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ABSTRACT

This thesis is concerned with the analysis of the control design to the

nonlinear networked control systems (NCSs).

Ignoring the network connection and cascading actuators, the plant and

sensors together, a sampled-data system is obtained. The stabilization

problem of nonlinear sampled-data systems is considered under the low

measurement rate constraint. Dual-rate control schemes based on the

emulation design and discrete-time design approaches respectively are

proposed that utilize a numerical integration model to approximately predict

the current state of the plant. It is shown that using the dual-rate control

schemes, input-to-state stability property will be preserved for the closed

loop sampled-data system in a practical sense.

On the other hand, the networked realization of nonlinear control systems

is studied and a model-based control scheme is addressed as a solution to

reduce the network traffic and resultantly, to attain a higher performance.

The NCSs are modeled as continuous-time systems and sampled-data

systems, respectively. Under the proposed control scheme, a tradeoff between

satisfactory control performance and reduction of network traffic can be

achieved. It is shown that by using the estimated values, generated by the

plant model, instead of true values of the plant, a significant saving in the

required bandwidth is achieved and this makes possible stabilization of the

plant even under slow network conditions.
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Chapter 1

Introduction

The prevalence of network-based control systems is a consequence of

the developments in the microelectronic and telecommunication areas.

Compared to traditional control systems, this network structure introduces

several advantages, such as lower cost, higher flexibility and easier

maintenance. Thanks to these advantages, networked control systems

have received more and more attention and have been applied widely to

spacecrafts, process and automotive industries. However, this type of

connection initiates new challenges: the insertion of a network into a

previously-designed system affects the system performance and can even

destabilize the system. This brings the need to redesign the system to

recover the stability of the closed loop. This chapter briefly introduces the

background of networked control systems, reviews existing literature and

presents an outline of the thesis.

1.1 Background

Traditional control systems composed of interconnected controllers, sensors

and actuators have been successfully implemented using a point-to-point

architecture. The typical configuration is depicted in Figure 1.1. In

this type of architecture, system components are connected directly by

dedicated wiring. A point-to-point architecture is somewhat stagnant from

a reconfigurability point of view since it is difficult to add, remove, or

reconfigure components. As an alternative, the network connection structure

offers great flexibility and decreases installation and maintenance costs due to

1



1. Introduction 2

Figure 1.1: The typical setup of a traditional control system

wire reduction. In many complicated control systems, such as manufacturing

plants, automobiles and aircrafts, communication networks are being adopted

to exchange information and control signals. When a control loop is closed via

a communication channel, the interconnection is referred to as a networked

control system (NCS) [16, 18, 27, 31, 71]. Figure 1.2 illustrates a standard

setup of an NCS, where the information is exchanged using a network among

the system components, resulting in a significant decrease of wirings.

The insertion of a network into the control system, however, makes the

analysis and design of an NCS complex. Unlike data network, which delivers

relatively big data packets with a sporadic nature, control network requires

relatively small packets in frequent and timely transmission. Several issues

in NCSs may be summarized as follows.

1. Network-induced delays

Due to the feature of time-criticalness, transmitting information over the

network induces delays that degrade the system performance or even cause

instability. The network-induced delays may be deterministic or random,

constant or time varying, depending on the protocol of the control network.

The network protocols fall into two general categories: random access and

scheduling [71].

Carrier sense multiple access (CSMA) is most often used in random access

networks. Popular networks using CSMA protocols include Controller Area

Network (CAN) and Ethernet. Before sending its information, each node on

the CSMA network verifies network to be idle. As soon as the network is
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Figure 1.2: The standard setup of an NCS

idle, it begins transmission immediately. However, if several nodes transmit

their information simultaneously, a collision occurs. The solution to resolve

the collision depends on the protocol used. For CAN bus, the node with

the highest priority wins the competition and transmits its information. For

Ethernet, each node waits a random time and retransmits its information.

Packets on these type of networks are affected by random delays.

Token-passing is often used in scheduling networks, where a node

with token is guaranteed to transmit its information freely, without any

congestion. Network protocols IEEE 802.4 and IEEE 802.5 have been

built on this concept and familiar scheduling networks include PROFIBUS,

Foundation Fieldbus, and so on. Packets on these type of networks wait for

the token to transmit the information. The induced delays can be constant

and bounded.

2. Packet loss

Another issue in NCSs is packet loss. While a data packet is transmitted

over the network, it might be lost because of the noise interference, collision

with the other packets or other uncontrolled random events. For example,

Ethernet employs a CSMA with collision detection protocol. When there is
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a collision, each node waits for the access to the network. If a node is unable

to transmit its information after 16 trials, the packets are dropped.

Usually, feedback systems can tolerate a certain amount of packet loss,

but it is useful to determine the packet transmission rate at which the closed

loop is stable.

3. Multiple-packet transmission

Due to packet size constraint of the network, large-size data may be

transmitted by multiple packets, so-called multiple-packet transmission.

Traditional sampled-data systems assume that the measurements of the

plant output and control inputs are delivered at the same time. However,

in NCSs with multiple-packet transmission, the controller may not be able

to receive all data packets at the time of the control calculation. Moreover,

because the data is split into several packets, they may be routed through

different paths. Therefore, the recipient may not receive the packets at the

order that they have been sent.

Different networks suit different types of transmissions. For instance,

Ethernet, created originally for data networks, can hold a maximum of 1500

bytes of data in a single packet. It is convenient and effective to employ single-

packet transmission. On the other hand, CAN bus with the character of

frequent transmission of small-size packet, suits multiple-packet transmission.

1.2 Literature Review

Due to its advantages, NCS receives more and more attention in recent years.

This section briefly reviews the previous work on networked control systems.

1. Discrete-time approach

In [16], Halevi and Ray (1988) consider a continuous-time plant and

discrete-time controller and analyze the integrated communication and

control systems via a discrete-time approach. The NCS is reduced to a finite

dimensional discrete-time model by augmenting the system model to include

past values of plant input and output as additional states and the stability

is analyzed for the special case of periodic delays.

This approach has been extended recently by [31] in 2003, where a discrete-

time model of NCSs with multiple inputs and multiple outputs (MIMO)
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and multiple distributed communication delays is derived. In addition, the

asynchronous sampling mechanisms of distributed sensors are characterized

to obtain the actual time delays between sensors and the controller. Based

on the proposed NCS model, the stability and performance of a closed-loop

system are analyzed, and a linear quadratic regulator (LQR) optimal control

is formulated.

Nilsson (1998) models an NCS as a stochastic discrete-time system in

[56]. Assume that the discrete process with the sampling period h gives the

following form

x(k + 1) = Φx(k) + Γ0u(k) + Γ1u(k − 1) + v(k),

y(k) = Cx(k) + w(k),
(1.1)

where
Φ = eAh,

Γ0 =
∫ h−τsc

k −τca
k

0
eAtdtB,

Γ1 =
∫ h

h−τsc
k −τca

k
eAtdtB,

x and u are the process state and the control input, τ sc
k and τ ca

k denote the

sensor-to-controller and the controller-to-actuator time delays at sampling

instant kh respectively, and v(k) and w(k) are uncorrelated white noise with

zero mean and covariance matrices R1 and R2. An LQG-optimal controller

is found for this setup, However, assuming the knowledge of the probability

distributions of τ sc
k and τ ca

k makes the result restrictive.

In [18], the network is modeled as an ideal sample and hold device.

Stability analysis is performed after lifting the system into a linear time-

invariant (LTI) setting and sufficient conditions were obtained on the

maximum sampling period.

2. Jump linear systems

In [27], it is assumed that time delays behave according to Markov chains

by Krtolica (1994). The plant and the controller are represented by

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k)

(1.2)

and
p(k + 1) = Fp(k) + Ew(k),

v(k) = Hp(k) + Ew(k),
(1.3)
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where x, y are the state and output of the plant, and p, v are the state and

output of the controller, and w, u are the most recently reported version of

y and v. Matrices A,B,C,E, F and H are all constant with compatible

dimensions. Assume that

u(k) =
∑D1

i=0 αi(k)v(k − i),

w(k) =
∑D2

i=0 βi(k)y(k − i),
(1.4)

where
∑D1

i=0 αi(k) = 1 and
∑D2

i=0 βi(k) = 1 with αi(k) and βi(k) ∈ {0, 1}.
D1 and D2 are two given positive integers which represent upper bounds

of sensor-to-controller and controller-to-actuator time delays respectively.

Regarding α(k) and β(k) as Markovian chains with given probability

transition matrices, the NCS is therefore framed to be a discrete-time

jump linear system. Necessary and sufficient conditions for mean-square

exponential stability are thus derived via the stochastic Lyapunov method.

Similar approach is adopted by Zhang et al. (2005) in [69], where the NCS

is modeled as a jump linear system. Using linear matrix inequality (LMI)

techniques, a sufficient condition is derived to guarantee that the closed-loop

system is stochastically stable.

3. Scheduling

Shin (1991) proposes a dynamic scheduling method which guarantees to

minimize the probability of the messages missing their deadlines in [60]. In

this method, a bus access mechanism using a poll number is employed. Each

node computes a poll number based on the deadlines and the user-defined

priorities. The poll number is designed such that the task with the earliest

message deadline will have the largest poll number. The node with the largest

poll number will access the bus to transmit its information. The simulations

in [60] show that poll number method achieves a better performance, in term

of meeting the deadlines, compared to that of the token ring. However,

it is not flexible to change the message priorities, since the priorities are

fixed. Moreover, adding the poll number to the data packet overhead makes

this method impossible to use on commercial and comparably less expensive

protocols, such as CAN network.

An analytic analysis and design approach is suggested by Walsh (2002) in

[66], where the the network effect is modeled as a perturbation on the original

system. Walsh et al. consider a continuous-time plant and a continuous
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controller. The control network is only inserted between the sensor and the

controller. They introduce the notion of maximum allowable transfer interval

(MATI), denoted by τ , which assumes that successive sensor messages are

separated by at most τ seconds. Their goal is to find the value of τ for

which the stability of the NCS is guaranteed to be preserved. Walsh et al.

analyze the impact of two different scheduling algorithms, token-ring static

scheduling and try-once-discard (TOD) on the maximum allowable transfer

interval. TOD is a dynamic scheduling protocol where the node with the

largest difference between its current value and its last transmitted value

accesses the network. After one node accessed the network bus, other nodes

discard their current values and are replaced by new data. For each of these

scheduling, sufficient conditions on the upper bound of the MATI to preserve

stability of the NCS are obtained. Although the upper bound is calculated

analytically, the resulting answer is conservative.

The idea in [66] is further generalized by Nesic and Teel (2004) to derive a

set of Lyapunov UGES (Uniformly Globally Exponentially Stable) protocols

in the Lp framework [51].

Branicky et al. (2002) apply the rate monotonic scheduling algorithm

to schedule a set of NCSs in [5]. The optimal scheduling problem is also

formulated under rate-monotonic-schedulability constraints.

4. Continuous-time model

Continuous-time NCS models are considered by several researchers.

Göktas et al. (1997) use a modified Padé approximation and consider the

delays as an uncertainty in [15]. They use robust control theory, µ-synthesis,

to handle worst-case time delays. The tradeoffs between the worst case delay

bounds and robust performance parameters are searched through real-time

experiments over different communication protocols and media.

Montestruque et al. (2003) address an explicit model of the linear plant

to reduce the network traffic in [40]. Sufficient and necessary conditions for

stability are derived in terms of the constant update time and the parameters

of the plant and those of its model. Furthermore, stochastic stability results

with independent identically distributed transmission times are obtained in

[41].

Delay-differential equations, on the other hand, are used to characterize
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NCSs with delays in the state, input or both. Based on standard

algorithms from functional analysis, solutions of linear delay-differential

equations can be constructed, and their stability can be analyzed using

Lyapunov second methods such as Lyapunov-Krasovskii and/or Lyapunov-

Razumikhin stability theorems [29]. In this spirit, new results on stability

and H∞ performance are proposed in [14] for networked control systems

with simultaneous consideration of time delays, data packet dropouts

and measurement quantization, by exploiting a new Lyapunov-Krasovskii

functional.

Gao et al. (2008) further study the problem of H∞ output tracking for

network-based control systems [13]. Suppose the physical plant is given by

the following linear system

ẋ(t) = Ax(t) + Bu(t) + Ew(t),

y(t) = Cx(t) + Du(t),
(1.5)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rp is the control input,

y(t) ∈ Rq is the output, and w(t) ∈ Rl is the disturbance input that

satisfies w = {w(t)} ∈ L2[0,∞). A,B,C,D and E are system matrices

with appropriate dimensions. Suppose the reference signal yr(t) is generated

by
yr(t) = Hxr(t),

ẋr(t) = Gxr(t) + r(t),
(1.6)

where yr(t) has the same dimension as y(t); xr(t) and r(t) ∈ Rr are,

respectively, the reference state and the energy bounded reference input; and

G and H are appropriately dimensioned constant matrices with G Hurwitz.

Suppose a state feedback controller takes the following form

u(t) = K1x(tk − ηk) + K2xr(tk − ηk), tk ≤ t < tk+1, (1.7)

where K1 and K2 are the state-feedback control gains, tk is updating instant

of the zero order hold (ZOH), and ηk is the signal transmission delays at the

instant tk. A LMI-based procedure is proposed for designing state-feedback

controllers, which guarantee that the output of the closed-loop networked

control system tracks the output of a given reference model well in the

H∞ sense. Moreover, the controller design method is further extended to
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more general cases, where the system matrices of the physical plant contain

parameter uncertainties, represented in either polytopic or norm-bounded

frameworks.

1.3 Thesis Outline

Most existing literature considers the stabilization of linear NCSs whereas

nonlinear NCSs have received little attention. This thesis is concerned with

the analysis of the control design to the nonlinear networked control context.

This study is important for application since control systems of interest are

often nonlinear. Compared to linear systems where the exact solution can be

found, one important intrinsic difficulty for nonlinear NCSs is: the explicit

solution of a nonlinear differential equation is often non-existent in analytical

form.

There are two main topics in this thesis. 1) Ignoring the network

connection (communication media and other traffic) in Figure 1.2 and

cascading actuators, the plant and sensors together, we obtain a sampled-

data system. In practice, hardware restrictions on input and measurement

sampling rate can be essentially different. The measurement sampling rate

is often made slower than that of the input. In such cases, the single

rate results may lead to unstable closed-up sampled data system and it

makes sense to configure the control system so that several sample rates co-

exist to achieve better performance. We consider the important practical

case where hardware restrictions are imposed on the “measurement-A/D

conversion” process. Specifically, the stabilization problem of sampled-data

nonlinear systems is considered under the low measurement rate constraint.

2) Among several existing methods to ameliorate the NCS performance, the

most effective way is to reduce network traffic. The networked realization of

nonlinear control systems is studied and an estimation method is presented

as a solution to decrease the network traffic and resultantly, to attain a higher

performance. It is worth noting that the present study deals with random

time-varying updating time. Also, the networked control system is considered

in a nonlinear setting. The nonlinear control problem is difficult because the

explicit analytic solution of continuous time processes are typically impossible
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to compute. The model formulated here is essentially different from linear

NCSs and is more general. To the best of the authors’ knowledge, the

stabilization problem of model-based nonlinear networked control systems

with random time-varying updating time has not been investigated and

still remains challenging, which motivates the present study. A chapter-

by-chapter review is as follows.

In Chapter 2 the stabilization problem of sampled-data nonlinear systems

is considered under the low measurement rate constraint. A dual-rate

control scheme based on the emulation design is proposed that utilizes a

numerical integration scheme to approximately predict the current state of

the plant. Chapter 2 shows that if one designs a continuous-time controller

for a continuous-time plant so that the closed-loop continuous-time system is

input-to-state stable and then discretize the controller and implement it using

sample and zero order hold devices, then input-to-state stability property will

be preserved for the dual-rate system in a practical sense.

Chapter 3, alternatively, considers the problem addressed in Chapter 2

via the discrete-time design approach. Given an approximate discrete-time

model of a sampled nonlinear plant and given a family of controllers that

stabilizes the plant model in input-to-state sense, Chapter 3 shows that using

the dual-rate control scheme based on discrete-time design method, the closed

loop sampled data system is input-to-state stable in the semiglobal practical

sense.

In Chapter 4, the networked realization of a nonlinear control system

is studied and a model-based control scheme is addressed to estimate the

missing states due to the network access limitation. By using the estimated

values instead of true values of the plant, a significant saving in the required

network bandwidth is achieved and this makes possible stabilization of the

plant even under slow network conditions.

In Chapter 5, the problem of the analysis and design for NCSs with event-

driven digital controller and event-driven holder is considered. The physical

plant and the controller are in continuous time and discrete time, respectively,

and the NCS is modeled as a sampled-data system with time delays. For

such a sampled-data NCS, an estimator to compensate the network-induced

delays and reconstruct approximately the undelayed plant state is proposed
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and the stability result via linearization approach is obtained. A tradeoff

between satisfactory control performance and reduction of network traffic

can be achieved.



Chapter 2

Input-to-state Stability under
Sampling and Emulation

In this chapter the stabilization problem of sampled-data nonlinear systems

is considered under the low measurement rate constraint. A dual-rate

control scheme based on the emulation design is proposed that utilizes a

numerical integration scheme to approximately predict the current state of

the plant. The chapter shows that if one designs a continuous-time controller

for a continuous-time plant so that the closed-loop continuous-time system

is input-to-state stable and then discretizes the controller and implements

it using sample and zero order hold devices, then input-to-state stability

property will be preserved for the sampled-data dual-rate closed loop system

in a practical sense.

The prevalence of digitally implemented controllers and the fact that most

systems of interest in control systems are often nonlinear motivate the area of

nonlinear sampled-data control systems. Significant progress has been made

in this area in recent years, for instance [1, 4, 6, 7, 11, 28, 30, 47, 49, 50, 52–

54, 59, 72, 73]. In particular, the sampling results within an input/output

setting can be found in [4, 6, 7, 30] and the sampled-data systems with state

space framework are considered in [1, 7, 28, 47, 49, 50, 53, 54, 72, 73].

This chapter concentrates on the state space framework. The outline is

given as follows. In section 2.1, some definitions, relevant notations and

preliminary design approaches for digital controllers used in the sampled-data

control literature are introduced. The modeling and problem formulation

are presented in section 2.2. In section 2.3 the main results of stability and

12
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performance recovery are stated and proved. The results are illustrated by

simulations in section 2.4. Finally, the chapter is closed with some concluding

remarks.

2.1 Preliminaries

Before proceeding, some notations and terminology as well as some useful

properties are introduced.

Recall the basic terminology from stability theory. Denote R≥0 := [0,∞).

A continuous function α : R≥0 → R≥0 is said to belong to class K if α(0) = 0

and it is strictly increasing. It is said to belong to class K∞ if it is class K
and is unbounded. Also, a continuous function β : R≥0 ×R≥0 → R≥0 is said

to belong to class KL if for each fixed t ≥ 0, β(·, t) belongs to K and for each

fixed s ≥ 0, β(s, t) decreases to zero as t → ∞. Denote Z+ = {0, 1, 2 . . .}
and N as the set of natural numbers. Everywhere, | · | denotes the usual

Euclidean norm and B(r) := {x| |x| ≤ r}.

2.1.1 Input-to-State Stability

In practice, control systems are very often affected by noise, expressed for

instance as perturbations on controls and errors on observations. Thus, it

is desirable for a system not only to be stable, but also to display the so-

called input-to-state stability. Intuitively, this means that the behavior of

the system should remain bounded when its inputs are bounded, and should

tend to equilibrium point when inputs tend to zero. The notion of input-to-

state stability (ISS) for nonlinear control systems was proposed in [61] and

has been used in stability analysis and control synthesis as illustrated by

its numerous applications (see, [22–25, 38, 48, 61–63] and reference therein).

ISS provides a natural framework to deal with the perturbation systems.

Basically, ISS gives a quantitative bound of the state trajectories in terms of

the magnitude of the control input and their initial conditions.

Consider the nonlinear system

ẋ = f(x, u) (2.1)

where f : D × Du is locally Lipschitz in x and u, D and Du are defined
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respectively by D = {x ∈ Rn : |x| < a} and Du = {u ∈ Rm : |u| < b} for

some positive numbers a and b. These assumptions guarantee the existence

and uniqueness of the solutions of system (2.1). Assume that the unforced

system

ẋ = f(x, 0) (2.2)

has an equilibrium point at the origin x = 0.

Definition 2.1. The system (2.1) is said to be locally input-to-state stable if

there exist β ∈ KL and γ ∈ K such that for any x(t0) ∈ D and any u ∈ Du,

the solution x(t) starting at t0 satisfies

|x(t)| ≤ β(|x(t0)|, t− t0) + γ(‖u‖∞), ∀t ≥ t0 ≥ 0. (2.3)

It is said to be (globally) input-to-state stable if D = Rn, Du = Rm and

inequality (2.3) is satisfied for any initial state and any bounded input u.

Definition 2.1 implies for a bounded input u(t), the state x(t) will be

bounded. Furthermore, as t increases, β(|x(t0)|, t − t0) → 0 as t → ∞, and

the state x(t) will be ultimately bounded. Additionally, consider the unforced

system (2.2). Since, with u(t) ≡ 0, (2.3) reduces to

|x(t)| ≤ β(|x(t0)|, t− t0),

local input-to-state stability implies that the origin of the unforced system

(2.2) is uniformly asymptotically stable.

The following property, introduced in [38], gives a characterization for

input-to-state stability by using Lyapunov-like functions.

Proposition 2.1. The system (2.1) is locally input-to-state stable if and only

if there exist a continuously differentiable function V : D → R and class K
functions α1, α2, α3, and γ such that for all x ∈ D, u ∈ Du the following holds

α1(|x|) ≤ V (x) ≤ α2(|x|) (2.4)

∂V

∂x
f(x, u) ≤ −α3(|x|) + γ(‖u‖∞). (2.5)

Moreover, if D = Rn, Du = Rm and α1, α2, α3, γ ∈ K∞, then the system (2.1)

is input-to-state stable.
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2.1.2 Emulation

Due to the complexity of the problem, results on the digital controller

design for sampled-data nonlinear systems are rare. Unlike linear systems,

ẋ(t) = Ax+Bu, where the exact discrete-time model of the plant can be given

by x(k + 1) = eAT x(k) +
∫ T

0
eAsdsBu(k), one important intrinsic difficulty

for nonlinear sampled-data control systems is: the exact discrete model of

the plant cannot be found. The absence of a good model of a sampled-

data nonlinear plant for a digital controller design has leaded to several

methods that use different type of approximate models. In the sampled-

data control literature, two such methods attracted lots of attention, namely

(see [7]): continuous-time design (CTD method) and discrete-time design

(DTD method). The first approach involves digital implementation of a

continuous-time stabilizing controller and the second is to design a digital

controller based on a discrete-time equivalent of the plant.

CTD method is often referred to as the controller emulation design. It

is a well-established method to design digital controllers for continuous-time

plants. The design procedure is depicted in Table 2.1. In this method, one

first designs a continuous-time controller based on the continuous-time plant.

At this step the sampling is completely ignored. Then, at the second step,

the obtained continuous-time controller is discretized and implemented using

a sample and hold device.

continuous− time plant model
⇓

continuous− time controller
⇓

discretize controller
⇓

implement the controller

Table 2.1: The emulation Method

In the case of the emulation method, controller design is the topic of

the area of continuous-time nonlinear control. Many results for nonlinear

sampled-data systems use this method because traditional continuous-time

controller design can be used directly for the design of digital controllers. See
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[1, 7, 28, 49, 59, 72, 73].

2.1.3 Multi-rate Sampling

The sampling rate is a critical design parameter in the design of digital

controllers. Usually, as the sampling rate is faster, the performance

of a digital control system improves; however, computer costs also

increase because less time is available to process the controller equations.

Additionally, faster sampling rates require faster A/D conversion speed which

may also increase system costs. Aside from costs, the selection of sampling

rates depends on many factors, such as hardware restriction.

In single-rate sampled-data systems, the analog-discrete (A/D) and

discrete-analog (D/A) conversions are made at the same rate. However,

hardware restrictions on input and measurement sampling rate can be

essentially different. For example, the D/A converters are generally faster

than the A/D converters, so the measurement sampling rate is often made

slower than that of the input. The situations where the systems have

several samplers operating at different rates is called multi-rate sampling

(see, for instance, [3]). Such cases may be necessary for systems with special

data transmission links or special sensors and actuators and are useful for

improving the performance of the system. Use of Multi-rate sampling is also

natural in multiprocessor systems.

2.1.4 One-step consistency

Consider the nonlinear continuous-time control system (2.1). Let F e
T (x, u)

and F a
T (x, u) denote the exact discrete-time and approximate discrete-time

model of the system with the sampling period T . Basically, one-step

consistency guarantees that the error of solutions between F e
T (x, u) and

F a
T (x, u) starting from the same initial condition is small over one step,

relative to the size of the step.

Definition 2.2. F a
T is said to be one-step consistent with F e

T if for any

strictly positive real numbers (∆1, ∆2), there exists a K-class function ρ(·)
and T ∗ > 0 such that |F e

T (x, u)−F a
T (x, u)| ≤ Tρ(T ) for each fixed T ∈ (0, T ∗]

and x ∈ B(∆1), u ∈ B(∆2).
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A sufficient condition for one-step consistency is the following ([53]).

Lemma 2.2. F a
T is one-step consistency with F e

T if

• F a
T is one-step consistent with FEuler

T where FEuler
T (x, u) := x+Tf(x, u),

• for each compact set χ ⊂ Rn there exist ρ ∈ K∞,M > 0 and T ∗ > 0

such that for all T ∈ (0, T ∗] and all x, y ∈ χ, we have |f(y, u(x))| ≤ M

and |f(y, u(x))− f(x, u(x))| ≤ ρ(|y − x|).

Remark 2.1. Consistency property specifies how the model should be

discretized for the emulation procedure to yield desired results. The checkable

conditions for one-step consistency property is presented in Lemma 2.2.

Notice that if the exact discrete-time model of the plant can be obtained, then

it is not necessary to use an approximate discrete-time model and consistency

become superfluous. It holds automatically. One such case is the emulation

design for linear systems in [12].

2.2 Modeling and Problem Formulation

In this section the problem of sampled-data stabilization of nonlinear systems

with disturbances under the “low measurement rate” constraint is considered

and the design of dual-rate controllers based on emulation as a solution to

this problem is addressed.

2.2.1 Motivation

As mentioned in [49], the main question in the emulation design is whether

the desired properties of the continuous-time closed loop system that the

designed controller yielded will be preserved and if so, in what sense for

the closed-loop sampled-data system. This question has been addressed and

answered for the emulation method for single-rate nonlinear systems in [28],

where the authors showed that if a continuous-time controller stabilizes the

approximate discrete-time plant model in input-to-state sense, then sampling

the controller fast enough, the resulting sampled-data closed-loop system has

the same property. However, this result requires fast sampling which means
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it may not be implementable in practice in cases when the required sampling

period is too small to be realized with the available hardware. Hardware

restrictions on input and measurement sampling rate can be essentially

different. The D/A converters are generally faster than the A/D converters,

so the measurement sampling rate is often made slower than that of the

input. In such cases, it makes sense to configure the control system so that

several sample rates co-exist to achieve better performance.

In this chapter a different scenario is considered, namely, the use of a dual-

rate control scheme, where the output is measured at a relatively slow rate,

whereas the control signal is adjusted faster. The performance and stability

robustness analysis of such a dual-rate control system under the emulation

design is studied.

2.2.2 Modeling

Consider a continuous-time nonlinear plant with initialization at t0

ẋ = f(x, u, w), t ≥ t0 ≥ 0, (2.6)

where x ∈ Rnx , u ∈ Rm and w ∈ Rp are respectively the state, control

input and exogenous disturbance and f is continuous, locally Lipschitz and

f(0, 0, 0) = 0. Consider a dynamic feedback controller

ż = g(x, z),
u = u(x, z),

(2.7)

where z ∈ Rnz is the state of the controller and g, u are continuous, locally

Lipschitz and g(0, 0) = 0, u(0, 0) = 0. A starting point in the emulation

design is to assume that the closed-loop continuous-time system (2.6)-(2.7)

possess input-to-state stability. Then as a second step the controller is

discretized and implemented. The discretization of the controller can be

written as

z(i + 1) = z(i) +

∫ t0+(i+1)Ti

t0+iTi

g(x(i), z(s))ds (2.8)

=: Ge
Ti

(x(i), z(i)),

u(i) = u(x(i), z(i)), (2.9)
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where the state measurement x(i) is assumed to be given and Ti is the input

sampling period. It is emphasized that the discretization (2.8)-(2.9) can not

be computed exactly in most cases. Hence assume that an approximate

discrete-time model of the controller

z(i + 1) = Ga
Ti,h

(x(i), z(i)), (2.10)

u(i) = u(x(i), z(i)) (2.11)

corresponding to the input sampling period Ti is available, parameterized

by the modeling parameter h > 0. Here, h, which is the integration period

of the numerical integration used to generate the approximate model of the

controller, may be different from the sampling period. Similar set-up was

also used in current literature, for example, in [50, 59]. Let

x(i + 1) = x(i) +

∫ t0+(i+1)T

t0+iT

f(x(s), u(i), w(s))ds

=: F e
T (x(i), u(i), w[i]) (2.12)

be the exact discrete-time model of the continuous-time plant (2.6) with the

sampling period T > 0. Let

x(i + 1) = F a
T,h(x(i), u(i), w[i]) (2.13)

be a family of approximate discrete-time models of the plant corresponding

to the sampling period T , parameterized by the modeling parameter h.

The approximate models can be obtained using many different numerical

integration methods. For example, the simplest such model has the following

form: x(i+1) = x(i)+
∫ t0+(i+1)h

t0+ih
f(x(i), u(i), w(t))dt with the sampling period

T equal to the integration period h.

Remark 2.2. A number of studies have shown that the classical Euler

approximation may not yield satisfactory performance and is not always

appropriate to use. For instance, the Euler model is not recommended in

[44] for singularly perturbed systems that exhibit two-time scale behavior.

In [8] the authors showed that bilinear approximation is superior to Euler for

a particular application. Motivated by this fact, this chapter considers the

numerical integration scheme when the integration period is different from

the sampling period. This setup appears to be much more reasonable and in
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this case the approximate model can predict much better the states of the

system.

The following notation will be used. For a given function w : R≥0 → Rn,

denote w[i] := {w(t) : t ∈ [t0 + iT, t0 + (i + 1)T ), i ∈ Z+} with the norm

‖w[i]‖∞ = esssup τ∈[t0+iT,t0+(i+1)T ]|w(τ)|, where t0 ≥ 0 is initial time. To

shorten notations, denote wf = w[i] and x̃ := (xT , zT )T .

The following definitions are needed to guarantee that the mismatch of

the approximation scheme is small in some sense.

Definition 2.3. The approximate model of the plant F a
T,h is said to be one-

step consistent with F e
T if for any strictly positive real numbers (∆1, ∆2, ∆3)

there exist a K-class function ρ(·) and T ∗ > 0 such that for each fixed

T ∈ (0, T ∗], there exists h∗ ∈ (0, T ] such that |F e
T (x, u, wf )−F a

T,h(x, u, wf )| ≤
Tρ(h) for all x ∈ B(∆1), u ∈ B(∆2), ‖w‖∞ ≤ ∆3 and h ∈ (0, h∗).

Definition 2.4. The approximation scheme of the controller Ga
Ti,h

is said

to be one-step consistent with Ge
Ti

if for any strictly positive real numbers

(∆1, ∆2) there exist aK-class function ρ(·) and T ∗ > 0 such that for each fixed

T ∈ (0, T ∗], there exists h∗ ∈ (0, T ] such that |Ge
Ti

(x, z)−Ge
Ti,h

(x, z)| ≤ Tρ(h)

for all x ∈ B(∆1), z ∈ B(∆2) and h ∈ (0, h∗).

2.2.3 Problem setting

Assume that the input sampling period is equal to the sampling period of

system (2.12), that is Ti = T . Suppose that due to physical constraints, one

cannot sample the measurement as fast as he wishes. Let the measurement

sampling Tm be a multiple of T , i.e. Tm = lT for some integer l ≥ 1.

For this setting, this chapter considers a dual-rate inferential control

scheme and for such a scheme to work, a discrete-time model with fast

sampling rate for the nonlinear plant (2.6) is needed. Note that in general the

exact discrete-time model F e
T in (2.12) is unknown. Instead, the approximate

discrete-time model (2.13) is used. In most applications, it is too strong to

assume that disturbance w[i] is known for all i. One way to fix this problem is

to assume that the approximate model is run with zero disturbance. Assume

that the approximate discrete-time plant model with zero disturbance

x(i + 1) = F a
T,h(x(i), u(i), 0)
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is available. The proposed control scheme is the following: in order to feed

back the digital controller a fast rate signal, the scheme uses the slow sampled

measurement every lT period, giving x(0), x(lT ), x(2lT ), etc., and uses the

zero disturbance model F a
T,h(x, u, 0) to get the estimated state to fill in the

missing samples. Such a process is depicted in Figure 2.1 where f, Fh and

K represent the continuous-time plant, the approximate model with zero

disturbance and the fast rate controller, respectively. The two systems f and

K are interfaced by the A/D and D/A converters, modeled by a slow sampler

Ss operating with the sampling period Tm and the zero-order hold Hf with

fast sampling period T . A periodic switch is introduced which connects to

Figure 2.1: The sampled-data inferential control system

the actual state x at time t0 +klT and connects to the approximate estimate

of the state at t = t0 + klT + jT, j ∈ {1, 2, . . . , l− 1}, which is reconstructed

by F a
T,h(x, u, 0) with periodically updated initialization at sampling instant

i = t0 + klT by the actual state. x(kTm) and xc are the measured slow-

sampling output and the output of periodic switch, respectively. Thus the

output of the switch is a fast rate signal given by

xc(i+1) =

{
x(i + 1), i + 1 = kl, k ∈ Z+,

F a
T,h(xc(i), u(i), 0) with initial value xc(kl) = x(kl), otherwise.

(2.14)

The controller depends on the output of the switch xc(i) and is implemented

digitally by Hf . To summarize, the dual-rate control scheme uses a fast-

rate approximate model, a fast-rate controller and a periodic switch. The

sampled-data closed loop system consists of the continuous-time plant and
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the digital controller

ẋ = f(x, u, w), (2.15)

z(i + 1) = Ga
T,h(xc(i), z(i)), (2.16)

u(i) = u(xc(i), z(i)). (2.17)

The discrete-time model of this sampled-data system consists of the exact

discrete-time model (2.12) and the controller (2.16)-(2.17).

Remark 2.3. A similar approach is used in [30] to study linear sampled-

data systems and in [59] to study practical asymptotic stability of the

inferential control system. Unlike [30], in this chapter we investigate the

stabilization of the nonlinear sampled-data systems which may generalize

the results presented in [30]. Different from [59], this chapter focuses on

input-to-state stability (ISS) for the nonlinear context with disturbance.

The difference is important given an intrinsic robustness problem associated

with the inferential control approach. Indeed, the presence of disturbances

(in addition to the model mismatch originated by the approximate plant

model) implies that model estimates will deviate from the true plant output

measured by a sensor.

This chapter considers the important practical case where hardware

restrictions are imposed on the “measurement-A/D conversion” process.

More precisely, this chapter addresses the problem of dual-rate sampled-data

stabilization of system (2.6) under the “low measurement rate” constraint. In

this case, the single rate design method presented in [28] may lead to unstable

closed-loop sampled data system (see example in Section 2.4). This chapter

endeavors to solve the following: for any given low measurement sampling

period Tm, find a controller which makes (possibly choosing Ti appropriately

small) the closed-loop system input-to-state stable in the semiglobal practical

sense under the emulation design. It is emphasized that the results are

prescriptive since they can be used as a guide when one designs digital

controllers based on the emulation approach.

Remark 2.4. Here, semiglobal means that the region of attraction can be

rendered as large as desired by reducing the sampling period. Practical means

that the state of the system converges to a neighborhood of zero.
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2.3 Main results

Assumption 2.1. The closed-loop continuous time system (2.6) and (2.7) is

globally input-to-state stable, which implies there exists a smooth function

V : Rnx̃ → R≥0 and α1, α2, α3, γ ∈ K∞ such that for all (x, z) ∈ Rnx̃ and

w ∈ Rp, the following holds

α1(|(x, z)|) ≤ V (x, z) ≤ α2(|(x, z)|) (2.18)

∂V

∂x
f(x, u(x, z), w) +

∂V

∂z
g(x, z) ≤ −α3(|(x, z)|) + γ(‖w‖∞). (2.19)

Assumption 2.2. F a
T,h(x, u, wf ) is one-step consistent with F e

T (x, u, wf ).

Assumption 2.3. Ga
T,h(x, z) is one-step consistent with Ge

T (x, z).

In the sequel, denote the discrete-time state x(i) to be the sampled

continuous-time state x(t0 + iT ). Motivated by [1], we introduce the state of

the sampled-data systems: x̄(t) = (xT (t), zT (i))T for t ∈ [t0+iT, t0+(i+1)T ).

Theorem 2.3. Under assumptions 2.1- 2.3, there exist β̄ ∈ KL and γ2 ∈ K∞
such that the following holds. Given any strictly positive real numbers

(∆x, ∆w, µ), there exists T ∗ > 0, such that for each T ∈ (0, T ∗] there exists

h∗ ∈ (0, T ] such that for all |x̄(t0)| ≤ ∆x, ‖w‖∞ ≤ ∆w and all h ∈ (0, h∗),

the sampled-data systems (2.15)-(2.17) satisfy:

|x̄(t)| ≤ β̄(|x̄(t0)|, t− t0) + γ2(‖w‖∞) + µ, ∀t ≥ t0 ≥ 0. (2.20)

Remark 2.5. It is useful when the disturbance w is only assumed to be a

measurable function of time. Indeed, if Theorem 2.3 imposes an additional

condition on disturbances, say, ẇ is uniformly bounded, which is mentioned,

for example, in [28], then the result may be restricted to hold for a small set

of disturbance and this setting in most reality may not be available.

Let us begin with the following lemmas to establish the proof of the main

results.

Lemma 2.4. Given any strictly positive real numbers (D1, D3, ε), there exists

T1 > 0 such that for any fixed T ∈ (0, T1] there exists h1 ∈ (0, T ] such that

for each h ∈ (0, h1), |x̃(0)| ≤ D1 and ‖w‖∞ ≤ D3, the following holds: if

maxi∈{0,1,...,k}|x̃(i)| ≤ D1 for some k ∈ {0, 1, . . .} then |x(k)− xc(k)| ≤ ε.
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Proof. Let (D1, D3, ε) be given. Define ∆1 = D1 + ε. By the local Lipschitz

property of u and the fact that u is zero at zero, there exists D2 > 0 such

that |u(x̃)| ≤ D2 for all x̃ ∈ B(∆1). Let T11 > 0 and h11 > 0 be as in

Assumption 2.2 corresponding to ∆1 = D1 + ε, ∆2 = D2 and ∆3 = D3, and

let ρ(·) ∈ K∞ be a function from Assumption 2.2. Also, let a > 0 be a number

that satisfies |f(x, u, w)| ≤ a for all |x̃| ≤ ∆1, |u| ≤ D2 and ‖w‖∞ ≤ D3. Let

T12 > 0, h12 > 0 be such that T12(2(l − 1)a + ρ(h12)) ≤ ε. Finally define

T1 = min{T11, T12, ε/a} and h1 = min{h11, h12}.
Suppose T ∈ (0, T1], h ∈ (0, h1) and maxi∈{0,1,...,k}|x̃(i)| ≤ D1 for some

k ∈ {0, 1, . . .}. Consider k by the following three cases. If k = jl for some

j ∈ {0, 1, . . .}, then it is obvious that |x(k)− xc(k)| = 0. If k = jl + 1, then

it follows from Assumption 2.2 and triangle inequalities that

|x(k)− xc(k)| = |F e
T (x(jl), u(jl), w[jl])− F a

T,h(x(jl), u(jl), 0)|
≤ |F e

T (x(jl), u(jl), w[jl])− F e
T (x(jl), u(jl), 0)|

+|F e
T (x(jl), u(jl), 0)− F a

T,h(x(jl), u(jl), 0)|
≤ 2aT + Tρ(h). (2.21)

Otherwise,

|x(k)− xc(k)|
= |F e

T (x(k − 1), u(k − 1), w[k − 1])− F a
T,h(xc(k − 1), u(k − 1), 0)|

≤ |F e
T (x(k − 1), u(k − 1), w[k − 1])− F e

T (xc(k − 1), u(k − 1), 0)|
+|F e

T (xc(k − 1), u(k − 1), 0)− F a
T,h(xc(k − 1), u(k − 1), 0)|

≤ |x(k − 1)− xc(k − 1)|+ 2aT + Tρ(h)

≤ 2(k − jl)aT + Tρ(h)

(2.22)

holds for all k ∈ {jl + 2, . . . , (j + 1)l − 1}. From the choice of T and h, it

follows that T (2ai+ ρ(h)) ≤ ε for all i ∈ {1, 2, . . . , l− 1}. This completes the

proof of Lemma 2.4.

The following lemma will show that the Lyapunov function associated with

the continuous-time system is decreasing along the trajectories of the exact

discrete-time system, at least when the size of x is large relative to the size

of w and both are bounded.



2.3. Main results 25

Lemma 2.5. The exact discrete-time closed-loop model (2.12) and (2.16)-

(2.17) of the sampled-data system (2.15)-(2.17) has the following property:

under assumptions 2.1- 2.3, given any strictly positive numbers (D′
1, D

′
2, δ)

there exists T2 > 0 such that for any T ∈ (0, T2] there exists h2 ∈ (0, T ] such

that for each |x̃(0)| ≤ D′
1, ‖w‖∞ ≤ D′

2 and h ∈ (0, h2], the following holds: if

maxi∈{0,1,...,k}|x̃(i)| ≤ D′
1 for some k ∈ Z+, then

V (x(k + 1), z(k + 1))− V (x(k), z(k))

T
≤ −α3(|(x̃(k))|) + γ1(‖w‖∞) + δ.

(2.23)

Proof. Let the strictly positive numbers (D′
1, D

′
2, δ) be given. Define ∆ :=

D′
1 + 1. Let T21 > 0 and h21 > 0 be as in Assumption 2.3 corresponding to

∆1 = ∆ and ∆2 = ∆, and let ρ̃(·) ∈ K∞ be a function from Assumption

2.3. Let L1, L2 > 0 be the Lipschitz constants of f(x, u, w) and g(x, z)

respectively, on the sets where |x| ≤ ∆, |z| ≤ ∆ and ‖w‖∞ ≤ ∆w. Also, let

b > 0 be a number that satisfies max{|∂V
∂x
|, |∂V

∂z
|, |f(x, u, w)|, |g(x, z)|} ≤ b

for all |x| ≤ ∆, |z| ≤ ∆ and ‖w‖∞ ≤ D′
2. It is easy to see that such

b > 0 always exists because of the continuous differentiability of V , the

local Lipschitz properties of f and g, and the fact that they are in a closed

set. Take any ε1 ∈ (0,min{1, δ
8bL2

}). From Lemma 2.4, let T22 > 0 and

h22 > 0 be generated by (D′
1, D

′
2, ε1). Let strictly positive numbers T23, h23

and h24 be such that T23b
2(L1 + L2) ≤ δ

4
, T21ρ̃(h23) ≤ 1

2
and bρ̃(h24) ≤ δ

4
. By

the continuity of ∂V
∂x

, it implies that ∂V
∂x

is uniformly continuous on compact

sets. Hence, it follows that given any ε > 0, there exists Tε > 0 such that∣∣∣ ∂V
∂x

∣∣
(x1,z1)

− ∂V
∂x

∣∣
(x,z)

∣∣∣ ≤ ε for any T ∈ (0, Tε), |x1−x| ≤ Tb and |z1−z| ≤ Tb.

Take ε = δ
4b

and denote T24 := Tε such that for all T ∈ (0, T24), |x̃| ≤ D′
1 and

‖w‖∞ ≤ D′
2, the following holds

∣∣∣∣∣
∂V

∂x

∣∣∣∣
(x1,z1)

− ∂V

∂x

∣∣∣∣
(x,z)

∣∣∣∣∣ ≤
δ

4b
. (2.24)

Likewise, let T25 > 0 be such that for all T ∈ (0, T25), |x̃| ≤ D′
1 and

‖w‖∞ ≤ D′
2, ∣∣∣∣∣

∂V

∂z

∣∣∣∣
(x2,z2)

− ∂V

∂z

∣∣∣∣
(x,z)

∣∣∣∣∣ ≤
δ

8b
. (2.25)
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Finally, define T2 = min{T21, T22, T23, T24, T25,
1
2b
} and h25 =

min{h21, h22, h23, h24}. For any fixed T ∈ (0, T2], define h2 = min{h25, T}.
Suppose maxi∈{0,1,...,k}|x̃(i)| ≤ D′

1 for some k ∈ Z+, ‖w‖∞ ≤ D′
2, h ∈ (0, h2]

and T ∈ (0, T2].

To shorten the notations, denote x := x(k), z := z(k), xc := xc(k), u :=

u(k), f := f(x(k), u(k), w(k)) and g := g(x(k), z(k)) in the sequel. Consider

V (x(k + 1), z(k + 1))− V (x(k), z(k))

T

=
∂V

∂x

∣∣∣∣
x̃

f +
∂V

∂z

∣∣∣∣
x̃

g

︸ ︷︷ ︸
J1

+
1

T
{V (x(k + 1), z(k + 1))− V (x + Tf, z + Tg(xc, z))}

︸ ︷︷ ︸
J2

+
1

T
{V (x + Tf, z + Tg(xc, z))− V (x, z)− ∂V

∂x |x̃
f − ∂V

∂z |x̃
g}

︸ ︷︷ ︸
J3

.

(2.26)

J1: By Assumption 2.1, it follows that

J1 ≤ −α3(|(x̃(k)|) + γ(‖w‖∞). (2.27)

J2: By the Mean Value Theorem, it can be obtained that

J2 ≤ J21 + J22, (2.28)

where
J21 = 1

T
∂V
∂x

∣∣
(x3,z(k+1))

|x(k + 1)− x− Tf |
J22 = 1

T
∂V
∂z

∣∣
(x+Tf,z3)

|z(k + 1)− z − Tg(xc, z)|
(2.29)

with x3 = x + Tf + θ1{x(k + 1) − x − Tf}, z3 = z + Tg(xc, z) + θ2{z(k +

1)− z − Tg(xc, z)} and θ1, θ2 ∈ (0, 1).

J21: If {x(k + 1) − x − Tf} ≤ 0, then it follows from the choice of T2, in

particular T2 ≤ 1
2b

, that |x3| ≤ |x + Tf | ≤ D′
1 + 1 = ∆, else, |x3| ≤ |x(k + 1)|

and |x3| ≤ |x(k + 1)| ≤ D′
1 + 1

2
≤ ∆ hold because here x(t) is the solution of

initial value problem: ẋ(t) = f(x(t), u, w(t)),∀t ∈ [t0 +kT, t0 +(k+1)T ] with

the initial value x(k). Since by Lemma 2.4 |xc| ≤ D′
1 + ε1 ≤ ∆, it follows
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from Assumption 2.3, triangular inequality as well as the choice of h23, that

|z(k + 1)| = |Ga
T,h(xc, z)|

≤ |Ge
T (xc, z)|+ |Ge

T (xc, z)−Ga
T,h(xc, z)|

≤ D′
1 + 1

2
+ T ρ̃(h)

≤ D′
1 + 1

2
+ 1

2

≤ ∆.

(2.30)

Since |x3| ≤ ∆ and |z(k + 1)| ≤ ∆, it yields that
∣∣∣ ∂V

∂x

∣∣
(x3,z(k+1))

∣∣∣ ≤ b. Note

that

|x(k + 1)− x− Tf |
≤ T |f(x(kT + θ3T ), u, w(kT + θ3T ))− f(x, u, w)|
≤ T |f(x(kT + θ3T ), u, w(kT + θ3T ))− f(x, u, w(kT + θ3T ))|

+T |f(x, u, w(kT + θ3T ))− f(x, u, w)|
≤ TL1{|x(kT + θ3T )− x|+ |w(kT + θ3T )− w|}
≤ θ3L1T

2|f(x(kT + αθ3T ), u, w(kT + αθ3T ))|+ 2L1T‖w‖∞
≤ L1T

2b + 2L1T‖w‖∞

(2.31)

where θ3, α ∈ (0, 1). Hence,

J21 ≤ Tb2L1 + 2L1b‖w‖∞. (2.32)

J22: In exactly the same way, it implies from max{|z+Tg(xc, z)|, |z(k+1)|} ≤
∆ that |z3| ≤ ∆. Moreover, |x + Tf | ≤ ∆, which yields

∣∣∣ ∂V
∂z

∣∣
(x+Tf,z3)

∣∣∣ ≤ b. It

follows from triangular inequality and Assumption 2.3 that

|z(k + 1)− z − Tg(xc, z)|
≤ |Ga

T,h(xc, z)−Ge
T (xc, z)|+ |Ge

T (xc, z)− z − Tg(xc, z)|
≤ T ρ̃(h) + |Ge

T (xc, z)− z − Tg(xc, z)|.
(2.33)

Applying the Mean Value Theorem to the last term of (2.33), gives

|Ge
T (xc, z)− z − Tg(xc, z)| ≤ T |g(xc, z(kT + θ4T ))− g(xc, z)|

≤ TL2|z(kT + θ4T )− z|
≤ βL2T

2|g(xc, z(kT + βθ4T ))|
≤ bL2T

2 (2.34)
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where θ4, β ∈ (0, 1). Hence,

J22 ≤ bρ̃(h) + Tb2L2. (2.35)

By the choice of T23 and h24, it follows that

J2 ≤ 2L1b‖w‖∞ +
δ

2
. (2.36)

J3: Let x4 := x + θ5Tf and z4 := z + θ6Tg(xc, z) where θ5, θ6 ∈ (0, 1). Since

|x4 − x| ≤ Tb and |z4 − z| ≤ Tb, from the choice of T24 and T25, it follows

that
∣∣∣∣∣
∂V

∂x

∣∣∣∣
(x4,z+Tg(xc,z))

− ∂V

∂x

∣∣∣∣
(x,z)

∣∣∣∣∣ ≤
δ

4b
, (2.37)

∣∣∣∣∣
∂V

∂z

∣∣∣∣
(x,z4)

− ∂V

∂z

∣∣∣∣
(x,z)

∣∣∣∣∣ ≤
δ

8b
. (2.38)

Hence,

J3 ≤ ∂V
∂x

∣∣
(x4,z+Tg(xc,z))

f + ∂V
∂z

∣∣
(x,z4)

g(xc, z)− ∂V
∂x

∣∣
(x,z)

f − ∂V
∂z

∣∣
(x,z)

g

≤ b
∣∣∣ ∂V

∂x

∣∣
(x4,z+Tg(xc,z))

− ∂V
∂x

∣∣
(x,z)

∣∣∣ + ∂V
∂z

∣∣
(x,z4)

g(xc, z)− ∂V
∂z

∣∣
(x,z)

g

≤ δ
4

+ J31 + J32,

(2.39)

where
J31 = ∂V

∂z

∣∣
(x,z4)

g(xc, z)− ∂V
∂z

∣∣
(x,z)

g(xc, z),

J32 = ∂V
∂z

∣∣
(x,z)

g(xc, z)− ∂V
∂z

∣∣
(x,z)

g(x, z).
(2.40)

In (2.39), first we applied the Mean Value Theorem by adding and subtracting

V (x, z + Tg(xc, z)), then used the bounds of f and (2.37). It implies from

(2.38) that J31 is bounded by δ
8
. By Lemma 2.4 and the local Lipschitz

property of g, it is easy to show that

J31 ≤ bL2ε1 ≤ δ

8
.

Thus,

J3 ≤ δ
4

+ δ
8

+ δ
8

= δ
2
. (2.41)
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It follows from the bounds of J1 to J3 that

V (x(k + 1), z(k + 1))− V (x(k), z(k))

T
≤ −α3(|(x̃(k)|) + γ(‖w‖∞) + 2L1b‖w‖∞ + δ

2
+ δ

2

≤ −α3(|(x̃(k)|) + γ1(‖w‖∞) + δ,

(2.42)

where γ1(s) := γ(s) + 2L1bs. The proof of Lemma 2.5 is complete.

Remark 2.6. It follows from the proof of Lemma 2.4 and 2.5 that in the case

when the states of the plant are sampled with the different rates liT (li ≥ 1),

Lemma 2.4 and 2.5 still hold.

Lemma 2.6. Given any strictly positive real numbers (d1, d2, ν1, ν2), there

exists T3 > 0 such that for any T ∈ (0, T3] the following holds: if |x̃(k)| ≤ d1

and ‖w‖∞ ≤ d2, then the solution x(t) of the system ẋ(t) = f(x(t), u, w(t))

exists for all t ∈ [t0 + kT, t0 + (k + 1)T ) and satisfies |x(t) − x(k)| ≤ ν1.

Moreover, for any fixed T ∈ (0, T3] there exists h3 ∈ (0, T ] such that if

maxi∈{0,1,...,k}|x̃(i)| ≤ d1 for some k ∈ Z+, then V (x(k + 1), z(k + 1)) ≤
V (x(k), z(k)) + ν2.

Lemma 2.6 is a standard inter-sample growth result. This result is trivial

to prove and the proof is omitted. In fact, the proof of the first part of

Lemma 2.6 is standard (see, for example, [26] (the proof of Theorem 2.2))

and the proof of the second part comes directly from the continuity of V and

Lemma 2.4.

Now the proof of Theorem 2.3 can be finalized as follows.

Proof of Theorem 2.3. Given numbers (∆x, ∆w, µ), let µ1 and ν1 be

strictly positive real numbers such that µ1 + ν1 = µ. Define D′
2 := ∆w. Let

δ, ν2 and ν3 be strictly positive real numbers such that ν3 := α2 ◦ α−1
3 (4δ)

and maxs∈[0,α2◦α−1
3 (4γ1(∆w))]{α−1

1 (s + ν2 + ν3) − α−1
1 (s)} ≤ µ1. Define D′

1 =

max{α−1
1 ◦ α2(∆x), α

−1
1 (α2 ◦ α−1

3 (2γ1(∆w) + 2δ) + ν2)}. From Lemma 2.5,

let T ∗
1 > 0, h∗1 > 0 be generated by (D′

1, D
′
2, δ). From Lemma 2.6, let

T ∗
2 > 0, h∗2 > 0 be generated by (D′

1, D
′
2, ν1, ν2). Take T ∗ = min{T ∗

1 , T ∗
2 } and

h∗ = min{h∗1, h∗2}. Consider arbitrary T ∈ (0, T ∗), h ∈ (0, h∗) and arbitrary

x̄(t0), w(t) with |x̄(t0)| ≤ ∆x, ‖w‖∞ ≤ ∆w. First of all, let us establish the

following claim.
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Claim 2.7. If V (x̃(0)) ≤ α1(D
′
1) then V (x̃(i)) ≤ α1(D

′
1),∀i ∈ N.

Proof of Claim 2.7. Let V (x̃(i)) ≤ α1(D
′
1) holds for all i ≤ k, which implies

|x̃(i)| ≤ D′
1. Either

V (x̃(k)) ≥ α2 ◦ α−1
3 (2γ1(∆w) + 2δ), (2.43)

in which case it follows from (2.18) and Lemma 2.5 that V (x̃(k+1)−V (x̃(k) ≤
−T

2
α3(|x̃(k)|), which implies V (x̃(k + 1) ≤ V (x̃(k)) ≤ α1(D

′
1). Or

V (x̃(k)) ≤ α2 ◦ α−1
3 (2γ1(∆w) + 2δ), (2.44)

which implies, from Lemma 2.6 and the definition of D′
1, V (x̃(k + 1)) ≤

V (x̃(k)) + ν2 ≤ α2 ◦ α−1
3 (2γ1(∆w) + 2δ) + ν2 ≤ α1(D

′
1). By induction, the

proof of Claim 2.7 is complete.

Now we continue the proof of Theorem 2.3. From the choice of D′
1, it is

obvious that V (x̃(0)) ≤ α2(|x̃(0)|) ≤ α2(∆x) ≤ α1(D
′
1). It follows from Claim

2.7 that V (x̃(i)) ≤ α1(D
′
1),∀i ∈ Z+. Hence, |x̃(i)| ≤ D′

1,∀i ∈ Z+, which

implies by Lemma 2.5 that (2.23) holds for all k ≥ 0. Denote Vi := V (x̃(i))

and introduce the variable

p(s) := Vi + ( s
T
− i)(Vi+1 − Vi), s ∈ [iT, (i + 1)T ),∀i ≥ 0. (2.45)

Note that p(s) is continuous, piecewise linear and 0 ≤ p(s) ≤ max{Vi, Vi+1}.
It follows from the second part of Lemma 2.6 that

p(s) ≤ Vi + ν2, ∀s ∈ [iT, (i + 1)T ), i ≥ 0,

which, together with (2.23), implies that

p(s) ≥ α2 ◦ α−1
3 (2γ1(‖w‖∞) + 2δ) + ν2

⇒ Vi ≥ α2 ◦ α−1
3 (2γ1(‖w‖∞) + 2δ)

⇒ ṗ(s) ≤ −1

2
α3(α

−1
2 (p(s))). (2.46)

It is a well-known fact (see [26]) that (2.46) implies the existence of βp ∈ KL
such that p(s) ≤ βp(p(0), s). Since p(0) = V0 ≤ α2(|x̃(0)|) and p(iT ) = Vi ≥
α1(|x̃(i)|), the following holds:

|x̃(i)| ≤ max{β(|x̃(0)|, iT ), α−1
1 (α2 ◦ α−1

3 (2γ1(‖w‖∞) + 2δ) + ν2)} (2.47)
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where β(s, t) := α−1
1 ◦ βp(α2(s), t)). It follows from the first part of Lemma

2.6 that |x̄(t)− x̃(i)| ≤ ν1,∀t ∈ [t0 + iT, t0 + (i + 1)T ). Thus,

|x̄(t)| ≤ max{β(|x̄(t0)|, iT ), α−1
1 (α2 ◦ α−1

3 (2γ1(‖w‖∞) + 2δ) + ν2)}+ ν1,

where the initial value of the state of the sampled-data system x̄(t0) is exactly

the same with that of the discrete model x̃(0). It was shown in [1] (Lemma 1

and corollary 1) that there exists β̄ ∈ KL such that β(s, iT ) ≤ β̄(s, (i+1)T ).

Moreover, note that t− t0 ≤ (i + 1)T, ∀t ∈ [t0 + iT, t0 + (i + 1)T ). Hence,

|x̄(t)| ≤ max{β̄(|x̄(t0)|, t− t0), α
−1
1 (α2 ◦ α−1

3 (2γ1(‖w‖∞) + 2δ) + ν2)}+ ν1

≤ max{β̄(|x̄(t0)|, t− t0), α
−1
1 (α2 ◦ α−1

3 (4γ1(‖w‖∞)) + ν2 + ν3)}+ ν1

≤ β̄(|x̄(t0)|, t− t0) + γ2(‖w‖∞) + µ1 + ν1

≤ β̄(|x̄(t0)|, t− t0) + γ2(‖w‖∞) + µ, (2.48)

where ν3 := α2 ◦ α−1
3 (4δ) and γ2(s) := α−1

1 ◦ α2 ◦ α−1
3 (4γ1(s)). Here a weak

form of the triangle inequality, which holds for any function ψ of class K (in

particular, take ψ := α2 ◦ α−1
3 ) and any a, b ∈ R≥0,

ψ(a + b) ≤ ψ(2a) + ψ(2b), (2.49)

and the definition of µ1 and µ, were used. The proof of Theorem 2.3 is

complete.

Remark 2.7. This study uses the zero disturbance model F a
T,h(x, u, 0) to

estimate the states of the plant between samples. If in practice, F a
T,h(x, u, wf )

is available, then the results of input-to-state stability may be obtained by

modifying lightly the assumptions and following the similar reasoning as

Lemma 2.4-2.6 and Theorem 2.3. (See [35].)

2.4 Numerical Examples

Consider the continuous-time plant with a continuous-time controller

ẋ(t) = x3(t) + u(t) + w(t),

u(t) = −x(t)− 3x3(t).
(2.50)
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It is obvious that the closed loop continuous-time system is ISS. Let

fh(x, u, w) represent one step of the numerical integration routine on the

sampling interval [iT, (i + 1)T ) defined by

fh(x, u, w) = x + h(x3 + u) +

∫ iT+h

iT

w(s)ds

:= f 1
h(x, u, w). (2.51)

The approximate discrete-time model of the plant F a
T,h(·, ·, ·) is generated by

fh(k, x, u, w) := x + h(x3 + u) +
∫ iT+(k+1)h

iT+kh
w(s)ds,

fk+1
h (x, u, w) := fh(k + 1, fk

h , u, w),

F a
T,h(x, u, wf ) := fN

h (x, u, w), k = 1, 2, · · · ,

(2.52)

where h represents the integration period, T is the sampling period and
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Figure 2.2: The performance of the closed-loop sampled-data system with
Tm = 1s and Ti = 0.1s

N = T
h
. Since the controller is a static feedback controller, we only need to

check the assumption 2.2. By Lemma Π.2 in [47], fh is one-step consistent

with F e
h which is the exact discrete-time model with the sampling period h.

Also, the multi-step consistency is guaranteed by the one-step consistency
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plus the uniform Lipschitz condition on fh (see Remark 13 in [50]). Then it

follows closely from the conclusions of Corollary 4 and Remark 14 in [50] that

F a
T,h(x, u, wf ) is one-step consistent with F e

T (x, u, wf ). It is concluded from

Theorem 2.3 that the exact closed loop system is semiglobally practically

input-to-state stable.
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Figure 2.3: The performance of the closed-loop sampled-data system with
Tm = 1.5s and Ti = 0.15s

First we study a single-rate sampled data implementation of this controller

by the emulation method. Assume the initial value is x0 = 2.0 and

the disturbances w(t) ≡ 0 for the purpose of simplicity. The simulation

shows that the single-rate sampled-data controller stabilizes the system with

disturbance free only when the sampling period T ≤ 0.15 seconds. On the

other hand, we study the system with the low measurement sampling rate

Tm = 1 seconds. Setting the input sampling period Ti = 0.1 seconds and

the integration step h = 0.005 seconds, the closed-loop computer simulation

shows that stability can be recovered (Figure 2.2). Suppose the measurement

rate is lower, say, Tm = 1.5 seconds. Figure 2.3 shows that even though the

same input sampling period with that of the single-rate scheme is taken,

that is, Ti = 0.15 seconds, the stability is maintained and the closed loop

performance is better.
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2.5 Conclusions

This chapter investigated the problem of sampled-data input-to-state

stabilization of nonlinear systems under the low measurement constraint

based on the emulation design. The results are very important for

applications since in the nonlinear system the controller design is usually

carried out in continuous time and the digital implementation of a

nonlinear controller usually requires some form of approximate discretization.

Moreover, the fact that the sampled-data control systems are of the

semi-global practical stability property motivates implementation of such

algorithms.

Since the fast sampling results may not be implemented due to hardware

limitations, this chapter addressed the dual-rate control scheme. The main

idea is to introduce a controller that contains a “fast” numerical integration

model that reconstructs approximately the missing states between samples.

The control action depends on the state of this model and the state of this

model is corrected from time to time using the low rate measurements of the

actual state of the plant. It was shown that if a continuous-time controller

input-to-state stabilizes a continuous-time plant, then under some standard

assumptions the proposed dual-rate scheme makes the closed loop sampled

data system input-to-state stable in the semiglobal practical sense.

Notes. A version of this chapter has been published.

X. Liu, H. J. Marquez and Y. Lin, Preservation of input-to-state stability

under sampling and emulation: multi-rate case. International Journal of

Control, Vol. 80 (12), pp.1944-1953, 2007.



Chapter 3

Input-to-state stability via
discrete-time design method

So far, the design of stabilizing controllers for sampled-data nonlinear systems

under the low measurement rate using the emulation method has been

presented. This chapter considers this problem via the discrete-time design

approach. Given an approximate discrete-time model of a sampled nonlinear

plant and given a family of controllers that stabilizes the plant model in

input-to-state sense, it is showed that the closed loop sampled-data control

system is input-to-state stable under the dual-rate control scheme based on

the DTD method.

This chapter is organized as follows. Section 3.1 reviews the discrete-time

design method and introduces some preliminary notions. A brief description

of problem statement is presented in section 3.3. The main results are

presented in section 3.4 and illustrated via simulations in section 3.5. Finally,

this chapter is closed with conclusions in the last section.

3.1 Discrete-time design method

As indicated in chapter 2 the discrete-time design method (DTD method)

is one of fundamental approaches to design discrete-time controllers for

continuous-time plants. This approach parallels the classical approach to

analog controller design. The design procedure is depicted in Table 3.1.

In this method, one first derives a discrete-time equivalent of the plant and

then directly designs a discrete-time controller to control the discretized plant

35
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and finally implements the discrete-time controller using a sampler and hold

device.

In principle, DTD method is more straightforward for linear systems than

for nonlinear systems. Indeed, for linear systems an explicit discrete-time

model can be written down while typically for nonlinear systems this is not

the case. Moreover, the exact discrete-time model of a linear system is linear

while the exact discrete-time model for a nonlinear system does not usually

preserve important structures of the underlying continuous-time nonlinear

system ([49]). Hence, it is unusual for nonlinear systems to assume the

knowledge of the exact discrete-time model of the plant while this assumption

is made for most of linear systems. In the nonlinear literature, more often

than not, one assumes that the approximate discrete-time model of the

nonlinear system is available and such a discrete-time design is referred to as

approximate DTD method.

continuous− time plant model
⇓

discretize plant model
⇓

discrete− time controller
⇓

implement the controller

Table 3.1: The DTD Method

Despite the difficulties one faced in the approximate DTD method for

nonlinear systems, there is a strong motivation for pursuing this approach

since it deals with the issue of sampling naturally and effectively. As

mentioned in [12, 53], the approximate DTD method may yield better

results than the emulation design. Many results for nonlinear sampled-

data systems based on the DTD method have been investigated, for instance

[1, 7, 30, 37, 47, 49, 50, 53, 59].

One may take it for granted that if a digital controller is designed for

an approximate discrete-time model of the plant with a sufficiently small

sampling period then the same controller will also stabilize the exact discrete-

time model. It is important that if this is true, then one could directly design

digital controllers for the approximate model. However, this reasoning is
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wrong since no matter how small the sampling period is, it is possible to find

a controller that stabilizes the approximate model for that sampling period

but destabilizes the exact model, as illustrated by the following example.

Consider the continuous-time system ([49])

ẋ1 = x2,
ẋ2 = x3,
ẋ3 = u.

(3.1)

Its Euler approximate model is

x1(k + 1) = x1(k) + Tx2(k),
x2(k + 1) = x2(k) + Tx3(k),
x3(k + 1) = x3(k) + Tu(k).

(3.2)

Consider a dead-beat controller for the Euler model given by

u(k) = −x1(k)
T 3 − 3x2(k)

T 2 − 3x3(k)
T

. (3.3)

The system matrix of the closed-loop system consisting of (3.2) and (3.3) is

A =




1 T 0
0 1 T
− 1

T 2 − 3
T

−2


 .

By calculating the eigenvalues of A, one knows that the closed loop system

has all poles equal to zero for all T > 0. Hence this Euler-based closed loop

system is asymptotically stable for all T > 0. On the other hand, the exact

discrete-time closed loop system consisting of (3.1) and (3.3) has a pole at

around −2.64 for all T > 0. Hence the closed-loop sampled-data control

system is unstable for all T > 0. It follows that, to design a stable controller

using the DTD method, it is not sufficient to only design a stable controller

for an approximate discrete-time model of the plant for sufficiently small T .

Extra conditions are needed.

The main question in the DTD method is whether or not the closed-loop

system consisting of the exact discrete-time plant model and the discrete-time

controller will have similar properties as the closed-loop system consisting of

the approximate discrete-time plant model and the discrete-time controller.

The chapter will present some answers to this question for this method. It is

emphasized that the results do not contain algorithms for digital controller

design. In the case of the DTD method, controller design algorithms are

under development and the results provide a guide for doing this.
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3.2 Multi-step consistency

Let F e
T (x, u) and F a

T (x, u) denote the exact discrete-time and approximate

models of the nonlinear continuous-time control system

ẋ = f(x, u). (3.4)

with the sampling period T . The exact discrete-time model F e
T (x, u) is

obtained by integrating the initial value problem

ẋ = f(x, u(k)), (3.5)

with given u(k) and initial value x0 over the sampling interval [kT, (k +1)T ].

Let x(t) denotes the solution of the initial value problem. Then the exact

discrete-time model for the system (3.4) can be written as

x(k + 1) = x(k) +

∫ (k+1)T

kT

f(x(s), u(k))ds,

:= F e
T (x(k), u(k)). (3.6)

The approximate model is obtained from (3.5) using one of the numerical

integration methods, for example, Euler, Runge-Kutta, and so on.

Definition 3.1. The family (u, F a
T ) is said to be multi-step consistent with

(u, F e
T ) if for each L > 0, η > 0 and each compact set χ ∈ Rn, there exist a

function α : R≥0×R≥0 → R≥0∪{∞} and T ∗ > 0 such that for all T ∈ [0, T ∗)

we have that x, z ∈ χ, |x− z| ≤ δ implies

|F e
T (x, u(x))− F a

T (z, u(z))| ≤ α(δ, T ) (3.7)

and

k ≤ L/T ⇒ αk(0, T ) :=

k︷ ︸︸ ︷
α(· · ·α(α(0, T ), T ) · · · , T ) ≤ η.

(3.8)

Multi-step consistency guarantees that the error of solutions between

F e
T (x, u) and F a

T (x, u) is small over multiple steps corresponding continuous-

time intervals with length of order one. A sufficient condition for multi-step

consistency is given in the following([49]).
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Lemma 3.1. If for each compact set χ ⊂ Rn there exist K > 0, ρ ∈ K∞ and

T ∗ > 0 such that for all T ∈ [T ∗, 0) and all x, z ∈ χ we have

|F e
T (x, u(x))− F a

T (z, u(z))| ≤ (1 + KT )|x− z|+ Tρ(T ) (3.9)

then (u, F a
T ) is multi-step consistent with (u, F e

T ).

Observe that relative to one-step consistency condition, the condition of

Lemma 3.1 is guaranteed by one-step consistency plus the following Lipschitz

condition on either (u, F e
T ) or (u, F a

T ): for each compact set χ ⊂ Rn there

exist K > 0 and T ∗ > 0 such that for all T ∈ [T ∗, 0) and all x, z ∈ χ,

|F e
T (x, u(x))− F a

T (z, u(z))| ≤ (1 + KT )|x− z|. (3.10)

This condition is guaranteed for F e
T when f(x, u) and u(x) are locally

Lipschitz, uniformly in small T .

3.3 Problem statement

Consider the nonlinear continuous-time plant

ẋ(t) = f(x(t), u(t), w(t)), (3.11)

where x ∈ Rnx , u ∈ Rm and w ∈ Rp are respectively the state, control input

and exogenous disturbance and f is locally Lipschitz and f(0, 0, 0) = 0. Let

x(i + 1) = F e
T (x(i), u(i), w[i]) (3.12)

be the exact discrete-time model of (3.11) with the sampling period T > 0.

Assume that the input sampling period Ti is equal to T . If the measurements

of all states of the plant are available at the sampling instants kT, k ∈
Z+, then it is a single-rate sampled-data system. Moreover, Nesic and

Laila showed in [47] that if a digital controller input-to-state stabilizes the

approximate discrete-time model of the plant, then it would also input-to-

state stabilize the exact discrete-time model.

Suppose now that the states of the plant are sampled with period Tm = lT

for some integer l ≥ 1. For such a dual-rate control system, a model-based

inferential controller using the DTD method is proposed. Since the explicit
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solution of a nonlinear differential equation is often non-existent in analytical

form, the approximate discrete-time model of (3.12) F a
T,h(x(i), u(i), w[i]) is

used instead. Assume that the approximate model with zero disturbance

x(i + 1) = F a
T,h(x(i), u(i), 0) (3.13)

is available. The main idea is the following: since the plant input is sampled

“l” times faster than the output, the fast-rate model (3.13) is used to estimate

the inter-samples of the measurements and then supply them to the digitally

implemented controller. For each “l” input of the controller, one is the true

measurement of the plant and the remaining “l−1” are the estimations given

by the zero disturbance model (3.13). This scheme is updated periodically

using the actual states of the plant. Hence, the input of the controller is

given by

xc(i+1) =

{
x(i + 1), i + 1 = kl, k ∈ Z+,

F a
T,h(xc(i), u(i), 0) with initial value xc(kl) = x(kl), otherwise.

(3.14)

Consider the dynamic feedback controller

z(i + 1) = GT,h(xc(i), z(i)), (3.15)

u(i) = UT,h(xc(i), z(i)), (3.16)

where z ∈ Rnz and GT,h(0, 0) = 0, UT,h(0, 0) = 0. Notice that the control

law, in turn, depends on the states of the model rather than the actual states

of the plant.

This chapter presents the framework of controller design for sampled-data

nonlinear systems under the low measurement rate using the DTD method.

It is the purpose of this chapter to show that under some mild assumptions

the closed loop dual-rate system is input-to-state stable in the semiglobal

practical sense. The sampling period T is assumed to be a design parameter

which can be arbitrarily assigned. The main results can be used to determine

if the sampling period is sufficiently small.

Introduce the following definitions. To shorten the notation, denote

F̃ a
T,h(x̃, wf ) :=

[
F a

T,h(x, UT,h(x, z), wf )
GT,h(x, z)

]
.
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Definition 3.2. The system x̃(i + 1) = F̃ a
T,h(x̃(i), w[i]) is equi-Lipschitz

Lyapunov-ISS if there exist functions α1, α2, α3 ∈ K∞, γ̃ ∈ K and for any

positive real numbers (∆1, ∆2) there exist T ∗ > 0 such that for each fixed

T ∈ (0, T ∗] there exists h∗ ∈ (0, T ] such that for all x̃ ∈ Rnx̃ , ‖w‖∞ ≤ ∆2

and h ∈ (0, h∗) there exists a function VT,h : Rnx̃ → R≥0 with the following

properties:

α1(|x̃|) ≤ VT,h(x̃) ≤ α2(|x̃|), (3.17)

VT,h(F̃
a
T,h(x̃, wf ))− VT,h(x̃) ≤ −Tα3(|x̃|) + T γ̃(‖w‖∞) (3.18)

and, for all x̃1, x̃2 ∈ B(∆1), there exists M > 0 such that |VT,h(x̃1) −
VT,h(x̃2)| ≤ M |x̃1 − x̃2|.
Remark 3.1. Note that Definition 3.2 is closely related to Definition 2.1 (ISS).

In particular, it was shown in [24] that the non-parameterized discrete-time

system is ISS if and only if (3.17)-(3.18) holds. It would be important to

provide conditions under which one can construct a Lyapunov function from

Definition 3.2. Illustration how such Lyapunov function can be constructed

and used in controller design based on approximate discrete-time model can

be found in [50].

Definition 3.3. The control law (GT,h, UT,h) is said to be uniformly locally

Lipschitz if for any ∆1 > 0 there exist L1, L2 > 0 and T ∗ > 0 such that for

each fixed T ∈ (0, T ∗] there exists h∗ ∈ (0, T ] such that for all ξ1, ξ2 ∈ B(∆1)

and h ∈ (0, h∗], we have |GT,h(ξ1) − GT,h(ξ2)| ≤ L1|ξ1 − ξ2|, |UT,h(ξ1) −
UT,h(ξ2)| ≤ L2|ξ1 − ξ2|, where ξ := (xT

c , zT )T .

3.4 Main results

In this section, the main results are stated and proved. The results

specify conditions which guarantee that the dual-rate controller input-to-

state stabilizes the closed-loop sampled-data system. More precisely, the

stabilization problem under the following assumptions is addressed.

Assumption 3.1. F̃ a
T,h(x̃, wf ) is equi-Lipschitz Lyapunov-ISS.

Assumption 3.2. F a
T,h(x, u, wf ) is one-step consistent with the exact

discrete-time model F e
T (x, u, wf ).
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Assumption 3.3. The controller (3.15)-(3.16) is uniformly locally Lipschitz.

Remark 3.2. From assumption 3.3 and UT,h(0, 0) = 0, it follows that

given positive numbers (∆1, ∆2) there exist T ∗, h∗ > 0 such that for all

ξ := (xT
c , zT )T ∈ B(∆1) and h ∈ (0, h∗), |UT,h(ξ)| ≤ ∆2 holds. That is, the

output of the controller is locally uniformly bounded (see [26]).

Theorem 3.2. Under assumptions 3.1-3.3, there exist β ∈ KL and γ ∈ K∞
such that the following holds. Given any positive real numbers (∆x̃, ∆w, δ),

there exists T ∗ > 0 such that for each T ∈ (0, T ∗] there exists h∗ ∈ (0, T ]

such that for all |x̃(0)| ≤ ∆x̃, ‖w‖∞ ≤ ∆w and all h ∈ (0, h∗], the exact

closed loop discrete-time model (3.12) and (3.14)-(3.16) satisfies |x̃(i)| ≤
β(|x̃(0)|, iT ) + γ(‖w‖∞) + δ.

Let us begin with the following lemmas.

Lemma 3.3. Consider the exact closed loop discrete-time model (3.12) and

(3.14)-(3.16). Given any strictly positive real numbers (D1, D3, ε), there

exists T1 > 0 such that for any fixed T ∈ (0, T1] there exists h1 ∈ (0, T ]

such that for all h ∈ (0, h1], |x̃(0)| ≤ D1 and ‖w‖∞ ≤ D3, the following

holds: if maxi∈{0,1,...,k} |x̃(i)| ≤ D1 for some k ∈ {0, 1, . . .} then the exact

discrete-time state of the plant satisfies: |x(k)− xc(k)| ≤ Tε + Tλ‖w‖∞, for

some λ > 0.

Proof. Let (D1, D3, ε) be given. Define ∆1 = D1 + ε+1. By Remark 3.2, for

given D2 > 0 there exist T11 > 0 and h11 > 0 such that |UT,h(xc, z)| ≤ D2 for

all (xT
c , zT )T ∈ B(∆1). Let L > 0 be the Lipschitz constant of function

f . Also, let λ > 0 be a number such that eL(l−1)T − 1 ≤ λT for any

T ∈ (0, T11]. Let T12 > 0 and h12 > 0 be as in Assumption 3.2 corresponding

to ∆1 = D1 + ε + 1, ∆2 = D2 and ∆3 = D3, and let ρ(·) ∈ K∞ be a function

from Assumption 3.2. Let T13 > 0, h13 > 0 be such that ρ(h13)(e
L(l−1)T13 −

1)/(eLT13 − 1) ≤ ε. Finally define T1 = min{T11, T12, T13, 1/λD3, 1} and

h1 = min{h11, h12, h13}.
Suppose T ∈ (0, T1], h ∈ (0, h1] and maxi∈{0,1,...,k} |x̃(i)| ≤ D1 for some k ∈

{0, 1, . . .}. First claim that |(xT
c (k), zT (k))T | ≤ ∆1 for some k ∈ {0, 1, . . .}

follows by induction. Consider k in the following three cases. If k = jl for

some j ∈ {0, 1, . . .}, then it is obvious that |x(k)− xc(k)| = 0. If k = jl + 1,
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then it follows from Assumption 3.2 and triangle inequalities that

|x(k)− xc(k)|
= |F e

T (x(jl), UT,h(x(jl), z(jl)), w[jl])− F a
T,h(x(jl), UT,h(x(jl), z(jl)), 0)|

≤ |F e
T (x(jl), UT,h(x(jl), z(jl)), w[jl])− F e

T (x(jl), UT,h(x(jl), z(jl)), 0)|
+Tρ(h)

≤ (eLT − 1)‖w‖∞ + Tρ(h).
(3.19)

Otherwise, the following holds for all k ∈ {jl + 2, . . . , (j + 1)l − 1}:

|x(k)− xc(k)| ≤ Tρ(h) + eLT |x(k − 1)− xc(k − 1)|+ (eLT − 1)‖w‖∞
≤ Tρ(h)

e(k−jl)LT − 1

eLT − 1
+ (e(k−jl)LT − 1)‖w‖∞. (3.20)

It implies from the choice of T and h that |x(k) − xc(k)| ≤ Tε + Tλ‖w‖∞.

This completes the proof of Lemma 3.3.

Lemma 3.4. Consider the exact closed loop discrete-time model (3.12) and

(3.14)-(3.16). For any strictly positive real numbers (D′
1, D

′
3) there exists

T2 > 0 such that for any fixed T ∈ (0, T2] there exists h2 ∈ (0, T ], ∆ > 0 such

that for all h ∈ (0, h2], |x̃(0)| ≤ D′
1 and ‖w‖∞ ≤ D′

3, the following holds: if

maxi∈{0,1,...,k} |x̃(i)| ≤ D′
1 for some k ∈ {0, 1, . . .} then the exact state of closed

loop system x̃(k + 1) and the approximation satisfy F̃ a
T,h(x̃(k), w[k]) ∈ B(∆).

Proof. Let (D′
1, D

′
3) be given. Take ε1 > 0. From Lemma 3.3, let (D′

1, D
′
3, ε1)

generate T21 > 0, h21 > 0 and let λ > 0 be from in Lemma 3.3. From

Assumption 3.1, let T22 > 0, h22 > 0 be generated by ∆1 = D′
1 + ε1 +

1, ∆2 = D′
3 and let T23, h23, L1, L2 > 0 be as in Assumption 3.3. Let

T24 > 0, h24 > 0 and ε2 > 0 be such that T24(ρ(h24) + L1(ε1 + λ‖w‖∞) +

L2(e
LT24 − 1)(ε1 + λ‖w‖∞)) ≤ ε2. Define ∆ = α−1

1 (α2(D
′
1) + γ̃(D′

3)) + ε2. Let

T2 = min{T21, T22, T23, T24} and h2 = min{h21, h22, h23, h24}.
Suppose T ∈ (0, T2], h ∈ (0, h2] and maxi∈{0,1,...,k} |x̃(i)| ≤ D′

1 for some

k ∈ {0, 1, . . .}. It follows from Assumption 3.1 that

F̃ a
T,h(x̃(k), w[k]) ≤ α−1

1 ◦ VT,h(F̃
a
T,h(x̃(k), w[k]))

≤ α−1
1 (VT,h(x̃(k)) + γ̃(D′

3))

≤ ∆. (3.21)
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Applying Assumption 3.2 and 3.3 as well as triangle inequalities to |x̃(k +

1)− F̃ a
T,h(x̃(k), w[k])| gives

|x̃(k + 1)− F̃ a
T,h(x̃(k), w[k])| ≤ T (ρ(h) + L1|x(k)− xc(k)|+

L2(e
LT − 1)|x(k)− xc(k)|.

Thus, from Lemma 3.3 and the choice of T24, h24 and ∆,

|x̃(k + 1)| ≤ |F̃ a
T,h(x̃(k), w[k])|+ ε2 = ∆. (3.22)

This completes the proof of Lemma 3.4.

Lemma 3.5. LetW = {w ∈ L∞| ‖w‖∞ ≤ Cw,∀ Cw > 0} and let α1, α2, α3 ∈
K∞. Let strictly positive real numbers (d,D) be such that α1(D) ≥ d and

let T3 > 0 be such that for each fixed T ∈ (0, T3] there exists h3 ∈ (0, T ]

such that for any h ∈ (0, h3] there exists a function VT,h : Rnx̃ → R≥0 such

that for all x̃ ∈ Rnx̃ , α1(|x̃|) ≤ VT,h(x̃) ≤ α2(|x̃|) and for all x̃ ∈ Rnx̃ with

|x̃| ≤ D, all w ∈ W and max{VT,h(x̃(i + 1)), VT,h(x̃(i))} ≥ d, the following

holds: VT,h(x̃(i + 1)) − VT,h(x̃(i)) ≤ −T
4
α3(|x̃(i)|). Then, |x̃(i)| ≤ D for all

|x̃(0)| ≤ α−1
2 ◦ α1(D), w ∈ W and all i ∈ Z+, and the solution of the exact

closed loop discrete-time model exists and satisfies

|x̃(i)| ≤ β(|x̃(0)|, iT ) + α−1
1 (d). (3.23)

Proof. The definitions of d and D imply that

|x̃(0)| ≤ max{α−1
1 ◦ VT,h(x̃(0)), α−1

1 (d)} ≤ D. (3.24)

So either VT,h(x̃(1)) ≥ d which, from the condition of Lemma 3.5, implies

VT,h(x̃(1)) ≤ VT,h(x̃(0)), or else VT,h(x̃(1)) ≤ d. Then, in either case,

VT,h(x̃(1)) ≤ max{VT,h(x̃(0)), d}. Hence VT,h(x̃(i)) ≤ max{VT,h(x̃(0)), d}
follows by induction and |x̃(i)| ≤ D holds as well. Consequently (3.23)

follows, using an argument similar to the proof of Theorem 2 in [53].

Lemma 3.6. Consider the exact closed loop discrete-time model (3.12) and

(3.14)-(3.16). There exists γ̂ ∈ K∞ such that the following holds. For any

strictly positive real numbers (Cx̃, Cw, ν) with Cx̃ ≥ α−1
1 (γ̂(Cw) + ν), there
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exists T4 > 0 such that for each T ∈ (0, T4] there exists h4 ∈ (0, T ] such that

for all h ∈ (0, h4], |x̃(0)| ≤ α−1
2 ◦ α1(Cx̃), ‖w‖∞ ≤ Cw and all i ∈ Z+,

max{VT,h(x̃(i + 1)), VT,h(x̃(i))} ≥ γ̂(‖w‖∞) + ν

⇒ VT,h(x̃(i + 1))− VT,h(x̃(i)) ≤ −T
4
α3(|x̃(i)|). (3.25)

Proof. Let positive real numbers (Cx̃, Cw, ν) be given. Define ε2 =
1
2
α−1

2 (ν
2
), ε3 = α−1

2 (1
2
α1(ε2)), and ∆ = α−1

1 (α2(Cx̃) + γ̃(Cw)) + ε2. Take

any ε1 > 0 which satisfies the inequality: ML1ε1 ≤ 1
4
α3(ε3). From Lemma

3.3, let (Cx̃, Cw, ε1) generate T41, h41 and let λ > 0 be as in Lemma 3.3. Let

T42 and h42 come from Lemma 3.4 corresponding to (Cx̃, Cw) and also the

following holds

T42(ρ(h42) + L1(ε1 + λ‖w‖∞) + L2(e
LT42 − 1)(ε1 + λ‖w‖∞)) ≤ ε2.

Let positive real numbers T43, h43, T44, h44 and T45 be such that

T43(M(ρ(h43) + L1(ε1 + λ‖w‖∞) + L2(e
LT43 − 1)(ε1 + λ‖w‖∞))+

γ̃(‖w‖∞) + 1
4
α3(Cx̃)) ≤ ν

2
,

Mρ(h44) + ML2(e
LT44 − 1)ε1 ≤ 1

4
α3(ε3),

and T45γ̃(Cw) ≤ 1
2
α1(ε2). Let γ̂(s) = α2 ◦ α−1

3 (4(γ̃(s) + λM(L1s + L2(e
L −

1)s))). Take T4 = min{T41, T42, T43, T44, T45} and h4 = min{h41, h42, h43, h44}.
Consider any T ∈ (0, T4], h ∈ (0, h4], |x̃(0)| ≤ α−1

2 ◦ α1(Cx̃) and ‖w‖∞ ≤ Cw.

First of all, claim that |x̃(i)| ≤ Cx̃ for any i ∈ Z+. From now suppose

this to be true. It follows from Lemma 3.4 that |F̃ a
T,h(x̃(i), w[i])| ≤ ∆ and

|x̃(i + 1)| ≤ ∆.

Now suppose that

VT,h(x̃(i + 1)) ≥ γ̂(‖w‖∞) + ν
2
. (3.26)

Using Assumption 3.1 and triangle inequalities, the following holds

VT,h(x̃(i + 1))− VT,h(x̃(i)) ≤ −Tα3(|x̃(i)|) + T γ̃(‖w‖∞)+

M |x̃(i + 1)− F̃ a
T,h(x̃(i), w[i])|. (3.27)

Applying Assumption 3.2-3.3 and triangle inequalities and from the choice

of T41 and h41, it is easy to see that

VT,h(x̃(i + 1))− VT,h(x̃(i)) ≤ −Tα3(|x̃(i)|) + T γ̃(‖w‖∞)+

TM(ρ(h) + L1(ε1 + λ‖w‖∞) + L2(e
LT − 1)(ε1 + λ‖w‖∞)).

(3.28)
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Denote µ1 := ML1ε1, µ2 := M(ρ(h) + L2(e
LT − 1)ε1) and κ(s) := γ̃(s) +

Mλ(L1 + L2(e
LT − 1))s. Then

VT,h(x̃(i + 1))− VT,h(x̃(i))

≤ −T
4
α3(|x̃(i)|)−T

4
α3(α

−1
2 (VT,h(x̃(i)))) + Tκ(‖w‖∞)

︸ ︷︷ ︸
J1

−T

4
α3(|x̃(i)|) + Tµ1

︸ ︷︷ ︸
J2

−T

4
α3(|x̃(i)|) + Tµ2

︸ ︷︷ ︸
J3

.

(3.29)

Supposition (3.26) implies that

γ̂(‖w‖∞) +
ν

2
≤ |VT,h(x̃(i + 1))− VT,h(F̃

a
T,h(x̃(i), w[i]))|+

VT,h(F̃
a
T,h(x̃(i), w[i]))− VT,h(x̃(i)) +

VT,h(x̃(i))

≤ MTρ(h) + MTL1(ε1 + λ‖w‖∞) +

MTL2(e
LT − 1)(ε1 + λ‖w‖∞)

+T γ̃(‖w‖∞) +

VT,h(x̃(i)).

It follows from the choice of T43 and h43 that

γ̃(‖w‖∞) + ν
2
≤ ν

2
+ Vh(x̃(i)). (3.30)

Thus

VT,h(x̃(i + 1)) ≥ γ̂(‖w‖∞) + ν
2
⇒ VT,h(x̃(i)) ≥ γ̂(‖w‖∞),

and J1 ≤ 0 holds by the definition of γ̂(·). Supposition (3.26) gives that

x̃(i + 1) ≥ α−1
2 (ν

2
) = 2ε2. (3.31)

Then from the choice of T42 and h42, it is obtained that

|F̃ a
T,h(x̃(i), w[i])| ≥ |x̃(i + 1)| − |x̃(i + 1)− F̃ a

T,h(x̃(i), w[i])|
≥ 2ε2 − ε2 = ε2. (3.32)
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Using the choice of T45, it follows that

α2(|x̃(i)|) ≥ VT,h(F̃
a
T,h(x̃(i), w[i]))− T γ̃(Cw)

≥ α1(|F̃ a
T,h(x̃(i), w[i])|)− T γ̃(Cw)

≥ α1(ε2)− 1

2
α1(ε2) =

1

2
α1(ε2),

which implies

|x̃(i)| ≥ α−1
2 (

1

2
α1(ε2)) = ε3

≥ α−1
3 (4µ1) (3.33)

and then J2 ≤ 0 holds. Moreover, it follows from the choice of T44 and h44

that

|x̃(i)| ≥ ε3 ⇒ −T
4
α3(|x̃(i)|) + Tµ2 ≤ 0. (3.34)

That is, J3 ≤ 0 holds. Hence, supposition (3.26) implies

VT,h(x̃(i + 1))− VT,h(x̃(i)) ≤ −T
4
α3(|x̃(i)|). (3.35)

Suppose

VT,h(x̃(i + 1)) ≤ γ̂(‖w‖∞) + ν
2

(3.36)

and

VT,h(x̃(i)) ≥ γ̂(‖w‖∞) + ν. (3.37)

From our choice of T43, it follows that

VT,h(x̃(i + 1))− VT,h(x̃(i))
≤ γ̂(‖w‖∞) + ν

2
− VT,h(x̃(i)) + ν

2
− ν

2

≤ γ̂(‖w‖∞) + ν − VT,h(x̃(i))− ν
2

≤ −ν
2
≤ −T

4
α3(|x̃(i)|).

(3.38)

It remains to establish the initial claim: |x̃(i)| ≤ Cx̃ for any i ∈ Z+.

This claim follows by induction. Indeed, it clearly holds for i = 0, since the

definition of x̃(0) implies

|x̃(0)| ≤ α−1
2 ◦ α1(Cx̃) ≤ Cx̃. (3.39)
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Then (3.25) holds for i = 0 from the deduction above. Lemma 3.5 (Take

D = Cx̃ and d = γ̂(‖w‖∞) + ν.) gives that |x̃(1)| ≤ Cx̃. That is, this claim

holds for i = 1 as well. Then

|x̃(i)| ≤ Cx̃, i ∈ Z+ (3.40)

follows by induction. The proof of Lemma 3.6 is complete.

Now we complete the proof of Theorem 3.2 as follows.

Proof of Theorem 3.2. Let (∆x̃, ∆w, δ) be given and let all conditions in

Theorem 3.2 hold. Let γ̂ ∈ K∞ come from Lemma 3.6. Define (Cx̃, Cw, ν) as

Cw := ∆w, ν > 0 is such that

sups∈[0,∆w][α
−1
1 (γ̂(s) + ν)− α−1

1 (γ̂(s))] ≤ δ,

and

Cx̃ := max{α−1
1 (γ̂(∆w) + ν), α−1

1 ◦ α2(∆x̃)}.
It follows from the choice of (Cx̃, Cw, ν) that

Cx̃ ≥ α−1
1 (γ̂(Cw) + ν) (3.41)

and

|x̃(0)| ≤ α−1
2 ◦ α1(Cx̃). (3.42)

From Lemma 3.6, let (Cx̃, Cw, ν) generate T ∗ > 0, h∗ > 0 such that (3.25)

holds. Let D = Cx̃ and d = γ̂(‖w‖∞) + ν, which imply that α1(D) ≥ d.

It follows from the definition of (D, d) that all conditions of Lemma 3.5 are

satisfied. Therefore for all h ∈ (0, h∗), |x̃(0)| ≤ ∆x̃ and |w‖∞ ≤ ∆w,

|x̃(i)| ≤ β(|x̃(0)|, iT ) + α−1
1 (d)

≤ β(|x̃(0)|, iT ) + α−1
1 (γ̂(‖w‖∞) + ν)

≤ β(|x̃(0)|, iT ) + γ(‖w‖∞)) + δ, (3.43)

where γ(s) := α−1
1 ◦ γ̂(s). This completes the proof of Theorem 3.2.

Remark 3.3. Following the proof of Theorem 3.2, it is easy to see that if

Assumption 3.1 is relaxed slightly to the assumption of practical Lyapunov-

ISS, that is, VT,h(F̃
a
T,h(x̃, wf ))−VT,h(x̃) ≤ −Tα3(|x̃|)+T γ̃(‖w‖∞)+Tδ1, then

Theorem 3.2 still holds.
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3.5 Numerical examples

Consider the continuous-time plant

ẋ(t) = x3(t) + u(t) + w(t). (3.44)

Let x(i + 1) = F e
T (x(i), u(i), w[i]) be the exact discrete-time model of the

continuous-time plant with the sampling period T . Let fh(x, u, w) represent

one step of the numerical integration routine on the sampling interval

[iT, (i + 1)T ) defined by fh(x, u, w) = x + h(x3 + u) +
∫ iT+h

iT
w(s)ds :=

f 1
h(x, u, w). The numerically integrated approximate model F a

T,h(·, ·, ·) can

be generated by

fh(k, x, u, w) := x + h(x3 + u) +
∫ iT+(k+1)h

iT+kh
w(s)ds,

fk+1
h (x, u, w) := fh(k + 1, fk

h , u, w),

F a
T,h(x, u, wf ) := fN

h (x, u, w), k = 1, 2, . . .

(3.45)

where h and T represent the integration period and the sampling period

respectively, and N = T
h
. Moreover, the approximate model with disturbance

free, which reconstructs the missing plant states between samples, is

generated by F a
T,h(x, u, 0). Consider a digital controller

u(i) = −x(i)− x3(i). (3.46)

First check the consistency of the approximation scheme. By Lemma Π.2

in [47], fh is one-step consistent with F e
h which is the exact discrete-time

model with the sampling period h. Also, the multi-step consistency is

guaranteed by the one-step consistency plus the uniform Lipschitz condition

on fh (see Remark 13 in [50]). Then it follows closely from the conclusions of

Corollary 4 and Remark 14 in [50] that F a
T,h(x, u, wf ) is one-step consistent

with F e
T (x, u, wf ). Take VT,h(x) = |x|. It follows that the approximate closed

loop discrete-time model

x(i + 1) = F a
T,h(x(i), u(i), w[i]),

u(i) = −x(i)− x3(i)
(3.47)

is practically Lyapunov-ISS with α3(|x|) = |x| and γ̃(‖w‖∞) = ‖w‖∞.

Moreover it is easy to see that assumption 3.3 is also satisfied. It is
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concluded from Theorem 3.2 that the exact closed loop system is semiglobally

practically input-to-state stable.

Assume the initial state x(0) = 3.4. The simulation shows that the

single-rate method stabilizes the system without disturbance only when

T < 0.205 seconds. On the other hand, consider the dual-rate method with

the low measurement rate Tm = 1.5 seconds. Setting Ti = 0.15 seconds

and h = 0.0075 seconds (N = 20), the simulation shows that the dual-rate

controller stabilizes the system successfully (Figure 3.1). Compared with
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Figure 3.1: The performance of the closed-loop system without disturbance
under two control schemes

the single rate scheme, the dual-rate scheme is more effective, which can

render a stable closed loop using much lower sampling rate. In Figure 3.2 a

sinusoidal disturbance of amplitude 0.8 and frequency 2 rad/s is considered

and the simulation shows that the closed-loop system is practically ISS. This

example shows that the dual-rate inferential system is indeed more robust

than the corresponding fast single-rate system.
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Figure 3.2: The closed-loop performance for dual-rate control system with
disturbance

3.6 Conclusions

This chapter is a detailed version of the work in [36]. It concentrates on the

problem of stabilization of nonlinear systems under the low measurement

constraint. The approach to the solution of this problem employs a dual-rate

scheme based on approximate DTD method. The main idea is to introduce a

controller that includes an approximate discrete-time model of the plant. In

the setting of this chapter, the exact and approximate discrete-time models

were considered as functions of the sampling period T and the integration

period h. Indeed, it is important to note that the role of T and h are different

when pursuing the approximate DTD method. Typically, the size of the

domain of attraction may be controlled by reducing T whereas the accuracy

of the closed loop behavior may be controlled by tuning design parameters.

Notes. A version of this chapter has been published.

X. Liu, H. J. Marquez and Y. Lin, Input-to-state stabilization for

nonlinear dual-rate sampled-data systems via approximate discrete-time

model. Automatica, Vol. 44 (12), pp.3157-3161, 2008.



Chapter 4

Model-based Nonlinear NCSs

So far, the stabilization problem of sampled-data nonlinear systems has been

investigated via continuous-time design and discrete-time design methods.

This chapter studies the networked realization of nonlinear control systems

and presents an estimation method as a solution to reduce network traffic to

achieve satisfactory performance.

In this chapter the network effects are treated actively. That is, we

concentrate on the interwinding effects between the control system and the

communication network. System performance is not only dependent on the

performance on its components, but also on their network interaction. In

general as the number of messages on the network increases, system nodes

experience longer waiting time to access the network, which may degrade the

system performance. One of the effective ways to improve the performance of

a networked control system is to reduce network traffic. Estimation methods

in networked control systems can reduce network traffic and thus ameliorate

control performance.

This chapter addresses the stabilization problem of nonlinear networked

control systems and proposes a model-based control scheme to estimate the

missing states due to the network access limitation. By adding an estimator,

a tradeoff between satisfactory control performance and reduction of network

traffic can be achieved.

The outline of this chapter is as follows. After the description of

problem statement and relevant definitions and notations, the main results

for stability analysis of networked control systems in the nonlinear context are

52
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derived. The effectiveness of the proposed strategy is verified via simulations.

Finally, this chapter is closed with conclusions in the last section.

4.1 Related approaches

In the literature, several approaches have been proposed to reduce the

network traffic and improve the system performance, which may be

summarized as follows.

In [67] Wong et al. introduced the concept of a recursive coder-estimator

sequence to vary the coding scheme from transmission to transmission

and investigated a state estimation problem involving finite communication

capacity. Stability results were established for mean coder-estimator and

equal-partition coder-estimator schemes. Other coding and control schemes

for deterministic LTI systems were subsequently proposed and analyzed. Nair

studied the exponential stability of finite-dimensional LTI plants with limited

feedback data rate in [45] and obtained the infimum data rate by using coder-

controller and quantisation theory. Analogous results for stochastic linear

systems were reported in [46]. In a close spirit, Liberzon et al. considered

the stabilization of linear and nonlinear systems with encoded measurements

of the state in [32, 33].

Hristu investigated the stability of systems which were governed by linear

dynamics under limited communication [19]. Each system and its feedback

controller were viewed as users on a shared network which granted access

only to a few nodes. The author proposed a network admission policy for

the use of communication sequences which specified the amount of time

available for each system to complete its feedback loop, thus reducing network

usage. Although the results were conservative, they represented a significant

improvement over previous estimates for the amount of communication

required to guarantee stability.

In [34] the authors used power spectral density to determine a dropout

compensator that minimized the regulator’s output power. Data packets

may be excessively delayed due to network congestion. As a result, it is often

desirable to purposely drop measurements that are delayed excessively. This

analysis derived a closed form expression for a control system’s output power
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spectral density as a function of the data dropouts and used this result to

synthesize an optimal dropout compensator that minimized the regulator’s

output power. Stochastic asymptotic stability was obtained in the mean

square sense.

The work in [40], upon which this chapter is based, addressed an explicit

model of the linear plant to reduce the network traffic. Sufficient and

necessary conditions for stability were derived in terms of the constant update

time and the parameters of the plant and those of its model. These results

were extended in [42] to a particular class of nonlinear control systems.

Stochastic stability results with independent identically distributed and

Markov-chain driven transmission times were obtained in [41]. Sufficient

stability conditions for two types of static and dynamic quantization schemes

were derived in [43]. The work in [70] followed the same line to handle the

constraints of the network realization of an LTI control system. It was shown

that the problem of regulation can be reduced to that of an asymptotically

stable observer design for linear systems with missing measurements. The

ideas behind the extension with intermittent feedback were summarized in

[9, 10].

Nilsson addressed a timeout control scheme based on predictions in [55]

such that the measurements that arrive after the timeout can be used to

compute the next control signal instead of been neglected. Adjustable

deadband was introduced to reduce network traffic in [57]. With a deadband

defined on a node, the node will not broadcast a new message if the node

signal is within the deadband. Using a similar idea, Yook et al. [68] described

a new framework for distributed control systems in which estimators were

used at each node to estimate the values of the outputs of the system.

When the estimated value deviated from the true value by more than a

tolerance, the actual value was broadcast to the rest of the system. The

communication only occurred when the difference between the measured

actual output and the estimate output of the system was above the threshold

value and Bounded-Input Bounded-Output (BIBO) stability was obtained.



4.2. Problem statement 55

4.2 Problem statement

Consider the nonlinear networked control system whose plant dynamics is

described by

ẋ(t) = fp(t, x, u) + rp(t, x, u) (4.1)

with the initial time zero, where x ∈ Rn, u ∈ Rm are the plant state

and the control vectors respectively. fp : [0,∞) × D × Du → Rn and

rp : [0,∞) × D × Du → Rn are continuous in t and locally Lipschitz in

x and u on [0,∞) × D × Du, D ⊂ Rn is a domain that contains x = 0,

Du ⊂ Rm is a domain that contains u = 0, and fp(t, 0, 0) = 0. rp(t, x, u)

represents a perturbation term which could result from model errors, aging,

or uncertainties and disturbances in realistic problems. Consider the state

feedback controller

u(t) = gc(t, x) (4.2)

where gc : [0,∞)×D → Rm is continuous in t and locally Lipschitz in x on

[0,∞)×D and gc(t, 0) = 0.

The communication access constraint imposed by the network is the main

focus. Like [40, 65, 66], the controller dynamics are considered continuous

and sampling delay is ignored, because the access interval to the network is

much larger than the processing period of the controller and smart sensors.

Once the sensor has the access, the data is assumed to transmit instantly,

because most of the control network is a local area network with very high

data rate and a physical range less than 100 meters.

Denote the updating time of the controller as tk and the network access

interval at tk as tk+1 − tk = τk. A natural assumption on τk can be made as

follows

0 ≤ τk ≤ τm (4.3)

where τm denotes the access deadline. The model of the networked control

system formulated here deserves the following remarks.

Remark 4.1. It is worth noting that [40] considers a constant updating time,

while this chapter deals with random time-varying access updating time.

Also, in the literature, several references consider networked control systems

as stochastic models (see, for instance, [27]). These models usually assume
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a probabilistic structure on the delays, while the approach proposed here

places only a bound on the network access interval.

Remark 4.2. The networked control system is considered in a nonlinear time-

varying setting, i.e. the physical plant and the model estimator are both

nonlinear. The nonlinear control problem is difficult because the explicit

analytic solution of continuous time processes are typically impossible to

compute. The model formulated here is essentially different from that in

[40], and is more general. It is important to point out that recent results

in [42] (an extended version can be found in Chapter 6, [39]), presented

a comprehensive study on networked control systems and in particular,

investigated the local stability of a particular class of nonlinear control system

described by ẋ = f(x)+g(u) and u = h(x), with constant updating time. To

the best of the authors’ knowledge, the stabilization problem of model-based

nonlinear networked control systems with random time-varying updating

time has not been investigated and still remains challenging, which motivates

the present study.

In this chapter, we first present conditions under which stability is

preserved when the communication channel is inserted into the control loop.

Because of the network access limitation, the controller receives the signal

only at tk and keeps the value for the whole access interval. In this manner,

the controller behaves in the exact same way as if having a zero order hold

at its input.

In the remaining of this chapter, we address an alternative approach based

on knowledge of the plant dynamics to improve the system performance.

It is important to note that one of the central issues of networked control

systems is the large amount of bandwidth required in the transmission of

data. This can be addressed in two ways: by reducing the number of packets

transmitted, or by reducing the size of the data. It has been shown that

reducing the number of packets transmitted brings better benefits than data

compression [41], which motivates our idea of reducing the network traffic. In

this manner, more bandwidth will be available to allocate resources without

sacrificing stability and ultimate performance of the overall system.

Specifically, the idea is the following: a model-based controller is used

to reconstruct approximately the missing states between transmission times.
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The model state is updated from time to time using the measurement of the

actual state of the plant and the control law, in turn, depends on the states

of the model rather than the actual states of the plant.

Such a process is depicted in Figure 4.1. When there is no estimator, the

controller is piecewise constant and the input to the controller x̂(t) = x(tk)

for t ∈ [tk, tk+1). Alternatively, a plant model is used at the controller side

to reconstruct the plant behavior when the sensor data x is not available due

to the network access limitation, and to generate the estimate x̂ to feed to

the controller block. This setting is to perform the feedback by updating

the state of the model using the actual state of the plant provided by the

sensor. The rest of the time the control action is based on the plant model

and is running in open loop for a period of τk seconds. Indeed, this idea

can be interpreted as a switch between open loop and closed loop control.

Having knowledge of the plant model at the controller side enables us to run

it in open loop, while the update of the model state provides the close loop

information needed to overcome model mismatch. The use of plant models in

Figure 4.1: The setup of the model-based NCS

the controller is not new. It has been used in previous work on sampled data

systems, for example [1, 35, 36]. The works in [35, 36] utilized a numerical

integration model to design a dual-rate controller to guarantee the input-to-

state stability of the closed loop. Arcak et al. proposed a design framework
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for single rate sampled-data systems via a discrete-time model in [1].

Remark 4.3. Note that the controller and the actuator are combined

together into a single node. That is, the network is between the sensor

and the controller/actuator nodes. Assuming that the controller and the

actuator physically coexist is reasonable since embedded microprocessors are

usually incorporated into the actuator to process the data and execute the

commands.

In this chapter, the primary objective is to efficiently use the finite bus

capacity while maintaining good closed-loop control system performance.

This chapter concentrates on characterizing the network access interval to

achieve a tradeoff between better performance and lower network traffic.

It is shown that if a controller exponentially stabilize the non-networked

system, then the proposed control scheme would guarantee the nonlinear

networked control system to preserve desired performance (stability and

ultimate boundedness).

The following notation and definitions will be used throughout this

chapter. Denote Z+ as the set of nonnegative integers, R≥0 := [0,∞) and

B(r) := {x| |x| ≤ r}. The Euclidean norm of a vector is denoted as | · |.

Definition 4.1. The equilibrium point x = 0 of ẋ = f(t, x) is said to

be exponentially stable if there exist α, β and a > 0, such that |x(t)| ≤
β|x(t0)|e−α(t−t0) whenever |x(t0)| ≤ a.

Definition 4.2. ẋ = f(t, x) is said to be uniformly ultimately bounded if

there exist positive constants a and λ, such that for all |x(t0)| ≤ a, there

exists a positive constant T > 0 such that |x(t)| ≤ λ, ∀t ≥ t0 + T .

4.3 Main results

In this section the main results are stated and proved. The effect of the

network on the system performance is considered and an estimation method

to reduce network traffic and improve system performance is presented.

A starting point is to assume that the control law is designed in

advance without considering the effect of the network. In this way

traditional controller design techniques can be applied. Precisely, the
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problem formulated in the previous section is addressed under the following

assumption.

Assumption 4.1. Consider the nominal system of (4.1) and (4.2). There

exist positive constants c1, c2, c3, c4 and for any ∆ > 0 there exist a continuous

function V : R≥0 × Rn → R≥0 such that for all x ∈ Rn with |x| ≤ ∆, the

following holds

c1|x|2 ≤ V (t, x) ≤ c2|x|2 (4.4)

∂V

∂t
+

∂V

∂x
fp(t, x, gc(t, x)) ≤ −c3|x|2 (4.5)

∣∣∣∣
∂V

∂x

∣∣∣∣ ≤ c4|x|. (4.6)

Remark 4.4. Note that assumption 4.1 is closely related to Definition 4.1.

In particular, it was shown in [26] that the continuous-time system is

exponentially stable if (4.4) and (4.5) holds. Moreover, a converse theorem

for exponential stability would confirm that if the origin is exponentially

stable, then there exists a Lyapunov function satisfying (4.4)-(4.6) (see for

example, Section 3.6 in [26]). It would be important to provide conditions

under which one can construct a Lyapunov function from this assumption.

4.3.1 Stability analysis without estimator

In a typical situation, one does not know the additive uncertainty rp(t, x, u),

but have some information about it, such as a linear growth bound on it.

Consider the case of a vanishing perturbation: rp(t, 0, 0) = 0. Suppose

for any ∆ > 0 the perturbation term rp(t, x, gc(t, x)) =: r(t, x) satisfies

|r(t, x)| ≤ γ|x| whenever |x| ≤ ∆, where γ is a nonnegative constant.

Consider the networked control system in Figure 4.1 with the plant dynamics

(4.1) and the controller

u = gc(t, x̂), (4.7)

where x̂ is the state of the controller. When no plant model is used at the

controller side, the controller receives the signal only at tk because of the

network access limitation. The resulting controller is piecewise constant, i.e.

x̂(t) = x(tk) for t ∈ [tk, tk+1).



4. Model-based Nonlinear NCSs 60

Begin with the following lemma [66], which can be viewed as a reverse

time extension of the Gronwall Inequality.

Lemma 4.1. Let λ(t) be continuous and differentiable, and let k(t) be

continuous and nonnegative. If the function y(t) satisfies

y(t) ≤ λ(t) +
∫ tf

t
k(s)y(s)ds, ∀ tf ≥ t ≥ 0, (4.8)

then

y(t) ≤ λ(tf )e
∫ tf

t k(s)ds − ∫ tf
t

λ̇(s)e
∫ s

t k(τ)dτds. (4.9)

Theorem 4.2. Consider the networked control system (4.1) and (4.7).

Suppose there exists a Lyapunov function V (t, x) that satisfies (4.4)-(4.6)

and suppose |r(t, x)| ≤ γ|x| with γ < c3
c4

. Then the following holds. Given

ζ1 > 0, there exists τm > 0 with the following properties:

(i) L2(e
(L1+L3)τm − 1) < 1,

(ii) L2(γ+L1+L1L2)(e(L1+L3)τm−1)e(L1+L3)τm

1−L2(e(L1+L3)τm−1)
< c3

c4
− γ,

where Li (i = 1, 2, 3) are locally Lipschitz constants of fp(t, x, u), gc(t, x) and

rp(t, x, u), such that for all |x(t0)| ≤ ζ1 and τk ∈ [0, τm], the origin of the

NCS is exponentially stable.

Proof. Let ζ1 > 0 be given. Define ∆x :=
√

c2
c1

ζ1 and ∆1 := ∆x + 1.

By the local Lipschitz property of u and the fact that u is zero at zero,

there exists ∆2 ≥ 0 such that |u(t)| ≤ ∆2 for all x ∈ B(∆x) ⊂ D.

Let L1, L2, L3 > 0 be the Lipschitz constants of fp(t, x, u), gc(t, x) and

rp(t, x, u) for all |x| ≤ ∆1, |u| ≤ ∆2 with B(∆1) ⊂ D and B(∆2) ⊂ Du.

Let b be a number that satisfies max{|fp(t, x, u)|, |rp(t, x, u)|} ≤ b for all

|x| ≤ ∆1, |u| ≤ ∆2.

First of all, claim that |x(tk)| ≤ ∆x for k ∈ Z+. Assume from now on that

this claim is true. Since fp and rp are bounded by b, the solution x(t) of the

initial value problem: ẋ(t) = fp(t, x, u)+rp(t, x, u) with the initial value x(tk)

exists (in particular, we can take τk = 1
2b

), and |x(t)| ≤ ∆1,∀t ∈ [tk, tk+1).

Define the network induced error signal as

e(t) = x(t)− x̂(t). (4.10)
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At each transmission time tk, it follows that e(tk) = 0, for all k ∈ Z+. The

closed-loop dynamics in between two successive transmission times can be

written as
ẋ(t) = fp(t, x, gc(t, x̂)) + rp(t, x, gc(t, x̂)),

x̂(t) = x(tk)
(4.11)

∀t ∈ [tk, tk+1). Then it follows that for any t ∈ [tk, tk+1),

ė(t) = fp(t, x, gc(t, x̂)) + rp((t, x, gc(t, x̂))), (4.12)

which implies from the Lipshitz property of fp, gc and fp(t, 0, 0) = 0 and

gc(t, 0) = 0 that

|ė(t)| ≤ (L1 + L3)|e|+ γ + L1 + L1L2|x̂|. (4.13)

Application of comparison lemma results in

|e(t)| ≤ (γ+L1+L1L2)
L1+L3

(e(L1+L3)τk − 1)|x̂|, (4.14)

where we have used the fact that d|e(t)|
dt

≤ |de(t)
dt
|. Fix the final time tf and let

the initial time t be interchangeable, that is, tk ≤ t ≤ tf < tk+1. It follows

from

|x(t)| ≤ |x(tf )|+ L2(L1 + L3)|x̂|(tf − t) +
∫ t

tf
(L1 + L3)|x(s)|ds

and Lemma 4.1 that

|x(t)| ≤ |x(tf )|e(L1+L3)(tf−t) + L2(L1 + L3)|x̂|(e(L1+L3)(tf−t) − 1). (4.15)

Let t = tk, and tf = t. Then

|x̂(t)| ≤ e(L1+L3)τk

1−L2(e(L1+L3)τk−1)
|x(t)| (4.16)

and thus

|e(t)| ≤ (γ+L1+L1L2)(e(L1+L3)τk−1)e(L1+L3)τk

(L1+L3)(1−L2(e(L1+L3)τk−1))
|x(t)|. (4.17)

It follows from assumption 4.1 with ∆ = ∆1 that the derivative of V (t, x)

along the trajectories of (4.11) is given by

V̇ =
∂V

∂t
+

∂V

∂x
(fp(t, x, gc(t, x̂)) + rp(t, x, gc(t, x̂)))

≤ −(c3 − c4γ)|x|2 + c4L2(L1 + L3)|x||e|
≤ −(c3 − c4γ − µ)|x|2

(4.18)



4. Model-based Nonlinear NCSs 62

where µ = c4L2(γ+L1+L1L2)(e(L1+L3)τm−1)

1−L2(e(L1+L3)τm−1)
e(L1+L3)τm . Under the conditions (i)

and (ii), we have V̇ ≤ −c|x|2, with c = c3 − c4γ − µ > 0,∀t ∈ [tk, tk+1).

Hence, the origin is exponentially stable.

It remains to establish the initial claim. This claim follows by induction.

Indeed, it clearly holds for k = 0, since c1|x(t0)|2 ≤ V (t0) ≤ c2ζ
2
1 ≤ c1∆

2
x by

the definition of ∆x. Then from the deduction above, V̇ ≤ −c|x|2 ≤ − c
c2

V

holds for the transmission interval between t0 and t1. By the comparison

lemma, it follows that V (t1) ≤ V (t0) ≤ c1∆
2
x and thus |x(t1)| ≤ ∆x, which

implies that this claim holds for k = 1 as well. Then |x(tk)| ≤ ∆x, k ∈ Z+

follows by induction. This establishes the claim and the proof is complete.

Remark 4.5. The convergence rate of the closed-loop system is easy to

estimate in Theorem 4.2. It follows from V̇ ≤ −c|x2| and (4.4) that

|x(t)| ≤
√

c2
c1
|x(t0)|e−

c3−c4γ−µ
2c2

(t−t0)
. Hence, we conclude that the convergence

rate should not be greater than − c3−c4γ−µ
2c2

. Here, µ depending on the access

deadline τm, is the main factor that affects heavily the convergence rate of

the NCS. One can see that if τm is sufficiently large, then the larger access

interval leads to the slower convergence rate.

4.3.2 Stability analysis with estimator

Since the lack of awareness of the inner plant behavior in the access interval

may result in large bandwidth and fast update time of the network, in the

following, we seek an alternative approach, which utilizes the knowledge

of the plant dynamics, to lower network usage and ameliorate the system

performance.

Consider the performance of such a model-based scheme depicted in Figure

4.1. Let the plant model in between two successive transmission times

[tk, tk+1) be

˙̂x(t) = fp(t, x̂(t), u(t)) (4.19)

with initial value x̂(tk) = x(tk), where x̂(t) ∈ Rn is the model state to feed the

controller. The closed-loop dynamics of the plant model with the controller

(4.7) can be written as

˙̂x(t) = fp(t, x̂, gc(t, x̂)). (4.20)
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Theorem 4.3. Consider the NCS whose plant dynamics are described by

(4.1) with the model-based controller (4.7) and (4.19). Suppose there exists

a Lyapunov function V (t, x) that satisfies (4.4)-(4.6) and suppose |r(t, x)| ≤
γ|x| with γ < c3

c4
. Then the following holds. Given ζ2 > 0, there exists τm > 0

with the following properties:

(i) α(γ+L1L2+L3)
L1+L3−β

(e(L1+L3−β)τm − 1) < 1

(ii)αγL2(L1+L3)(e2(L1+L3)τk−e(L1+L3−β)τm )

1−α(γ+L1L2+L3)
L1+L3−β

(e(L1+L3−β)τm−1)
< ( c3

c4
− γ)(L1 + L3 + β)

where α =
√

c2
c1

and β = c3
2c2

, such that for all |x(t0)| ≤ ζ2 and τk ∈ [0, τm],

the model-based NCS is exponentially stable.

Proof. Let ζ2 > 0 be given. Define ∆x :=
√

c2
c1

ζ2 and ∆x̂ :=
√

c2
c1

∆x. By

the Lipschitz property of u and the fact that u is zero at zero, there exists

∆u ≥ 0 such that |u(t)| ≤ ∆u for all x̂ ∈ B(∆x̂). Define ∆1 := ∆x + 1

and ∆2 := max{∆1, ∆x̂}. Let L1, L2, L3 > 0 be the Lipschitz constants of

fp(t, x, u), gc(t, x) and rp(t, x, u) for all |x| ≤ ∆2, |u| ≤ ∆u.

By induction, we claim that |x(tk)| ≤ ∆x for k ∈ Z+. Define e(t) =

x(t) − x̂(t). Since the model state x̂ is updated at tk and resets to x(tk), it

follows that e(tk) = 0. The closed-loop plant dynamics in [tk, tk+1) is

ẋ(t) = fp(t, x(t), gc(t, x̂(t))) + rp(t, x(t), gc(t, x̂(t))). (4.21)

Combining with (4.20), it is easy to obtain that for t ∈ [tk, tk+1),

|ė(t)| ≤ (L1 + L3)|e|+ γ|x̂|, (4.22)

which implies by the comparison lemma that

|e(t)| ≤ γ
∫ t

tk
e(L1+L3)(t−s)|x̂(s)|ds.

Use V (t, x) as the Lyapunov function candidate. The derivative of V

along the trajectories of the closed loop plant model (4.20) is given by

V̇ = ∂V
∂t

+ ∂V
∂x

fp(t, x̂, gc(t, x̂)). It follows from assumption 4.1 that the plant

model is exponentially stable. Thus,

|x̂(t)| ≤
√

c2
c1
|x̂(tk)|e−

c3
2c2

(t−tk)
(4.23)
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and

|e(t)| ≤ αγ
L1+L3+β

|x̂(tk)|(e(L1+L3)τk − e−βτk) (4.24)

where α :=
√

c2
c1

and β := c3
2c2

. It follows from Lemma 4.1 and simple

calculations that

|x̂(tk)| ≤ e(L1+L3)τk

1−α(γ+L1L2+L3)
L1+L3−β

(e(L1+L3−β)τk−1)
|x(t)|. (4.25)

Substitution (4.24) gives

|e(t)| ≤ αγ(e2(L1+L3)τm − e(L1+L3−β)τm)

(L1 + L3 + β)(1− α(γ+L1L2+L3)
L1+L3−β

(e(L1+L3−β)τm − 1))︸ ︷︷ ︸
ρ

|x(t)|.
(4.26)

It follows from assumption 4.1 and condition (ii) that the derivative of V

along the trajectories of (4.21) is

V̇ =
∂V

∂t
+

∂V

∂x
(fp(t, x, gc(t, x̂)) + rp(t, x, gc(t, x̂)))

≤ −(c3 − c4γ)|x|2 + c4L2(L1 + L3)|x||e|
≤ −η|x|2 (4.27)

with η = c3 − C4γ − c4L1L2ρ > 0. Hence the model-based NCS is

exponentially stable with the convergent rate not greater than −η/2c2. This

completes the proof of Theorem 4.3.

In the remaining of this subsection, we turn to consider the case of a

nonvanishing perturbation, where we do not know rp(t, 0, 0) = 0 and the

origin x = 0 may not be an equilibrium point of the perturbed plant. Suppose

that the perturbation is bounded by a sufficient small bound. That is, the

plant is of robustness property having exponentially stable equilibrium at the

origin such that |x̂(t)| will be bounded for sufficiently large t and arbitrarily

small perturbations will not result in large deviations from the origin. We will

conclude that under the proposed model-based control scheme the nonlinear

networked control system is uniformly ultimately bounded.

Theorem 4.4. Consider the NCS whose plant dynamics are described by

(4.1) with the model-based controller (4.7) and (4.19). Suppose there exists a

Lyapunov function V (t, x) that satisfies (4.4)-(4.6) and suppose |r(t, x̂)| ≤ δ
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for all t ≥ 0. Then the model-based NCS is uniformly ultimately bounded:

the trajectories of the closed loop system satisfiy

|x(t)| ≤
√

c2
c1

max{|x(t0)|e−
(1−θ)c3

2c2
(t−t0)

, c4δ
c3θ

(1 + L1L2

L1+L3
(e(L1+L3)τm − 1))}.

Proof. Take V (t, x) as a Lyapunov candidate. The derivative of V along the

trajectories of the closed loop NCS is given by

V̇ ≤ −c3|x|2 + c4|x|δ + c4(L1L2 + L3)|x||e|. (4.28)

The states of the plant x(t) and the plant model x̂(t) can be rewritten as

x(t) = x(tk) +
∫ t

tk
fp(s, x(s), gc(s, x̂) + rp(s, x(s), gc(s, x̂) ds

x̂(t) = x̂(tk) +
∫ t

tk
fp(s, x̂(s), gc(s, x̂))ds.

(4.29)

Subtracting the two equations and taking norms yield

|e(t)| ≤ δ(t− tk) + (L1 + L3)
∫ t

tk
|e(s)|ds, ∀t ∈ [tk, tk+1). (4.30)

Application of the Gronwall Inequality to |e(t)| results in

|e(t)| ≤ δ(t− tk) +
∫ t

tk
δ(L1 + L3)(s− tk)e

(L1+L3)(t−s)ds.

Integrating the right-hand side by parts, we obtain

|e(t)| ≤ δ
L1+L3

(e(L1+L3)τk − 1), ∀t ∈ [tk, tk+1). (4.31)

Then

V̇ ≤ −c3|x|2 + c4|x|δ(1 + L1L2

L1+L3
(e(L1+L3)τk − 1)). (4.32)

Using (4.4), we get

V ≥ c2{ c4δ
c3θ

(1 + L1L2

L1+L3
(e(L1+L3)τk − 1))}2 ⇒ V̇ ≤ − (1−θ)c3

c2
V (4.33)

for some positive constant θ < 1, which implies

V (t) ≤ max{e−
(1−θ)c3

c2
(t−tk)

V (tk), c2{ c4δ
c3θ

(1 + L1L2

L1+L3
(e(L1+L3)τm − 1))}2}

(4.34)



4. Model-based Nonlinear NCSs 66

for ∀t ∈ [tk, tk+1), where denote V (t) := V (t, x(t)) and V (tk) := V (tk, x(tk))

to shorten notations. Note that V (tk) = V (t−k ), where V (t−k ) denotes the left

limit of V at tk. Using (4.34) to calculate V (t−k ) on [tk−1, tk), we obtain that

V (tk) ≤ max{e−
(1−θ)c3

c2
τk−1V (tk−1), c2{ c4δ

c3θ
(1 + L1L2

L1+L3
(e(L1+L3)τm − 1))}2}

(4.35)

and thus

V (t) ≤ max{e−
(1−θ)c3

c2
(t−tk+τk−1)

V (tk−1), c2{ c4δ
c3θ

(1 + L1L2

L1+L3
(e(L1+L3)τm − 1))}2}.

(4.36)

Denote N := c2{ c4δ
c3θ

(1 + L1L2

L1+L3
(e(L1+L3)τk − 1))}2. Iterating this process, we

get ∀t ∈ [tk, tk+1),

V (t) ≤ max{e−
(1−θ)c3

c2
(t−tk+τk−1+τk−2)

V (tk−2), e
− (1−θ)c3

c2
(t−tk+τk−1)

N,N}
≤ max{e−

(1−θ)c3
c2

(t−tk+τk−1+τk−2)
V (tk−2), N}

≤ · · · · · ·
≤ max{e−

(1−θ)c3
c2

(t−tk+
∑k−1

s=0 τs)V (t0), N}.

(4.37)

It follows from V (t) ≥ c1|x(t)|2, V (t0) ≤ c2|x(t0)|2 and t−tk+
∑k−1

s=0 τs = t−t0

that

|x(t)| ≤
√

c2
c1

max{|x(t0)|e−
(1−θ)c3

2c2
(t−t0)

, c4δ
c3θ

(1 + L1L2

L1+L3
(e(L1+L3)τm − 1))}.

(4.38)

This completes the proof of Theorem 4.4.

Remark 4.6. Note from (4.38) that the ultimate bound,
√

c2
c1

c4δ
c3θ

(1 +

L1L2

L1+L3
(e(L1+L3)τm − 1)), is proportional to δ. This shows that arbitrarily

small perturbations will not result in large steady-state deviations. Also

it is possible to make δ = 0 by having the exact plant. This agrees with the

intuition that without model errors, the networked system will be equivalent

to the original system and have the same desired behavior regardless of how

large are the access interval. This is the main reason why the proposed

control scheme is attractive: in the ideal case, we can expect to recover the

performance of the non-networked system.

Remark 4.7. It needs to be pointed out that the derived bounds could be

conservative, as the simulations in section 4.4 demonstrate. The conservatism
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is due to the conservative nature of the Gronwall Inequality and is also a

consequence of the worst-case analysis which has been adopted from the

beginning.

Consider the more general case. Suppose that|r(t, x̂)| ≤ γ|x̂| + δ where γ

and δ are nonnegative constants, the following corollary is obtained.

Corollary 4.5. Consider the NCS whose plant dynamics are described by

(4.1) with the model-based controller (4.7) and (4.19). Suppose there exists

a Lyapunov function V (t, x) that satisfies (4.4)-(4.6). Suppose |r(t, x̂)| ≤
γ|x̂| + δ with γ < c3

c4
and τm satisfies the conditions of Theorem 4.3. Then

the closed-loop NCS is uniformly ultimately bounded.

4.4 Numerical examples

Consider the continuous-time plant

ẋ(t) = x3(t) + u(t) + 0.5x sin(5t) (4.39)

with the continuous-time controller

u(t) = −x(t)− 3x3(t). (4.40)

Take the Lyapunov function

V (t, x) = 1
2
x2. (4.41)

Since

V̇ = −x2 − 2x4 + 0.5x2 sin(5t) ≤ −1
2
x2,

it follows that the non-networked closed loop system is of robustness

having globally exponentially stable equilibrium at the origin and satisfies

Assumption 4.1 with c1 = c2 = 0.5 and c3 = c4 = 1.

First of all, consider that the networked controller holds the last value

received from the sensor until the next time the sensor data has the access

to network. Consider the networked control implementation under this

piecewise constant control scheme. Assuming the initial value is x(0) = 1.0,

it follows from Theorem 4.2 with γ = 0.5, L1 = 3, L2 = 10 and L3 = 0.5

that the stability of the NCS is preserved for τk < 0.0005 seconds. On the
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Figure 4.2: Random access intervals with upper bound τm = 0.6s.

other hand, study the networked controller implementation based on a plant

model given by

˙̂x(t) = x̂3 + u. (4.42)

The access deadline obtained from Theorem 4.3 with α = 1 and β = 1

is 0.015 seconds, which shows the advantages and the effectiveness of the

introduction of the estimator to improve the system performance.

In the simulation the network access intervals are generated randomly

according to the access bound and shown in Figure 4.2. Our simulations show

that the NCS using the first control scheme remains stable for τm around 0.6

seconds (see Figure 4.3). For the purpose of comparison consider also the

NCS response under model-based controller with the same update time and

the closed loop response of the non-network system. It is easy to see that the

form of response curve under model-based control scheme is almost identical

to the one with network free.

On the other hand, our simulations show that using the control scheme

based on the plant model (4.42), the access deadline to recover the stability is

around 16 seconds (see Figure 4.4a), which is more than twenty times larger

than that of the system without the estimator. Moreover, the simulation
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Figure 4.3: The NCS responses under two control schemes with τm = 0.6s.

of the networked controller implementation based on the plant model with

nonvanishing perturbation given by

ẋ(t) = x3 + u + 0.5 sin(x) (4.43)

and the bound τm = 1.5 seconds is shown in Figure 4.4b. Advantages of

model-based approach are clear when compared with the response obtained

under the first control scheme (piecewise constant controller), which a much

larger access deadline to guarantee the stability is achieved and hence a

significant saving in the required bandwidth is obtained and more bandwidth

will be available to allocate more resources.

As one can see, for small access interval both the system with and without

an estimator are stable, but the system with an estimator is stable for network

much slower than that without an estimator and the difference in the amount

of bandwidth used is large. This means that when it is possible, it is worth

to add an estimator to allow for slower network traffic, or in other words to

allow for an increased network load.
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Figure 4.4: The model-based NCS responses with vanishing and non-
vanishing perturbations.

4.5 Conclusions

In this chapter we studied the networked realization of a nonlinear control

system. We focus on the effect of the network on the closed loop performance

as well as present an estimation method as a solution to reduce network

traffic. The conditions for the network access interval to preserve desired

performance of the networked control system are derived.

Two different approaches to model the networked control system are

considered: piecewise constant control scheme and model-based scheme. It is

shown that if a controller exponentially stabilizes the non-networked system,

then both of the control schemes would guarantee the networked control

system to preserve desired performance by employing access deadline.

It needs to be pointed out that there is a tradeoff between the performance

of the control system and bandwidth usage. In essence, we trade

increased computational demands for decreased communication. By adding

the estimator, the computation load is increased due to the additional

computation related to the estimator. However, by using the estimated

values instead of true values of the plant, a significant saving in the required
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bandwidth is achieved and this makes possible stabilization of the plant even

under slow network conditions.

Notes. A version of this chapter has been submitted for publication.

X. Liu, H. J. Marquez and Y. Lin, Model-based nonlinear networked control

Systems. IEEE transaction on automatic control.



Chapter 5

Sampled-data control of
nonlinear NCSs

Basically, an NCS is hybrid, which involves a continuous plant, networks

and time-driven or event-driven devices, for instance, sampler, controller and

holder. Hybrid nature of NCSs makes the synthesis and analysis problems

difficult. In this chapter, the problem of analysis for the nonlinear networked

control systems with event-driven digital controller and event-driven holder is

considered. The configuration shows that this NCS model is quite general and

it removes the assumption that the time delay is less than one sampling period

used in [55, 71]. The physical plant and the controller are in continuous-

time and discrete time respectively. The NCS is modeled as a sampled-

data system with time delays. Sampled-data control system formulation has

been recognized a modeling method for NCSs for years, see, for example,

[13, 21, 71]. In this chapter, for such a sampled-data NCS, a compensation

scheme for the network-induced delays is addressed, which employs an

estimator to reconstruct approximately the undelayed plant state and feed

it back to the digital controller, and the stability results via linearization

approach [20] are derived. An illustrative numerical example is presented to

show the usefulness and effectiveness of the proposed scheme.

The remainder of this chapter is organized as follows. The problem

formulation of the NCS with network-induced delays is presented in section

5.1. The stability and performance issues of the system are examined in

section 5.3 and the results are illustrated via simulations in section 5.4.

Finally, this chapter is closed with conclusions in the last section.

72
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5.1 Problem Formulation

The NCS model considering network-induced delays is shown in Figure 5.1,

in which a continuous plant is controlled by a digital controller. Suppose

that the physical plant is given by the following continuous-time nonlinear

system

ẋ(t) = f(x, u) (5.1)

where x ∈ Rn, u ∈ Rm are the plant state and the control vectors respectively.

It is assumed that x(t) is online measurable and the measurements of x(t) are

transmitted in a single packet, which means that the sensor data are lumped

together into one network packet and transmitted over the communication

channel at the same time.

Figure 5.1: The setup of the sampled-data control of NCS

As Figure 5.1 shows, there are two different sources of delays from the

network: sensor-to-controller delay τsc and controller-to-actuator delay τca.

For time-invariant controllers, the sensor-to-controller delay and controller-

to-actuator delay can be lumped together as τ = τsc + τca for the purpose of

analysis [71].

Because of the asynchronous nature in NCS, this chapter considers the

setup with a time-driven sensor, an event-driven controller and an event-

driven ZOH. Event-driven control strategies ([2, 17, 64]) have been proposed
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to make such a compromise between processor load and control performance.

In contrast to a time-driven system, in a event-driven system, time no longer

serves the purpose of driving such a system and in between event occurrences,

the state variables are unaffected and their values change only at certain

points in which events takes place. There is no mechanism to specify how

events might interact over time or how their time of occurrence might be

determined.

The sampling period is assumed to be a positive real constant, denoted

by T . The time-driven sensor sample the plant outputs periodically at the

sampling instants. The event-driven controller can be implemented by an

external event interrupt mechanism and calculates the control signal as soon

as the sensor data arrives. The event-driven actuator means that the plant

inputs are changed as soon as the data become available. In an event-driven

controller or actuator, it is the occurrence of an event rather than the passing

of time, that decides when the next sample should be taken. Moreover, the

aim of event-driven control is to create a better balance between the control

performance and other aspects of the system, such as communication load

[17].

Denote the updating instant of the ZOH as tk, and suppose that

the updating signal (successfully transmitted signal from the sampler to

the controller and to the ZOH) at the instant tk has experienced signal

transmission delays τk with τk = τ k
sc + τ k

ca. For this formulation, it is

not difficult to know that the controller switches at the updating instants

tk = kT + τk and the control action is held over the interval [tk, tk+1).

Therefore, the digital controller takes the following form

u(tk) = g(x(tk − τk)), (5.2)

and

u(t) = g(x(tk − τk)) (5.3)

for tk ≤ t < tk+1, k ∈ Z+.

Remark 5.1. it is important to note that in (5.3), tk refers to the updating

instant of the ZOH, not the sampling instant. It should be noted that the

controller and actuator are event-driven, which mean we do not need to
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synchronize the ZOH actuator and the sampler. The ZOH may be updated

between sampling instants.

5.2 Compensation for the delays

A NCS is concerned primarily with the quality of real-time service. Queues

are not desirable in a NCS, since in real-time control systems, the newest

data is the best. This brings us the idea to compensate the delays and make

the new data available.

An estimator is used to reconstruct an approximation to the undelayed

plant state and make it available for the controller calculation. Assume that

the delays of each sample is larger than (l−1) sampling period and less than

l sampling period for some integer l ≥ 1, that is, (l − 1)T < τk < lT for all

k. From the bound of the network-induced delays, we know that one control

sample is received every sample period for k ≥ l−1. Since (l−1)T < τk < lT ,

the first updating time t0 is in the interval ((l−1)T, lT ) and the kth updating

time tk is in the interval ((k + l−1)T, (k + l)T ) by recursion. The estimation

of the plant state at the updating time tk is based on the sensor measurement

of the plant at the sampling instant (k + l − 1)T and the network-induced

delays τk.

Specifically, the main idea behind this approach is the following: a

controller containing a model-based scheme is proposed that allows us to

reconstruct approximately the plant states x(tk). This scheme is updated

periodically using the measurements of the plant states at the sampling

instants and the control law, in turn, depends on the states of the model

rather than the actual states of the plant. Here, the model doesn’t assume

complete knowledge of the plant. In other words, there is model mismatch in

the model dynamics. The use of plant model in the controller is not new. The

stabilization problem of NCSs based on its plant model has been addressed

recently in [40, 41, 58].
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5.3 Main results

It is assumed that the functions f and g are continuous differentiable with

f(0, 0) = 0 and g(0) = 0. For functions f(x, u) and g(x), let A = ∂f(0,0)
∂x

and

B = ∂f(0,0)
∂u

. Linearizing system (5.1) at the origin gives

ẋ(t) = Ax + Bu + F (x, u), (5.4)

where lim(x,u)→(0,0)
F (x,u)√
|x|2+|u|2 = 0.

Consider the continuous-time plant (5.4). Let x̃(tk) denote the estimate

of the plant state at the time tk. To compensate for the network delays,

introduce the approximate model

˙̃x(t) = Ax̃ + Bu(tk−1), t ∈ [(k + l − 1)T, tk) (5.5)

with periodically updated initialization x̃((k + l− 1)T ) = x((k + l− 1)T ) to

estimate x(tk). Here, denote u(t−1) = 0 in (5.5) for k = 0. It follows from

(5.5) that x̃(tk) can be calculated by

x̃(tk) = eA(τk−(l−1)T )x((k + l − 1)T ) +

∫ τk−(l−1)T

0

eAsds Bu(tk−1). (5.6)

Thus the control signal is computed by u(t) = g(x̃(tk)) for t ∈ [tk, tk+1). Let

C = dg(0)
dx

. Then the controller can be rewritten as

u(t) = Cx̃(tk) + G(x̃(tk)), t ∈ [tk, tk+1) (5.7)

where limx→0
G(x)
|x| = 0. It follows from this control law (5.7) and (5.4) that

x(tk+1) = eA(T+τk+1−τk)x(tk) +

∫ T+τk+1−τk

0

eAsds BCx̃(tk) +

∫ T+τk+1−τk

0

eAsds BG(x̃(tk)) +

∫ tk+1

tk

eA(tk+1−s)F (x(s), u(tk))ds (5.8)

Let z(k) = (xT (tk), x̃
T (tk))

T , where the superscript T means the transpose of

a vector. Hence, the augmented closed-loop system takes the following form

z(k + 1) = Φkz(k) + Ωk, (5.9)
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where

Φk =

(
eA(T+τk+1−τk)

∫ T+τk+1−τk

0
eAsds BC

0
∫ τk+1−(l−1)T

0
eAsds BC

)
, (5.10)

and

Ωk =

( ∫ T+τk+1−τk

0
eAsds BG(x̃(tk)) +

∫ tk+1

tk
eA(tk+1−s)F (x(s), u(tk))ds

∫ τk+1−(l−1)T

0
eAsds BG(x̃(tk)) + eA(τk+1−(l−1)T )x((k + l)T )

)
.

(5.11)

It is noted that the augmented closed-loop system in (5.9) is in the form

of a sampled-data system depending on the variable and uncertain network-

induced delays.

The main results are stated and proved in the following.

Theorem 5.1. Consider the networked control system with a continuous-

time nonlinear plant described by (5.1), a state estimator described by (5.6)

and a digital controller described by (5.7). Assume that lim supk→∞ |Φk| < 1.

Then the equilibrium point x = 0 of the closed-loop networked system is

exponentially stable.

The following lemma is needed to establish the proof of Theorem 5.1.

Lemma 5.2. For any given ν > 0, there exists δ1 = δ1(ν) > 0, such that

|x(t)| ≤ c|z(k)| (here, c is a constant) and |Ωk| ≤ ν|z(k)| for t ∈ [tk, tk+1),

whenever |z(k)| ≤ δ1 for all k ∈ Z.

Proof. It follows from (5.4) that for t ∈ [tk, tk+1),

x(t) = x(tk) + B(t− tk)u(tk) +
∫ t

tk
Ax(s) + F (x(s), u(tk))ds. (5.12)

By continuity, there exists δ2 > 0 such that |F (x, u)| ≤ |x| + |u| and

|G(x)| ≤ |x|, whenever |x| ≤ δ2 and |u| ≤ δ2. First, claim that there exists

δ3 > 0 (δ3 < min{ δ2
c
, δ2
|C|+1

}) such that |x(t)| < δ2 for all t ∈ [tk, tk+1)

whenever |z(k)| ≤ δ3. This claim can be established by contradiction.

Since δ3 < δ2, it is assumed that there exists a t̄ ∈ [tk, tk+1), such that

|x(t)| < δ2, for all t ∈ [tk, t̄) and |x(t̄)| = δ2. It follows from |z(k)| ≤ δ3 that

|u(tk)| ≤ |C||x̃(tk)|+ |x̃(tk)| ≤ (|C|+ 1)δ3 ≤ δ2. Thus,

|x(t)| ≤ |x(tk)|+ |B|(tk+1 − tk)|u(tk)|+
∫ t

tk

(|A|+ 1)|x(s)|+ |u(tk)|ds

≤ |x(tk)|+ 2(|B|+ 1)T |u(tk)|+
∫ t

tk

(|A|+ 1)|x(s)|ds.
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It follows by Gronwall Inequality that

|x(t)| ≤ (|x(tk)|+ 2(|B|+ 1)T |u(tk)|)e2(|A|+1)T

≤ c|z(k)| < c · δ2

c
< δ2 (5.13)

where c := [1 + 2(|B| + 1)(|C| + 1)T ]e2(|A|+1)T . Thus |x(t̄)| < δ2, which is

a contradiction. Therefore, there exists δ3 > 0 such that |x(t)| < δ2 for all

t ∈ [tk, tk+1) whenever |z(k)| ≤ δ3. Moveover, it is known that x(t) ≤ c|z(k)|
for t ∈ [tk, tk+1) whenever |z(k)| ≤ δ3.

Now consider Ωk: for given ν > 0, let ν = (c + ε1|B|T )e|A|T + 2ε1(|B| +√
c2 + (|C|+ ε1)2)Te2|A|T . There exists δ4 > 0 such that |F (x, u)| ≤

ε1

√
|x|2 + |u|2, whenever

√
|x|2 + |u|2 ≤ δ4 and |G(x)| ≤ ε1|x|, whenever

|x| ≤ δ4. Let δ1 = min{δ3,
δ4√
2c

, δ4√
2(|C|+ε1)

}. It follows from the definition of

δ1 that |x(t)| ≤ c|z(k)| ≤ δ4 and
√
|x(t)|2 + |u(tk)|2 ≤ δ4 for t ∈ [tk, tk+1).

Using (5.11) and the definition of ν, we obtain

|Ωk| ≤ ε1

∫ T+τk+1−τk

0

e|A|(T+τk+1−τk)ds|B||z(k)|+ c|z(k)|e|A|(τk+1−(l−1)T )

+ε1

∫ τk+1−(l−1)T

0

e|A|(τk+1−(l−1)T )ds|B||z(k)|

+ε1e
2|A|T

∫ tk+1

tk

√
|x(s)|2 + |u(tk)|2ds

≤ 2ε1(|B|+
√

c2 + (|C|+ ε1)2)Te2|A|T |z(k)|
+(c + ε1|B|T )e|A|T |z(k)|

≤ ν|z(k)|. (5.14)

This completes the proof of Lemma 5.2.

Now the proof of Theorem 5.1 can be finalized as follows.

Proof. Let V (z(k)) = z(k)T z(k) be a Lyapunov candidate for system (5.9).

Then

V (z(k + 1)) = (Φiz(k) + Ωk)
T (Φkz(k) + Ωk)

≤ |Φk|2|z(k)|2 + 2|Φk||z(k)||Ωk|+ |Ωk|2. (5.15)



5.4. Numerical examples 79

Since lim supk→∞ |Φk| < 1, there exist q (0 < q < 1) and k0 ∈ Z such that

|Φk| < q when k ≥ k0. Hence,

V (z(k + 1)) ≤ q2|z(k)|2 + 2q|z(k)||Ωk|+ |Ωk|2, k ≥ k0. (5.16)

Choose 0 < ν < 1 such that r :=
√

q2 + 2qν + ν2 < 1. By Lemma 5.2, there

exists δ1 > 0 such that |Ωk| ≤ ν|z(k)| and |x(t)| ≤ c|z(k)| for t ∈ [tk, tk+1),

when |z(k)| ≤ δ1 for all k ∈ Z. For any ε > 0, define δ := min{δ1,εe−αk0}∏k0−1
j=0 (|Φj |+1)

with

α := − ln r > 0. It follows from the part of the proof of Lemma 5.2 that

|z(0)| ≤ δ holds by choosing a proper bound for |x(0)|. Now for |z(0)| ≤ δ,

it follows by the definition of δ that |z(0)| ≤ δ1. Using (5.9), we obtain that

|z(k)| ≤ δ1 for 0 ≤ k ≤ k0, which implies

V (z(k0 + 1)) ≤ |(q2 + 2qν + ν2)|z(k0)|2 ≤ r2|z(k0)|2
⇒ |z(k0 + 1)| ≤ r|z(k0)| ≤ δ1.

By induction, we have |z(k)| ≤ δ1 for all k ∈ Z. It follows that

|z(k)| ≤ r|z(k − 1)| ≤ r2|z(k − 2)| ≤ . . . ≤ rk−k0|z(k0)|, k ≥ k0. (5.17)

Note that by the definition of δ,

|z(k)| ≤ (|Φk−1|+ 1) · · · (|Φ0|+ 1)|z(0)|
≤ εe−αk (5.18)

for 0 ≤ k ≤ k0. Hence, it follows that

|z(k)| ≤ εrk−k0e−αk0 ≤ εe−αk (5.19)

for all k ∈ Z and |x(t)| ≤ cεe−αk. This completes the proof of Theorem 5.1.

5.4 Numerical examples

Consider the continuous-time plant

ẋ(t) = x− 2 sin(x) + u (5.20)

with the digital controller

u(kT ) = −0.25x(kT )− x(kT )2. (5.21)
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It is assumed that T = 1, l = 2 and T < τk < 2T . Let x̃(tk)) denote the

estimate of the plant state at the time tk. To compensate for the network

delays, introduce the approximate model

˙̃x(t) = −x̃ + u(tk−1), (5.22)

for t ∈ [(k + 1)T, tk) and k ∈ Z with periodically updated initialization

x̃((k + 1)T ) = x((k + 1)T ). Here u(t−1) = 0 for k = 0. It follows from (5.22)

that x̃(tk)) can be calculated by

x̃(tk) = eA(τk−T )x((k + 1)T ) +
∫ τk−T

0
e−sds u(tk−1). (5.23)

Thus the control signal can be computed by

u(t) = −0.25x̃(tk)− x̃(tk)
2 (5.24)

for t ∈ [tk, tk+1). To summarize, the model-based NCS consists of (5.23),

(5.24) and (5.20). Denote

Φk =

(
e−(T+τk+1−τk) −1

4

∫ T+τk+1−τk

0
e−sds

0 −1
4

∫ τk+1−(l−1)T

0
e−sds

)
. (5.25)

For the purpose of simplification, consider the constant delays τ = 1.5. It

follows from calculations that all eigenvalues of ΦT Φ satisfy λ < 1, which

implies from Theorem 5.1 that the model-based NCS is exponentially stable.

Consider the networked control implementation under the model-based

control scheme. Assume the initial value is x(0) = 1.88. The simulation

shows that the model-based NCS is stable. (see Figure 5.2). For the purpose

of comparison consider also the NCS response without compensation with the

same initial value. The simulation shows that the closed loop is unstable. On

the other hand, the simulations under this two control scheme with initial

value x(0) = 1.2 is shown in Figure 5.3, which implies the advantages of

model-based approach: a larger region of attraction can be obtained with

better closed loop response. This means that when it is possible, it is worth

to add an estimator to compensate the networked delays and achieve better

performance.
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Figure 5.2: The model-based NCS responses with x(0) = 1.88.

5.5 Conclusions

This chapter considered the networked control systems with event-driven

digital controller and event-driven holder. The physical plant and the

controller are in continuous time and discrete time, and the NCS is modeled

as a sampled-data system with time delays. For such a sampled-data NCS,

an estimator to compensate the network-induced delays and reconstruct

approximately the undelayed plant state is proposed and the stability result

via linearization approach is obtained. Because of the nonlinearities, local

rather than global results are obtained. It needs to be pointed out that in

general it is difficult to obtain good estimates of the region of attraction

by the present method. Furthermore, this limitation is inherent in most

methodologies involving linearizations.
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Figure 5.3: The NCS responses under two control scheme with x(0) = 1.2.



Chapter 6

Conclusions

As a consequence of lower cost, easy maintenance and higher flexibility, the

network-based systems have replaced the traditional counterpart and have

been applied to the industry. However, some network-inherited properties,

such as time delays, data packet loss, etc., challenge the NCS superiority over

the traditional control systems. The insertion of a network into a previously-

designed system affects the closed-loop system performance and can have

destabilizing effect.

This study is concerned with the analysis of the control design for nonlinear

networked control systems. The main contributions are the following.

Ignoring the network connection and cascading actuators, the plant and

sensors together, a sampled-data control system is obtained. We considered

the important practical case where hardware restrictions are imposed on

the “measurement-A/D conversion” process. First of all, the problem of

sampled-data stabilization of system under the “low measurement rate”

constraint is addressed via the emulation design method. Since the single

rate results presented in [28] may lead to unstable closed-up sampled data

system, we address the dual-rate control scheme. The main idea is to

introduce a controller that contains a “fast” numerical integration model that

reconstructs approximately the missing states between samples. It was shown

that if a continuous-time controller input-to-state stabilizes a continuous-

time plant, then under some standard assumptions the proposed dual-rate

scheme makes the closed loop sampled data system input-to-state stable in

the semiglobal practical sense. Our results are important in applications since

83
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the fast sampling results may not be possible to implement due to hardware

limitations. It is emphasized that the results are prescriptive and they can be

used as a guide when one designs digital controllers based on the emulation

approach.

We also present some answers to the problem of dual-rate sampled-data

stabilization of system using the approximate discrete-time design method.

Given an approximate discrete-time model of a sampled nonlinear plant and

given a family of controllers that stabilizes the plant model in input-to-

state sense, it is shown that the closed loop sampled-data control system is

input-to-state stable under the dual-rate control scheme based on the DTD

method. In our setting the exact and approximate discrete-time models were

considered as functions of the sampling period T and the integration period

h. Indeed, it is important to note that the role of T and h are different when

pursuing the approximate DTD method. Typically, the size of the domain

of attraction may be controlled by reducing T whereas the accuracy of the

closed loop behavior may be controlled by tuning design parameters.

The networked realization of nonlinear control systems was also studied.

Among several existing methods to ameliorate the NCS performance, the

most effective method is to decrease the network traffic. We focus on the

communication access constraint imposed by the network and consider NCSs

as continuous-time models. For such NCS models, we study the effect of

the network on the closed loop performance as well as present a model-

based control scheme as a solution to reduce network traffic. Specifically,

a plant model is used at the controller side to reconstruct approximately

the plant behavior between transmission times and feedback the estimate

to the controller. The model state is updated from time to time using the

measurement of the actual state of the plant and the control law, in turn,

depends on the states of the model rather than the actual states of the

plant. The primary objective is to efficiently use the finite bus capacity while

maintaining good closed-loop control system performance. It is shown that

if a controller exponentially stabilizes the non-networked system, then the

proposed two control schemes, piecewise constant control and model-based

scheme, would guarantee the nonlinear networked control system to preserve

desired performance (stability and ultimate boundedness) by employing
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network access deadline. Moreover, in model-based scheme, by using the

estimated values instead of true values of the plant, a significant saving in

the required bandwidth is achieved and this makes possible stabilization of

the plant even under slow network conditions.

Finally, the stability analysis for NCSs with event-driven digital controller

and event-driven holder was considered. It is important to note that the

controller and actuator are event-driven, which mean we do not need to

synchronize the actuator and the sampler. The physical plant and the

controller are in continuous time and discrete time, respectively, and the

NCS is modeled as a sampled-data system with time delays. For such a

sampled-data NCS, a model-based controller was proposed, which employs

an estimator to compensate the network-induced delays because as a real-

time control system, queues are not desirable in a NCS and the newest data is

the best. The stability results via linearization approach are derived. Because

of the nonlinearities, local rather than global results are obtained. It needs

to be pointed out that in general it is difficult to obtain good estimates of the

region of attraction by the linearization method. Furthermore, this limitation

is inherent in most methodologies involving linearizations.

We remark that the central issues for NCSs addressed in this study

are the lack of access caused by the inability of the shared medium to

accommodate all sensors simultaneously and network-induced delays. These

occur independently of any other communication constraints, such as possible

packet losses, which are neglected here. Modifying the NCS model to include

and compensate them may be interesting issues. As the nodes distributed

independently, the multi-rate sampling is natural for NCSs. This topic will

be a subject of future research.
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