Novel two-component regulatory systems play a role in biofilm formation of Lactobacillus reuteri rodent isolate 100-23

  • Author(s) / Creator(s)
  • his study characterized the two-component regulatory systems encoded by bfrKRT and cemAKR, and assessed their influence on biofilm formation by Lactobacillus reuteri 100-23. A method for deletion of multiple genes was employed to disrupt the genetic loci of two-component systems. The operons bfrKRT and cemAKR showed complementary organization. Genes bfrKRT encode a histidine kinase, a response regulator and an ATP-binding cassette-type transporter with a bacteriocin-processing peptidase domain, respectively. Genes cemAKR code for a signal peptide, a histidine kinase and a response regulator, respectively. Deletion of single or multiple genes in the operons bfrKRT and cemAKR did not affect cell morphology, growth or the sensitivity to various stressors. However, gene disruption affected biofilm formation; this effect was dependent on the carbon source. Deletion of bfrK or cemA increased sucrose-dependent biofilm formation in vitro. Glucose-dependent biofilm formation was particularly increased by deletion of cemK. The expression of cemK and cemR was altered by deletion of bfrK, indicating cross-talk between these two regulatory systems. These results may contribute to our understanding of the genetic factors related to the biofilm formation and competitiveness of L. reuteri in intestinal ecosystems.

  • Date created
    2014-01-01
  • Subjects / Keywords
  • Type of Item
    Article (Draft / Submitted)
  • DOI
    https://doi.org/10.7939/r3-t0gn-g157
  • License
    Attribution-NonCommercial-NoDerivatives 4.0 International
  • Language
  • Citation for previous publication
    • Su, M. S. W., & Gänzle, M. G. (2014). Novel two-component regulatory systems play a role in biofilm formation of Lactobacillus reuteri rodent isolate 100-23. Microbiology, 160(4), 795-806. http://dx.doi.org/10.1099/mic.0.071399-0
  • Link to related item
    http://dx.doi.org/10.1099/mic.0.071399-0