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ABSTRACT

The thesis is divided in three parts based largely on published articles or

on manuscripts submitted for publication. First we propose a new method

which is called the shooting-bead method. This method is a fast and easy

experimental technique for evaluating cantilever stiffness and flexural rigidity

of semi-flexible to semi-rigid rod-like biological and nano-filaments based on

the measurement of just two distances. The method is based on applying a

force normal to the filament with a microsphere bead trapped in the laser

tweezer followed by its sudden release. Through a simple measurement of

the distances that the bead moves, the flexural rigidity of the filament can

be found from the formula derived in this paper. Then we take into account

the effects of the viscous drag force exerted on the filament itself. To this

end, we have defined a key variable, called the filament energy-loss factor (or

filament drag factor) that accounts for all the energy-loss effects. It has been

shown that the effect due to the consideration of filament energy-loss factor

on calculation of the flexural rigidity increases with increasing the flexibility

of the filament. Finally, in the third part we discuss the effect of ultrasound

on the microtubules. Here we have analytically solved equations of motion for

the vibrational dynamics of an MT that is attached at its two ends. This is

especially relevant for MTs during mitosis when they attach to chromosomes

and centrosomes. Our analysis applies to MTs present inside a viscous solution

and when driven by an ultrasound plane wave. We have shown that with using



ultrasound plane waves the resonance condition for the MT treated as a rigid

rod cannot be provided, and in order to achieve resonance we should excite a

single mode of the MT with a harmonic number larger than a threshold value

introduced in this thesis. Single mode excitation not only helps to transfer

the minimum amount of energy to the surrounding medium compared with

multi-mode excitation but it also allows for a simultaneous high-amplitude

and high-quality factor which is impossible when using plane waves.
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Chapter 1

Introduction

In this introduction we aim to review two subjects. First we will briefly

introduce the cytoskeleton, which is comprised of filamentous proteins that

extend throughout the cytoplasm. Second, which most of this chapter is de-

voted to, we will summarize the related physics for the interested reader which

is needed for clear understanding of this thesis.

1.1 Cytoskeleton

Eukaryotic cells contain three major classes of cytoskeletal filaments: actin

filaments, intermediate filaments, and microtubules. They are made of either

actin or tubulin or various structural proteins such as keratin. Each of these

proteins actually defines a large family of structurally related proteins.

1
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1.1.1 Actin Filaments

Actin filaments which are also called microfilaments, have a cable-like

shape. Their diameters are about 6 nm. The building block of actin filaments

is the actin monomer. The structure of an actin filament can be considered

as either single-stranded or double-stranded. In the single-stranded consid-

eration, it is a one-start, left-handed helix of actin monomers [1]. The full

period of filaments is 72 nm which contains 26 subunits. Therefore, the rise is

about 2.77 nm [2](Figure 1.1). As the rotation per monomer is large (166o),

and because there is extensive monomer-monomer contact between alternate

monomers, the actin filament is more appropriately viewed as a two-stranded

filament. In this case, it is a two-start, right-handed helix, with the strands,

called protofilaments, half staggered and wrapping slowing round each other

with a repeat period of 72 nm.

1.1.2 Microtubules

Microtubules, Figure 1.2, are the cytoskeleton’s largest filaments. They

are hollow cylinders which are formed from 13 protofilaments (from 8 to 19

protofilaments have been also reported [5]) aligned in parallel. Lateral and lon-

gitudinal interactions between the tubulin subunits are responsible for main-

taining the tubular form. In the case of 13 protofilaments, which is the most

common case for cellular microtubules [6], the outer diameter and inner di-

ameter are 25 nm and 15 nm, respectively. The subunit of each protofilament

is a tubulin heterodimer, formed from a very tightly linked pair of α- and
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Figure 1.1 (A) Lattice structure showing the two-stranded (or two
starts) representation on the left and the one-stranded representation
on the right, courtesy of Jonathan Howard [3]. (B) The atomic model
of the actin filament, courtesy of Geeves and Holmes [4].
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β-tubulin monomers. They are joined end-to-end with alternating α- and β-

tubulin monomers to form the protofilament. Each subunit is about 8 nm long,

5 nm wide, and 5 nm thick. If we consider the position of each subunit in the

microtubule, due to the organised positioning of subunits, we can represent

the microtubule as a regular lattice. Microtubules have been observed in two

forms of lattices which are called the A-lattice and B-lattice, respectively. The

structure of a B-lattice with 13 protofilaments is a perfect 3-start helix [6].

Microtubules play a key role in many important cellular activities. They

are responsible for the beating of cilia and flagella, transportation of membrane

vesicles in the cytoplasm, determination of cell shape and motility, organiza-

tion and positioning of membrane organelles, and alignment and separation of

chromosomes during mitosis. But the most critical role of MTs is to provide

the mechanical force required for chromosome separation during mitosis. All

the above movements result from the polymerization and de-polymerization

of MTs or by the action of molecular motor proteins along microtubules. Also

due to the central role of microtubules in mitosis, anything that affects micro-

tubule assembly can potentially be useful as an agent to treat cancer.

Individual microtubules can be observed in the light microscope, and their

lengths can be plotted as a function of time. It is known that microtubules

switch randomly between growing and shrinking in a process known as dy-

namic instability. Both assembly and disassembly proceed at uniform rates,

but there is a large difference between the rate of assembly and that of disas-

sembly, as seen in the different slopes of the lines (Figure 1.3). During periods

of growth, the microtubule elongates at a rate of 1 µm/min. Notice the abrupt

transitions to the shrinkage stage (catastrophe) and to the elongation stage

(rescue). The microtubule shortens much more rapidly (7 µm/min) than it
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Figure 1.2 The structure of a microtubule and its subunit. (A) The
subunit of each protofilament is a tubulin heterodimer, formed from
a very tightly linked pair of α- and β-tubulin monomers. The GTP
molecule in the α-tubulin monomer is so tightly bound that it can
be considered an integral part of the protein. The GTP molecule in
the β-tubulin monomer, however, is less tightly bound and has an im-
portant role in filament dynamics. Both nucleotides are shown in red.
(B) One tubulin subunit (α-β heterodimer) and one protofilament are
shown schematically. Each protofilament consists of many adjacent
subunits with same orientation. (C) The microtubule is a stiff hollow
tube formed from 13 protofilaments aligned in parallel. (D) A short
segment of a microtubule viewed in an electron microscope. (E) Elec-
tron micrograph of a cross section of a microtubule showing a ring of
13 distinct protofilaments. (A, B, and C courtesy of Bruce Alberts et
al. [7]; D, courtesy of Richard Wade; E, courtesy of Richard Link.)
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Figure 1.3 Dynamic instability of microtubules in vitro. Courtesy of
P. M. Bayley, K. K. Sharma, and S. R. Martin, 1994, in Microtubules,
Wiley-Liss, p. 119.

elongates.

Since the various filaments of the cytoskeleton exhibit mechanical proper-

ties of semi-flexible rods, they may also be subjected to mechanical oscillations

which we briefly discuss next.

1.2 Oscillations

1.2.1 Damped Oscilations

In this section we consider the motion of a single particle under the influence



1.2 Oscillations 7

of a restoring force proportional to the distance of the particle from the origin

and resistive force proportional to the velocity of the particle. Proportionality

coefficients are considered as k and b, respectively. The differential equation

of motion for such a particle is

mẍ = −kx− bẋ. (1.1)

Solution of the above equation depends on the relative values of k/m and

b/2m which for simplicity are called ω0 and β, respectively.

If ω0 > β, the motion is called underdamped. The solution for the under-

damped motion is

x(t) = A exp(−βt) cos(ω1t− δ), (1.2)

where

ω1 = (ω2
0 − β2)1/2. (1.3)

A and δ can be found from the initial conditions for position and velocity of

the particle.

If ω0 = β, we will have the critical damped motion. Solution for this

motion is

x(t) = (A+Bt) exp(−βt). (1.4)

Again A and B are found from the initial conditions of the particle. For a

given set of initial conditions (here initial position and initial velocity of the

particle), a critically damped oscillator (particle) will approach equilibrium

at a more rapid rate than that for either an underdamped or an overdamped

oscillator (particle).



1.2 Oscillations 8

Figure 1.4 A graph for all three general cases for an oscillator: un-
derdamped, overdamped, and critically damped motion.

When ω0 < β, the motion is called overdamped. The solution for the

overdamped motion is

x(t) = exp(−βt)[A exp(ω2t) +B exp(ω2t)], (1.5)

where

ω2 = (β2 − ω2
0)1/2. (1.6)

Figure 1.4 shows a graph of all three general cases.

1.2.2 Driven Oscillations: Sinusoidal Driving Forces

In Section 1.2.1 we obtained the solution for free oscillations of a particle
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(or equivalently oscillation of charges in the RLC circuit). Generally, after

a few oscillations, the particle asymptotically stops due to dissipation of the

energy which comes from the resistive force.

In order to keep the oscillations alive, we need to pump the energy to the

system which in this case will be called a driven oscillation. A fundamental

case for the driven oscillation is when the driving force is a sinusoidal force.

The reason is that we can expand any driving force in terms of a superposition

of sinusoidal forces with different frequencies. Note that there is no need that

the force be periodic.

The differential equation of motion for a particle which is driven by a

sinusoidal force of F0 cosωt in addition to the restoring force and resistive

force is

mẍ = −kx− bẋ+ F0 cosωt, (1.7)

which for simplicity can be written as

ẍ+ 2βẋ+ ω0x = A cosωt, (1.8)

where A = F0/m.

Solution of Eq. (1.8) consists of two parts. The first part is a complemen-

tary function which is basically the free oscillation solution which has been

written in the previous section. The second part is the particular solution.

For the particular solution we try the following function:

xp(t) = D cos(ωt− δ). (1.9)

For finding A and δ we put the above function in Eq. (1.8). Using the fact
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that sinωt and cosωt are linearly independent, with some simple algebra we

have [8]

xp(t) =
A

[(ω2
0 − ω2)2 + 4ω2β2]1/2

cos(ωt− δ), (1.10)

with

δ = tan−1(
2ωβ

ω2
0 − β2

). (1.11)

For large t, compared with the period of free oscillations, the particular (or

steady state) solution will be the only important term.

A very important quantity in a driven oscillation is the resonance frequency.

Resonance frequency, ωR, is the frequency which maximizes the amplitude of

the oscillator, D, with a constant amplitude for the driving force, A.

Differentiating the amplitude in Eq. (1.10) with respect to ω and setting

the result to zero gives the resonance frequency,

ωR = (ω2
0 − 2β2)1/2. (1.12)

The quantity which describes the degree of damping (or sharpness of res-

onance) in an oscillating system is called the quality factor (Q factor) of the

system. Q factor for the system can be found with the following quantity:

Q =
ωR
2β
. (1.13)

Figure 1.5 shows the resonance curves for several different values of the Q

factor.

In order to expand the theory of oscillation from a single particle, which

we discussed in this section, to continuous systems such as rods (or beams),

we briefly review the beam theory in the next section.



1.2 Oscillations 11

Figure 1.5 Resonance curves for several different values of Q factor.
Courtesy of Jerry B. Marion [8].
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1.3 Beam theory

”Beam theory began with Galileo Galilei (1564-1642), who investigated

the behavior of various types of beam. His work on mechanics of materials is

described in his famous book ”Two New Sciences”, first published in 1638 [9].

Although Galileo made many important discoveries regarding beams, he did

not correctly obtain the distribution of stresses in a beam. Further progress

was made by Mariotte, Jacob Bernoulli, Euler, Parent, Saint-Venant, and

others”1 [11, 12].

1.3.1 Beam Equation

The relation between torque or bending moment, M , exerted on a rod and

the curvature, k (which is the inverse of the radius of curvature ρ), of the bend

is

M = κk. (1.14)

The above equation is called the beam equation and it is analogous to

Hooke’s law for a spring. Note that this equation is written locally, which

means it relates the bending moment at the cross-section of a beam with the

curvature of the beam at the same location in the beam. Figure 1.6 shows a

schematic diagram of an element of the beam which is under the torque exerted

on its cross-section . For simplicity, just a couple of forces in each cross-section

have been shown instead of the distribution of the forces. The proportionality

constant, κ, is called flexural rigidity. It can be proved that this constant

1This paragraph is taken from a book by J. M. Gere and S. P. Timoshenko [10].
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Figure 1.6 A schematic diagram of an element of a beam which is
bent under the torque exerted on its cross section.

is actually a product of the second moment of the area (or more precisely

the second moment of inertia of the area) of the beam’s cross section, I, and

the Young modulus of the filamentous material, E, thus, it is very common

(especially in engineering literature) to write it as EI. An equation defining

the second moment of area can be written as

I =
∫
y2da, (1.15)

where y is the distance of the element with respect to neutral surface of the

beam.

1.3.2 Curvature and Linear Beam Equation
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In order to be able to solve the beam equation for the shape of the beam

with a given bending moment we should use a coordinate system. There are

several coordinate systems available which can be used to solve the beam

equation but, we just use the Cartesian coordinate system in this thesis.

As is generally known the curvature of a flat curve, y(x), at any point, x,

in Cartesian coordinates can be written as [13]

k =
d2y/dx2

[1 + (dy/dx)2]3/2
, (1.16)

and substituting the above equation into Eq. (1.14) gives

d2y/dx2

[1 + (dy/dx)2]3/2
=
M(x)

EI
. (1.17)

Unfortunately due to the non-linearity of Eq. (1.17), in most cases we are

not able to solve it completely analytically. However, in most cases we are

interested to solve it when the curvature of the beam is small. In this case,

which is called the small angle approximation, we can neglect dy/dx in the

denominator of Eq. (1.17) with respect to 1. In that case the beam equation

will be reduced to

d2y

dx2
=
M(x)

EI
. (1.18)

1.3.3 Some Examples

For clarification of this equation we discuss a few examples at this stage.

Figure 1.7 shows a schematic of a slender rod with length L which is fixed

at its left end while a perpendicular force is exerted on its other end. The

bending moment exerted on the rod at any point simply can be written as
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Figure 1.7 A schematic of a slender rod which is fixed at its left end
while a perpendicular force is exerted on its other end.

M(x) = F (L − x). Substituting this bending moment into Eq. (1.18) and

integrating it twice gives

y(x) =
F

EI
(−x

3

6
+
Lx2

2
) + Ax+B, (1.19)

for the equation of this beam. Using the boundary conditions for the fixed

point for the function (y(0) = 0) and its derivative (dy/dx|0 = 0) we can find

the exact equation for the bent rod as

y(x) =
Fx2

EI
(3L− x). (1.20)

For the second example, we consider the slender rod in Figure 1.7 but this

time force F has been uniformly distributed over the length of the rod. Again,

we should calculate the bending moment exerted on each point of the rod first.

The bending moment in this case is found from the following equation:

M(x) =
∫ L

x
(x′ − x)

F

L
dx′ =

F

2L
(x2 +−2xL+ L2). (1.21)
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Substituting the above equation in the beam equation and integrating twice

we find the equation for the bent rod 2,

y(x) =
Fx2

24EIL
(6L2 − 4xL+ x2). (1.22)

In some cases the exerted force is not a point force, like in example one,

but instead we have a distribution of forces on the filament, like in example

two. Unlike in the latter example, however, the distribution is not uniform but

it is a function of the position of each point in the rod (Figure 1.8). In those

cases, the force density (force per unit of length of the beam) is given (or at

least it is known in nature) as f(x). With integrating the normal component

of this force over the length of filament and putting the result in Eq. (1.18)

we will find the following beam equation:

d2y

dx2
=

1

EI

∫ L

x
(x′ − x)f⊥(x′)dx′. (1.23)

With taking derivative of Eq. (1.23) with respect to x twice we obtain

another form of the beam equation,

d4y

dx4
=
f⊥(x)

EI
. (1.24)

As this differential equation is a fourth order differential equation, it is

more difficult to deal with compared with the second order equation in Eq.

(1.23), and it is not preferred to solve when the integration in Eq. (1.23) is

possible to be performed. But in some cases, the force density is a function of

the solution of the beam equation itself. In such cases Eq. (1.23) will be an

2For calculating the flexural rigidity of a MT with the method of hydrodynamic flow

[14,15], we need to know the deflection of the MT end from this equation.
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Figure 1.8 A schematic of a slender rod which is fixed at its left end
while a continuous normal force density is exerted on it.

integral equation of the second kind, thus, in order to solve the beam equation

we have to use Eq. (1.24)3.

1.4 Thesis outline

In this thesis some theoretical properties of the bio- and nano-filaments

are studied. In the first part of the thesis, by introducing a new experimental

method and solving the problem completely analytically, we try to find a com-

pact formula for the rigidity of these filaments by modeling the filaments as

rigid rods. In the second part of this thesis, we try to solve the beam equation

for the vibration of a microtubule with an ultrasound plane wave analytically.

3For calculating the flexural rigidity of a MT with relaxation method [16] we need to

solve this equation with f(x, t) = −c⊥∂y(x, t)/∂t.
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-Chapter 2 introduces a new method for measurement of flexural rigidity

and cantilever stiffness of semiflexible bio-filaments and also nano-filaments.

The method has several advantages over the other related methods and is easy

to apply. The beauty of the method is the compact final formula which lets

us evaluate the flexural rigidity with the measurement of only a few physical

parameters of the filament.

-Chapter 3 expands the theoretical formula for the flexural rigidity pre-

sented in the previous chapter taking into account the diameter of the filaments

(which was neglected in chapter 2) by introducing a new parameter.

-Chapter 4 investigates the interaction of the ultrasound plane waves

with a simply attached microtubule at its two ends inside a viscous solution.

Resonance conditions for the vibration of the microtubule is discussed in this

chapter analytically.

-Chapter 5 summarizes and concludes the work described in the thesis.

We have also included five appendices presenting mathematical details for

some calculations.
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Chapter 2

A “Shooting-bead” Method for

Finding the Flexural Rigidity of

Semiflexible Rodlike Biological

Filaments∗

2.1 Introduction

When viewing the individual living cell as a nanomechanical and nano-

electronic device, we need to know what the physical properties of its inter-

nal hardware are. Interiors of living cells are structurally organized by the

cytoskeleton networks of filamentous protein polymers: microtubules (MTs),

∗A version of this chapter has been published. A. Samarbaksh and J. A. Tuszynski,

Journal of Computational and Theoretical Nanosciences, Vol. 5, No. 10, p 2041-2044

(2008).
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actin (microfilaments-MFs) and intermediate filaments (IFs) with motor pro-

teins providing force and directionality needed for transport processes. F-actin

can support large stresses [1] without a great deal of deformation and it rup-

tures at approximately 3.5 N/m2. IFs have a rope-like structure composed

of fibrous proteins consisting of two coiled coils and are mainly involved in

the maintenance of cell shape and integrity. Ma et al [2] showed that IFs

resist high applied pressures by increasing their stiffness. They can withstand

higher stresses than the other two components without sustaining mechanical

damage [1].

The cytoskeletal network of filaments has the responsibility of defining the

cell shape, protecting the cell from changes in osmotic pressure, organizing its

contents, providing cellular motility and finally is responsible for separating

chromosomes during mitosis. The cytoskeleton is unique to eukaryotic cells

and it acts as both muscle and skeleton, for movement and stability of the

cell. With the exception of the cellulose fibers of the plant cell wall which

are polysaccharides, the filaments of importance to the cell are all made up

of protein polymers. Some cells, such as the auditory outer hair cells, contain

strings of the protein spectrin. The extracellular matrix of connective tissue is

traversed by fibers of collagen; a family of proteins exhibiting a variety of forms.

Cells acquire their shape based on tensegrity principles due not only to the

cytoskeleton’s filaments but also from the extracellular matrix-the anchoring

scaffolding to which cells are naturally secured in the body. Throughout the

cell a network of contractile micro-filaments exerts tension and pulls the cell’s

membrane and all its internal constituents toward the nucleus at the core.

Opposing this inward pull are two main types of compressive elements, one of

which is outside the cell and the other inside. The component outside the cell
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is called the extracellular matrix while the compressive “girders” inside the cell

can be either MTs or large bundles of cross-linked micro-filaments within the

cytoskeleton. The third component of the cytoskeleton, the IFs interconnect

MTs and contractile microfilaments as well as linking to the surface membrane

and the cell’s nucleus. Contractile actin bundles act as molecular cables which

exert a tensile force on the cell membrane and the internal constituents of the

cell, pulling them all towards the nucleus. Simply put, MTs act as struts that

resist the compressive force of the cables.

MTs are long hollow filaments made of αβ-tubulin dimers. These filaments

have outer diameters measuring 25 nm and inner diameters of 15 nm. During

cell division, tubulin can account for as much as 10% of the cell’s protein. MTs

form through the polymerization of αβ-tubulin heterodimers longitudinally ar-

ranged in a GTP-dependent process called dynamic instability. MTs are long

hollow cylindrical objects made up of 12 to 17 protofilaments under in vitro

conditions, and typically of 13 protofilaments in vivo. Each protofilament is

shifted lengthwise with respect to its neighbour describing left-handed helical

pathways around the MT. By biological standards, MTs are rigid polymers

with a large persistence length [3] of 6 mm. From Janmey’s experiments [1],

MTs suffer a larger strain for a small stress compared to either MFs or IFs.

The rupture stress for MTs [1] is very small and typically is only about 0.4-0.5

N/m2. The lateral contacts between tubulin dimers in neighbouring protofila-

ments play a decisive role in MT stability, rigidity and architecture [4]. Tubu-

lin dimers are relatively strongly bound in the longitudinal direction (along

protofilaments), while the lateral interaction between protofilaments is much

weaker [5]. There have been a number of theoretical [6,7] and experimental [8]

studies in recent years dealing with the various aspects of the elasticity of MTs.
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In this paper we propose a simple method of determining the stiffness of semi-

flexible polymers such as MTs or F-actin or indeed bundles of such filaments [9]

and provide a theoretical framework for interpreting the experimental results.

2.2 Theory and Calculation

In Figure 2.1 we show a schematic of a typical semiflexible rodlike biological

filament, such as an actin filament or a microtubule, that at one end is clamped

to a pivot point and the other free end has been pushed down by a bead inside

an optical trap. Typical bead diameters are approximately 1 µm while the

rod diameters range between 4 nm (actin) to 25 nm (MT’s) or even 100 nm

for MT bundles. In all these cases, however, the bead diameter is much larger

than the diameter of the biopolymer. The cantilever stiffness of a rod with

length of L is k and the radius of the bead is R.

Assuming that we can keep the rod in its bent conformation over a period

of time, we can now imagine that if we suddenly turn the optical trap (laser

tweezer) off, the force holding the rod down is abruptly removed. Hence,

the bead that was pushing down on the free end of the rod while in the

trap will now experience a reaction force from the tip of the rod leading to

its displacement from its previous position. The amount of displacement a

when moving the bead downward in the initial phase of the experiment will

determine the initial position of the bead at the time of releasing it from the

tip of the rod. Following the release of the bead from the laser trap, the

bead will jump up. The motion of the bead can be analyzed in terms of two

contributions that are described below.
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Figure 2.1 Schematic illustration of the rodlike biological filament
pushed by a bead inside an optical trap.

2.2.1 Damped Harmonic Motion (x ≤ 0)

The bead experiences two forces, an upward force (which is typically in the

range of several pN) due to the cantilever stiffness of the rod and a downward

viscous drag force. As mentioned above, we can assume the radius of the

bead to be much greater than the radius of the rod and for simplicity we can

ignore the viscous force exerted on the rod. Another reason that the viscous

force exerted on rod is small compared with the viscous drag force exerted

on the bead is that the velocity of all parts of the rod except the end is less

than the velocity of the bead. Moreover, due to the forces experienced by

the bead from the trap and then from the rod, we can ignore the effect of

thermal fluctuations as negligible provided the energy stored in the deformed

rod exceeds kT (the energy produced by several pN of force multiplied by
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several nm of displacement will be sufficiently large). The equation of motion

for the bead and its initial conditions are given below as

mẍ = −kx− 6πηRẋ, (2.1)

x(0) = −a, ẋ(0) = 0. (2.2)

Note that m and η represent the mass of the bead and viscosity of the

solution, respectively. It has been assumed that the density of the bead is

equal or close to the density of the solution (in most cases this will be composed

mainly of water) which means that the buoyant force and the weight of the

bead cancel each other out. Therefore, we need not make a correction for the

apparent weight of the bead.

The solution of Equation (2.1) with initial condition (2.2) that corresponds

to underdamped motion is well known [10] and we state it below as

x(t) = −a exp
(
−3πηR

m
t
)

cos

√ k

m
−
(

3πηR

m

)2

t

 . (2.3)

The motion will be underdamped if the bead passes through the origin and

this condition applies to a rigid rod and/or a light bead.

2.2.2 Damped Motion (x ≥ 0)

The bead experiences just a downward viscous drag force. This motion

starts from the moment when the bead passes through the origin at a time

instant equal to π/2

√
k
m
−
(

3πηR
m

)2
in part 2.2.1. The equation of motion of

the bead and the initial conditions are
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mẍ = −6πηRẋ, (2.4)

x(0) = 0, ẋ(0) = a

√
k

m
−
(

3πηR

m

)2

× exp

− 3π2ηR

2m

√
k
m
−
(

3πηR
m

)2

 . (2.5)

where for simplicity and without loss of generality we have assumed that the

start time for the process is when the bead passes through the origin with

velocity ẋ(0) in Equation (2.5). The solution of Equation (2.4) with initial

condition (2.5) is

x(t) =
mẋ(0)

6πηR
(1− exp(−6πηR

m
t)). (2.6)

Asymptotically in time, the bead stops at distance d with respect to the

origin (see Figure 2.2). How fast the bead approaches its final position depends

on the value of tA = m/6πηR which will be referred to as the asymptotic

approach time constant.

From Equation (2.5) and (2.6) with some simple algebra we readily find

that

s exp(s) =
πa

4d
. (2.7)

Note that s is a dimensionless variable 3π2ηR/2m

√
k
m
−
(

3πηR
m

)2
. Assuming

the measurement of a and d is experimentally feasible, we can solve Equation

(2.7) for s, then, using the definition of s and solving for k, the cantilever

stiffness of the rod will be found as

k =
9π2η2R2

m

(
π2

4s2
+ 1

)
. (2.8)
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Figure 2.2 The final distance of the bead when it asymptotically
comes to rest with respect to the origin.

To find the cantilever stiffness directly in terms of a/d we need to invert

Equation (2.6) and substitute it into Equation (2.8),

k =
9π2η2R2

m

 π2

4W 2
(
πa
4d

) + 1

 . (2.9)

Note that W is the Lambert W function [11].

For small deflections with respect to the length of the filament, using the

Euler-Bernoulli bending formula [12] for homogeneous filaments we can relate

the cantilever stiffness of the filament to its flexural rigidity [8] EI as

EI =
1

3
kL3 =

3π2η2R2L3

m

 π2

4W 2
(
πa
4d

) + 1

 . (2.10)

Figure 2.3 shows the dependence of the dimensionless flexural rigidity as

a function of a/d. (EI)0 is a constant equal to 3π2η2R2L3/m that depends

on the viscosity of the solution, the radius of the bead and the length of the

filament.
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Figure 2.3 Dimensionless flexural rigidity EI/(EI)0 as a function of
a/d.

2.2.3 Stiff Filament Approximation

For stiff filaments we have a/d� 1 and we can keep just the first term of

the expansion of ses in Equation (2.7). In that case, the rod’s flexural rigidity

can be found from the following formula as

EI =
3π2η2R2L3

m

(
4d2

a2
+ 1

)
. (2.11)

Figure 2.4 shows the dimensionless flexural rigidity as a function of the

ratio of a/d for the exact solution (dotted line) and in the stiff filament ap-

proximation (solid line).
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Figure 2.4 A plot of the dimensionless flexural rigidity EI/(EI)0 as
a function of a/d. The dotted line is the exact solution and the solid
line represents the stiff filament approximation solution.

2.3 Conclusions

In conclusion, we note that this method offers numerous advantages over

the other methods currently in use (e.g. the buckling force method [13,14], the

hydrodynamic flow method [15,16], the wiggle and relaxation methods [17,18],

or the thermal fluctuation technique [19]). We list the following reasons for

advocating the use of the new method:

(a) For this experiment, the bead need not be attached to the filament as

the attachment of the bead poses numerous technical problems. Hence

the beads need not be coated as most of the time the beads do not attach

to the filament. Actually, this was one of the reasons that guided us to

the introduction of the proposed method.
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(b) We need to use a microscope with only a single trap (for buckling force

measurements one needs double traps).

(c) There is no need to find the force exerted on the bead by the trap (since

only the measurement of the distance between the centre of the beam

and the centre of the bead is required).

(d) There is no need to know the exact shape of the filament (which is re-

quired for the buckling force and the thermodynamic fluctuation meth-

ods).

(e) There is no need to oscillate the trap (like in the wiggle method).

(f) There is no need to measure the time (as in the relaxation method).

(g) There is no need to measure the velocity of the bead or the rod (as in

the hydrodynamic flow method).

(h) The only measurement that we need to perform is the measurement of

the length for a and d. It can be easily appreciated that the measurement

of length is more straightforward and accurate than the measurement of

time or velocity, especially at the nanoscale.

(i) Finally, because the ratio of a/d is important not a and d individually,

there is no need to calibrate the monitor of the microscope.

In the next chapter we will modify the shooting bead formula to take into

account the effects of the viscous drag force exerted on the filament by defining

a key variable, called the filament energy-loss factor (or filament drag factor),

that accounts for all the energy-loss effects.
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Chapter 3

Viscous Drag Effect in the

Flexural Rigidity and Cantilever

Stiffness of Bio- and

Nano-filaments Measured with

the Shooting-bead Method∗

3.1 Introduction

Interiors of living cells are structurally organized by the cytoskeleton net-

works of filamentous polymers whose bio-mechanical properties are of key in-

∗A version of this chapter has been published. A. Samarbaksh and J. A. Tuszynski,

Physical Review E, Vol 80, 011903 (2009) DOI: 10.1103/PhysRevE.80.011903. Also selected

for the July 13, 2009 issue of Virtual Journal of Nanoscale Science and Technology.
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terest to biophysicists. With few exceptions, the filaments of importance to the

cell are all made up of protein polymers. Protein filaments of the cytoskeleton

consist of: actin (microfilaments-MFs), intermediate filaments (IFs) and mi-

crotubules (MTs). Throughout the cell a network of contractile actin bundles

exerts tension and pulls the cell’s membrane toward the nucleus at the core.

MTs resist the compressive force of the actin cables providing a balance. IFs

provide additional structural stability.

Microfilaments are single-stranded filaments, with diameters of approxi-

mately 3-6 nm and variable lengths. Microfilaments are found linked together

by actin-associated proteins and congregate into one of three major forms.

There are over 100 different actin-binding proteins responsible for actin as-

sociating with the membrane, with membrane-bound receptors, and with ion

channels, as well as for promoting assembly and causing the depolymeriza-

tion of those filaments. Actin-binding proteins, such as ARP2/3 and profilin,

regulate micro-filament assembly. Actin depolymerizing factor (ADF)/cofilin

stimulates disassembly. Gelsolin caps fast-growing ends of filaments and may

also be involved in filament disassembly.

Microtubules are long hollow filaments consisting of bound α-tubulin and

β-tubulin monomers. MT polymerization can be controlled by temperature,

pH, concentration of protein and ions to produce closely or widely spaced MTs,

centers, sheets, rings and even the so-called macrotubes that have diameters in

the range of 200-500 nm and are polymerized with the influence of an elevated

zinc ion concentration [1]. Assembled microtubules have outer diameters of

25-26 nm and inner diameters of 15 nm and typically contain 13 protofilaments

when assembled in vivo. MTs are made up of 12 to 17 protofilaments under in

vitro conditions. Each protofilament is shifted lengthwise with respect to its
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neighbor describing left-handed helical pathways around the MT. Like actin

filaments, microtubules have plus- and minus-ends. Polymerization or elon-

gation occurs preferentially at plus-ends and depolymerization or shortening

occurs at minus-ends. Microtubule associated proteins (MAPs) are tissue- and

cell type-specific and represent several classes with different functions. General

classes are minus-end binding, plus-end binding (e.g., the kinetochore of mi-

totic chromosomes, polymer severing, polymer stabilizing) and cross-linking

(i.e., MAP-2 and tau in neurons), and motor proteins. These microtubule

binding proteins determine the architecture of microtubules and microtubule

assemblies.

All of the above cellular protein filament structures have significant persis-

tence lengths that increase with the molecular mass of the building block and

a related mechanical stability and rigidity that is of growing interest to physi-

cists. F-actin can support large stresses [2] without a great deal of deformation

and it ruptures at approximately 3.5 N/m2. Ma et al [3] showed that IFs re-

sist high applied pressures by increasing their stiffness. They can withstand

higher stresses than the other two components without sustaining mechanical

damage [2]. By biological standards, MTs are rigid polymers with a large per-

sistence length [4] of 6 mm. From Janmey’s experiments [2], MTs exhibit a

larger strain for a small stress compared [3] to either MFs or IFs. The rupture

stress for MTs is very small and typically is only about 0.4-0.5 N/m2. The

lateral contacts between tubulin dimers in neighboring protofilaments play a

decisive role in MT stability, rigidity and architecture [5]. Tubulin dimers are

relatively strongly bound in the longitudinal direction (along protofilaments),

while the lateral interaction between protofilaments is much weaker [6]. There

have been a number of theoretical [7,8] and experimental [9] studies in recent
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years dealing with the various aspects of the elasticity of MTs.

In this thesis we propose a simple method of determining the stiffness

of semi-flexible polymers such as MTs or indeed bundles of such filaments

[10] and provide a theoretical framework for interpreting the experimental

results. One of the main issues in this paper is not only the analysis of the

shooting-bead method [11] as applied to the nano- and bio-filaments but, more

specifically, how the drag forces exerted on the filament present in the viscous

medium affect the energy loss and consequently the measurement’s results.

This method is especially suited for stiff filaments or their bundles (e.g. cilia,

flagella, macrotubes or MAP-interconnected MT bundles in axons). Even

for individual microtubules, where Taute et al [12] determined that filament

drag is a major effect for the bending of MT’s, the length of the filament

makes a crucial difference to the cantilever stiffness such that short MT’s

become stiffer and the resultant motion of the bead is underdamped making

the method applicable. Moreover, the method described below can be readily

utilized for nanotechnologically produced filaments such as single-walled or

multi-walled carbon nanotubes (CNTs) [13] which provide an excellent system

for calibration and control.

3.2 Conceptual Basis

In Figure 3.1 we show a schematic of two states of a typical semi-flexible

rod-like bio- or nano-filament, that is clamped at one end to a pivot point and

whose other (free) end, first has been pushed down by a bead inside an optical

trap [14, 15] and then has been released by turning the laser trap off. The
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Figure 3.1 Schematic illustration of the two states of the rod-like
biological filament and the bead. First, the filament has been pushed
by a bead inside an optical trap and second, the filament has been
released and the bead has come to rest asymptotically. (Figure not
to scale, usually a, d, and R are much smaller than L).

cantilever stiffness of a rod with length L is k and the radius of the bead is

denoted as R. Typical bead diameters are approximately 1-2 µm (with focused

laser, it is possible to trap beads with a radius as low as 200 nm), while the

rod diameters range between 100 nm for microtubule bundles, 200-500 nm for

macrotubes and about 500 nm for cilia. Also nanotechnology methods allow

to make filaments from different materials with controlled values of their radii.

For example, it is now possible to make single-walled or multi-walled carbon

nanotubes (CNTs) with different radii ranging from a few to 100 nm.

In this chapter, our primary aim is to expand the proposed method for

measuring filament stiffness in order to include the effects of the energy loss

due to the viscous drag force exerted on the filament itself and to make the final



3.2 Conceptual Basis 39

shooting-bead formula as accurate as possible. While the commonly employed

wormlike chain model has become standard in the description of semi-flexible

and flexible polymers such as DNA, this is not a necessary level of approxima-

tion for stiffer filaments which have long persistence length such as MTs, cilia,

flagella or CNTs where small deflection approximation can be warranted. For

example, the mm-range persistence lengths and a high level of rigidity charac-

teristic of MT ’s translate into a picture where a significant thermal fluctuation

in shape occurs over tens to hundreds of thousands of constituent dimers. In

this chapter we also wish to provide a means of estimating experimental errors

for the shooting-bead formula and assess under which instrumental resolution

this method will be able to work. To make the paper self-contained and use the

results of the intermediate steps yielding the first shooting-bead formula [11]

(when the bead’s diameter is much larger than that of the rod), in this section

we briefly explain the concepts involved in the method.

Assuming that we can keep the rod in its bent conformation over a certain

period of time, we can now imagine that if we suddenly turn the optical trap

(laser tweezer) off, the force holding the rod down is abruptly removed. Hence,

the bead that was pushing down on the free end of the rod while in the

trap will now experience a reaction force from the tip of the rod leading to

its displacement from its previous position. The amount of displacement a

when moving the bead downward in the initial phase of the experiment will

determine the initial position of the bead at the time of releasing it from the

tip of the rod. Following the release of the bead from the laser trap, the

bead will jump up. The motion of the bead can be analyzed in terms of two

contributions. First, the bead experiences two forces, an upward force due to

the cantilever stiffness of the rod and a downward viscous drag force (there
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are two other forces; Appendix A provides an additional explanation of the

effects created by these forces). The equation of motion for the bead together

with the initial conditions is given below:

mẋ = −kx− 6πηRẋ, x(0) = −a, ẋ(0) = 0. (3.1)

Note that m and η represent the mass of the bead and viscosity of the

solution, respectively. The solution of Equation (3.1) with the initial conditions

that corresponds to underdamped motion is [16]

x(t) = −aexp
(
−3πηR

m
t
)

cos

√ k

m
−
(

3πηR

m

)2

t

 . (3.2)

The motion will be underdamped if the bead passes through the origin

and this condition applies to a rigid rod and/or low viscous solution1. In the

second part of the motion (x ≥ 0), the bead experiences just a downward

viscous drag force. This motion starts from the moment when the bead passes

through the origin at a time instant equal to t0 = π/2

√
k
m
−
(

3πηR
m

)2
in the

first part of the motion. As a result, the equation for the bead’s position as a

function of time is [11]

1Theoretically it is always possible to have an underdamped motion for the bead by

making the value of the quantity under the square root in Equation (3.2) positive. Even if

we don’t have an underdamped motion for the bead at the beginning, by cutting the filament

to a shorter length we can make k large enough (as we know, k is inversely proportional

to the third power of the length of the filament) to end up with a positive value for the

quantity under the square root.
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x(t) =
ma

6πηR

√
k

m
−
(

3πηR

m

)2

exp

− 3π2ηR

2m

√
k
m
−
(

3πηR
m

)2

(1− exp
(
−6πηR

m
t
))

.

(3.3)

Note that in the above equation we have shifted our initial time from t = t0

to t = 0. Since x(t → ∞) = d (due to the exponential dependence of x(t) on

t, just after passing a few intervals of τ = m/6πηR , asymptotic approach time

constant, we can consider the bead as being at rest) solving Equation (3.3) for

k and using the Euler-Bernoulli bending formula [17] for small deflection, we

can find the following formula (which will be referred to as the first shooting-

bead formula) for flexural rigidity2 of the filament:

κ =
1

3
kL3 =

9πη2L3

4ρR

 π2

4[W
(
πa
4d

)
]2

+ 1

 . (3.4)

Note that the symbol W in the above equation is called the Lambert W

function3 [18]. Since it is easier to determine the density of the bead, ρ,

compared to its mass, we have changed our variable from mass of the bead to

its density at this final point. This will also help in reducing the error when

calculating the error propagation for our formula if the original information is

based on the knowledge of the density and radius of the bead.

To simplify the notation, we define the following new variables for future

calculations:

2As flexural rigidity (or bending stiffness) is the product of the Young modulus, E, of

the filament material and the second moment of area, I, of the filament cross-section, it is

very common to use EI instead of κ for flexural rigidity.
3It is also called the omega function or product logarithmic function.
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Λ =
3πηR

m
, Ω =

√
k

m
−
(

3πηR

m

)2

. (3.5)

3.3 Energy Conservation and Filament Energy-

Loss Consideration

In Section 3.2 the problem at hand has been solved analytically by includ-

ing the net force exerted on the bead but ignoring the force exerted on the

filament by the solution. It is a good idea to investigate our solution from

the conservation of energy point of view at this stage. Since this part can be

considered as a totally separate part and in order to maintain the main flow

of the paper, this part has been moved to the appendix. The interested reader

can see the proof in Appendix B.

Looking at the problem from the energy point of view will guide us to

define a very important parameter that can help us to provide an estimate of

the energy-loss due to the viscous force exerted on the filament based on the

bead’s energy-loss.

In this section we intend to estimate the energy-loss of the filament (Q1R)

and compare it with the energy-loss of the bead (Q1B) and the total energy-loss

(Q1T ) during the first part of the motion. To solve the problem analytically

we approximate the motion of the bent filament as a rotating rod with the

length of L/2 (see Figure 3.2). This is a good approximation because for a

small deflection, the area swept by the rod compared to the area swept by the

whole filament amounts to more than 2/3 (see Appendix C for a mathematical
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Figure 3.2 Representation of the filament as a rotating rigid rod with
the length of L/2. (deflection angle CBD is exaggeratedly shown).

proof of this statement).

The viscous drag torque exerted on the rod (BD) with radius r that rotates

with angular velocity ω inside a medium with viscosity η is equal to [9]

T =
1
6
πηL3

ln( L
2r

)− 0.66
ω. (3.6)

The infinitesimal energy-loss of the rod when it rotates by dθ is therefore

dQ1R =
1
6
πηL3

ln( L
2r

)− 0.66
ωdθ =

1
6
πηL3

ln( L
2r

)− 0.66
ω2dt. (3.7)

Here dt denotes the elapsed time for such an infinitesimal rotation.

As we know, the tip of the filament pushes on the bead which means that

the velocity of the tip is the same as the velocity of the bead at any time

during the first part of the motion. Thus using v = Lω/2 we find

dQ1R =
2
3
πηL

ln( L
2r

)− 0.66
v2dt. (3.8)

To calculate the energy-loss of the rod we have to integrate an expression

based on Equation (3.8) but at this stage we can not do this yet because the



3.3 Energy Conservation and Filament Energy-Loss Consideration 44

equation of motion for the bead (the system composed of the bead and the

filament) does not remain the same as before (when we ignored that filament

energy-loss). For this reason we just find the ratio of the filament’s energy-loss

to the bead’s energy-loss at the moment as this ratio plays an important role

in our calculation. Namely,

Q1R

Q1B

=

∫
dQ1R∫
dQ1B

=
1

9R
L

(ln( L
2r

)− 0.66)
= α− 1. (3.9)

Therefore, knowing the radius of the filament, the length of the filament

and the radius of the bead α can be found. Note also that α is the ratio of the

total energy-loss to the bead energy-loss which has a value greater than one

and we refer to it as the filament energy-loss factor or filament drag factor.

Figure 3.3 shows the filament energy-loss factor as a function of the filament

radius for a 10-µm-long filament and 1µm bead diameter. It should be stressed

that although we have found the ratio of Q1R/Q1B, we are not able to calculate

the filament energy-loss at this stage. The reason for this is that Q1B does

not remain the same as before in the case when filament energy-loss is ignored

[see Equation (B.4) or Equation (B.7) in Appendix B]. This means that the

following relation is not correct.

Q1R = (α− 1)Q1 =
1

2
(α− 1)ma2Λ2(

π2

4[W (πa
4d

)]2
(1− exp(−2W (

πa

4d
))) + 1).

(3.10)

To calculate the correct filament energy-loss we first need to evaluate the

new equation of motion (that will be solved in the next section), then we need

to follow all the steps that we took to reach Equation (B.4) or Equation (B.7)

for finding a new solution.
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Figure 3.3 Filament energy-loss factor as a function of filament ra-
dius for a 10 µm filament and a 1 µm bead diameter.

3.4 Effects of Filament Energy-Loss on Dimen-

sionless Flexural Rigidity Curve

In this section we derive two equations for calculating the cantilever stiff-

ness and flexural rigidity with consideration of filament energy-loss. The equa-

tion of motion for the system (bead + filament) is

(IB + IR)θ̈ = −k(
L

2
)2θ −

1
6
πηL3

ln( L
2r

)− 0.66
θ̇ − 6πη(

L

2
)2θ̇. (3.11)

Here, θ is the angle between the rod and the undeflected filament (the angle

between BD and BC in Figure 3.2). Assuming that r, a and R are all much

smaller than L and using the definition of the filament energy-loss factor, the
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above equation becomes

IB + IR
(L

2
)2

θ̈ = −kθ − 6πηαRθ̇. (3.12)

Using the moment of inertia for a single particle (keeping in mind that the

radius of the bead is much smaller than the length of the filament) with mass

m and moment of inertia for a rigid rod with length L/2 and mass mR as well

as the relation between x and θ (x = Lθ/2) we obtain

(m+
1

3
mR)ẍ = −kx− 6πηαRẋ. (3.13)

Generally 1/6 of the mass of the filament is much smaller than the mass of the

bead. For example, even for a solid filament (many bio-filaments or bundles

of them can be considered to have hollow interiors such as microtubules or

macrotubes) with a radius of 100 nm (that would be a very thick filament)

and with a 10 µm length and the density of water, the effect of ignoring the

mass of the filament with respect to the mass of the bead with a radius of 1

µm and the same density is just 3.75%. Now, comparing the above equation

with Equation (3.1) and eliminating mR, we notice that the only difference

between these equations amounts to the replacement of η with αη. It means

that we can use the solution of that equation (with the same initial conditions)

as a solution of Equation (3.13) where η is rescaled to become αη.

Defining the following new variables,

Λ′ =
3παηR

m
, Ω′ =

√
k

m
−
(

3παηR

m

)2

, (3.14)

we find

x(t) = −a exp(Λ′t) cos(Ω′t). (3.15)

It is clear that the second part of the motion of the bead when it passes

through the origin will satisfy the same differential equation of motion but this
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time the initial condition for the velocity will change to

ẋ(0) = aΩ′ exp(−πΛ′

2Ω′
). (3.16)

As a result, the equation for the bead’s position as a function of time

changes to

x(t) =
aΩ′

2Λ
exp(−πΛ′

2Ω′
) (1− exp(−2Λt)). (3.17)

Since x(t→∞) = d, and using some algebra we arrive at

s′ exp(s′) =
παa

4d
, (3.18)

where s′ is a dimensionless variable equal to πΛ′

2Ω′
.

The cantilever stiffness and the flexural rigidity will be found from the

following equations:

κ =
1

3
kL3 =

9πη2L3

4ρR

 π2α2

4[W
(
παa
4d

)
]2

+ α2

 . (3.19)

Again we have changed our variable from mass of the bead to its density

in the last step. Note that the above formula for the cantilever stiffness and

flexural rigidity (the second shooting-bead formula) for the case of α=1 reduces

to the first shooting-bead formula (when the filament energy loss is not taken

into account).

Figure 3.4 shows the effects of filament energy-loss consideration on the

dimensionless flexural rigidity [11] curve as a function of a/d for three differ-

ent filament radii, which corresponds to three different values of the filament

energy-loss factor. To calculate the cantilever stiffness and the flexural rigid-

ity for any other radius, first the filament energy-loss factor is calculated from

Equation (3.9) and then this value is substituted into Equation (3.19). As is
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Figure 3.4 A plot of the dimensionless flexural rigidity κ/κ0 as a
function of a/d for a 10 µm filament and 1 µm bead diameter for
three different situations: a) the solid curve, without filament energy
loss consideration (which corresponds to the filament energy-loss fac-
tor of 1.0), b) the dashed curve for a 50 nm filament radius which
corresponds to a filament energy-loss factor of 1.562, and c) the dot-
ted curve for a 200 nm filament radius which corresponds to a filament
energy-loss factor of 1.868.

clear from the graph for a single value of the ratio of a/d, the dimensionless

flexural rigidity increases as a function of the filament energy loss factor. This

is easy to understand since a higher fraction of the bending potential energy

of the filament will be used to cancel out the energy-loss of the filament due

to viscous drag torque.

Another important outcome that we can conclude from the effect due to

the filament energy-loss factor on the dimensionless flexural rigidity curve is

dependency of this effect on the ratio of a/d . Figure 3.5 shows the ratio of the

flexural rigidity with consideration given to the filament energy-loss factor, κ′,

to the flexural rigidity without considering the filament energy-loss factor, κ,
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as a function of a/d for the two previously considered filaments.

As we see from this graph, κ′/κ increases for any filament (with the inclu-

sion of the filament energy-loss factor) when a/d increases. We also see from

Figure 3.4 that when a/d increases for a filament with a known radius and

length and also a known bead’s radius (this means that we know the filament

energy-loss factor), the dimensionless flexural rigidity decreases. This leads us

to state the following important result: Consideration of the filament energy-

loss (or filament drag) is more important for filaments with less rigidity than

for stiff ones.

Since our answer is parametric and flexural rigidity depends on the values

of, a/d, L, r, R, η, ρ we can end up with a wide range of values for flexural

rigidity (note that the method works provided the bead passes through the

origin, which means when we have underdamped motion for the bead) but

we give a rough estimate of the flexural rigidity value based on our pilot

experiment (not reported in this article due to its preliminary character). For

an approximately 10 µm filament length, 100 nm filament radius (made from

tubulin dimers, see the last section), 1 µm bead radius, immersed in an aqueous

solution and also with a = d = 1 µm we end up with 10−17 for the order of

magnitude in SI units of the flexural rigidity estimate. We expect that with

different values for length and a/d the result may decrease by a few orders of

magnitude. Therefore, our method is concluded to be most suitable for rigid

filaments such as MT bundles, cilia and especially single-walled and multi-

walled CNTs [13].
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Stiff Filament Approximation

For stiff filaments we have a condition αa/d � 1 and hence we can keep

just the first term of the expansion of s′ exp(s′) in Equation (3.18). In that

case, the filament’s cantilever stiffness and flexural rigidity can be found from

the following formula:

κ =
1

3
kL3 =

9πη2L3

ρR

(
d2

a2

)
. (3.20)

In the last step to reach Equation (3.20) we ignored α2/4 with respect to

d2/a2 which directly follows from our approximation. Note that in the case of

the stiff filament approximation there is no dependence on the filament energy-

loss factor because in that case the area swept by the filament is very small

(due to a small value of a with respect to d). This is also clear from Figure

3.5 when both curves approach unity at a/d = 0 regardless of the amount of

filament energy-loss factor.

3.5 Sources of Error

In this section we wish to analyze the role of various sources of experimental

error in the evaluation of the filament stiffness. To reach that goal, first we

derive an equation for the percentage error for the first shooting-bead formula

based on the error in our measurable quantities a and d (also η, ρ, L and R

when calculating δκ0 ). In the second part of this section we consider the effects

of thermal diffusion and will demonstrate that using modern instruments these



3.5 Sources of Error 51

0 1 2 3 4 51

1.4

1.8

2.2

2.6

a/d

! 
" /

 !

Figure 3.5 A plot of a ratio of the flexural rigidity with consideration
of the filament energy-loss factor, κ′, to flexural rigidity without con-
sideration of the filament energy-loss factor, κ, as a function of a/d
for two filaments considered in Figure 3.4: a) the solid curve for a 50
nm filament radius which corresponds to a filament energy-loss factor
of 1.562 and b) the dashed curve for a 200 nm filament radius which
corresponds to a filament energy-loss factor of 1.868.
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effects are expected to be relatively small.

3.5.1 Error Calculation for the First Shooting-Bead For-

mula

Since it is our intention to derive an error formula for the most general

case we perform error calculations for the dimensionless flexural rigidity. At

the end, knowing the error of κ0, we can calculate the final error for the

flexural rigidity (see Appendix D for the calculation of δκ0 and δκ). Taking

the differential of Equation (3.4) gives

δ(
κ

κ0

) =
κ

κ0

2π2δW

4W 3 + π2W
, (3.21)

but we know from Equation (3.18) that

δW = (
δa

a
+
δd

d
)

W

1 +W
. (3.22)

Note also that as we are calculating the error for the first shooting-bead formula

we should consider α = 1 in order to get the above equation.

Substituting Equation (3.22) into Equation (3.21) we obtain

δ(
κ

κ0

) =
κ

κ0

(
δa

a
+
δd

d
)

2π2

(1 +W )(π2 + 4W 2)
. (3.23)

To calculate the percentage error in the measurement of dimensionless

flexural rigidity, first we have to evaluate the last ratio in Equation (3.23).

Figure 3.6 shows this ratio in Equation (3.23) as a function of a/d. Measuring

a/d, we need to find the corresponding value for this ratio from this graph but

to facilitate the use of the above formula, we notice that the last denominator
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Figure 3.6 Plot of the last ratio in Equation (3.23), f(W ) =
2π2/((1 +W )(π2 + 4W 2)), as a function of a/d.

in Equation (3.23) is a monotonically increasing function on the entire domain

of W which has its global minimum equal to π2 at the beginning of the domain

of W (at W = 0 which corresponds to a/d = 0). This means we can estimate

an upper limit for the error calculation for the dimensionless flexural rigidity

as

δ(
κ

κ0

) ≤ κ

κ0

2(
δa

a
+
δd

d
). (3.24)

Measuring a and d and knowing the resolution of the instrument, we can

estimate the upper limit for the percentage error for the dimensionless flexural

rigidity from the above formula. To provide a rough estimate of the error

in this method, we consider a = d = 1 µm (these are very close values to

those seen in our preliminary experiment). With an accurate instrument it is

possible to measure distances as small as 0.1 nm. Reference [19] provides some
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information about high-resolution, single-molecule measurements. Here, we

consider δa = δd = 1 nm to obtain a conservative estimate for the percentage

error. Substituting the above values to Equation (3.24) we obtain 0.4% for

the upper limit (the actual value found using Equation (3.23) or Figure 3.6 is

0.25%) of the percentage error for the dimensionless flexural rigidity.

3.5.2 Diffusion

For large beads, more than a 1 µm in radius, random thermal motion is not

very pronounced (it has not been observed in our preliminary experiment) but

we nevertheless wish to calculate the effects of thermal diffusion in a general

case for this experiment in this section.

We know that4 the diffusion constant for a spherical bead with radius R

at temperature T is kBT/6πηR. Also the relation between the mean square

displacement, (∆X)2 and time, t, involves the diffusion constant D as a pro-

portionality constant [20], i.e., (∆X)2 = 2Dt. Combining the two equations

we obtain

(∆X)2 =
kBT

3πηR
t. (3.25)

The elapsed time for the damped motion of the bead is on the order of

asymptotic approach time constant, τ . For example, after a period of 9τ , the

bead passes 99.988% of its final displacement (the number 9 has been used to

simplify the answer), thus using the definition of τ and the above equation,

4 Combining the Einstein relation, D = kBT/γ, and Stokes’ law, γ = 6πηR, we can

easily get this equation. γ in previous equations represents the drag coefficient [9].
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the root mean square of the displacement due to the diffusion can be found as

∆X = (
2kBTρR

3πη2
)

1
2 . (3.26)

At T = 25 oC, in an aqueous solution for a bead with 1 µm radius and

a density equal to that of water we find ∆X=0.935 nm. This is a relatively

small value which can serve as an approximate measure of the lower bound of

the experimental error in the bead position for our calculation.

3.6 Discussion and Conclusion

In our preliminary experiment [21] some tubulin-based biotinylated bio- fil-

aments have been produced due to the spontaneous aggregation of the tubulin

dimers in the laboratory sample. Estimating the dimensions of the filaments

observed in the solution (approximately 20-30 µm in length and 200 nm in

width), we surmise that these semi-flexible objects were composed of micro-

tubule bundles consisting of several or more microtubules in a bundle. While

the diameter of a microtubule is 25 nm, the spatial resolution of the images

was not sufficient to ascertain how far apart each microtubule was in a bundle.

Since the images indicate splaying apart of bio-filaments at far ends of some

of the bundles, we conclude that these were not individual macrotubes but

several microtubules forming a bundle. During the experiment (when pushing

the tip of a clamped bio-filament by a streptavidin coated bead to create an at-

tachment point), we observed a strange effect involving a catapult-like release

of the micro-bead from the filament and a subsequent projectile motion until

it stopped following a very rapid movement through the solution. Seeing this
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effect that can be described as a ”jumping bead” phenomenon in the lab was

the main motivation behind our effort to find a physical description reported in

the present paper. While the experiment itself is still in progress, the method

proposed here allows to us probe one of the important characteristics of stiff

bio-filaments and nano-filaments with a very fast and relatively uncomplicated

measurement of the initial and final position of the bead. Also, knowing pre-

cisely the cross-section of the filament and measuring the associated flexural

rigidity, we are able to calculate the Young modulus of the filament.

In conclusion, we note that the method presented in this thesis offers nu-

merous advantages over the other methods currently in use (e.g. the buckling

force method [22, 23], the hydrodynamic flow method [24, 25], the wiggle and

relaxation methods [26, 27], or the thermal fluctuation technique [28]) for the

reasons listed below:

For this experiment, the bead need not be attached to the filament, actu-

ally, this was one of the reasons that guided the introduction of the proposed

method. It needs just a single trap, there is no need to find the force exerted

on the bead by the trap, there is no need to know the exact shape of the

filament, there is no need to oscillate the trap, there is no need to measure the

time and there is no need to measure the velocity of the bead or the rod. The

only measurement that we need to perform is the measurement of the length

for a and d, also because the ratio of a/d is important not a and d individually,

there is no need to calibrate the microscope.

Another aspect that we should briefly discuss here is the logarithmic de-

pendence of the viscous drag torque exerted on the filament on the radius and

length of the filament. Even for a thin filament it is important to consider

the effects of filament energy-loss factor on the dimensionless flexural rigidity
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curve. Figure 3.3 shows that even for small values of the filament radius, the

filament energy-loss factor is not very close to one. This is also clear from

Figure 3.4, as we see the dimensionless flexural rigidity curve for the filament

with a 50 nm radius (the dashed curve) is much closer to the dimensionless

flexural rigidity curve for the filament with a 200 nm radius (the dotted curve)

compared with the curve without filament energy loss consideration (the solid

curve).

Also dependence of the dimensionless flexural rigidity on the length of the

filament via the filament energy-loss factor is very important. Even for a small

radius of the filament compared to the bead’s radius, if we increase L, L varies

much faster than ln(L) in Equation (3.9). Therefore, α will have a considerable

value.

Ultimately we demonstrated that the effect due to the filament energy-loss

factor on the dimensionless flexural rigidity curve increases as a/d increases.

As we know, when this ratio increases for a filament with a known radius

and length and also a known radius of the bead, the (dimensionless) flexural

rigidity decreases. This means consideration of the filament energy-loss (or

filament drag) is more important for filaments with less rigidity.

Since MTs exhibit mechanoelastic properties of considerable interest in

view of their functional roles in cell division and cell shape, In the next chapter

we discuss the effect of ultrasound plane wave on the microtubules with solving

the related beam equation for it.
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Chapter 4

Resonance Condition in

Microtubules Using Ultrasound

Plane Waves∗

4.1 Introduction

Ultrasound has been successfully used in medical imaging and it is widely

accepted today that High Intensity Focalized Ultrasound (HIFU) may provide

an effective non-invasive targeted modality that could help to deliver drugs in

cells or else become an alternative to surgery in the treatment of both benign

and malignant diseases. Kennedy et al. [1] summarized the potential use of

this technique as a surgery from clinical trial data. For example, it was shown

that HIFU was successful in reducing tumor size and pain and showed no ad-

verse side effects for patients with pancreatic cancer [2]. The efficiency of this

∗A version of this chapter has been submitted for publication.
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technique was shown to depend on physical parameters such as the frequency,

the intensity, the duration of the pulses and time interval between pulses. For

medical trials, the frequency ranges between 0.8 and 1.7 MHz and the intensity

1 and 20 KW/cm2 were used. However, further studies are necessary to under-

stand the therapeutic mechanism of HIFU, to optimize the delivery of HIFU

to the tumor site and decrease potential side effects. To understand the action

of HIFU on cell structure, most studies thus far have been performed on either

cultured or isolated cells [3, 4]. In their studies on isolated cells, Hrazdira et

al. [4] have shown the partial disassembly of all components of the cytoskeleton

and particularly microtubules as a result of ultrasound exposure. In addition,

it appears that the effects of ultrasound depend on the phase of the cell cycle

during which the exposure takes place [4], with mitosis being the most sensitive

phase. This disassembly was characterized by thinning of fibrous structures,

their fragmentation and formation of granule-like structures. However, it is

difficult to precisely interpret their experiments because when the experiment

was performed on cells, other constituents of the cell were not properly moni-

tored and analyzed (e.g. actin filaments). Therefore, it is necessary to study

first of all isolated microtubules and their behaviour under the influence of

externally applied ultrasound. Interestingly, these authors observed that ul-

trasound of intensities as low as 100 mW/cm2 with a frequency of 0.8 MHz is

enough to induce these damages. All these studies showed that, depending on

the physical parameters cited above, ultrasound damages or destroys cancer

cells through three predominant mechanisms: heating, cavitation (repeated

mechanical shocks intensified by formation of microbubbles) [1], and most in-

terestingly mechanical shocks that break rigid filaments such as microtubules

without heating and cavitation.
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Since microtubules play a crucial role in cell division and since they have

been shown to be strongly affected by ultrasound effects, in this study, we

aimed to study theoretically the mechanics of microtubules in the absence of

other cellular constituents and their behavior under the influence of exter-

nally applied ultrasound in situations where both cavitation and heating are

negligible. In particular, we are interested in determining the existence of

mechanical resonance conditions in terms of frequency, mode of application

and the energy needed to eventually break microtubules since they play such

an important role in the mitosis process. The study of ultrasound effects on

isolated microtubules is necessary to help understand its basic mechanisms of

action on cells and tissues and it is a fundamental question in nanophysics.

Our ultimate goal is to improve the design and hence the use of HIFU for

the treatment of cancer using non-invasive techniques. Recently, novel ultra-

sonic techniques, such as the acoustic lens [5], have been developed which

offer additional capabilities of being able to focus the acoustic energy at spe-

cific locations. This if properly fine tuned can lead to oncologic applications

of relevance to the research presented in this chapter.

4.2 Theory and Calculation

In this section we will analytically solve the MT equation under the influ-

ence of an ultrasound plane wave. Our primary aim is to solve the problem

analytical and general for different filaments. To do that we use the the so

called beam equation [6, 7] or filament equation in this section. At section

4.4, with the parametric solution that will be found in this and next sections,
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L

y(x, t)

x

ω

Figure 4.1 Schematic illustration of a microtubule that is attached
to two beads at its ends that can be considered as situation of the
MT during mitosis

we will substitute the related values for the MT and will find the result for

MT. The parametric analytical solution also will help the other researchers

to use the solution with substituting the parameters for their correspondence

filament. Here, first we calculate the solution of free vibration of the MT

and then we will find the response of MT vibration when it is driven by an

ultrasound source with different frequencies when the microtubule is simply

attached at its two ends which is very good representation of the microtubule

during mitosis.

Fig. 4.1 shows a schematic drawing of a microtubule with length L that

is simply pinned at its two ends by attaching it to the two beads that are

trapped by laser tweezers [8,9] that can be considered as a microtubule during

mitosis.

The equation of motion of the filament, driven with a sinusoidal force

density (force per unit of length of the beam) with amplitude of EIA1 and
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angular frequency of ω is

∂4y(x, t)

∂x4
+
c⊥
EI

∂y(x, t)

∂t
+

µ

EI

∂2y(x, t)

∂t2
= A sin(ωt). (4.1)

The second and the third terms on the left side of the above equation come

from the viscous drag force of the solution and the inertia of the beam respec-

tively and the term on the right side represents the effect of the ultrasound

source. Also in Eq. (4.1) the viscous drag coefficient per unit of the length of

the filament, flexural rigidity of the filament, and the linear mass density of

the filament are denoted as c⊥, EI, and µ respectively.

4.2.1 Complementary solution or Free Vibration Solu-

tion

To solve the above equation, first we will find the solution for the homoge-

neous equation. By setting the right hand side of Eq. (4.1) equal to zero (to

get the complementary function) and assuming that the solution for y(x, t) is

a separable function of x and t we write

y(x, t) = X(x)Y (t). (4.2)

Substituting Eq. (4.2) into Eq. (4.1) and dividing the result by X(x)Y (t),

1This amplitude is always proportional to the amplitude of the ultrasound at the location

of the MT, which is related to the intensity of the wave at the location of the MT. In this

section we are not interested in calculating this quantity since our solutions are always

proportional to A and we always have a good control of it through the intensity of the wave.

We will come back to this issue in Section 4.6.
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we get the following two eigenvalue equations

d4X(x)

dx4
= αX(x), (4.3)

d2Y (t)

dt2
+
c⊥
µ

dY (t)

dt
= −αEI

µ
Y (t). (4.4)

α is an arbitrary constant at this stage. As we mentioned before, we solve the

equation for a MT that has been simply attached at its two ends, that means

the boundary conditions for Eq. (4.3) are

X(0) = X(L) = 0,
d2X

dx2
|x=0 =

d2X

dx2
|x=L= 0. (4.5)

Applying the above boundary conditions in Eq. (4.3), we will get the

eigenfunctions and eigenvalues of Eq. (4.3) as

Xn(x) = sin(α1/4
n x), αn = (

nπ

L
)4. (4.6)

Time dependency of the solution depends on mode number, n, of the so-

lution. It can give us two different situations2 based on our mode number:

1) Overdamped case αn
EI
µ
< ( c⊥

2µ
)2

2) Underdamped case αn
EI
µ
> ( c⊥

2µ
)2

The time solution will be

2In fact it gives 3 different situations and here we have assumed that αnEI/µ 6=

(c⊥/2µ)2. In the case of the critically damped solution, αnEI/µ = (c⊥/2µ)2, we have

to add another term to our solution in Eq. (4.8).
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Ycn(t) =


exp(− c⊥

2µ
t)[An exp(

√
( c⊥

2µ
)2 − αnEIµ t)

+Bn exp(−
√

( c⊥
2µ

)2 − αnEIµ t)], n ≤ nc

Cn exp(− c⊥
2µ
t) cos(

√
αn

EI
µ
− ( c⊥

2µ
)2t− δn), n > nc

(4.7)

where nc = bL
π

( µ
EI

)1/4( c⊥
2µ

)1/2c is the integral part3 of L
π

( µ
EI

)1/4( c⊥
2µ

)1/2 and An,

Bn, Cn, and δn can be found from the initial condition of the beam.

Thus with using Eq. (4.6) for the spatial part and Eq. (4.7) for the

temporal part of the function we can write the following equation for the

solution of the homogeneous part of the beam equation,

yc(x, t) =
∞∑
n=1

ycn(x, t) =
∞∑
n=1

Xn(x)Ycn(t). (4.8)

4.2.2 Particular Solution for a Microtubule Driven by

a Sinusoidal Plane Wave

In this section we will solve the beam equation for microtubule that is

driven with a sinusoidal ultra-sound wave. To do that, we first look for a

particular solution of Eq. (4.1). Unfortunately we can not find this particu-

lar solution with the method of separation of variables directly, because the

driven part does not have spatial dependency. Therefore, we assume that our

driven force is AX(x) sin(ωt), instead of A sin(ωt) at our first attempt to find

a particular solution. This will help us to solve our differential equation with

3It is also called integral value or floor function (usually in mathematics). In mathe-

matics and computer science, the floor functions map a real number to the next smallest

integer. More precisely, floor(x) is the largest integer not greater than x.
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the method of separation of variables. Later in this section we will talk about

the logical reasons to accepting this assumption and showing that this is not

a limitation for the method of solution.

Substituting Eq. (4.2) into Eq. (4.1) with the new driven force and divid-

ing the result to X(x)Y (t) we will again get two eigenvalue equations. The

eigenvalue equation related to the spatial part is the same as Eq. (4.3) and

eigenvalue equation related to the temporal part will be

d2Y (t)

dt2
+
c⊥
µ

dY (t)

dt
+ α

EI

µ
Y (t) =

EIA

µ
sin(ωt). (4.9)

Again applying the initial conditions mentioned in Eq. (4.5), in Eq. (4.3),

we will get the the same eigenfunctions and eigenvalues as in Eq. (4.6). For the

temporal function we try [10] D sin(ωt − δ) as a particular solution. Putting

this function in the Equation (4.9) and expanding sin(ωt− δ) and cos(ωt− δ)

and using the fact that sinωt and cosωt are linearly independent we can find

D and δ and consequently our particular solution will be

Y (t) =
EIA
µ

[(αEI
µ
− ω2)2 + 4( c⊥

2µ
)2ω2]1/2

sin(ωt− δ), (4.10)

where δ in Eq. (4.10) is

δ = tan−1(

c⊥
µ
ω

αEI
µ
− ω2

). (4.11)

This is the particular solution for the temporal part of our microtubule

equation that represents all of the information for large4 t. Using Eq. (4.6)

for the spatial function and Eq. (4.10) for the temporal function we can find

the complete particular solution for the microtubule vibration,
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yp(x, t) =
∞∑
n=1

ypn(x, t) =
∞∑
n=1

BnXn(x)Ypn(t)

=
∞∑
n=1

Bn sin(α1/4
n x)

EIA
µ

[(αn
EI
µ
− ω2)2 + 4( c⊥

2µ
)2ω2]1/2

sin(ωt− δn). (4.12)

Note that αn has been calculated in Eq. (4.6). Bn can be found from the

space dependency of the driven force.

Now we come back to the assumption that we did to be able to use method

of separation of variables and we found the particular solution for the non

homogeneous term of AX(x) sin(ωt) instead of A sin(ωt). As we know the

eigenfunctions of Eq. (4.3), Xn(x), produce a complete (or closed) set over

the domain of ]0,L[ which means that we can expand any spatial function for

the right hand side of Eq. (4.1) in terms of a linear combinations of these

eigenfunctions. Since our beam equation is also linear, the particular solution

for any spatial function in the driven part will be a linear combination of

solutions in Eq. (4.12) with the same coefficient Bn.

To find Bn for the original problem, when the the non homogeneous term

is A sin(ωt), we just need to expand one over the domain of ]0,L[ in terms of

eigenfunctions Xn(x). With doing that we get [11] (Appendix E)

1 =
4

π
[
sin(πx/L)

1
+

sin(3πx/L)

3
+

sin(5πx/L)

5
+ .....]. (4.13)

Using the coefficients in the above expansion and substituting them into

Eq. (4.12) and simplifying the result, we will get the following exact particular

solution for the MT equation with non homogeneous term of A sin(ωt),

4Here ”large” means compare to the inverse of damping parameter, c⊥/2µ, in the com-

plementary solution in Eq. (4.7). It means for t� 2µ/c⊥ our solution can be demonstrated

just by the particular solution.
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yp(x, t) =
∞∑

n=1, odd

4A

nπ[(n4( π
L

)4 − µ
EI
ω2)2 + ( c⊥

EI
)2ω2]1/2

sin(nπx/L) sin(ωt− δn).

(4.14)

Now that we have found the exact particular solution for the microtubule

equation driven by an ultrasound plain wave and we know that this term(s),

particular solution, is the only important term(s) just after a few oscillations of

the microtubule, we are ready to evaluate any quantity that we are interested

in.

4.3 Maximum Bending and Resonance Con-

dition

In this section first we will calculate the bending moment exerted on the

cross section of the microtubule. The reason for this calculation is that the

bending moment is the quantity responsible for bending any beam or fila-

ment and if it exceeds some critical value (for a given filament with a cross

section and material), the filament will break. Using the moment-curvature

relationship, M = EI/ρ, [12] and using the small deflection approximation,

1/ρ = ∂2y(x, t)/∂x2, we can find the bending moment with taking the partial

derivative of particular solution with respect to the x,

M(x, t) =
∞∑

n=1, odd

−4(nπ
L

)2EIA

nπ[(n4( π
L

)4 − µ
EI
ω2)2 + ( c⊥

EI
)2ω2]1/2

sin(nπx/L) sin(ωt− δn).

(4.15)
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Then we are looking for the frequencies that maximize the bending moment

for each mode. To do that, we should maximize the amplitudes of the bending

moment with respect to the frequency. Taking a derivative of the amplitudes

of the bending moment in Eq. (4.15) with respect to ω and setting them to

zero, introduces the frequencies that we are seeking. The frequencies are

ωn = [(
nπ

L
)4EI

µ
− 2(

c⊥
2µ

)2]1/2. (4.16)

Note that in the above equation resonance just happens for the values of

n that make the quantity under the square root positive. Solving the above

equation for the the smallest integer value of n that can give us the real value

for the frequency, n0, we will find the first resonance mode number as5

n0 = dL
π

(
µ

2EI
)1/4(

c⊥
µ

)1/2e. (4.17)

The reason for calling the above frequencies as resonance frequencies is

that they are exactly the same frequencies that maximize the amplitudes in

MT equation (Eq. (4.14)) and we know that when the amplitude in the MT

equation is maximum for each frequency the correspondent mode absorbs the

maximum amount of the energy from the source. In fact this is the definition

of resonance frequency.

5”de” in Eq. (4.17) is called celling function that maps the argument to the next largest

integer. Also note that in this section n can just accept odd numbers and if we end up with

an even number for n0 in Eq. (4.17), we should go to the next integer which is definitely an

odd number.
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4.4 Analytical Results

In this section we substitute physical values for the parameters in our

solution. Fig. 4.2a (left axis) shows the graph of the resonance frequency as

a function of mode number for a MT with a length of 10 µm that is inside an

aqueous solution. Viscosity of the solution is 10−3 Pa.s [13] and the diameter

and flexural rigidity of MT are equal to 25 nm and 3×10−23 Nm2 respectively

[14,15]. We also need to calculate c⊥ from the following equation [13,16]:

F⊥ =
4πηL

ln( L
2r

) + 0.84
v, (4.18)

where F⊥ is the perpendicular component of the viscous force exerted on the

MT by the solution when it moves with velocity v with respect to the solution.

η is viscosity of the solution and L and r are length and radius of the filament

respectively.

As we see from the graph, the first resonance happens at mode number

equal to 67 and before that mode there is no resonance and the amplitude of

the bending moment decreases as a function of frequency monotonically.

Fig. 4.3 shows the amplitude of the bending moment (actually it shows

the amplitude of the bending moment divided by EIA, but as we explained

in footnote 1, here we are just interested in maximizing the amplitude of the

bending moment for a constant A which is always related to the intensity of

the ultrasound at the location of the MT) at each resonance frequency as a

function of mode number. As it is clear from the graph the amplitude decreases

with increasing the mode number, this suggests that using the first mode of the

resonance transfers the maximum amount of the energy to the MT compare
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Figure 4.2 Left axis, Fig. 4.2a, shows a plot of the resonance fre-
quency as a function of mode number for a 10 µm length microtubule
inside the aqueous solution. Right axis, Fig. 4.2b, shows a plot of the
quality factor of resonance as a function of mode number for the same
microtubule.

with other resonance modes. We will come back to this statement later on

when we discuss the quality factor of each mode.

Fig. 4.4 shows the amplitudes of the bending moment as a function of

frequency for three different modes. As we see, the amplitude at the resonance

frequency for the modes, maximum of the curves, decreases with increasing the

mode number. This is also clear from Fig. 4.3 but here we want to bring the

readers attention to this fact that although the amplitude at the resonance

frequency decreases with increasing the mode number, the width of curves

decreases faster in such a way that Quality factor (Q-factor) of the resonance

that describes how underdamped an oscillator or resonator is, or equivalently

describes the sharpness of each resonance (here Q-factor is equal to µωn/c⊥),

increases with increasing the mode number. Unlike for the amplitude that

suggests to use the first resonance mode for transferring the maximum amount
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Figure 4.3 A plot of amplitude of the bending moment divided by
EIA at each resonance frequency as a function of mode number for a
10 µm length microtubule inside the aqueous solution. In the above
graph dn(ω) is equal to Dn(ω)/EIA = 4(nπ

L
)2/nπ[(n4( π

L
)4− µ

EI
ω2)2 +

( c⊥
EI

)2ω2]1/2 and in order to get the above graph, we should substitute
ωn from Eq. (4.16) in the dn(ω).

of the energy to the MT, Q-factor suggests that for having sharper resonance

we should use modes with higher mode number. We will resolve this issue

later with introducing the double slit ultrasound waves. Fig. 4.2b (right axis)

shows the quality factor as a function of mode number.

Although we have solved and discussed the resonance condition, amplitude

of bending moment at each resonance frequencies, and Q-factor of each mode,

we should note that when the MT is driven by an ultrasound plane wave,

the solution will be a linear combination of all modes in Eq. (4.15). More

specifically when we discussed the resonance frequency for one specific mode,

we really meant that the contributation of that mode when the filament is

driven by a specific frequency is a maximum compared to its contribution when

the filament is driven by any other frequencies. However, the MT actually
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Figure 4.4 A plot of the amplitudes of the bending moment divided
by EIA for a 10 µm length microtubule inside the aqueous solution
as a function of the frequency for three different modes: (a) the solid
curve for mode number equal to 67 (which corresponds to the first
resonance mode, n0), (b) the dashed curve for mode number equal to
99, and (c) the dotted curve for mode number equal to 149.

vibrates with a combination of all of its modes. Some of the modes with a

lower, although not satisfying the resonance condition, have a larger amplitude

than the amplitude of the specific mode.

Fig. 4.5 clearly demonstrates the previous paragraph. Although the mode

number 99 is at resonance (solid curve at its peak), amplitudes of the mode

number 97 (dashed curve) and 95 (dotted curve) are still higher than the

amplitude of this mode at its resonance frequency. This proves that the ul-

trasound plane waves really do not establish any resonance condition for the

MT.

4.5 Single Mode Excitation
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Figure 4.5 A plot of the amplitudes of the bending moment divided
by EIA for the same microtubule as a function of the frequency for
three consecutive modes: (a) the solid curve for mode number equal
to 99, (b) the dashed curve for mode number equal to 97, and (c) the
dotted curve for mode number equal to 95.

In order to control the system with frequency, we have to excite just one

single mode with a mode number larger that n0 (in order to have resonance)

and eliminate the other modes. To do that we can no longer excite the filament

with an ultrasound plane wave as mentioned before and we have to modulate

our wave. Looking carefully to the steps we passed to reach the solution in

Eq. (4.14), helps us to find out what kind of modulation we should have. For

eliminating the other modes and exciting only a single mode6, say m, we should

eliminate the other terms in the summation in Eq. (4.15), but we know that

the summation has come from the expansion of one in terms of sin(nπx/L)

(in order to produce the plane wave). This explains why we cannot excite the

filament with the plane wave anymore and guides us to excite the filament with

a force density of the form of EIA sin(mπx/L) sin(ωt) instead of EIA sin(ωt).

6 In this chapter, we use m as a mode number when we excite a single mode with elimi-
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Using the above force density, the solution for the MT vibrational equation

and the bending moment equation can be found from the following equations

respectively,

yp(x, t) =
A

[(m4( π
L

)4 − µ
EI
ω2)2 + ( c⊥

EI
)2ω2]1/2

sin(mπx/L) sin(ωt− δm), (4.19)

M(x, t) =
−(mπ

L
)2EIA

[(m4( π
L

)4 − µ
EI
ω2)2 + ( c⊥

EI
)2ω2]1/2

sin(mπx/L) sin(ωt− δm). (4.20)

In Fig. 4.6, we have shown a plot of the amplitudes of bending moment

divided by EIA for a 10 µm length MT inside an aqueous solution. Comparing

this figure with Fig. 4.4 reveals two major advantages of excitation of a single

mode of the filament with the modulated wave of EIA sin(mπx/L) sin(ωt) with

respect to excitation with the plane wave. First the amplitude is much larger

in Fig. 4.6 (in fact it is mπ/4 times larger since we do not need to expand

the plane wave in terms of the harmonic modes). The second advantage is

that with increasing the mode number, m, the amount of the amplitude of the

bending moment at the resonance frequency (maximum of each graph) does

not drop as fast as Fig. 4.4 and becomes almost flat for large mode number.

This is more clear in Fig. 4.7 which shows a plot of the amplitude of the

bending moments divided by EIA at each resonance frequency as a function of

mode number for the same filament for both kind of excitations. As we see, not

only the modulated excitation gives us a much larger amplitude but also the

amount of amplitude for large mode number is almost independent of the mode

nating the other modes (refere to Eq. (4.19) and (4.20)). n has been used for demonstration

of mode number for excitation of a single mode by an ultrasound plane wave (refer to Eq.

(4.14) and (4.15)).



4.5 Single Mode Excitation 78

Figure 4.6 A plot of the amplitudes of bending moment divided by
EIA for a 10 µm length microtubule when we have just excited a
single mode at a time as a function of the frequency, for three modes:
(a) the solid curve for m = 67, (b) the dashed curve for m = 99, and
(c) the dotted curve for mode number equal to m = 149. Note that
there is no need to pick the odd mode number when we excite just
a single mode and eliminate the other modes but here we picked the
same mode number demonstrated in Fig. 4.4 in order to be able to
compare two situations accurately. Also note that unlike Fig. 4.4 that
we have all the curve at any driven frequency (since we had excited
the filament with a plane wave), here we have just excited a single
mode of the system at a time with a driven force dencity of the form
EIA sin(mπx/L) sin(ωt) and we should not consider the other curves.

number. The graph for Q-factor as a mode number remain exactly the same

as excitation with the plane wave in Fig. 4.2b. As with modulated excitation

we do not have the problem of dropping of the amount of the amplitude

with increasing the mode number, these two graphs (Fig. 4.2b and Fig. 4.7)

suggest that for having more control on the system, we should use higher mode

numbers.

All of the above results guide us to excite just a single mode of the MT

with a modulated wave of the form of sin(mπx/L) sin(ωt).
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Figure 4.7 A plot of amplitude of the bending moment at each res-
onance frequency divided by EIA as a function of the mode number
for a 10 µm length microtubule inside the aqueous solution. The solid
curve (replacing p with m) shows excitation with modulated wave
of EIA sin(mπx/L) sin(ωt). The dashed curve (replacing p with n)
shows excitation with a plane wave with the same amplitude.

From the theoretical point of view the job is done and we have proved that

in order to have frequency control on the vibration of the filament we should

excite just one single mode of the filament but the experimental issue is how

can we do that? Is there any device to produce such a modulated wave?

Although we do not intend to overcome all experimental issues and prefer

to leave the answers to the above questions to the experimentalist but still try

to open a direction for answering those questions. We think the answers are

interference and double slit. With passing an ultrasound plane wave through

a double slit we can produce the wave we are looking for. Fig. 4.8 shows a

schematic.
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Figure 4.8 A schematic of proposed double slit ultrasound device for
a single mode excitation. (Figure not to scale)

4.6 Intensity and Sound Level Estimation

In this section we try to calculate the minimum requirement on the ultra-

sound intensity to break a MT. In order to break a MT, we should bend it to a

minimum local curvature. Reference [17] provides useful information about the

breakage of MTs. The mean curvature to break a MT in Waterman-Storer’s

and Salmon’s [18] report is around 1.7 rad/µm. Later, Odde et al. [17] re-

ported 1.5 rad/µm for the related mean curvature. Substituting this reported

curvature and flexural rigidity of a MT into the moment-curvature relation-

ship, we can calculate the minimum required bending moment exerted on the

cross section of a MT to break it. This value is about 4.5 × 10−17 Nm and

is denoted by MB in the rest of this section. Note that we should equalize

MB with the maximum of the bending moment in equation Eq. (4.20), which

is simply the amplitude of the bending moment in that equation, to find the

relation between MB and the minimum required ultrasound intensity (denoted
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by IB in the rest of this section). This will be demonstrated later in this sec-

tion. Also, as the maximum bending moment corresponds to the maximum of

MT solution, Eq. (4.19), we can conclude that the breakage of MT happens

at the locations of antinodes.

As we mentioned in section 4.2, EIA is the amplitude of the force density.

This quantity is related to the pressure amplitude of ultrasound through the

simple relation between the force and pressure,

EIA = 2r∆p0, (4.21)

where ∆p0 and r denote the pressure amplitude, which is the maximum in-

crease or decrease in pressure due to ultrasound, and the radius of MT, respec-

tively. Pressure amplitude is related to the displacement amplitude, which is

the maximum displacement of the fluid element to either side of its equilibrium

position, through the following formula [19]:

∆p0 = vρsωs0, (4.22)

where v, ρs, ω, and s0 denote the speed of sound in the solution [20], density

of the solution, angular frequency of ultrasound, and displacement amplitude,

respectively. By eliminating ∆p0 between Eq. (4.21) and Eq. (4.22), then

solving for sm, we obtain the following equation for the displacement ampli-

tude,

s0 =
EIA

2rvρsω
. (4.23)

So far, we have managed to find the relationship between the displacement

amplitude, subsequently sound intensity, and the force density amplitude. In

order to get an estimate for IB, first we have to find the relation between bend-

ing moment and force density amplitude, but how? The answer is, very easily.



4.7 Discussion and Conclusion 82

Actually we have already found this relation before. By looking carefully at

Eq. (4.20), we can relate MB and EIAB. Namely,

MB = Dm(ω) = dm(ω)EIAB =
(mπ
L

)2

[(m4( π
L

)4 − µ
EI
ω2)2 + ( c⊥

EI
)2ω2]1/2

EIAB.

(4.24)

Substituting the above relation for EIAB into Eq. (4.23) gives the mini-

mum required displacement amplitude, s0B, to break a MT,

s0B =
MB

2rvρsωdm(ω)
. (4.25)

Finally, using the relation between intensity and pressure amplitude of

sound [19], we obtain

Intensity =
1

2
ρsvω

2s2
0. (4.26)

We can now find the final formula for the minimum required ultrasound in-

tensity to break a MT as

IB =
1

2vρs
[

MB

2rdm(ω)
]2. (4.27)

At this point, we substitute physical values for the parameters in Eq. (4.27)

to estimate IB for a 10 µm length MT inside an aqueous solution. MB was

also estimated at the beginning of this section. Using Fig. 4.6 to evaluate

dm(ωm) for mode numbers 67, 99 and 149, we find 213 KW/m2, 363 KW/m2,

and 397 KW/m2 for IB, respectively. These intensities correspond to 173.3

dB, 175.6 dB, and 176.0 dB, respectively. These theoretical predictions should

be relatively straight-forward to validate experimentally.

4.7 Discussion and Conclusion
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Needless to say, achieving resonance is important in order to control the

transfer of energy to the MT and to attain its maximum rate. Here, we have

shown that the ultrasound plane wave cannot provide the resonance condition

for the MT as it excites all the odd number modes at the same time. In order

to achieve resonance we should excite only a single mode of the MT. Single

mode excitation also helps to noticeably reduce (by 4 orders of magnitude)

the total energy transfered to the surrounding medium since it needs a much

smaller sound intensity, compared to the multi mode excitation. Another

important aspect of the single mode excitation is the fact that the amplitude

of the bending moment is almost independent of the mode number. This will

help excite a higher mode in order to achieve the resonance condition with a

high quality factor and a high amplitude at the same time.

In recent experiments [21] solutions containing assembled and unassembled

tubulin were subjected to waves produced by a microwave generator in the

range between 0.8 GHz and 2.5 GHz. While the spectrum analyzer detected

no significant changes in the case of free tubulin in solution and the control

buffer solution with no protein, samples containing microtubules in solution

showed a resonance phenomenon centered at 1.51 GHz. This was interpreted

as indicating resonant absorption of electromagnetic energy at a frequency

range within that predicted in this thesis. The author suggested a mechanical

mode of behavior in the case of microtubules, as opposed to free tubulin of

buffer solution, a conclusion that is consistent with our conclusions.



Bibliography

[1] J. E. Kennedy, G. R. ter Haar, and D. Cranston, British Journal of Ra-

diology 76, 590-599 (2003).

[2] F. Wu, Z. Wang, H. Zhu, W. Chen, J. Bai, K. Li, C. Jin, F. Xie, and H.

Su, Radiology 236, 1034-1040 (2005).

[3] M. W. Miller, D. L. Miller, A. A. Brayman, Ultrasound in Medicine and

Biology 22, 9, 1131-1154 (1996).

[4] I. Hrazdira, J. Skorpikova, M. Dolnikova, European Journal of Ultrasound

8, 43-49 (1998).

[5] A. Spadoni and C. Daraio, PNAS 107, 7230-7234 (2010).

[6] S. S. Rao, Mechanical Vibration, 4th ed., Pearson Prentice Hall, Upper

Saddle River, New Jersey (2004).

[7] J. M. Gere and S. P. Timoshenko, Mechanics of Materials, 3rd SI ed.,

Chapman & Hall, London (1991).

[8] K. T. McDonald, Am. J. Phys. 68, 486-488 (2000).

[9] K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787-2809 (2004).

84



BIBLIOGRAPHY 85

[10] J. B. Marion, Classical Dynamics of Particles and Systems, 2nd ed., Aca-

demic Press Inc., New York, New York (1970).

[11] G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 5th

ed., Harcourt/Academic Press, San Diego, California (2001).

[12] L. A. Segel, Mathematics Applied to Continuum Mechanics, Dover Pub-

lications Inc., New York (1987).

[13] J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, Sinauer

Associates Inc., Sunderland, Massachusetts (2001).

[14] M. Kikumoto, M. Kurachi, V. Tosa, and H. Tashiro, Biophysical Journal

90, 1687-1696 (2006).

[15] M. Kurachi, M. Hoshi, and H. Tashiro, Cell Motil. Cytoskeleton 30, 221-

228 (1995).

[16] A. Samarbakhsh and J. A. Tuszynski, Phys Rev. E 80, 011903 (2009).

[17] D. J. Odde, L. Ma, A. H. Briggs, A. Demarco, and M. W. Kirschner, J.

Cell Sci. 112, 3283-3288 (1999).

[18] C. M. Waterman-Storer and E. D. Salmon, J. Cell Biol. 139, 417-434

(1997).

[19] D. Halliday, R. Resnick, J. Walker, Fundamental of Physics, 6 ed., John

Wiley & Sons Inc., New York, New York (2000).

[20] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals

of Acoustics, 4th ed., John Wiley & Sons Inc., New York, New York

(2001).



BIBLIOGRAPHY 86

[21] R. Pizzi, G. Strini, S. Fiorentini, V. Pappalardo, M. Pregnolato, A chapter

of the following book: ”Artificial Neural Networks”, Nova Publishers, New

York (To be published).



Chapter 5

General Discussion and

Conclusions

5.1 Summary

The shooting bead method introduced in this thesis can be performed very

fast and has numerous advantages over the other current methods for finding

the exural rigidity of the bio- and nano-laments.

For performing this experiment, the bead needs not be attached to the

filament (like the buckling force method [1, 2]), in fact, this was one of the

reasons that guided the introduction of the proposed method. It needs just

a single trap (the buckling force method needs two traps), there is no need

to find the force exerted on the bead by the trap (which is very sensitive

measurement), there is no need to know the exact shape of the filament (which

is required for the buckling force and the thermodynamic fluctuation methods

[3]), there is no need to oscillate the trap (like in the wiggle method [4]),

87
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there is no need to measure the time (as in the relaxation method [5]), and

there is no need to measure the velocity of the bead or the rod (as in the

hydrodynamic flow method [6, 7]). The only measurement that we need to

perform is the measurement of the length for a and d, also because the ratio

of a/d is important not a and d individually, there is no need to calibrate the

microscope. Most importantly, from the author’s point of view, this method

provides a compact parametric formula for the flexural rigidity (most of the

above methods lack this advantage so that even after several measurements

still there is need for some theoretical work to be done in order to find the

flexural rigidity) which helps to calculate the flexural rigidity or any other

unknown in the formula after a single easy measurement. Also, knowing the

cross-section of the filament exactly and measuring the flexural rigidity, we are

able to calculate the Young modulus of the filament

In extension of the method, for consideration of the effects of the energy

loss due to the filament itself on the calculated value for the flexural rigidity, we

could define a new parameter (the filament drag factor) which is responsible for

the all contributions of the viscous force on the filament. With finding a new

parametric formula, we could prove that the effects of filament energy loss are

more important when dealing with filaments with less rigidity. Also beautifully

this new formula for the flexural rigidity converts to the old formula, when we

ignore the effects of the filaments drag force by changing the filament drag

factor to one.

In the last project, our goal was to determine conditions for the resonance

condition of the microtubule when it is under the influence of mechanical

(usually ultrasound) waves. Achieving resonance is important in order to

control the transfer of energy to the MT and to attain its maximum rate.



5.1 Summary 89

As microtubules are the major filaments of the cytoskeleton and they are

directly involved in the process of mitosis during the cell division, possible

breakage of a microtubule during mitosis can control the duplication of cancer

cell (as cancer cells duplicate more rapidly than the normal cells and they

spend more percentage of their lifetime in the mitosis stage). Here, we have

shown that the ultrasound plane wave cannot provide the resonance condition

for the MT as it excites all the odd number modes at the same time. We

have also shown that, in order to achieve resonance we should excite only a

single mode of the MT but the single mode number of this mode should be

larger than a minimum mode number. A parametric analytical relation for

this minimum mode number has been introduced in this thesis. Single mode

excitation also helps to noticeably reduce (by 4 orders of magnitude) the total

energy transfered to the surrounding medium since it needs a much smaller

sound intensity, compared to the multi-mode excitation and it helps to transfer

the minimum amount of energy to other organs. Another important aspect

of the single mode excitation is the fact that the amplitude of the bending

moment is almost independent of the mode number . This will help excite a

higher mode in order to achieve the resonance condition with a high quality

factor and a high amplitude at the same time. Our theoretical results for

the range of resonance frequency are completely in agreement with the new

experimental data. The most satisfying aspect of carrying out this project

(which from the authors point of view is the definition of theoretical physics)

is the fact that our theoretical work has been done a few months before the

experiment performed which is usually the other way around these days.

It is worth pointing out that in a recent paper [8], other authors have

used our analytical method for consideration of the effect of viscosity on the



5.2 Motivation and Preliminary Experimental Work 90

filament, to correct the viscous drag induced error in macromolecular manip-

ulation experiments using atomic force microscope.

5.2 Motivation and Preliminary Experimental

Work

Figure 5.1 shows two images of a single bio-filament that has been produced

due to the aggregation of the tubulin protein in the laboratory [9] under two

different experimental situations. The image in the top panel shows a trapped

bead in a laser tweezer which has pushed the filament in the south-east di-

rection. To convince the reader that the bead is pushing on the filament, we

should bring to the reader’s attention the slope of the angle between the fila-

ment (although the filament is not completely straight in this situation) and

the horizontal line in the two states. In the bottom image the bead is not in

the laser trap anymore and has been pushed by the filament in the north-west

direction where it has reached its final position. Seeing this effect of a ”jump-

ing bead” in the lab was our main motivation to find a final relation for one of

the important characteristics of the bio-filaments and nano-filaments just with

very fast and easy measurement of the initial and final position of the bead.

Actually we had planned to do a different measurement. Unfortunately that

experiment was a failure and the bead didn’t attach to the filament but sud-

denly this jumping effect happened and its observation led to the development

of the shooting bead method.
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Figure 5.1 Two pictures of a bio-filament in two different situations.
The top panel shows a trapped bead in a laser tweezer which has
pushed the filament in the south-east direction. The bottom panel
shows that the bead is not in the laser trap anymore and has been
pushed by the filament in the north-west direction and has reached
its final position. The radius of the beads is roughly 1 µm. Picture
taken by Dr. Linda Payet.
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5.3 Future Works

At the beginning of my studies on this project, I spent more than a year

working on the development of a physical model for the conformation of a

microtubule from tubulin dimers based on the electrostatic forces. Most of

the available models on this subject are not based on direct force and they

just use other ideas like the random walk model. I discuss the idea very briefly

below:

It is known that tubulin dimer has a dipole moment, p, [10–13] which is

not aligned with the axes of tubulin dimer [14] (axes of a tubulin dimer is

aligned with the protofilament when the tubulin is contributed in the micro-

tubule). As a microtubule is also made from tubulin dimers (Figure 5.2), it

produces a nonuniform electric field, E, in the cytoplasm. The force exerted on

a free tubulin dimer due to a microtubule can be calculated from the following

formula:

F = (p.∇)E. (5.1)

There will be also a torque exerted on the free tubulin. This torque just

aligns the tubulin with the electric field line due to the microtubule. As a result

we just need to calculate the exerted force on the tubulin dimer when its dipole

moment aligned with electric field line. This fact reduces the complexity of

the calculations extensively. With calculating this force and using the fact

that this force is proportional to the velocity of the free tubulin dimer through

the Stokes’ law and integrating over the surface which has surrounded the

microtubules cap, we can find an estimation for the growth rate of microtubule.
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Figure 5.2 Schematic diagram of microtubul made of electric dipoles
which produces electric field in the cytoplasm.
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This work will be continued in the future.

Another project which I was working on, is calculating the assembled en-

ergy of the MT and tubulin sheet. In this project we want to answer important

questions about the process of folding tubulin sheets to form MT cylinders (this

is based on the hypothesis proposed by M-F Carlier and A. Pantaloni that the

MTs acquire their tubular shape from a sheet) and also giving a necessary

condition for the electric dipole direction of a single tubulin dimer. To answer

these questions I have written 2 computer codes (and still have to write 2 more

codes) that calculate the assembled energy of the two cases, tubular form and

the sheet. Comparing these four figures reveals whether this folding effect is

possible or not (I strongly tend to believe that this is not possible). Also we

will be able to find a subset of values for the direction of the electric dipole

moment of a tubulin dimer. I briefly discuss the method below.

Dipole- dipole interaction energy can be calculated from the following equa-

tion:

U =
P1.P2 − 3(n.P1)(n.P2)

4πε0r3
= − P1P2

4πε0r3
(2 cos θ1 cos θ2 − sin θ1 sin θ2 cosψ).

(5.2)

where P1 and P2 are two points dipole moments, r is the distance between

the two dipoles, n is the unit vector pointig toward one dipole from the other

one, θ1 and θ2 are the angle between the first dipole and second dipole with

respect to n respectively. ψ is the angles between projections of P1 and P2

on the plane perpendicular to n. Figure 5.3 shows the schematic diagram of

orientation of two dipoles.

Now, to calculate the interaction energy for a MT consisting of m × n
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Figure 5.3 Schematic diagram of orientation of two dipoles.

tubulin dimers (n is the number of protofilaments and m is the number of

tubulin units in each protofilament (Figure 5.4), we have to calculate [m×n×

(m×n− 1)/2] of such dipole-dipole interaction potential terms and add them

together for any direction in 3D space. Comparing the result (2D graphs) we

can find an answer of our question. This work also will be continued in the

future.
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Figure 5.4 Consideration of microtubule as a m× n matrix.
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Appendix A

Calculating the Order of

Magnitudes for Vertical

Displacement Due to the

Buoyant Force and the Weight

of the Bead

It has been assumed that the density of the bead is equal or close to the density

of the solution (in most cases this will be composed mainly of water) which

means that the buoyant force and the weight of the bead cancel each other

out. Therefore, we need not make a correction for the apparent weight of the

bead but this method still works even if the density of the bead is different

from the density of the solution because of the following two reasons. Refer-

ring to Figure 3.1 which is in a horizontal plane, the vertical forces (the effects

of gravity and buoyant forces) do not provide any contribution to the horizon-
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tal motion. Secondly, the experiment pertains to a process that occurs in a

fraction of a second which depends on an asymptotic approach time constant.

In this appendix we estimate how much the bead moves vertically during the

experiment assuming the density of the bead is different from the density of

the solution. If this distance, b, is large with respect to the length of the focal

region of the microscope, the resolution of the image of the bead after the

experiment will be lost.

The vertical force exerted on the bead is |m−ms|g where ms denotes the

displaced mass of the solution. Therefore, the vertical acceleration of the bead

is

az =
m−ms

m
g. (A.1)

The elapsed time for this motion is on the order of the asymptotic approach

time constant, therefore the total vertical distance is on the order of g(m −

ms)(9τ)2/2m or

b ∼ O(
9

8
mg
|m−ms|
π2η2R2

). (A.2)

With a typical value of η=10 −3 Pa.s for water, R=1 µm, ms=
1
2
m ' 4× 10−15

kg for aqueous solution, we obtain b ∼ O(10−13)m.

This means that the vertical displacement due to the buoyant force and

the weight of the bead during the experiment is definitely negligible and we

will not lose the focus when viewing the bead after it stops.



Appendix B

Energy Conservation

Investigation

It is important to validate the solution by making sure that the initial potential

energy of the filament is equal to the total energy-loss (Q) of the bead due to

the viscous drug force exerted on it over the course of its motion. Infinitesimal

energy-loss of the bead during its motion is given by

dQ = −dWv = −Fvdx = 6πηRẋ2dt. (B.1)

Note that in the above equation we calculate the negative of the work done

on the bead by the viscous drag force in order to arrive at a positive value

for the energy-loss of the system. The value of ẋ2 can be found by taking the

derivative of Equation (3.2) and squaring it, so that

ẋ2 = a2 exp (−2Λt) (Λ2 cos2 Ωt+ Ω2 sin2 Ωt+ ΛΩ sin 2Ωt). (B.2)

From Equations (B.1) and (B.2) we obtain
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Q1 = 3πηRa2
∫ t0

0
exp (−2Λt) (Λ2 + Ω2 + (Λ2 − Ω2) cos 2Ωt+ 2ΛΩ sin 2Ωt) dt.

(B.3)

The subscript 1 in Q1 indicates that this is energy-loss that occurred in

the first part of the motion (underdamped harmonic motion from t = 0 to

t = t0 = π/2Ω). The result of the above equation is

Q1 =
1

2
ka2 − 1

2
ma2Ω2 exp(−Λ

Ω
π). (B.4)

Energy-loss in the second part of the motion (damped motion) can be found

using the following integral:

Q2 = 6πηR
∫ ∞

0
a2Ω2 exp(−Λ

Ω
π) exp(−4Λt)dt =

1

2

3πηR

Λ
a2Ω2 exp(−Λ

Ω
π).

(B.5)

From Equation (B.4) and (B.5) we find that the total energy-loss of the

bead during its whole motion is exactly equal to the potential energy stored in

the filament just before releasing the bead. This then validates the solutions

we found earlier in the paper.

Although to prove the conservation of energy we did not need to calculate

the bead energy-loss in terms of measurable quantities a and d, for complete-

ness of the solution we evaluate Q1 in terms of those quantities. In order to

do that we have to replace k and Ω in Equation (B.4) in terms of a and d.

Note that k in terms of a and d has been already found in Equation (3.4)

and inserting this equation into Equation (3.5) we easily find the following

equations for k and Ω:
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k = mΛ2

 π2

4[W
(
πa
4d

)
]2

+ 1

 , Ω =
πΛ

2W (πa
4d

)
. (B.6)

Replacing the above expressions in Equation (B.4) followed by some simple

algebra gives

Q1 =
1

2
ma2Λ2(

π2

4[W (πa
4d

)]2
(1− exp(−2W (

πa

4d
))) + 1). (B.7)



Appendix C

Calculating the Ratio of the

Rod’s Swept Area to the

Filament Swept Area

Under the small-angle approximation, the deflection of a beam, y, with length

L as a function of distance with respect to the pivot, x (See Figure3.2), can

be easily found by solving the beam equation [29],

y(x) =
a

2L3
(3Lx2 − x3). (C.1)

By integrating the above equation from 0 to L, the area swept by the

filament (curved AD) is

SAD =
3

8
aL. (C.2)

The area swept by the rod (BD) in the case of small deflection is
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SBD =
1

4
aL. (C.3)

Dividing Equation (C.3) by Equation (C.2) yields the ratio we seek.



Appendix D

Calculation of δκ0 and δκ

We know that

κ0 =
9πη2L3

4ρR
, (D.1)

thus for δκ0 we have

δκ0 = κ0(
δρ

ρ
+

2δη

η
+
δR

R
+

3δL

L
). (D.2)

ρ and η can be measured very accurately (as we use the values for the bulk

material), a typical value for δR/R for a good microsphere is 0.02 and δL/L

can be considered as 0.01. It means the percentage error for δκ0 can be almost

5%.

Finding δκ with the knowledge of δ(κ/κ0) from Equation (3.23) and δκ0

from Equation (D.2) is now straightforward,

δκ = δ(
κ

κ0

)κ0 +
κ

κ0

δκ0. (D.3)
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Appendix E

Coefficient of Expansion in Eq.

(4.13)

Here we want to calculate the coefficients of the Fourier sine series for the

following function in the interval ]-L, L[

f(x) =


−1 −L < x < 0

0 x = 0

1 0 < x < L

(E.1)

Coefficients of cosine terms will be

an =
1

L
(−

∫ 0

−L
cos(

nπs

L
)ds+

∫ L

0
cos(

nπs

L
)ds) = 0. (E.2)

It was obvious as the above function is an odd function.

Also the coefficients of sine terms will be
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bn =
1

L
(−

∫ 0

−L
sin(

nπs

L
)ds+

∫ L

0
sin(

nπs

L
)ds) =


4/nπ n is an odd number

0 n is an even number

(E.3)

Using above equations we obtain

4π[sin(πx/L)/1 + sin(3πx/L)/3 + sin(5πx/L)/5 + .....] = 1 for 0 < x < L.
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