Usage
  • 12 views
  • 27 downloads

Top-k ranking with uncertain data

  • Author / Creator
    Wang, Chonghai
  • The goal of top-k ranking is to rank individuals so that the best k of them can be determined. Depending on the application domain, an individual can be a person, a product, an event, or just a collection of data or information for which an ordering makes sense. In the context of databases, top-k ranking has been studied in two distinct directions, depending on whether the stored information is certain or uncertain. In the former, the past research has focused on efficient query processing. In the latter case, a number of semantics based on possible worlds have been proposed and computational mechanisms investigated for what are called uncertain databases or probabilistic databases, where a tuple is associated with a membership probability indicating the level of confidence on the stored information. In this thesis, we study top-k ranking with uncertain data in two general areas. The first is on pruning for the computation of top-k tuples in a probabilistic database. We investigate the theoretical basis and practical means of pruning for the recently proposed, unifying framework based on parameterized ranking functions. As such, our results are applicable to a wide range of ranking functions. We show experimentally that pruning can generate orders of magnitude performance gains. In the second area of our investigation, we study the problem of top-k ranking for objects with multiple attributes whose values are modeled by probability distributions and constraints. We formulate a theory of top-k ranking for objects by a characterization of what constitutes the strength of an object, and show that a number of previous proposals for top-k ranking are special cases of our theory. We carry out a limited study on computation of top-k objects under our theory. We reveal the close connection between top-k ranking in this context and high-dimensional space studied in mathematics, in particular, the problem of computing the volumes of high-dimensional polyhedra expressed by linear inequations is a special case of top-k ranking of objects, and as such, the algorithms formulated for the former can be employed for the latter under the same conditions.

  • Subjects / Keywords
  • Graduation date
    2011-06
  • Type of Item
    Thesis
  • Degree
    Doctor of Philosophy
  • DOI
    https://doi.org/10.7939/R3KS36
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Doctoral
  • Department
    • Department of Computing Science
  • Supervisor / co-supervisor and their department(s)
    • You, Jia (Computing Science)
    • Yuan, Li-Yan (Computing Science)
  • Examining committee members and their departments
    • Lin, Xuemin (School of Computer Science and Engineering,University of New South Wales)
    • Zaiane, Osmar (Computing Science)
    • Sander,Joerg (Computing Science)
    • Chen, Xi (Mathematical and Statistical Sciences)