C,G]←eliminate(toEliminate)
if haveEliminated then
{path(i,j)} ←regeneratePaths(G)

end if
end while
Let i be a Pareto-optimal action in aliveActions
while t < T do
ExecuteAction(i)
t← t+ 1

end while

the set C of cells of alive actions and their neighborhood graph G.
The estimates are calculated as follows. First we calculate estimates for

neighboring actions (i, j). In round5 n, for every action k in N+
i,j let Yk be the

observation vector for action k. Let δ̂i,j =
∑

k∈N+
i,j
Y >k vi,j,k. From the local

observability condition and the construction of vi,j,k, with simple algebra it

5Note that a round of the algorithm is not the same as the time step t. In a round, the
algorithm chooses each of the alive actions once.
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follows that δ̂i,j are unbiased estimates of (`i−`j)>p∗ (see Lemma 14). For non-
neighboring action pairs, we use telescoping sums: since the graph G (induced
by the alive actions) stays connected, we can take a path i = i0, i1, . . . , ir = j
in the graph, and the estimate δ̂i,j will be the sum of the estimates along the

path:
∑r

l=1 δ̂il−1,il . The estimate of the difference of the expected losses after

round n will be the average δ̃i,j = (1/n)
∑n

l=1 δ̂i,j(s), where δ̂i,j(s) denotes the
estimate for pair (i, j) computed in round s.

After updating the estimates, the algorithm decides which actions to elim-
inate. For each pair of vertices i, j of the graph, the expected difference of
their loss is tested for its sign by the BStopStep subroutine, based on the
estimate δ̃i,j and its relative error. This subroutine uses a stopping rule based
on Bernstein’s inequality.

The subroutine’s pseudocode is shown as Algorithm 15 and is essentially
based on the work by Mnih et al. [2008]. The algorithm maintains two values,
LB, UB, computed from the supplied sequence of sample means (µ̂) and the
deviation bounds

c(σ,R, n, δ) = σ

√
2L(δ, n)

n
+
RL(δ, n)

3n
, where L(δ, n) = log

(
3

p

p− 1

np

δ

)
.

(6.1)

Here p > 1 is an arbitrarily chosen parameter of the algorithm, σ is a (deter-
ministic) upper bound on the (conditional) variance of the random variables
whose common mean µ we wish to estimate, while R is a (deterministic) up-
per bound on their range. This is a general stopping rule method, which
stops when it produced an ε-relative accurate estimate of the unknown mean.
The algorithm is guaranteed to be correct outside of a failure event whose
probability is bounded by δ.

Algorithm Balaton calls this method with ε = 1/2. As a result, when
BStopStep returns true, outside of the failure event the sign of the estimate
δ̃ supplied to Balaton will match the sign of the mean to be estimated. The
conditions under which the algorithm indeed produces ε-accurate estimates
(with high probability) are given in Lemma 28 (see Appendix), which also
states that also with high probability, the time when the algorithm stops is
bounded by

C ·max

(
σ2

ε2µ2
,
R

ε|µ|

)(
log

1

δ
+ log

R

ε|µ|

)
,

where µ 6= 0 is the true mean. Note that the choice of p in (6.1) influences
only C.

If BStopStep returns true for an estimate δ̃i,j, then the i, j pair becomes
a candidate for elimination. After checking all pairs, function eliminate
is called. If, say, δ̃i,j > 0, this function takes the closed half space {q ∈
∆M : (`i − `j)

>q ≤ 0} and eliminates all actions whose cell lies completely
in the half space. The function also drops the vertices from the graph that
correspond to eliminated cells. The elimination necessarily concerns all actions
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Algorithm 15 Algorithm BStopStep. Note that, somewhat unusually at
least in pseudocodes, the arguments LB, UB are passed by reference, i.e., the
algorithm rewrites the values of these arguments (which are thus returned back
to the caller).

Input: µ̂,LB,UB, σ, R, n, ε, δ
LB← max(LB, |µ̂| − c(δ, σ, R, n))
UB← min(UB, |µ̂|+ c(δ, σ, R, n))
Return(1 + ε)LB < (1− ε)UB

with corresponding cell Ci, and possibly other actions as well. The remaining
cells are redefined by taking their intersection with the complement half space
{q ∈ ∆M : (`i − `j)>q ≥ 0}.

By construction, after the elimination phase, the remaining graph is still
connected, but some paths used in the round may have lost vertices or edges.
For this reason, in the last phase of the round, new paths are constructed for
vertex pairs with broken paths.

The main loop of the algorithm continues until either one vertex remains
in the graph or the time horizon T is reached. In the former case, one of
the actions corresponding to that vertex is chosen until the time horizon is
reached.

6.2.2 Analysis of the algorithm

In this section we prove that the algorithm described in the previous section
achieves Õ(

√
T ) expected regret.

Theorem 10. Let G = (L,H) be a finite partial-monitoring game that sat-
isfies the local observability condition. Then there exists a game-dependent
constant C such that for every time horizon T , with appropriately tuned pa-
rameter δ, the expected regret of Balaton is upper bounded as

E[RT ] ≤ C
√
T log T .

Let us assume that the outcomes are generated following the probability
vector p∗ ∈ ∆M . Let j∗ denote an optimal action, that is, for every 1 ≤ i ≤ N ,
`>j∗p

∗ ≤ `>i p
∗. For every pair of actions i, j, let δi,j = (`i−`j)>p∗ be the expected

difference of their instantaneous loss. The expected regret of the algorithm can
be rewritten as

E

[
T∑
t=1

L[It, Jt]− min
1≤i≤N

E

[
T∑
t=1

L[i, Jt]

]]
=

N∑
i=1

E [τi] δi,j∗ , (6.2)

where τi is the number of times action i is chosen by the algorithm.
Throughout the proof, the value that Balaton assigns to a variable x in

round n will be denoted by x(n). Further, for 1 ≤ k ≤ N , we introduce the
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i.i.d. random sequence (Jk(n))n≥1, taking values on {1, . . . ,M}, with common
multinomial distribution satisfying, P [Jk(n) = j] = p∗j . Clearly, a statistically
equivalent model to the one where (Jt) is an i.i.d. sequence with multinomial
p∗ is when (Jt) is defined through

Jt = JIt
(∑t

s=1 I{Is=It}
)
. (6.3)

Note that this claim holds, independently of the algorithm generating the ac-
tions, It. Therefore, in what follows, we assume that the outcome sequence
is generated through (6.3). As we will see, this construction significantly sim-
plifies subsequent steps of the proof. If action k is selected by our algorithm
in the nth elimination round, then the outcome obtained in response is going
to be Yk(n) = Skuk(n), where uk(n) = eJk(n). (This holds because in the
elimination rounds all alive actions are tried exactly once by Balaton.)

Let (Fn)n be the filtration defined as Fn = σ(uk(m); 1 ≤ k ≤ N, 1 ≤ m ≤
n). We also introduce the notations En[·] = E[·|Fn] and Varn(·) = Var(·|Fn),
the conditional expectation and conditional variance operators corresponding
to Fn. Note that Fn contains the information known to Balaton (and more)
at the end of the elimination round n. Our first (trivial) observation is that
δ̂i,j(n), the estimate of δi,j obtained in round n is Fn-measurable. The next

lemma establishes that, furthermore, δ̂i,j(n) is an unbiased estimate of δi,j:

Lemma 14. For any n ≥ 1 and i, j such that Ci, Cj ∈ C, En−1[δ̂i,j(n)] = δi,j.

The following lemma upper bounds the conditional variance and the range
of the estimates.

Lemma 15. The conditional variance of δ̂i,j(n), Varn−1(δ̂i,j(n)), is upper

bounded by V = 2
∑
{i,j∈L}

∑
k∈N+

i,j
‖vi,j,k‖2

2. The range of the estimates δ̂i,j(n)

is upper bounded by R =
∑
{i,j}∈L

∑
k∈N+

i,j
‖vi,j,k‖1.

Let δ be the confidence parameter used in BStopStep. Since, according
to Lemmas 14 and 15, (δ̂i,j) is a “shifted” martingale difference sequence with
conditional mean δi,j, bounded conditional variance and range, we can apply
Lemma 28 stated in the Appendix. By the union bound, the probability that
any of the confidence bounds fails during the game is at most N2δ. Thus, with
probability at least 1−N2δ, if BStopStep returns true for a pair (i, j) then
sgn(δi,j) = sgn(δ̂i,j) and the algorithm eliminates all the actions whose cell is
contained in the closed half space defined by H = {p : sgn(δi,j)p

>(`i − `j) ≤
0}. By definition δi,j = (`i − `j)>p∗. Thus p∗ /∈ H and none of the eliminated
actions can be optimal under p∗.

From Lemma 28 we also see that, with probability at least 1 − N2δ, the
number of times τ ∗i the algorithm experiments with a suboptimal action i
during the elimination phase is bounded by

τ ∗i ≤
c(G)

δ2
i,j∗

log
R

δδi,j∗
= Ti , (6.4)
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where c(G) = C(V +R) is a problem dependent constant.
The following lemma shows that degenerate actions will be eliminated in

time.

Lemma 16. Let action i be a degenerate action. Let N+
i = {j : Cj ∈ C, Ci ⊂

Cj}. The following two statements hold:

1. If any of the actions in N+
i is eliminated, then action i is eliminated as

well.

2. There exists an action ki ∈ N+
i such that δki,j∗ ≥ δi,j∗.

An immediate implication of the first claim of the lemma is that if action
ki gets eliminated then action i gets eliminated as well, that is, the number
of times action i is chosen cannot be greater than that of action ki. Hence,
τ ∗i ≤ τ ∗ki .

Let E be the failure event underlying the stopping rules. As discussed
earlier, P (E) ≤ N2δ. Note that on Ec, i.e., when the stopping rules do not fail,
no suboptimal action can remain for the final phase. Hence, τiI{Ec} ≤ τ ∗i I{Ec},
where τi is the number of times action i is chosen by the algorithm. To upper
bound the expected regret we continue from (6.2) as

N∑
i=1

E [τi] δi,j∗

=
N∑
i=1

E
[
I{Ec}τi

]
δi,j∗ + P (E)T (because

∑N
i=1 τi = T , 0 ≤ δi,j∗ ≤ 1)

≤
N∑
i=1

E
[
I{Ec}τ ∗i

]
δi,j∗ +N2δT

≤
∑

i: Ci∈C

E
[
I{Ec}τ ∗i

]
δi,j∗ +

∑
i: Ci 6∈C

E
[
I{Ec}τ ∗i

]
δi,j∗ +N2δT

≤
∑

i: Ci∈C

E
[
I{Ec}τ ∗i

]
δi,j∗ +

∑
i: Ci 6∈C

E
[
I{Ec}τ ∗ki

]
δki,j∗ +N2δT (by Lemma 16)

≤
∑

i: Ci∈C

Tiδi,j∗ +
∑

i: Ci 6∈C

Tkiδki,j∗ +N2δT

≤
∑

i: Ci∈C
δi,j∗≥δ0

Tiδi,j∗ +
∑

i: Ci 6∈C
δki,j∗≥δ0

Tkiδki,j∗ +
(
δ0 +N2δ

)
T

≤ c(G)

 ∑
i: Ci∈C
δi,j∗≥δ0

log R
δδi,j∗

δi,j∗
+

∑
i: Ci 6∈C
δki,j∗≥δ0

log R
δδki,j∗

δki,j∗

+
(
δ0 +N2δ

)
T

≤ c(G)N
log R

δδ0

δ0

+
(
δ0 +N2δ

)
T ,
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The above calculation holds for any value of δ0 > 0. Setting

δ0 =

√
c(G)N

T
and δ =

√
c(G)

TN3
, we get

E [RT ] ≤
√
c(G)NT log

(
RTN2

c(G)

)
.

In conclusion, if we run Balaton with parameter δ =
√

c(G)
TN3 , the algorithm

suffers regret of Õ(
√
T ), finishing the proof.

6.2.3 A lower bound for hard games

In this section we prove that for any game that satisfies the condition of
Case (d) of Theorem 9, the minimax regret is of Ω(T 2/3).

Theorem 11. Let G = (L,H) be an N by M partial-monitoring game. As-
sume that there exist two neighboring actions i and j that do not satisfy the
local observability condition. Then there exists a problem dependent constant
c(G) such that for any algorithm A and time horizon T there exists an oppo-
nent strategy p such that the expected regret satisfies

E
[
RAT (p)

]
≥ c(G)T 2/3 .

Proof. Without loss of generality, we can assume that the two neighbor cells
in the condition are C1 and C2. Let C3 = C1∩C2. For i = 1, 2, 3, let Ai be the
set of actions associated with cell Ci. Note that A3 may be the empty set. Let
A4 = A \ (A1 ∪A2 ∪A3). By our convention for naming loss vectors, `1 and `2

are the loss vectors for C1 and C2, respectively. Let Λ3 collect the loss vectors
of actions that lie on the open segment connecting `1 and `2. It is easy to see
that Λ3 is the set of loss vectors that correspond to the cell C3. We define Λ4

as the set of all the other loss vectors. For i = 1, 2, 3, 4, let ki = |Ai|.
Since actions 1 and 2 are not locally observable neighbors, `2 − `1 6∈⊕
i∈A1∪A2∪A3

ImS>i . It follows from the De Morgan rule and from the fact that

for any matrix M , (ImM)⊥ = Ker(M>), that (`2−`1)⊥ 6⊃ ⋂i∈A1∪A2∪A3
KerSi.

Thus, there exists a vector v such that for all i ∈ A1∪A2∪A3, v ∈ KerSi and
also (`2 − `1)>v 6= 0. By scaling we can assume that (`2 − `1)>v = 1. Note
that since the rowspace of any signal matrix Si always contains the vector
(1, 1, . . . , 1), the coordinates of v sum up to zero.

Let p0 be an arbitrary probability vector in the relative interior of C3. It
is easy to see that for any ε > 0 small enough, p1 = p0 + εv ∈ C1 \ C2 and
p2 = p0 − εv ∈ C2 \ C1.

Let us fix a deterministic algorithm A and a time horizon T . For i = 1, 2,
let R

(i)
T denote the expected regret of the algorithm under opponent strategy pi.

For i = 1, 2 and j = 1, . . . , 4, let N i
j denote the expected number of times the
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algorithm chooses an action from Aj, assuming the opponent plays strategy
pi.

From the definition of Λ3 we know that for any ` ∈ Λ3, `− `1 = η`(`2− `1)
and ` − `2 = (1 − η`)(`1 − `2) for some 0 < η` < 1. Let λ1 = min`∈Λ3 η` and
λ2 = min`∈Λ3(1−η`) and λ = min(λ1, λ2) if Λ3 6= ∅ and let λ = 1/2, otherwise.
Finally, let βi = min`∈Λ4(`− `i)>pi and β = min(β1, β2). Note that λ, β > 0.

As the first step of the proof, we lower bound the expected regret R
(1)
T and

R
(2)
T in terms of the values N i

j , ε, λ and β:

R
(1)
T ≥ N1

2

ε︷ ︸︸ ︷
(`2 − `1)>p1 +N1

3λ(`2 − `1)>p1 +N1
4β ≥ λ(N1

2 +N1
3 )ε+N1

4β ,

R
(2)
T ≥ N2

1 (`1 − `2)>p2︸ ︷︷ ︸
ε

+N2
3λ(`1 − `2)>p2 +N2

4β ≥ λ(N2
1 +N2

3 )ε+N2
4β .

(6.5)

For the next step, we need the following lemma.

Lemma 17. There exists a (problem dependent) constant c such that for any
small enough ε, the following inequalities hold:

N2
1 ≥ N1

1 − cTε
√
N1

4 , N2
3 ≥ N1

3 − cTε
√
N1

4 ,

N1
2 ≥ N2

2 − cTε
√
N2

4 , N1
3 ≥ N2

3 − cTε
√
N2

4 .

Now we can continue lower bounding the expected regret.
Let r = argmini∈{1,2}N

i
4. It is easy to see that for i = 1, 2 and j = 1, 2, 3,

N i
j ≥ N r

j − c2Tε
√
N r

4 .

If i 6= r then this inequality is one of the inequalities from Lemma 17. If i = r
then it is a trivial lower bounding by subtracting a positive value. From (6.5)
we have

R
(i)
T ≥ λ(N i

3−i +N i
3)ε+N i

4β

≥ λ(N r
3−i − c2Tε

√
N r

4 +N r
3 − c2Tε

√
N r

4 )ε+N r
4β

= λ(N r
3−i +N r

3 − 2c2Tε
√
N r

4 )ε+N r
4β .

Now assume that, at the beginning of the game, the opponent randomly
chooses between strategies p1 and p2 with equal probability. Then the ex-
pected regret of the algorithm is lower bounded by

RT =
1

2

(
R

(1)
T +R

(2)
T

)
≥ 1

2
λ(N r

1 +N r
2 + 2N r

3 − 4c2Tε
√
N r

4 )ε+N r
4β

≥ 1

2
λ(N r

1 +N r
2 +N r

3 − 4c2Tε
√
N r

4 )ε+N r
4β

=
1

2
λ(T −N r

4 − 4c2Tε
√
N r

4 )ε+N r
4β .
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Choosing ε = c3T
−1/3 we get

RT ≥
1

2
λc3T

2/3 − 1

2
λN r

4 c3T
−1/3 − 2λc2c

2
3T

1/3
√
N r

4 +N r
4β

≥ T 2/3

((
β − 1

2
λc3

)
N r

4

T 2/3
− 2λc2c

2
3

√
N r

4

T 2/3
+

1

2
λc3

)

= T 2/3

((
β − 1

2
λc3

)
x2 − 2λc2c

2
3x+

1

2
λc3

)
,

where x =
√
N r

4/T
2/3. Now we see that c3 > 0 can be chosen to be small

enough, independently of T so that, for any choice of x, the quadratic ex-
pression in the parenthesis is bounded away from zero, and simultaneously,
ε is small enough so that the threshold condition in Lemma 17 is satisfied,
completing the proof of Theorem 11.

6.2.4 Summary

The previous sections were devoted to proving the classification theorem (The-
orem 9). For the upper bound on the minimax regret of easy games, the algo-
rithm Balaton was introduced in Section 6.2.1, and an upper bound in its
expected regret was proven in Section 6.2.2. Next, a lower bound on the min-
imax regret of hard games was shown in Section 6.2.3, completing the proof
of the theorem.

As seen from Theorem 9, the crucial condition that separates easy games
from hard games is the local observability condition (Definition 10). It is im-
portant to note that the classification theorem in this chapter only deals with
games with stochastic opponents. However, we conjectured that the theorem
remains true if we lift this assumption. That is, games with adversarial op-
ponents have the same classification, with the same condition separating easy
and hard games:

Conjecture 1. Any N by M partial-monitoring game against adversarial op-
ponents can be classified into four categories based on the growth rate of its
minimax regret in the following way:

1. The game is trivial and has 0 minimax regret if in its cell decomposition,
there exists a cell Ci = ∆M .

2. The game is easy with minimax regret Θ̃(
√
T ) if it is not trivial and it

satisfies the local observability condition.

3. The game is hard with minimax regret Θ(T 2/3) if it satisfies the global
observability condition but does not satisfy the local observability condi-
tion.

4. The game is hopeless with minimax regert Θ(T ) is it does not satisfy the
global observability condition.
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Since FeedExp3 of Piccolboni and Schindelhauer [2001] achieves O(T 2/3)
regret against any non-hopeless game with adversarial opponent and all the
lower bounds in this chapter hold for adversarial opponents as well, the only
part left to prove the above conjecture is to design an algorithm that achieves
Õ(
√
T ) regret on easy games against non-stochastic opponents. This was par-

tially done by Foster and Rakhlin [2011], who designed the algorithm Neigh-
borhoodWatch. This algorithm achieves O(

√
T ) regret for non-degenerate

games with local observability. We summarize their result in the next section.
If the conjecture is true for degenerate games remains an open problem.

6.2.5 NeighborhoodWatch: an algorithm against non-
stochastic environments by Foster and Rakhlin
[2011]

In their paper, Foster and Rakhlin introduce the algorithm Neighborhood-
Watch and show that it achieves O(

√
T ) minimax regret on non-degenerate

finite partial-monitoring games against non-stochastic environments. Here the
term non-degenerate means that there are no degenerate actions as well as no
“duplicate” actions, that is, actions whose cells Ci = Cj. Without loss of
generality it is also assumed that there are no dominated actions (to recall the
definition of degenerate and dominated actions refer to Definition 7).

The algorithm works as follows. At the beginning, the game is split to
“local” games: for every action i, the local game Ni associated with i is defined
as the action i and all of its neighbors. For each of these local games, an
internal algorithm Ai is assigned. Algorithm Ai plays on the local game Ni

and at every time step when revoked, chooses an action based on a probability
vector qit ∈ RN , where the coordinates of qit associated to actions not in Ni are
zero. The question of which local game to revoke at time step t is decided by
a meta-algorithm.

The meta-algorithm chooses a local game randomly, and the distribution
based on which the local game is chosen is defined the following way. At time
step t, the matrix Qt ∈ RN×N is defined as

Qt =
(
q1
t q2

t · · · qNt
)
.

Then, the probability vector pt ∈ RN is defined as a fixed-point of Qt:

pt = Qtpt .

The advantage of this setup is manifold. First of all, due to the construction
of the local games, it is possible to construct unbiased estimates of the loss
differences of action i and its neighbors in the local game Ni, exploiting the
local observability condition. Second, it can be shown that if action i happens
to be optimal then the “second best” action must be a neighbor of i, and thus
the local game of the optimal action must contain the second best action.
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Finally, thanks to the construction of pt, the two-level sampling of It is
equivalent to just sampling It from pt. To see why this is true, let us calculate
the distribution of It given the two-level sampling:

P (It = i) =
N∑
j=1

pt(j)I{i∈Nj}q
j
t (i)

=
N∑
j=1

pt(j)q
j
t (i) = [Qtpt](i) = pt(i) ,

since pt = Qtpt. This property proves to be useful when analyzing the algo-
rithm: one can think of pt as both the probability distribution of playing in
local games as well as the probability distribution of choosing the actions.

Now it is time to turn our attention to how the local algorithms work. As
said earlier, the local algorithms maintain the vectors qit. These vectors are
generated based on unbiased estimates of the loss differences between i and
the other actions in Ni. These estimates are calculated based on the formula

bi,jt = I{It=i}v>i,j,iYt + I{kt=i,It=j}v>i,j,jYt/qit(j) ,

where kt is the local game selected at time step t. Recall that the vectors
v·,·,· are the observer vectors defined in Section 6.2.1, while Yt = SIteJt is
the feedback vector. It is not hard to see that the conditional expectation
(conditioned on the past observations and actions) of bi,jt is the loss difference
of actions i and j at time step t. With the help of these estimates, all the local
algorithms update their qit distributions based on exponential weighting, and
then It is chosen by the selected algorithm Akt . The pseudocodes for the local
algorithms and for the meta-algorithm can be found in Algorithms 16 and 17.

Foster and Rakhlin [2011] show that the algorithm NeighborhoodWatch
achieves O(

√
T ) minimax regret on locally observable games against adversar-

ial opponents. The main steps of their analysis are:

• Show that the local algorithms achieve low regret on the corresponding
local games.

• Show that it is implied then that the local internal regret of Neighbor-
hoodWatch is low.

• Exploit that the internal regret6 is always smaller than the local internal
regret and that the regret is always smaller than the internal regret.

With the algorithm NeighborhoodWatch and its analysis, Foster and Rakh-
lin showed that our conjecture (Conjecture 1) is true for non-degenerate finite
partial-monitoring games.

6We do not include definitions for local internal regret and internal regret here, but refer
the reader to Foster and Rakhlin [2011] for these definitions.
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Algorithm 16 NeighborhoodWatch Local i (taken from Foster and
Rakhlin [2011]

Initialize wi = eNi
for t = 1 : T do
qi ← wi/‖wi‖1

Receive kt from meta-algorithm
if kt = i then

Choose action It with distribution qi

end if
Receive observation Y
for each j ∈ Ni do
bi,j ← I{It=i}v>i,j,iY + I{kt=i,It=j}v>i,j,jY/qit(j)
wi(j)← wi(j) exp(−ηbi,j)

end for
end for

Algorithm 17 NeighborhoodWatch Meta (taken from Foster and Rakhlin
[2011])

for t = 1 : T do
Receive qi from local algorithms
Construct Q =

(
q1 q2 · · · qN

)
.

Construct fixed-point p ∈ ∆N by solving the equation p = Qp
Choose local game kt following distribution p
Receive It from local algorithm Akt

end for
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Chapter 7

Better algorithms for finite
stochastic games1

The algorithm Balaton described in Section 6.2.1 was designed solely for
the purpose of proving the classification theorem. In particular, it shows that
if a finite partial-monitoring game satisfies the local observability condition
(Definition 10) then it is possible to achieve Õ(

√
T ) regret against a stochastic

opponent. Unfortunately, apart from being important from a theoretical point
of view, Balaton is not a very practical algorithm. The constant in the
regret bound is very large and it needs to know the time horizon to achieve
the root-T regret.2 These drawbacks motivated us to design a new, better
algorithm that has better practical performance. Our desire was to have an
algorithm that does not need the time horizon as input and works better
in practice. Furthermore, intuition suggested that easy games could have
logarithmic individual regret bounds, just like bandit games. Thus, an extra
“wish” was that the new algorithm achieve logarithmic individual regret. In
this chapter we introduce two new algorithms, CBP-Vanilla and CBP3, and
prove that they have some very desirable properties.

7.1 An anytime algorithm with logarithmic in-

dividual regret: CBP-Vanilla

In this section we describe the algorithm that, for every locally observable
(easy) game, achieves logarithmic individual expected regret, as well as optimal
minimax regret (up to logarithmic factors).

In a nutshell, the algorithm works as follows. For every neighboring ac-

1Part of this chapter is based on the work by Bartók, Zolghadr, and Szepesvári [2012] to
be published at ICML2012.

2One can always use the “doubling trick” to overcome this disadvantage, but that in-
creases the constant factor further, and makes the algorithm even less usable.

3The letters CBP stand for “Confidence Bound Partial monitoring”. The “-Vanilla”
foreshadows that in subsequent sections this algorithm will be further improved, to have
even more advantageous properties.
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tion pair it maintains an unbiased estimate of the expected difference of their
losses. It also keeps a confidence width for these estimates. If at time step t
an estimate is “confident enough” to determine which action is better, the al-
gorithm excludes some actions from the set of potentially optimal actions: for
example, if the estimate for the pair i, j is confident and action i is estimated
to have smaller loss, then we know that (`j−`i)>p∗ > 0 and thus actions whose
cells lie completely in the halfspace {p : (`j − `i)>p ≤ 0} can not be optimal
(with high confidence). Doing this exclusion for every pair with a confident
loss difference estimate, we arrive at a set of actions that are candidates for
being optimal. Within this set, we enumerate the neighboring action pairs and
collect their neighborhood action set. Then, we choose the action within this
set that reduces the confidence widths the most.

At any time step t, the estimate of the loss difference of actions i and j is
calculated as

δ̃i,j(t) =
∑
k∈N+

i,j

v>i,j,k

∑t−1
s=1 I{Is=k}Ys∑t−1
s=1 I{Is=k}

,

similarly as for the algorithm Balaton. The confidence bound of the loss
difference estimate is defined as

ci,j(t) =
∑
k∈N+

i,j

‖vi,j,k‖∞
√

α log t∑t−1
s=1 I{Is=k}

with some preset parameter α. We call the estimate δ̃i,j(t) confident if |δ̃i,j(t)| ≥
ci,j(t).

By default, the set of candidate actions is not all actions but only the set
of Pareto-optimal actions, denoted by P . Then, at time step t, this set is
narrowed by excluding confidently suboptimal actions. We also keep track of
the current neighboring action pairs N (t). This is important, because some
action pairs cease to be neighbors when we exclude a region from the proba-
bility simplex. Then, the set of possible actions Q(t) is defined as the union
of the neighboring action sets of pairs in N (t):

Q(t) =
⋃

{i,j}∈N (t)

N+
i,j .

Finally, the action is chosen to be the one that potentially reduces the confi-
dence widths the most:

It = argmaxk∈Q(t)

W 2
k∑t−1

s=1 I{Is=k}
,

where Wk = max{‖vi,j,k‖∞ : k ∈ N+
i,j} with fixed vi,j,k precomputed and used

by the algorithm. Pseudocode for the algorithm is given in Algorithm 18.
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Symbol Definition

N,M ∈ N number of actions and outcomes
N {1, . . . , N}, set of actions
∆M ⊂ RM M -dim. simplex, set of opponent strategies
p∗ ∈ ∆M opponent strategy
L ∈ RN×M loss matrix
H ∈ ΣN×M feedback matrix
`i ∈ RM `i = L[i, :], loss vector underlying action i
Ci ⊆ ∆M cell of action i
P ⊆ N set of Pareto-optimal actions
N ⊆ N2 set of unordered neighboring action-pairs
N+
i,j ⊆ N neighborhood action set of {i, j} ∈ N

Si ∈ {0, 1}si×M signal matrix of action i
L ⊆ N set of locally observable action pairs
Vi,j ⊆ N observer actions underlying {i, j} ∈ N
vi,j,k ∈ Rsk , k ∈ Vi,j observer vectors
Wi ∈ R confidence width for action i ∈ N

Table 7.1: List of basic symbols

It remains to specify the function getPolytope. It gets the array halfS-
pace as input. The array halfSpace stores which neighboring action pairs have
a confident estimate on the difference of their expected losses, along with the
sign of the difference (if confident). Each of these confident pairs define an
open halfspace, namely

∆{i,j} =
{
p ∈ ∆M : halfSpace(i, j)(`i − `j)>p > 0

}
.

The function getPolytope calculates the open polytope defined as the in-
tersection of the above halfspaces. Then for all i ∈ P it checks if Ci intersects
with the open polytope. If so, then i will be an element of P(t). Similarly, for
every {i, j} ∈ N , it checks if Ci ∩ Cj intersects with the open polytope and
puts the pair in N (t) if it does.

Note that it is not enough to compute P(t) and then drop from N those
pairs {k, l} where one of k or l is excluded from P(t): it is possible that the
boundary Ck ∩ Cl between the cells of two actions k, l ∈ P(t) is included in
the rejected region.

For the convenience of the reader, we include a list of symbols used in this
Chapter in Table 7.1.

7.1.1 Analysis of the algorithm

In this section we prove individual and minimax upper bounds on the expected
regret of the algorithm.
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Algorithm 18 CBP-Vanilla
Input: L, H, α
Calculate P , N , N+

i,j, vi,j,k, Wk

for t = 1 to N do
Choose It = t {Initialization}
Observe Yt
nIt ← 1 {# times action is chosen}
νIt ← Yt {cumulative observations}

end for
for t = N + 1 to T do
P(t)← P {Plausible actions}
N (t)← N {Neighboring plausible actions}
for each {i, j} ∈ N do
δ̃i,j ←

∑
k∈Vi,j v

>
i,j,k

νk
nk

{Loss diff. estimate}
ci,j ←

∑
k∈Vi,j ‖vi,j,k‖∞

√
α log t
nk

{Confidence}
if |δ̃i,j| ≥ ci,j then
halfSpace(i, j)← sgn δ̃i,j

else
halfSpace(i, j)← 0

end if
end for
[P(t),N (t)]← getPolytope(P ,N , halfSpace)
Q← {k : ∃{i, j} ∈ N (t) s.t. k ∈ N+

i,j} {Admissible actions}
Choose It = argmaxi∈Q

W 2
i

ni
Observe Yt
νIt ← νIt + Yt
nIt ← nIt + 1

end for

Theorem 12. Let G = (L,H) be an N by M partial-monitoring game. For
a fixed opponent strategy p∗ ∈ ∆M , let δi denote the difference between the ex-
pected loss of arm i and an optimal action. For any time horizon T , algorithm
CBP with parameter α > 1 has expected regret

E[RT ] ≤ 2
∑
{i,j}∈N

|N+
i,j|
(

1 +
1

2α− 2

)
+

N∑
i=1

δi

+ 4
∑
k:δk>0

W 2
k

d2
k

δk
α log T .

Proof. We use the convention that, for any variable x used by the algorithm,
x(t) denotes the value of x at the end of time step t. For example, ni(t) is the
number of times action i is chosen up to time step t.
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For two actions i and j, let δi,j be the difference of their expected losses,
that is, δi,j = (`i − `j)>p∗.

Before getting into the proof, we need a lemma. The lemma shows that
the estimate δ̃i,j(t) is in the vicinity of δi,j with high probability.

Lemma 18. For any {i, j} ∈ N , t ≥ 1,

P
(
|δ̃i,j(t)− δi,j| ≥ ci,j(t)

)
≤ 2|N+

i,j|t1−2α .

By Wald’s identity, we can rewrite the expected regret as follows:

E[RT ] = E

[
T∑
t=1

L[It, JT ]

]
−min

i∈N

T∑
t=1

E [L[i, Jt]]

=
N∑
i=1

E[ni(T )]δi .

Hence, we need an upper bound on E[ni(T )] for every suboptimal action.
Let action k be suboptimal. The number of times action k is chosen can

be written as

nk(T ) =
T∑
t=1

I{It=k} .

At any time step t, action k can be chosen by the following reasons:

1. The algorithm is in the first for loop, that is, t = k.

2. Some confidence widths fail. The event of failure at time step t will be
called Et.

3. Action k is in Q(t) with W 2
k /nk(t−1) ≥ W 2

l /nl(t−1) for every l ∈ Q(t).

Thus,

nk(T ) = 1 +
T∑

t=N+1

I{Et,It=k} +
T∑

t=N+1

I{Ect ,It=k}

implying

E[nk(T )] ≤ 1 +
T∑

t=N+1

P (Et) +
T∑

t=N+1

P (Ect , It = k) .

First, with the help of Lemma 18, we upper bound the probability that any
confidence interval fails at time step t.

P (Et) = P
(
∃{i, j} ∈ N : |δ̃i,j(t)− δi,j| ≥ ci,j(t)

)
≤ 2

∑
{i,j}∈N

|N+
i,j|t1−2α .
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To continue the upper bounding of E[nk(T )] we write

E[nk(T )] ≤ 1 +
T∑

t=N+1

P (Et)

+
T∑

t=N+1

P (Ect , It = k)

≤ 1 + 2
∑
{i,j}∈N

|Vi,j|
T∑

t=N+1

t1−2α

+
T∑

t=N+1

P (Ect , It = k)

≤ 1 + 2
∑
{i,j}∈N

|Vi,j|
(

1 +
1

2α− 2

)

+ Ak +
T∑

t=N+1

P (Ect , It = k, nk(t) > Ak)

for any positive value of Ak. The rest of the proof is devoted to finding an
Ak value that gives an appropriate upper bound. In fact, we will find Ak such
that the last term of the above bound is zero.

We observe that for any neighboring action pair {i, j} ∈ N (t), δi,j ≤
2ci,j(t). Since It = k, we have that for all k′ ∈ N+

i,j, ‖vi,j,k′‖∞/
√
nk′(t− 1) ≤

Wk/
√
nk(t− 1), and thus δi,j ≤ 2|N+

i,j|Wk

√
α log t
nk(t−1)

.

To prepare for the next lemma, we need some new notations and a defini-
tion.

Definition 11. Let us denote the dependence of the random sets P(t), N (t)
on the outcomes ω from the underlying sample space Ω by Pω(t) and Nω(t).
With this, we define the set of plausible configurations to be

Ψ = ∪t≥1 {(Pω(t),Nω(t)) : ω ∈ Ect } .

Call π = (i0, i1, . . . , ir) (r ≥ 0) a path in N ′ ⊆ N2 if {is, is+1} ∈ N ′ for all
0 ≤ s ≤ r − 1 (when r = 0 there is no restriction on π). The path is said
to start at i0 and end at ir. Denoting by i∗ an optimal action under p∗ (i.e.,
`>i∗p

∗ ≤ `>i p
∗ holds for all actions i), the set of paths that connect i to i∗ and

lie in N ′ will be denoted by Bi(N ′).

The next lemma shows that Bi(N ′) is non-empty whenever N ′ is such that
for some P ′, (P ′,N ′) ∈ Ψ:

Lemma 19. Take an action i and a plausible pair (P ′,N ′) ∈ Ψ such that
i ∈ P ′. Then there exists a path π that starts at i and ends at i∗ that lies in
N ′.
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For i ∈ P define

di = max
(P ′,N ′)∈Ψ

i∈P ′

min
π∈Bi(N ′)
π=(i0,...,ir)

r∑
s=1

|N+
is−1,is

| .

According to the previous lemma, for each Pareto-optimal action i, the quan-
tity di is well-defined and finite. The definition is extended to degenerate
actions by defining di to be max(dl, dk), where k, l are such that i ∈ N+

k,l.
The following lemma is the key step in finding the right Ak value.

Lemma 20. Take any action k. On the event Ec, from It = k it follows that

nk(t− 1) ≤ 4W 2
k

d2
k

δ2
k

α log t .

Now choosing Ak as Ak = 4W 2
k
d2k
δ2k
α log T , we get

E[RT ] ≤ 2
∑
{i,j}∈N

|N+
i,j|
(

1 +
1

2α− 2

)
+

N∑
i=1

δi

+ 4
∑
k:δk>0

W 2
k

d2
k

δk
α log T .

The next corollary of Theorem 12 upper bounds the minimax regret of any
locally observable game.

Corollary 1. Let G = (L,H) an N by M finite partial-monitoring game that
satisies the local observability condition. Then there exists a constant C such
that for any p ∈ ∆M , the algorithm CBP-Vanilla against opponent p has
expected regret

E[RT ] ≤ C
√
T log T .

Proof. For an arbitrary γ > 0, the result of Theorem 12 can be rewritten as

E[RT ] ≤ 2
∑
{i,j}∈N

|N+
i,j|
(

1 +
1

2α− 2

)
+

N∑
i=1

δi

∑
k:δk<γ

γnk(T ) + 4
∑
k:δk>γ

W 2
k

d2
k

δk
α log T

≤ 2
∑
{i,j}∈N

|N+
i,j|
(

1 +
1

2α− 2

)
+

N∑
i=1

δi

γT + 4 max
k:δk>γ

(
W 2
k d

2
k

) α log T

γ
.
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Setting

γ = 2 max
k

(Wkdk)

√
α log T

T

gives the statement of the corollary.

7.2 Improving CBP-Vanilla: an adaptive al-

gorithm

From the previous section we see that it is possible to achieve logarithmic in-
dividual regret for easy partial-monitoring games. The bound in Theorem 12
shows that, just like for bandit games, the constant term in the bound de-
pends on the “gaps” between the expected loss of optimal actions and that of
suboptimal ones. Intuitively, this gap depends on how far the opponent strat-
egy p∗ is away from the boundaries of cells of Pareto-optimal actions. The
question arises if it is possible to achieve similar results for games that are
only globally observable. Is there an algorithm that can be run on both lo-
cally and globally observable games, recovers the result of CBP-Vanilla for
locally observable games, while achieving reasonable (maybe near-optimal?)
individual and minimax regret for globally observable games? To this end,
in this section we introduce the algorithm CBP, which is a refined version of
CBP-Vanilla.

The algorithm CBP If a game does not satisfy the local observability
condition, it means that there exists a neighboring action pair such that the
expected difference of their losses can not be estimated by using observations
from actions within the neighborhood action set. However, we still would
like to use an estimate similar to that of CBP-Vanilla. Luckily, the global
observability condition (see Definition 9) ensures that, with the help of some
extra actions outside of the neighborhood action set, estimating the expected
loss difference is possible. This motivates the following definition:

Definition 12 (Observer sets and observer vectors). The observer set Vi,j ⊂ N
underlying a pair of neighboring actions {i, j} ∈ N is a set of actions such
that

`i − `j ∈ ⊕k∈Vi,j ImS>k .

The observer vectors (vi,j,k)k∈Vi,j underlying Vi,j are defined to satisfy the equa-
tion `i − `j =

∑
k∈Vi,j S

>
k vi,j,k. In particular, vi,j,k ∈ Rsk . In what follows,

the choice of the observer sets and vectors is restricted so that Vi,j = Vj,i and
vi,j,k = −vj,i,k. Furthermore, the observer set Vi,j is constrained to be a superset
of N+

i,j and in particular when a pair {i, j} is locally observable, Vi,j = N+
i,j must

hold. Finally, for any action k ∈ ⋃{i,j}∈N Vi,j, let Wk = maxi,j:k∈Vi,j ‖vi,j,k‖∞
be the confidence width of action k.
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The reason for the particular choice of Vi,j = N+
i,j for locally observable

pairs {i, j} is that we plan to use Vi,j (and the vectors vi,j,·) in the case of
not locally observable pairs, too. For not locally observable pairs, the whole
action set N is always a valid observer set (thus, Vi,j can be found). However,
whenever possible, it is better to use a smaller set. The actual choice of Vi,j
(and vi,j,k) is postponed until the effect of this choice on the regret becomes
clear.

Now, one could run CBP-Vanilla replacing the neighborhood action sets
with the observer sets. On locally observable games, it gives the same result
as the original CBP-Vanilla, since the observer sets are defined to be the
same as the neighborhood action sets for locally observable neighboring action
pairs. However, if we run it on a not locally observable game, there is one
more obstacle to overcome. Consider the case when the opponent strategy is
in Ci ∩ Cj for {i, j} ∈ N \ L, that is, it is on the boundary between two non-
locally observable neighboring actions. Unfortunately, our algorithm (CBP-
Vanilla with observer sets) will suffer linear regret! The reason is that in this
case both actions i and j are optimal, thus they never get eliminated, making
the algorithm choose actions from Vi,j \ N+

i,j too often. Furthermore, even if
the opponent strategy is not on the boundary the regret can be too high: say
action i is optimal but δj is small, while {i, j} ∈ N \ L. Then a third action
k ∈ Vi,j with potentially large δk will be chosen proportional to 1/δ2

j times,
causing high regret.

To combat the above phenomenon, we restrict the frequency with which an
action can be used for “information seeking purposes”. For this, we introduce
the set of rarely chosen actions,

R(t) = {k ∈ N : nk(t) ≤ ηkf(t)} ,

where ηk ∈ R, f : N→ R are tuning parameters to be chosen later. Then, the
set of actions available at time t is restricted to P(t) ∪N+(t) ∪ (V(t) ∩R(t)),
where N+(t) =

⋃
{i,j}∈N (t) N

+
i,j and V(t) =

⋃
{i,j}∈N (t) Vi,j .

Pseudocode for the algorithm is given in Algorithm 19. The list of symbols
used in the algorithm is shown in Table 7.2.

In the next section we prove regret bounds for the new algorithm CBP
under various assumptions. The main result there is an individual regret bound
for any globally observable game (see Theorem 13). This theorem yields the
corollary that upper bounds the minimax regret of globally observable games
(Corollary 2). Theorem 14 shows that CBP has an unexpected advantageous
property: even for not locally observable games, if the opponent is “benign”
in the sense that the set of possible strategies is isolated from boundaries
between not locally observable action pairs, the algorithm achieves Õ(

√
T )

expected regret.
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Algorithm 19 CBP

Input: L, H, α, η1, . . . , ηN , f = f(·)
Calculate P , N , Vi,j, vi,j,k, Wk

for t = 1 to N do
Choose It = t and observe Yt {Initialization}
nIt ← 1 {# times the action is chosen}
νIt ← Yt {Cumulative observations}

end for
for t = N + 1, N + 2, . . . do
P(t)← P {Plausible actions}
N (t)← N {Neighboring plausible actions}
for each {i, j} ∈ N do
δ̃i,j ←

∑
k∈Vi,j v

>
i,j,k

νk
nk

{Loss diff. estimate}
ci,j ←

∑
k∈Vi,j ‖vi,j,k‖∞

√
α log t
nk

{Confidence}
if |δ̃i,j| ≥ ci,j then
halfSpace(i, j)← sgn δ̃i,j

else
halfSpace(i, j)← 0

end if
end for
[P(t),N (t)]← getPolytope(P ,N , halfSpace)
N+(t) = ∪{i,j}∈N (t)N

+
ij {Plausible neighborhood actions}

V(t) = ∪{i,j}∈N (t)Vij {Plausible observer actions}
R(t) = {k ∈ N : nk(t) ≤ ηkf(t)} {Rarely sampled actions}
S(t) = P(t) ∪N+(t) ∪ (V(t) ∩R(t)) {Admissible actions}
Choose It = argmaxi∈S(t)

W 2
i

ni
and observe Yt

νIt ← νIt + Yt
nIt ← nIt + 1

end for

7.2.1 Analysis of the algorithm

In this section we provide individual and minimax upper bounds on the ex-
pected regret of CBP. The first theorem is an individual upper bound on the
regret.

Theorem 13. Let G = (L,H) be an N by M partial-monitoring game. For
a fixed opponent strategy p∗ ∈ ∆M , let δi denote the difference between the
expected loss of action i and an optimal action. For any time horizon T ,
algorithm CBP with parameters α > 1, ηk = W

2/3
k , f(t) = α1/3t2/3 log1/3 t has
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Symbol Definition

It ∈ N action chosen at time t
Yt ∈ {0, 1}sIt observation at time t

δ̃i,j(t) ∈ R estimate of (`i − `j)>p ({i, j} ∈ N )
ci,j(t) ∈ R confidence width for pair {i, j} ({i, j} ∈ N )
P(t) ⊆ N plausible actions
N (t) ⊆ N2 set of admissible neighbors
N+(t) ⊆ N ∪{i,j}∈N (t)N

+
i,j; admissible neighborhood actions

V(t) ⊆ N ∪{i,j}∈N (t)Vi,j; admissible information seeking actions
R(t) ⊆ N rarely sampled actions
S(t) P(t) ∪N+(t) ∪ (V(t) ∩R(t)); admissible actions

Table 7.2: List of symbols used in the algorithm

expected regret

E[RT ] ≤
∑
{i,j}∈N

2|Vi,j|
(

1 +
1

2α− 2

)
+

N∑
k=1

δk

+
N∑
k=1
δk>0

4W 2
k

d2
k

δk
α log T

+
∑

k∈V\N+

δk min

(
4W 2

k

d2
l(k)

δ2
l(k)

α log T, α1/3W
2/3
k T 2/3 log1/3 T

)
+

∑
k∈V\N+

δkα
1/3W

2/3
k T 2/3 log1/3 T

+ 2dkα
1/3W 2/3T 2/3 log1/3 T ,

where W = maxk∈N Wk, V = ∪{i,j}∈NVi,j, N+ = ∪{i,j}∈NN+
i,j, and d1, . . . , dN

are game-dependent constants.

Proof. As in the proof of the regret bound for CBP-Vanilla, again we use
the convention that, for any variable x used by the algorithm, x(t) denotes the
value of x at the end of time step t. For example, ni(t) is the number of times
action i is chosen up to and including time step t.

The proof is based on two lemmas. The first lemma shows that the estimate
δ̃i,j(t) is in the vicinity of δi,j with high probability.

Lemma 21. For any {i, j} ∈ N , t ≥ 1,

P
(
|δ̃i,j(t)− δi,j| ≥ ci,j(t)

)
≤ 2|Vi,j|t1−2α .

If for some t, i, j, the event happens whose probability is upper-bounded
in Lemma 21, we say that a confidence interval fails. Let Et be the event
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that some confidence interval fails in time step t. An immediate corollary of
Lemma 21 is that the sum of the probabilities that some confidence interval
fails is small:

T∑
t=1

P (Et) ≤
T∑
t=1

∑
{i,j}∈N

2|Vi,j|t−2α ≤
∑
{i,j}∈N

2|Vi,j|
(

1 +
1

2α− 2

)
. (7.1)

Let k(t) = argmaxi∈P(t)∪V (t) W
2
i /ni(t − 1). When k(t) 6= It this happens

because k(t) 6∈ N+(t) and k(t) /∈ R(t), i.e., the action k(t) is a “purely”
information seeking action that has been sampled frequently. When this holds
we say that the “decaying exploration rule is in effect at time step t”. The
corresponding event is denoted by Dt = {k(t) 6= It}. Using the notation of
Definition 11 and the result of Lemma 19 we can recycle the definition of di
from the proof of Theorem 12; we redefine these values using observer sets
instead of neighborhood action sets:

di = max
(P ′,N ′)∈Ψ

i∈P ′

min
π∈Bi(N ′)
π=(i0,...,ir)

r∑
s=1

|Vis−1,is| .

Now we can state the following lemma:

Lemma 22. Fix any t ≥ 1.

1. Take any action i. On the event Ect ∩ Dt,4 from i ∈ P(t) ∪ N+(t) it
follows that

δi ≤ 2di

√
α log t

f(t)
max
k∈N

Wk√
ηk
.

2. Take any action k. On the event Ect ∩ Dct , from It = k it follows that

nk(t− 1) ≤ min
j∈P(t)∪N+(t)

4W 2
k

d2
j

δ2
j

α log t .

We are now ready to start the proof. By Wald’s identity, we can rewrite
the expected regret as follows:

E[RT ] = E

[
T∑
t=1

L[It, Jt]

]
−

T∑
t=1

E [L[i∗, J1]] =
N∑
k=1

E[nk(T )]δi

=
N∑
k=1

E

[
T∑
t=1

I{It=k}

]
δk

=
N∑
k=1

E

[
T∑
t=1

I{It=k,Et}

]
δk +

N∑
k=1

E

[
T∑
t=1

I{It=k,Ect }

]
δk .

4Here and in what follows all statements that start with “On event X” should be under-
stood to hold almost surely on the event. However, to minimize clutter we will not add the
qualifier “almost surely”.
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Now,

N∑
k=1

E

[
T∑
t=1

I{It=k,Et}

]
δk ≤

N∑
k=1

E

[
T∑
t=1

I{It=k,Et}

]
(because δk ≤ 1)

= E

[
T∑
t=1

N∑
k=1

I{It=k,Et}

]
= E

[
T∑
t=1

I{Et}

]
=

T∑
t=1

P (Et) .

Hence,

E[RT ] ≤
T∑
t=1

P (Et) +
N∑
k=1

E[
T∑
t=1

I{It=k,Ect }]δk .

Here, the first term can be bounded using (7.1). Let us thus consider the
elements of the second sum:

E[
T∑
t=1

I{It=k,Ect }]δk ≤ δk+

E[
T∑

t=N+1

I{Ect ,Dct ,k∈P(t)∪N+(t),It=k}] δk (7.2)

+ E[
T∑

t=N+1

I{Ect ,Dct ,k 6∈P(t)∪N+(t),It=k}] δk (7.3)

+ E[
T∑

t=N+1

I{Ect ,Dt,k∈P(t)∪N+(t),It=k}] δk (7.4)

+ E[
T∑

t=N+1

I{Ect ,Dt,k 6∈P(t)∪N+(t),It=k}] δk . (7.5)

The first δk corresponds to the initialization phase of the algorithm when every
action gets chosen once. The next paragraphs are devoted to upper bounding
the above four expressions (7.2)-(7.5). Note that, if action k is optimal, that
is, if δk = 0 then all the terms are zero. Thus, we can assume from now on
that δk > 0.
Term (7.2): Consider the event Ect ∩ Dc

t ∩ {k ∈ P(t) ∪ N+(t)}. We use
case 2 of Lemma 22 with the choice i = k. Thus, from It = k, we get that
i = k ∈ P(t) ∪N+(t) and so the conclusion of the lemma gives

nk(t− 1) ≤ Ak(t)
4
= 4W 2

k

d2
k

δ2
k

α log t .
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Therefore, we have

T∑
t=N+1

I{Ect ,Dct ,k∈P(t)∪N+(t),It=k}

≤
T∑

t=N+1

I{It=k,nk(t−1)≤Ak(t)}

+
T∑

t=N+1

I{Ect ,Dct ,k∈P(t)∪N+(t),It=k,nk(t−1)>Ak(t)}

=
T∑

t=N+1

I{It=k,nk(t−1)≤Ak(t)}

≤ Ak(T ) = 4W 2
k

d2
k

δ2
k

α log T

yielding

(7.2) ≤ 4W 2
k

d2
k

δk
α log T .

Term (7.3): Consider the event Ect ∩Dc
t ∩ {k 6∈ P(t)∪N+(t)}. We use case 2

of Lemma 22. The lemma gives that

nk(t− 1) ≤ min
j∈P(t)∪N+(t)

4W 2
k

d2
j

δ2
j

α log t .

We know that k ∈ V(t) = ∪{i,j}∈N (t)Vi,j. Let Φt be the set of pairs {i, j} in
N (t) ⊆ N such that k ∈ Vi,j. For any {i, j} ∈ Φt, we also have that i, j ∈ P(t)
and thus if l′{i,j} = argmaxl∈{i,j} δl then

nk(t− 1) ≤ 4W 2
k

d2
l′{i,j}

δ2
l′{i,j}

α log t .

Therefore, if we define l(k) as the action with

δl(k) = min
{
δl′{i,j} : {i, j} ∈ N , k ∈ Vi,j

}
then it follows that

nk(t− 1) ≤ 4W 2
k

d2
l(k)

δ2
l(k)

α log t .

Note that δl(k) can be zero and thus we use the convention c/0 = ∞. Also,
since k is not in P(t) ∪N+(t), we have that nk(t− 1) ≤ ηkf(t). Define Ak(t)
as

Ak(t) = min

(
4W 2

k

d2
l(k)

δ2
l(k)

α log t, ηkf(t)

)
.
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Then, with the same argument as in the previous case (and recalling that f(t)
is increasing), we get

(7.3) ≤ δk min

(
4W 2

k

d2
l(k)

δ2
l(k)

α log T, ηkf(T )

)
.

We remark that without the concept of “rarely sampled actions”, the above
term would scale with 1/δ2

l(k), causing high regret. This is why the “vanilla
version” of the algorithm fails on hard games.
Term (7.4): Consider the event Ect ∩Dt ∩{k ∈ P(t)∪N+(t)}. From case 1 of

Lemma 22 we have that δk ≤ 2dk
√

α log t
f(t)

maxj∈N
Wj√
ηj

. Thus,

(7.4) ≤ dkT

√
α log T

f(T )
max
l∈N

Wl√
ηl
.

Term (7.5): Consider the event Ect ∩ Dt ∩ {k 6∈ P(t) ∪ N+(t)}. Since k 6∈
P(t)∪N+(t) we know that k ∈ V(t)∩R(t) ⊆ R(t) and hence nk(t−1) ≤ ηkf(t).
With the same argument as in the cases (7.2) and (7.3) we get that

(7.5) ≤ δkηkf(T ) .

To conclude the proof of Theorem 13, we set ηk = W
2/3
k , f(t) = α1/3t2/3 log1/3 t

and, with the notation W = maxk∈N Wk, V = ∪{i,j}∈NVi,j, N+ = ∪{i,j}∈NN+
i,j,

we write

E[RT ] ≤
∑
{i,j}∈N

2|Vi,j|
(

1 +
1

2α− 2

)
+

N∑
k=1

δk

+
N∑
k=1
δk>0

4W 2
k

d2
k

δk
α log T

+
∑

k∈V\N+

δk min

(
4W 2

k

d2
l(k)

δ2
l(k)

α log T, α1/3W
2/3
k T 2/3 log1/3 T

)
+

∑
k∈V\N+

δkα
1/3W

2/3
k T 2/3 log1/3 T

+ 2dkα
1/3W 2/3T 2/3 log1/3 T .

The following corollary is an upper bound on the minimax regret of any
globally observable game.

Corollary 2. Let G be a globally observable game. Then there exists a con-
stant c such that the expected regret can be upper bounded independently of the
choice of p∗ as

E[RT ] ≤ cT 2/3 log1/3 T .
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The following theorem is an upper bound on the minimax regret of any
globally observable game against “benign” opponents. To state the theorem,
we need a new definition. Let A be some subset of actions in G. We call A a
point-local game in G if

⋂
i∈A Ci 6= ∅.

Theorem 14. Let G be a globally observable game. Let ∆′ ⊆ ∆M be some
subset of the probability simplex such that its topological closure ∆′ has ∆′ ∩
Ci ∩ Cj = ∅ for every {i, j} ∈ N \ L. Then there exists a constant c such

that for every p∗ ∈ ∆′, algorithm CBP with parameters α > 1, ηk = W
2/3
k ,

f(t) = α1/3t2/3 log1/3 t achieves

E[RT ] ≤ cdpmax
√
bT log T ,

where b is the size of the largest point-local game, and dpmax is a game-
dependent constant.

Proof. To prove this theorem, we use a scheme similar to the proof of Theo-
rem 13. Repeating that proof, we arrive at the same expression

E[
T∑
t=1

I{It=k,Ect }]δk ≤ δk+

E[
T∑

t=N+1

I{Ect ,Dct ,k∈P(t)∪N+(t),It=k}] δk (7.2)

+ E[
T∑

t=N+1

I{Ect ,Dct ,k 6∈P(t)∪N+(t),It=k}] δk (7.3)

+ E[
T∑

t=N+1

I{Ect ,Dt,k∈P(t)∪N+(t),It=k}] δk (7.4)

+ E[
T∑

t=N+1

I{Ect ,Dt,k 6∈P(t)∪N+(t),It=k}] δk , (7.5)

where Ect and Dt denote the events that no confidence intervals fail, and the
decaying exploration rule is in effect at time step t, respectively.

From the condition of ∆′ we have that there exists a positive constant ρ1

such that for every neighboring action pair {i, j} ∈ N \ L, max(δi, δj) ≥ ρ1.
We know from Lemma 22 that if Dt happens then for any pair {i, j} ∈ N \ L
it holds that max(δi, δj) ≤ 4N

√
α log t
f(t)

max(Wk′/
√
ηk′)

4
= g(t). It follows that if

t > g−1(ρ1) then the decaying exploration rule can not be in effect. Therefore,
terms (7.4) and (7.5) can be upper bounded by g−1(ρ1).

With the value ρ1 defined in the previous paragraph, we have that for any
action k ∈ V \ N+, l(k) ≥ ρ1 holds. Therefore, term (7.3) can be upper
bounded by

(7.3) ≤ 4W 2 4N2

ρ2
1

α log T ,
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using that dk, defined in the proof of Theorem 13, is at most 2N . It remains
to carefully upper bound term (7.2). For that, we first need a definition and
a lemma. Let Aρ = {i ∈ N : δi ≤ ρ}.
Lemma 23. Let G = (L,H) be a finite partial-monitoring game and p ∈ ∆M

an opponent strategy. There exists a ρ2 > 0 such that Aρ2 is a point-local game
in G.

To upper bound term (7.2), with ρ2 introduced in the above lemma and
γ > 0 specified later, we write

(7.2) = E[
T∑

t=N+1

I{Ect ,Dct ,k∈P(t)∪N+(t),It=k}] δk

≤ I{δk<γ}nk(T )δk + I{k∈Aρ2 ,δk≥γ}4W
2
k

d2
k

δk
α log T + I{k/∈Aρ2}4W

2 8N2

ρ2

α log T

≤ I{δk<γ}nk(T )γ + |Aρ2|4W 2
d2
pmax

γ
α log T + 4NW 2 8N2

ρ2

α log T ,

where dpmax is defined as the maximum dk value within point-local games.
Let b be the number of actions in the largest point-local game. Putting

everything together we have

E[RT ] ≤
∑
{i,j}∈N

2|Vi,j|
(

1 +
1

2α− 2

)
+ g−1(ρ1) +

N∑
k=1

δk

+ 16W 2N
3

ρ2
1

α log T + 32W 2N
3

ρ2

α log T

+ γT + 4bW 2
d2
pmax

γ
α log T .

Now we choose γ to be

γ = 2Wdpmax

√
bα log T

T

and we get

E[RT ] ≤ c1 + c2 log T + 4Wdpmax
√
bαT log T .

7.2.2 Example

In this section we demonstrate the results of the previous section through the
example of Dynamic Pricing (see Example 6). Recall that in this game, a
vendor (learner) tries to sell his product to a buyer (opponent). The buyer
secretly chooses a maximum price (outcome) while the seller tries to sell it at
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some price (action). If the outcome is lower than the action then no transaction
happens and the seller suffers some constant loss. Otherwise the buyer buys
the product and the seller’s loss is the difference between the seller’s price
and the buyer’s price. The feedback for the seller is, however, only the binary
observation if the transaction happened (y for yes and n for no). The finite
version of the game can be described with the following matrices:

L =


0 1 2 · · · N − 1
c 0 1 · · · N − 2
c c 0 · · · N − 3
...

...
. . . . . .

...
c · · · · · · c 0

 ; H =


y y · · · y
n y · · · y
...

. . . . . .
...

n · · · n y

 .

This game was proven to be hard in Chapter 6. That is, its minimax regret is
Θ(T 2/3).

As explained in the previous chapter, simple linear algebra gives that the
locally observable action pairs are the “consecutive” actions (L = {{i, i +
1} : i ∈ N − 1}), while quite surprisingly, all action pairs are neighbors. In
fact, there is a single point on the probability simplex that is common to all
of the cells, namely

p =
(

1
c+1

c
(c+1)2

· · · ci−1

(c+1)i
· · · cN−2

(c+1)N−1
cN−1

(c+1)N−1

)>
.

It also follows that the game of dynamic pricing is a point-local game.
Now, we introduce a restriction on the space of opponent strategies such

that the condition of Theorem 14 is satisfied. We need to prevent non-
consecutive actions from being simultaneously optimal. A somewhat stronger
condition is that out of three actions i < j < k, the loss of j should not
be more than that of both i and k. We can prevent this from happening by
preventing it for every triple i− 1, i, i+ 1. Hence, a “bad” opponent strategy
would satisfy

`>i−1p ≤ `>i p and `>i+1p ≤ `>i p .

After rearranging, the above two inequalities yield the constraints

pi ≤
c

c+ 1
pi−1

for every i = 2, . . . , N − 1. Note that there is no constraint on pN . If we
want to avoid by a margin these inequalities to be satisfied, we arrive at the
constraints

pi ≥
c

c+ 1
pi−1 + ρ

for some ρ > 0, for every i = 2, . . . , N − 1.
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In conclusion, we define the restricted opponent set to

∆′ =

{
p ∈ ∆M : ∀i = 2, . . . , N − 2, pi ≥

c

c+ 1
pi−1 + ρ

}
.

The intuitive interpretation of this constraint is that the probability of the
higher maximum price of the costumer should not decrease too fast. This con-
straint does not allow to have zero probabilities, and thus it is too restrictive.

Another way to construct a subset of ∆M that is isolated from “dangerous”
boundaries is to include only “hilly” distributions. We call a distribution
p ∈ ∆M hilly if it has a peak point i∗ ∈ N , and there exist ξ1, . . . , ξi∗−1 < 1
and ξi∗+1, . . . , ξN < 1 such that

pi−1 ≤ ξi−1pi for 2 ≤ i ≤ i∗, and

pi+1 ≤ ξi+1pi for i∗ ≤ i ≤ N − 1.

We now show that with the right choice of ξi, under a hilly distribution with
peak i∗, only action i∗ and maybe action i∗ − 1 can be optimal.

1. If i ≤ i∗ then

(`i − `i−1)>p = cpi−1 − (pi + · · ·+ pN)

≤ cξi−1pi − pi − (pi+1 + · · ·+ pN) ,

thus, if ξi−1 ≤ 1/c then the expected loss of action i is less than or equal
to that of action i− 1.

2. If i ≥ i∗ then

(`i+1 − `i)>p = cpi − (pi+1 + · · ·+ pN)

≥ pi

{
c− (ξi+1 + ξi+1ξi+2 + · · ·+

N∏
j=i+1

ξj)

}
.

Now if we let ξi∗+1 = · · · = ξN = ξ then we get

(`i+1 − `i)>p ≥ pi

(
c− ξ 1− ξN−1

1− ξ

)
≥ pi

(
c− ξ

1− ξ

)
,

and thus if we choose ξ ≤ c
c+1

then the expected loss of action i is less
than or equal to that of action i+ 1.

So far in all the calculations we allowed equalities. If we want to achieve
that only action i∗ and possibly action i∗ − 1 are optimal, we use

ξi


< 1/c, if 2 ≤ i ≤ i∗ − 2;
= 1/c, if i = i∗ − 1;
< c/(c+ 1), if i∗ + 1 ≤ i ≤ N.
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If an opponent strategy is hilly with ξi satisfying all the above criteria, we
call that strategy sufficiently hilly. Now we are ready to state the corollary of
Theorem 14:

Corollary 3. Consider the dynamic pricing game with N actions and M
outcomes. If we restrict the set of opponent strategies ∆′ to the set of all
sufficiently hilly distributions then the minimax regret of the game is upper
bounded by

E[RT ] ≤ C
√
T

for some constant C > 0

Remark 2. Note that the number of actions and outcomes N = M does not
appear in the bound because the size of the largest point local game with the
restricted strategy set is always 2, irrespectively of the number of actions.

7.2.3 Experiments

We demonstrate the results of the previous sections using instances of Dy-
namic Pricing, as well as a locally observable game. We compare the results
of CBP to two other algorithms: Balaton (see Chapter 6) which is the first

algorithm that achieves Õ(
√
T ) minimax regret for all locally observable finite

stochastic partial-monitoring games; and FeedExp3 [Piccolboni and Schindel-
hauer, 2001], which achieves O(T 2/3) minimax regret on all non-hopeless finite
partial-monitoring games, even against adversarial opponents.

A locally observable game

The game we use to compare CBP and Balaton has 3 actions and 3 out-
comes. The game is described with the loss and feedback matrices:

L =

1 1 0
0 1 1
1 0 1

 ; H =

a b b
b a b
b b a

 .

We ran the algorithms 10 times for 15 different stochastic strategies. We
averaged the results for each strategy and then took pointwise maximum over
the 15 strategies. Figure 7.1(a) shows the empirical minimax regret calculated
the way described above. In addition, Figure 7.1(b) shows the regret of the
algorithms against one of the opponents, averaged over 100 runs. On the
same figure, we also plotted the 90 percent empirical confidence intervals. The
results indicate that CBP outperforms both FeedExp3 and Balaton. We
also observe that, although the asymptotic performace of Balaton is proven
to be better than that of FeedExp3, a larger constant factor makes Balaton
lose against FeedExp3 even at time step ten million.
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(b) Regret against one opponent strategy.

Figure 7.1: Comparing CBP with Balaton and FeedExp3 on the easy game
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Figure 7.2: Comparing CBP and FeedExp3 on “benign” setting of the Dy-
namic Pricing game.

Dynamic Pricing

We compare CBP with FeedExp3 on Dynamic Pricing with N = M = 5 and
c = 2. Since Balaton is undefined on not locally observable games, we can
not include it in the comparison. To demonstrate the adaptiveness of CBP, we
use two sets of opponent strategies. The “benign” setting is a set of opponents
that are far away from “dangerous” regions, that is, from boundaries between
cells of non-locally observable neighboring action pairs. The “harsh” settings
include opponent strategies that are close or on the boundary between two
such actions. For each setting we maximize over 15 strategies and average
over 10 runs. We also compare the individual regret of the two algorithms
against one benign and one harsh strategy. We averaged over 100 runs and
plotted the 90 percent confidence intervals.

The results are shown in Figures 7.2 and 7.3. The figures clearly indicate
that CBP has a significant advantage over FeedExp3 for the benign settings.
On the other hand, for the harsh settings FeedExp3 slightly outperforms CBP,
which we think is a reasonable price to pay for the benefit of adaptivity.
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Figure 7.3: Comparing CBP and FeedExp3 on “harsh” setting of the Dynamic
Pricing game.
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Chapter 8

A case study: Online probe
complexity1

In this chapter we introduce a new online learning game called online probing
in which at each round, a player has to predict a label given some features.
Before the player makes the prediction, he decides which features to observe,
where every feature has an associated cost. After his prediction, the learner
has the option to observe the true label, however, there is a cost assigned to
observing the label as well. This way, the loss of the learner in each round
has two components: the prediction error, and the cost of the features and the
label.

We introduce two variations of the above game; in the first variant, ob-
serving the label is free, while in the second variant, requesting the true label
has non-zero cost. We provide regret upper and lower bounds for both games
and, by comparing the results for the two games, we show that a positive cost
for asking the label significantly changes the complexity of the game.

8.1 The setting

In this section we define the online probing game. A game instance is defined
by the cost of the features c ∈ Rd

+, the cost of the label cL ≥ 0, and the

prediction loss function ˆ̀(·, ·). We make the assumption that ‖c‖1 ≤ 1. In
every round, a feature vector xt ∈ [0, 1]d and a label yt ∈ [0, 1] is chosen by
an adversary. Initially, both of these are kept secret. Not knowing the feature
vector, or the label, the learner decides which (if any) of the d features of the
current example he wants to receive. We denote this decision by the binary
vector st ∈ {0, 1}d: st,i = 1 means that the learner wants to see the value of
feature i at time t. The learner also decides if he wants to see the label: we
use sLt ∈ {0, 1} to denote this decision. Similarly to the previous case, sLt = 1
means that the learner wants to see the label at time t. Once the learner
chooses st and sLt , the learner receives the values of the requested features,

1Joint work with Navid Zolghadr, Russ Greiner, and Csaba Szepesvári.
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and makes a prediction ŷt. If sLt = 1 then the learner receives the true label
yt after he has made his prediction. The loss suffered by the learner is

`t(It, ŷt, yt) = ˆ̀(ŷt, yt) + c>st + cLsL ,

where we defined It = (st, s
L
t ). Whenever it is clear from the context, we will

suppress the arguments of the loss function and simply write `t for the value
of the loss suffered in round t. It is immediate from the problem setup that in
rounds when the learner does not request the label, his loss is not revealed to
him.

The goal of the learner is to minimize his cumulative loss
∑T

t=1 `t. The
performance of the learner is measured by the (cumulative) regret, defined as
the excess cumulative loss of the learner compared to the best linear predictor.
A linear predictor is defined by the pair (s, w) where s ∈ {0, 1}d and w ∈ [0, 1]d.
Its prediction is ŷt = w>(s�xt), where � denotes the componentwise product.
Thus, the regret of the learner is

RT =
T∑
t=1

`t(It, ŷt, yt)− inf
(s,w)

{
Tc>s+

T∑
t=1

ˆ̀
(
w>(s� xt), yt

)}
.

As we will see in the next sections, the “hardness” of a game dramatically
depends on the cost of the label. We will show that, if the prediction loss
function ˆ̀ is Lipschitz then, in the case when cL = 0, i.e., the label is free,
the regret scales with the time horizon as O(

√
T ) whereas, with positive label

cost, the regret scales as Θ(T 2/3). In the next sections, we present algorithms
for these two versions of the game, as well as a lower bound for the latter one.

8.2 Free-label game

In this version of the game, we assume that cL = 0. Hence, we can assume
without loss of generality that the learner receives the true label at the end of
each round. For brevity, we omit sLt from the action of the player.

We solve the game with the use of experts. An expert is defined by the
pair (s, w). In each round, the expert (s, w) requests the features for which
si = 1 and makes the prediction ŷt = w>(s� xt). In every round, the learner
(randomly) chooses one of the experts.

The key property of this game is that if the learner chooses (s, w), he can
also calculate the loss of other actions, namely, all actions with the same s.
(Actually, losses of actions that choose a subset of the features the current
action chooses can be calculated, but we will not use this fact.) Thus, the
game is a hybrid of bandit and full-information game. As already mentioned
in Chapter 2, Mannor and Shamir [2011] address this problem and introduce
the algorithm ELP (for “Exponentially-weighted algorithm with Linear Pro-
gramming”). Their result states that the expected regret of ELP can be upper
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bounded by

E[RT ] ≤ C
√
Tχ logN ,

where N is the number of experts; and χ is the minimum number of cliques
needed to cover all vertices of the graph of actions, where two action is con-
nected with an edge if the loss for one can be recovered by choosing the other.

In our case, a clique is a set of experts with the same s value. The number of
cliques is hence 2d. However, Mannor and Shamir [2011] address the problem
only in the case of finitely many actions, whereas in our case the number
of experts is infinite. To overcome this problem, we use discretization. We
discretize the space of w the usual way: given a discretization parameter α ∈ N,
the set of experts is defined as

Dα =

{
(s, w) | s ∈ {0, 1}d,∀i ∈ {1, . . . , d} ∃β ∈ {0, . . . , α− 1} : wi =

β

α− 1

}
.

It follows that the number of experts is N = (2α)d.
The following lemma upper bounds the approximation error caused by the

discretization:

Lemma 24. Given any expert (s, w) and label y, the approximation error,
defined as min(s,w′)∈Dα |ˆ̀(w>(s� x), y)− ˆ̀(w′>(s� x), y)| is upper bounded by
L
√
d

α−1
, where L is the Lipschitz constant of ˆ̀.

Now we are ready to state the main theorem of this section.

Theorem 15. There exists a constant C such that given an online probing
game with cL = 0, the “Exponentially-weighted algorithm with Linear Program-
ming” [Mannor and Shamir, 2011] run on the set of experts Dα has expected
regret

E[RT ] ≤ C
√
T2d log(TL) .

Proof. First we observe that the number of actions in the discretized version of
the game is (2α)d, while χ (the number of cliques needed to cover all actions)
is 2d. The regret has two additive components: the regret of ELP compared
to the best expert from Dα, and T times the approximation error:

E[RT ] ≤ C1

√
T2dd log(2α) + T

L
√
d

α− 1
.

Setting α to LT we get

E[RT ] ≤ C
√
T2d ln(TL) ,

as stated in the theorem.
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Algorithm 20 Revealing action algorithm for non-free-label online probing

Parameters: Integer number α ≥ 1 and Real numbers 0 ≤ η, γ ≤ 1
Initialization: Generate Dα, ∀w ∈ Dα, u0(w)← 1
for t = 1 to T do
Ut−1 ←

∑
w∈Dα ut−1(w)

Draw a Bernoulli random variable Zt such that P (Zt = 1) = γ

Draw w from distribution pt(w) = ut−1(w)
Ut−1

if Zt = 0 then
Choose action st = s(wt), s

L
t = 0, wt = w

else
Choose action st = 1, sLt = 1, wt = w
Receive label yt

end if
for each w ∈ Dα do

˜̀
t(w)← I{Zt=1}

`(w,s(w),yt)
γ

ut(w)← ut−1(w) exp(−η ˜̀
t(w))

end for
end for

8.3 Non-free-label game

Now we turn our attention to games with cL > 0. As mentioned earlier, these
games are inherently harder than the ones with free labels. For this setting,
we use an ε-greedy style algorithm, together with discretization.

For this variation of the game, if the learner chooses to see the true label
at the end of each round (i.e., sLt = 1) it suffers an extra loss of cL > 0 in that
round.

As in games with free label, here we also use discretization. Then, on the
discretized set of actions, we employ an algorithm that is very similar to the
algorithm “Random Forecaster with a Revealing Action” [Cesa-Bianchi et al.,
2006, Figure 2.].

The idea of the algorithm is that it plays following exponential weights on
the elements of Dα. When wt ∈ Dα is selected, only the features that are
“needed” are requested, that is, st(i) = I{wt(i) 6=0}. For brevity, we denote this
vector st = s(wt). Additionally, at the beginning of each turn, a Bernoulli
random variable Zt is drawn with preset parameter γ and, if Zt = 1 then, the
algorithm requests the label and also asks for all the features (that is, st = 1,
sLt = 1). We will call these rounds exploration rounds. The extra loss suffered
in these rounds is the cost of the label (cL) and the cost of features whose wt(i)
coordinate is zero.

In exploration rounds, the losses of all actions can be calculated, and thus
the weights of all actions will be updated via importance weighting. Pseu-
docode for the algorithm can be found in Algorithm 20.

The following theorem is an upper bound on the expected regret achieved
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by Algorithm 20.

Theorem 16. Given any online probing game with costly labels, Algorithm 20
with appropriately set parameters achieves

E[RT ] ≤ CT 2/3(`maxcmaxd log(TLd))1/3

for some constant C > 0.

Proof. The regret of the algorithm is decomposed into three additive terms:

1. The approximation error due to discretization. By Lemma 24, we know
that the (cumulative) approximation error can be upper bounded by
TL
√
d

α−1
.

2. The extra loss suffered in exploration rounds. The cumulative expecta-
tion of this extra loss can be upper bounded by Tγ(cL + c>1).

3. The regret of the algorithm compared to the discretized set of weights,
excluding actions that request the label. To upper bound this term, we
follow the classical “exponential weights” proof (see e.g., Cesa-Bianchi
et al. [2006]).

First we make the trivial observation that for every time step t and weight
vector w ∈ Dα,E[˜̀t(w)] = `(w, s(w), yt). That is, ˜̀

t(w) is an unbiased estimate
of the true loss `(w, s(w), yt). Let N denote the number of discrete actions
|Dα|. Now we continue with lower and upper bounding the term UT/U0:

UT
U0

≥
∑

w∈Dα uT (w)

N
≥ uT (w∗)

N
=

exp
(
−η∑T

t=1
˜̀
t(w
∗)
)

N
.

where w∗ denotes an optimal weight vector. For the upper bound we write

Ut
Ut−1

=
∑
w∈Dα

ut−1(w) exp(−η ˜̀
t(w))

Ut−1

=
∑
w∈Dα

pt(w)(1− η ˜̀
t(w) + η2 ˜̀2

t (w)) (8.1)

= 1− η
∑
w∈Dα

pt(w)˜̀
t(w) + η2

∑
w∈Dα

pt(w)˜̀2
t (w)

≤ exp

(
−η

∑
w∈Dα

pt(w)˜̀
t(w) + η2

∑
w∈Dα

pt(w)˜̀2
t (w)

)
, (8.2)

where in (8.1) we used that ut−1(w)/Ut−1 = pt(w) and the inequality ex ≤
1 + x + x2 if x ≤ 1, and in (8.2) we used that ex ≥ 1 + x. Multiplying the
above inequality for t = 1, . . . , T we get

UT
U0

≤ exp

(
−η

T∑
t=1

∑
w∈Dα

pt(w)˜̀
t(w) + η2

T∑
t=1

∑
w∈Dα

pt(w)˜̀2
t (w)

)
.
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We now merge the lower and upper bounds and take logarithm of both sides:

−η
T∑
t=1

˜̀
t(w
∗)− logN ≤ −η

T∑
t=1

∑
w∈Dα

pt(w)˜̀
t(w) + η2

T∑
t=1

∑
w∈Dα

pt(w)˜̀2
t (w) .

Rearranging gives

T∑
t=1

∑
w∈Dα

pt(w)˜̀
t(w)−

T∑
t=1

˜̀
t(w
∗) ≤ η

T∑
t=1

∑
w∈Dα

pt(w)˜̀2
t (w) +

logN

η
.

After taking expectation of both sides, the first term on the left hand side is
the expected cumulative loss of the algorithm excluding the extra loss suffered
in exploration rounds, while the second term is the expected cumulative loss
of the best action w∗. The first term on the right hand side can be upper
bounded as

η
T∑
t=1

∑
w∈Dα

E[pt(w)˜̀2
t (w)] ≤ η

T∑
t=1

∑
w∈Dα

E[pt(w)˜̀
t(w)]

`max

γ

≤ η`maxT

γ
,

where `max is the maximum loss an action can suffer, ignoring the label cost cL.
Adding up all the three terms of the expected regret, substituting N = logαd,
and denoting cmax = cL + c>1 we get

E[RT ] ≤ TL
√
d

α− 1
+ Tγcmax +

η`maxT

γ
+
d logα

η
.

Setting the parameters to

α = TL
√
d η = (d logα)2/3T−2/3(`maxcmax)−1/3 γ =

√
η`max

cmax

we get

E[RT ] ≤ CT 2/3(`maxcmaxd log(TLd))1/3

for some constant C > 0.

8.4 Lower bound for the non-free-label game

In this section we present a lower bound on the expected regret of a non-
trivial class of non-free-label games. As we see, this lower bound is within a
logarithmic factor of the upper bound from Section 8.3.
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Theorem 17. Let the prediction loss function be ˆ̀(ŷ, y) = ‖ŷ − y‖2 (the
square loss). There exists a constant C such that for any non-free-label game
with cj > (1/d)

∑d
i=1 ci− 2/d for every j = 1, . . . , d, the expected regret of any

algorithm can be lower bounded by

E[RT ] ≥ C(cLd)1/3T 2/3 .

Proof. We construct a set of opponent strategies and show that the expected
regret of any algorithm is high against at least one of them. The features xt,i
for t = 1, . . . , T and i = 1, . . . , d are generated by the iid random variables
Xt,i whose distribution is Bernoulli with parameter 0.5. Let Zt ∈ {1, . . . , d}
be random variables whose distribution will be specified later. The labels yt
are generated by the random variable defined as Yt = Xt,Z .

To construct the distribution of Zt we introduce the following notation.
For every i = 1, . . . , d, let

ai =
1

d
+ 2ci −

2

d

d∑
j=1

cj .

The assumptions on c ensures that ai > 0 for every i = 1, . . . , d. For opponent
strategy k, let the distribution of Zt defined as

Pk (Zt = i) =

{
ai − ε, i 6= k;
ai + (d− 1)ε, i=k ,

with some ε > 0 to be defined later.

Lemma 25. Let ek denote the kth basis vector of dimension d. Against op-
ponent strategy k, the instantaneous expected regret for any action such that
(s, s`) 6= (ek, 0) is at least dε

2
.

For i = 1, . . . , d, let Ni denote the number of times the player’s action is
(ei, w, s

L). Similarly, let NL denote the number of times the player requests the
label. Now it is easy to see that the expected regret under opponent strategy
k can be lower bounded by

Ek[RT ] ≥ (T − Ek[Nk])
dε

2
+ cLEk[NL] .

The rest of the proof is devoted to show that for any algorithm, the average of
the above value, 1/d

∑d
i=1 Ei[RT ] can be lower bounded. We only show this for

deterministic algorithms. The statement follows for randomizing algorithms
with the help of a simple argument, see e.g., Cesa-Bianchi and Lugosi [2006,
Theorem 6.11].

A deterministic algorithm is defined as a sequence of functions At(·), where
the argument of At is a sequence of observations up to time step t− 1 and the
value is the action taken at time step t. We denote the observation at time
step t by ht ∈ {0, 1, ∗}d and hLt ∈ {0, 1, ∗}, where ht,i = xt,i if st,i = 1 and
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ht,i = ∗ if st,i = 0. Similarly, hLt = yt if sLt = 1 and hLt = ∗ if sLt = 0. That
is, ∗ is the symbol for not observing a feature or the label. The next lemma,
which is the key lemma of the proof, shows that the expected value of Ni does
not change too much if we change the opponent strategy.

Lemma 26. There exists a constant C1 such that for any i, j ∈ {1, . . . , d},

Ei[Ni]− Ej[Ni] ≤ C1Tε
√
dEj[NL] .

Now we are equipped to lower bound the expected regret. Let

j = argmink∈{1,...,d} Ek[NL].

By Lemma 26,

Ei[RT ] ≥ (T − Ei[Ni])
dε

2
+ cLEi[NL]

≥
(
T − Ej[Ni]− C1Tε

√
dEj[NL]

)
dε

2
+ cLEj[NL]

Denoting
√

Ej[NL] by ν we have

1

d

d∑
i=1

Ei[RT ] ≥
(
T − 1

d

d∑
i=1

Ej[Ni]− C1Tε
√
dν

)
dε

2
+ cLν2

≥
(
T − T

d
− C1Tε

√
dν

)
dε

2
+ cLν2

What is left is to optimize this bound in terms of ν and ε. Since ν is the
property of the algorithm, we have to minimize the expression in ν, with ε as
a parameter. After simple algebra we get

νopt =
C1Tε

2d3/2

4cL
.

Substituting it back results in

1

d

d∑
i=1

Ei[RT ] ≥ (d− 1)
Tε

2
− C2

1T
2ε4d3

16cL

Now we set

ε =

(
2

C2
1

)1/3 (
cL
)1/3

d−2/3T−1/3

to get

E[RT ] ≥ C3

(
cL
)1/3

d1/3T 2/3

whenever d ≥ 2.
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Chapter 9

Conclusions

In this work we have addressed the problem of minimizing regret in online
learning with arbitrary feedback structures, under the framework of partial
monitoring. We found that games with finite number of actions and outcomes
can be categorized into four classes based on their minimax regret: we dis-
tinguished trivial, easy, hard, and hopeless games. These names intuitively
express the “hardness” of learning to perform optimally in a specific game.
We found that the condition separating easy from hard games is the local
observability condition, the condition that enables the learner to accurately
estimate the difference of the losses of neighboring actions.

Partial monitoring—apart from being a common generalization of bandit
and full-information games—covers many games of interest. In this work we
showed that the game of apple tasting belongs to the easy class, while the
game of dynamic pricing belongs to the hard class. We also showed that
under some reasonable restrictions of the opponent, even in hard games like
dynamic pricing, the learner can achieve as low regret as if the game was easy.

To achieve near optimal regret for easy games under various conditions,
we developed several new algorithms. What is common in almost all of them
is that instead of estimating the losses of each action, they estimate loss dif-
ferences. Estimating loss differences instead of losses is just as sufficient for
the purpose of minimizing regret. On the other hand, in many cases the esti-
mate of the difference can be more accurate than the estimate of the loss, and
thus algorithms that rely on loss difference estimates can achieve better regret.
We believe that this finding can lead to better algorithms in many fields of
machine learning in the future.

As for future work, a lot remains to be done. Here we mention only a few
topics. First, it remains to extend our investigation to games with infinitely
many actions and/or outcomes, and games with a few basic actions but a large
number of experts whose actions at any time step can be one of the primitive
actions. Another important open question is to analyze partial monitoring
with side information when in every round, the learner receives some additional
side information about the choice of the opponent before choosing his action.
Then, the learner’s performance is compared with that of the best “policy”: a

99



function that maps side information to actions. The hope is that the advantage
of locally observable games is preserved, that is, if a game is locally observable
then its minimax regret scales as Θ̃(

√
T ) even if we add side information to

the game.
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Appendix A

Proofs of the lemmas

A.1 Lemmas from Chapter 4

Lemma 1. For any finite partial-monitoring game, the following four state-
ments are equivalent:

a) The minimax regret is zero for each T .

b) The minimax regret is zero for some T .

c) There exists a (non-dominated) action i ∈ N whose loss is not larger than
the loss of any other action irrespectively of the choice of opponent’s action.

d) The number of non-dominated actions is one (K = 1).

Proof. a)→b) is obvious.
b)→c) For any A,

E[RAT (G)] ≥ sup
j∈M,J1=···=JT=j

E

[
T∑
t=1

L[It, Jt]−min
i∈N

T∑
t=1

L[i, Jt]

]

= sup
j∈M

E

[
T∑
t=1

L[It, j]− T min
i∈N

L[i, j]

]

≥ sup
j∈M

(
E [L[I1, j]]−min

i∈N
L[i, j]

)
= f(A) .

b) leads to
0 = RT (G) = inf

A
E[RAT (G)] ≥ inf

A
f(A) .

Observe that f(A) depends on A through only the distribution of I1 on N
denoted by q = q(A) now, that is, f(A) = f ′(q) for proper f ′. This dependence
is continuous on the compact domain of q, hence the infimum can be replaced
by minimum. Thus minq f

′(q) ≤ 0, that is, there exists a q such that for
all j ∈ M , E [L[I1, j]] = mini∈N L[i, j]. This implies that the support of
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q contains only actions whose loss is not larger than the loss of any other
action irrespectively of the choice of the opponent’s action. (Such an action is
obviously non-dominated as shown by any p ∈ ∆M supported on all outcomes.)

c)→d) Action i in c) is non-dominated, and any other action with loss
vector distinct from `i is dominated (by i and any action with loss vector `i).

d)→a) Since there is only one non-dominated action, an algorithm that
chooses that action in every time step suffers zero regret.

Lemma 2. Let S be the number of times AppleTree calls Reset at the root
node. Then there exists a universal constant c∗ such that S ≤ c∗ lnT

∆
, where

∆ = ρ′2 − ρ′1 with ρ′1 and ρ′2 given by (4.2).

Proof. Let s be the number of times the algorithm switches from G2 to G1. Let
t1 < · · · < ts be the time steps t when gt switches from 2 to 1, i.e., when ρ̂t < ρ′1
and gt−1 = 2 (and thus gt = 1). Similarly, let t′1 < · · · < t′s+ξ, (ξ ∈ {0, 1}) be
the time steps t when gt switches from 1 to 2, i.e., when ρ̂t > ρ′2 and gt−1 = 1
(and thus gt = 2). Note that for all 1 ≤ j < s, t′j < tj < t′j+1. Finally, for
every 1 ≤ j < s, we define t′′j to be the time step t ≥ t′j when ρ̂t drops below
1 and then stays there until the next reset: t′′j = min{t | t′j ≤ t ≤ tj,∀τ ∈
{t, t+ 1, . . . , tj}, ρ̂τ ≤ 1}.

First, we observe that if t′′j ≥ 2/∆ then ρ̂t′′j ≥ (ρ′1 +ρ′2)/2. Indeed, if t′′j = t′j
then ρ̂t′′j ≥ ρ′2, while if t′′j 6= t′j then ρ̂t′′j−1 > 1 and thus, from the update rule,
we have

ρ̂t′′j =

(
1− 1

t′′j

)
ρ̂t′′j−1 +

1

t′′j
·
I{Jt′′

j
=2}

pt′′j
≥ 1− ∆

2
≥ ρ′1 + ρ′2

2
.

The number of times the algorithm resets is at most 2s+ 1. Let j∗ be the
first index such that t′′j∗ ≥ 2/∆. Pick any j such that j∗ ≤ j ≤ s. According
to the update rule, for any t′′j < t ≤ tj we have that

ρ̂t =

(
1− 1

t

)
ρ̂t−1 +

1

t
· I{Jt=2}

pt
≥ ρ̂t−1 −

1

t
ρ̂t−1 ≥ ρ̂t−1 −

1

t

and hence ρ̂t−1 − ρ̂t ≤ 1
t
. Summing this inequality for t = t′′j + 1, . . . , tj and

exploiting that ρ̂t′′j ≥ (ρ′1 + ρ′2)/2 and ρ̂tj ≤ ρ′1, we get

∆

2
=
ρ′1 + ρ′2

2
− ρ′1 ≤ ρ̂t′′j − ρ̂tj ≤

tj∑
t=t′′j+1

1

t
= O

(
ln
tj
t′′j

)
.

Thus, there exists c > 0 such that for all j∗ ≤ j ≤ s, it holds that

1

c
∆ ≤ ln

tj
t′′j
≤ ln

tj
tj−1

. (A.1)

Summing up (A.1) for j = j∗, . . . , s, we get (s − j∗)1
c
∆ ≤ ln ts

2/∆
≤ lnT . We

conclude the proof by observing that j∗ ≤ 2/∆.
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Lemma 3. For any 0 < δ < 1, with probability at least 1 − δ, for all t ≥
8
√
T ln(2T/δ)/(3∆2), |ρ̂t − ρt| ≤ ∆.

Proof. The proof of the lemma employs Bernstein’s inequality for martingales.

Bernstein’s Inequality for Martingales. (Taken from Cesa-Bianchi and
Lugosi [2006, Lemma A.8]) Let X1, X2, . . . , Xn be a bounded martingale dif-
ference sequence with respect to a filtration {F}ni=0 and with |Xi| ≤ K. Let

Si =
i∑

j=1

Xj

be the associated martingale. Denote the sum of conditional variances by

Σ2
n =

n∑
i=1

E[X2
i | Fi−1] .

Then, for all constants ε, v > 0,

P
(

max
i∈n

Si > ε and Σ2
n ≤ v

)
≤ exp

(
− ε2

2(v +Kε/3)

)
.

For 1 ≤ t ≤ T , let pt be the conditional probability of playing a reveal-
ing action at time step t, given the history H1:t−1. Recall that, due to the
construction of the algorithm, pt ≥ 1/

√
T .

If we write ρ̂t in its explicit form ρ̂t = 1
t

∑t
s=1

I{Hs=2}
ps

we can observe that

E[ρ̂t|H1:t−1] = ρt, that is, ρ̂t is an unbiased estimate of the relative frequency.

Let us define random variables Xs :=
I{Hs=2}

ps
− I{Js=2}. Since ps is determined

by the history, {Xs}s is a martingale difference sequence. Also, from ps ≥
1/
√
T we know that Var[(]Xs|H1:t−1) ≤

√
T . Hence, we can use Bernstein’s

inequality for martingales with ε = ∆t, ν = t
√
T , K =

√
T :

P (|ρ̂t − ρt| > ∆) = P

(∣∣∣∣∣
t∑

s=1

Xs

∣∣∣∣∣ > t∆

)

≤ 2 exp

(
− ∆2t2/2

t
√
T + ∆t

√
T/3

)
≤ 2 exp

(
−3∆2t

8
√
T

)
.

We have that if t ≥ 8
√
T ln(2T/δ)/(3∆2) then

P (|ρ̂t − ρt| > ∆) ≤ δ/T .

We get the bound for all t ∈ [8
√
T ln(2T/δ)/(3∆2), T ] using the union bound.
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Lemma 4. Let G = (L,H) be any finite non-trivial game with N actions and
M ≥ 2 outcomes. Then there exists p ∈ ∆M satisfying both of the following
properties:

(a) All coordinates of p are positive.

(b) There exist actions i1,i2 ∈ N such that `i1 6= `i2 and for all i ∈ N ,

`>i1p = `>i2p ≤ `>i p .

Proof. Note that distributions p with positive coordinates form the interior of
∆M (Int ∆M). For any action i ∈ N , as in the proof of Lemma 6, consider
the compact convex cell Ci in ∆M , whose union is ∆M (see (A.2)). Let p1 be
any point in the interior of ∆M . By (A.2), there is a cell Ci1 containing p1.
If Ci1 = ∆M held then action i1 would satisfy Lemma 1 c), thus also d), and
the game would be trivial. So there must be a point, say p2, in ∆M \Ci1 . The
intersection of the closed segment p1p2 and Ci1 is closed and convex, thus it
is a closed subsegment p1p for some p ∈ Ci1 (p 6= p2). p1 ∈ Int ∆M and the
convexity of ∆M imply p ∈ Int ∆M . Since the open segment pp2 has to be
covered by

⋃
i′:Ci′ 6=Ci1

Ci′ , that is a closed set, p ∈ ⋃i:Ci′ 6=Ci1
Ci′ must also hold,

that is, p ∈ Ci2 for some Ci2 6= Ci1 (requiring `i1 6= `i2). Hence p satisfies both
(a) and (b).

Lemma 5 (Khinchine’s inequality for asymmetric random variables). Let

X1, X2, . . . , XT

be i.i.d. random variables with mean E[Xt] = 0, finite variance E[X2
t ] =

Var[Xt] = σ2, and finite fourth moment E[X4
t ] = µ4. Then,

E

∣∣∣∣∣
T∑
t=1

Xt

∣∣∣∣∣ ≥ σ3

√
3µ4

√
T .

Proof. [Devroye et al., 1996, Lemma A.4] implies that for any random variable
Z with finite fourth moment

E |Z| ≥ (E[Z2])
3/2

(E[Z4])1/2
.

Applying this inequality to Z =
∑T

t=1Xt we get

E

∣∣∣∣∣
T∑
t=1

Xt

∣∣∣∣∣ ≥ T 3/2σ3

T
√

3µ4

=
σ3

√
3µ4

√
T ,

that follows from

E[Z2] = E

( T∑
t=1

Xt

)2
 =

T∑
t=1

E[X2
t ] = Tσ2
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and

E[Z4] = E

( T∑
t=1

Xt

)4
 =

T∑
t=1

E[X4
t ] + 6

∑
1≤s<t≤T

E[X2
s ]E[X2

t ]

= Tµ4 + 3T (T − 1)σ4

≤ 3T 2µ4,

where we have used the independence of Xt’s and E[Xt] = 0 which ensure that
mixed terms E[XtXs], E[XtX

3
s ], etc. vanish. We also used that σ4 = E[X2

t ]2 ≤
E[X4

t ] = µ4.

Lemma 6 (ε-close distributions). Let G = (L,H) be any finite non-trivial
game with N non-duplicate actions and M ≥ 2 outcomes. Then there exist
two non-dominated actions i1,i2 ∈ N , p ∈ ∆M , w ∈ RM \ {0}, and c,α > 0
satisfying the following properties:

(a) `i1 6= `i2.

(b) `>i1p = `>i2p ≤ `>i p for all i ∈ N and the coordinates of p are positive.

(c) Coordinates of w satisfy
∑M

j=1 w(j) = 0.

For any ε ∈ (0, α),

(d) p1 = p+ εw ∈ ∆M and p2 = p− εw ∈ ∆M ,

(e) for any i ∈ N , i 6= i1, we have (`i − `i1)>p1 ≥ cε,

(f) for any i ∈ N , i 6= i2, we have (`i − `i2)>p2 ≥ cε.

Proof. For any action i ∈ N , consider the cell

Ci = {p ∈ ∆M : ∀i′ ∈ N, `>i p ≤ `>i′ p}

in the probability simplex ∆M . The cell Ci corresponds to the set of outcome
distributions under which action i is optimal. Each cell is the intersection of
some closed half-spaces and ∆M , and thus it is a compact convex polytope of
dimension at most M − 1. Note that

N⋃
i=1

Ci = ∆M . (A.2)

For C ⊆ ∆M , denote IntC its interior in the topology induced by the hyper-
plane {x ∈ RM : (1, dots, 1)x = 1} and rintC its relative interior1. Let λ be

1Relative interior of C ⊆ RM is its interior in the topology induced by the smallest affine
space containing it.
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the (M − 1)-dimensional Lebesgue-measure. It is easy to see that for any pair
of cells Ci, Ci′ , Ci′ ∩ IntCi = ∅, that is, λ(Ci ∩ Ci′) = 0, and so

IntCi ⊆ Ci \
⋃
i′ 6=i

Ci′ . (A.3)

Hence the cells form a cell-decomposition of the simplex. Any two cells Ci and
Ci′ are separated by the hyperplane fi,i′ = {x ∈ RM : `>i x = `>i′ x}. Note
that Ci∩Ci′ ⊂ fi,i′ . The cells are characterized by the following lemma (which
itself holds also with duplicate actions):

Lemma 27. Action i is dominated ⇔ Ci ⊆
⋃
i′:`i′ 6=`i

Ci′ ⇔ IntCi = ∅ ⇔
λ(Ci) = 0, that is, Ci is (M − 1)-dimensional (has positive λ-measure) if and
only if there is p ∈ Ci \

⋃
i′:`i′ 6=`i

Ci′. Hence there is three kind of “cells”:

1. Ci = ∅ (action i is never optimal),

2. Ci 6= ∅ has dimension less than M − 1, IntCi = ∅, λ(Ci) = 0, Ci ⊆⋃
i′:`i′ 6=`i

Ci′ (action i is degenerate),

3. action i is non-dominated, Ci is (M−1)-dimensional, rintCi = IntCi 6=
∅, λ(Ci) > 0, there is p ∈ Ci \

⋃
i′:`i′ 6=`i

Ci′.

Moreover
⋃
i 6∈D Ci = ∆M for the set D of dominated actions.2

Proof of Lemma 27. By Definition 3, action i is dominated if and only if Ci ⊆⋃
i′:`i′ 6=`i

Ci′ .

Ci ⊆
⋃
i′:`i′ 6=`i

Ci′ → IntCi = ∅: Since `i′ 6= `i → i 6= i, follows from (A.3).

IntCi = ∅ → λ(Ci) = 0: Follows from convexity of Ci.
λ(Ci) = 0 → Ci ⊆

⋃
i′:`i′ 6=`i

Ci′ : indirect: if p ∈ Ci is in the complementer

of
⋃
i′:`i′ 6=`i

Ci′ , that is open in ∆M , then there is a neighborhood S of p in

∆M disjoint from
⋃
i′:`i′ 6=`i

Ci′ . Thus S ⊆ ⋃i′:`i′=`i
Ci′ = Ci due to (A.2), and

λ(Ci) ≥ λ(S) > 0, contradiction.
Since λ(

⋃
i∈D Ci) ≤

∑
i∈D λ(Ci) = 0, thus from (A.2) λ(

⋃
i 6∈D Ci) ≥ λ(∆M),

and λ(∆M \
⋃
i 6∈D Ci) = 0. The latest set is open in ∆M , so it must be empty,

that is,
⋃
i 6∈D Ci = ∆M .

The non-triviality of the game (K ≥ 2) means that there are at least two
non-dominated actions of type 3 above. In the cell decomposition, due to
Lemma 27, there must exist two such (M − 1)-dimensional cells Ci1 and Ci2
corresponding to two non-dominated actions i1,i2, such that their intersection
Ci1∩Ci2 is an (M−2)-dimensional polytope. Clearly, `i1 6= `i2 , since otherwise
the cells would coincide; thus part (a) is satisfied.

Moreover, rint(Ci1 ∩Ci2) ⊆ rint ∆M since otherwise λ(Ci1) or λ(Ci2) would
be zero. We can choose any p ∈ rint(Ci1 ∩ Ci2). This choice of p guarantees
that p ∈ fi1,i2 , `>i1p = `>i2p, p ∈ rint ∆M , and part (b) is satisfied. Since Ci1∩Ci2

2This last statement is just Lemma 5 in [Piccolboni and Schindelhauer, 2001].
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is (M − 2)-dimensional, it also implies that there exists δ > 0 such that the
δ-neighborhood {q ∈ RM : ‖p− q‖ < δ} of p is contained in rint(Ci1 ∪ Ci2).

Since p ∈ fi1,i2 therefore the hyperplane of vectors satisfying (c) does not
coincide with fi1,i2 implying that we can choose w ∈ RM \ {0} satisfying part
(c), ‖w‖ < δ, and w 6∈ fi1,i2 . We can assume

(`i2 − `i1)>w > 0 (A.4)

(otherwise we choose −w). Since p±w lie in the δ-neighborhood of p, they lie
in rint(Ci1 ∪Ci2). In particular, since `>i1(p+w) < `>i2(p+w) and `>i2(p−w) <
`>i1(p− w), p+ w ∈ rintCi1 and p− w ∈ rintCi2 . Let

p1 = p+ εw and p2 = p− εw . (A.5)

The convexity of Ci1 and Ci2 implies that for any ε ∈ (0, 1], p1 ∈ rintCi1 and
p2 ∈ rintCi2 . This, in particular, ensures that p1,p2 ∈ ∆M and part (d) holds.

To prove (e) define I = {i ∈ N : `i is collinear with `i1 and `i2}. We
consider two cases: As the first case fix action i ∈ I \ {i1}, that is, `i is an
affine combination `i = ai`i1 + bi`i2 for some ai + bi = 1. Since i1 and i2 are
non-dominated, this must be a convex combination with ai,bi ≥ 0. There is
no duplicate action, thus `i 6= `i1 implying bi 6= 0. Hence bi > 0, and from
(A.5) for any ε ≥ 0

(`i − `i1)>p1 = (bi`i2 − bi`i1)>(p+ εw) = εbi(`i2 − `i1)>w ≥ cε

provided that 0 < c ≤ mini∈I\{i1} bi(`i2 − `i1)>w = c′. From (A.4) we know
that bi(`i2 − `i1)>w and so c′ are positive.

As the second case suppose i 6∈ I. Then, the hyperplane fi1,i does not
coincide with fi1,i2 . Since p ∈ rint(Ci1 ∩ Ci2), p ∈ fi1,i would contradict
to fi1,i ∩ rintCi1 = ∅ implied by (A.3). Thus p ∈ Ci1 \ fi1,i and therefore
`>i1p < `>i p. This means that if we choose 0 < c ≤ min(c′, 1

2
mini 6∈I(`i−`i1)>p)

(that is positive and depends only on L and not on T ) then for ε < α =
min(1, c/maxi 6∈I |(`i − `i1)>w|), from (A.5) we have again

(`i − `i1)>p1 ≥ 2c+ ε(`i − `i1)>w > c > cε .

Part (f) is proved analogously to part (e), and by adjusting α and c if
necessary.

Lemma 7 (KL divergence of ε-close distributions). Let p ∈ ∆M be a probability
vector and let p = minj∈M :p(j)>0 p(j). For any vector ε ∈ RM such that both
p− ε and p+ ε lie in ∆M and |ε(j)| ≤ p(j)/2 for all j ∈M , the KL divergence
of p− ε and p+ ε satisfies

D(p− ε ‖ p+ ε) ≤ c‖ε‖2,

where c = 6 ln(3)−4
p

> 0.
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Proof. Since p, p + ε, and p − ε are all probability vectors, notice that the
coordinates of ε have to sum up to zero. Also if a coordinate of p is zero then
the corresponding coordinate of ε has to be zero as well. As zero coordinates
do not modify the KL divergence, we can assume without loss of generality
that all coordinates of p are positive. By definition,

D(p− ε ‖ p+ ε) =
M∑
j=1

(p(j)− ε(j)) ln

(
p(j)− ε(j)
p(j) + ε(j)

)
.

We write the logarithmic factor as

ln

(
p(j)− ε(j)
p(j) + ε(j)

)
= ln

(
1− ε(j)

p(j)

)
− ln

(
1 +

ε(j)

p(j)

)
.

We use the second order Taylor expansion ln(1 ± x) = ±x − x2/2 + O(|x|3)
around 0 to get that ln(1−x)−ln(1+x) = −2x+r(x), where r(x) is a remainder
upper bounded for all |x| ≤ 1/2 as |r(x)| ≤ c′|x|3 with c′ = 8 ln(3)− 8 ≈ 0.79.
Substituting

D(p− ε ‖ p+ ε) =
M∑
j=1

(p(j)− ε(j))
[
−2

ε(j)

p(j)
+ r

(
ε(j)

p(j)

)]

= −2
M∑
j=1

ε(j) + 2
M∑
j=1

ε2(j)

p(j)
+

M∑
j=1

(p(j)− ε(j)) · r
(
ε(j)

p(j)

)
.

Here the first term is 0. Letting p = minj∈M p(j), the second term is bounded

by 2
∑M

j=1 ε
2(j)/p = (2/p)‖ε‖2, and the third term is bounded by

M∑
j=1

(p(j)− ε(j))
∣∣∣∣r( ε(j)p(j)

)∣∣∣∣ ≤ c′
M∑
j=1

(p(j)− ε(j)) |ε(j)|
3

p3(j)

= c′
M∑
j=1

( |ε(j)|
p(j)

− ε(j)|ε(j)|
p2(j)

)
ε2(j)

p(j)

≤ c′
M∑
j=1

( |ε(j)|
p(j)

+
|ε(j)|2
p2(j)

)
ε2(j)

p(j)

≤ c′
M∑
j=1

(
1

2
+

1

4

)
ε2(j)

p
=

3c′

4p
‖ε‖2 .

Hence, D(p− ε ‖ p+ ε) ≤ 8+3c′

4p
‖ε‖2 = c‖ε‖2 for c = 6 ln(3)−4

p
.
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Lemma 8. For any partial-monitoring game with N actions and M outcomes,
algorithm A, pair of outcome distributions p1,p2 ∈ ∆M and action i, we have

N
(2)
i −N (1)

i ≤ T

√
D(p2 ‖ p1)N

(2)
rev/2

and

N
(1)
i −N (2)

i ≤ T

√
D(p1 ‖ p2)N

(1)
rev/2,

where N
(k)
rev =

∑T
t=1 Pk (It ∈ R) =

∑
i′∈RN

(k)
i′ under model pk, k = 1,2 with R

being the set of revealing actions.3

Proof. We only prove the first inequality, the other one is symmetric. As-
sume first that A is deterministic, that is, It : Σt−1 → N , and so It(h1:t−1)
denotes the choice of the algorithm at time step t, given that the (random)
history of observations of length t− 1, H1:t−1 = (H1, . . . , Ht−1) takes h1:t−1 =
(h1, . . . , ht−1) ∈ Σt−1. (Note that this is a slightly different history definition
than H1:t−1 defined in Section 4.4.1, as H1:t−1 does not include the actions
since their choices are determined by the feedback anyway. In general, H1:t−1

is equivalent to H1:t−1 ∪ (I1, ..., It−1). Nevertheless, if it is assumed that the
feedback symbol sets of actions are disjoint then H1:t−1 and H1:t−1 are equiv-
alent.) We denote by p∗k the joint distribution of H1:T−1 over ΣT−1 associated
with pk. (For games with only all-revealing actions, assuming H[i′, j] = j in
H, p∗k is the product distribution over the outcome sequences, that is, formally,

p∗k(j1:T−1) =
∏T−1

t=1 pk(jt).) We can bound the difference N
(2)
2 −N (1)

2 as

N
(2)
i −N (1)

i =
T∑
t=1

(P2 (It = i)− P1 (It = i))

=
∑

h1:T−1∈ΣT−1

T∑
t=1

(
I{It(h1:t−1)=i}p

∗
2(h1:T−1)− I{It(h1:t−1)=i}p

∗
1(h1:T−1)

)
=

∑
h1:T−1∈ΣT−1

(p∗2(h1:T−1)− p∗1(h1:T−1)) ·
T∑
t=1

I{It(h1:t−1)=i}

≤ T
∑

h1:T−1∈ΣT−1

p∗2(h1:T−1)≥p∗1(h1:T−1)

(p∗2(h1:T−1)− p∗1(h1:T−1)) (A.6)

=
T

2
‖p∗2 − p∗1‖1

≤ T
√
D(p∗2 ‖ p∗1)/2 ,

where the last step is an application of Pinsker’s inequality [Cover and Thomas,
2006, Lemma 12.6.1] to distributions p∗1 and p∗2. Using the chain rule for

3It seems from the proof that N
(k)
rev could be slightly sharpened to N

(k,T−1)
rev =∑T−1

t=1 Pk (It ∈ R).
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KL divergence [Cover and Thomas, 2006, Theorem 2.5.3] we can write (with
somewhat sloppy notation)

D(p∗2 ‖ p∗1) =
T−1∑
t=1

D (p∗2(ht | h1:t−1) ‖ p∗1(ht | h1:t−1)) ,

where the tth conditional KL divergence term is∑
h1:t−1∈Σt−1

P2 (H1:t−1 = h1:t−1) ×

∑
ht∈Σ

P2 (Ht = ht | H1:t−1 = h1:t−1) ln
P2 (Ht = ht | H1:t−1 = h1:t−1)

P1 (Ht = ht | H1:t−1 = h1:t−1)
.

(A.7)

Decompose this sum for the case It(h1:t−1) 6∈ R and It(h1:t−1) ∈ R. In
the first case, we play a none-revealing action, thus our observation Ht =
H[It(h1:t−1), Jt] = H[It(h1:t−1), 1] is a deterministic constant in both models
1 and 2, thus both P1 (· | H1:t−1 = h1:t−1) and P2 (· | H1:t−1 = h1:t−1) are de-
generate and the KL divergence factor is 0. Otherwise, playing a revealing
action, Ht= H[It(h1:t−1), Jt] is the same deterministic function of Jt (which is
independent of H1:t−1) in both models 1 and 2, and so the inner sum in (A.7)
is ∑

ht∈Σ

Pr2[H[It(h1:t−1), Jt] = ht] ln
Pr2[H[It(h1:t−1), Jt] = ht]

Pr1[H[It(h1:t−1), Jt] = ht]
. (A.8)

Since Pk (H[It(h1:t−1), Jt] = ht) =
∑

jt∈M :H[It(h1:t−1),jt]=ht
pk(jt) (k = 1,2), using

the log sum inequality [Cover and Thomas, 2006, Theorem 2.7.1]), (A.8) is
upper bounded by∑
ht∈Σ

∑
jt∈M :H[It(h1:t−1),jt]=ht

p2(jt) ln
p2(jt)

p1(jt)
=
∑
jt∈M

p2(jt) ln
p2(jt)

p1(jt)
= D(p2 ‖ p1) .

Hence, D(p∗2 ‖ p∗1) is upper bounded by

T−1∑
t=1

∑
h1:t−1∈Σt−1

It(h1:t−1)∈R

P2 (H1:t−1 = h1:t−1)D(p2 ‖ p1)

= D(p2 ‖ p1)
T−1∑
t=1

Pr2[It ∈ R] = D(p2 ‖ p1)N (2,T−1)
rev ,

where N
(k,T−1)
rev =

∑T−1
t=1 Pk (It ∈ R). This together with (A.6) gives N

(2)
i −

N
(1)
i ≤ T

√
D(p2 ‖ p1)N

(2,T−1)
rev /2.
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If A is random and its internal random “bits” are represented by a random

value Z (which is independent of J1,J2,. . . ), then N
(k)
i = E

[
Ñ

(k)
i (Z)

]
for

Ñ
(k)
i (Z) =

∑T
t=1 Pk (It = i|Z). Also let Ñ

(k,T−1)
rev (Z) =

∑T−1
t=1 Pk (It ∈ R|Z).

The proof above implies that for any fixed z ∈ Range(Z),

Ñ
(2)
i (z)− Ñ (1)

i (z) ≤ T

√
D(p2 ‖ p1)Ñ

(2,T−1)
rev (z)/2 ,

and thus, using also Jensen’s inequality,

N
(2)
i −N (1)

i = E
[
Ñ

(2)
i (Z)− Ñ (1)

i (Z)
]

≤ E
[
T

√
D(p2 ‖ p1)Ñ

(2,T−1)
rev (Z)/2

]
≤ T

√
D(p2 ‖ p1)E

[
Ñ

(2,T−1)
rev (Z)

]
/2 = T

√
D(p2 ‖ p1)N

(2,T−1)
rev /2 ,

that is clearly upper bounded by T

√
D(p2 ‖ p1)N

(2)
rev/2 yielding the statement

of the lemma.

Lemma 9. Let G be a non-degenerate game with two outcomes. Let G′ be the
game we get by removing the degenerate non-revealing actions from G. Then
RT (G) = RT (G′).

Proof. We prove the lemma by showing that for every algorithm A on game
G there exists an algorithm A′ on G′ such that for any outcome sequence,
RT (A′,G′) ≤ RT (A,G) and vice versa. Recall that the minimax regret of a
game is

RT (G) = inf
A

sup
J1:T∈MT

RT (A,G) ,

where

RT (A,G) = E

[
T∑
t=1

L[It, Jt]−min
i∈N

T∑
t=1

L[i, Jt]

]
.

First we observe that the term E[mini∈N
∑T

t=1 L[i, Jt]] does not change by
removing degenerate actions. Indeed, by the definition of degenerate action, if
the minimum is given by a degenerate action then there exists a non-degenerate
action with the same cumulative loss. It follows that we only have to deal with
the term E[

∑T
t=1 L[It, Jt]].

1. Let A′ be an algorithm on G′. We define the algorithm A on G by
choosing the same actions as A′ at every time step. Since the action
set of G is a superset of that of G′, this construction results in a well
defined algorithm on G, and trivially has the same expected loss as A′.
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`·,1

Revealing non-dominated action

Non-revealing degenerate action

1

2

3 4

Figure A.1: Degenerate non-revealing actions on the chain. The loss vector of
action 2 is a convex combination of that of action 1 and 3. On the other hand,
the loss vector of action 4 is component-wise lower bounded by that of action
3.

2. Let A be an algorithm on G. From the definition of degenerate actions,
we know that for every degenerate action i, there are two possibilities:

(a) There exists a non-degenerate action i1 such that `i is component-
wise lower bounded by `i1 .

(b) There are two non-degenerate actions i1 and i2 such that `i is a
convex combination of `i1 and `i2 , that is, `i = αi`i1 + (1 − αi)`i2
for some αi ∈ (0, 1).

An illustration of these cases can be found in Figure A.1. We construct
A′ the following way. At every time step t, if IAt (the action that algo-
rithm A would take) is non-degenerate then let IA

′
t = IAt . If IAt = i is a

degenerate action of the first kind, let IA
′

t be i1. If IAt = i is a degenerate
action of the second kind then let IA

′
t be i1 with probability αi and i2

with probability 1− αi. Recall that G is non-degenerate, so i has to be
a non-revealing action. However, i1 and/or i2 might be revealing ones.
To handle this, A′ is defined to map the observation sequence, before
using it as the argument of It, replacing the feedbacks corresponding to
degenerate action i by H[i, 1] = H[i, 2]. That is, intuitively, A′ “pre-
tends” that the feedbacks at such time steps are irrelevant. It is clear
that the expected loss of A′ in every time step is less than or equal to
the expected loss of A, concluding the proof.

Lemma 10. There exists a constant c > 0 (depending on α only) such that
for any ε > 0,

N
(1)
2 ≥ N

(2)
2 − cT ε

√
N

(2)
≥3 and N

(2)
1 ≥ N

(1)
1 − cT ε

√
N

(1)
≥3 .

Proof. We only prove the first inequality, the other one is symmetric. Using
Lemma 8 withM = 2, i = 2 and the fact that actions 1 and 2 are non-revealing,
we have

N
(2)
2 −N (1)

2 ≤ T

√
D(p2 ‖ p1)N

(2)
≥3/2 .
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Lemma 7 with M = 2, p = (α, 1−α)>, and ε = (ε,−ε)> gives D(p2 ‖ p1) ≤ ĉε2,
where ĉ depends only on α. Rearranging and substituting c =

√
ĉ/2 yields

the first statement of the lemma.

A.2 Lemma from Chapter 5

Lemma 13. If ` 6∈ Im A> then G1 is trivial or hopeless.

Proof. The condition ` /∈ Im A> implies 〈`〉 * Im A>, that is equivalent to
`⊥ + Ker A, which can be seen by taking the orthogonal complement of both
sides and using (Ker A)⊥ = Im A>. The latter implies that there exists v such
that v ∈ Ker A but `>v 6= 0. By scaling we can assume w.l.o.g. that `>v = 1.
Note that, since the first m1 rows of A add up to 1> and v ∈ Ker A, the
coordinates of v sum to zero.

We identify the set of all probability distributions over the set of outcomes
M with the probability simplex ∆M = {p ∈ RM :

∑M
j=1 p(j) = 1, ∀j ∈

M, p(j) ≥ 0}. If p ∈ ∆M is a distribution, then it is easy to see that
the first m1 coordinates of Ap give the probability distribution of observing
the different values of the first row of H0 while the learner chooses action 1
assuming the opponent chooses her actions from p. The same applies to the
last m2 coordinates of Ap and action 2. It follows that if Ap1 = Ap2 for two
distributions then no algorithm can distinguish them. We find such p1, p2 and
apply this idea as follows:

If for all p ∈ ∆M , `>p ≥ 0 (or `>p ≤ 0), then G1 has zero minimax regret
and thus it is trivial. Otherwise, there exist p+ and p− in ∆M with `>p+ > 0
and `>p− < 0. Now either there exists p0 ∈ Int(∆M) such that `>p0 = 0, or
we can assume w.l.o.g. that one of p+ and p− is in Int(∆M), in which case
there must be again a p0 ∈ Int(∆M) on the segment p+p− such that `>p0 = 0
by the continuity of `>p in p. In other words, we have a distribution p0 over
M such that p0 is not on the boundary of ∆M and the expected loss of the
two actions are equal.

Now let p1 = p0 + εv and p2 = p0− εv for some ε > 0. If ε is small enough
then both p1 and p2 are in ∆M . Since Av = 0 we have that Ap1 = Ap0 = Ap2.
On the other hand, `>p1 = ε > 0 and `>p2 = −ε < 0 imply that action k is
optimal under pk for k = 1,2.

Fix any strategy A of the learner. We use randomization replacing the out-
comes by a sequence J1, J2, . . . , JT ∈ MT of random variables i.i.d. according
to pk, k ∈ {1, 2}, and independently of the internal randomization of A. Let

N
(k)
i = N

(k)
i (A, T )

4
=

T∑
t=1

Pk (It = i) ∈ [0, T ]

be the expected number of times action i is chosen by A under pk up to time
step T . With subindex k, Pk (·) and Ek [·] denote probability and expectation
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given outcome model k ∈ {1, 2}, respectively. Then, the worst case regret of
A is

RA∗T (G1) ≥ N
(k)
3−k(`3−k − `k)>pk = N

(k)
3−kε =

{
N

(1)
2 ε if k = 1,

(T −N (2)
2 )ε if k = 2,

due to `1 = 0, `2 = `, `>p1 = −`>p2 = ε, and N
(2)
1 + N

(2)
2 = T . Observe that

Ap1 = Ap2 means that for both actions, the feedback distribution is the same
under outcome distributions p1 and p2, implying (by induction) that for each

t ≥ 1, P1 (It = 2) = P2 (It = 2). This leads to N
(1)
2 = N

(2)
2

4
=N2 = N2(A, T ).

Thus, we have

RT (G1) = inf
A

RAT (G1) ≥ inf
A

max
k∈2

N
(k)
3−kε = ε inf

A
max(N2, T −N2) ≥ εT/2,

that is, G1 is hopeless.

A.3 Lemmas from Chapter 6

Lemma 14. For any n ≥ 1 and i, j such that Ci, Cj ∈ C, En−1[δ̂i,j(n)] = δi,j.

Proof. Consider first the case when actions i and j are neighbors. In this case,

δ̂i,j(n) =
∑
k∈N+

i,j

Yk(n)>vi,j,k =
∑
k∈N+

i,j

(Skuk(n))>vi,j,k =
∑
k∈N+

i,j

uk(n)>S>k vi,j,k ,

and thus

En−1

[
δ̂i,j(n)

]
=
∑
k∈N+

i,j

En−1

[
uk(n)>

]
S>k vi,j,k = p∗>

∑
k∈N+

i,j

S>k vi,j,k

= p∗>(`i − `j) = δi,j .

For non-adjacent i and j, we have a telescoping sum:

En−1

[
δ̂i,j(n)

]
=

r∑
k=1

En−1[δ̂ik−1,ik(n)]

= p∗>
(
`i0 − `i1 + `i1 − `i2 + · · ·+ `ir−1 − `ir

)
= δi,j ,

where i = i0, i1, . . . , ir = j is the path the algorithm uses in round n, known
at the end of round n− 1.

Lemma 15. The conditional variance of δ̂i,j(n), Varn−1(δ̂i,j(n)), is upper

bounded by V = 2
∑
{i,j∈L}

∑
k∈N+

i,j
‖vi,j,k‖2

2. The range of the estimates δ̂i,j(n)

is upper bounded by R =
∑
{i,j}∈L

∑
k∈N+

i,j
‖vi,j,k‖1.
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Proof. For neighboring cells i, j, we write

δ̂i,j(n) =
∑
k∈N+

i,j

Yk(n)>vi,j,k and thus

Varn−1(δ̂i,j(n))

= Varn−1

 ∑
k∈N+

i,j

Yk(n)>vi,j,k


=
∑
k∈N+

i,j

En−1

[
v>i,j,k(Yk(n)− En−1[Yk(n)])(Yk(n)− En−1[Yk(n)])>vi,j,k

]
≤
∑
k∈N+

i,j

‖vi,j,k‖2
2 En−1

[
‖Yk(n)− En−1[Yk(n)]‖2

2

]
≤
∑
k∈N+

i,j

‖vi,j,k‖2
2 , (A.9)

where in (A.9) we used that Yk(n) is a unit vector and En−1[Yk(n)] is a prob-
ability vector.

For i, j non-neighboring cells, let i = i0, i1, . . . , ir = j the path used for the
estimate in round n. Then δ̂i,j(n) can be written as

δ̂i,j(n) =
r∑
s=1

δ̂is−1,is(n) =
r∑
s=1

∑
k∈N+

is−1,is

Yk(n)>vis−1,is,k .

It is not hard to see that an action can only be in at most two neighborhood
action sets in the path and so the double sum can be rearranged as∑

k∈
⋃
N+
is−1,is

Yk(n)>(visk−1,isk ,k
+ visk isk+1,k) ,

and thus

Varn−1

(
δ̂i,j(n)

)
≤ 2

r∑
s=1

∑
k∈N+

s−1,s

‖vis−1,is,k‖2
2 ≤ V .

The bound of the range trivially follows from the definition of the estimates.

Lemma 16. Let action i be a degenerate action. Let N+
i = {j : Cj ∈ C, Ci ⊂

Cj}. The following two statements hold:

1. If any of the actions in N+
i is eliminated, then action i is eliminated as

well.
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2. There exists an action ki ∈ N+
i such that δki,j∗ ≥ δi,j∗.

Proof. 1. In an elimination set, we eliminate every action whose cell is
contained in a closed half space. Let us assume that j ∈ N+

i is being
eliminated. According to the definition of N+

i , Ci ⊂ Cj and thus Ci is
also contained in the half space.

2. First let us assume that p∗ is not in the affine subspace spanned by Ci.
Let p be an arbitrary point in the relative interior of Ci. We define the
point p′ = p + ε(p − p∗). For a small enough ε > 0, p′ ∈ Ck ∈ N+

i , and
at the same time, p′ 6∈ Ci. Thus we have

`>k (p+ ε (p− p∗)) ≤ `>i (p+ ε (p− p∗))
(1 + ε)`>k p− ε`>k p∗ ≤ (1 + ε)`>i p− ε`>i p∗

−ε`>k p∗ ≤ −ε`>i p∗

`>k p
∗ ≥ `>i p

∗

δk,j∗ ≥ δi,j∗ ,

where we used that `>k p = `>i p.

For the case when p∗ lies in the affine subspace spanned by Ci, We take
a hyperplane that contains the affine subspace. Then we take an infinite
sequence (pn)n such that every element of the sequence is in the same
side of the hyperplane, pn 6= p∗ and the sequence converges to p∗. Then
the statement is true for every element pn and, since the value δr,s is
continuous in p, the limit has the desired property as well.

Lemma 17. There exists a (problem dependent) constant c such that for any
small enough ε, the following inequalities hold:

N2
1 ≥ N1

1 − cTε
√
N1

4 , N2
3 ≥ N1

3 − cTε
√
N1

4 ,

N1
2 ≥ N2

2 − cTε
√
N2

4 , N1
3 ≥ N2

3 − cTε
√
N2

4 .

Proof. For any 1 ≤ t ≤ T , let f t = (f1, . . . , ft) ∈ Σt be a feedback sequence
up to time step t. For i = 1, 2, let p∗i be the probability mass function of
feedback sequences of length T − 1 under opponent strategy pi and algorithm
A. We start by upper bounding the difference between values under the two
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opponent strategies. For i 6= j ∈ {1, 2} and k ∈ {1, 2, 3},

N i
k −N j

k =
∑
fT−1

(
p∗i (f

T−1)− p∗j(fT−1)
) T−1∑
t=0

I{A(f t)∈Ak}

≤
∑
fT−1:

p∗i (fT−1)−p∗j (fT−1)≥0

(
p∗i (f

T−1)− p∗j(fT−1)
) T−1∑
t=0

I{A(f t)∈Ak}

≤ T
∑
fT−1:

p∗i (fT−1)−p∗j (fT−1)≥0

p∗i (f
T−1)− p∗j(fT−1) =

T

2
‖p∗1 − p∗2‖1

≤ T
√

KL(p∗1||p∗2)/2 , (A.10)

where KL(·||·) denotes the Kullback-Leibler divergence and ‖ · ‖1 is the L1-
norm. The last inequality follows from Pinsker’s inequality [Cover and Thomas,
2006]. To upper bound KL(p∗1||p∗2) we use the chain rule for KL-divergence. By
overloading p∗i so that p∗i (f

t−1) denotes the probability of feedback sequence
f t−1 under opponent strategy pi and algorithm A, and p∗i (ft|f t−1) denotes
the conditional probability of feedback ft ∈ Σ given that the past feedback
sequence was f t−1, again under pi and A. With this notation we have

KL(p∗1||p∗2) =
T−1∑
t=1

∑
f t−1

p∗1(f t−1)
∑
ft

p∗1(ft|f t−1) log
p∗1(ft|f t−1)

p∗2(ft|f t−1)

=
T−1∑
t=1

∑
f t−1

p∗1(f t−1)
4∑
i=1

I{A(f t−1)∈Ai}
∑
ft

p∗1(ft|f t−1) log
p∗1(ft|f t−1)

p∗2(ft|f t−1)

(A.11)

Let a>ft be the row of S that corresponds to the feedback symbol ft.
4 Assume

k = A(f t−1). If the feedback set of action k does not contain ft then trivially
p∗i (ft|f t−1) = 0 for i = 1, 2. Otherwise p∗i (ft|f t−1) = a>ftpi. Since p1− p2 = 2εv

and v ∈ KerS, we have a>ftv = 0 and thus, if the choice of the algorithm
is in either A1, A2 or A3, then p∗1(ft|f t−1) = p∗2(ft|f t−1). It follows that the
inequality chain can be continued from (A.11) by writing

KL(p∗1||p∗2) ≤
T−1∑
t=1

∑
f t−1

p∗1(f t−1)I{A(f t−1)∈A4}
∑
ft

p∗1(ft|f t−1) log
p∗1(ft|f t−1)

p∗2(ft|f t−1)

≤ c1ε
2

T−1∑
t=1

∑
f t−1

p∗1(f t−1)I{A(f t−1)∈A4} (A.12)

≤ c1ε
2N1

4 .

4Recall that we assumed that different actions have difference feedback symbols, and
thus a row of S corresponding to a symbol is unique.
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In (A.12) we used Lemma 6 from Section 4.5 to upper bound the KL-divergence
of p1 and p2. Flipping p∗1 and p∗2 in (A.10) we get the same result with N2

4 .
Reading together with the bound in (A.10) we get all the desired inequalities.

The following lemma concerns the problem of producing an estimate of an
unknown mean of some stochastic process with a given relative error bound
and with high probability in a sample-efficient manner. The procedure is a
simple variation of the one proposed by Mnih et al. [2008]. The main differ-
ences are that here we deal with martingale difference sequences shifted by
an unknown constant, which becomes the common mean, whereas Mnih et al.
[2008] considered an i.i.d. sequence. On the other hand, we consider the case
when we have a known upper bound on the predictable variance of the process,
whereas one of the main contributions of Mnih et al. [2008] was the lifting of
this assumption. The proof of the lemma is omitted, as it follows the same
lines as the proof of results of Mnih et al. [2008] (the details of these proofs
are found in the thesis of [Mnih, 2008]), the only difference being, that here
we would need to use Bernstein’s inequality for martingales, in place of the
empirical Bernstein inequality, which was used by Mnih et al. [2008].

Lemma 28. Let (Ft) be a filtration on some probability space, and let (Xt) be
an Ft-adapted sequence of random variables. Assume that (Xt) is such that,
almost surely, the range of each random variable Xt is bounded by R > 0,
EXt|Ft−1 [=]µ, and Var[Xt|Ft−1] ≤ σ2 a.s., where R, µ 6= 0 and σ2 are non-
random constants. Let p > 1, ε > 0, 0 < δ < 1 and let

Ln = (1 + ε) max
1≤t≤n

{
|X t| − ct

}
, and Un = (1− ε) min

1≤t≤n

{
|X t|+ ct

}
,

where ct = c(σ,R, t, δ), and c(·) is defined in (6.1). Define the estimate µ̂n of
µ as follows:

µ̂n = sgn(Xn)
(1 + ε)Ln + (1− ε)Un

2
.

Denote the stopping time τ = min{n : Ln ≥ Un}. Then, with probability at
least 1− δ,

|µ̂τ − µ| ≤ ε |µ| and τ ≤ C ·max

(
σ2

ε2µ2
,
R

ε|µ|

)(
log

1

δ
+ log

R

ε|µ|

)
,

where C > 0 is a universal constant.

A.4 Lemmas from Chapter 7

Lemma 18. For any {i, j} ∈ N , t ≥ 1,

P
(
|δ̃i,j(t)− δi,j| ≥ ci,j(t)

)
≤ 2|N+

i,j|t1−2α .
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Proof.

P
(
|δ̃i,j(t)− δi,j| ≥ ci,j(t)

)
≤
∑
k∈N+

i,j

P

(
|v>i,j,k

νk(t− 1)

nk(t− 1)
− v>i,j,kSkp∗| ≥ ‖vi,j,k‖∞

√
α log t

nk(t− 1)

)
(A.13)

=
∑
k∈N+

i,j

t−1∑
s=1

I{nk(t−1)=s}P

(
|v>i,j,k

νk(t− 1)

s
− v>i,j,kSkp∗| ≥ ‖vi,j,k‖∞

√
α log t

s

)
(A.14)

≤
∑
k∈N+

i,j

2t1−2α (A.15)

= 2|N+
i,j|t1−2α ,

where in (A.13) we used the triangle inequality and the union bound and in
(A.15) we used Hoeffding’s inequality.

Lemma 19. Take an action i and a plausible pair (P ′,N ′) ∈ Ψ such that
i ∈ P ′. Then there exists a path π that starts at i and ends at i∗ that lies in
N ′.

Proof. If (P ′,N ′) is a valid configuration, then there is a convex polytope
Π ⊆ ∆M such that p∗ ∈ Π, P ′ = {i : dim Ci ∩ Π = M − 1} and N ′ =
{{i, j} : dim Ci ∩ Cj ∩ Π = M − 2}.

Let p′ be an arbitrary point in Ci∩Π. We enumerate the actions whose cells
intersect with the line segment p′p∗, in the order as they appear on the line
segment. We show that this sequence of actions i0, . . . , ir is a feasible path.

• It trivially holds that i0 = i, and ir is optimal.

• It is also obvious that consecutive actions on the sequence are in N ′.

For an illustration we refer the reader to Figure A.2

Lemma 20. Take any action k. On the event Ec, from It = k it follows that

nk(t− 1) ≤ 4W 2
k

d2
k

δ2
k

α log t .

Proof. We define the “parent action” k′ of k as follows: If k is not degenerate
then k′ = k. If k is degenerate then we define k′ to be the Pareto-optimal action
such that δk′ ≥ δk and k is in the neighborhood action set of k′ and some other
Pareto-optimal action. It follows from Lemma 29, stated and proved after the
current lemma, that k′ is well-defined. We also know that k′ must be in P(t).
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C1 ∩ Π

C2 ∩ Π

C3 ∩ Π

C4 ∩ Π

C5 ∩ Π

C6 ∩ Π

Figure A.2: The dashed line defines the feasible path 1, 5, 4, 3.

Now, according to Lemma 19, there exists a path k′ = k0, k1, . . . , kr = i∗. We
write

δk ≤ δk′ =
r∑
s=1

δs−1,s

≤ 2
r∑
s=1

cis−1,is

= 2
r∑
s=1

∑
j∈N+

is−1,is

‖vis−1,is,j‖∞
√

α log t

nj(t− 1)

≤ 2
r∑
s=1

∑
j∈N+

is−1,is

Wk

√
α log t

nk(t− 1)

≤ 2dkWk

√
α log t

nk(t− 1)
.

Rearranging the last inequality yields the statement of the lemma.

Lemma 29. Let action i be a degenerate action in the neighborhood action
set N+

k,l of neighboring actions k and l. Then `i is a convex combination of `k
and `l.

Proof. For simplicity, we rename the degenerate action i to action 1, while the
other actions k, l will be called actions 2 and 3, respectively. Since action 1 is
a degenerate action between actions 2 an 3, we have that

(p ∈ ∆M and p⊥(`1 − `2))⇒ (p⊥(`1 − `3) and p⊥(`2 − `3))
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implying

(`1 − `2)⊥ ⊆ (`1 − `3)⊥ ∩ (`2 − `3)⊥ .

Using de Morgan’s law we get

〈`1 − `2〉 ⊇ 〈`1 − `3〉 ⊕ 〈`2 − `3〉 .

This implies that for any c1, c2 ∈ R there exists a c3 ∈ R such that

c3(`1 − `2) = c1(`1 − `3) + c2(`2 − `3)

`3 =
c1 − c3

c1 + c2

`1 +
c2 + c3

c1 + c2

`2 ,

suggesting that `3 is an affine combination of (or collinear with) `1 and `2.
We know that there exists p1 ∈ ∆ such that `>1 p1 < `>2 p1 and `>1 p1 < `>3 p1.

Also, there exists p2 ∈ ∆M such that `>2 p2 < `>1 p2 and `>2 p2 < `>3 p2. Using
these and linearity of the dot product we get that `3 must be the middle point
on the line, which means that `3 is indeed a convex combination of `1 and
`2.

Lemma 21. For any {i, j} ∈ N , t ≥ 1,

P
(
|δ̃i,j(t)− δi,j| ≥ ci,j(t)

)
≤ 2|Vi,j|t1−2α .

Proof. The prof of this lemma is identical to that of Lemma 18 with the
difference that we replace all appearance of the neighborhood action sets N+

i,j

with the corresponding observer sets Vi,j.

Lemma 22. Fix any t ≥ 1.

1. Take any action i. On the event Ect ∩ Dt,5 from i ∈ P(t) ∪ N+(t) it
follows that

δi ≤ 2di

√
α log t

f(t)
max
k∈N

Wk√
ηk
.

2. Take any action k. On the event Ect ∩ Dct , from It = k it follows that

nk(t− 1) ≤ min
j∈P(t)∪N+(t)

4W 2
k

d2
j

δ2
j

α log t .

5Here and in what follows all statements that start with “On event X” should be under-
stood to hold almost surely on the event. However, to minimize clutter we will not add the
qualifier “almost surely”.
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Proof. First we observe that for any neighboring action pair {i, j} ∈ N (t),
on Ect it holds that δi,j ≤ 2ci,j(t). Indeed, from {i, j} ∈ N (t) it follows that
δ̃i,j(t) ≤ ci,j(t). Now, on Ect , δi,j ≤ δ̃i,j(t) + ci,j(t). Putting together the two
inequalities we get δi,j ≤ 2ci,j(t).

Now, fix some action i that is not dominated. We define the “parent action”
i′ of i as follows: If i is not degenerate then i′ = i. If i is degenerate then
we define i′ to be the Pareto-optimal action such that δi′ ≥ δi and i is in the
neighborhood action set of i′ and some other Pareto-optimal action. It follows
from Lemma 29 that i′ is well-defined.

Consider case 1. Thus, It 6= k(t) = argmaxj∈P(t)∪V(t) W
2
j /nj(t− 1). There-

fore, k(t) 6∈ R(t), i.e., , nk(t)(t − 1) > ηk(t)f(t). Assume now that i ∈
P(t) ∪ N+(t). If i is degenerate then i′ as defined in the previous paragraph
is in P(t) (because the rejected regions in the algorithm are closed). In any
case, by Lemma 19, there is a path (i0, . . . , ir) in N (t) that connects i′ to i∗

(i∗ ∈ P(t) holds on Ect ). We have that

δi ≤ δi′ =
r∑
s=1

δis−1,is

≤ 2
r∑
s=1

cis−1,is

= 2
r∑
s=1

∑
j∈Vis−1,is

‖vis−1,is,j‖∞
√

α log t

nj(t− 1)

≤ 2
r∑
s=1

∑
j∈Vis−1,is

Wj

√
α log t

nj(t− 1)

≤ 2diWk(t)

√
α log t

nk(t)(t− 1)

≤ 2diWk(t)

√
α log t

ηk(t)f(t)
.

Upper boundingWk(t)/
√
ηk(t) by maxk∈N Wk/

√
ηk we obtain the desired bound.

Now, for case 2 take an action k, consider Ec∩Dct , and assume that It = k.
On Dc

t , It = k(t). Thus, from It = k it follows that Wk/
√
nk(t− 1) ≥

Wj/
√
nj(t− 1) holds for all j ∈ P(t). Let Jt = argminj∈P(t)∪N+(t)

d2j
δ2j

. Now,

similarly to the previous case, there exists a path (i0, . . . , ir) from the parent
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action J ′t ∈ P(t) of Jt to i∗ in N (t). Hence,

δJt ≤ δJ ′t =
r∑
s=1

δis−1,s

≤ 2
r∑
s=1

∑
j∈Vis−1,is

Wj

√
α log t

nj(t− 1)

≤ 2dJtWk

√
α log t

nk(t− 1)
,

implying

nk(t− 1) ≤ 4W 2
k

d2
Jt

δ2
Jt

α log t

= min
j∈P(t)∪N+(t)

4W 2
k

d2
j

δ2
j

α log t .

This concludes the proof of Lemma 22.

Lemma 23. Let G = (L,H) be a finite partial-monitoring game and p ∈ ∆M

an opponent strategy. There exists a ρ2 > 0 such that Aρ2 is a point-local game
in G.

Proof. For any (not necessarily neighboring) pair of actions {i, j}, the bound-
ary between them is defined by the set Bi,j = {p ∈ ∆M : (`i − `j)>p = 0}.
We generalize this notion by introducing the margin: for any ξ ≥ 0, let the
margin be the set Bξ

i,j = {p ∈ ∆M : |(`i − `j)
>p| ≤ ξ}. It follows from

finiteness of the action set that there exists a ξ∗ > 0 such that for any set K
of neighboring action pairs,⋂

{i,j}∈K

Bi,j 6= ∅ ⇐⇒
⋂

{i,j}∈K

Bξ∗

i,j 6= ∅ . (A.16)

Let ρ2 = ξ∗/2. Let A = Aρ2 . Then for every pair i, j in A, (`i − `j)
>p∗ =

δi,j ≤ δi + δj ≤ ρ2. That is, p∗ ∈ Bξ∗

i,j. It follows that p∗ ∈ ⋂i,j∈A×AB
ξ∗

i,j. This,
together with (A.16), implies that A is a point-local game.

A.5 Lemmas from Chapter 8

Lemma 24. Given any expert (s, w) and label y, the approximation error,
defined as min(s,w′)∈Dα |ˆ̀(w>(s� x), y)− ˆ̀(w′>(s� x), y)| is upper bounded by
L
√
d

α−1
, where L is the Lipschitz constant of ˆ̀.
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Proof. For any w1 and w2,

|ˆ̀(w>1 (s� x), y)− ˆ̀(w>2 (s� x), y)| ≤ ‖w1 − w2‖L .

It follows from the discretization that for any w there exists a point w′ in the
discretization such that ‖w − w′‖ ≤

√
d/(α − 1). This implies the statement

of the lemma.

Lemma 25. Let ek denote the kth basis vector of dimension d. Against op-
ponent strategy k, the instantaneous expected regret for any action such that
(s, s`) 6= (ek, 0) is at least dε

2
.

Proof. First, we calculate the expected loss of the action (w, s, sL) = (ek, ek, 0),
assuming opponent strategy k:

Ek[`t(ek, ek, 0)] = ck +
1

2
(1− ak − (d− 1)ε)︸ ︷︷ ︸

Pk(Z 6=k)

.

Next, we lower bound the expected loss of any other action. For action
(ej, ej, 0) with j 6= k we have

Ek[`t(ej, ej, 0)] = cj +
1

2
(1− aj + ε)︸ ︷︷ ︸

Pk(Z 6=j)

.

It is clear that requesting more than one feature and/or using different w values
will lead to greater expected loss. Thus the expected instantaneous regret of
any action other than (ek, ek, 0) can be lower bounded by the value

Ek[`t(ej, ej, 0)− `t(ek, ek, 0)] = cj − ck +
1

2
(1− aj + ε)− 1

2
(1− ak − (d− 1)ε)

= cj − ck −
1

2
(aj − ak) +

dε

2

=
dε

2
.

Lemma 26. There exists a constant C1 such that for any i, j ∈ {1, . . . , d},

Ei[Ni]− Ej[Ni] ≤ C1Tε
√
dEj[NL] .

Proof. For the values xt, ht, etc., we denote randomness by capitalization. We
denote a sequence of observations (h1, . . . , ht) as ht. Furthermore, let Ast(ht−1)
denote the “s-component” of the action taken by the algorithm at time step t.
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Similarly, ALt (ht−1) is the sL-component. We denote by pi(h
t) the probability

of an observation sequence under opponent strategy i. We start by writing

Ei[Ni]− Ej[Ni] =
T∑
t=1

Pi (St = ei)− Pj (St = ei)

=
∑
hT−1

(
pi(h

T−1)− pj(hT−1)
) T∑
t=1

I{Ast (ht−1)=ei}

≤
∑
hT−1

(
pi(h

T−1)− pj(hT−1)
)+

T∑
t=1

I{Ast (ht−1)=ei}

≤ T
∑
hT−1

(
pi(h

T−1)− pj(hT−1)
)+

=
T

2
‖pi(HT−1)− pj(HT−1)‖1

≤ T
√

KL (pj(HT−1)‖pi(HT−1)) /2 ,

where KL(·‖·) denotes the Kullback-Leibler divergence, and in the last line
we used Pinsker’s inequality [Cover and Thomas, 2006, Lemma 17.3.2]. Now
we upper bound KL (pj(H

t−1)‖pi(H t−1)) with the help of the chain-rule for
KL-divergence [Cover and Thomas, 2006, Theorem 2.5.3].

KL
(
pj(H

t−1)‖pi(H t−1)
)

=
T−1∑
t=1

∑
ht−1

pj(h
t−1)

∑
ht

pj(ht|ht−1) log
pj(ht|ht−1)

pi(ht|ht−1)

=
T−1∑
t=1

∑
ht−1

pj(h
t−1)I{ALt (ht−1)=1}

∑
ht

pj(ht|ht−1) log
pj(ht|ht−1)

pi(ht|ht−1)
.

In the last line we used that if the algorithm does not request the label at time
step t then pi(ht|ht−1) = pj(ht|ht−1). Observe that the last sum of the above
expression∑

ht

pj(ht|ht−1) log
pj(ht|ht−1)

pi(ht|ht−1)
= KL(pj(Ht|ht−1)‖pi(Ht|ht−1)) ,

and, by the data-processing inequality [Csiszár and Körner, 1981, Lemma
3.11],

KL(pj(Ht|ht−1)‖pi(Ht|ht−1)) ≤ KL(pj(Zt)‖pi(Zt)) ,
and thus

KL
(
pj(H

t−1)‖pi(H t−1)
)
≤ KL(pj(Zt)‖pi(Zt))

T−1∑
t=1

∑
ht−1

pj(h
t−1)I{ALt (ht−1)=1}

= KL(pj(Zt)‖pi(Zt))Ej[NL] .
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Finally, we upper bound KL(pj(Zt)‖pi(Zt)) by C2dε
2 with the help of Lemma 7

from Chapter 6.6 Putting everything together gives the statement of the
lemma.

6Note that by the statement of the lemma, the upper bound is looser by a factor of d.
Nonetheless, in the proof the upper bound contains the minimal component of a d long
probability vector, which can be upper bounded by 1/d, gaining back the extra d factor.
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