A model-based approach to nonlinear networked control systems

  • Author / Creator
    Liu, Xi
  • This thesis is concerned with the analysis of the control design to the nonlinear networked control systems (NCSs). Ignoring the network connection and cascading actuators, the plant and sensors together, a sampled-data system is obtained. The stabilization problem of nonlinear sampled-data systems is considered under the low measurement rate constraint. Dual-rate control schemes based on the emulation design and discrete-time design approaches respectively are proposed that utilize a numerical integration model to approximately predict the current state of the plant. It is shown that using the dual-rate control schemes, input-to-state stability property will be preserved for the closed loop sampled-data system in a practical sense. On the other hand, the networked realization of nonlinear control systems is studied and a model-based control scheme is addressed as a solution to reduce the network traffic and resultantly, to attain a higher performance. The NCSs are modeled as continuous-time systems and sampled-data systems, respectively. Under the proposed control scheme, a tradeoff between satisfactory control performance and reduction of network traffic can be achieved. It is shown that by using the estimated values, generated by the plant model, instead of true values of the plant, a significant saving in the required bandwidth is achieved and this makes possible stabilization of the plant even under slow network conditions.

  • Subjects / Keywords
  • Graduation date
  • Type of Item
  • Degree
    Doctor of Philosophy
  • DOI
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
  • Institution
    University of Alberta
  • Degree level
  • Department
    • Department of Mathematical and Statistical Sciences
  • Supervisor / co-supervisor and their department(s)
    • Lin, Yanping (Mathematical and Statistical Sciences)
    • Marquez, Horacio J. (Electrical and Computer Engineering)
  • Examining committee members and their departments
    • Antsaklis, Panos J. (Electrical Engineering, University of Notre Dame)
    • Fahimi, Farbod (Mechanical Engineering)
    • Van Roessel, Henry (Mathematical and Statistical Sciences)