Usage
  • 14 views
  • 230 downloads

Mechanical Properties of Bio- and Nano-filaments

  • Author / Creator
    Samarbakhsh, Abdorreza
  • The thesis is divided in three parts based largely on published articles or on manuscripts submitted for publication. First we propose a new method which is called the shooting-bead method. This method is a fast and easy experimental technique for evaluating cantilever stiffness and flexural rigidity of semi-flexible to semi-rigid rod-like biological and nano-filaments based on the measurement of just two distances. The method is based on applying a force normal to the filament with a microsphere bead trapped in the laser tweezer followed by its sudden release. Through a simple measurement of the distances that the bead moves, the flexural rigidity of the filament can be found from the formula derived in this paper. Then we take into account the effects of the viscous drag force exerted on the filament itself. To this end, we have defined a key variable, called the filament energy-loss factor (or filament drag factor) that accounts for all the energy-loss effects. It has been shown that the effect due to the consideration of filament energy-loss factor on calculation of the flexural rigidity increases with increasing the flexibility of the filament. Finally, in the third part we discuss the effect of ultrasound on the microtubules. Here we have analytically solved equations of motion for the vibrational dynamics of an MT that is attached at its two ends. This is especially relevant for MTs during mitosis when they attach to chromosomes and centrosomes. Our analysis applies to MTs present inside a viscous solution and when driven by an ultrasound plane wave. We have shown that with using ultrasound plane waves the resonance condition for the MT treated as a rigid rod cannot be provided, and in order to achieve resonance we should excite a single mode of the MT with a harmonic number larger than a threshold value introduced in this thesis. Single mode excitation not only helps to transfer the minimum amount of energy to the surrounding medium compared with multi-mode excitation but it also allows for a simultaneous high-amplitude and high-quality factor which is impossible when using plane waves.

  • Subjects / Keywords
  • Graduation date
    2010-11
  • Type of Item
    Thesis
  • Degree
    Doctor of Philosophy
  • DOI
    https://doi.org/10.7939/R3X308
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Doctoral
  • Department
    • Department of Physics
  • Supervisor / co-supervisor and their department(s)
    • Tuszynski, Jack A. (Physics and Oncology)
  • Examining committee members and their departments
    • Marchand, Richard (Physics)
    • Sydora, Richard (Physics)
    • Boal, David (Physics, Simon Fraser University)
    • Ru, Chong-Qing (Mechanical Engineering)